xref: /linux/drivers/net/ethernet/intel/igb/igb_ptp.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3 
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8 
9 #include "igb.h"
10 
11 #define INCVALUE_MASK		0x7fffffff
12 #define ISGN			0x80000000
13 
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter needs
57  * to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, and also the NIC
59  * clock can be adjusted to run up to 6% faster and the system clock
60  * up to 10% slower, so we aim for 6 minutes to be sure the actual
61  * interval in the NIC time is shorter than 9.16 minutes.
62  */
63 
64 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
66 #define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580			40
70 #define IGB_82580_BASE_PERIOD		0x800000000
71 
72 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
73 static void igb_ptp_sdp_init(struct igb_adapter *adapter);
74 
75 /* SYSTIM read access for the 82576 */
igb_ptp_read_82576(const struct cyclecounter * cc)76 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
77 {
78 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
79 	struct e1000_hw *hw = &igb->hw;
80 	u64 val;
81 	u32 lo, hi;
82 
83 	lo = rd32(E1000_SYSTIML);
84 	hi = rd32(E1000_SYSTIMH);
85 
86 	val = ((u64) hi) << 32;
87 	val |= lo;
88 
89 	return val;
90 }
91 
92 /* SYSTIM read access for the 82580 */
igb_ptp_read_82580(const struct cyclecounter * cc)93 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
94 {
95 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
96 	struct e1000_hw *hw = &igb->hw;
97 	u32 lo, hi;
98 	u64 val;
99 
100 	/* The timestamp latches on lowest register read. For the 82580
101 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
102 	 * need to provide nanosecond resolution, so we just ignore it.
103 	 */
104 	rd32(E1000_SYSTIMR);
105 	lo = rd32(E1000_SYSTIML);
106 	hi = rd32(E1000_SYSTIMH);
107 
108 	val = ((u64) hi) << 32;
109 	val |= lo;
110 
111 	return val;
112 }
113 
114 /* SYSTIM read access for I210/I211 */
igb_ptp_read_i210(struct igb_adapter * adapter,struct timespec64 * ts)115 static void igb_ptp_read_i210(struct igb_adapter *adapter,
116 			      struct timespec64 *ts)
117 {
118 	struct e1000_hw *hw = &adapter->hw;
119 	u32 sec, nsec;
120 
121 	/* The timestamp latches on lowest register read. For I210/I211, the
122 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
123 	 * resolution, we can ignore it.
124 	 */
125 	rd32(E1000_SYSTIMR);
126 	nsec = rd32(E1000_SYSTIML);
127 	sec = rd32(E1000_SYSTIMH);
128 
129 	ts->tv_sec = sec;
130 	ts->tv_nsec = nsec;
131 }
132 
igb_ptp_write_i210(struct igb_adapter * adapter,const struct timespec64 * ts)133 static void igb_ptp_write_i210(struct igb_adapter *adapter,
134 			       const struct timespec64 *ts)
135 {
136 	struct e1000_hw *hw = &adapter->hw;
137 
138 	/* Writing the SYSTIMR register is not necessary as it only provides
139 	 * sub-nanosecond resolution.
140 	 */
141 	wr32(E1000_SYSTIML, ts->tv_nsec);
142 	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
143 }
144 
145 /**
146  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
147  * @adapter: board private structure
148  * @hwtstamps: timestamp structure to update
149  * @systim: unsigned 64bit system time value.
150  *
151  * We need to convert the system time value stored in the RX/TXSTMP registers
152  * into a hwtstamp which can be used by the upper level timestamping functions.
153  *
154  * The 'tmreg_lock' spinlock is used to protect the consistency of the
155  * system time value. This is needed because reading the 64 bit time
156  * value involves reading two (or three) 32 bit registers. The first
157  * read latches the value. Ditto for writing.
158  *
159  * In addition, here have extended the system time with an overflow
160  * counter in software.
161  **/
igb_ptp_systim_to_hwtstamp(struct igb_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)162 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
163 				       struct skb_shared_hwtstamps *hwtstamps,
164 				       u64 systim)
165 {
166 	unsigned long flags;
167 	u64 ns;
168 
169 	memset(hwtstamps, 0, sizeof(*hwtstamps));
170 
171 	switch (adapter->hw.mac.type) {
172 	case e1000_82576:
173 	case e1000_82580:
174 	case e1000_i354:
175 	case e1000_i350:
176 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
177 		ns = timecounter_cyc2time(&adapter->tc, systim);
178 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
179 
180 		hwtstamps->hwtstamp = ns_to_ktime(ns);
181 		break;
182 	case e1000_i210:
183 	case e1000_i211:
184 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
185 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
186 						systim & 0xFFFFFFFF);
187 		break;
188 	default:
189 		break;
190 	}
191 }
192 
193 /* PTP clock operations */
igb_ptp_adjfine_82576(struct ptp_clock_info * ptp,long scaled_ppm)194 static int igb_ptp_adjfine_82576(struct ptp_clock_info *ptp, long scaled_ppm)
195 {
196 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197 					       ptp_caps);
198 	struct e1000_hw *hw = &igb->hw;
199 	u64 incvalue;
200 
201 	incvalue = adjust_by_scaled_ppm(INCVALUE_82576, scaled_ppm);
202 
203 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
204 
205 	return 0;
206 }
207 
igb_ptp_adjfine_82580(struct ptp_clock_info * ptp,long scaled_ppm)208 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
209 {
210 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
211 					       ptp_caps);
212 	struct e1000_hw *hw = &igb->hw;
213 	bool neg_adj;
214 	u64 rate;
215 	u32 inca;
216 
217 	neg_adj = diff_by_scaled_ppm(IGB_82580_BASE_PERIOD, scaled_ppm, &rate);
218 
219 	inca = rate & INCVALUE_MASK;
220 	if (neg_adj)
221 		inca |= ISGN;
222 
223 	wr32(E1000_TIMINCA, inca);
224 
225 	return 0;
226 }
227 
igb_ptp_adjtime_82576(struct ptp_clock_info * ptp,s64 delta)228 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
229 {
230 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 					       ptp_caps);
232 	unsigned long flags;
233 
234 	spin_lock_irqsave(&igb->tmreg_lock, flags);
235 	timecounter_adjtime(&igb->tc, delta);
236 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
237 
238 	return 0;
239 }
240 
igb_ptp_adjtime_i210(struct ptp_clock_info * ptp,s64 delta)241 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
242 {
243 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244 					       ptp_caps);
245 	unsigned long flags;
246 	struct timespec64 now, then = ns_to_timespec64(delta);
247 
248 	spin_lock_irqsave(&igb->tmreg_lock, flags);
249 
250 	igb_ptp_read_i210(igb, &now);
251 	now = timespec64_add(now, then);
252 	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
253 
254 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
255 
256 	return 0;
257 }
258 
igb_ptp_gettimex_82576(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)259 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
260 				  struct timespec64 *ts,
261 				  struct ptp_system_timestamp *sts)
262 {
263 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
264 					       ptp_caps);
265 	struct e1000_hw *hw = &igb->hw;
266 	unsigned long flags;
267 	u32 lo, hi;
268 	u64 ns;
269 
270 	spin_lock_irqsave(&igb->tmreg_lock, flags);
271 
272 	ptp_read_system_prets(sts);
273 	lo = rd32(E1000_SYSTIML);
274 	ptp_read_system_postts(sts);
275 	hi = rd32(E1000_SYSTIMH);
276 
277 	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
278 
279 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
280 
281 	*ts = ns_to_timespec64(ns);
282 
283 	return 0;
284 }
285 
igb_ptp_gettimex_82580(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)286 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
287 				  struct timespec64 *ts,
288 				  struct ptp_system_timestamp *sts)
289 {
290 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
291 					       ptp_caps);
292 	struct e1000_hw *hw = &igb->hw;
293 	unsigned long flags;
294 	u32 lo, hi;
295 	u64 ns;
296 
297 	spin_lock_irqsave(&igb->tmreg_lock, flags);
298 
299 	ptp_read_system_prets(sts);
300 	rd32(E1000_SYSTIMR);
301 	ptp_read_system_postts(sts);
302 	lo = rd32(E1000_SYSTIML);
303 	hi = rd32(E1000_SYSTIMH);
304 
305 	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
306 
307 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
308 
309 	*ts = ns_to_timespec64(ns);
310 
311 	return 0;
312 }
313 
igb_ptp_gettimex_i210(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)314 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
315 				 struct timespec64 *ts,
316 				 struct ptp_system_timestamp *sts)
317 {
318 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
319 					       ptp_caps);
320 	struct e1000_hw *hw = &igb->hw;
321 	unsigned long flags;
322 
323 	spin_lock_irqsave(&igb->tmreg_lock, flags);
324 
325 	ptp_read_system_prets(sts);
326 	rd32(E1000_SYSTIMR);
327 	ptp_read_system_postts(sts);
328 	ts->tv_nsec = rd32(E1000_SYSTIML);
329 	ts->tv_sec = rd32(E1000_SYSTIMH);
330 
331 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
332 
333 	return 0;
334 }
335 
igb_ptp_settime_82576(struct ptp_clock_info * ptp,const struct timespec64 * ts)336 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
337 				 const struct timespec64 *ts)
338 {
339 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
340 					       ptp_caps);
341 	unsigned long flags;
342 	u64 ns;
343 
344 	ns = timespec64_to_ns(ts);
345 
346 	spin_lock_irqsave(&igb->tmreg_lock, flags);
347 
348 	timecounter_init(&igb->tc, &igb->cc, ns);
349 
350 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
351 
352 	return 0;
353 }
354 
igb_ptp_settime_i210(struct ptp_clock_info * ptp,const struct timespec64 * ts)355 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
356 				const struct timespec64 *ts)
357 {
358 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
359 					       ptp_caps);
360 	unsigned long flags;
361 
362 	spin_lock_irqsave(&igb->tmreg_lock, flags);
363 
364 	igb_ptp_write_i210(igb, ts);
365 
366 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
367 
368 	return 0;
369 }
370 
igb_pin_direction(int pin,int input,u32 * ctrl,u32 * ctrl_ext)371 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
372 {
373 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
374 	static const u32 mask[IGB_N_SDP] = {
375 		E1000_CTRL_SDP0_DIR,
376 		E1000_CTRL_SDP1_DIR,
377 		E1000_CTRL_EXT_SDP2_DIR,
378 		E1000_CTRL_EXT_SDP3_DIR,
379 	};
380 
381 	if (input)
382 		*ptr &= ~mask[pin];
383 	else
384 		*ptr |= mask[pin];
385 }
386 
igb_pin_extts(struct igb_adapter * igb,int chan,int pin)387 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
388 {
389 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
390 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
391 	};
392 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
393 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
394 	};
395 	static const u32 ts_sdp_en[IGB_N_SDP] = {
396 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
397 	};
398 	struct e1000_hw *hw = &igb->hw;
399 	u32 ctrl, ctrl_ext, tssdp = 0;
400 
401 	ctrl = rd32(E1000_CTRL);
402 	ctrl_ext = rd32(E1000_CTRL_EXT);
403 	tssdp = rd32(E1000_TSSDP);
404 
405 	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
406 
407 	/* Make sure this pin is not enabled as an output. */
408 	tssdp &= ~ts_sdp_en[pin];
409 
410 	if (chan == 1) {
411 		tssdp &= ~AUX1_SEL_SDP3;
412 		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
413 	} else {
414 		tssdp &= ~AUX0_SEL_SDP3;
415 		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
416 	}
417 
418 	wr32(E1000_TSSDP, tssdp);
419 	wr32(E1000_CTRL, ctrl);
420 	wr32(E1000_CTRL_EXT, ctrl_ext);
421 }
422 
igb_pin_perout(struct igb_adapter * igb,int chan,int pin,int freq)423 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
424 {
425 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
426 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
427 	};
428 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
429 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
430 	};
431 	static const u32 ts_sdp_en[IGB_N_SDP] = {
432 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
433 	};
434 	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
435 		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
436 		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
437 	};
438 	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
439 		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
440 		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
441 	};
442 	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
443 		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
444 		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
445 	};
446 	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
447 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
448 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
449 	};
450 	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
451 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
452 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
453 	};
454 	struct e1000_hw *hw = &igb->hw;
455 	u32 ctrl, ctrl_ext, tssdp = 0;
456 
457 	ctrl = rd32(E1000_CTRL);
458 	ctrl_ext = rd32(E1000_CTRL_EXT);
459 	tssdp = rd32(E1000_TSSDP);
460 
461 	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
462 
463 	/* Make sure this pin is not enabled as an input. */
464 	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
465 		tssdp &= ~AUX0_TS_SDP_EN;
466 
467 	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
468 		tssdp &= ~AUX1_TS_SDP_EN;
469 
470 	tssdp &= ~ts_sdp_sel_clr[pin];
471 	if (freq) {
472 		if (chan == 1)
473 			tssdp |= ts_sdp_sel_fc1[pin];
474 		else
475 			tssdp |= ts_sdp_sel_fc0[pin];
476 	} else {
477 		if (chan == 1)
478 			tssdp |= ts_sdp_sel_tt1[pin];
479 		else
480 			tssdp |= ts_sdp_sel_tt0[pin];
481 	}
482 	tssdp |= ts_sdp_en[pin];
483 
484 	wr32(E1000_TSSDP, tssdp);
485 	wr32(E1000_CTRL, ctrl);
486 	wr32(E1000_CTRL_EXT, ctrl_ext);
487 }
488 
igb_ptp_feature_enable_82580(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)489 static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
490 					struct ptp_clock_request *rq, int on)
491 {
492 	struct igb_adapter *igb =
493 		container_of(ptp, struct igb_adapter, ptp_caps);
494 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
495 		systimh, level_mask, level, rem;
496 	struct e1000_hw *hw = &igb->hw;
497 	struct timespec64 ts, start;
498 	unsigned long flags;
499 	u64 systim, now;
500 	int pin = -1;
501 	s64 ns;
502 
503 	switch (rq->type) {
504 	case PTP_CLK_REQ_EXTTS:
505 		/* Reject requests with unsupported flags */
506 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
507 					PTP_RISING_EDGE |
508 					PTP_FALLING_EDGE |
509 					PTP_STRICT_FLAGS))
510 			return -EOPNOTSUPP;
511 
512 		if (on) {
513 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
514 					   rq->extts.index);
515 			if (pin < 0)
516 				return -EBUSY;
517 		}
518 		if (rq->extts.index == 1) {
519 			tsauxc_mask = TSAUXC_EN_TS1;
520 			tsim_mask = TSINTR_AUTT1;
521 		} else {
522 			tsauxc_mask = TSAUXC_EN_TS0;
523 			tsim_mask = TSINTR_AUTT0;
524 		}
525 		spin_lock_irqsave(&igb->tmreg_lock, flags);
526 		tsauxc = rd32(E1000_TSAUXC);
527 		tsim = rd32(E1000_TSIM);
528 		if (on) {
529 			igb_pin_extts(igb, rq->extts.index, pin);
530 			tsauxc |= tsauxc_mask;
531 			tsim |= tsim_mask;
532 		} else {
533 			tsauxc &= ~tsauxc_mask;
534 			tsim &= ~tsim_mask;
535 		}
536 		wr32(E1000_TSAUXC, tsauxc);
537 		wr32(E1000_TSIM, tsim);
538 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
539 		return 0;
540 
541 	case PTP_CLK_REQ_PEROUT:
542 		/* Reject requests with unsupported flags */
543 		if (rq->perout.flags)
544 			return -EOPNOTSUPP;
545 
546 		if (on) {
547 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
548 					   rq->perout.index);
549 			if (pin < 0)
550 				return -EBUSY;
551 		}
552 		ts.tv_sec = rq->perout.period.sec;
553 		ts.tv_nsec = rq->perout.period.nsec;
554 		ns = timespec64_to_ns(&ts);
555 		ns = ns >> 1;
556 		if (on && ns < 8LL)
557 			return -EINVAL;
558 		ts = ns_to_timespec64(ns);
559 		if (rq->perout.index == 1) {
560 			tsauxc_mask = TSAUXC_EN_TT1;
561 			tsim_mask = TSINTR_TT1;
562 			trgttiml = E1000_TRGTTIML1;
563 			trgttimh = E1000_TRGTTIMH1;
564 		} else {
565 			tsauxc_mask = TSAUXC_EN_TT0;
566 			tsim_mask = TSINTR_TT0;
567 			trgttiml = E1000_TRGTTIML0;
568 			trgttimh = E1000_TRGTTIMH0;
569 		}
570 		spin_lock_irqsave(&igb->tmreg_lock, flags);
571 		tsauxc = rd32(E1000_TSAUXC);
572 		tsim = rd32(E1000_TSIM);
573 		if (rq->perout.index == 1) {
574 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
575 			tsim &= ~TSINTR_TT1;
576 		} else {
577 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
578 			tsim &= ~TSINTR_TT0;
579 		}
580 		if (on) {
581 			int i = rq->perout.index;
582 
583 			/* read systim registers in sequence */
584 			rd32(E1000_SYSTIMR);
585 			systiml = rd32(E1000_SYSTIML);
586 			systimh = rd32(E1000_SYSTIMH);
587 			systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
588 			now = timecounter_cyc2time(&igb->tc, systim);
589 
590 			if (pin < 2) {
591 				level_mask = (i == 1) ? 0x80000 : 0x40000;
592 				level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
593 			} else {
594 				level_mask = (i == 1) ? 0x80 : 0x40;
595 				level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
596 			}
597 
598 			div_u64_rem(now, ns, &rem);
599 			systim = systim + (ns - rem);
600 
601 			/* synchronize pin level with rising/falling edges */
602 			div_u64_rem(now, ns << 1, &rem);
603 			if (rem < ns) {
604 				/* first half of period */
605 				if (level == 0) {
606 					/* output is already low, skip this period */
607 					systim += ns;
608 				}
609 			} else {
610 				/* second half of period */
611 				if (level == 1) {
612 					/* output is already high, skip this period */
613 					systim += ns;
614 				}
615 			}
616 
617 			start = ns_to_timespec64(systim + (ns - rem));
618 			igb_pin_perout(igb, i, pin, 0);
619 			igb->perout[i].start.tv_sec = start.tv_sec;
620 			igb->perout[i].start.tv_nsec = start.tv_nsec;
621 			igb->perout[i].period.tv_sec = ts.tv_sec;
622 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
623 
624 			wr32(trgttiml, (u32)systim);
625 			wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
626 			tsauxc |= tsauxc_mask;
627 			tsim |= tsim_mask;
628 		}
629 		wr32(E1000_TSAUXC, tsauxc);
630 		wr32(E1000_TSIM, tsim);
631 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
632 		return 0;
633 
634 	case PTP_CLK_REQ_PPS:
635 		return -EOPNOTSUPP;
636 	}
637 
638 	return -EOPNOTSUPP;
639 }
640 
igb_ptp_feature_enable_i210(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)641 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
642 				       struct ptp_clock_request *rq, int on)
643 {
644 	struct igb_adapter *igb =
645 		container_of(ptp, struct igb_adapter, ptp_caps);
646 	struct e1000_hw *hw = &igb->hw;
647 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
648 	unsigned long flags;
649 	struct timespec64 ts;
650 	int use_freq = 0, pin = -1;
651 	s64 ns;
652 
653 	switch (rq->type) {
654 	case PTP_CLK_REQ_EXTTS:
655 		/* Reject requests with unsupported flags */
656 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
657 					PTP_RISING_EDGE |
658 					PTP_FALLING_EDGE |
659 					PTP_STRICT_FLAGS))
660 			return -EOPNOTSUPP;
661 
662 		/* Reject requests failing to enable both edges. */
663 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
664 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
665 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
666 			return -EOPNOTSUPP;
667 
668 		if (on) {
669 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
670 					   rq->extts.index);
671 			if (pin < 0)
672 				return -EBUSY;
673 		}
674 		if (rq->extts.index == 1) {
675 			tsauxc_mask = TSAUXC_EN_TS1;
676 			tsim_mask = TSINTR_AUTT1;
677 		} else {
678 			tsauxc_mask = TSAUXC_EN_TS0;
679 			tsim_mask = TSINTR_AUTT0;
680 		}
681 		spin_lock_irqsave(&igb->tmreg_lock, flags);
682 		tsauxc = rd32(E1000_TSAUXC);
683 		tsim = rd32(E1000_TSIM);
684 		if (on) {
685 			igb_pin_extts(igb, rq->extts.index, pin);
686 			tsauxc |= tsauxc_mask;
687 			tsim |= tsim_mask;
688 		} else {
689 			tsauxc &= ~tsauxc_mask;
690 			tsim &= ~tsim_mask;
691 		}
692 		wr32(E1000_TSAUXC, tsauxc);
693 		wr32(E1000_TSIM, tsim);
694 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
695 		return 0;
696 
697 	case PTP_CLK_REQ_PEROUT:
698 		/* Reject requests with unsupported flags */
699 		if (rq->perout.flags)
700 			return -EOPNOTSUPP;
701 
702 		if (on) {
703 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
704 					   rq->perout.index);
705 			if (pin < 0)
706 				return -EBUSY;
707 		}
708 		ts.tv_sec = rq->perout.period.sec;
709 		ts.tv_nsec = rq->perout.period.nsec;
710 		ns = timespec64_to_ns(&ts);
711 		ns = ns >> 1;
712 		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
713 			   (ns == 250000000LL) || (ns == 500000000LL))) {
714 			if (ns < 8LL)
715 				return -EINVAL;
716 			use_freq = 1;
717 		}
718 		ts = ns_to_timespec64(ns);
719 		if (rq->perout.index == 1) {
720 			if (use_freq) {
721 				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
722 				tsim_mask = 0;
723 			} else {
724 				tsauxc_mask = TSAUXC_EN_TT1;
725 				tsim_mask = TSINTR_TT1;
726 			}
727 			trgttiml = E1000_TRGTTIML1;
728 			trgttimh = E1000_TRGTTIMH1;
729 			freqout = E1000_FREQOUT1;
730 		} else {
731 			if (use_freq) {
732 				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
733 				tsim_mask = 0;
734 			} else {
735 				tsauxc_mask = TSAUXC_EN_TT0;
736 				tsim_mask = TSINTR_TT0;
737 			}
738 			trgttiml = E1000_TRGTTIML0;
739 			trgttimh = E1000_TRGTTIMH0;
740 			freqout = E1000_FREQOUT0;
741 		}
742 		spin_lock_irqsave(&igb->tmreg_lock, flags);
743 		tsauxc = rd32(E1000_TSAUXC);
744 		tsim = rd32(E1000_TSIM);
745 		if (rq->perout.index == 1) {
746 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
747 			tsim &= ~TSINTR_TT1;
748 		} else {
749 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
750 			tsim &= ~TSINTR_TT0;
751 		}
752 		if (on) {
753 			int i = rq->perout.index;
754 			igb_pin_perout(igb, i, pin, use_freq);
755 			igb->perout[i].start.tv_sec = rq->perout.start.sec;
756 			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
757 			igb->perout[i].period.tv_sec = ts.tv_sec;
758 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
759 			wr32(trgttimh, rq->perout.start.sec);
760 			wr32(trgttiml, rq->perout.start.nsec);
761 			if (use_freq)
762 				wr32(freqout, ns);
763 			tsauxc |= tsauxc_mask;
764 			tsim |= tsim_mask;
765 		}
766 		wr32(E1000_TSAUXC, tsauxc);
767 		wr32(E1000_TSIM, tsim);
768 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
769 		return 0;
770 
771 	case PTP_CLK_REQ_PPS:
772 		spin_lock_irqsave(&igb->tmreg_lock, flags);
773 		tsim = rd32(E1000_TSIM);
774 		if (on)
775 			tsim |= TSINTR_SYS_WRAP;
776 		else
777 			tsim &= ~TSINTR_SYS_WRAP;
778 		igb->pps_sys_wrap_on = !!on;
779 		wr32(E1000_TSIM, tsim);
780 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
781 		return 0;
782 	}
783 
784 	return -EOPNOTSUPP;
785 }
786 
igb_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)787 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
788 				  struct ptp_clock_request *rq, int on)
789 {
790 	return -EOPNOTSUPP;
791 }
792 
igb_ptp_verify_pin(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)793 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
794 			      enum ptp_pin_function func, unsigned int chan)
795 {
796 	switch (func) {
797 	case PTP_PF_NONE:
798 	case PTP_PF_EXTTS:
799 	case PTP_PF_PEROUT:
800 		break;
801 	case PTP_PF_PHYSYNC:
802 		return -1;
803 	}
804 	return 0;
805 }
806 
807 /**
808  * igb_ptp_tx_work
809  * @work: pointer to work struct
810  *
811  * This work function polls the TSYNCTXCTL valid bit to determine when a
812  * timestamp has been taken for the current stored skb.
813  **/
igb_ptp_tx_work(struct work_struct * work)814 static void igb_ptp_tx_work(struct work_struct *work)
815 {
816 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
817 						   ptp_tx_work);
818 	struct e1000_hw *hw = &adapter->hw;
819 	u32 tsynctxctl;
820 
821 	if (!adapter->ptp_tx_skb)
822 		return;
823 
824 	if (time_is_before_jiffies(adapter->ptp_tx_start +
825 				   IGB_PTP_TX_TIMEOUT)) {
826 		dev_kfree_skb_any(adapter->ptp_tx_skb);
827 		adapter->ptp_tx_skb = NULL;
828 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
829 		adapter->tx_hwtstamp_timeouts++;
830 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
831 		 * interrupt
832 		 */
833 		rd32(E1000_TXSTMPH);
834 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
835 		return;
836 	}
837 
838 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
839 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
840 		igb_ptp_tx_hwtstamp(adapter);
841 	else
842 		/* reschedule to check later */
843 		schedule_work(&adapter->ptp_tx_work);
844 }
845 
igb_ptp_overflow_check(struct work_struct * work)846 static void igb_ptp_overflow_check(struct work_struct *work)
847 {
848 	struct igb_adapter *igb =
849 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
850 	struct timespec64 ts;
851 	u64 ns;
852 
853 	/* Update the timecounter */
854 	ns = timecounter_read(&igb->tc);
855 
856 	ts = ns_to_timespec64(ns);
857 	pr_debug("igb overflow check at %lld.%09lu\n",
858 		 (long long) ts.tv_sec, ts.tv_nsec);
859 
860 	schedule_delayed_work(&igb->ptp_overflow_work,
861 			      IGB_SYSTIM_OVERFLOW_PERIOD);
862 }
863 
864 /**
865  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
866  * @adapter: private network adapter structure
867  *
868  * This watchdog task is scheduled to detect error case where hardware has
869  * dropped an Rx packet that was timestamped when the ring is full. The
870  * particular error is rare but leaves the device in a state unable to timestamp
871  * any future packets.
872  **/
igb_ptp_rx_hang(struct igb_adapter * adapter)873 void igb_ptp_rx_hang(struct igb_adapter *adapter)
874 {
875 	struct e1000_hw *hw = &adapter->hw;
876 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
877 	unsigned long rx_event;
878 
879 	/* Other hardware uses per-packet timestamps */
880 	if (hw->mac.type != e1000_82576)
881 		return;
882 
883 	/* If we don't have a valid timestamp in the registers, just update the
884 	 * timeout counter and exit
885 	 */
886 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
887 		adapter->last_rx_ptp_check = jiffies;
888 		return;
889 	}
890 
891 	/* Determine the most recent watchdog or rx_timestamp event */
892 	rx_event = adapter->last_rx_ptp_check;
893 	if (time_after(adapter->last_rx_timestamp, rx_event))
894 		rx_event = adapter->last_rx_timestamp;
895 
896 	/* Only need to read the high RXSTMP register to clear the lock */
897 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
898 		rd32(E1000_RXSTMPH);
899 		adapter->last_rx_ptp_check = jiffies;
900 		adapter->rx_hwtstamp_cleared++;
901 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
902 	}
903 }
904 
905 /**
906  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
907  * @adapter: private network adapter structure
908  */
igb_ptp_tx_hang(struct igb_adapter * adapter)909 void igb_ptp_tx_hang(struct igb_adapter *adapter)
910 {
911 	struct e1000_hw *hw = &adapter->hw;
912 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
913 					      IGB_PTP_TX_TIMEOUT);
914 
915 	if (!adapter->ptp_tx_skb)
916 		return;
917 
918 	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
919 		return;
920 
921 	/* If we haven't received a timestamp within the timeout, it is
922 	 * reasonable to assume that it will never occur, so we can unlock the
923 	 * timestamp bit when this occurs.
924 	 */
925 	if (timeout) {
926 		cancel_work_sync(&adapter->ptp_tx_work);
927 		dev_kfree_skb_any(adapter->ptp_tx_skb);
928 		adapter->ptp_tx_skb = NULL;
929 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
930 		adapter->tx_hwtstamp_timeouts++;
931 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
932 		 * interrupt
933 		 */
934 		rd32(E1000_TXSTMPH);
935 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
936 	}
937 }
938 
939 /**
940  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
941  * @adapter: Board private structure.
942  *
943  * If we were asked to do hardware stamping and such a time stamp is
944  * available, then it must have been for this skb here because we only
945  * allow only one such packet into the queue.
946  **/
igb_ptp_tx_hwtstamp(struct igb_adapter * adapter)947 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
948 {
949 	struct sk_buff *skb = adapter->ptp_tx_skb;
950 	struct e1000_hw *hw = &adapter->hw;
951 	struct skb_shared_hwtstamps shhwtstamps;
952 	u64 regval;
953 	int adjust = 0;
954 
955 	regval = rd32(E1000_TXSTMPL);
956 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
957 
958 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
959 	/* adjust timestamp for the TX latency based on link speed */
960 	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
961 		switch (adapter->link_speed) {
962 		case SPEED_10:
963 			adjust = IGB_I210_TX_LATENCY_10;
964 			break;
965 		case SPEED_100:
966 			adjust = IGB_I210_TX_LATENCY_100;
967 			break;
968 		case SPEED_1000:
969 			adjust = IGB_I210_TX_LATENCY_1000;
970 			break;
971 		}
972 	}
973 
974 	shhwtstamps.hwtstamp =
975 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
976 
977 	/* Clear the lock early before calling skb_tstamp_tx so that
978 	 * applications are not woken up before the lock bit is clear. We use
979 	 * a copy of the skb pointer to ensure other threads can't change it
980 	 * while we're notifying the stack.
981 	 */
982 	adapter->ptp_tx_skb = NULL;
983 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
984 
985 	/* Notify the stack and free the skb after we've unlocked */
986 	skb_tstamp_tx(skb, &shhwtstamps);
987 	dev_kfree_skb_any(skb);
988 }
989 
990 /**
991  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
992  * @q_vector: Pointer to interrupt specific structure
993  * @va: Pointer to address containing Rx buffer
994  * @timestamp: Pointer where timestamp will be stored
995  *
996  * This function is meant to retrieve a timestamp from the first buffer of an
997  * incoming frame.  The value is stored in little endian format starting on
998  * byte 8
999  *
1000  * Returns: The timestamp header length or 0 if not available
1001  **/
igb_ptp_rx_pktstamp(struct igb_q_vector * q_vector,void * va,ktime_t * timestamp)1002 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1003 			ktime_t *timestamp)
1004 {
1005 	struct igb_adapter *adapter = q_vector->adapter;
1006 	struct e1000_hw *hw = &adapter->hw;
1007 	struct skb_shared_hwtstamps ts;
1008 	__le64 *regval = (__le64 *)va;
1009 	int adjust = 0;
1010 
1011 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1012 		return 0;
1013 
1014 	/* The timestamp is recorded in little endian format.
1015 	 * DWORD: 0        1        2        3
1016 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
1017 	 */
1018 
1019 	/* check reserved dwords are zero, be/le doesn't matter for zero */
1020 	if (regval[0])
1021 		return 0;
1022 
1023 	igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1024 
1025 	/* adjust timestamp for the RX latency based on link speed */
1026 	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1027 		switch (adapter->link_speed) {
1028 		case SPEED_10:
1029 			adjust = IGB_I210_RX_LATENCY_10;
1030 			break;
1031 		case SPEED_100:
1032 			adjust = IGB_I210_RX_LATENCY_100;
1033 			break;
1034 		case SPEED_1000:
1035 			adjust = IGB_I210_RX_LATENCY_1000;
1036 			break;
1037 		}
1038 	}
1039 
1040 	*timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1041 
1042 	return IGB_TS_HDR_LEN;
1043 }
1044 
1045 /**
1046  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1047  * @q_vector: Pointer to interrupt specific structure
1048  * @skb: Buffer containing timestamp and packet
1049  *
1050  * This function is meant to retrieve a timestamp from the internal registers
1051  * of the adapter and store it in the skb.
1052  **/
igb_ptp_rx_rgtstamp(struct igb_q_vector * q_vector,struct sk_buff * skb)1053 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1054 {
1055 	struct igb_adapter *adapter = q_vector->adapter;
1056 	struct e1000_hw *hw = &adapter->hw;
1057 	int adjust = 0;
1058 	u64 regval;
1059 
1060 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1061 		return;
1062 
1063 	/* If this bit is set, then the RX registers contain the time stamp. No
1064 	 * other packet will be time stamped until we read these registers, so
1065 	 * read the registers to make them available again. Because only one
1066 	 * packet can be time stamped at a time, we know that the register
1067 	 * values must belong to this one here and therefore we don't need to
1068 	 * compare any of the additional attributes stored for it.
1069 	 *
1070 	 * If nothing went wrong, then it should have a shared tx_flags that we
1071 	 * can turn into a skb_shared_hwtstamps.
1072 	 */
1073 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1074 		return;
1075 
1076 	regval = rd32(E1000_RXSTMPL);
1077 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1078 
1079 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1080 
1081 	/* adjust timestamp for the RX latency based on link speed */
1082 	if (adapter->hw.mac.type == e1000_i210) {
1083 		switch (adapter->link_speed) {
1084 		case SPEED_10:
1085 			adjust = IGB_I210_RX_LATENCY_10;
1086 			break;
1087 		case SPEED_100:
1088 			adjust = IGB_I210_RX_LATENCY_100;
1089 			break;
1090 		case SPEED_1000:
1091 			adjust = IGB_I210_RX_LATENCY_1000;
1092 			break;
1093 		}
1094 	}
1095 	skb_hwtstamps(skb)->hwtstamp =
1096 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1097 
1098 	/* Update the last_rx_timestamp timer in order to enable watchdog check
1099 	 * for error case of latched timestamp on a dropped packet.
1100 	 */
1101 	adapter->last_rx_timestamp = jiffies;
1102 }
1103 
1104 /**
1105  * igb_ptp_get_ts_config - get hardware time stamping config
1106  * @netdev: netdev struct
1107  * @ifr: interface struct
1108  *
1109  * Get the hwtstamp_config settings to return to the user. Rather than attempt
1110  * to deconstruct the settings from the registers, just return a shadow copy
1111  * of the last known settings.
1112  **/
igb_ptp_get_ts_config(struct net_device * netdev,struct ifreq * ifr)1113 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1114 {
1115 	struct igb_adapter *adapter = netdev_priv(netdev);
1116 	struct hwtstamp_config *config = &adapter->tstamp_config;
1117 
1118 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1119 		-EFAULT : 0;
1120 }
1121 
1122 /**
1123  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1124  * @adapter: networking device structure
1125  * @config: hwtstamp configuration
1126  *
1127  * Outgoing time stamping can be enabled and disabled. Play nice and
1128  * disable it when requested, although it shouldn't case any overhead
1129  * when no packet needs it. At most one packet in the queue may be
1130  * marked for time stamping, otherwise it would be impossible to tell
1131  * for sure to which packet the hardware time stamp belongs.
1132  *
1133  * Incoming time stamping has to be configured via the hardware
1134  * filters. Not all combinations are supported, in particular event
1135  * type has to be specified. Matching the kind of event packet is
1136  * not supported, with the exception of "all V2 events regardless of
1137  * level 2 or 4".
1138  */
igb_ptp_set_timestamp_mode(struct igb_adapter * adapter,struct hwtstamp_config * config)1139 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1140 				      struct hwtstamp_config *config)
1141 {
1142 	struct e1000_hw *hw = &adapter->hw;
1143 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1144 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1145 	u32 tsync_rx_cfg = 0;
1146 	bool is_l4 = false;
1147 	bool is_l2 = false;
1148 	u32 regval;
1149 
1150 	switch (config->tx_type) {
1151 	case HWTSTAMP_TX_OFF:
1152 		tsync_tx_ctl = 0;
1153 		break;
1154 	case HWTSTAMP_TX_ON:
1155 		break;
1156 	default:
1157 		return -ERANGE;
1158 	}
1159 
1160 	switch (config->rx_filter) {
1161 	case HWTSTAMP_FILTER_NONE:
1162 		tsync_rx_ctl = 0;
1163 		break;
1164 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1165 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1166 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1167 		is_l4 = true;
1168 		break;
1169 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1170 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1171 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1172 		is_l4 = true;
1173 		break;
1174 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1175 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1176 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1177 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1178 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1179 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1180 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1181 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1182 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1183 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1184 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1185 		is_l2 = true;
1186 		is_l4 = true;
1187 		break;
1188 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1189 	case HWTSTAMP_FILTER_NTP_ALL:
1190 	case HWTSTAMP_FILTER_ALL:
1191 		/* 82576 cannot timestamp all packets, which it needs to do to
1192 		 * support both V1 Sync and Delay_Req messages
1193 		 */
1194 		if (hw->mac.type != e1000_82576) {
1195 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1196 			config->rx_filter = HWTSTAMP_FILTER_ALL;
1197 			break;
1198 		}
1199 		fallthrough;
1200 	default:
1201 		config->rx_filter = HWTSTAMP_FILTER_NONE;
1202 		return -ERANGE;
1203 	}
1204 
1205 	if (hw->mac.type == e1000_82575) {
1206 		if (tsync_rx_ctl | tsync_tx_ctl)
1207 			return -EINVAL;
1208 		return 0;
1209 	}
1210 
1211 	/* Per-packet timestamping only works if all packets are
1212 	 * timestamped, so enable timestamping in all packets as
1213 	 * long as one Rx filter was configured.
1214 	 */
1215 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1216 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1217 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1218 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1219 		is_l2 = true;
1220 		is_l4 = true;
1221 
1222 		if ((hw->mac.type == e1000_i210) ||
1223 		    (hw->mac.type == e1000_i211)) {
1224 			regval = rd32(E1000_RXPBS);
1225 			regval |= E1000_RXPBS_CFG_TS_EN;
1226 			wr32(E1000_RXPBS, regval);
1227 		}
1228 	}
1229 
1230 	/* enable/disable TX */
1231 	regval = rd32(E1000_TSYNCTXCTL);
1232 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1233 	regval |= tsync_tx_ctl;
1234 	wr32(E1000_TSYNCTXCTL, regval);
1235 
1236 	/* enable/disable RX */
1237 	regval = rd32(E1000_TSYNCRXCTL);
1238 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1239 	regval |= tsync_rx_ctl;
1240 	wr32(E1000_TSYNCRXCTL, regval);
1241 
1242 	/* define which PTP packets are time stamped */
1243 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1244 
1245 	/* define ethertype filter for timestamped packets */
1246 	if (is_l2)
1247 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1248 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1249 		      E1000_ETQF_1588 | /* enable timestamping */
1250 		      ETH_P_1588));     /* 1588 eth protocol type */
1251 	else
1252 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1253 
1254 	/* L4 Queue Filter[3]: filter by destination port and protocol */
1255 	if (is_l4) {
1256 		u32 ftqf = (IPPROTO_UDP /* UDP */
1257 			| E1000_FTQF_VF_BP /* VF not compared */
1258 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1259 			| E1000_FTQF_MASK); /* mask all inputs */
1260 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1261 
1262 		wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1263 		wr32(E1000_IMIREXT(3),
1264 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1265 		if (hw->mac.type == e1000_82576) {
1266 			/* enable source port check */
1267 			wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1268 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1269 		}
1270 		wr32(E1000_FTQF(3), ftqf);
1271 	} else {
1272 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1273 	}
1274 	wrfl();
1275 
1276 	/* clear TX/RX time stamp registers, just to be sure */
1277 	regval = rd32(E1000_TXSTMPL);
1278 	regval = rd32(E1000_TXSTMPH);
1279 	regval = rd32(E1000_RXSTMPL);
1280 	regval = rd32(E1000_RXSTMPH);
1281 
1282 	return 0;
1283 }
1284 
1285 /**
1286  * igb_ptp_set_ts_config - set hardware time stamping config
1287  * @netdev: netdev struct
1288  * @ifr: interface struct
1289  *
1290  **/
igb_ptp_set_ts_config(struct net_device * netdev,struct ifreq * ifr)1291 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1292 {
1293 	struct igb_adapter *adapter = netdev_priv(netdev);
1294 	struct hwtstamp_config config;
1295 	int err;
1296 
1297 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1298 		return -EFAULT;
1299 
1300 	err = igb_ptp_set_timestamp_mode(adapter, &config);
1301 	if (err)
1302 		return err;
1303 
1304 	/* save these settings for future reference */
1305 	memcpy(&adapter->tstamp_config, &config,
1306 	       sizeof(adapter->tstamp_config));
1307 
1308 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1309 		-EFAULT : 0;
1310 }
1311 
1312 /**
1313  * igb_ptp_init - Initialize PTP functionality
1314  * @adapter: Board private structure
1315  *
1316  * This function is called at device probe to initialize the PTP
1317  * functionality.
1318  */
igb_ptp_init(struct igb_adapter * adapter)1319 void igb_ptp_init(struct igb_adapter *adapter)
1320 {
1321 	struct e1000_hw *hw = &adapter->hw;
1322 	struct net_device *netdev = adapter->netdev;
1323 
1324 	switch (hw->mac.type) {
1325 	case e1000_82576:
1326 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1327 		adapter->ptp_caps.owner = THIS_MODULE;
1328 		adapter->ptp_caps.max_adj = 999999881;
1329 		adapter->ptp_caps.n_ext_ts = 0;
1330 		adapter->ptp_caps.pps = 0;
1331 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82576;
1332 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1333 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1334 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1335 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1336 		adapter->cc.read = igb_ptp_read_82576;
1337 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1338 		adapter->cc.mult = 1;
1339 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1340 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1341 		break;
1342 	case e1000_82580:
1343 	case e1000_i354:
1344 	case e1000_i350:
1345 		igb_ptp_sdp_init(adapter);
1346 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1347 		adapter->ptp_caps.owner = THIS_MODULE;
1348 		adapter->ptp_caps.max_adj = 62499999;
1349 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1350 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1351 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1352 		adapter->ptp_caps.pps = 0;
1353 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1354 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1355 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1356 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1357 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1358 		adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1359 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1360 		adapter->cc.read = igb_ptp_read_82580;
1361 		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1362 		adapter->cc.mult = 1;
1363 		adapter->cc.shift = 0;
1364 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1365 		break;
1366 	case e1000_i210:
1367 	case e1000_i211:
1368 		igb_ptp_sdp_init(adapter);
1369 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1370 		adapter->ptp_caps.owner = THIS_MODULE;
1371 		adapter->ptp_caps.max_adj = 62499999;
1372 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1373 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1374 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1375 		adapter->ptp_caps.pps = 1;
1376 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1377 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1378 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1379 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1380 		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1381 		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1382 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1383 		break;
1384 	default:
1385 		adapter->ptp_clock = NULL;
1386 		return;
1387 	}
1388 
1389 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1390 						&adapter->pdev->dev);
1391 	if (IS_ERR(adapter->ptp_clock)) {
1392 		adapter->ptp_clock = NULL;
1393 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1394 	} else if (adapter->ptp_clock) {
1395 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1396 			 adapter->netdev->name);
1397 		adapter->ptp_flags |= IGB_PTP_ENABLED;
1398 
1399 		spin_lock_init(&adapter->tmreg_lock);
1400 		INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1401 
1402 		if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1403 			INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1404 					  igb_ptp_overflow_check);
1405 
1406 		adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1407 		adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1408 
1409 		igb_ptp_reset(adapter);
1410 	}
1411 }
1412 
1413 /**
1414  * igb_ptp_sdp_init - utility function which inits the SDP config structs
1415  * @adapter: Board private structure.
1416  **/
igb_ptp_sdp_init(struct igb_adapter * adapter)1417 void igb_ptp_sdp_init(struct igb_adapter *adapter)
1418 {
1419 	int i;
1420 
1421 	for (i = 0; i < IGB_N_SDP; i++) {
1422 		struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1423 
1424 		snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1425 		ppd->index = i;
1426 		ppd->func = PTP_PF_NONE;
1427 	}
1428 }
1429 
1430 /**
1431  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1432  * @adapter: Board private structure
1433  *
1434  * This function stops the overflow check work and PTP Tx timestamp work, and
1435  * will prepare the device for OS suspend.
1436  */
igb_ptp_suspend(struct igb_adapter * adapter)1437 void igb_ptp_suspend(struct igb_adapter *adapter)
1438 {
1439 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1440 		return;
1441 
1442 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1443 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1444 
1445 	cancel_work_sync(&adapter->ptp_tx_work);
1446 	if (adapter->ptp_tx_skb) {
1447 		dev_kfree_skb_any(adapter->ptp_tx_skb);
1448 		adapter->ptp_tx_skb = NULL;
1449 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1450 	}
1451 }
1452 
1453 /**
1454  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1455  * @adapter: Board private structure.
1456  *
1457  * This function stops the PTP support and cancels the delayed work.
1458  **/
igb_ptp_stop(struct igb_adapter * adapter)1459 void igb_ptp_stop(struct igb_adapter *adapter)
1460 {
1461 	igb_ptp_suspend(adapter);
1462 
1463 	if (adapter->ptp_clock) {
1464 		ptp_clock_unregister(adapter->ptp_clock);
1465 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1466 			 adapter->netdev->name);
1467 		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1468 	}
1469 }
1470 
1471 /**
1472  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1473  * @adapter: Board private structure.
1474  *
1475  * This function handles the reset work required to re-enable the PTP device.
1476  **/
igb_ptp_reset(struct igb_adapter * adapter)1477 void igb_ptp_reset(struct igb_adapter *adapter)
1478 {
1479 	struct e1000_hw *hw = &adapter->hw;
1480 	unsigned long flags;
1481 
1482 	/* reset the tstamp_config */
1483 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1484 
1485 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1486 
1487 	switch (adapter->hw.mac.type) {
1488 	case e1000_82576:
1489 		/* Dial the nominal frequency. */
1490 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1491 		break;
1492 	case e1000_82580:
1493 	case e1000_i354:
1494 	case e1000_i350:
1495 	case e1000_i210:
1496 	case e1000_i211:
1497 		wr32(E1000_TSAUXC, 0x0);
1498 		wr32(E1000_TSSDP, 0x0);
1499 		wr32(E1000_TSIM,
1500 		     TSYNC_INTERRUPTS |
1501 		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1502 		wr32(E1000_IMS, E1000_IMS_TS);
1503 		break;
1504 	default:
1505 		/* No work to do. */
1506 		goto out;
1507 	}
1508 
1509 	/* Re-initialize the timer. */
1510 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1511 		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1512 
1513 		igb_ptp_write_i210(adapter, &ts);
1514 	} else {
1515 		timecounter_init(&adapter->tc, &adapter->cc,
1516 				 ktime_to_ns(ktime_get_real()));
1517 	}
1518 out:
1519 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1520 
1521 	wrfl();
1522 
1523 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1524 		schedule_delayed_work(&adapter->ptp_overflow_work,
1525 				      IGB_SYSTIM_OVERFLOW_PERIOD);
1526 }
1527