1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2023 Christoph Hellwig.
5 */
6 #include <linux/iomap.h>
7 #include <linux/buffer_head.h>
8 #include <linux/writeback.h>
9 #include <linux/swap.h>
10 #include <linux/migrate.h>
11 #include "internal.h"
12 #include "trace.h"
13
14 #include "../internal.h"
15
16 /*
17 * Structure allocated for each folio to track per-block uptodate, dirty state
18 * and I/O completions.
19 */
20 struct iomap_folio_state {
21 spinlock_t state_lock;
22 unsigned int read_bytes_pending;
23 atomic_t write_bytes_pending;
24
25 /*
26 * Each block has two bits in this bitmap:
27 * Bits [0..blocks_per_folio) has the uptodate status.
28 * Bits [b_p_f...(2*b_p_f)) has the dirty status.
29 */
30 unsigned long state[];
31 };
32
ifs_is_fully_uptodate(struct folio * folio,struct iomap_folio_state * ifs)33 static inline bool ifs_is_fully_uptodate(struct folio *folio,
34 struct iomap_folio_state *ifs)
35 {
36 struct inode *inode = folio->mapping->host;
37
38 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
39 }
40
41 /*
42 * Find the next uptodate block in the folio. end_blk is inclusive.
43 * If no uptodate block is found, this will return end_blk + 1.
44 */
ifs_next_uptodate_block(struct folio * folio,unsigned start_blk,unsigned end_blk)45 static unsigned ifs_next_uptodate_block(struct folio *folio,
46 unsigned start_blk, unsigned end_blk)
47 {
48 struct iomap_folio_state *ifs = folio->private;
49
50 return find_next_bit(ifs->state, end_blk + 1, start_blk);
51 }
52
53 /*
54 * Find the next non-uptodate block in the folio. end_blk is inclusive.
55 * If no non-uptodate block is found, this will return end_blk + 1.
56 */
ifs_next_nonuptodate_block(struct folio * folio,unsigned start_blk,unsigned end_blk)57 static unsigned ifs_next_nonuptodate_block(struct folio *folio,
58 unsigned start_blk, unsigned end_blk)
59 {
60 struct iomap_folio_state *ifs = folio->private;
61
62 return find_next_zero_bit(ifs->state, end_blk + 1, start_blk);
63 }
64
ifs_set_range_uptodate(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)65 static bool ifs_set_range_uptodate(struct folio *folio,
66 struct iomap_folio_state *ifs, size_t off, size_t len)
67 {
68 struct inode *inode = folio->mapping->host;
69 unsigned int first_blk = off >> inode->i_blkbits;
70 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
71 unsigned int nr_blks = last_blk - first_blk + 1;
72
73 bitmap_set(ifs->state, first_blk, nr_blks);
74 return ifs_is_fully_uptodate(folio, ifs);
75 }
76
iomap_set_range_uptodate(struct folio * folio,size_t off,size_t len)77 static void iomap_set_range_uptodate(struct folio *folio, size_t off,
78 size_t len)
79 {
80 struct iomap_folio_state *ifs = folio->private;
81 unsigned long flags;
82 bool uptodate = true;
83
84 if (folio_test_uptodate(folio))
85 return;
86
87 if (ifs) {
88 spin_lock_irqsave(&ifs->state_lock, flags);
89 uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
90 spin_unlock_irqrestore(&ifs->state_lock, flags);
91 }
92
93 if (uptodate)
94 folio_mark_uptodate(folio);
95 }
96
97 /*
98 * Find the next dirty block in the folio. end_blk is inclusive.
99 * If no dirty block is found, this will return end_blk + 1.
100 */
ifs_next_dirty_block(struct folio * folio,unsigned start_blk,unsigned end_blk)101 static unsigned ifs_next_dirty_block(struct folio *folio,
102 unsigned start_blk, unsigned end_blk)
103 {
104 struct iomap_folio_state *ifs = folio->private;
105 struct inode *inode = folio->mapping->host;
106 unsigned int blks = i_blocks_per_folio(inode, folio);
107
108 return find_next_bit(ifs->state, blks + end_blk + 1,
109 blks + start_blk) - blks;
110 }
111
112 /*
113 * Find the next clean block in the folio. end_blk is inclusive.
114 * If no clean block is found, this will return end_blk + 1.
115 */
ifs_next_clean_block(struct folio * folio,unsigned start_blk,unsigned end_blk)116 static unsigned ifs_next_clean_block(struct folio *folio,
117 unsigned start_blk, unsigned end_blk)
118 {
119 struct iomap_folio_state *ifs = folio->private;
120 struct inode *inode = folio->mapping->host;
121 unsigned int blks = i_blocks_per_folio(inode, folio);
122
123 return find_next_zero_bit(ifs->state, blks + end_blk + 1,
124 blks + start_blk) - blks;
125 }
126
ifs_find_dirty_range(struct folio * folio,struct iomap_folio_state * ifs,u64 * range_start,u64 range_end)127 static unsigned ifs_find_dirty_range(struct folio *folio,
128 struct iomap_folio_state *ifs, u64 *range_start, u64 range_end)
129 {
130 struct inode *inode = folio->mapping->host;
131 unsigned start_blk =
132 offset_in_folio(folio, *range_start) >> inode->i_blkbits;
133 unsigned end_blk = min_not_zero(
134 offset_in_folio(folio, range_end) >> inode->i_blkbits,
135 i_blocks_per_folio(inode, folio)) - 1;
136 unsigned nblks;
137
138 start_blk = ifs_next_dirty_block(folio, start_blk, end_blk);
139 if (start_blk > end_blk)
140 return 0;
141 if (start_blk == end_blk)
142 nblks = 1;
143 else
144 nblks = ifs_next_clean_block(folio, start_blk + 1, end_blk) -
145 start_blk;
146
147 *range_start = folio_pos(folio) + (start_blk << inode->i_blkbits);
148 return nblks << inode->i_blkbits;
149 }
150
iomap_find_dirty_range(struct folio * folio,u64 * range_start,u64 range_end)151 static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start,
152 u64 range_end)
153 {
154 struct iomap_folio_state *ifs = folio->private;
155
156 if (*range_start >= range_end)
157 return 0;
158
159 if (ifs)
160 return ifs_find_dirty_range(folio, ifs, range_start, range_end);
161 return range_end - *range_start;
162 }
163
ifs_clear_range_dirty(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)164 static void ifs_clear_range_dirty(struct folio *folio,
165 struct iomap_folio_state *ifs, size_t off, size_t len)
166 {
167 struct inode *inode = folio->mapping->host;
168 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
169 unsigned int first_blk = (off >> inode->i_blkbits);
170 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
171 unsigned int nr_blks = last_blk - first_blk + 1;
172 unsigned long flags;
173
174 spin_lock_irqsave(&ifs->state_lock, flags);
175 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
176 spin_unlock_irqrestore(&ifs->state_lock, flags);
177 }
178
iomap_clear_range_dirty(struct folio * folio,size_t off,size_t len)179 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
180 {
181 struct iomap_folio_state *ifs = folio->private;
182
183 if (ifs)
184 ifs_clear_range_dirty(folio, ifs, off, len);
185 }
186
ifs_set_range_dirty(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)187 static void ifs_set_range_dirty(struct folio *folio,
188 struct iomap_folio_state *ifs, size_t off, size_t len)
189 {
190 struct inode *inode = folio->mapping->host;
191 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
192 unsigned int first_blk = (off >> inode->i_blkbits);
193 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
194 unsigned int nr_blks = last_blk - first_blk + 1;
195 unsigned long flags;
196
197 spin_lock_irqsave(&ifs->state_lock, flags);
198 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
199 spin_unlock_irqrestore(&ifs->state_lock, flags);
200 }
201
iomap_set_range_dirty(struct folio * folio,size_t off,size_t len)202 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
203 {
204 struct iomap_folio_state *ifs = folio->private;
205
206 if (ifs)
207 ifs_set_range_dirty(folio, ifs, off, len);
208 }
209
ifs_alloc(struct inode * inode,struct folio * folio,unsigned int flags)210 static struct iomap_folio_state *ifs_alloc(struct inode *inode,
211 struct folio *folio, unsigned int flags)
212 {
213 struct iomap_folio_state *ifs = folio->private;
214 unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
215 gfp_t gfp;
216
217 if (ifs || nr_blocks <= 1)
218 return ifs;
219
220 if (flags & IOMAP_NOWAIT)
221 gfp = GFP_NOWAIT;
222 else
223 gfp = GFP_NOFS | __GFP_NOFAIL;
224
225 /*
226 * ifs->state tracks two sets of state flags when the
227 * filesystem block size is smaller than the folio size.
228 * The first state tracks per-block uptodate and the
229 * second tracks per-block dirty state.
230 */
231 ifs = kzalloc(struct_size(ifs, state,
232 BITS_TO_LONGS(2 * nr_blocks)), gfp);
233 if (!ifs)
234 return ifs;
235
236 spin_lock_init(&ifs->state_lock);
237 if (folio_test_uptodate(folio))
238 bitmap_set(ifs->state, 0, nr_blocks);
239 if (folio_test_dirty(folio))
240 bitmap_set(ifs->state, nr_blocks, nr_blocks);
241 folio_attach_private(folio, ifs);
242
243 return ifs;
244 }
245
ifs_free(struct folio * folio)246 static void ifs_free(struct folio *folio)
247 {
248 struct iomap_folio_state *ifs = folio_detach_private(folio);
249
250 if (!ifs)
251 return;
252 WARN_ON_ONCE(ifs->read_bytes_pending != 0);
253 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
254 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
255 folio_test_uptodate(folio));
256 kfree(ifs);
257 }
258
259 /*
260 * Calculate how many bytes to truncate based off the number of blocks to
261 * truncate and the end position to start truncating from.
262 */
iomap_bytes_to_truncate(loff_t end_pos,unsigned block_bits,unsigned blocks_truncated)263 static size_t iomap_bytes_to_truncate(loff_t end_pos, unsigned block_bits,
264 unsigned blocks_truncated)
265 {
266 unsigned block_size = 1 << block_bits;
267 unsigned block_offset = end_pos & (block_size - 1);
268
269 if (!block_offset)
270 return blocks_truncated << block_bits;
271
272 return ((blocks_truncated - 1) << block_bits) + block_offset;
273 }
274
275 /*
276 * Calculate the range inside the folio that we actually need to read.
277 */
iomap_adjust_read_range(struct inode * inode,struct folio * folio,loff_t * pos,loff_t length,size_t * offp,size_t * lenp)278 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
279 loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
280 {
281 struct iomap_folio_state *ifs = folio->private;
282 loff_t orig_pos = *pos;
283 loff_t isize = i_size_read(inode);
284 unsigned block_bits = inode->i_blkbits;
285 unsigned block_size = (1 << block_bits);
286 size_t poff = offset_in_folio(folio, *pos);
287 size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
288 size_t orig_plen = plen;
289 unsigned first = poff >> block_bits;
290 unsigned last = (poff + plen - 1) >> block_bits;
291
292 /*
293 * If the block size is smaller than the page size, we need to check the
294 * per-block uptodate status and adjust the offset and length if needed
295 * to avoid reading in already uptodate ranges.
296 */
297 if (ifs) {
298 unsigned int next, blocks_skipped;
299
300 next = ifs_next_nonuptodate_block(folio, first, last);
301 blocks_skipped = next - first;
302
303 if (blocks_skipped) {
304 unsigned long block_offset = *pos & (block_size - 1);
305 unsigned bytes_skipped =
306 (blocks_skipped << block_bits) - block_offset;
307
308 *pos += bytes_skipped;
309 poff += bytes_skipped;
310 plen -= bytes_skipped;
311 }
312 first = next;
313
314 /* truncate len if we find any trailing uptodate block(s) */
315 if (++next <= last) {
316 next = ifs_next_uptodate_block(folio, next, last);
317 if (next <= last) {
318 plen -= iomap_bytes_to_truncate(*pos + plen,
319 block_bits, last - next + 1);
320 last = next - 1;
321 }
322 }
323 }
324
325 /*
326 * If the extent spans the block that contains the i_size, we need to
327 * handle both halves separately so that we properly zero data in the
328 * page cache for blocks that are entirely outside of i_size.
329 */
330 if (orig_pos <= isize && orig_pos + orig_plen > isize) {
331 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
332
333 if (first <= end && last > end)
334 plen -= iomap_bytes_to_truncate(*pos + plen, block_bits,
335 last - end);
336 }
337
338 *offp = poff;
339 *lenp = plen;
340 }
341
iomap_block_needs_zeroing(const struct iomap_iter * iter,loff_t pos)342 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
343 loff_t pos)
344 {
345 const struct iomap *srcmap = iomap_iter_srcmap(iter);
346
347 return srcmap->type != IOMAP_MAPPED ||
348 (srcmap->flags & IOMAP_F_NEW) ||
349 pos >= i_size_read(iter->inode);
350 }
351
352 /**
353 * iomap_read_inline_data - copy inline data into the page cache
354 * @iter: iteration structure
355 * @folio: folio to copy to
356 *
357 * Copy the inline data in @iter into @folio and zero out the rest of the folio.
358 * Only a single IOMAP_INLINE extent is allowed at the end of each file.
359 * Returns zero for success to complete the read, or the usual negative errno.
360 */
iomap_read_inline_data(const struct iomap_iter * iter,struct folio * folio)361 static int iomap_read_inline_data(const struct iomap_iter *iter,
362 struct folio *folio)
363 {
364 const struct iomap *iomap = iomap_iter_srcmap(iter);
365 size_t size = i_size_read(iter->inode) - iomap->offset;
366 size_t offset = offset_in_folio(folio, iomap->offset);
367
368 if (WARN_ON_ONCE(!iomap->inline_data))
369 return -EIO;
370
371 if (folio_test_uptodate(folio))
372 return 0;
373
374 if (WARN_ON_ONCE(size > iomap->length))
375 return -EIO;
376 if (offset > 0)
377 ifs_alloc(iter->inode, folio, iter->flags);
378
379 folio_fill_tail(folio, offset, iomap->inline_data, size);
380 iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset);
381 return 0;
382 }
383
iomap_finish_folio_read(struct folio * folio,size_t off,size_t len,int error)384 void iomap_finish_folio_read(struct folio *folio, size_t off, size_t len,
385 int error)
386 {
387 struct iomap_folio_state *ifs = folio->private;
388 bool uptodate = !error;
389 bool finished = true;
390
391 if (ifs) {
392 unsigned long flags;
393
394 spin_lock_irqsave(&ifs->state_lock, flags);
395 if (!error)
396 uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
397 ifs->read_bytes_pending -= len;
398 finished = !ifs->read_bytes_pending;
399 spin_unlock_irqrestore(&ifs->state_lock, flags);
400 }
401
402 if (finished)
403 folio_end_read(folio, uptodate);
404 }
405 EXPORT_SYMBOL_GPL(iomap_finish_folio_read);
406
iomap_read_init(struct folio * folio)407 static void iomap_read_init(struct folio *folio)
408 {
409 struct iomap_folio_state *ifs = folio->private;
410
411 if (ifs) {
412 size_t len = folio_size(folio);
413
414 /*
415 * ifs->read_bytes_pending is used to track how many bytes are
416 * read in asynchronously by the IO helper. We need to track
417 * this so that we can know when the IO helper has finished
418 * reading in all the necessary ranges of the folio and can end
419 * the read.
420 *
421 * Increase ->read_bytes_pending by the folio size to start, and
422 * add a +1 bias. We'll subtract the bias and any uptodate /
423 * zeroed ranges that did not require IO in iomap_read_end()
424 * after we're done processing the folio.
425 *
426 * We do this because otherwise, we would have to increment
427 * ifs->read_bytes_pending every time a range in the folio needs
428 * to be read in, which can get expensive since the spinlock
429 * needs to be held whenever modifying ifs->read_bytes_pending.
430 *
431 * We add the bias to ensure the read has not been ended on the
432 * folio when iomap_read_end() is called, even if the IO helper
433 * has already finished reading in the entire folio.
434 */
435 spin_lock_irq(&ifs->state_lock);
436 WARN_ON_ONCE(ifs->read_bytes_pending != 0);
437 ifs->read_bytes_pending = len + 1;
438 spin_unlock_irq(&ifs->state_lock);
439 }
440 }
441
442 /*
443 * This ends IO if no bytes were submitted to an IO helper.
444 *
445 * Otherwise, this calibrates ifs->read_bytes_pending to represent only the
446 * submitted bytes (see comment in iomap_read_init()). If all bytes submitted
447 * have already been completed by the IO helper, then this will end the read.
448 * Else the IO helper will end the read after all submitted ranges have been
449 * read.
450 */
iomap_read_end(struct folio * folio,size_t bytes_submitted)451 static void iomap_read_end(struct folio *folio, size_t bytes_submitted)
452 {
453 struct iomap_folio_state *ifs = folio->private;
454
455 if (ifs) {
456 bool end_read, uptodate;
457
458 spin_lock_irq(&ifs->state_lock);
459 if (!ifs->read_bytes_pending) {
460 WARN_ON_ONCE(bytes_submitted);
461 spin_unlock_irq(&ifs->state_lock);
462 folio_unlock(folio);
463 return;
464 }
465
466 /*
467 * Subtract any bytes that were initially accounted to
468 * read_bytes_pending but skipped for IO. The +1 accounts for
469 * the bias we added in iomap_read_init().
470 */
471 ifs->read_bytes_pending -=
472 (folio_size(folio) + 1 - bytes_submitted);
473
474 /*
475 * If !ifs->read_bytes_pending, this means all pending reads by
476 * the IO helper have already completed, which means we need to
477 * end the folio read here. If ifs->read_bytes_pending != 0,
478 * the IO helper will end the folio read.
479 */
480 end_read = !ifs->read_bytes_pending;
481 if (end_read)
482 uptodate = ifs_is_fully_uptodate(folio, ifs);
483 spin_unlock_irq(&ifs->state_lock);
484 if (end_read)
485 folio_end_read(folio, uptodate);
486 } else if (!bytes_submitted) {
487 /*
488 * If there were no bytes submitted, this means we are
489 * responsible for unlocking the folio here, since no IO helper
490 * has taken ownership of it. If there were bytes submitted,
491 * then the IO helper will end the read via
492 * iomap_finish_folio_read().
493 */
494 folio_unlock(folio);
495 }
496 }
497
iomap_read_folio_iter(struct iomap_iter * iter,struct iomap_read_folio_ctx * ctx,size_t * bytes_submitted)498 static int iomap_read_folio_iter(struct iomap_iter *iter,
499 struct iomap_read_folio_ctx *ctx, size_t *bytes_submitted)
500 {
501 const struct iomap *iomap = &iter->iomap;
502 loff_t pos = iter->pos;
503 loff_t length = iomap_length(iter);
504 struct folio *folio = ctx->cur_folio;
505 size_t poff, plen;
506 loff_t pos_diff;
507 int ret;
508
509 if (iomap->type == IOMAP_INLINE) {
510 ret = iomap_read_inline_data(iter, folio);
511 if (ret)
512 return ret;
513 return iomap_iter_advance(iter, length);
514 }
515
516 ifs_alloc(iter->inode, folio, iter->flags);
517
518 length = min_t(loff_t, length,
519 folio_size(folio) - offset_in_folio(folio, pos));
520 while (length) {
521 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff,
522 &plen);
523
524 pos_diff = pos - iter->pos;
525 if (WARN_ON_ONCE(pos_diff + plen > length))
526 return -EIO;
527
528 ret = iomap_iter_advance(iter, pos_diff);
529 if (ret)
530 return ret;
531
532 if (plen == 0)
533 return 0;
534
535 /* zero post-eof blocks as the page may be mapped */
536 if (iomap_block_needs_zeroing(iter, pos)) {
537 folio_zero_range(folio, poff, plen);
538 iomap_set_range_uptodate(folio, poff, plen);
539 } else {
540 if (!*bytes_submitted)
541 iomap_read_init(folio);
542 ret = ctx->ops->read_folio_range(iter, ctx, plen);
543 if (ret)
544 return ret;
545 *bytes_submitted += plen;
546 }
547
548 ret = iomap_iter_advance(iter, plen);
549 if (ret)
550 return ret;
551 length -= pos_diff + plen;
552 pos = iter->pos;
553 }
554 return 0;
555 }
556
iomap_read_folio(const struct iomap_ops * ops,struct iomap_read_folio_ctx * ctx)557 void iomap_read_folio(const struct iomap_ops *ops,
558 struct iomap_read_folio_ctx *ctx)
559 {
560 struct folio *folio = ctx->cur_folio;
561 struct iomap_iter iter = {
562 .inode = folio->mapping->host,
563 .pos = folio_pos(folio),
564 .len = folio_size(folio),
565 };
566 size_t bytes_submitted = 0;
567 int ret;
568
569 trace_iomap_readpage(iter.inode, 1);
570
571 while ((ret = iomap_iter(&iter, ops)) > 0)
572 iter.status = iomap_read_folio_iter(&iter, ctx,
573 &bytes_submitted);
574
575 if (ctx->ops->submit_read)
576 ctx->ops->submit_read(ctx);
577
578 iomap_read_end(folio, bytes_submitted);
579 }
580 EXPORT_SYMBOL_GPL(iomap_read_folio);
581
iomap_readahead_iter(struct iomap_iter * iter,struct iomap_read_folio_ctx * ctx,size_t * cur_bytes_submitted)582 static int iomap_readahead_iter(struct iomap_iter *iter,
583 struct iomap_read_folio_ctx *ctx, size_t *cur_bytes_submitted)
584 {
585 int ret;
586
587 while (iomap_length(iter)) {
588 if (ctx->cur_folio &&
589 offset_in_folio(ctx->cur_folio, iter->pos) == 0) {
590 iomap_read_end(ctx->cur_folio, *cur_bytes_submitted);
591 ctx->cur_folio = NULL;
592 }
593 if (!ctx->cur_folio) {
594 ctx->cur_folio = readahead_folio(ctx->rac);
595 if (WARN_ON_ONCE(!ctx->cur_folio))
596 return -EINVAL;
597 *cur_bytes_submitted = 0;
598 }
599 ret = iomap_read_folio_iter(iter, ctx, cur_bytes_submitted);
600 if (ret)
601 return ret;
602 }
603
604 return 0;
605 }
606
607 /**
608 * iomap_readahead - Attempt to read pages from a file.
609 * @ops: The operations vector for the filesystem.
610 * @ctx: The ctx used for issuing readahead.
611 *
612 * This function is for filesystems to call to implement their readahead
613 * address_space operation.
614 *
615 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
616 * blocks from disc), and may wait for it. The caller may be trying to
617 * access a different page, and so sleeping excessively should be avoided.
618 * It may allocate memory, but should avoid costly allocations. This
619 * function is called with memalloc_nofs set, so allocations will not cause
620 * the filesystem to be reentered.
621 */
iomap_readahead(const struct iomap_ops * ops,struct iomap_read_folio_ctx * ctx)622 void iomap_readahead(const struct iomap_ops *ops,
623 struct iomap_read_folio_ctx *ctx)
624 {
625 struct readahead_control *rac = ctx->rac;
626 struct iomap_iter iter = {
627 .inode = rac->mapping->host,
628 .pos = readahead_pos(rac),
629 .len = readahead_length(rac),
630 };
631 size_t cur_bytes_submitted;
632
633 trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
634
635 while (iomap_iter(&iter, ops) > 0)
636 iter.status = iomap_readahead_iter(&iter, ctx,
637 &cur_bytes_submitted);
638
639 if (ctx->ops->submit_read)
640 ctx->ops->submit_read(ctx);
641
642 if (ctx->cur_folio)
643 iomap_read_end(ctx->cur_folio, cur_bytes_submitted);
644 }
645 EXPORT_SYMBOL_GPL(iomap_readahead);
646
647 /*
648 * iomap_is_partially_uptodate checks whether blocks within a folio are
649 * uptodate or not.
650 *
651 * Returns true if all blocks which correspond to the specified part
652 * of the folio are uptodate.
653 */
iomap_is_partially_uptodate(struct folio * folio,size_t from,size_t count)654 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
655 {
656 struct iomap_folio_state *ifs = folio->private;
657 struct inode *inode = folio->mapping->host;
658 unsigned first, last;
659
660 if (!ifs)
661 return false;
662
663 /* Caller's range may extend past the end of this folio */
664 count = min(folio_size(folio) - from, count);
665
666 /* First and last blocks in range within folio */
667 first = from >> inode->i_blkbits;
668 last = (from + count - 1) >> inode->i_blkbits;
669
670 return ifs_next_nonuptodate_block(folio, first, last) > last;
671 }
672 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
673
674 /**
675 * iomap_get_folio - get a folio reference for writing
676 * @iter: iteration structure
677 * @pos: start offset of write
678 * @len: Suggested size of folio to create.
679 *
680 * Returns a locked reference to the folio at @pos, or an error pointer if the
681 * folio could not be obtained.
682 */
iomap_get_folio(struct iomap_iter * iter,loff_t pos,size_t len)683 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
684 {
685 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
686
687 if (iter->flags & IOMAP_NOWAIT)
688 fgp |= FGP_NOWAIT;
689 if (iter->flags & IOMAP_DONTCACHE)
690 fgp |= FGP_DONTCACHE;
691 fgp |= fgf_set_order(len);
692
693 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
694 fgp, mapping_gfp_mask(iter->inode->i_mapping));
695 }
696 EXPORT_SYMBOL_GPL(iomap_get_folio);
697
iomap_release_folio(struct folio * folio,gfp_t gfp_flags)698 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
699 {
700 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
701 folio_size(folio));
702
703 /*
704 * If the folio is dirty, we refuse to release our metadata because
705 * it may be partially dirty. Once we track per-block dirty state,
706 * we can release the metadata if every block is dirty.
707 */
708 if (folio_test_dirty(folio))
709 return false;
710 ifs_free(folio);
711 return true;
712 }
713 EXPORT_SYMBOL_GPL(iomap_release_folio);
714
iomap_invalidate_folio(struct folio * folio,size_t offset,size_t len)715 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
716 {
717 trace_iomap_invalidate_folio(folio->mapping->host,
718 folio_pos(folio) + offset, len);
719
720 /*
721 * If we're invalidating the entire folio, clear the dirty state
722 * from it and release it to avoid unnecessary buildup of the LRU.
723 */
724 if (offset == 0 && len == folio_size(folio)) {
725 WARN_ON_ONCE(folio_test_writeback(folio));
726 folio_cancel_dirty(folio);
727 ifs_free(folio);
728 }
729 }
730 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
731
iomap_dirty_folio(struct address_space * mapping,struct folio * folio)732 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
733 {
734 struct inode *inode = mapping->host;
735 size_t len = folio_size(folio);
736
737 ifs_alloc(inode, folio, 0);
738 iomap_set_range_dirty(folio, 0, len);
739 return filemap_dirty_folio(mapping, folio);
740 }
741 EXPORT_SYMBOL_GPL(iomap_dirty_folio);
742
743 static void
iomap_write_failed(struct inode * inode,loff_t pos,unsigned len)744 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
745 {
746 loff_t i_size = i_size_read(inode);
747
748 /*
749 * Only truncate newly allocated pages beyoned EOF, even if the
750 * write started inside the existing inode size.
751 */
752 if (pos + len > i_size)
753 truncate_pagecache_range(inode, max(pos, i_size),
754 pos + len - 1);
755 }
756
__iomap_write_begin(const struct iomap_iter * iter,const struct iomap_write_ops * write_ops,size_t len,struct folio * folio)757 static int __iomap_write_begin(const struct iomap_iter *iter,
758 const struct iomap_write_ops *write_ops, size_t len,
759 struct folio *folio)
760 {
761 struct iomap_folio_state *ifs;
762 loff_t pos = iter->pos;
763 loff_t block_size = i_blocksize(iter->inode);
764 loff_t block_start = round_down(pos, block_size);
765 loff_t block_end = round_up(pos + len, block_size);
766 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
767 size_t from = offset_in_folio(folio, pos), to = from + len;
768 size_t poff, plen;
769
770 /*
771 * If the write or zeroing completely overlaps the current folio, then
772 * entire folio will be dirtied so there is no need for
773 * per-block state tracking structures to be attached to this folio.
774 * For the unshare case, we must read in the ondisk contents because we
775 * are not changing pagecache contents.
776 */
777 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
778 pos + len >= folio_next_pos(folio))
779 return 0;
780
781 ifs = ifs_alloc(iter->inode, folio, iter->flags);
782 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
783 return -EAGAIN;
784
785 if (folio_test_uptodate(folio))
786 return 0;
787
788 do {
789 iomap_adjust_read_range(iter->inode, folio, &block_start,
790 block_end - block_start, &poff, &plen);
791 if (plen == 0)
792 break;
793
794 /*
795 * If the read range will be entirely overwritten by the write,
796 * we can skip having to zero/read it in.
797 */
798 if (!(iter->flags & IOMAP_UNSHARE) && from <= poff &&
799 to >= poff + plen)
800 continue;
801
802 if (iomap_block_needs_zeroing(iter, block_start)) {
803 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
804 return -EIO;
805 folio_zero_segments(folio, poff, from, to, poff + plen);
806 } else {
807 int status;
808
809 if (iter->flags & IOMAP_NOWAIT)
810 return -EAGAIN;
811
812 if (write_ops && write_ops->read_folio_range)
813 status = write_ops->read_folio_range(iter,
814 folio, block_start, plen);
815 else
816 status = iomap_bio_read_folio_range_sync(iter,
817 folio, block_start, plen);
818 if (status)
819 return status;
820 }
821 iomap_set_range_uptodate(folio, poff, plen);
822 } while ((block_start += plen) < block_end);
823
824 return 0;
825 }
826
__iomap_get_folio(struct iomap_iter * iter,const struct iomap_write_ops * write_ops,size_t len)827 static struct folio *__iomap_get_folio(struct iomap_iter *iter,
828 const struct iomap_write_ops *write_ops, size_t len)
829 {
830 loff_t pos = iter->pos;
831
832 if (!mapping_large_folio_support(iter->inode->i_mapping))
833 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
834
835 if (iter->fbatch) {
836 struct folio *folio = folio_batch_next(iter->fbatch);
837
838 if (!folio)
839 return NULL;
840
841 /*
842 * The folio mapping generally shouldn't have changed based on
843 * fs locks, but be consistent with filemap lookup and retry
844 * the iter if it does.
845 */
846 folio_lock(folio);
847 if (unlikely(folio->mapping != iter->inode->i_mapping)) {
848 iter->iomap.flags |= IOMAP_F_STALE;
849 folio_unlock(folio);
850 return NULL;
851 }
852
853 folio_get(folio);
854 return folio;
855 }
856
857 if (write_ops && write_ops->get_folio)
858 return write_ops->get_folio(iter, pos, len);
859 return iomap_get_folio(iter, pos, len);
860 }
861
__iomap_put_folio(struct iomap_iter * iter,const struct iomap_write_ops * write_ops,size_t ret,struct folio * folio)862 static void __iomap_put_folio(struct iomap_iter *iter,
863 const struct iomap_write_ops *write_ops, size_t ret,
864 struct folio *folio)
865 {
866 loff_t pos = iter->pos;
867
868 if (write_ops && write_ops->put_folio) {
869 write_ops->put_folio(iter->inode, pos, ret, folio);
870 } else {
871 folio_unlock(folio);
872 folio_put(folio);
873 }
874 }
875
876 /* trim pos and bytes to within a given folio */
iomap_trim_folio_range(struct iomap_iter * iter,struct folio * folio,size_t * offset,u64 * bytes)877 static loff_t iomap_trim_folio_range(struct iomap_iter *iter,
878 struct folio *folio, size_t *offset, u64 *bytes)
879 {
880 loff_t pos = iter->pos;
881 size_t fsize = folio_size(folio);
882
883 WARN_ON_ONCE(pos < folio_pos(folio));
884 WARN_ON_ONCE(pos >= folio_pos(folio) + fsize);
885
886 *offset = offset_in_folio(folio, pos);
887 *bytes = min(*bytes, fsize - *offset);
888
889 return pos;
890 }
891
iomap_write_begin_inline(const struct iomap_iter * iter,struct folio * folio)892 static int iomap_write_begin_inline(const struct iomap_iter *iter,
893 struct folio *folio)
894 {
895 /* needs more work for the tailpacking case; disable for now */
896 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
897 return -EIO;
898 return iomap_read_inline_data(iter, folio);
899 }
900
901 /*
902 * Grab and prepare a folio for write based on iter state. Returns the folio,
903 * offset, and length. Callers can optionally pass a max length *plen,
904 * otherwise init to zero.
905 */
iomap_write_begin(struct iomap_iter * iter,const struct iomap_write_ops * write_ops,struct folio ** foliop,size_t * poffset,u64 * plen)906 static int iomap_write_begin(struct iomap_iter *iter,
907 const struct iomap_write_ops *write_ops, struct folio **foliop,
908 size_t *poffset, u64 *plen)
909 {
910 const struct iomap *srcmap = iomap_iter_srcmap(iter);
911 loff_t pos;
912 u64 len = min_t(u64, SIZE_MAX, iomap_length(iter));
913 struct folio *folio;
914 int status = 0;
915
916 len = min_not_zero(len, *plen);
917 *foliop = NULL;
918 *plen = 0;
919
920 if (fatal_signal_pending(current))
921 return -EINTR;
922
923 folio = __iomap_get_folio(iter, write_ops, len);
924 if (IS_ERR(folio))
925 return PTR_ERR(folio);
926
927 /*
928 * No folio means we're done with a batch. We still have range to
929 * process so return and let the caller iterate and refill the batch.
930 */
931 if (!folio) {
932 WARN_ON_ONCE(!iter->fbatch);
933 return 0;
934 }
935
936 /*
937 * Now we have a locked folio, before we do anything with it we need to
938 * check that the iomap we have cached is not stale. The inode extent
939 * mapping can change due to concurrent IO in flight (e.g.
940 * IOMAP_UNWRITTEN state can change and memory reclaim could have
941 * reclaimed a previously partially written page at this index after IO
942 * completion before this write reaches this file offset) and hence we
943 * could do the wrong thing here (zero a page range incorrectly or fail
944 * to zero) and corrupt data.
945 */
946 if (write_ops && write_ops->iomap_valid) {
947 bool iomap_valid = write_ops->iomap_valid(iter->inode,
948 &iter->iomap);
949 if (!iomap_valid) {
950 iter->iomap.flags |= IOMAP_F_STALE;
951 status = 0;
952 goto out_unlock;
953 }
954 }
955
956 /*
957 * The folios in a batch may not be contiguous. If we've skipped
958 * forward, advance the iter to the pos of the current folio. If the
959 * folio starts beyond the end of the mapping, it may have been trimmed
960 * since the lookup for whatever reason. Return a NULL folio to
961 * terminate the op.
962 */
963 if (folio_pos(folio) > iter->pos) {
964 len = min_t(u64, folio_pos(folio) - iter->pos,
965 iomap_length(iter));
966 status = iomap_iter_advance(iter, len);
967 len = iomap_length(iter);
968 if (status || !len)
969 goto out_unlock;
970 }
971
972 pos = iomap_trim_folio_range(iter, folio, poffset, &len);
973
974 if (srcmap->type == IOMAP_INLINE)
975 status = iomap_write_begin_inline(iter, folio);
976 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
977 status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
978 else
979 status = __iomap_write_begin(iter, write_ops, len, folio);
980
981 if (unlikely(status))
982 goto out_unlock;
983
984 *foliop = folio;
985 *plen = len;
986 return 0;
987
988 out_unlock:
989 __iomap_put_folio(iter, write_ops, 0, folio);
990 return status;
991 }
992
__iomap_write_end(struct inode * inode,loff_t pos,size_t len,size_t copied,struct folio * folio)993 static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
994 size_t copied, struct folio *folio)
995 {
996 flush_dcache_folio(folio);
997
998 /*
999 * The blocks that were entirely written will now be uptodate, so we
1000 * don't have to worry about a read_folio reading them and overwriting a
1001 * partial write. However, if we've encountered a short write and only
1002 * partially written into a block, it will not be marked uptodate, so a
1003 * read_folio might come in and destroy our partial write.
1004 *
1005 * Do the simplest thing and just treat any short write to a
1006 * non-uptodate page as a zero-length write, and force the caller to
1007 * redo the whole thing.
1008 */
1009 if (unlikely(copied < len && !folio_test_uptodate(folio)))
1010 return false;
1011 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
1012 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
1013 filemap_dirty_folio(inode->i_mapping, folio);
1014 return true;
1015 }
1016
iomap_write_end_inline(const struct iomap_iter * iter,struct folio * folio,loff_t pos,size_t copied)1017 static bool iomap_write_end_inline(const struct iomap_iter *iter,
1018 struct folio *folio, loff_t pos, size_t copied)
1019 {
1020 const struct iomap *iomap = &iter->iomap;
1021 void *addr;
1022
1023 WARN_ON_ONCE(!folio_test_uptodate(folio));
1024 BUG_ON(!iomap_inline_data_valid(iomap));
1025
1026 if (WARN_ON_ONCE(!iomap->inline_data))
1027 return false;
1028
1029 flush_dcache_folio(folio);
1030 addr = kmap_local_folio(folio, pos);
1031 memcpy(iomap_inline_data(iomap, pos), addr, copied);
1032 kunmap_local(addr);
1033
1034 mark_inode_dirty(iter->inode);
1035 return true;
1036 }
1037
1038 /*
1039 * Returns true if all copied bytes have been written to the pagecache,
1040 * otherwise return false.
1041 */
iomap_write_end(struct iomap_iter * iter,size_t len,size_t copied,struct folio * folio)1042 static bool iomap_write_end(struct iomap_iter *iter, size_t len, size_t copied,
1043 struct folio *folio)
1044 {
1045 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1046 loff_t pos = iter->pos;
1047
1048 if (srcmap->type == IOMAP_INLINE)
1049 return iomap_write_end_inline(iter, folio, pos, copied);
1050
1051 if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
1052 size_t bh_written;
1053
1054 bh_written = block_write_end(pos, len, copied, folio);
1055 WARN_ON_ONCE(bh_written != copied && bh_written != 0);
1056 return bh_written == copied;
1057 }
1058
1059 return __iomap_write_end(iter->inode, pos, len, copied, folio);
1060 }
1061
iomap_write_iter(struct iomap_iter * iter,struct iov_iter * i,const struct iomap_write_ops * write_ops)1062 static int iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i,
1063 const struct iomap_write_ops *write_ops)
1064 {
1065 ssize_t total_written = 0;
1066 int status = 0;
1067 struct address_space *mapping = iter->inode->i_mapping;
1068 size_t chunk = mapping_max_folio_size(mapping);
1069 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
1070
1071 do {
1072 struct folio *folio;
1073 loff_t old_size;
1074 size_t offset; /* Offset into folio */
1075 u64 bytes; /* Bytes to write to folio */
1076 size_t copied; /* Bytes copied from user */
1077 u64 written; /* Bytes have been written */
1078 loff_t pos;
1079
1080 bytes = iov_iter_count(i);
1081 retry:
1082 offset = iter->pos & (chunk - 1);
1083 bytes = min(chunk - offset, bytes);
1084 status = balance_dirty_pages_ratelimited_flags(mapping,
1085 bdp_flags);
1086 if (unlikely(status))
1087 break;
1088
1089 if (bytes > iomap_length(iter))
1090 bytes = iomap_length(iter);
1091
1092 /*
1093 * Bring in the user page that we'll copy from _first_.
1094 * Otherwise there's a nasty deadlock on copying from the
1095 * same page as we're writing to, without it being marked
1096 * up-to-date.
1097 *
1098 * For async buffered writes the assumption is that the user
1099 * page has already been faulted in. This can be optimized by
1100 * faulting the user page.
1101 */
1102 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
1103 status = -EFAULT;
1104 break;
1105 }
1106
1107 status = iomap_write_begin(iter, write_ops, &folio, &offset,
1108 &bytes);
1109 if (unlikely(status)) {
1110 iomap_write_failed(iter->inode, iter->pos, bytes);
1111 break;
1112 }
1113 if (iter->iomap.flags & IOMAP_F_STALE)
1114 break;
1115
1116 pos = iter->pos;
1117
1118 if (mapping_writably_mapped(mapping))
1119 flush_dcache_folio(folio);
1120
1121 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
1122 written = iomap_write_end(iter, bytes, copied, folio) ?
1123 copied : 0;
1124
1125 /*
1126 * Update the in-memory inode size after copying the data into
1127 * the page cache. It's up to the file system to write the
1128 * updated size to disk, preferably after I/O completion so that
1129 * no stale data is exposed. Only once that's done can we
1130 * unlock and release the folio.
1131 */
1132 old_size = iter->inode->i_size;
1133 if (pos + written > old_size) {
1134 i_size_write(iter->inode, pos + written);
1135 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
1136 }
1137 __iomap_put_folio(iter, write_ops, written, folio);
1138
1139 if (old_size < pos)
1140 pagecache_isize_extended(iter->inode, old_size, pos);
1141
1142 cond_resched();
1143 if (unlikely(written == 0)) {
1144 /*
1145 * A short copy made iomap_write_end() reject the
1146 * thing entirely. Might be memory poisoning
1147 * halfway through, might be a race with munmap,
1148 * might be severe memory pressure.
1149 */
1150 iomap_write_failed(iter->inode, pos, bytes);
1151 iov_iter_revert(i, copied);
1152
1153 if (chunk > PAGE_SIZE)
1154 chunk /= 2;
1155 if (copied) {
1156 bytes = copied;
1157 goto retry;
1158 }
1159 } else {
1160 total_written += written;
1161 iomap_iter_advance(iter, written);
1162 }
1163 } while (iov_iter_count(i) && iomap_length(iter));
1164
1165 return total_written ? 0 : status;
1166 }
1167
1168 ssize_t
iomap_file_buffered_write(struct kiocb * iocb,struct iov_iter * i,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops,void * private)1169 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
1170 const struct iomap_ops *ops,
1171 const struct iomap_write_ops *write_ops, void *private)
1172 {
1173 struct iomap_iter iter = {
1174 .inode = iocb->ki_filp->f_mapping->host,
1175 .pos = iocb->ki_pos,
1176 .len = iov_iter_count(i),
1177 .flags = IOMAP_WRITE,
1178 .private = private,
1179 };
1180 ssize_t ret;
1181
1182 if (iocb->ki_flags & IOCB_NOWAIT)
1183 iter.flags |= IOMAP_NOWAIT;
1184 if (iocb->ki_flags & IOCB_DONTCACHE)
1185 iter.flags |= IOMAP_DONTCACHE;
1186
1187 while ((ret = iomap_iter(&iter, ops)) > 0)
1188 iter.status = iomap_write_iter(&iter, i, write_ops);
1189
1190 if (unlikely(iter.pos == iocb->ki_pos))
1191 return ret;
1192 ret = iter.pos - iocb->ki_pos;
1193 iocb->ki_pos = iter.pos;
1194 return ret;
1195 }
1196 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
1197
iomap_write_delalloc_ifs_punch(struct inode * inode,struct folio * folio,loff_t start_byte,loff_t end_byte,struct iomap * iomap,iomap_punch_t punch)1198 static void iomap_write_delalloc_ifs_punch(struct inode *inode,
1199 struct folio *folio, loff_t start_byte, loff_t end_byte,
1200 struct iomap *iomap, iomap_punch_t punch)
1201 {
1202 unsigned int first_blk, last_blk;
1203 loff_t last_byte;
1204 u8 blkbits = inode->i_blkbits;
1205 struct iomap_folio_state *ifs;
1206
1207 /*
1208 * When we have per-block dirty tracking, there can be
1209 * blocks within a folio which are marked uptodate
1210 * but not dirty. In that case it is necessary to punch
1211 * out such blocks to avoid leaking any delalloc blocks.
1212 */
1213 ifs = folio->private;
1214 if (!ifs)
1215 return;
1216
1217 last_byte = min_t(loff_t, end_byte - 1, folio_next_pos(folio) - 1);
1218 first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1219 last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1220 while ((first_blk = ifs_next_clean_block(folio, first_blk, last_blk))
1221 <= last_blk) {
1222 punch(inode, folio_pos(folio) + (first_blk << blkbits),
1223 1 << blkbits, iomap);
1224 first_blk++;
1225 }
1226 }
1227
iomap_write_delalloc_punch(struct inode * inode,struct folio * folio,loff_t * punch_start_byte,loff_t start_byte,loff_t end_byte,struct iomap * iomap,iomap_punch_t punch)1228 static void iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1229 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1230 struct iomap *iomap, iomap_punch_t punch)
1231 {
1232 if (!folio_test_dirty(folio))
1233 return;
1234
1235 /* if dirty, punch up to offset */
1236 if (start_byte > *punch_start_byte) {
1237 punch(inode, *punch_start_byte, start_byte - *punch_start_byte,
1238 iomap);
1239 }
1240
1241 /* Punch non-dirty blocks within folio */
1242 iomap_write_delalloc_ifs_punch(inode, folio, start_byte, end_byte,
1243 iomap, punch);
1244
1245 /*
1246 * Make sure the next punch start is correctly bound to
1247 * the end of this data range, not the end of the folio.
1248 */
1249 *punch_start_byte = min_t(loff_t, end_byte, folio_next_pos(folio));
1250 }
1251
1252 /*
1253 * Scan the data range passed to us for dirty page cache folios. If we find a
1254 * dirty folio, punch out the preceding range and update the offset from which
1255 * the next punch will start from.
1256 *
1257 * We can punch out storage reservations under clean pages because they either
1258 * contain data that has been written back - in which case the delalloc punch
1259 * over that range is a no-op - or they have been read faults in which case they
1260 * contain zeroes and we can remove the delalloc backing range and any new
1261 * writes to those pages will do the normal hole filling operation...
1262 *
1263 * This makes the logic simple: we only need to keep the delalloc extents only
1264 * over the dirty ranges of the page cache.
1265 *
1266 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1267 * simplify range iterations.
1268 */
iomap_write_delalloc_scan(struct inode * inode,loff_t * punch_start_byte,loff_t start_byte,loff_t end_byte,struct iomap * iomap,iomap_punch_t punch)1269 static void iomap_write_delalloc_scan(struct inode *inode,
1270 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1271 struct iomap *iomap, iomap_punch_t punch)
1272 {
1273 while (start_byte < end_byte) {
1274 struct folio *folio;
1275
1276 /* grab locked page */
1277 folio = filemap_lock_folio(inode->i_mapping,
1278 start_byte >> PAGE_SHIFT);
1279 if (IS_ERR(folio)) {
1280 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1281 PAGE_SIZE;
1282 continue;
1283 }
1284
1285 iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1286 start_byte, end_byte, iomap, punch);
1287
1288 /* move offset to start of next folio in range */
1289 start_byte = folio_next_pos(folio);
1290 folio_unlock(folio);
1291 folio_put(folio);
1292 }
1293 }
1294
1295 /*
1296 * When a short write occurs, the filesystem might need to use ->iomap_end
1297 * to remove space reservations created in ->iomap_begin.
1298 *
1299 * For filesystems that use delayed allocation, there can be dirty pages over
1300 * the delalloc extent outside the range of a short write but still within the
1301 * delalloc extent allocated for this iomap if the write raced with page
1302 * faults.
1303 *
1304 * Punch out all the delalloc blocks in the range given except for those that
1305 * have dirty data still pending in the page cache - those are going to be
1306 * written and so must still retain the delalloc backing for writeback.
1307 *
1308 * The punch() callback *must* only punch delalloc extents in the range passed
1309 * to it. It must skip over all other types of extents in the range and leave
1310 * them completely unchanged. It must do this punch atomically with respect to
1311 * other extent modifications.
1312 *
1313 * The punch() callback may be called with a folio locked to prevent writeback
1314 * extent allocation racing at the edge of the range we are currently punching.
1315 * The locked folio may or may not cover the range being punched, so it is not
1316 * safe for the punch() callback to lock folios itself.
1317 *
1318 * Lock order is:
1319 *
1320 * inode->i_rwsem (shared or exclusive)
1321 * inode->i_mapping->invalidate_lock (exclusive)
1322 * folio_lock()
1323 * ->punch
1324 * internal filesystem allocation lock
1325 *
1326 * As we are scanning the page cache for data, we don't need to reimplement the
1327 * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1328 * start and end of data ranges correctly even for sub-folio block sizes. This
1329 * byte range based iteration is especially convenient because it means we
1330 * don't have to care about variable size folios, nor where the start or end of
1331 * the data range lies within a folio, if they lie within the same folio or even
1332 * if there are multiple discontiguous data ranges within the folio.
1333 *
1334 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1335 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1336 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1337 * date. A write page fault can then mark it dirty. If we then fail a write()
1338 * beyond EOF into that up to date cached range, we allocate a delalloc block
1339 * beyond EOF and then have to punch it out. Because the range is up to date,
1340 * mapping_seek_hole_data() will return it, and we will skip the punch because
1341 * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1342 * beyond EOF in this case as writeback will never write back and covert that
1343 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1344 * resulting in always punching out the range from the EOF to the end of the
1345 * range the iomap spans.
1346 *
1347 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1348 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1349 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1350 * returns the end of the data range (data_end). Using closed intervals would
1351 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1352 * the code to subtle off-by-one bugs....
1353 */
iomap_write_delalloc_release(struct inode * inode,loff_t start_byte,loff_t end_byte,unsigned flags,struct iomap * iomap,iomap_punch_t punch)1354 void iomap_write_delalloc_release(struct inode *inode, loff_t start_byte,
1355 loff_t end_byte, unsigned flags, struct iomap *iomap,
1356 iomap_punch_t punch)
1357 {
1358 loff_t punch_start_byte = start_byte;
1359 loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1360
1361 /*
1362 * The caller must hold invalidate_lock to avoid races with page faults
1363 * re-instantiating folios and dirtying them via ->page_mkwrite whilst
1364 * we walk the cache and perform delalloc extent removal. Failing to do
1365 * this can leave dirty pages with no space reservation in the cache.
1366 */
1367 lockdep_assert_held_write(&inode->i_mapping->invalidate_lock);
1368
1369 while (start_byte < scan_end_byte) {
1370 loff_t data_end;
1371
1372 start_byte = mapping_seek_hole_data(inode->i_mapping,
1373 start_byte, scan_end_byte, SEEK_DATA);
1374 /*
1375 * If there is no more data to scan, all that is left is to
1376 * punch out the remaining range.
1377 *
1378 * Note that mapping_seek_hole_data is only supposed to return
1379 * either an offset or -ENXIO, so WARN on any other error as
1380 * that would be an API change without updating the callers.
1381 */
1382 if (start_byte == -ENXIO || start_byte == scan_end_byte)
1383 break;
1384 if (WARN_ON_ONCE(start_byte < 0))
1385 return;
1386 WARN_ON_ONCE(start_byte < punch_start_byte);
1387 WARN_ON_ONCE(start_byte > scan_end_byte);
1388
1389 /*
1390 * We find the end of this contiguous cached data range by
1391 * seeking from start_byte to the beginning of the next hole.
1392 */
1393 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1394 scan_end_byte, SEEK_HOLE);
1395 if (WARN_ON_ONCE(data_end < 0))
1396 return;
1397
1398 /*
1399 * If we race with post-direct I/O invalidation of the page cache,
1400 * there might be no data left at start_byte.
1401 */
1402 if (data_end == start_byte)
1403 continue;
1404
1405 WARN_ON_ONCE(data_end < start_byte);
1406 WARN_ON_ONCE(data_end > scan_end_byte);
1407
1408 iomap_write_delalloc_scan(inode, &punch_start_byte, start_byte,
1409 data_end, iomap, punch);
1410
1411 /* The next data search starts at the end of this one. */
1412 start_byte = data_end;
1413 }
1414
1415 if (punch_start_byte < end_byte)
1416 punch(inode, punch_start_byte, end_byte - punch_start_byte,
1417 iomap);
1418 }
1419 EXPORT_SYMBOL_GPL(iomap_write_delalloc_release);
1420
iomap_unshare_iter(struct iomap_iter * iter,const struct iomap_write_ops * write_ops)1421 static int iomap_unshare_iter(struct iomap_iter *iter,
1422 const struct iomap_write_ops *write_ops)
1423 {
1424 struct iomap *iomap = &iter->iomap;
1425 u64 bytes = iomap_length(iter);
1426 int status;
1427
1428 if (!iomap_want_unshare_iter(iter))
1429 return iomap_iter_advance(iter, bytes);
1430
1431 do {
1432 struct folio *folio;
1433 size_t offset;
1434 bool ret;
1435
1436 bytes = min_t(u64, SIZE_MAX, bytes);
1437 status = iomap_write_begin(iter, write_ops, &folio, &offset,
1438 &bytes);
1439 if (unlikely(status))
1440 return status;
1441 if (iomap->flags & IOMAP_F_STALE)
1442 break;
1443
1444 ret = iomap_write_end(iter, bytes, bytes, folio);
1445 __iomap_put_folio(iter, write_ops, bytes, folio);
1446 if (WARN_ON_ONCE(!ret))
1447 return -EIO;
1448
1449 cond_resched();
1450
1451 balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1452
1453 status = iomap_iter_advance(iter, bytes);
1454 if (status)
1455 break;
1456 } while ((bytes = iomap_length(iter)) > 0);
1457
1458 return status;
1459 }
1460
1461 int
iomap_file_unshare(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops)1462 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1463 const struct iomap_ops *ops,
1464 const struct iomap_write_ops *write_ops)
1465 {
1466 struct iomap_iter iter = {
1467 .inode = inode,
1468 .pos = pos,
1469 .flags = IOMAP_WRITE | IOMAP_UNSHARE,
1470 };
1471 loff_t size = i_size_read(inode);
1472 int ret;
1473
1474 if (pos < 0 || pos >= size)
1475 return 0;
1476
1477 iter.len = min(len, size - pos);
1478 while ((ret = iomap_iter(&iter, ops)) > 0)
1479 iter.status = iomap_unshare_iter(&iter, write_ops);
1480 return ret;
1481 }
1482 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1483
1484 /*
1485 * Flush the remaining range of the iter and mark the current mapping stale.
1486 * This is used when zero range sees an unwritten mapping that may have had
1487 * dirty pagecache over it.
1488 */
iomap_zero_iter_flush_and_stale(struct iomap_iter * i)1489 static inline int iomap_zero_iter_flush_and_stale(struct iomap_iter *i)
1490 {
1491 struct address_space *mapping = i->inode->i_mapping;
1492 loff_t end = i->pos + i->len - 1;
1493
1494 i->iomap.flags |= IOMAP_F_STALE;
1495 return filemap_write_and_wait_range(mapping, i->pos, end);
1496 }
1497
iomap_zero_iter(struct iomap_iter * iter,bool * did_zero,const struct iomap_write_ops * write_ops)1498 static int iomap_zero_iter(struct iomap_iter *iter, bool *did_zero,
1499 const struct iomap_write_ops *write_ops)
1500 {
1501 u64 bytes = iomap_length(iter);
1502 int status;
1503
1504 do {
1505 struct folio *folio;
1506 size_t offset;
1507 bool ret;
1508
1509 bytes = min_t(u64, SIZE_MAX, bytes);
1510 status = iomap_write_begin(iter, write_ops, &folio, &offset,
1511 &bytes);
1512 if (status)
1513 return status;
1514 if (iter->iomap.flags & IOMAP_F_STALE)
1515 break;
1516
1517 /* a NULL folio means we're done with a folio batch */
1518 if (!folio) {
1519 status = iomap_iter_advance_full(iter);
1520 break;
1521 }
1522
1523 /* warn about zeroing folios beyond eof that won't write back */
1524 WARN_ON_ONCE(folio_pos(folio) > iter->inode->i_size);
1525
1526 trace_iomap_zero_iter(iter->inode, folio_pos(folio) + offset,
1527 bytes);
1528
1529 folio_zero_range(folio, offset, bytes);
1530 folio_mark_accessed(folio);
1531
1532 ret = iomap_write_end(iter, bytes, bytes, folio);
1533 __iomap_put_folio(iter, write_ops, bytes, folio);
1534 if (WARN_ON_ONCE(!ret))
1535 return -EIO;
1536
1537 status = iomap_iter_advance(iter, bytes);
1538 if (status)
1539 break;
1540 } while ((bytes = iomap_length(iter)) > 0);
1541
1542 if (did_zero)
1543 *did_zero = true;
1544 return status;
1545 }
1546
1547 loff_t
iomap_fill_dirty_folios(struct iomap_iter * iter,loff_t offset,loff_t length)1548 iomap_fill_dirty_folios(
1549 struct iomap_iter *iter,
1550 loff_t offset,
1551 loff_t length)
1552 {
1553 struct address_space *mapping = iter->inode->i_mapping;
1554 pgoff_t start = offset >> PAGE_SHIFT;
1555 pgoff_t end = (offset + length - 1) >> PAGE_SHIFT;
1556
1557 iter->fbatch = kmalloc(sizeof(struct folio_batch), GFP_KERNEL);
1558 if (!iter->fbatch)
1559 return offset + length;
1560 folio_batch_init(iter->fbatch);
1561
1562 filemap_get_folios_dirty(mapping, &start, end, iter->fbatch);
1563 return (start << PAGE_SHIFT);
1564 }
1565 EXPORT_SYMBOL_GPL(iomap_fill_dirty_folios);
1566
1567 int
iomap_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops,void * private)1568 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1569 const struct iomap_ops *ops,
1570 const struct iomap_write_ops *write_ops, void *private)
1571 {
1572 struct iomap_iter iter = {
1573 .inode = inode,
1574 .pos = pos,
1575 .len = len,
1576 .flags = IOMAP_ZERO,
1577 .private = private,
1578 };
1579 struct address_space *mapping = inode->i_mapping;
1580 int ret;
1581 bool range_dirty;
1582
1583 /*
1584 * To avoid an unconditional flush, check pagecache state and only flush
1585 * if dirty and the fs returns a mapping that might convert on
1586 * writeback.
1587 */
1588 range_dirty = filemap_range_needs_writeback(mapping, iter.pos,
1589 iter.pos + iter.len - 1);
1590 while ((ret = iomap_iter(&iter, ops)) > 0) {
1591 const struct iomap *srcmap = iomap_iter_srcmap(&iter);
1592
1593 if (WARN_ON_ONCE(iter.fbatch &&
1594 srcmap->type != IOMAP_UNWRITTEN))
1595 return -EIO;
1596
1597 if (!iter.fbatch &&
1598 (srcmap->type == IOMAP_HOLE ||
1599 srcmap->type == IOMAP_UNWRITTEN)) {
1600 s64 status;
1601
1602 if (range_dirty) {
1603 range_dirty = false;
1604 status = iomap_zero_iter_flush_and_stale(&iter);
1605 } else {
1606 status = iomap_iter_advance_full(&iter);
1607 }
1608 iter.status = status;
1609 continue;
1610 }
1611
1612 iter.status = iomap_zero_iter(&iter, did_zero, write_ops);
1613 }
1614 return ret;
1615 }
1616 EXPORT_SYMBOL_GPL(iomap_zero_range);
1617
1618 int
iomap_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops,void * private)1619 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1620 const struct iomap_ops *ops,
1621 const struct iomap_write_ops *write_ops, void *private)
1622 {
1623 unsigned int blocksize = i_blocksize(inode);
1624 unsigned int off = pos & (blocksize - 1);
1625
1626 /* Block boundary? Nothing to do */
1627 if (!off)
1628 return 0;
1629 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops,
1630 write_ops, private);
1631 }
1632 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1633
iomap_folio_mkwrite_iter(struct iomap_iter * iter,struct folio * folio)1634 static int iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1635 struct folio *folio)
1636 {
1637 loff_t length = iomap_length(iter);
1638 int ret;
1639
1640 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1641 ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1642 &iter->iomap);
1643 if (ret)
1644 return ret;
1645 block_commit_write(folio, 0, length);
1646 } else {
1647 WARN_ON_ONCE(!folio_test_uptodate(folio));
1648 folio_mark_dirty(folio);
1649 }
1650
1651 return iomap_iter_advance(iter, length);
1652 }
1653
iomap_page_mkwrite(struct vm_fault * vmf,const struct iomap_ops * ops,void * private)1654 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops,
1655 void *private)
1656 {
1657 struct iomap_iter iter = {
1658 .inode = file_inode(vmf->vma->vm_file),
1659 .flags = IOMAP_WRITE | IOMAP_FAULT,
1660 .private = private,
1661 };
1662 struct folio *folio = page_folio(vmf->page);
1663 ssize_t ret;
1664
1665 folio_lock(folio);
1666 ret = folio_mkwrite_check_truncate(folio, iter.inode);
1667 if (ret < 0)
1668 goto out_unlock;
1669 iter.pos = folio_pos(folio);
1670 iter.len = ret;
1671 while ((ret = iomap_iter(&iter, ops)) > 0)
1672 iter.status = iomap_folio_mkwrite_iter(&iter, folio);
1673
1674 if (ret < 0)
1675 goto out_unlock;
1676 folio_wait_stable(folio);
1677 return VM_FAULT_LOCKED;
1678 out_unlock:
1679 folio_unlock(folio);
1680 return vmf_fs_error(ret);
1681 }
1682 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1683
iomap_writeback_init(struct inode * inode,struct folio * folio)1684 static void iomap_writeback_init(struct inode *inode, struct folio *folio)
1685 {
1686 struct iomap_folio_state *ifs = folio->private;
1687
1688 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1689 if (ifs) {
1690 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0);
1691 /*
1692 * Set this to the folio size. After processing the folio for
1693 * writeback in iomap_writeback_folio(), we'll subtract any
1694 * ranges not written back.
1695 *
1696 * We do this because otherwise, we would have to atomically
1697 * increment ifs->write_bytes_pending every time a range in the
1698 * folio needs to be written back.
1699 */
1700 atomic_set(&ifs->write_bytes_pending, folio_size(folio));
1701 }
1702 }
1703
iomap_finish_folio_write(struct inode * inode,struct folio * folio,size_t len)1704 void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1705 size_t len)
1706 {
1707 struct iomap_folio_state *ifs = folio->private;
1708
1709 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1710 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1711
1712 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1713 folio_end_writeback(folio);
1714 }
1715 EXPORT_SYMBOL_GPL(iomap_finish_folio_write);
1716
iomap_writeback_range(struct iomap_writepage_ctx * wpc,struct folio * folio,u64 pos,u32 rlen,u64 end_pos,size_t * bytes_submitted)1717 static int iomap_writeback_range(struct iomap_writepage_ctx *wpc,
1718 struct folio *folio, u64 pos, u32 rlen, u64 end_pos,
1719 size_t *bytes_submitted)
1720 {
1721 do {
1722 ssize_t ret;
1723
1724 ret = wpc->ops->writeback_range(wpc, folio, pos, rlen, end_pos);
1725 if (WARN_ON_ONCE(ret == 0 || ret > rlen))
1726 return -EIO;
1727 if (ret < 0)
1728 return ret;
1729 rlen -= ret;
1730 pos += ret;
1731
1732 /*
1733 * Holes are not written back by ->writeback_range, so track
1734 * if we did handle anything that is not a hole here.
1735 */
1736 if (wpc->iomap.type != IOMAP_HOLE)
1737 *bytes_submitted += ret;
1738 } while (rlen);
1739
1740 return 0;
1741 }
1742
1743 /*
1744 * Check interaction of the folio with the file end.
1745 *
1746 * If the folio is entirely beyond i_size, return false. If it straddles
1747 * i_size, adjust end_pos and zero all data beyond i_size.
1748 */
iomap_writeback_handle_eof(struct folio * folio,struct inode * inode,u64 * end_pos)1749 static bool iomap_writeback_handle_eof(struct folio *folio, struct inode *inode,
1750 u64 *end_pos)
1751 {
1752 u64 isize = i_size_read(inode);
1753
1754 if (*end_pos > isize) {
1755 size_t poff = offset_in_folio(folio, isize);
1756 pgoff_t end_index = isize >> PAGE_SHIFT;
1757
1758 /*
1759 * If the folio is entirely ouside of i_size, skip it.
1760 *
1761 * This can happen due to a truncate operation that is in
1762 * progress and in that case truncate will finish it off once
1763 * we've dropped the folio lock.
1764 *
1765 * Note that the pgoff_t used for end_index is an unsigned long.
1766 * If the given offset is greater than 16TB on a 32-bit system,
1767 * then if we checked if the folio is fully outside i_size with
1768 * "if (folio->index >= end_index + 1)", "end_index + 1" would
1769 * overflow and evaluate to 0. Hence this folio would be
1770 * redirtied and written out repeatedly, which would result in
1771 * an infinite loop; the user program performing this operation
1772 * would hang. Instead, we can detect this situation by
1773 * checking if the folio is totally beyond i_size or if its
1774 * offset is just equal to the EOF.
1775 */
1776 if (folio->index > end_index ||
1777 (folio->index == end_index && poff == 0))
1778 return false;
1779
1780 /*
1781 * The folio straddles i_size.
1782 *
1783 * It must be zeroed out on each and every writepage invocation
1784 * because it may be mmapped:
1785 *
1786 * A file is mapped in multiples of the page size. For a
1787 * file that is not a multiple of the page size, the
1788 * remaining memory is zeroed when mapped, and writes to that
1789 * region are not written out to the file.
1790 *
1791 * Also adjust the end_pos to the end of file and skip writeback
1792 * for all blocks entirely beyond i_size.
1793 */
1794 folio_zero_segment(folio, poff, folio_size(folio));
1795 *end_pos = isize;
1796 }
1797
1798 return true;
1799 }
1800
iomap_writeback_folio(struct iomap_writepage_ctx * wpc,struct folio * folio)1801 int iomap_writeback_folio(struct iomap_writepage_ctx *wpc, struct folio *folio)
1802 {
1803 struct iomap_folio_state *ifs = folio->private;
1804 struct inode *inode = wpc->inode;
1805 u64 pos = folio_pos(folio);
1806 u64 end_pos = pos + folio_size(folio);
1807 u64 end_aligned = 0;
1808 size_t bytes_submitted = 0;
1809 int error = 0;
1810 u32 rlen;
1811
1812 WARN_ON_ONCE(!folio_test_locked(folio));
1813 WARN_ON_ONCE(folio_test_dirty(folio));
1814 WARN_ON_ONCE(folio_test_writeback(folio));
1815
1816 trace_iomap_writeback_folio(inode, pos, folio_size(folio));
1817
1818 if (!iomap_writeback_handle_eof(folio, inode, &end_pos))
1819 return 0;
1820 WARN_ON_ONCE(end_pos <= pos);
1821
1822 if (i_blocks_per_folio(inode, folio) > 1) {
1823 if (!ifs) {
1824 ifs = ifs_alloc(inode, folio, 0);
1825 iomap_set_range_dirty(folio, 0, end_pos - pos);
1826 }
1827
1828 iomap_writeback_init(inode, folio);
1829 }
1830
1831 /*
1832 * Set the writeback bit ASAP, as the I/O completion for the single
1833 * block per folio case happen hit as soon as we're submitting the bio.
1834 */
1835 folio_start_writeback(folio);
1836
1837 /*
1838 * Walk through the folio to find dirty areas to write back.
1839 */
1840 end_aligned = round_up(end_pos, i_blocksize(inode));
1841 while ((rlen = iomap_find_dirty_range(folio, &pos, end_aligned))) {
1842 error = iomap_writeback_range(wpc, folio, pos, rlen, end_pos,
1843 &bytes_submitted);
1844 if (error)
1845 break;
1846 pos += rlen;
1847 }
1848
1849 if (bytes_submitted)
1850 wpc->nr_folios++;
1851
1852 /*
1853 * We can have dirty bits set past end of file in page_mkwrite path
1854 * while mapping the last partial folio. Hence it's better to clear
1855 * all the dirty bits in the folio here.
1856 */
1857 iomap_clear_range_dirty(folio, 0, folio_size(folio));
1858
1859 /*
1860 * Usually the writeback bit is cleared by the I/O completion handler.
1861 * But we may end up either not actually writing any blocks, or (when
1862 * there are multiple blocks in a folio) all I/O might have finished
1863 * already at this point. In that case we need to clear the writeback
1864 * bit ourselves right after unlocking the page.
1865 */
1866 if (ifs) {
1867 /*
1868 * Subtract any bytes that were initially accounted to
1869 * write_bytes_pending but skipped for writeback.
1870 */
1871 size_t bytes_not_submitted = folio_size(folio) -
1872 bytes_submitted;
1873
1874 if (bytes_not_submitted)
1875 iomap_finish_folio_write(inode, folio,
1876 bytes_not_submitted);
1877 } else if (!bytes_submitted) {
1878 folio_end_writeback(folio);
1879 }
1880
1881 mapping_set_error(inode->i_mapping, error);
1882 return error;
1883 }
1884 EXPORT_SYMBOL_GPL(iomap_writeback_folio);
1885
1886 int
iomap_writepages(struct iomap_writepage_ctx * wpc)1887 iomap_writepages(struct iomap_writepage_ctx *wpc)
1888 {
1889 struct address_space *mapping = wpc->inode->i_mapping;
1890 struct folio *folio = NULL;
1891 int error;
1892
1893 /*
1894 * Writeback from reclaim context should never happen except in the case
1895 * of a VM regression so warn about it and refuse to write the data.
1896 */
1897 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) ==
1898 PF_MEMALLOC))
1899 return -EIO;
1900
1901 while ((folio = writeback_iter(mapping, wpc->wbc, folio, &error))) {
1902 error = iomap_writeback_folio(wpc, folio);
1903 folio_unlock(folio);
1904 }
1905
1906 /*
1907 * If @error is non-zero, it means that we have a situation where some
1908 * part of the submission process has failed after we've marked pages
1909 * for writeback.
1910 *
1911 * We cannot cancel the writeback directly in that case, so always call
1912 * ->writeback_submit to run the I/O completion handler to clear the
1913 * writeback bit and let the file system proess the errors.
1914 */
1915 if (wpc->wb_ctx)
1916 return wpc->ops->writeback_submit(wpc, error);
1917 return error;
1918 }
1919 EXPORT_SYMBOL_GPL(iomap_writepages);
1920