1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112
113 #include "core/dev.h"
114
115 #ifdef CONFIG_NET_RX_BUSY_POLL
116 unsigned int sysctl_net_busy_read __read_mostly;
117 unsigned int sysctl_net_busy_poll __read_mostly;
118 #endif
119
120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123
124 static int sock_close(struct inode *inode, struct file *file);
125 static __poll_t sock_poll(struct file *file,
126 struct poll_table_struct *wait);
127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128 #ifdef CONFIG_COMPAT
129 static long compat_sock_ioctl(struct file *file,
130 unsigned int cmd, unsigned long arg);
131 #endif
132 static int sock_fasync(int fd, struct file *filp, int on);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 struct pipe_inode_info *pipe, size_t len,
135 unsigned int flags);
136 static void sock_splice_eof(struct file *file);
137
138 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)139 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140 {
141 struct socket *sock = f->private_data;
142 const struct proto_ops *ops = READ_ONCE(sock->ops);
143
144 if (ops->show_fdinfo)
145 ops->show_fdinfo(m, sock);
146 }
147 #else
148 #define sock_show_fdinfo NULL
149 #endif
150
151 /*
152 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153 * in the operation structures but are done directly via the socketcall() multiplexor.
154 */
155
156 static const struct file_operations socket_file_ops = {
157 .owner = THIS_MODULE,
158 .read_iter = sock_read_iter,
159 .write_iter = sock_write_iter,
160 .poll = sock_poll,
161 .unlocked_ioctl = sock_ioctl,
162 #ifdef CONFIG_COMPAT
163 .compat_ioctl = compat_sock_ioctl,
164 #endif
165 .uring_cmd = io_uring_cmd_sock,
166 .mmap = sock_mmap,
167 .release = sock_close,
168 .fasync = sock_fasync,
169 .splice_write = splice_to_socket,
170 .splice_read = sock_splice_read,
171 .splice_eof = sock_splice_eof,
172 .show_fdinfo = sock_show_fdinfo,
173 };
174
175 static const char * const pf_family_names[] = {
176 [PF_UNSPEC] = "PF_UNSPEC",
177 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
178 [PF_INET] = "PF_INET",
179 [PF_AX25] = "PF_AX25",
180 [PF_IPX] = "PF_IPX",
181 [PF_APPLETALK] = "PF_APPLETALK",
182 [PF_NETROM] = "PF_NETROM",
183 [PF_BRIDGE] = "PF_BRIDGE",
184 [PF_ATMPVC] = "PF_ATMPVC",
185 [PF_X25] = "PF_X25",
186 [PF_INET6] = "PF_INET6",
187 [PF_ROSE] = "PF_ROSE",
188 [PF_DECnet] = "PF_DECnet",
189 [PF_NETBEUI] = "PF_NETBEUI",
190 [PF_SECURITY] = "PF_SECURITY",
191 [PF_KEY] = "PF_KEY",
192 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
193 [PF_PACKET] = "PF_PACKET",
194 [PF_ASH] = "PF_ASH",
195 [PF_ECONET] = "PF_ECONET",
196 [PF_ATMSVC] = "PF_ATMSVC",
197 [PF_RDS] = "PF_RDS",
198 [PF_SNA] = "PF_SNA",
199 [PF_IRDA] = "PF_IRDA",
200 [PF_PPPOX] = "PF_PPPOX",
201 [PF_WANPIPE] = "PF_WANPIPE",
202 [PF_LLC] = "PF_LLC",
203 [PF_IB] = "PF_IB",
204 [PF_MPLS] = "PF_MPLS",
205 [PF_CAN] = "PF_CAN",
206 [PF_TIPC] = "PF_TIPC",
207 [PF_BLUETOOTH] = "PF_BLUETOOTH",
208 [PF_IUCV] = "PF_IUCV",
209 [PF_RXRPC] = "PF_RXRPC",
210 [PF_ISDN] = "PF_ISDN",
211 [PF_PHONET] = "PF_PHONET",
212 [PF_IEEE802154] = "PF_IEEE802154",
213 [PF_CAIF] = "PF_CAIF",
214 [PF_ALG] = "PF_ALG",
215 [PF_NFC] = "PF_NFC",
216 [PF_VSOCK] = "PF_VSOCK",
217 [PF_KCM] = "PF_KCM",
218 [PF_QIPCRTR] = "PF_QIPCRTR",
219 [PF_SMC] = "PF_SMC",
220 [PF_XDP] = "PF_XDP",
221 [PF_MCTP] = "PF_MCTP",
222 };
223
224 /*
225 * The protocol list. Each protocol is registered in here.
226 */
227
228 static DEFINE_SPINLOCK(net_family_lock);
229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230
231 /*
232 * Support routines.
233 * Move socket addresses back and forth across the kernel/user
234 * divide and look after the messy bits.
235 */
236
237 /**
238 * move_addr_to_kernel - copy a socket address into kernel space
239 * @uaddr: Address in user space
240 * @kaddr: Address in kernel space
241 * @ulen: Length in user space
242 *
243 * The address is copied into kernel space. If the provided address is
244 * too long an error code of -EINVAL is returned. If the copy gives
245 * invalid addresses -EFAULT is returned. On a success 0 is returned.
246 */
247
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249 {
250 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 return -EINVAL;
252 if (ulen == 0)
253 return 0;
254 if (copy_from_user(kaddr, uaddr, ulen))
255 return -EFAULT;
256 return audit_sockaddr(ulen, kaddr);
257 }
258
259 /**
260 * move_addr_to_user - copy an address to user space
261 * @kaddr: kernel space address
262 * @klen: length of address in kernel
263 * @uaddr: user space address
264 * @ulen: pointer to user length field
265 *
266 * The value pointed to by ulen on entry is the buffer length available.
267 * This is overwritten with the buffer space used. -EINVAL is returned
268 * if an overlong buffer is specified or a negative buffer size. -EFAULT
269 * is returned if either the buffer or the length field are not
270 * accessible.
271 * After copying the data up to the limit the user specifies, the true
272 * length of the data is written over the length limit the user
273 * specified. Zero is returned for a success.
274 */
275
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277 void __user *uaddr, int __user *ulen)
278 {
279 int err;
280 int len;
281
282 BUG_ON(klen > sizeof(struct sockaddr_storage));
283 err = get_user(len, ulen);
284 if (err)
285 return err;
286 if (len > klen)
287 len = klen;
288 if (len < 0)
289 return -EINVAL;
290 if (len) {
291 if (audit_sockaddr(klen, kaddr))
292 return -ENOMEM;
293 if (copy_to_user(uaddr, kaddr, len))
294 return -EFAULT;
295 }
296 /*
297 * "fromlen shall refer to the value before truncation.."
298 * 1003.1g
299 */
300 return __put_user(klen, ulen);
301 }
302
303 static struct kmem_cache *sock_inode_cachep __ro_after_init;
304
sock_alloc_inode(struct super_block * sb)305 static struct inode *sock_alloc_inode(struct super_block *sb)
306 {
307 struct socket_alloc *ei;
308
309 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
310 if (!ei)
311 return NULL;
312 init_waitqueue_head(&ei->socket.wq.wait);
313 ei->socket.wq.fasync_list = NULL;
314 ei->socket.wq.flags = 0;
315
316 ei->socket.state = SS_UNCONNECTED;
317 ei->socket.flags = 0;
318 ei->socket.ops = NULL;
319 ei->socket.sk = NULL;
320 ei->socket.file = NULL;
321
322 return &ei->vfs_inode;
323 }
324
sock_free_inode(struct inode * inode)325 static void sock_free_inode(struct inode *inode)
326 {
327 struct socket_alloc *ei;
328
329 ei = container_of(inode, struct socket_alloc, vfs_inode);
330 kmem_cache_free(sock_inode_cachep, ei);
331 }
332
init_once(void * foo)333 static void init_once(void *foo)
334 {
335 struct socket_alloc *ei = (struct socket_alloc *)foo;
336
337 inode_init_once(&ei->vfs_inode);
338 }
339
init_inodecache(void)340 static void init_inodecache(void)
341 {
342 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
343 sizeof(struct socket_alloc),
344 0,
345 (SLAB_HWCACHE_ALIGN |
346 SLAB_RECLAIM_ACCOUNT |
347 SLAB_ACCOUNT),
348 init_once);
349 BUG_ON(sock_inode_cachep == NULL);
350 }
351
352 static const struct super_operations sockfs_ops = {
353 .alloc_inode = sock_alloc_inode,
354 .free_inode = sock_free_inode,
355 .statfs = simple_statfs,
356 };
357
358 /*
359 * sockfs_dname() is called from d_path().
360 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)361 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
362 {
363 return dynamic_dname(buffer, buflen, "socket:[%lu]",
364 d_inode(dentry)->i_ino);
365 }
366
367 static const struct dentry_operations sockfs_dentry_operations = {
368 .d_dname = sockfs_dname,
369 };
370
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)371 static int sockfs_xattr_get(const struct xattr_handler *handler,
372 struct dentry *dentry, struct inode *inode,
373 const char *suffix, void *value, size_t size)
374 {
375 if (value) {
376 if (dentry->d_name.len + 1 > size)
377 return -ERANGE;
378 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
379 }
380 return dentry->d_name.len + 1;
381 }
382
383 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
384 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
385 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
386
387 static const struct xattr_handler sockfs_xattr_handler = {
388 .name = XATTR_NAME_SOCKPROTONAME,
389 .get = sockfs_xattr_get,
390 };
391
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)392 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
393 struct mnt_idmap *idmap,
394 struct dentry *dentry, struct inode *inode,
395 const char *suffix, const void *value,
396 size_t size, int flags)
397 {
398 /* Handled by LSM. */
399 return -EAGAIN;
400 }
401
402 static const struct xattr_handler sockfs_security_xattr_handler = {
403 .prefix = XATTR_SECURITY_PREFIX,
404 .set = sockfs_security_xattr_set,
405 };
406
407 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
408 &sockfs_xattr_handler,
409 &sockfs_security_xattr_handler,
410 NULL
411 };
412
sockfs_init_fs_context(struct fs_context * fc)413 static int sockfs_init_fs_context(struct fs_context *fc)
414 {
415 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
416 if (!ctx)
417 return -ENOMEM;
418 ctx->ops = &sockfs_ops;
419 ctx->dops = &sockfs_dentry_operations;
420 ctx->xattr = sockfs_xattr_handlers;
421 return 0;
422 }
423
424 static struct vfsmount *sock_mnt __read_mostly;
425
426 static struct file_system_type sock_fs_type = {
427 .name = "sockfs",
428 .init_fs_context = sockfs_init_fs_context,
429 .kill_sb = kill_anon_super,
430 };
431
432 /*
433 * Obtains the first available file descriptor and sets it up for use.
434 *
435 * These functions create file structures and maps them to fd space
436 * of the current process. On success it returns file descriptor
437 * and file struct implicitly stored in sock->file.
438 * Note that another thread may close file descriptor before we return
439 * from this function. We use the fact that now we do not refer
440 * to socket after mapping. If one day we will need it, this
441 * function will increment ref. count on file by 1.
442 *
443 * In any case returned fd MAY BE not valid!
444 * This race condition is unavoidable
445 * with shared fd spaces, we cannot solve it inside kernel,
446 * but we take care of internal coherence yet.
447 */
448
449 /**
450 * sock_alloc_file - Bind a &socket to a &file
451 * @sock: socket
452 * @flags: file status flags
453 * @dname: protocol name
454 *
455 * Returns the &file bound with @sock, implicitly storing it
456 * in sock->file. If dname is %NULL, sets to "".
457 *
458 * On failure @sock is released, and an ERR pointer is returned.
459 *
460 * This function uses GFP_KERNEL internally.
461 */
462
sock_alloc_file(struct socket * sock,int flags,const char * dname)463 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
464 {
465 struct file *file;
466
467 if (!dname)
468 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
469
470 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
471 O_RDWR | (flags & O_NONBLOCK),
472 &socket_file_ops);
473 if (IS_ERR(file)) {
474 sock_release(sock);
475 return file;
476 }
477
478 file->f_mode |= FMODE_NOWAIT;
479 sock->file = file;
480 file->private_data = sock;
481 stream_open(SOCK_INODE(sock), file);
482 /*
483 * Disable permission and pre-content events, but enable legacy
484 * inotify events for legacy users.
485 */
486 file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
487 return file;
488 }
489 EXPORT_SYMBOL(sock_alloc_file);
490
sock_map_fd(struct socket * sock,int flags)491 static int sock_map_fd(struct socket *sock, int flags)
492 {
493 struct file *newfile;
494 int fd = get_unused_fd_flags(flags);
495 if (unlikely(fd < 0)) {
496 sock_release(sock);
497 return fd;
498 }
499
500 newfile = sock_alloc_file(sock, flags, NULL);
501 if (!IS_ERR(newfile)) {
502 fd_install(fd, newfile);
503 return fd;
504 }
505
506 put_unused_fd(fd);
507 return PTR_ERR(newfile);
508 }
509
510 /**
511 * sock_from_file - Return the &socket bounded to @file.
512 * @file: file
513 *
514 * On failure returns %NULL.
515 */
516
sock_from_file(struct file * file)517 struct socket *sock_from_file(struct file *file)
518 {
519 if (likely(file->f_op == &socket_file_ops))
520 return file->private_data; /* set in sock_alloc_file */
521
522 return NULL;
523 }
524 EXPORT_SYMBOL(sock_from_file);
525
526 /**
527 * sockfd_lookup - Go from a file number to its socket slot
528 * @fd: file handle
529 * @err: pointer to an error code return
530 *
531 * The file handle passed in is locked and the socket it is bound
532 * to is returned. If an error occurs the err pointer is overwritten
533 * with a negative errno code and NULL is returned. The function checks
534 * for both invalid handles and passing a handle which is not a socket.
535 *
536 * On a success the socket object pointer is returned.
537 */
538
sockfd_lookup(int fd,int * err)539 struct socket *sockfd_lookup(int fd, int *err)
540 {
541 struct file *file;
542 struct socket *sock;
543
544 file = fget(fd);
545 if (!file) {
546 *err = -EBADF;
547 return NULL;
548 }
549
550 sock = sock_from_file(file);
551 if (!sock) {
552 *err = -ENOTSOCK;
553 fput(file);
554 }
555 return sock;
556 }
557 EXPORT_SYMBOL(sockfd_lookup);
558
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)559 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
560 size_t size)
561 {
562 ssize_t len;
563 ssize_t used = 0;
564
565 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
566 if (len < 0)
567 return len;
568 used += len;
569 if (buffer) {
570 if (size < used)
571 return -ERANGE;
572 buffer += len;
573 }
574
575 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
576 used += len;
577 if (buffer) {
578 if (size < used)
579 return -ERANGE;
580 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
581 buffer += len;
582 }
583
584 return used;
585 }
586
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)587 static int sockfs_setattr(struct mnt_idmap *idmap,
588 struct dentry *dentry, struct iattr *iattr)
589 {
590 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
591
592 if (!err && (iattr->ia_valid & ATTR_UID)) {
593 struct socket *sock = SOCKET_I(d_inode(dentry));
594
595 if (sock->sk)
596 sock->sk->sk_uid = iattr->ia_uid;
597 else
598 err = -ENOENT;
599 }
600
601 return err;
602 }
603
604 static const struct inode_operations sockfs_inode_ops = {
605 .listxattr = sockfs_listxattr,
606 .setattr = sockfs_setattr,
607 };
608
609 /**
610 * sock_alloc - allocate a socket
611 *
612 * Allocate a new inode and socket object. The two are bound together
613 * and initialised. The socket is then returned. If we are out of inodes
614 * NULL is returned. This functions uses GFP_KERNEL internally.
615 */
616
sock_alloc(void)617 struct socket *sock_alloc(void)
618 {
619 struct inode *inode;
620 struct socket *sock;
621
622 inode = new_inode_pseudo(sock_mnt->mnt_sb);
623 if (!inode)
624 return NULL;
625
626 sock = SOCKET_I(inode);
627
628 inode->i_ino = get_next_ino();
629 inode->i_mode = S_IFSOCK | S_IRWXUGO;
630 inode->i_uid = current_fsuid();
631 inode->i_gid = current_fsgid();
632 inode->i_op = &sockfs_inode_ops;
633
634 return sock;
635 }
636 EXPORT_SYMBOL(sock_alloc);
637
__sock_release(struct socket * sock,struct inode * inode)638 static void __sock_release(struct socket *sock, struct inode *inode)
639 {
640 const struct proto_ops *ops = READ_ONCE(sock->ops);
641
642 if (ops) {
643 struct module *owner = ops->owner;
644
645 if (inode)
646 inode_lock(inode);
647 ops->release(sock);
648 sock->sk = NULL;
649 if (inode)
650 inode_unlock(inode);
651 sock->ops = NULL;
652 module_put(owner);
653 }
654
655 if (sock->wq.fasync_list)
656 pr_err("%s: fasync list not empty!\n", __func__);
657
658 if (!sock->file) {
659 iput(SOCK_INODE(sock));
660 return;
661 }
662 sock->file = NULL;
663 }
664
665 /**
666 * sock_release - close a socket
667 * @sock: socket to close
668 *
669 * The socket is released from the protocol stack if it has a release
670 * callback, and the inode is then released if the socket is bound to
671 * an inode not a file.
672 */
sock_release(struct socket * sock)673 void sock_release(struct socket *sock)
674 {
675 __sock_release(sock, NULL);
676 }
677 EXPORT_SYMBOL(sock_release);
678
__sock_tx_timestamp(__u32 tsflags,__u8 * tx_flags)679 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
680 {
681 u8 flags = *tx_flags;
682
683 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
684 flags |= SKBTX_HW_TSTAMP;
685
686 /* PTP hardware clocks can provide a free running cycle counter
687 * as a time base for virtual clocks. Tell driver to use the
688 * free running cycle counter for timestamp if socket is bound
689 * to virtual clock.
690 */
691 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
692 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
693 }
694
695 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
696 flags |= SKBTX_SW_TSTAMP;
697
698 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
699 flags |= SKBTX_SCHED_TSTAMP;
700
701 *tx_flags = flags;
702 }
703 EXPORT_SYMBOL(__sock_tx_timestamp);
704
705 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
706 size_t));
707 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
708 size_t));
709
call_trace_sock_send_length(struct sock * sk,int ret,int flags)710 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
711 int flags)
712 {
713 trace_sock_send_length(sk, ret, 0);
714 }
715
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)716 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
717 {
718 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
719 inet_sendmsg, sock, msg,
720 msg_data_left(msg));
721 BUG_ON(ret == -EIOCBQUEUED);
722
723 if (trace_sock_send_length_enabled())
724 call_trace_sock_send_length(sock->sk, ret, 0);
725 return ret;
726 }
727
__sock_sendmsg(struct socket * sock,struct msghdr * msg)728 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
729 {
730 int err = security_socket_sendmsg(sock, msg,
731 msg_data_left(msg));
732
733 return err ?: sock_sendmsg_nosec(sock, msg);
734 }
735
736 /**
737 * sock_sendmsg - send a message through @sock
738 * @sock: socket
739 * @msg: message to send
740 *
741 * Sends @msg through @sock, passing through LSM.
742 * Returns the number of bytes sent, or an error code.
743 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)744 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
745 {
746 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
747 struct sockaddr_storage address;
748 int save_len = msg->msg_namelen;
749 int ret;
750
751 if (msg->msg_name) {
752 memcpy(&address, msg->msg_name, msg->msg_namelen);
753 msg->msg_name = &address;
754 }
755
756 ret = __sock_sendmsg(sock, msg);
757 msg->msg_name = save_addr;
758 msg->msg_namelen = save_len;
759
760 return ret;
761 }
762 EXPORT_SYMBOL(sock_sendmsg);
763
764 /**
765 * kernel_sendmsg - send a message through @sock (kernel-space)
766 * @sock: socket
767 * @msg: message header
768 * @vec: kernel vec
769 * @num: vec array length
770 * @size: total message data size
771 *
772 * Builds the message data with @vec and sends it through @sock.
773 * Returns the number of bytes sent, or an error code.
774 */
775
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)776 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
777 struct kvec *vec, size_t num, size_t size)
778 {
779 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
780 return sock_sendmsg(sock, msg);
781 }
782 EXPORT_SYMBOL(kernel_sendmsg);
783
skb_is_err_queue(const struct sk_buff * skb)784 static bool skb_is_err_queue(const struct sk_buff *skb)
785 {
786 /* pkt_type of skbs enqueued on the error queue are set to
787 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
788 * in recvmsg, since skbs received on a local socket will never
789 * have a pkt_type of PACKET_OUTGOING.
790 */
791 return skb->pkt_type == PACKET_OUTGOING;
792 }
793
794 /* On transmit, software and hardware timestamps are returned independently.
795 * As the two skb clones share the hardware timestamp, which may be updated
796 * before the software timestamp is received, a hardware TX timestamp may be
797 * returned only if there is no software TX timestamp. Ignore false software
798 * timestamps, which may be made in the __sock_recv_timestamp() call when the
799 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
800 * hardware timestamp.
801 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)802 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
803 {
804 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
805 }
806
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)807 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
808 {
809 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
810 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
811 struct net_device *orig_dev;
812 ktime_t hwtstamp;
813
814 rcu_read_lock();
815 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
816 if (orig_dev) {
817 *if_index = orig_dev->ifindex;
818 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
819 } else {
820 hwtstamp = shhwtstamps->hwtstamp;
821 }
822 rcu_read_unlock();
823
824 return hwtstamp;
825 }
826
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)827 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
828 int if_index)
829 {
830 struct scm_ts_pktinfo ts_pktinfo;
831 struct net_device *orig_dev;
832
833 if (!skb_mac_header_was_set(skb))
834 return;
835
836 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
837
838 if (!if_index) {
839 rcu_read_lock();
840 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
841 if (orig_dev)
842 if_index = orig_dev->ifindex;
843 rcu_read_unlock();
844 }
845 ts_pktinfo.if_index = if_index;
846
847 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
848 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
849 sizeof(ts_pktinfo), &ts_pktinfo);
850 }
851
852 /*
853 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
854 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)855 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
856 struct sk_buff *skb)
857 {
858 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
859 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
860 struct scm_timestamping_internal tss;
861 int empty = 1, false_tstamp = 0;
862 struct skb_shared_hwtstamps *shhwtstamps =
863 skb_hwtstamps(skb);
864 int if_index;
865 ktime_t hwtstamp;
866 u32 tsflags;
867
868 /* Race occurred between timestamp enabling and packet
869 receiving. Fill in the current time for now. */
870 if (need_software_tstamp && skb->tstamp == 0) {
871 __net_timestamp(skb);
872 false_tstamp = 1;
873 }
874
875 if (need_software_tstamp) {
876 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
877 if (new_tstamp) {
878 struct __kernel_sock_timeval tv;
879
880 skb_get_new_timestamp(skb, &tv);
881 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
882 sizeof(tv), &tv);
883 } else {
884 struct __kernel_old_timeval tv;
885
886 skb_get_timestamp(skb, &tv);
887 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
888 sizeof(tv), &tv);
889 }
890 } else {
891 if (new_tstamp) {
892 struct __kernel_timespec ts;
893
894 skb_get_new_timestampns(skb, &ts);
895 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
896 sizeof(ts), &ts);
897 } else {
898 struct __kernel_old_timespec ts;
899
900 skb_get_timestampns(skb, &ts);
901 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
902 sizeof(ts), &ts);
903 }
904 }
905 }
906
907 memset(&tss, 0, sizeof(tss));
908 tsflags = READ_ONCE(sk->sk_tsflags);
909 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
910 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
911 skb_is_err_queue(skb) ||
912 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
913 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
914 empty = 0;
915 if (shhwtstamps &&
916 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
917 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
918 skb_is_err_queue(skb) ||
919 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
920 !skb_is_swtx_tstamp(skb, false_tstamp)) {
921 if_index = 0;
922 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
923 hwtstamp = get_timestamp(sk, skb, &if_index);
924 else
925 hwtstamp = shhwtstamps->hwtstamp;
926
927 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
928 hwtstamp = ptp_convert_timestamp(&hwtstamp,
929 READ_ONCE(sk->sk_bind_phc));
930
931 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
932 empty = 0;
933
934 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
935 !skb_is_err_queue(skb))
936 put_ts_pktinfo(msg, skb, if_index);
937 }
938 }
939 if (!empty) {
940 if (sock_flag(sk, SOCK_TSTAMP_NEW))
941 put_cmsg_scm_timestamping64(msg, &tss);
942 else
943 put_cmsg_scm_timestamping(msg, &tss);
944
945 if (skb_is_err_queue(skb) && skb->len &&
946 SKB_EXT_ERR(skb)->opt_stats)
947 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
948 skb->len, skb->data);
949 }
950 }
951 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
952
953 #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)954 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
955 struct sk_buff *skb)
956 {
957 int ack;
958
959 if (!sock_flag(sk, SOCK_WIFI_STATUS))
960 return;
961 if (!skb->wifi_acked_valid)
962 return;
963
964 ack = skb->wifi_acked;
965
966 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
967 }
968 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
969 #endif
970
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)971 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
972 struct sk_buff *skb)
973 {
974 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
975 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
976 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
977 }
978
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)979 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
980 struct sk_buff *skb)
981 {
982 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
983 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
984 __u32 mark = skb->mark;
985
986 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
987 }
988 }
989
sock_recv_priority(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)990 static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
991 struct sk_buff *skb)
992 {
993 if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
994 __u32 priority = skb->priority;
995
996 put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
997 }
998 }
999
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1000 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1001 struct sk_buff *skb)
1002 {
1003 sock_recv_timestamp(msg, sk, skb);
1004 sock_recv_drops(msg, sk, skb);
1005 sock_recv_mark(msg, sk, skb);
1006 sock_recv_priority(msg, sk, skb);
1007 }
1008 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1009
1010 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1011 size_t, int));
1012 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1013 size_t, int));
1014
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1015 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1016 {
1017 trace_sock_recv_length(sk, ret, flags);
1018 }
1019
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1020 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1021 int flags)
1022 {
1023 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1024 inet6_recvmsg,
1025 inet_recvmsg, sock, msg,
1026 msg_data_left(msg), flags);
1027 if (trace_sock_recv_length_enabled())
1028 call_trace_sock_recv_length(sock->sk, ret, flags);
1029 return ret;
1030 }
1031
1032 /**
1033 * sock_recvmsg - receive a message from @sock
1034 * @sock: socket
1035 * @msg: message to receive
1036 * @flags: message flags
1037 *
1038 * Receives @msg from @sock, passing through LSM. Returns the total number
1039 * of bytes received, or an error.
1040 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1041 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1042 {
1043 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1044
1045 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1046 }
1047 EXPORT_SYMBOL(sock_recvmsg);
1048
1049 /**
1050 * kernel_recvmsg - Receive a message from a socket (kernel space)
1051 * @sock: The socket to receive the message from
1052 * @msg: Received message
1053 * @vec: Input s/g array for message data
1054 * @num: Size of input s/g array
1055 * @size: Number of bytes to read
1056 * @flags: Message flags (MSG_DONTWAIT, etc...)
1057 *
1058 * On return the msg structure contains the scatter/gather array passed in the
1059 * vec argument. The array is modified so that it consists of the unfilled
1060 * portion of the original array.
1061 *
1062 * The returned value is the total number of bytes received, or an error.
1063 */
1064
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1065 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1066 struct kvec *vec, size_t num, size_t size, int flags)
1067 {
1068 msg->msg_control_is_user = false;
1069 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1070 return sock_recvmsg(sock, msg, flags);
1071 }
1072 EXPORT_SYMBOL(kernel_recvmsg);
1073
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1074 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1075 struct pipe_inode_info *pipe, size_t len,
1076 unsigned int flags)
1077 {
1078 struct socket *sock = file->private_data;
1079 const struct proto_ops *ops;
1080
1081 ops = READ_ONCE(sock->ops);
1082 if (unlikely(!ops->splice_read))
1083 return copy_splice_read(file, ppos, pipe, len, flags);
1084
1085 return ops->splice_read(sock, ppos, pipe, len, flags);
1086 }
1087
sock_splice_eof(struct file * file)1088 static void sock_splice_eof(struct file *file)
1089 {
1090 struct socket *sock = file->private_data;
1091 const struct proto_ops *ops;
1092
1093 ops = READ_ONCE(sock->ops);
1094 if (ops->splice_eof)
1095 ops->splice_eof(sock);
1096 }
1097
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1098 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1099 {
1100 struct file *file = iocb->ki_filp;
1101 struct socket *sock = file->private_data;
1102 struct msghdr msg = {.msg_iter = *to,
1103 .msg_iocb = iocb};
1104 ssize_t res;
1105
1106 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1107 msg.msg_flags = MSG_DONTWAIT;
1108
1109 if (iocb->ki_pos != 0)
1110 return -ESPIPE;
1111
1112 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1113 return 0;
1114
1115 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1116 *to = msg.msg_iter;
1117 return res;
1118 }
1119
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1120 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1121 {
1122 struct file *file = iocb->ki_filp;
1123 struct socket *sock = file->private_data;
1124 struct msghdr msg = {.msg_iter = *from,
1125 .msg_iocb = iocb};
1126 ssize_t res;
1127
1128 if (iocb->ki_pos != 0)
1129 return -ESPIPE;
1130
1131 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1132 msg.msg_flags = MSG_DONTWAIT;
1133
1134 if (sock->type == SOCK_SEQPACKET)
1135 msg.msg_flags |= MSG_EOR;
1136
1137 res = __sock_sendmsg(sock, &msg);
1138 *from = msg.msg_iter;
1139 return res;
1140 }
1141
1142 /*
1143 * Atomic setting of ioctl hooks to avoid race
1144 * with module unload.
1145 */
1146
1147 static DEFINE_MUTEX(br_ioctl_mutex);
1148 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1149 unsigned int cmd, struct ifreq *ifr,
1150 void __user *uarg);
1151
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1152 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1153 unsigned int cmd, struct ifreq *ifr,
1154 void __user *uarg))
1155 {
1156 mutex_lock(&br_ioctl_mutex);
1157 br_ioctl_hook = hook;
1158 mutex_unlock(&br_ioctl_mutex);
1159 }
1160 EXPORT_SYMBOL(brioctl_set);
1161
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1162 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1163 struct ifreq *ifr, void __user *uarg)
1164 {
1165 int err = -ENOPKG;
1166
1167 if (!br_ioctl_hook)
1168 request_module("bridge");
1169
1170 mutex_lock(&br_ioctl_mutex);
1171 if (br_ioctl_hook)
1172 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1173 mutex_unlock(&br_ioctl_mutex);
1174
1175 return err;
1176 }
1177
1178 static DEFINE_MUTEX(vlan_ioctl_mutex);
1179 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1180
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1181 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1182 {
1183 mutex_lock(&vlan_ioctl_mutex);
1184 vlan_ioctl_hook = hook;
1185 mutex_unlock(&vlan_ioctl_mutex);
1186 }
1187 EXPORT_SYMBOL(vlan_ioctl_set);
1188
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1189 static long sock_do_ioctl(struct net *net, struct socket *sock,
1190 unsigned int cmd, unsigned long arg)
1191 {
1192 const struct proto_ops *ops = READ_ONCE(sock->ops);
1193 struct ifreq ifr;
1194 bool need_copyout;
1195 int err;
1196 void __user *argp = (void __user *)arg;
1197 void __user *data;
1198
1199 err = ops->ioctl(sock, cmd, arg);
1200
1201 /*
1202 * If this ioctl is unknown try to hand it down
1203 * to the NIC driver.
1204 */
1205 if (err != -ENOIOCTLCMD)
1206 return err;
1207
1208 if (!is_socket_ioctl_cmd(cmd))
1209 return -ENOTTY;
1210
1211 if (get_user_ifreq(&ifr, &data, argp))
1212 return -EFAULT;
1213 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1214 if (!err && need_copyout)
1215 if (put_user_ifreq(&ifr, argp))
1216 return -EFAULT;
1217
1218 return err;
1219 }
1220
1221 /*
1222 * With an ioctl, arg may well be a user mode pointer, but we don't know
1223 * what to do with it - that's up to the protocol still.
1224 */
1225
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1226 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1227 {
1228 const struct proto_ops *ops;
1229 struct socket *sock;
1230 struct sock *sk;
1231 void __user *argp = (void __user *)arg;
1232 int pid, err;
1233 struct net *net;
1234
1235 sock = file->private_data;
1236 ops = READ_ONCE(sock->ops);
1237 sk = sock->sk;
1238 net = sock_net(sk);
1239 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1240 struct ifreq ifr;
1241 void __user *data;
1242 bool need_copyout;
1243 if (get_user_ifreq(&ifr, &data, argp))
1244 return -EFAULT;
1245 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1246 if (!err && need_copyout)
1247 if (put_user_ifreq(&ifr, argp))
1248 return -EFAULT;
1249 } else
1250 #ifdef CONFIG_WEXT_CORE
1251 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1252 err = wext_handle_ioctl(net, cmd, argp);
1253 } else
1254 #endif
1255 switch (cmd) {
1256 case FIOSETOWN:
1257 case SIOCSPGRP:
1258 err = -EFAULT;
1259 if (get_user(pid, (int __user *)argp))
1260 break;
1261 err = f_setown(sock->file, pid, 1);
1262 break;
1263 case FIOGETOWN:
1264 case SIOCGPGRP:
1265 err = put_user(f_getown(sock->file),
1266 (int __user *)argp);
1267 break;
1268 case SIOCGIFBR:
1269 case SIOCSIFBR:
1270 case SIOCBRADDBR:
1271 case SIOCBRDELBR:
1272 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1273 break;
1274 case SIOCGIFVLAN:
1275 case SIOCSIFVLAN:
1276 err = -ENOPKG;
1277 if (!vlan_ioctl_hook)
1278 request_module("8021q");
1279
1280 mutex_lock(&vlan_ioctl_mutex);
1281 if (vlan_ioctl_hook)
1282 err = vlan_ioctl_hook(net, argp);
1283 mutex_unlock(&vlan_ioctl_mutex);
1284 break;
1285 case SIOCGSKNS:
1286 err = -EPERM;
1287 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1288 break;
1289
1290 err = open_related_ns(&net->ns, get_net_ns);
1291 break;
1292 case SIOCGSTAMP_OLD:
1293 case SIOCGSTAMPNS_OLD:
1294 if (!ops->gettstamp) {
1295 err = -ENOIOCTLCMD;
1296 break;
1297 }
1298 err = ops->gettstamp(sock, argp,
1299 cmd == SIOCGSTAMP_OLD,
1300 !IS_ENABLED(CONFIG_64BIT));
1301 break;
1302 case SIOCGSTAMP_NEW:
1303 case SIOCGSTAMPNS_NEW:
1304 if (!ops->gettstamp) {
1305 err = -ENOIOCTLCMD;
1306 break;
1307 }
1308 err = ops->gettstamp(sock, argp,
1309 cmd == SIOCGSTAMP_NEW,
1310 false);
1311 break;
1312
1313 case SIOCGIFCONF:
1314 err = dev_ifconf(net, argp);
1315 break;
1316
1317 default:
1318 err = sock_do_ioctl(net, sock, cmd, arg);
1319 break;
1320 }
1321 return err;
1322 }
1323
1324 /**
1325 * sock_create_lite - creates a socket
1326 * @family: protocol family (AF_INET, ...)
1327 * @type: communication type (SOCK_STREAM, ...)
1328 * @protocol: protocol (0, ...)
1329 * @res: new socket
1330 *
1331 * Creates a new socket and assigns it to @res, passing through LSM.
1332 * The new socket initialization is not complete, see kernel_accept().
1333 * Returns 0 or an error. On failure @res is set to %NULL.
1334 * This function internally uses GFP_KERNEL.
1335 */
1336
sock_create_lite(int family,int type,int protocol,struct socket ** res)1337 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1338 {
1339 int err;
1340 struct socket *sock = NULL;
1341
1342 err = security_socket_create(family, type, protocol, 1);
1343 if (err)
1344 goto out;
1345
1346 sock = sock_alloc();
1347 if (!sock) {
1348 err = -ENOMEM;
1349 goto out;
1350 }
1351
1352 sock->type = type;
1353 err = security_socket_post_create(sock, family, type, protocol, 1);
1354 if (err)
1355 goto out_release;
1356
1357 out:
1358 *res = sock;
1359 return err;
1360 out_release:
1361 sock_release(sock);
1362 sock = NULL;
1363 goto out;
1364 }
1365 EXPORT_SYMBOL(sock_create_lite);
1366
1367 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1368 static __poll_t sock_poll(struct file *file, poll_table *wait)
1369 {
1370 struct socket *sock = file->private_data;
1371 const struct proto_ops *ops = READ_ONCE(sock->ops);
1372 __poll_t events = poll_requested_events(wait), flag = 0;
1373
1374 if (!ops->poll)
1375 return 0;
1376
1377 if (sk_can_busy_loop(sock->sk)) {
1378 /* poll once if requested by the syscall */
1379 if (events & POLL_BUSY_LOOP)
1380 sk_busy_loop(sock->sk, 1);
1381
1382 /* if this socket can poll_ll, tell the system call */
1383 flag = POLL_BUSY_LOOP;
1384 }
1385
1386 return ops->poll(file, sock, wait) | flag;
1387 }
1388
sock_mmap(struct file * file,struct vm_area_struct * vma)1389 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1390 {
1391 struct socket *sock = file->private_data;
1392
1393 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1394 }
1395
sock_close(struct inode * inode,struct file * filp)1396 static int sock_close(struct inode *inode, struct file *filp)
1397 {
1398 __sock_release(SOCKET_I(inode), inode);
1399 return 0;
1400 }
1401
1402 /*
1403 * Update the socket async list
1404 *
1405 * Fasync_list locking strategy.
1406 *
1407 * 1. fasync_list is modified only under process context socket lock
1408 * i.e. under semaphore.
1409 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1410 * or under socket lock
1411 */
1412
sock_fasync(int fd,struct file * filp,int on)1413 static int sock_fasync(int fd, struct file *filp, int on)
1414 {
1415 struct socket *sock = filp->private_data;
1416 struct sock *sk = sock->sk;
1417 struct socket_wq *wq = &sock->wq;
1418
1419 if (sk == NULL)
1420 return -EINVAL;
1421
1422 lock_sock(sk);
1423 fasync_helper(fd, filp, on, &wq->fasync_list);
1424
1425 if (!wq->fasync_list)
1426 sock_reset_flag(sk, SOCK_FASYNC);
1427 else
1428 sock_set_flag(sk, SOCK_FASYNC);
1429
1430 release_sock(sk);
1431 return 0;
1432 }
1433
1434 /* This function may be called only under rcu_lock */
1435
sock_wake_async(struct socket_wq * wq,int how,int band)1436 int sock_wake_async(struct socket_wq *wq, int how, int band)
1437 {
1438 if (!wq || !wq->fasync_list)
1439 return -1;
1440
1441 switch (how) {
1442 case SOCK_WAKE_WAITD:
1443 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1444 break;
1445 goto call_kill;
1446 case SOCK_WAKE_SPACE:
1447 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1448 break;
1449 fallthrough;
1450 case SOCK_WAKE_IO:
1451 call_kill:
1452 kill_fasync(&wq->fasync_list, SIGIO, band);
1453 break;
1454 case SOCK_WAKE_URG:
1455 kill_fasync(&wq->fasync_list, SIGURG, band);
1456 }
1457
1458 return 0;
1459 }
1460 EXPORT_SYMBOL(sock_wake_async);
1461
1462 /**
1463 * __sock_create - creates a socket
1464 * @net: net namespace
1465 * @family: protocol family (AF_INET, ...)
1466 * @type: communication type (SOCK_STREAM, ...)
1467 * @protocol: protocol (0, ...)
1468 * @res: new socket
1469 * @kern: boolean for kernel space sockets
1470 *
1471 * Creates a new socket and assigns it to @res, passing through LSM.
1472 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1473 * be set to true if the socket resides in kernel space.
1474 * This function internally uses GFP_KERNEL.
1475 */
1476
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1477 int __sock_create(struct net *net, int family, int type, int protocol,
1478 struct socket **res, int kern)
1479 {
1480 int err;
1481 struct socket *sock;
1482 const struct net_proto_family *pf;
1483
1484 /*
1485 * Check protocol is in range
1486 */
1487 if (family < 0 || family >= NPROTO)
1488 return -EAFNOSUPPORT;
1489 if (type < 0 || type >= SOCK_MAX)
1490 return -EINVAL;
1491
1492 /* Compatibility.
1493
1494 This uglymoron is moved from INET layer to here to avoid
1495 deadlock in module load.
1496 */
1497 if (family == PF_INET && type == SOCK_PACKET) {
1498 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1499 current->comm);
1500 family = PF_PACKET;
1501 }
1502
1503 err = security_socket_create(family, type, protocol, kern);
1504 if (err)
1505 return err;
1506
1507 /*
1508 * Allocate the socket and allow the family to set things up. if
1509 * the protocol is 0, the family is instructed to select an appropriate
1510 * default.
1511 */
1512 sock = sock_alloc();
1513 if (!sock) {
1514 net_warn_ratelimited("socket: no more sockets\n");
1515 return -ENFILE; /* Not exactly a match, but its the
1516 closest posix thing */
1517 }
1518
1519 sock->type = type;
1520
1521 #ifdef CONFIG_MODULES
1522 /* Attempt to load a protocol module if the find failed.
1523 *
1524 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1525 * requested real, full-featured networking support upon configuration.
1526 * Otherwise module support will break!
1527 */
1528 if (rcu_access_pointer(net_families[family]) == NULL)
1529 request_module("net-pf-%d", family);
1530 #endif
1531
1532 rcu_read_lock();
1533 pf = rcu_dereference(net_families[family]);
1534 err = -EAFNOSUPPORT;
1535 if (!pf)
1536 goto out_release;
1537
1538 /*
1539 * We will call the ->create function, that possibly is in a loadable
1540 * module, so we have to bump that loadable module refcnt first.
1541 */
1542 if (!try_module_get(pf->owner))
1543 goto out_release;
1544
1545 /* Now protected by module ref count */
1546 rcu_read_unlock();
1547
1548 err = pf->create(net, sock, protocol, kern);
1549 if (err < 0) {
1550 /* ->create should release the allocated sock->sk object on error
1551 * and make sure sock->sk is set to NULL to avoid use-after-free
1552 */
1553 DEBUG_NET_WARN_ONCE(sock->sk,
1554 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1555 pf->create, family, type, protocol);
1556 goto out_module_put;
1557 }
1558
1559 /*
1560 * Now to bump the refcnt of the [loadable] module that owns this
1561 * socket at sock_release time we decrement its refcnt.
1562 */
1563 if (!try_module_get(sock->ops->owner))
1564 goto out_module_busy;
1565
1566 /*
1567 * Now that we're done with the ->create function, the [loadable]
1568 * module can have its refcnt decremented
1569 */
1570 module_put(pf->owner);
1571 err = security_socket_post_create(sock, family, type, protocol, kern);
1572 if (err)
1573 goto out_sock_release;
1574 *res = sock;
1575
1576 return 0;
1577
1578 out_module_busy:
1579 err = -EAFNOSUPPORT;
1580 out_module_put:
1581 sock->ops = NULL;
1582 module_put(pf->owner);
1583 out_sock_release:
1584 sock_release(sock);
1585 return err;
1586
1587 out_release:
1588 rcu_read_unlock();
1589 goto out_sock_release;
1590 }
1591 EXPORT_SYMBOL(__sock_create);
1592
1593 /**
1594 * sock_create - creates a socket
1595 * @family: protocol family (AF_INET, ...)
1596 * @type: communication type (SOCK_STREAM, ...)
1597 * @protocol: protocol (0, ...)
1598 * @res: new socket
1599 *
1600 * A wrapper around __sock_create().
1601 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1602 */
1603
sock_create(int family,int type,int protocol,struct socket ** res)1604 int sock_create(int family, int type, int protocol, struct socket **res)
1605 {
1606 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1607 }
1608 EXPORT_SYMBOL(sock_create);
1609
1610 /**
1611 * sock_create_kern - creates a socket (kernel space)
1612 * @net: net namespace
1613 * @family: protocol family (AF_INET, ...)
1614 * @type: communication type (SOCK_STREAM, ...)
1615 * @protocol: protocol (0, ...)
1616 * @res: new socket
1617 *
1618 * A wrapper around __sock_create().
1619 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1620 */
1621
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1622 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1623 {
1624 return __sock_create(net, family, type, protocol, res, 1);
1625 }
1626 EXPORT_SYMBOL(sock_create_kern);
1627
__sys_socket_create(int family,int type,int protocol)1628 static struct socket *__sys_socket_create(int family, int type, int protocol)
1629 {
1630 struct socket *sock;
1631 int retval;
1632
1633 /* Check the SOCK_* constants for consistency. */
1634 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1635 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1636 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1637 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1638
1639 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1640 return ERR_PTR(-EINVAL);
1641 type &= SOCK_TYPE_MASK;
1642
1643 retval = sock_create(family, type, protocol, &sock);
1644 if (retval < 0)
1645 return ERR_PTR(retval);
1646
1647 return sock;
1648 }
1649
__sys_socket_file(int family,int type,int protocol)1650 struct file *__sys_socket_file(int family, int type, int protocol)
1651 {
1652 struct socket *sock;
1653 int flags;
1654
1655 sock = __sys_socket_create(family, type, protocol);
1656 if (IS_ERR(sock))
1657 return ERR_CAST(sock);
1658
1659 flags = type & ~SOCK_TYPE_MASK;
1660 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1661 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1662
1663 return sock_alloc_file(sock, flags, NULL);
1664 }
1665
1666 /* A hook for bpf progs to attach to and update socket protocol.
1667 *
1668 * A static noinline declaration here could cause the compiler to
1669 * optimize away the function. A global noinline declaration will
1670 * keep the definition, but may optimize away the callsite.
1671 * Therefore, __weak is needed to ensure that the call is still
1672 * emitted, by telling the compiler that we don't know what the
1673 * function might eventually be.
1674 */
1675
1676 __bpf_hook_start();
1677
update_socket_protocol(int family,int type,int protocol)1678 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1679 {
1680 return protocol;
1681 }
1682
1683 __bpf_hook_end();
1684
__sys_socket(int family,int type,int protocol)1685 int __sys_socket(int family, int type, int protocol)
1686 {
1687 struct socket *sock;
1688 int flags;
1689
1690 sock = __sys_socket_create(family, type,
1691 update_socket_protocol(family, type, protocol));
1692 if (IS_ERR(sock))
1693 return PTR_ERR(sock);
1694
1695 flags = type & ~SOCK_TYPE_MASK;
1696 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1697 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1698
1699 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1700 }
1701
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1702 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1703 {
1704 return __sys_socket(family, type, protocol);
1705 }
1706
1707 /*
1708 * Create a pair of connected sockets.
1709 */
1710
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1711 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1712 {
1713 struct socket *sock1, *sock2;
1714 int fd1, fd2, err;
1715 struct file *newfile1, *newfile2;
1716 int flags;
1717
1718 flags = type & ~SOCK_TYPE_MASK;
1719 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1720 return -EINVAL;
1721 type &= SOCK_TYPE_MASK;
1722
1723 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1724 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1725
1726 /*
1727 * reserve descriptors and make sure we won't fail
1728 * to return them to userland.
1729 */
1730 fd1 = get_unused_fd_flags(flags);
1731 if (unlikely(fd1 < 0))
1732 return fd1;
1733
1734 fd2 = get_unused_fd_flags(flags);
1735 if (unlikely(fd2 < 0)) {
1736 put_unused_fd(fd1);
1737 return fd2;
1738 }
1739
1740 err = put_user(fd1, &usockvec[0]);
1741 if (err)
1742 goto out;
1743
1744 err = put_user(fd2, &usockvec[1]);
1745 if (err)
1746 goto out;
1747
1748 /*
1749 * Obtain the first socket and check if the underlying protocol
1750 * supports the socketpair call.
1751 */
1752
1753 err = sock_create(family, type, protocol, &sock1);
1754 if (unlikely(err < 0))
1755 goto out;
1756
1757 err = sock_create(family, type, protocol, &sock2);
1758 if (unlikely(err < 0)) {
1759 sock_release(sock1);
1760 goto out;
1761 }
1762
1763 err = security_socket_socketpair(sock1, sock2);
1764 if (unlikely(err)) {
1765 sock_release(sock2);
1766 sock_release(sock1);
1767 goto out;
1768 }
1769
1770 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1771 if (unlikely(err < 0)) {
1772 sock_release(sock2);
1773 sock_release(sock1);
1774 goto out;
1775 }
1776
1777 newfile1 = sock_alloc_file(sock1, flags, NULL);
1778 if (IS_ERR(newfile1)) {
1779 err = PTR_ERR(newfile1);
1780 sock_release(sock2);
1781 goto out;
1782 }
1783
1784 newfile2 = sock_alloc_file(sock2, flags, NULL);
1785 if (IS_ERR(newfile2)) {
1786 err = PTR_ERR(newfile2);
1787 fput(newfile1);
1788 goto out;
1789 }
1790
1791 audit_fd_pair(fd1, fd2);
1792
1793 fd_install(fd1, newfile1);
1794 fd_install(fd2, newfile2);
1795 return 0;
1796
1797 out:
1798 put_unused_fd(fd2);
1799 put_unused_fd(fd1);
1800 return err;
1801 }
1802
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1803 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1804 int __user *, usockvec)
1805 {
1806 return __sys_socketpair(family, type, protocol, usockvec);
1807 }
1808
__sys_bind_socket(struct socket * sock,struct sockaddr_storage * address,int addrlen)1809 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1810 int addrlen)
1811 {
1812 int err;
1813
1814 err = security_socket_bind(sock, (struct sockaddr *)address,
1815 addrlen);
1816 if (!err)
1817 err = READ_ONCE(sock->ops)->bind(sock,
1818 (struct sockaddr *)address,
1819 addrlen);
1820 return err;
1821 }
1822
1823 /*
1824 * Bind a name to a socket. Nothing much to do here since it's
1825 * the protocol's responsibility to handle the local address.
1826 *
1827 * We move the socket address to kernel space before we call
1828 * the protocol layer (having also checked the address is ok).
1829 */
1830
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1831 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1832 {
1833 struct socket *sock;
1834 struct sockaddr_storage address;
1835 CLASS(fd, f)(fd);
1836 int err;
1837
1838 if (fd_empty(f))
1839 return -EBADF;
1840 sock = sock_from_file(fd_file(f));
1841 if (unlikely(!sock))
1842 return -ENOTSOCK;
1843
1844 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1845 if (unlikely(err))
1846 return err;
1847
1848 return __sys_bind_socket(sock, &address, addrlen);
1849 }
1850
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1851 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1852 {
1853 return __sys_bind(fd, umyaddr, addrlen);
1854 }
1855
1856 /*
1857 * Perform a listen. Basically, we allow the protocol to do anything
1858 * necessary for a listen, and if that works, we mark the socket as
1859 * ready for listening.
1860 */
__sys_listen_socket(struct socket * sock,int backlog)1861 int __sys_listen_socket(struct socket *sock, int backlog)
1862 {
1863 int somaxconn, err;
1864
1865 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1866 if ((unsigned int)backlog > somaxconn)
1867 backlog = somaxconn;
1868
1869 err = security_socket_listen(sock, backlog);
1870 if (!err)
1871 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1872 return err;
1873 }
1874
__sys_listen(int fd,int backlog)1875 int __sys_listen(int fd, int backlog)
1876 {
1877 CLASS(fd, f)(fd);
1878 struct socket *sock;
1879
1880 if (fd_empty(f))
1881 return -EBADF;
1882 sock = sock_from_file(fd_file(f));
1883 if (unlikely(!sock))
1884 return -ENOTSOCK;
1885
1886 return __sys_listen_socket(sock, backlog);
1887 }
1888
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1889 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1890 {
1891 return __sys_listen(fd, backlog);
1892 }
1893
do_accept(struct file * file,struct proto_accept_arg * arg,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1894 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1895 struct sockaddr __user *upeer_sockaddr,
1896 int __user *upeer_addrlen, int flags)
1897 {
1898 struct socket *sock, *newsock;
1899 struct file *newfile;
1900 int err, len;
1901 struct sockaddr_storage address;
1902 const struct proto_ops *ops;
1903
1904 sock = sock_from_file(file);
1905 if (!sock)
1906 return ERR_PTR(-ENOTSOCK);
1907
1908 newsock = sock_alloc();
1909 if (!newsock)
1910 return ERR_PTR(-ENFILE);
1911 ops = READ_ONCE(sock->ops);
1912
1913 newsock->type = sock->type;
1914 newsock->ops = ops;
1915
1916 /*
1917 * We don't need try_module_get here, as the listening socket (sock)
1918 * has the protocol module (sock->ops->owner) held.
1919 */
1920 __module_get(ops->owner);
1921
1922 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1923 if (IS_ERR(newfile))
1924 return newfile;
1925
1926 err = security_socket_accept(sock, newsock);
1927 if (err)
1928 goto out_fd;
1929
1930 arg->flags |= sock->file->f_flags;
1931 err = ops->accept(sock, newsock, arg);
1932 if (err < 0)
1933 goto out_fd;
1934
1935 if (upeer_sockaddr) {
1936 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1937 if (len < 0) {
1938 err = -ECONNABORTED;
1939 goto out_fd;
1940 }
1941 err = move_addr_to_user(&address,
1942 len, upeer_sockaddr, upeer_addrlen);
1943 if (err < 0)
1944 goto out_fd;
1945 }
1946
1947 /* File flags are not inherited via accept() unlike another OSes. */
1948 return newfile;
1949 out_fd:
1950 fput(newfile);
1951 return ERR_PTR(err);
1952 }
1953
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1954 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1955 int __user *upeer_addrlen, int flags)
1956 {
1957 struct proto_accept_arg arg = { };
1958 struct file *newfile;
1959 int newfd;
1960
1961 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1962 return -EINVAL;
1963
1964 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1965 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1966
1967 newfd = get_unused_fd_flags(flags);
1968 if (unlikely(newfd < 0))
1969 return newfd;
1970
1971 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1972 flags);
1973 if (IS_ERR(newfile)) {
1974 put_unused_fd(newfd);
1975 return PTR_ERR(newfile);
1976 }
1977 fd_install(newfd, newfile);
1978 return newfd;
1979 }
1980
1981 /*
1982 * For accept, we attempt to create a new socket, set up the link
1983 * with the client, wake up the client, then return the new
1984 * connected fd. We collect the address of the connector in kernel
1985 * space and move it to user at the very end. This is unclean because
1986 * we open the socket then return an error.
1987 *
1988 * 1003.1g adds the ability to recvmsg() to query connection pending
1989 * status to recvmsg. We need to add that support in a way thats
1990 * clean when we restructure accept also.
1991 */
1992
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1993 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1994 int __user *upeer_addrlen, int flags)
1995 {
1996 CLASS(fd, f)(fd);
1997
1998 if (fd_empty(f))
1999 return -EBADF;
2000 return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2001 upeer_addrlen, flags);
2002 }
2003
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)2004 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2005 int __user *, upeer_addrlen, int, flags)
2006 {
2007 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2008 }
2009
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2010 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2011 int __user *, upeer_addrlen)
2012 {
2013 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2014 }
2015
2016 /*
2017 * Attempt to connect to a socket with the server address. The address
2018 * is in user space so we verify it is OK and move it to kernel space.
2019 *
2020 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2021 * break bindings
2022 *
2023 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2024 * other SEQPACKET protocols that take time to connect() as it doesn't
2025 * include the -EINPROGRESS status for such sockets.
2026 */
2027
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2028 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2029 int addrlen, int file_flags)
2030 {
2031 struct socket *sock;
2032 int err;
2033
2034 sock = sock_from_file(file);
2035 if (!sock) {
2036 err = -ENOTSOCK;
2037 goto out;
2038 }
2039
2040 err =
2041 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2042 if (err)
2043 goto out;
2044
2045 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2046 addrlen, sock->file->f_flags | file_flags);
2047 out:
2048 return err;
2049 }
2050
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2051 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2052 {
2053 struct sockaddr_storage address;
2054 CLASS(fd, f)(fd);
2055 int ret;
2056
2057 if (fd_empty(f))
2058 return -EBADF;
2059
2060 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2061 if (ret)
2062 return ret;
2063
2064 return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2065 }
2066
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2067 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2068 int, addrlen)
2069 {
2070 return __sys_connect(fd, uservaddr, addrlen);
2071 }
2072
2073 /*
2074 * Get the local address ('name') of a socket object. Move the obtained
2075 * name to user space.
2076 */
2077
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2078 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2079 int __user *usockaddr_len)
2080 {
2081 struct socket *sock;
2082 struct sockaddr_storage address;
2083 CLASS(fd, f)(fd);
2084 int err;
2085
2086 if (fd_empty(f))
2087 return -EBADF;
2088 sock = sock_from_file(fd_file(f));
2089 if (unlikely(!sock))
2090 return -ENOTSOCK;
2091
2092 err = security_socket_getsockname(sock);
2093 if (err)
2094 return err;
2095
2096 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2097 if (err < 0)
2098 return err;
2099
2100 /* "err" is actually length in this case */
2101 return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2102 }
2103
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2104 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2105 int __user *, usockaddr_len)
2106 {
2107 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2108 }
2109
2110 /*
2111 * Get the remote address ('name') of a socket object. Move the obtained
2112 * name to user space.
2113 */
2114
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2115 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2116 int __user *usockaddr_len)
2117 {
2118 struct socket *sock;
2119 struct sockaddr_storage address;
2120 CLASS(fd, f)(fd);
2121 int err;
2122
2123 if (fd_empty(f))
2124 return -EBADF;
2125 sock = sock_from_file(fd_file(f));
2126 if (unlikely(!sock))
2127 return -ENOTSOCK;
2128
2129 err = security_socket_getpeername(sock);
2130 if (err)
2131 return err;
2132
2133 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2134 if (err < 0)
2135 return err;
2136
2137 /* "err" is actually length in this case */
2138 return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2139 }
2140
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2141 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2142 int __user *, usockaddr_len)
2143 {
2144 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2145 }
2146
2147 /*
2148 * Send a datagram to a given address. We move the address into kernel
2149 * space and check the user space data area is readable before invoking
2150 * the protocol.
2151 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2152 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2153 struct sockaddr __user *addr, int addr_len)
2154 {
2155 struct socket *sock;
2156 struct sockaddr_storage address;
2157 int err;
2158 struct msghdr msg;
2159
2160 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2161 if (unlikely(err))
2162 return err;
2163
2164 CLASS(fd, f)(fd);
2165 if (fd_empty(f))
2166 return -EBADF;
2167 sock = sock_from_file(fd_file(f));
2168 if (unlikely(!sock))
2169 return -ENOTSOCK;
2170
2171 msg.msg_name = NULL;
2172 msg.msg_control = NULL;
2173 msg.msg_controllen = 0;
2174 msg.msg_namelen = 0;
2175 msg.msg_ubuf = NULL;
2176 if (addr) {
2177 err = move_addr_to_kernel(addr, addr_len, &address);
2178 if (err < 0)
2179 return err;
2180 msg.msg_name = (struct sockaddr *)&address;
2181 msg.msg_namelen = addr_len;
2182 }
2183 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2184 if (sock->file->f_flags & O_NONBLOCK)
2185 flags |= MSG_DONTWAIT;
2186 msg.msg_flags = flags;
2187 return __sock_sendmsg(sock, &msg);
2188 }
2189
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2190 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2191 unsigned int, flags, struct sockaddr __user *, addr,
2192 int, addr_len)
2193 {
2194 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2195 }
2196
2197 /*
2198 * Send a datagram down a socket.
2199 */
2200
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2201 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2202 unsigned int, flags)
2203 {
2204 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2205 }
2206
2207 /*
2208 * Receive a frame from the socket and optionally record the address of the
2209 * sender. We verify the buffers are writable and if needed move the
2210 * sender address from kernel to user space.
2211 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2212 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2213 struct sockaddr __user *addr, int __user *addr_len)
2214 {
2215 struct sockaddr_storage address;
2216 struct msghdr msg = {
2217 /* Save some cycles and don't copy the address if not needed */
2218 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2219 };
2220 struct socket *sock;
2221 int err, err2;
2222
2223 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2224 if (unlikely(err))
2225 return err;
2226
2227 CLASS(fd, f)(fd);
2228
2229 if (fd_empty(f))
2230 return -EBADF;
2231 sock = sock_from_file(fd_file(f));
2232 if (unlikely(!sock))
2233 return -ENOTSOCK;
2234
2235 if (sock->file->f_flags & O_NONBLOCK)
2236 flags |= MSG_DONTWAIT;
2237 err = sock_recvmsg(sock, &msg, flags);
2238
2239 if (err >= 0 && addr != NULL) {
2240 err2 = move_addr_to_user(&address,
2241 msg.msg_namelen, addr, addr_len);
2242 if (err2 < 0)
2243 err = err2;
2244 }
2245 return err;
2246 }
2247
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2248 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2249 unsigned int, flags, struct sockaddr __user *, addr,
2250 int __user *, addr_len)
2251 {
2252 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2253 }
2254
2255 /*
2256 * Receive a datagram from a socket.
2257 */
2258
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2259 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2260 unsigned int, flags)
2261 {
2262 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2263 }
2264
sock_use_custom_sol_socket(const struct socket * sock)2265 static bool sock_use_custom_sol_socket(const struct socket *sock)
2266 {
2267 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2268 }
2269
do_sock_setsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,int optlen)2270 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2271 int optname, sockptr_t optval, int optlen)
2272 {
2273 const struct proto_ops *ops;
2274 char *kernel_optval = NULL;
2275 int err;
2276
2277 if (optlen < 0)
2278 return -EINVAL;
2279
2280 err = security_socket_setsockopt(sock, level, optname);
2281 if (err)
2282 goto out_put;
2283
2284 if (!compat)
2285 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2286 optval, &optlen,
2287 &kernel_optval);
2288 if (err < 0)
2289 goto out_put;
2290 if (err > 0) {
2291 err = 0;
2292 goto out_put;
2293 }
2294
2295 if (kernel_optval)
2296 optval = KERNEL_SOCKPTR(kernel_optval);
2297 ops = READ_ONCE(sock->ops);
2298 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2299 err = sock_setsockopt(sock, level, optname, optval, optlen);
2300 else if (unlikely(!ops->setsockopt))
2301 err = -EOPNOTSUPP;
2302 else
2303 err = ops->setsockopt(sock, level, optname, optval,
2304 optlen);
2305 kfree(kernel_optval);
2306 out_put:
2307 return err;
2308 }
2309 EXPORT_SYMBOL(do_sock_setsockopt);
2310
2311 /* Set a socket option. Because we don't know the option lengths we have
2312 * to pass the user mode parameter for the protocols to sort out.
2313 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2314 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2315 int optlen)
2316 {
2317 sockptr_t optval = USER_SOCKPTR(user_optval);
2318 bool compat = in_compat_syscall();
2319 struct socket *sock;
2320 CLASS(fd, f)(fd);
2321
2322 if (fd_empty(f))
2323 return -EBADF;
2324 sock = sock_from_file(fd_file(f));
2325 if (unlikely(!sock))
2326 return -ENOTSOCK;
2327
2328 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2329 }
2330
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2331 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2332 char __user *, optval, int, optlen)
2333 {
2334 return __sys_setsockopt(fd, level, optname, optval, optlen);
2335 }
2336
2337 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2338 int optname));
2339
do_sock_getsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,sockptr_t optlen)2340 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2341 int optname, sockptr_t optval, sockptr_t optlen)
2342 {
2343 int max_optlen __maybe_unused = 0;
2344 const struct proto_ops *ops;
2345 int err;
2346
2347 err = security_socket_getsockopt(sock, level, optname);
2348 if (err)
2349 return err;
2350
2351 if (!compat)
2352 copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2353
2354 ops = READ_ONCE(sock->ops);
2355 if (level == SOL_SOCKET) {
2356 err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2357 } else if (unlikely(!ops->getsockopt)) {
2358 err = -EOPNOTSUPP;
2359 } else {
2360 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2361 "Invalid argument type"))
2362 return -EOPNOTSUPP;
2363
2364 err = ops->getsockopt(sock, level, optname, optval.user,
2365 optlen.user);
2366 }
2367
2368 if (!compat)
2369 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2370 optval, optlen, max_optlen,
2371 err);
2372
2373 return err;
2374 }
2375 EXPORT_SYMBOL(do_sock_getsockopt);
2376
2377 /*
2378 * Get a socket option. Because we don't know the option lengths we have
2379 * to pass a user mode parameter for the protocols to sort out.
2380 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2381 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2382 int __user *optlen)
2383 {
2384 struct socket *sock;
2385 CLASS(fd, f)(fd);
2386
2387 if (fd_empty(f))
2388 return -EBADF;
2389 sock = sock_from_file(fd_file(f));
2390 if (unlikely(!sock))
2391 return -ENOTSOCK;
2392
2393 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2394 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2395 }
2396
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2397 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2398 char __user *, optval, int __user *, optlen)
2399 {
2400 return __sys_getsockopt(fd, level, optname, optval, optlen);
2401 }
2402
2403 /*
2404 * Shutdown a socket.
2405 */
2406
__sys_shutdown_sock(struct socket * sock,int how)2407 int __sys_shutdown_sock(struct socket *sock, int how)
2408 {
2409 int err;
2410
2411 err = security_socket_shutdown(sock, how);
2412 if (!err)
2413 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2414
2415 return err;
2416 }
2417
__sys_shutdown(int fd,int how)2418 int __sys_shutdown(int fd, int how)
2419 {
2420 struct socket *sock;
2421 CLASS(fd, f)(fd);
2422
2423 if (fd_empty(f))
2424 return -EBADF;
2425 sock = sock_from_file(fd_file(f));
2426 if (unlikely(!sock))
2427 return -ENOTSOCK;
2428
2429 return __sys_shutdown_sock(sock, how);
2430 }
2431
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2432 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2433 {
2434 return __sys_shutdown(fd, how);
2435 }
2436
2437 /* A couple of helpful macros for getting the address of the 32/64 bit
2438 * fields which are the same type (int / unsigned) on our platforms.
2439 */
2440 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2441 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2442 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2443
2444 struct used_address {
2445 struct sockaddr_storage name;
2446 unsigned int name_len;
2447 };
2448
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2449 int __copy_msghdr(struct msghdr *kmsg,
2450 struct user_msghdr *msg,
2451 struct sockaddr __user **save_addr)
2452 {
2453 ssize_t err;
2454
2455 kmsg->msg_control_is_user = true;
2456 kmsg->msg_get_inq = 0;
2457 kmsg->msg_control_user = msg->msg_control;
2458 kmsg->msg_controllen = msg->msg_controllen;
2459 kmsg->msg_flags = msg->msg_flags;
2460
2461 kmsg->msg_namelen = msg->msg_namelen;
2462 if (!msg->msg_name)
2463 kmsg->msg_namelen = 0;
2464
2465 if (kmsg->msg_namelen < 0)
2466 return -EINVAL;
2467
2468 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2469 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2470
2471 if (save_addr)
2472 *save_addr = msg->msg_name;
2473
2474 if (msg->msg_name && kmsg->msg_namelen) {
2475 if (!save_addr) {
2476 err = move_addr_to_kernel(msg->msg_name,
2477 kmsg->msg_namelen,
2478 kmsg->msg_name);
2479 if (err < 0)
2480 return err;
2481 }
2482 } else {
2483 kmsg->msg_name = NULL;
2484 kmsg->msg_namelen = 0;
2485 }
2486
2487 if (msg->msg_iovlen > UIO_MAXIOV)
2488 return -EMSGSIZE;
2489
2490 kmsg->msg_iocb = NULL;
2491 kmsg->msg_ubuf = NULL;
2492 return 0;
2493 }
2494
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2495 static int copy_msghdr_from_user(struct msghdr *kmsg,
2496 struct user_msghdr __user *umsg,
2497 struct sockaddr __user **save_addr,
2498 struct iovec **iov)
2499 {
2500 struct user_msghdr msg;
2501 ssize_t err;
2502
2503 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2504 return -EFAULT;
2505
2506 err = __copy_msghdr(kmsg, &msg, save_addr);
2507 if (err)
2508 return err;
2509
2510 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2511 msg.msg_iov, msg.msg_iovlen,
2512 UIO_FASTIOV, iov, &kmsg->msg_iter);
2513 return err < 0 ? err : 0;
2514 }
2515
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2516 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2517 unsigned int flags, struct used_address *used_address,
2518 unsigned int allowed_msghdr_flags)
2519 {
2520 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2521 __aligned(sizeof(__kernel_size_t));
2522 /* 20 is size of ipv6_pktinfo */
2523 unsigned char *ctl_buf = ctl;
2524 int ctl_len;
2525 ssize_t err;
2526
2527 err = -ENOBUFS;
2528
2529 if (msg_sys->msg_controllen > INT_MAX)
2530 goto out;
2531 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2532 ctl_len = msg_sys->msg_controllen;
2533 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2534 err =
2535 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2536 sizeof(ctl));
2537 if (err)
2538 goto out;
2539 ctl_buf = msg_sys->msg_control;
2540 ctl_len = msg_sys->msg_controllen;
2541 } else if (ctl_len) {
2542 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2543 CMSG_ALIGN(sizeof(struct cmsghdr)));
2544 if (ctl_len > sizeof(ctl)) {
2545 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2546 if (ctl_buf == NULL)
2547 goto out;
2548 }
2549 err = -EFAULT;
2550 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2551 goto out_freectl;
2552 msg_sys->msg_control = ctl_buf;
2553 msg_sys->msg_control_is_user = false;
2554 }
2555 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2556 msg_sys->msg_flags = flags;
2557
2558 if (sock->file->f_flags & O_NONBLOCK)
2559 msg_sys->msg_flags |= MSG_DONTWAIT;
2560 /*
2561 * If this is sendmmsg() and current destination address is same as
2562 * previously succeeded address, omit asking LSM's decision.
2563 * used_address->name_len is initialized to UINT_MAX so that the first
2564 * destination address never matches.
2565 */
2566 if (used_address && msg_sys->msg_name &&
2567 used_address->name_len == msg_sys->msg_namelen &&
2568 !memcmp(&used_address->name, msg_sys->msg_name,
2569 used_address->name_len)) {
2570 err = sock_sendmsg_nosec(sock, msg_sys);
2571 goto out_freectl;
2572 }
2573 err = __sock_sendmsg(sock, msg_sys);
2574 /*
2575 * If this is sendmmsg() and sending to current destination address was
2576 * successful, remember it.
2577 */
2578 if (used_address && err >= 0) {
2579 used_address->name_len = msg_sys->msg_namelen;
2580 if (msg_sys->msg_name)
2581 memcpy(&used_address->name, msg_sys->msg_name,
2582 used_address->name_len);
2583 }
2584
2585 out_freectl:
2586 if (ctl_buf != ctl)
2587 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2588 out:
2589 return err;
2590 }
2591
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2592 static int sendmsg_copy_msghdr(struct msghdr *msg,
2593 struct user_msghdr __user *umsg, unsigned flags,
2594 struct iovec **iov)
2595 {
2596 int err;
2597
2598 if (flags & MSG_CMSG_COMPAT) {
2599 struct compat_msghdr __user *msg_compat;
2600
2601 msg_compat = (struct compat_msghdr __user *) umsg;
2602 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2603 } else {
2604 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2605 }
2606 if (err < 0)
2607 return err;
2608
2609 return 0;
2610 }
2611
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2612 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2613 struct msghdr *msg_sys, unsigned int flags,
2614 struct used_address *used_address,
2615 unsigned int allowed_msghdr_flags)
2616 {
2617 struct sockaddr_storage address;
2618 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2619 ssize_t err;
2620
2621 msg_sys->msg_name = &address;
2622
2623 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2624 if (err < 0)
2625 return err;
2626
2627 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2628 allowed_msghdr_flags);
2629 kfree(iov);
2630 return err;
2631 }
2632
2633 /*
2634 * BSD sendmsg interface
2635 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2636 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2637 unsigned int flags)
2638 {
2639 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2640 }
2641
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2642 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2643 bool forbid_cmsg_compat)
2644 {
2645 struct msghdr msg_sys;
2646 struct socket *sock;
2647
2648 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2649 return -EINVAL;
2650
2651 CLASS(fd, f)(fd);
2652
2653 if (fd_empty(f))
2654 return -EBADF;
2655 sock = sock_from_file(fd_file(f));
2656 if (unlikely(!sock))
2657 return -ENOTSOCK;
2658
2659 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2660 }
2661
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2662 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2663 {
2664 return __sys_sendmsg(fd, msg, flags, true);
2665 }
2666
2667 /*
2668 * Linux sendmmsg interface
2669 */
2670
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2671 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2672 unsigned int flags, bool forbid_cmsg_compat)
2673 {
2674 int err, datagrams;
2675 struct socket *sock;
2676 struct mmsghdr __user *entry;
2677 struct compat_mmsghdr __user *compat_entry;
2678 struct msghdr msg_sys;
2679 struct used_address used_address;
2680 unsigned int oflags = flags;
2681
2682 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2683 return -EINVAL;
2684
2685 if (vlen > UIO_MAXIOV)
2686 vlen = UIO_MAXIOV;
2687
2688 datagrams = 0;
2689
2690 CLASS(fd, f)(fd);
2691
2692 if (fd_empty(f))
2693 return -EBADF;
2694 sock = sock_from_file(fd_file(f));
2695 if (unlikely(!sock))
2696 return -ENOTSOCK;
2697
2698 used_address.name_len = UINT_MAX;
2699 entry = mmsg;
2700 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2701 err = 0;
2702 flags |= MSG_BATCH;
2703
2704 while (datagrams < vlen) {
2705 if (datagrams == vlen - 1)
2706 flags = oflags;
2707
2708 if (MSG_CMSG_COMPAT & flags) {
2709 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2710 &msg_sys, flags, &used_address, MSG_EOR);
2711 if (err < 0)
2712 break;
2713 err = __put_user(err, &compat_entry->msg_len);
2714 ++compat_entry;
2715 } else {
2716 err = ___sys_sendmsg(sock,
2717 (struct user_msghdr __user *)entry,
2718 &msg_sys, flags, &used_address, MSG_EOR);
2719 if (err < 0)
2720 break;
2721 err = put_user(err, &entry->msg_len);
2722 ++entry;
2723 }
2724
2725 if (err)
2726 break;
2727 ++datagrams;
2728 if (msg_data_left(&msg_sys))
2729 break;
2730 cond_resched();
2731 }
2732
2733 /* We only return an error if no datagrams were able to be sent */
2734 if (datagrams != 0)
2735 return datagrams;
2736
2737 return err;
2738 }
2739
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2740 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2741 unsigned int, vlen, unsigned int, flags)
2742 {
2743 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2744 }
2745
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2746 static int recvmsg_copy_msghdr(struct msghdr *msg,
2747 struct user_msghdr __user *umsg, unsigned flags,
2748 struct sockaddr __user **uaddr,
2749 struct iovec **iov)
2750 {
2751 ssize_t err;
2752
2753 if (MSG_CMSG_COMPAT & flags) {
2754 struct compat_msghdr __user *msg_compat;
2755
2756 msg_compat = (struct compat_msghdr __user *) umsg;
2757 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2758 } else {
2759 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2760 }
2761 if (err < 0)
2762 return err;
2763
2764 return 0;
2765 }
2766
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2767 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2768 struct user_msghdr __user *msg,
2769 struct sockaddr __user *uaddr,
2770 unsigned int flags, int nosec)
2771 {
2772 struct compat_msghdr __user *msg_compat =
2773 (struct compat_msghdr __user *) msg;
2774 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2775 struct sockaddr_storage addr;
2776 unsigned long cmsg_ptr;
2777 int len;
2778 ssize_t err;
2779
2780 msg_sys->msg_name = &addr;
2781 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2782 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2783
2784 /* We assume all kernel code knows the size of sockaddr_storage */
2785 msg_sys->msg_namelen = 0;
2786
2787 if (sock->file->f_flags & O_NONBLOCK)
2788 flags |= MSG_DONTWAIT;
2789
2790 if (unlikely(nosec))
2791 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2792 else
2793 err = sock_recvmsg(sock, msg_sys, flags);
2794
2795 if (err < 0)
2796 goto out;
2797 len = err;
2798
2799 if (uaddr != NULL) {
2800 err = move_addr_to_user(&addr,
2801 msg_sys->msg_namelen, uaddr,
2802 uaddr_len);
2803 if (err < 0)
2804 goto out;
2805 }
2806 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2807 COMPAT_FLAGS(msg));
2808 if (err)
2809 goto out;
2810 if (MSG_CMSG_COMPAT & flags)
2811 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2812 &msg_compat->msg_controllen);
2813 else
2814 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2815 &msg->msg_controllen);
2816 if (err)
2817 goto out;
2818 err = len;
2819 out:
2820 return err;
2821 }
2822
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2823 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2824 struct msghdr *msg_sys, unsigned int flags, int nosec)
2825 {
2826 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2827 /* user mode address pointers */
2828 struct sockaddr __user *uaddr;
2829 ssize_t err;
2830
2831 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2832 if (err < 0)
2833 return err;
2834
2835 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2836 kfree(iov);
2837 return err;
2838 }
2839
2840 /*
2841 * BSD recvmsg interface
2842 */
2843
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2844 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2845 struct user_msghdr __user *umsg,
2846 struct sockaddr __user *uaddr, unsigned int flags)
2847 {
2848 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2849 }
2850
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2851 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2852 bool forbid_cmsg_compat)
2853 {
2854 struct msghdr msg_sys;
2855 struct socket *sock;
2856
2857 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2858 return -EINVAL;
2859
2860 CLASS(fd, f)(fd);
2861
2862 if (fd_empty(f))
2863 return -EBADF;
2864 sock = sock_from_file(fd_file(f));
2865 if (unlikely(!sock))
2866 return -ENOTSOCK;
2867
2868 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2869 }
2870
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2871 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2872 unsigned int, flags)
2873 {
2874 return __sys_recvmsg(fd, msg, flags, true);
2875 }
2876
2877 /*
2878 * Linux recvmmsg interface
2879 */
2880
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2881 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2882 unsigned int vlen, unsigned int flags,
2883 struct timespec64 *timeout)
2884 {
2885 int err = 0, datagrams;
2886 struct socket *sock;
2887 struct mmsghdr __user *entry;
2888 struct compat_mmsghdr __user *compat_entry;
2889 struct msghdr msg_sys;
2890 struct timespec64 end_time;
2891 struct timespec64 timeout64;
2892
2893 if (timeout &&
2894 poll_select_set_timeout(&end_time, timeout->tv_sec,
2895 timeout->tv_nsec))
2896 return -EINVAL;
2897
2898 datagrams = 0;
2899
2900 CLASS(fd, f)(fd);
2901
2902 if (fd_empty(f))
2903 return -EBADF;
2904 sock = sock_from_file(fd_file(f));
2905 if (unlikely(!sock))
2906 return -ENOTSOCK;
2907
2908 if (likely(!(flags & MSG_ERRQUEUE))) {
2909 err = sock_error(sock->sk);
2910 if (err)
2911 return err;
2912 }
2913
2914 entry = mmsg;
2915 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2916
2917 while (datagrams < vlen) {
2918 /*
2919 * No need to ask LSM for more than the first datagram.
2920 */
2921 if (MSG_CMSG_COMPAT & flags) {
2922 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2923 &msg_sys, flags & ~MSG_WAITFORONE,
2924 datagrams);
2925 if (err < 0)
2926 break;
2927 err = __put_user(err, &compat_entry->msg_len);
2928 ++compat_entry;
2929 } else {
2930 err = ___sys_recvmsg(sock,
2931 (struct user_msghdr __user *)entry,
2932 &msg_sys, flags & ~MSG_WAITFORONE,
2933 datagrams);
2934 if (err < 0)
2935 break;
2936 err = put_user(err, &entry->msg_len);
2937 ++entry;
2938 }
2939
2940 if (err)
2941 break;
2942 ++datagrams;
2943
2944 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2945 if (flags & MSG_WAITFORONE)
2946 flags |= MSG_DONTWAIT;
2947
2948 if (timeout) {
2949 ktime_get_ts64(&timeout64);
2950 *timeout = timespec64_sub(end_time, timeout64);
2951 if (timeout->tv_sec < 0) {
2952 timeout->tv_sec = timeout->tv_nsec = 0;
2953 break;
2954 }
2955
2956 /* Timeout, return less than vlen datagrams */
2957 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2958 break;
2959 }
2960
2961 /* Out of band data, return right away */
2962 if (msg_sys.msg_flags & MSG_OOB)
2963 break;
2964 cond_resched();
2965 }
2966
2967 if (err == 0)
2968 return datagrams;
2969
2970 if (datagrams == 0)
2971 return err;
2972
2973 /*
2974 * We may return less entries than requested (vlen) if the
2975 * sock is non block and there aren't enough datagrams...
2976 */
2977 if (err != -EAGAIN) {
2978 /*
2979 * ... or if recvmsg returns an error after we
2980 * received some datagrams, where we record the
2981 * error to return on the next call or if the
2982 * app asks about it using getsockopt(SO_ERROR).
2983 */
2984 WRITE_ONCE(sock->sk->sk_err, -err);
2985 }
2986 return datagrams;
2987 }
2988
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2989 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2990 unsigned int vlen, unsigned int flags,
2991 struct __kernel_timespec __user *timeout,
2992 struct old_timespec32 __user *timeout32)
2993 {
2994 int datagrams;
2995 struct timespec64 timeout_sys;
2996
2997 if (timeout && get_timespec64(&timeout_sys, timeout))
2998 return -EFAULT;
2999
3000 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3001 return -EFAULT;
3002
3003 if (!timeout && !timeout32)
3004 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3005
3006 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3007
3008 if (datagrams <= 0)
3009 return datagrams;
3010
3011 if (timeout && put_timespec64(&timeout_sys, timeout))
3012 datagrams = -EFAULT;
3013
3014 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3015 datagrams = -EFAULT;
3016
3017 return datagrams;
3018 }
3019
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3020 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3021 unsigned int, vlen, unsigned int, flags,
3022 struct __kernel_timespec __user *, timeout)
3023 {
3024 if (flags & MSG_CMSG_COMPAT)
3025 return -EINVAL;
3026
3027 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3028 }
3029
3030 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3031 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3032 unsigned int, vlen, unsigned int, flags,
3033 struct old_timespec32 __user *, timeout)
3034 {
3035 if (flags & MSG_CMSG_COMPAT)
3036 return -EINVAL;
3037
3038 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3039 }
3040 #endif
3041
3042 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3043 /* Argument list sizes for sys_socketcall */
3044 #define AL(x) ((x) * sizeof(unsigned long))
3045 static const unsigned char nargs[21] = {
3046 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3047 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3048 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3049 AL(4), AL(5), AL(4)
3050 };
3051
3052 #undef AL
3053
3054 /*
3055 * System call vectors.
3056 *
3057 * Argument checking cleaned up. Saved 20% in size.
3058 * This function doesn't need to set the kernel lock because
3059 * it is set by the callees.
3060 */
3061
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3062 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3063 {
3064 unsigned long a[AUDITSC_ARGS];
3065 unsigned long a0, a1;
3066 int err;
3067 unsigned int len;
3068
3069 if (call < 1 || call > SYS_SENDMMSG)
3070 return -EINVAL;
3071 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3072
3073 len = nargs[call];
3074 if (len > sizeof(a))
3075 return -EINVAL;
3076
3077 /* copy_from_user should be SMP safe. */
3078 if (copy_from_user(a, args, len))
3079 return -EFAULT;
3080
3081 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3082 if (err)
3083 return err;
3084
3085 a0 = a[0];
3086 a1 = a[1];
3087
3088 switch (call) {
3089 case SYS_SOCKET:
3090 err = __sys_socket(a0, a1, a[2]);
3091 break;
3092 case SYS_BIND:
3093 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3094 break;
3095 case SYS_CONNECT:
3096 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3097 break;
3098 case SYS_LISTEN:
3099 err = __sys_listen(a0, a1);
3100 break;
3101 case SYS_ACCEPT:
3102 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3103 (int __user *)a[2], 0);
3104 break;
3105 case SYS_GETSOCKNAME:
3106 err =
3107 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3108 (int __user *)a[2]);
3109 break;
3110 case SYS_GETPEERNAME:
3111 err =
3112 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3113 (int __user *)a[2]);
3114 break;
3115 case SYS_SOCKETPAIR:
3116 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3117 break;
3118 case SYS_SEND:
3119 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3120 NULL, 0);
3121 break;
3122 case SYS_SENDTO:
3123 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3124 (struct sockaddr __user *)a[4], a[5]);
3125 break;
3126 case SYS_RECV:
3127 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3128 NULL, NULL);
3129 break;
3130 case SYS_RECVFROM:
3131 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3132 (struct sockaddr __user *)a[4],
3133 (int __user *)a[5]);
3134 break;
3135 case SYS_SHUTDOWN:
3136 err = __sys_shutdown(a0, a1);
3137 break;
3138 case SYS_SETSOCKOPT:
3139 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3140 a[4]);
3141 break;
3142 case SYS_GETSOCKOPT:
3143 err =
3144 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3145 (int __user *)a[4]);
3146 break;
3147 case SYS_SENDMSG:
3148 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3149 a[2], true);
3150 break;
3151 case SYS_SENDMMSG:
3152 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3153 a[3], true);
3154 break;
3155 case SYS_RECVMSG:
3156 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3157 a[2], true);
3158 break;
3159 case SYS_RECVMMSG:
3160 if (IS_ENABLED(CONFIG_64BIT))
3161 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3162 a[2], a[3],
3163 (struct __kernel_timespec __user *)a[4],
3164 NULL);
3165 else
3166 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3167 a[2], a[3], NULL,
3168 (struct old_timespec32 __user *)a[4]);
3169 break;
3170 case SYS_ACCEPT4:
3171 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3172 (int __user *)a[2], a[3]);
3173 break;
3174 default:
3175 err = -EINVAL;
3176 break;
3177 }
3178 return err;
3179 }
3180
3181 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3182
3183 /**
3184 * sock_register - add a socket protocol handler
3185 * @ops: description of protocol
3186 *
3187 * This function is called by a protocol handler that wants to
3188 * advertise its address family, and have it linked into the
3189 * socket interface. The value ops->family corresponds to the
3190 * socket system call protocol family.
3191 */
sock_register(const struct net_proto_family * ops)3192 int sock_register(const struct net_proto_family *ops)
3193 {
3194 int err;
3195
3196 if (ops->family >= NPROTO) {
3197 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3198 return -ENOBUFS;
3199 }
3200
3201 spin_lock(&net_family_lock);
3202 if (rcu_dereference_protected(net_families[ops->family],
3203 lockdep_is_held(&net_family_lock)))
3204 err = -EEXIST;
3205 else {
3206 rcu_assign_pointer(net_families[ops->family], ops);
3207 err = 0;
3208 }
3209 spin_unlock(&net_family_lock);
3210
3211 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3212 return err;
3213 }
3214 EXPORT_SYMBOL(sock_register);
3215
3216 /**
3217 * sock_unregister - remove a protocol handler
3218 * @family: protocol family to remove
3219 *
3220 * This function is called by a protocol handler that wants to
3221 * remove its address family, and have it unlinked from the
3222 * new socket creation.
3223 *
3224 * If protocol handler is a module, then it can use module reference
3225 * counts to protect against new references. If protocol handler is not
3226 * a module then it needs to provide its own protection in
3227 * the ops->create routine.
3228 */
sock_unregister(int family)3229 void sock_unregister(int family)
3230 {
3231 BUG_ON(family < 0 || family >= NPROTO);
3232
3233 spin_lock(&net_family_lock);
3234 RCU_INIT_POINTER(net_families[family], NULL);
3235 spin_unlock(&net_family_lock);
3236
3237 synchronize_rcu();
3238
3239 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3240 }
3241 EXPORT_SYMBOL(sock_unregister);
3242
sock_is_registered(int family)3243 bool sock_is_registered(int family)
3244 {
3245 return family < NPROTO && rcu_access_pointer(net_families[family]);
3246 }
3247
sock_init(void)3248 static int __init sock_init(void)
3249 {
3250 int err;
3251 /*
3252 * Initialize the network sysctl infrastructure.
3253 */
3254 err = net_sysctl_init();
3255 if (err)
3256 goto out;
3257
3258 /*
3259 * Initialize skbuff SLAB cache
3260 */
3261 skb_init();
3262
3263 /*
3264 * Initialize the protocols module.
3265 */
3266
3267 init_inodecache();
3268
3269 err = register_filesystem(&sock_fs_type);
3270 if (err)
3271 goto out;
3272 sock_mnt = kern_mount(&sock_fs_type);
3273 if (IS_ERR(sock_mnt)) {
3274 err = PTR_ERR(sock_mnt);
3275 goto out_mount;
3276 }
3277
3278 /* The real protocol initialization is performed in later initcalls.
3279 */
3280
3281 #ifdef CONFIG_NETFILTER
3282 err = netfilter_init();
3283 if (err)
3284 goto out;
3285 #endif
3286
3287 ptp_classifier_init();
3288
3289 out:
3290 return err;
3291
3292 out_mount:
3293 unregister_filesystem(&sock_fs_type);
3294 goto out;
3295 }
3296
3297 core_initcall(sock_init); /* early initcall */
3298
3299 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3300 void socket_seq_show(struct seq_file *seq)
3301 {
3302 seq_printf(seq, "sockets: used %d\n",
3303 sock_inuse_get(seq->private));
3304 }
3305 #endif /* CONFIG_PROC_FS */
3306
3307 /* Handle the fact that while struct ifreq has the same *layout* on
3308 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3309 * which are handled elsewhere, it still has different *size* due to
3310 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3311 * resulting in struct ifreq being 32 and 40 bytes respectively).
3312 * As a result, if the struct happens to be at the end of a page and
3313 * the next page isn't readable/writable, we get a fault. To prevent
3314 * that, copy back and forth to the full size.
3315 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3316 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3317 {
3318 if (in_compat_syscall()) {
3319 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3320
3321 memset(ifr, 0, sizeof(*ifr));
3322 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3323 return -EFAULT;
3324
3325 if (ifrdata)
3326 *ifrdata = compat_ptr(ifr32->ifr_data);
3327
3328 return 0;
3329 }
3330
3331 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3332 return -EFAULT;
3333
3334 if (ifrdata)
3335 *ifrdata = ifr->ifr_data;
3336
3337 return 0;
3338 }
3339 EXPORT_SYMBOL(get_user_ifreq);
3340
put_user_ifreq(struct ifreq * ifr,void __user * arg)3341 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3342 {
3343 size_t size = sizeof(*ifr);
3344
3345 if (in_compat_syscall())
3346 size = sizeof(struct compat_ifreq);
3347
3348 if (copy_to_user(arg, ifr, size))
3349 return -EFAULT;
3350
3351 return 0;
3352 }
3353 EXPORT_SYMBOL(put_user_ifreq);
3354
3355 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3356 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3357 {
3358 compat_uptr_t uptr32;
3359 struct ifreq ifr;
3360 void __user *saved;
3361 int err;
3362
3363 if (get_user_ifreq(&ifr, NULL, uifr32))
3364 return -EFAULT;
3365
3366 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3367 return -EFAULT;
3368
3369 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3370 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3371
3372 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3373 if (!err) {
3374 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3375 if (put_user_ifreq(&ifr, uifr32))
3376 err = -EFAULT;
3377 }
3378 return err;
3379 }
3380
3381 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3382 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3383 struct compat_ifreq __user *u_ifreq32)
3384 {
3385 struct ifreq ifreq;
3386 void __user *data;
3387
3388 if (!is_socket_ioctl_cmd(cmd))
3389 return -ENOTTY;
3390 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3391 return -EFAULT;
3392 ifreq.ifr_data = data;
3393
3394 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3395 }
3396
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3397 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3398 unsigned int cmd, unsigned long arg)
3399 {
3400 void __user *argp = compat_ptr(arg);
3401 struct sock *sk = sock->sk;
3402 struct net *net = sock_net(sk);
3403 const struct proto_ops *ops;
3404
3405 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3406 return sock_ioctl(file, cmd, (unsigned long)argp);
3407
3408 switch (cmd) {
3409 case SIOCWANDEV:
3410 return compat_siocwandev(net, argp);
3411 case SIOCGSTAMP_OLD:
3412 case SIOCGSTAMPNS_OLD:
3413 ops = READ_ONCE(sock->ops);
3414 if (!ops->gettstamp)
3415 return -ENOIOCTLCMD;
3416 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3417 !COMPAT_USE_64BIT_TIME);
3418
3419 case SIOCETHTOOL:
3420 case SIOCBONDSLAVEINFOQUERY:
3421 case SIOCBONDINFOQUERY:
3422 case SIOCSHWTSTAMP:
3423 case SIOCGHWTSTAMP:
3424 return compat_ifr_data_ioctl(net, cmd, argp);
3425
3426 case FIOSETOWN:
3427 case SIOCSPGRP:
3428 case FIOGETOWN:
3429 case SIOCGPGRP:
3430 case SIOCBRADDBR:
3431 case SIOCBRDELBR:
3432 case SIOCGIFVLAN:
3433 case SIOCSIFVLAN:
3434 case SIOCGSKNS:
3435 case SIOCGSTAMP_NEW:
3436 case SIOCGSTAMPNS_NEW:
3437 case SIOCGIFCONF:
3438 case SIOCSIFBR:
3439 case SIOCGIFBR:
3440 return sock_ioctl(file, cmd, arg);
3441
3442 case SIOCGIFFLAGS:
3443 case SIOCSIFFLAGS:
3444 case SIOCGIFMAP:
3445 case SIOCSIFMAP:
3446 case SIOCGIFMETRIC:
3447 case SIOCSIFMETRIC:
3448 case SIOCGIFMTU:
3449 case SIOCSIFMTU:
3450 case SIOCGIFMEM:
3451 case SIOCSIFMEM:
3452 case SIOCGIFHWADDR:
3453 case SIOCSIFHWADDR:
3454 case SIOCADDMULTI:
3455 case SIOCDELMULTI:
3456 case SIOCGIFINDEX:
3457 case SIOCGIFADDR:
3458 case SIOCSIFADDR:
3459 case SIOCSIFHWBROADCAST:
3460 case SIOCDIFADDR:
3461 case SIOCGIFBRDADDR:
3462 case SIOCSIFBRDADDR:
3463 case SIOCGIFDSTADDR:
3464 case SIOCSIFDSTADDR:
3465 case SIOCGIFNETMASK:
3466 case SIOCSIFNETMASK:
3467 case SIOCSIFPFLAGS:
3468 case SIOCGIFPFLAGS:
3469 case SIOCGIFTXQLEN:
3470 case SIOCSIFTXQLEN:
3471 case SIOCBRADDIF:
3472 case SIOCBRDELIF:
3473 case SIOCGIFNAME:
3474 case SIOCSIFNAME:
3475 case SIOCGMIIPHY:
3476 case SIOCGMIIREG:
3477 case SIOCSMIIREG:
3478 case SIOCBONDENSLAVE:
3479 case SIOCBONDRELEASE:
3480 case SIOCBONDSETHWADDR:
3481 case SIOCBONDCHANGEACTIVE:
3482 case SIOCSARP:
3483 case SIOCGARP:
3484 case SIOCDARP:
3485 case SIOCOUTQ:
3486 case SIOCOUTQNSD:
3487 case SIOCATMARK:
3488 return sock_do_ioctl(net, sock, cmd, arg);
3489 }
3490
3491 return -ENOIOCTLCMD;
3492 }
3493
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3494 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3495 unsigned long arg)
3496 {
3497 struct socket *sock = file->private_data;
3498 const struct proto_ops *ops = READ_ONCE(sock->ops);
3499 int ret = -ENOIOCTLCMD;
3500 struct sock *sk;
3501 struct net *net;
3502
3503 sk = sock->sk;
3504 net = sock_net(sk);
3505
3506 if (ops->compat_ioctl)
3507 ret = ops->compat_ioctl(sock, cmd, arg);
3508
3509 if (ret == -ENOIOCTLCMD &&
3510 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3511 ret = compat_wext_handle_ioctl(net, cmd, arg);
3512
3513 if (ret == -ENOIOCTLCMD)
3514 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3515
3516 return ret;
3517 }
3518 #endif
3519
3520 /**
3521 * kernel_bind - bind an address to a socket (kernel space)
3522 * @sock: socket
3523 * @addr: address
3524 * @addrlen: length of address
3525 *
3526 * Returns 0 or an error.
3527 */
3528
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3529 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3530 {
3531 struct sockaddr_storage address;
3532
3533 memcpy(&address, addr, addrlen);
3534
3535 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3536 addrlen);
3537 }
3538 EXPORT_SYMBOL(kernel_bind);
3539
3540 /**
3541 * kernel_listen - move socket to listening state (kernel space)
3542 * @sock: socket
3543 * @backlog: pending connections queue size
3544 *
3545 * Returns 0 or an error.
3546 */
3547
kernel_listen(struct socket * sock,int backlog)3548 int kernel_listen(struct socket *sock, int backlog)
3549 {
3550 return READ_ONCE(sock->ops)->listen(sock, backlog);
3551 }
3552 EXPORT_SYMBOL(kernel_listen);
3553
3554 /**
3555 * kernel_accept - accept a connection (kernel space)
3556 * @sock: listening socket
3557 * @newsock: new connected socket
3558 * @flags: flags
3559 *
3560 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3561 * If it fails, @newsock is guaranteed to be %NULL.
3562 * Returns 0 or an error.
3563 */
3564
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3565 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3566 {
3567 struct sock *sk = sock->sk;
3568 const struct proto_ops *ops = READ_ONCE(sock->ops);
3569 struct proto_accept_arg arg = {
3570 .flags = flags,
3571 .kern = true,
3572 };
3573 int err;
3574
3575 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3576 newsock);
3577 if (err < 0)
3578 goto done;
3579
3580 err = ops->accept(sock, *newsock, &arg);
3581 if (err < 0) {
3582 sock_release(*newsock);
3583 *newsock = NULL;
3584 goto done;
3585 }
3586
3587 (*newsock)->ops = ops;
3588 __module_get(ops->owner);
3589
3590 done:
3591 return err;
3592 }
3593 EXPORT_SYMBOL(kernel_accept);
3594
3595 /**
3596 * kernel_connect - connect a socket (kernel space)
3597 * @sock: socket
3598 * @addr: address
3599 * @addrlen: address length
3600 * @flags: flags (O_NONBLOCK, ...)
3601 *
3602 * For datagram sockets, @addr is the address to which datagrams are sent
3603 * by default, and the only address from which datagrams are received.
3604 * For stream sockets, attempts to connect to @addr.
3605 * Returns 0 or an error code.
3606 */
3607
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3608 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3609 int flags)
3610 {
3611 struct sockaddr_storage address;
3612
3613 memcpy(&address, addr, addrlen);
3614
3615 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3616 addrlen, flags);
3617 }
3618 EXPORT_SYMBOL(kernel_connect);
3619
3620 /**
3621 * kernel_getsockname - get the address which the socket is bound (kernel space)
3622 * @sock: socket
3623 * @addr: address holder
3624 *
3625 * Fills the @addr pointer with the address which the socket is bound.
3626 * Returns the length of the address in bytes or an error code.
3627 */
3628
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3629 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3630 {
3631 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3632 }
3633 EXPORT_SYMBOL(kernel_getsockname);
3634
3635 /**
3636 * kernel_getpeername - get the address which the socket is connected (kernel space)
3637 * @sock: socket
3638 * @addr: address holder
3639 *
3640 * Fills the @addr pointer with the address which the socket is connected.
3641 * Returns the length of the address in bytes or an error code.
3642 */
3643
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3644 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3645 {
3646 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3647 }
3648 EXPORT_SYMBOL(kernel_getpeername);
3649
3650 /**
3651 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3652 * @sock: socket
3653 * @how: connection part
3654 *
3655 * Returns 0 or an error.
3656 */
3657
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3658 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3659 {
3660 return READ_ONCE(sock->ops)->shutdown(sock, how);
3661 }
3662 EXPORT_SYMBOL(kernel_sock_shutdown);
3663
3664 /**
3665 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3666 * @sk: socket
3667 *
3668 * This routine returns the IP overhead imposed by a socket i.e.
3669 * the length of the underlying IP header, depending on whether
3670 * this is an IPv4 or IPv6 socket and the length from IP options turned
3671 * on at the socket. Assumes that the caller has a lock on the socket.
3672 */
3673
kernel_sock_ip_overhead(struct sock * sk)3674 u32 kernel_sock_ip_overhead(struct sock *sk)
3675 {
3676 struct inet_sock *inet;
3677 struct ip_options_rcu *opt;
3678 u32 overhead = 0;
3679 #if IS_ENABLED(CONFIG_IPV6)
3680 struct ipv6_pinfo *np;
3681 struct ipv6_txoptions *optv6 = NULL;
3682 #endif /* IS_ENABLED(CONFIG_IPV6) */
3683
3684 if (!sk)
3685 return overhead;
3686
3687 switch (sk->sk_family) {
3688 case AF_INET:
3689 inet = inet_sk(sk);
3690 overhead += sizeof(struct iphdr);
3691 opt = rcu_dereference_protected(inet->inet_opt,
3692 sock_owned_by_user(sk));
3693 if (opt)
3694 overhead += opt->opt.optlen;
3695 return overhead;
3696 #if IS_ENABLED(CONFIG_IPV6)
3697 case AF_INET6:
3698 np = inet6_sk(sk);
3699 overhead += sizeof(struct ipv6hdr);
3700 if (np)
3701 optv6 = rcu_dereference_protected(np->opt,
3702 sock_owned_by_user(sk));
3703 if (optv6)
3704 overhead += (optv6->opt_flen + optv6->opt_nflen);
3705 return overhead;
3706 #endif /* IS_ENABLED(CONFIG_IPV6) */
3707 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3708 return overhead;
3709 }
3710 }
3711 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3712