xref: /linux/net/socket.c (revision 8c67da5bc11a79833d9fd464e82b1b271c67fc87)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #include "core/dev.h"
114 
115 #ifdef CONFIG_NET_RX_BUSY_POLL
116 unsigned int sysctl_net_busy_read __read_mostly;
117 unsigned int sysctl_net_busy_poll __read_mostly;
118 #endif
119 
120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123 
124 static int sock_close(struct inode *inode, struct file *file);
125 static __poll_t sock_poll(struct file *file,
126 			      struct poll_table_struct *wait);
127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128 #ifdef CONFIG_COMPAT
129 static long compat_sock_ioctl(struct file *file,
130 			      unsigned int cmd, unsigned long arg);
131 #endif
132 static int sock_fasync(int fd, struct file *filp, int on);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 				struct pipe_inode_info *pipe, size_t len,
135 				unsigned int flags);
136 static void sock_splice_eof(struct file *file);
137 
138 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)139 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140 {
141 	struct socket *sock = f->private_data;
142 	const struct proto_ops *ops = READ_ONCE(sock->ops);
143 
144 	if (ops->show_fdinfo)
145 		ops->show_fdinfo(m, sock);
146 }
147 #else
148 #define sock_show_fdinfo NULL
149 #endif
150 
151 /*
152  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153  *	in the operation structures but are done directly via the socketcall() multiplexor.
154  */
155 
156 static const struct file_operations socket_file_ops = {
157 	.owner =	THIS_MODULE,
158 	.read_iter =	sock_read_iter,
159 	.write_iter =	sock_write_iter,
160 	.poll =		sock_poll,
161 	.unlocked_ioctl = sock_ioctl,
162 #ifdef CONFIG_COMPAT
163 	.compat_ioctl = compat_sock_ioctl,
164 #endif
165 	.uring_cmd =    io_uring_cmd_sock,
166 	.mmap =		sock_mmap,
167 	.release =	sock_close,
168 	.fasync =	sock_fasync,
169 	.splice_write = splice_to_socket,
170 	.splice_read =	sock_splice_read,
171 	.splice_eof =	sock_splice_eof,
172 	.show_fdinfo =	sock_show_fdinfo,
173 };
174 
175 static const char * const pf_family_names[] = {
176 	[PF_UNSPEC]	= "PF_UNSPEC",
177 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
178 	[PF_INET]	= "PF_INET",
179 	[PF_AX25]	= "PF_AX25",
180 	[PF_IPX]	= "PF_IPX",
181 	[PF_APPLETALK]	= "PF_APPLETALK",
182 	[PF_NETROM]	= "PF_NETROM",
183 	[PF_BRIDGE]	= "PF_BRIDGE",
184 	[PF_ATMPVC]	= "PF_ATMPVC",
185 	[PF_X25]	= "PF_X25",
186 	[PF_INET6]	= "PF_INET6",
187 	[PF_ROSE]	= "PF_ROSE",
188 	[PF_DECnet]	= "PF_DECnet",
189 	[PF_NETBEUI]	= "PF_NETBEUI",
190 	[PF_SECURITY]	= "PF_SECURITY",
191 	[PF_KEY]	= "PF_KEY",
192 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
193 	[PF_PACKET]	= "PF_PACKET",
194 	[PF_ASH]	= "PF_ASH",
195 	[PF_ECONET]	= "PF_ECONET",
196 	[PF_ATMSVC]	= "PF_ATMSVC",
197 	[PF_RDS]	= "PF_RDS",
198 	[PF_SNA]	= "PF_SNA",
199 	[PF_IRDA]	= "PF_IRDA",
200 	[PF_PPPOX]	= "PF_PPPOX",
201 	[PF_WANPIPE]	= "PF_WANPIPE",
202 	[PF_LLC]	= "PF_LLC",
203 	[PF_IB]		= "PF_IB",
204 	[PF_MPLS]	= "PF_MPLS",
205 	[PF_CAN]	= "PF_CAN",
206 	[PF_TIPC]	= "PF_TIPC",
207 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
208 	[PF_IUCV]	= "PF_IUCV",
209 	[PF_RXRPC]	= "PF_RXRPC",
210 	[PF_ISDN]	= "PF_ISDN",
211 	[PF_PHONET]	= "PF_PHONET",
212 	[PF_IEEE802154]	= "PF_IEEE802154",
213 	[PF_CAIF]	= "PF_CAIF",
214 	[PF_ALG]	= "PF_ALG",
215 	[PF_NFC]	= "PF_NFC",
216 	[PF_VSOCK]	= "PF_VSOCK",
217 	[PF_KCM]	= "PF_KCM",
218 	[PF_QIPCRTR]	= "PF_QIPCRTR",
219 	[PF_SMC]	= "PF_SMC",
220 	[PF_XDP]	= "PF_XDP",
221 	[PF_MCTP]	= "PF_MCTP",
222 };
223 
224 /*
225  *	The protocol list. Each protocol is registered in here.
226  */
227 
228 static DEFINE_SPINLOCK(net_family_lock);
229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230 
231 /*
232  * Support routines.
233  * Move socket addresses back and forth across the kernel/user
234  * divide and look after the messy bits.
235  */
236 
237 /**
238  *	move_addr_to_kernel	-	copy a socket address into kernel space
239  *	@uaddr: Address in user space
240  *	@kaddr: Address in kernel space
241  *	@ulen: Length in user space
242  *
243  *	The address is copied into kernel space. If the provided address is
244  *	too long an error code of -EINVAL is returned. If the copy gives
245  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
246  */
247 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249 {
250 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 		return -EINVAL;
252 	if (ulen == 0)
253 		return 0;
254 	if (copy_from_user(kaddr, uaddr, ulen))
255 		return -EFAULT;
256 	return audit_sockaddr(ulen, kaddr);
257 }
258 
259 /**
260  *	move_addr_to_user	-	copy an address to user space
261  *	@kaddr: kernel space address
262  *	@klen: length of address in kernel
263  *	@uaddr: user space address
264  *	@ulen: pointer to user length field
265  *
266  *	The value pointed to by ulen on entry is the buffer length available.
267  *	This is overwritten with the buffer space used. -EINVAL is returned
268  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
269  *	is returned if either the buffer or the length field are not
270  *	accessible.
271  *	After copying the data up to the limit the user specifies, the true
272  *	length of the data is written over the length limit the user
273  *	specified. Zero is returned for a success.
274  */
275 
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277 			     void __user *uaddr, int __user *ulen)
278 {
279 	int err;
280 	int len;
281 
282 	BUG_ON(klen > sizeof(struct sockaddr_storage));
283 	err = get_user(len, ulen);
284 	if (err)
285 		return err;
286 	if (len > klen)
287 		len = klen;
288 	if (len < 0)
289 		return -EINVAL;
290 	if (len) {
291 		if (audit_sockaddr(klen, kaddr))
292 			return -ENOMEM;
293 		if (copy_to_user(uaddr, kaddr, len))
294 			return -EFAULT;
295 	}
296 	/*
297 	 *      "fromlen shall refer to the value before truncation.."
298 	 *                      1003.1g
299 	 */
300 	return __put_user(klen, ulen);
301 }
302 
303 static struct kmem_cache *sock_inode_cachep __ro_after_init;
304 
sock_alloc_inode(struct super_block * sb)305 static struct inode *sock_alloc_inode(struct super_block *sb)
306 {
307 	struct socket_alloc *ei;
308 
309 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
310 	if (!ei)
311 		return NULL;
312 	init_waitqueue_head(&ei->socket.wq.wait);
313 	ei->socket.wq.fasync_list = NULL;
314 	ei->socket.wq.flags = 0;
315 
316 	ei->socket.state = SS_UNCONNECTED;
317 	ei->socket.flags = 0;
318 	ei->socket.ops = NULL;
319 	ei->socket.sk = NULL;
320 	ei->socket.file = NULL;
321 
322 	return &ei->vfs_inode;
323 }
324 
sock_free_inode(struct inode * inode)325 static void sock_free_inode(struct inode *inode)
326 {
327 	struct socket_alloc *ei;
328 
329 	ei = container_of(inode, struct socket_alloc, vfs_inode);
330 	kmem_cache_free(sock_inode_cachep, ei);
331 }
332 
init_once(void * foo)333 static void init_once(void *foo)
334 {
335 	struct socket_alloc *ei = (struct socket_alloc *)foo;
336 
337 	inode_init_once(&ei->vfs_inode);
338 }
339 
init_inodecache(void)340 static void init_inodecache(void)
341 {
342 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
343 					      sizeof(struct socket_alloc),
344 					      0,
345 					      (SLAB_HWCACHE_ALIGN |
346 					       SLAB_RECLAIM_ACCOUNT |
347 					       SLAB_ACCOUNT),
348 					      init_once);
349 	BUG_ON(sock_inode_cachep == NULL);
350 }
351 
352 static const struct super_operations sockfs_ops = {
353 	.alloc_inode	= sock_alloc_inode,
354 	.free_inode	= sock_free_inode,
355 	.statfs		= simple_statfs,
356 };
357 
358 /*
359  * sockfs_dname() is called from d_path().
360  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)361 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
362 {
363 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
364 				d_inode(dentry)->i_ino);
365 }
366 
367 static const struct dentry_operations sockfs_dentry_operations = {
368 	.d_dname  = sockfs_dname,
369 };
370 
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)371 static int sockfs_xattr_get(const struct xattr_handler *handler,
372 			    struct dentry *dentry, struct inode *inode,
373 			    const char *suffix, void *value, size_t size)
374 {
375 	if (value) {
376 		if (dentry->d_name.len + 1 > size)
377 			return -ERANGE;
378 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
379 	}
380 	return dentry->d_name.len + 1;
381 }
382 
383 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
384 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
385 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
386 
387 static const struct xattr_handler sockfs_xattr_handler = {
388 	.name = XATTR_NAME_SOCKPROTONAME,
389 	.get = sockfs_xattr_get,
390 };
391 
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)392 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
393 				     struct mnt_idmap *idmap,
394 				     struct dentry *dentry, struct inode *inode,
395 				     const char *suffix, const void *value,
396 				     size_t size, int flags)
397 {
398 	/* Handled by LSM. */
399 	return -EAGAIN;
400 }
401 
402 static const struct xattr_handler sockfs_security_xattr_handler = {
403 	.prefix = XATTR_SECURITY_PREFIX,
404 	.set = sockfs_security_xattr_set,
405 };
406 
407 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
408 	&sockfs_xattr_handler,
409 	&sockfs_security_xattr_handler,
410 	NULL
411 };
412 
sockfs_init_fs_context(struct fs_context * fc)413 static int sockfs_init_fs_context(struct fs_context *fc)
414 {
415 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
416 	if (!ctx)
417 		return -ENOMEM;
418 	ctx->ops = &sockfs_ops;
419 	ctx->dops = &sockfs_dentry_operations;
420 	ctx->xattr = sockfs_xattr_handlers;
421 	return 0;
422 }
423 
424 static struct vfsmount *sock_mnt __read_mostly;
425 
426 static struct file_system_type sock_fs_type = {
427 	.name =		"sockfs",
428 	.init_fs_context = sockfs_init_fs_context,
429 	.kill_sb =	kill_anon_super,
430 };
431 
432 /*
433  *	Obtains the first available file descriptor and sets it up for use.
434  *
435  *	These functions create file structures and maps them to fd space
436  *	of the current process. On success it returns file descriptor
437  *	and file struct implicitly stored in sock->file.
438  *	Note that another thread may close file descriptor before we return
439  *	from this function. We use the fact that now we do not refer
440  *	to socket after mapping. If one day we will need it, this
441  *	function will increment ref. count on file by 1.
442  *
443  *	In any case returned fd MAY BE not valid!
444  *	This race condition is unavoidable
445  *	with shared fd spaces, we cannot solve it inside kernel,
446  *	but we take care of internal coherence yet.
447  */
448 
449 /**
450  *	sock_alloc_file - Bind a &socket to a &file
451  *	@sock: socket
452  *	@flags: file status flags
453  *	@dname: protocol name
454  *
455  *	Returns the &file bound with @sock, implicitly storing it
456  *	in sock->file. If dname is %NULL, sets to "".
457  *
458  *	On failure @sock is released, and an ERR pointer is returned.
459  *
460  *	This function uses GFP_KERNEL internally.
461  */
462 
sock_alloc_file(struct socket * sock,int flags,const char * dname)463 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
464 {
465 	struct file *file;
466 
467 	if (!dname)
468 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
469 
470 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
471 				O_RDWR | (flags & O_NONBLOCK),
472 				&socket_file_ops);
473 	if (IS_ERR(file)) {
474 		sock_release(sock);
475 		return file;
476 	}
477 
478 	file->f_mode |= FMODE_NOWAIT;
479 	sock->file = file;
480 	file->private_data = sock;
481 	stream_open(SOCK_INODE(sock), file);
482 	/*
483 	 * Disable permission and pre-content events, but enable legacy
484 	 * inotify events for legacy users.
485 	 */
486 	file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
487 	return file;
488 }
489 EXPORT_SYMBOL(sock_alloc_file);
490 
sock_map_fd(struct socket * sock,int flags)491 static int sock_map_fd(struct socket *sock, int flags)
492 {
493 	struct file *newfile;
494 	int fd = get_unused_fd_flags(flags);
495 	if (unlikely(fd < 0)) {
496 		sock_release(sock);
497 		return fd;
498 	}
499 
500 	newfile = sock_alloc_file(sock, flags, NULL);
501 	if (!IS_ERR(newfile)) {
502 		fd_install(fd, newfile);
503 		return fd;
504 	}
505 
506 	put_unused_fd(fd);
507 	return PTR_ERR(newfile);
508 }
509 
510 /**
511  *	sock_from_file - Return the &socket bounded to @file.
512  *	@file: file
513  *
514  *	On failure returns %NULL.
515  */
516 
sock_from_file(struct file * file)517 struct socket *sock_from_file(struct file *file)
518 {
519 	if (likely(file->f_op == &socket_file_ops))
520 		return file->private_data;	/* set in sock_alloc_file */
521 
522 	return NULL;
523 }
524 EXPORT_SYMBOL(sock_from_file);
525 
526 /**
527  *	sockfd_lookup - Go from a file number to its socket slot
528  *	@fd: file handle
529  *	@err: pointer to an error code return
530  *
531  *	The file handle passed in is locked and the socket it is bound
532  *	to is returned. If an error occurs the err pointer is overwritten
533  *	with a negative errno code and NULL is returned. The function checks
534  *	for both invalid handles and passing a handle which is not a socket.
535  *
536  *	On a success the socket object pointer is returned.
537  */
538 
sockfd_lookup(int fd,int * err)539 struct socket *sockfd_lookup(int fd, int *err)
540 {
541 	struct file *file;
542 	struct socket *sock;
543 
544 	file = fget(fd);
545 	if (!file) {
546 		*err = -EBADF;
547 		return NULL;
548 	}
549 
550 	sock = sock_from_file(file);
551 	if (!sock) {
552 		*err = -ENOTSOCK;
553 		fput(file);
554 	}
555 	return sock;
556 }
557 EXPORT_SYMBOL(sockfd_lookup);
558 
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)559 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
560 				size_t size)
561 {
562 	ssize_t len;
563 	ssize_t used = 0;
564 
565 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
566 	if (len < 0)
567 		return len;
568 	used += len;
569 	if (buffer) {
570 		if (size < used)
571 			return -ERANGE;
572 		buffer += len;
573 	}
574 
575 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
576 	used += len;
577 	if (buffer) {
578 		if (size < used)
579 			return -ERANGE;
580 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
581 		buffer += len;
582 	}
583 
584 	return used;
585 }
586 
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)587 static int sockfs_setattr(struct mnt_idmap *idmap,
588 			  struct dentry *dentry, struct iattr *iattr)
589 {
590 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
591 
592 	if (!err && (iattr->ia_valid & ATTR_UID)) {
593 		struct socket *sock = SOCKET_I(d_inode(dentry));
594 
595 		if (sock->sk)
596 			sock->sk->sk_uid = iattr->ia_uid;
597 		else
598 			err = -ENOENT;
599 	}
600 
601 	return err;
602 }
603 
604 static const struct inode_operations sockfs_inode_ops = {
605 	.listxattr = sockfs_listxattr,
606 	.setattr = sockfs_setattr,
607 };
608 
609 /**
610  *	sock_alloc - allocate a socket
611  *
612  *	Allocate a new inode and socket object. The two are bound together
613  *	and initialised. The socket is then returned. If we are out of inodes
614  *	NULL is returned. This functions uses GFP_KERNEL internally.
615  */
616 
sock_alloc(void)617 struct socket *sock_alloc(void)
618 {
619 	struct inode *inode;
620 	struct socket *sock;
621 
622 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
623 	if (!inode)
624 		return NULL;
625 
626 	sock = SOCKET_I(inode);
627 
628 	inode->i_ino = get_next_ino();
629 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
630 	inode->i_uid = current_fsuid();
631 	inode->i_gid = current_fsgid();
632 	inode->i_op = &sockfs_inode_ops;
633 
634 	return sock;
635 }
636 EXPORT_SYMBOL(sock_alloc);
637 
__sock_release(struct socket * sock,struct inode * inode)638 static void __sock_release(struct socket *sock, struct inode *inode)
639 {
640 	const struct proto_ops *ops = READ_ONCE(sock->ops);
641 
642 	if (ops) {
643 		struct module *owner = ops->owner;
644 
645 		if (inode)
646 			inode_lock(inode);
647 		ops->release(sock);
648 		sock->sk = NULL;
649 		if (inode)
650 			inode_unlock(inode);
651 		sock->ops = NULL;
652 		module_put(owner);
653 	}
654 
655 	if (sock->wq.fasync_list)
656 		pr_err("%s: fasync list not empty!\n", __func__);
657 
658 	if (!sock->file) {
659 		iput(SOCK_INODE(sock));
660 		return;
661 	}
662 	sock->file = NULL;
663 }
664 
665 /**
666  *	sock_release - close a socket
667  *	@sock: socket to close
668  *
669  *	The socket is released from the protocol stack if it has a release
670  *	callback, and the inode is then released if the socket is bound to
671  *	an inode not a file.
672  */
sock_release(struct socket * sock)673 void sock_release(struct socket *sock)
674 {
675 	__sock_release(sock, NULL);
676 }
677 EXPORT_SYMBOL(sock_release);
678 
__sock_tx_timestamp(__u32 tsflags,__u8 * tx_flags)679 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
680 {
681 	u8 flags = *tx_flags;
682 
683 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
684 		flags |= SKBTX_HW_TSTAMP;
685 
686 		/* PTP hardware clocks can provide a free running cycle counter
687 		 * as a time base for virtual clocks. Tell driver to use the
688 		 * free running cycle counter for timestamp if socket is bound
689 		 * to virtual clock.
690 		 */
691 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
692 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
693 	}
694 
695 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
696 		flags |= SKBTX_SW_TSTAMP;
697 
698 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
699 		flags |= SKBTX_SCHED_TSTAMP;
700 
701 	*tx_flags = flags;
702 }
703 EXPORT_SYMBOL(__sock_tx_timestamp);
704 
705 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
706 					   size_t));
707 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
708 					    size_t));
709 
call_trace_sock_send_length(struct sock * sk,int ret,int flags)710 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
711 						 int flags)
712 {
713 	trace_sock_send_length(sk, ret, 0);
714 }
715 
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)716 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
717 {
718 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
719 				     inet_sendmsg, sock, msg,
720 				     msg_data_left(msg));
721 	BUG_ON(ret == -EIOCBQUEUED);
722 
723 	if (trace_sock_send_length_enabled())
724 		call_trace_sock_send_length(sock->sk, ret, 0);
725 	return ret;
726 }
727 
__sock_sendmsg(struct socket * sock,struct msghdr * msg)728 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
729 {
730 	int err = security_socket_sendmsg(sock, msg,
731 					  msg_data_left(msg));
732 
733 	return err ?: sock_sendmsg_nosec(sock, msg);
734 }
735 
736 /**
737  *	sock_sendmsg - send a message through @sock
738  *	@sock: socket
739  *	@msg: message to send
740  *
741  *	Sends @msg through @sock, passing through LSM.
742  *	Returns the number of bytes sent, or an error code.
743  */
sock_sendmsg(struct socket * sock,struct msghdr * msg)744 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
745 {
746 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
747 	struct sockaddr_storage address;
748 	int save_len = msg->msg_namelen;
749 	int ret;
750 
751 	if (msg->msg_name) {
752 		memcpy(&address, msg->msg_name, msg->msg_namelen);
753 		msg->msg_name = &address;
754 	}
755 
756 	ret = __sock_sendmsg(sock, msg);
757 	msg->msg_name = save_addr;
758 	msg->msg_namelen = save_len;
759 
760 	return ret;
761 }
762 EXPORT_SYMBOL(sock_sendmsg);
763 
764 /**
765  *	kernel_sendmsg - send a message through @sock (kernel-space)
766  *	@sock: socket
767  *	@msg: message header
768  *	@vec: kernel vec
769  *	@num: vec array length
770  *	@size: total message data size
771  *
772  *	Builds the message data with @vec and sends it through @sock.
773  *	Returns the number of bytes sent, or an error code.
774  */
775 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)776 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
777 		   struct kvec *vec, size_t num, size_t size)
778 {
779 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
780 	return sock_sendmsg(sock, msg);
781 }
782 EXPORT_SYMBOL(kernel_sendmsg);
783 
skb_is_err_queue(const struct sk_buff * skb)784 static bool skb_is_err_queue(const struct sk_buff *skb)
785 {
786 	/* pkt_type of skbs enqueued on the error queue are set to
787 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
788 	 * in recvmsg, since skbs received on a local socket will never
789 	 * have a pkt_type of PACKET_OUTGOING.
790 	 */
791 	return skb->pkt_type == PACKET_OUTGOING;
792 }
793 
794 /* On transmit, software and hardware timestamps are returned independently.
795  * As the two skb clones share the hardware timestamp, which may be updated
796  * before the software timestamp is received, a hardware TX timestamp may be
797  * returned only if there is no software TX timestamp. Ignore false software
798  * timestamps, which may be made in the __sock_recv_timestamp() call when the
799  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
800  * hardware timestamp.
801  */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)802 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
803 {
804 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
805 }
806 
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)807 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
808 {
809 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
810 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
811 	struct net_device *orig_dev;
812 	ktime_t hwtstamp;
813 
814 	rcu_read_lock();
815 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
816 	if (orig_dev) {
817 		*if_index = orig_dev->ifindex;
818 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
819 	} else {
820 		hwtstamp = shhwtstamps->hwtstamp;
821 	}
822 	rcu_read_unlock();
823 
824 	return hwtstamp;
825 }
826 
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)827 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
828 			   int if_index)
829 {
830 	struct scm_ts_pktinfo ts_pktinfo;
831 	struct net_device *orig_dev;
832 
833 	if (!skb_mac_header_was_set(skb))
834 		return;
835 
836 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
837 
838 	if (!if_index) {
839 		rcu_read_lock();
840 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
841 		if (orig_dev)
842 			if_index = orig_dev->ifindex;
843 		rcu_read_unlock();
844 	}
845 	ts_pktinfo.if_index = if_index;
846 
847 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
848 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
849 		 sizeof(ts_pktinfo), &ts_pktinfo);
850 }
851 
852 /*
853  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
854  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)855 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
856 	struct sk_buff *skb)
857 {
858 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
859 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
860 	struct scm_timestamping_internal tss;
861 	int empty = 1, false_tstamp = 0;
862 	struct skb_shared_hwtstamps *shhwtstamps =
863 		skb_hwtstamps(skb);
864 	int if_index;
865 	ktime_t hwtstamp;
866 	u32 tsflags;
867 
868 	/* Race occurred between timestamp enabling and packet
869 	   receiving.  Fill in the current time for now. */
870 	if (need_software_tstamp && skb->tstamp == 0) {
871 		__net_timestamp(skb);
872 		false_tstamp = 1;
873 	}
874 
875 	if (need_software_tstamp) {
876 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
877 			if (new_tstamp) {
878 				struct __kernel_sock_timeval tv;
879 
880 				skb_get_new_timestamp(skb, &tv);
881 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
882 					 sizeof(tv), &tv);
883 			} else {
884 				struct __kernel_old_timeval tv;
885 
886 				skb_get_timestamp(skb, &tv);
887 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
888 					 sizeof(tv), &tv);
889 			}
890 		} else {
891 			if (new_tstamp) {
892 				struct __kernel_timespec ts;
893 
894 				skb_get_new_timestampns(skb, &ts);
895 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
896 					 sizeof(ts), &ts);
897 			} else {
898 				struct __kernel_old_timespec ts;
899 
900 				skb_get_timestampns(skb, &ts);
901 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
902 					 sizeof(ts), &ts);
903 			}
904 		}
905 	}
906 
907 	memset(&tss, 0, sizeof(tss));
908 	tsflags = READ_ONCE(sk->sk_tsflags);
909 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
910 	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
911 	      skb_is_err_queue(skb) ||
912 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
913 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
914 		empty = 0;
915 	if (shhwtstamps &&
916 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
917 	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
918 	      skb_is_err_queue(skb) ||
919 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
920 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
921 		if_index = 0;
922 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
923 			hwtstamp = get_timestamp(sk, skb, &if_index);
924 		else
925 			hwtstamp = shhwtstamps->hwtstamp;
926 
927 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
928 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
929 							 READ_ONCE(sk->sk_bind_phc));
930 
931 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
932 			empty = 0;
933 
934 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
935 			    !skb_is_err_queue(skb))
936 				put_ts_pktinfo(msg, skb, if_index);
937 		}
938 	}
939 	if (!empty) {
940 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
941 			put_cmsg_scm_timestamping64(msg, &tss);
942 		else
943 			put_cmsg_scm_timestamping(msg, &tss);
944 
945 		if (skb_is_err_queue(skb) && skb->len &&
946 		    SKB_EXT_ERR(skb)->opt_stats)
947 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
948 				 skb->len, skb->data);
949 	}
950 }
951 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
952 
953 #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)954 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
955 	struct sk_buff *skb)
956 {
957 	int ack;
958 
959 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
960 		return;
961 	if (!skb->wifi_acked_valid)
962 		return;
963 
964 	ack = skb->wifi_acked;
965 
966 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
967 }
968 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
969 #endif
970 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)971 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
972 				   struct sk_buff *skb)
973 {
974 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
975 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
976 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
977 }
978 
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)979 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
980 			   struct sk_buff *skb)
981 {
982 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
983 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
984 		__u32 mark = skb->mark;
985 
986 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
987 	}
988 }
989 
sock_recv_priority(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)990 static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
991 			       struct sk_buff *skb)
992 {
993 	if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
994 		__u32 priority = skb->priority;
995 
996 		put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
997 	}
998 }
999 
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1000 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1001 		       struct sk_buff *skb)
1002 {
1003 	sock_recv_timestamp(msg, sk, skb);
1004 	sock_recv_drops(msg, sk, skb);
1005 	sock_recv_mark(msg, sk, skb);
1006 	sock_recv_priority(msg, sk, skb);
1007 }
1008 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1009 
1010 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1011 					   size_t, int));
1012 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1013 					    size_t, int));
1014 
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1015 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1016 {
1017 	trace_sock_recv_length(sk, ret, flags);
1018 }
1019 
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1020 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1021 				     int flags)
1022 {
1023 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1024 				     inet6_recvmsg,
1025 				     inet_recvmsg, sock, msg,
1026 				     msg_data_left(msg), flags);
1027 	if (trace_sock_recv_length_enabled())
1028 		call_trace_sock_recv_length(sock->sk, ret, flags);
1029 	return ret;
1030 }
1031 
1032 /**
1033  *	sock_recvmsg - receive a message from @sock
1034  *	@sock: socket
1035  *	@msg: message to receive
1036  *	@flags: message flags
1037  *
1038  *	Receives @msg from @sock, passing through LSM. Returns the total number
1039  *	of bytes received, or an error.
1040  */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1041 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1042 {
1043 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1044 
1045 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1046 }
1047 EXPORT_SYMBOL(sock_recvmsg);
1048 
1049 /**
1050  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1051  *	@sock: The socket to receive the message from
1052  *	@msg: Received message
1053  *	@vec: Input s/g array for message data
1054  *	@num: Size of input s/g array
1055  *	@size: Number of bytes to read
1056  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1057  *
1058  *	On return the msg structure contains the scatter/gather array passed in the
1059  *	vec argument. The array is modified so that it consists of the unfilled
1060  *	portion of the original array.
1061  *
1062  *	The returned value is the total number of bytes received, or an error.
1063  */
1064 
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1065 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1066 		   struct kvec *vec, size_t num, size_t size, int flags)
1067 {
1068 	msg->msg_control_is_user = false;
1069 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1070 	return sock_recvmsg(sock, msg, flags);
1071 }
1072 EXPORT_SYMBOL(kernel_recvmsg);
1073 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1074 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1075 				struct pipe_inode_info *pipe, size_t len,
1076 				unsigned int flags)
1077 {
1078 	struct socket *sock = file->private_data;
1079 	const struct proto_ops *ops;
1080 
1081 	ops = READ_ONCE(sock->ops);
1082 	if (unlikely(!ops->splice_read))
1083 		return copy_splice_read(file, ppos, pipe, len, flags);
1084 
1085 	return ops->splice_read(sock, ppos, pipe, len, flags);
1086 }
1087 
sock_splice_eof(struct file * file)1088 static void sock_splice_eof(struct file *file)
1089 {
1090 	struct socket *sock = file->private_data;
1091 	const struct proto_ops *ops;
1092 
1093 	ops = READ_ONCE(sock->ops);
1094 	if (ops->splice_eof)
1095 		ops->splice_eof(sock);
1096 }
1097 
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1098 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1099 {
1100 	struct file *file = iocb->ki_filp;
1101 	struct socket *sock = file->private_data;
1102 	struct msghdr msg = {.msg_iter = *to,
1103 			     .msg_iocb = iocb};
1104 	ssize_t res;
1105 
1106 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1107 		msg.msg_flags = MSG_DONTWAIT;
1108 
1109 	if (iocb->ki_pos != 0)
1110 		return -ESPIPE;
1111 
1112 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1113 		return 0;
1114 
1115 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1116 	*to = msg.msg_iter;
1117 	return res;
1118 }
1119 
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1120 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1121 {
1122 	struct file *file = iocb->ki_filp;
1123 	struct socket *sock = file->private_data;
1124 	struct msghdr msg = {.msg_iter = *from,
1125 			     .msg_iocb = iocb};
1126 	ssize_t res;
1127 
1128 	if (iocb->ki_pos != 0)
1129 		return -ESPIPE;
1130 
1131 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1132 		msg.msg_flags = MSG_DONTWAIT;
1133 
1134 	if (sock->type == SOCK_SEQPACKET)
1135 		msg.msg_flags |= MSG_EOR;
1136 
1137 	res = __sock_sendmsg(sock, &msg);
1138 	*from = msg.msg_iter;
1139 	return res;
1140 }
1141 
1142 /*
1143  * Atomic setting of ioctl hooks to avoid race
1144  * with module unload.
1145  */
1146 
1147 static DEFINE_MUTEX(br_ioctl_mutex);
1148 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1149 			    unsigned int cmd, struct ifreq *ifr,
1150 			    void __user *uarg);
1151 
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1152 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1153 			     unsigned int cmd, struct ifreq *ifr,
1154 			     void __user *uarg))
1155 {
1156 	mutex_lock(&br_ioctl_mutex);
1157 	br_ioctl_hook = hook;
1158 	mutex_unlock(&br_ioctl_mutex);
1159 }
1160 EXPORT_SYMBOL(brioctl_set);
1161 
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1162 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1163 		  struct ifreq *ifr, void __user *uarg)
1164 {
1165 	int err = -ENOPKG;
1166 
1167 	if (!br_ioctl_hook)
1168 		request_module("bridge");
1169 
1170 	mutex_lock(&br_ioctl_mutex);
1171 	if (br_ioctl_hook)
1172 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1173 	mutex_unlock(&br_ioctl_mutex);
1174 
1175 	return err;
1176 }
1177 
1178 static DEFINE_MUTEX(vlan_ioctl_mutex);
1179 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1180 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1181 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1182 {
1183 	mutex_lock(&vlan_ioctl_mutex);
1184 	vlan_ioctl_hook = hook;
1185 	mutex_unlock(&vlan_ioctl_mutex);
1186 }
1187 EXPORT_SYMBOL(vlan_ioctl_set);
1188 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1189 static long sock_do_ioctl(struct net *net, struct socket *sock,
1190 			  unsigned int cmd, unsigned long arg)
1191 {
1192 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1193 	struct ifreq ifr;
1194 	bool need_copyout;
1195 	int err;
1196 	void __user *argp = (void __user *)arg;
1197 	void __user *data;
1198 
1199 	err = ops->ioctl(sock, cmd, arg);
1200 
1201 	/*
1202 	 * If this ioctl is unknown try to hand it down
1203 	 * to the NIC driver.
1204 	 */
1205 	if (err != -ENOIOCTLCMD)
1206 		return err;
1207 
1208 	if (!is_socket_ioctl_cmd(cmd))
1209 		return -ENOTTY;
1210 
1211 	if (get_user_ifreq(&ifr, &data, argp))
1212 		return -EFAULT;
1213 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1214 	if (!err && need_copyout)
1215 		if (put_user_ifreq(&ifr, argp))
1216 			return -EFAULT;
1217 
1218 	return err;
1219 }
1220 
1221 /*
1222  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1223  *	what to do with it - that's up to the protocol still.
1224  */
1225 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1226 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1227 {
1228 	const struct proto_ops  *ops;
1229 	struct socket *sock;
1230 	struct sock *sk;
1231 	void __user *argp = (void __user *)arg;
1232 	int pid, err;
1233 	struct net *net;
1234 
1235 	sock = file->private_data;
1236 	ops = READ_ONCE(sock->ops);
1237 	sk = sock->sk;
1238 	net = sock_net(sk);
1239 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1240 		struct ifreq ifr;
1241 		void __user *data;
1242 		bool need_copyout;
1243 		if (get_user_ifreq(&ifr, &data, argp))
1244 			return -EFAULT;
1245 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1246 		if (!err && need_copyout)
1247 			if (put_user_ifreq(&ifr, argp))
1248 				return -EFAULT;
1249 	} else
1250 #ifdef CONFIG_WEXT_CORE
1251 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1252 		err = wext_handle_ioctl(net, cmd, argp);
1253 	} else
1254 #endif
1255 		switch (cmd) {
1256 		case FIOSETOWN:
1257 		case SIOCSPGRP:
1258 			err = -EFAULT;
1259 			if (get_user(pid, (int __user *)argp))
1260 				break;
1261 			err = f_setown(sock->file, pid, 1);
1262 			break;
1263 		case FIOGETOWN:
1264 		case SIOCGPGRP:
1265 			err = put_user(f_getown(sock->file),
1266 				       (int __user *)argp);
1267 			break;
1268 		case SIOCGIFBR:
1269 		case SIOCSIFBR:
1270 		case SIOCBRADDBR:
1271 		case SIOCBRDELBR:
1272 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1273 			break;
1274 		case SIOCGIFVLAN:
1275 		case SIOCSIFVLAN:
1276 			err = -ENOPKG;
1277 			if (!vlan_ioctl_hook)
1278 				request_module("8021q");
1279 
1280 			mutex_lock(&vlan_ioctl_mutex);
1281 			if (vlan_ioctl_hook)
1282 				err = vlan_ioctl_hook(net, argp);
1283 			mutex_unlock(&vlan_ioctl_mutex);
1284 			break;
1285 		case SIOCGSKNS:
1286 			err = -EPERM;
1287 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1288 				break;
1289 
1290 			err = open_related_ns(&net->ns, get_net_ns);
1291 			break;
1292 		case SIOCGSTAMP_OLD:
1293 		case SIOCGSTAMPNS_OLD:
1294 			if (!ops->gettstamp) {
1295 				err = -ENOIOCTLCMD;
1296 				break;
1297 			}
1298 			err = ops->gettstamp(sock, argp,
1299 					     cmd == SIOCGSTAMP_OLD,
1300 					     !IS_ENABLED(CONFIG_64BIT));
1301 			break;
1302 		case SIOCGSTAMP_NEW:
1303 		case SIOCGSTAMPNS_NEW:
1304 			if (!ops->gettstamp) {
1305 				err = -ENOIOCTLCMD;
1306 				break;
1307 			}
1308 			err = ops->gettstamp(sock, argp,
1309 					     cmd == SIOCGSTAMP_NEW,
1310 					     false);
1311 			break;
1312 
1313 		case SIOCGIFCONF:
1314 			err = dev_ifconf(net, argp);
1315 			break;
1316 
1317 		default:
1318 			err = sock_do_ioctl(net, sock, cmd, arg);
1319 			break;
1320 		}
1321 	return err;
1322 }
1323 
1324 /**
1325  *	sock_create_lite - creates a socket
1326  *	@family: protocol family (AF_INET, ...)
1327  *	@type: communication type (SOCK_STREAM, ...)
1328  *	@protocol: protocol (0, ...)
1329  *	@res: new socket
1330  *
1331  *	Creates a new socket and assigns it to @res, passing through LSM.
1332  *	The new socket initialization is not complete, see kernel_accept().
1333  *	Returns 0 or an error. On failure @res is set to %NULL.
1334  *	This function internally uses GFP_KERNEL.
1335  */
1336 
sock_create_lite(int family,int type,int protocol,struct socket ** res)1337 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1338 {
1339 	int err;
1340 	struct socket *sock = NULL;
1341 
1342 	err = security_socket_create(family, type, protocol, 1);
1343 	if (err)
1344 		goto out;
1345 
1346 	sock = sock_alloc();
1347 	if (!sock) {
1348 		err = -ENOMEM;
1349 		goto out;
1350 	}
1351 
1352 	sock->type = type;
1353 	err = security_socket_post_create(sock, family, type, protocol, 1);
1354 	if (err)
1355 		goto out_release;
1356 
1357 out:
1358 	*res = sock;
1359 	return err;
1360 out_release:
1361 	sock_release(sock);
1362 	sock = NULL;
1363 	goto out;
1364 }
1365 EXPORT_SYMBOL(sock_create_lite);
1366 
1367 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1368 static __poll_t sock_poll(struct file *file, poll_table *wait)
1369 {
1370 	struct socket *sock = file->private_data;
1371 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1372 	__poll_t events = poll_requested_events(wait), flag = 0;
1373 
1374 	if (!ops->poll)
1375 		return 0;
1376 
1377 	if (sk_can_busy_loop(sock->sk)) {
1378 		/* poll once if requested by the syscall */
1379 		if (events & POLL_BUSY_LOOP)
1380 			sk_busy_loop(sock->sk, 1);
1381 
1382 		/* if this socket can poll_ll, tell the system call */
1383 		flag = POLL_BUSY_LOOP;
1384 	}
1385 
1386 	return ops->poll(file, sock, wait) | flag;
1387 }
1388 
sock_mmap(struct file * file,struct vm_area_struct * vma)1389 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1390 {
1391 	struct socket *sock = file->private_data;
1392 
1393 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1394 }
1395 
sock_close(struct inode * inode,struct file * filp)1396 static int sock_close(struct inode *inode, struct file *filp)
1397 {
1398 	__sock_release(SOCKET_I(inode), inode);
1399 	return 0;
1400 }
1401 
1402 /*
1403  *	Update the socket async list
1404  *
1405  *	Fasync_list locking strategy.
1406  *
1407  *	1. fasync_list is modified only under process context socket lock
1408  *	   i.e. under semaphore.
1409  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1410  *	   or under socket lock
1411  */
1412 
sock_fasync(int fd,struct file * filp,int on)1413 static int sock_fasync(int fd, struct file *filp, int on)
1414 {
1415 	struct socket *sock = filp->private_data;
1416 	struct sock *sk = sock->sk;
1417 	struct socket_wq *wq = &sock->wq;
1418 
1419 	if (sk == NULL)
1420 		return -EINVAL;
1421 
1422 	lock_sock(sk);
1423 	fasync_helper(fd, filp, on, &wq->fasync_list);
1424 
1425 	if (!wq->fasync_list)
1426 		sock_reset_flag(sk, SOCK_FASYNC);
1427 	else
1428 		sock_set_flag(sk, SOCK_FASYNC);
1429 
1430 	release_sock(sk);
1431 	return 0;
1432 }
1433 
1434 /* This function may be called only under rcu_lock */
1435 
sock_wake_async(struct socket_wq * wq,int how,int band)1436 int sock_wake_async(struct socket_wq *wq, int how, int band)
1437 {
1438 	if (!wq || !wq->fasync_list)
1439 		return -1;
1440 
1441 	switch (how) {
1442 	case SOCK_WAKE_WAITD:
1443 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1444 			break;
1445 		goto call_kill;
1446 	case SOCK_WAKE_SPACE:
1447 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1448 			break;
1449 		fallthrough;
1450 	case SOCK_WAKE_IO:
1451 call_kill:
1452 		kill_fasync(&wq->fasync_list, SIGIO, band);
1453 		break;
1454 	case SOCK_WAKE_URG:
1455 		kill_fasync(&wq->fasync_list, SIGURG, band);
1456 	}
1457 
1458 	return 0;
1459 }
1460 EXPORT_SYMBOL(sock_wake_async);
1461 
1462 /**
1463  *	__sock_create - creates a socket
1464  *	@net: net namespace
1465  *	@family: protocol family (AF_INET, ...)
1466  *	@type: communication type (SOCK_STREAM, ...)
1467  *	@protocol: protocol (0, ...)
1468  *	@res: new socket
1469  *	@kern: boolean for kernel space sockets
1470  *
1471  *	Creates a new socket and assigns it to @res, passing through LSM.
1472  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1473  *	be set to true if the socket resides in kernel space.
1474  *	This function internally uses GFP_KERNEL.
1475  */
1476 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1477 int __sock_create(struct net *net, int family, int type, int protocol,
1478 			 struct socket **res, int kern)
1479 {
1480 	int err;
1481 	struct socket *sock;
1482 	const struct net_proto_family *pf;
1483 
1484 	/*
1485 	 *      Check protocol is in range
1486 	 */
1487 	if (family < 0 || family >= NPROTO)
1488 		return -EAFNOSUPPORT;
1489 	if (type < 0 || type >= SOCK_MAX)
1490 		return -EINVAL;
1491 
1492 	/* Compatibility.
1493 
1494 	   This uglymoron is moved from INET layer to here to avoid
1495 	   deadlock in module load.
1496 	 */
1497 	if (family == PF_INET && type == SOCK_PACKET) {
1498 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1499 			     current->comm);
1500 		family = PF_PACKET;
1501 	}
1502 
1503 	err = security_socket_create(family, type, protocol, kern);
1504 	if (err)
1505 		return err;
1506 
1507 	/*
1508 	 *	Allocate the socket and allow the family to set things up. if
1509 	 *	the protocol is 0, the family is instructed to select an appropriate
1510 	 *	default.
1511 	 */
1512 	sock = sock_alloc();
1513 	if (!sock) {
1514 		net_warn_ratelimited("socket: no more sockets\n");
1515 		return -ENFILE;	/* Not exactly a match, but its the
1516 				   closest posix thing */
1517 	}
1518 
1519 	sock->type = type;
1520 
1521 #ifdef CONFIG_MODULES
1522 	/* Attempt to load a protocol module if the find failed.
1523 	 *
1524 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1525 	 * requested real, full-featured networking support upon configuration.
1526 	 * Otherwise module support will break!
1527 	 */
1528 	if (rcu_access_pointer(net_families[family]) == NULL)
1529 		request_module("net-pf-%d", family);
1530 #endif
1531 
1532 	rcu_read_lock();
1533 	pf = rcu_dereference(net_families[family]);
1534 	err = -EAFNOSUPPORT;
1535 	if (!pf)
1536 		goto out_release;
1537 
1538 	/*
1539 	 * We will call the ->create function, that possibly is in a loadable
1540 	 * module, so we have to bump that loadable module refcnt first.
1541 	 */
1542 	if (!try_module_get(pf->owner))
1543 		goto out_release;
1544 
1545 	/* Now protected by module ref count */
1546 	rcu_read_unlock();
1547 
1548 	err = pf->create(net, sock, protocol, kern);
1549 	if (err < 0) {
1550 		/* ->create should release the allocated sock->sk object on error
1551 		 * and make sure sock->sk is set to NULL to avoid use-after-free
1552 		 */
1553 		DEBUG_NET_WARN_ONCE(sock->sk,
1554 				    "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1555 				    pf->create, family, type, protocol);
1556 		goto out_module_put;
1557 	}
1558 
1559 	/*
1560 	 * Now to bump the refcnt of the [loadable] module that owns this
1561 	 * socket at sock_release time we decrement its refcnt.
1562 	 */
1563 	if (!try_module_get(sock->ops->owner))
1564 		goto out_module_busy;
1565 
1566 	/*
1567 	 * Now that we're done with the ->create function, the [loadable]
1568 	 * module can have its refcnt decremented
1569 	 */
1570 	module_put(pf->owner);
1571 	err = security_socket_post_create(sock, family, type, protocol, kern);
1572 	if (err)
1573 		goto out_sock_release;
1574 	*res = sock;
1575 
1576 	return 0;
1577 
1578 out_module_busy:
1579 	err = -EAFNOSUPPORT;
1580 out_module_put:
1581 	sock->ops = NULL;
1582 	module_put(pf->owner);
1583 out_sock_release:
1584 	sock_release(sock);
1585 	return err;
1586 
1587 out_release:
1588 	rcu_read_unlock();
1589 	goto out_sock_release;
1590 }
1591 EXPORT_SYMBOL(__sock_create);
1592 
1593 /**
1594  *	sock_create - creates a socket
1595  *	@family: protocol family (AF_INET, ...)
1596  *	@type: communication type (SOCK_STREAM, ...)
1597  *	@protocol: protocol (0, ...)
1598  *	@res: new socket
1599  *
1600  *	A wrapper around __sock_create().
1601  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1602  */
1603 
sock_create(int family,int type,int protocol,struct socket ** res)1604 int sock_create(int family, int type, int protocol, struct socket **res)
1605 {
1606 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1607 }
1608 EXPORT_SYMBOL(sock_create);
1609 
1610 /**
1611  *	sock_create_kern - creates a socket (kernel space)
1612  *	@net: net namespace
1613  *	@family: protocol family (AF_INET, ...)
1614  *	@type: communication type (SOCK_STREAM, ...)
1615  *	@protocol: protocol (0, ...)
1616  *	@res: new socket
1617  *
1618  *	A wrapper around __sock_create().
1619  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1620  */
1621 
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1622 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1623 {
1624 	return __sock_create(net, family, type, protocol, res, 1);
1625 }
1626 EXPORT_SYMBOL(sock_create_kern);
1627 
__sys_socket_create(int family,int type,int protocol)1628 static struct socket *__sys_socket_create(int family, int type, int protocol)
1629 {
1630 	struct socket *sock;
1631 	int retval;
1632 
1633 	/* Check the SOCK_* constants for consistency.  */
1634 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1635 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1636 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1637 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1638 
1639 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1640 		return ERR_PTR(-EINVAL);
1641 	type &= SOCK_TYPE_MASK;
1642 
1643 	retval = sock_create(family, type, protocol, &sock);
1644 	if (retval < 0)
1645 		return ERR_PTR(retval);
1646 
1647 	return sock;
1648 }
1649 
__sys_socket_file(int family,int type,int protocol)1650 struct file *__sys_socket_file(int family, int type, int protocol)
1651 {
1652 	struct socket *sock;
1653 	int flags;
1654 
1655 	sock = __sys_socket_create(family, type, protocol);
1656 	if (IS_ERR(sock))
1657 		return ERR_CAST(sock);
1658 
1659 	flags = type & ~SOCK_TYPE_MASK;
1660 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1661 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1662 
1663 	return sock_alloc_file(sock, flags, NULL);
1664 }
1665 
1666 /*	A hook for bpf progs to attach to and update socket protocol.
1667  *
1668  *	A static noinline declaration here could cause the compiler to
1669  *	optimize away the function. A global noinline declaration will
1670  *	keep the definition, but may optimize away the callsite.
1671  *	Therefore, __weak is needed to ensure that the call is still
1672  *	emitted, by telling the compiler that we don't know what the
1673  *	function might eventually be.
1674  */
1675 
1676 __bpf_hook_start();
1677 
update_socket_protocol(int family,int type,int protocol)1678 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1679 {
1680 	return protocol;
1681 }
1682 
1683 __bpf_hook_end();
1684 
__sys_socket(int family,int type,int protocol)1685 int __sys_socket(int family, int type, int protocol)
1686 {
1687 	struct socket *sock;
1688 	int flags;
1689 
1690 	sock = __sys_socket_create(family, type,
1691 				   update_socket_protocol(family, type, protocol));
1692 	if (IS_ERR(sock))
1693 		return PTR_ERR(sock);
1694 
1695 	flags = type & ~SOCK_TYPE_MASK;
1696 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1697 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1698 
1699 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1700 }
1701 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1702 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1703 {
1704 	return __sys_socket(family, type, protocol);
1705 }
1706 
1707 /*
1708  *	Create a pair of connected sockets.
1709  */
1710 
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1711 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1712 {
1713 	struct socket *sock1, *sock2;
1714 	int fd1, fd2, err;
1715 	struct file *newfile1, *newfile2;
1716 	int flags;
1717 
1718 	flags = type & ~SOCK_TYPE_MASK;
1719 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1720 		return -EINVAL;
1721 	type &= SOCK_TYPE_MASK;
1722 
1723 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1724 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1725 
1726 	/*
1727 	 * reserve descriptors and make sure we won't fail
1728 	 * to return them to userland.
1729 	 */
1730 	fd1 = get_unused_fd_flags(flags);
1731 	if (unlikely(fd1 < 0))
1732 		return fd1;
1733 
1734 	fd2 = get_unused_fd_flags(flags);
1735 	if (unlikely(fd2 < 0)) {
1736 		put_unused_fd(fd1);
1737 		return fd2;
1738 	}
1739 
1740 	err = put_user(fd1, &usockvec[0]);
1741 	if (err)
1742 		goto out;
1743 
1744 	err = put_user(fd2, &usockvec[1]);
1745 	if (err)
1746 		goto out;
1747 
1748 	/*
1749 	 * Obtain the first socket and check if the underlying protocol
1750 	 * supports the socketpair call.
1751 	 */
1752 
1753 	err = sock_create(family, type, protocol, &sock1);
1754 	if (unlikely(err < 0))
1755 		goto out;
1756 
1757 	err = sock_create(family, type, protocol, &sock2);
1758 	if (unlikely(err < 0)) {
1759 		sock_release(sock1);
1760 		goto out;
1761 	}
1762 
1763 	err = security_socket_socketpair(sock1, sock2);
1764 	if (unlikely(err)) {
1765 		sock_release(sock2);
1766 		sock_release(sock1);
1767 		goto out;
1768 	}
1769 
1770 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1771 	if (unlikely(err < 0)) {
1772 		sock_release(sock2);
1773 		sock_release(sock1);
1774 		goto out;
1775 	}
1776 
1777 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1778 	if (IS_ERR(newfile1)) {
1779 		err = PTR_ERR(newfile1);
1780 		sock_release(sock2);
1781 		goto out;
1782 	}
1783 
1784 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1785 	if (IS_ERR(newfile2)) {
1786 		err = PTR_ERR(newfile2);
1787 		fput(newfile1);
1788 		goto out;
1789 	}
1790 
1791 	audit_fd_pair(fd1, fd2);
1792 
1793 	fd_install(fd1, newfile1);
1794 	fd_install(fd2, newfile2);
1795 	return 0;
1796 
1797 out:
1798 	put_unused_fd(fd2);
1799 	put_unused_fd(fd1);
1800 	return err;
1801 }
1802 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1803 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1804 		int __user *, usockvec)
1805 {
1806 	return __sys_socketpair(family, type, protocol, usockvec);
1807 }
1808 
__sys_bind_socket(struct socket * sock,struct sockaddr_storage * address,int addrlen)1809 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1810 		      int addrlen)
1811 {
1812 	int err;
1813 
1814 	err = security_socket_bind(sock, (struct sockaddr *)address,
1815 				   addrlen);
1816 	if (!err)
1817 		err = READ_ONCE(sock->ops)->bind(sock,
1818 						 (struct sockaddr *)address,
1819 						 addrlen);
1820 	return err;
1821 }
1822 
1823 /*
1824  *	Bind a name to a socket. Nothing much to do here since it's
1825  *	the protocol's responsibility to handle the local address.
1826  *
1827  *	We move the socket address to kernel space before we call
1828  *	the protocol layer (having also checked the address is ok).
1829  */
1830 
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1831 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1832 {
1833 	struct socket *sock;
1834 	struct sockaddr_storage address;
1835 	CLASS(fd, f)(fd);
1836 	int err;
1837 
1838 	if (fd_empty(f))
1839 		return -EBADF;
1840 	sock = sock_from_file(fd_file(f));
1841 	if (unlikely(!sock))
1842 		return -ENOTSOCK;
1843 
1844 	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1845 	if (unlikely(err))
1846 		return err;
1847 
1848 	return __sys_bind_socket(sock, &address, addrlen);
1849 }
1850 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1851 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1852 {
1853 	return __sys_bind(fd, umyaddr, addrlen);
1854 }
1855 
1856 /*
1857  *	Perform a listen. Basically, we allow the protocol to do anything
1858  *	necessary for a listen, and if that works, we mark the socket as
1859  *	ready for listening.
1860  */
__sys_listen_socket(struct socket * sock,int backlog)1861 int __sys_listen_socket(struct socket *sock, int backlog)
1862 {
1863 	int somaxconn, err;
1864 
1865 	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1866 	if ((unsigned int)backlog > somaxconn)
1867 		backlog = somaxconn;
1868 
1869 	err = security_socket_listen(sock, backlog);
1870 	if (!err)
1871 		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1872 	return err;
1873 }
1874 
__sys_listen(int fd,int backlog)1875 int __sys_listen(int fd, int backlog)
1876 {
1877 	CLASS(fd, f)(fd);
1878 	struct socket *sock;
1879 
1880 	if (fd_empty(f))
1881 		return -EBADF;
1882 	sock = sock_from_file(fd_file(f));
1883 	if (unlikely(!sock))
1884 		return -ENOTSOCK;
1885 
1886 	return __sys_listen_socket(sock, backlog);
1887 }
1888 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1889 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1890 {
1891 	return __sys_listen(fd, backlog);
1892 }
1893 
do_accept(struct file * file,struct proto_accept_arg * arg,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1894 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1895 		       struct sockaddr __user *upeer_sockaddr,
1896 		       int __user *upeer_addrlen, int flags)
1897 {
1898 	struct socket *sock, *newsock;
1899 	struct file *newfile;
1900 	int err, len;
1901 	struct sockaddr_storage address;
1902 	const struct proto_ops *ops;
1903 
1904 	sock = sock_from_file(file);
1905 	if (!sock)
1906 		return ERR_PTR(-ENOTSOCK);
1907 
1908 	newsock = sock_alloc();
1909 	if (!newsock)
1910 		return ERR_PTR(-ENFILE);
1911 	ops = READ_ONCE(sock->ops);
1912 
1913 	newsock->type = sock->type;
1914 	newsock->ops = ops;
1915 
1916 	/*
1917 	 * We don't need try_module_get here, as the listening socket (sock)
1918 	 * has the protocol module (sock->ops->owner) held.
1919 	 */
1920 	__module_get(ops->owner);
1921 
1922 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1923 	if (IS_ERR(newfile))
1924 		return newfile;
1925 
1926 	err = security_socket_accept(sock, newsock);
1927 	if (err)
1928 		goto out_fd;
1929 
1930 	arg->flags |= sock->file->f_flags;
1931 	err = ops->accept(sock, newsock, arg);
1932 	if (err < 0)
1933 		goto out_fd;
1934 
1935 	if (upeer_sockaddr) {
1936 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1937 		if (len < 0) {
1938 			err = -ECONNABORTED;
1939 			goto out_fd;
1940 		}
1941 		err = move_addr_to_user(&address,
1942 					len, upeer_sockaddr, upeer_addrlen);
1943 		if (err < 0)
1944 			goto out_fd;
1945 	}
1946 
1947 	/* File flags are not inherited via accept() unlike another OSes. */
1948 	return newfile;
1949 out_fd:
1950 	fput(newfile);
1951 	return ERR_PTR(err);
1952 }
1953 
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1954 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1955 			      int __user *upeer_addrlen, int flags)
1956 {
1957 	struct proto_accept_arg arg = { };
1958 	struct file *newfile;
1959 	int newfd;
1960 
1961 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1962 		return -EINVAL;
1963 
1964 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1965 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1966 
1967 	newfd = get_unused_fd_flags(flags);
1968 	if (unlikely(newfd < 0))
1969 		return newfd;
1970 
1971 	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1972 			    flags);
1973 	if (IS_ERR(newfile)) {
1974 		put_unused_fd(newfd);
1975 		return PTR_ERR(newfile);
1976 	}
1977 	fd_install(newfd, newfile);
1978 	return newfd;
1979 }
1980 
1981 /*
1982  *	For accept, we attempt to create a new socket, set up the link
1983  *	with the client, wake up the client, then return the new
1984  *	connected fd. We collect the address of the connector in kernel
1985  *	space and move it to user at the very end. This is unclean because
1986  *	we open the socket then return an error.
1987  *
1988  *	1003.1g adds the ability to recvmsg() to query connection pending
1989  *	status to recvmsg. We need to add that support in a way thats
1990  *	clean when we restructure accept also.
1991  */
1992 
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1993 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1994 		  int __user *upeer_addrlen, int flags)
1995 {
1996 	CLASS(fd, f)(fd);
1997 
1998 	if (fd_empty(f))
1999 		return -EBADF;
2000 	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2001 					 upeer_addrlen, flags);
2002 }
2003 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)2004 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2005 		int __user *, upeer_addrlen, int, flags)
2006 {
2007 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2008 }
2009 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2010 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2011 		int __user *, upeer_addrlen)
2012 {
2013 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2014 }
2015 
2016 /*
2017  *	Attempt to connect to a socket with the server address.  The address
2018  *	is in user space so we verify it is OK and move it to kernel space.
2019  *
2020  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2021  *	break bindings
2022  *
2023  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2024  *	other SEQPACKET protocols that take time to connect() as it doesn't
2025  *	include the -EINPROGRESS status for such sockets.
2026  */
2027 
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2028 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2029 		       int addrlen, int file_flags)
2030 {
2031 	struct socket *sock;
2032 	int err;
2033 
2034 	sock = sock_from_file(file);
2035 	if (!sock) {
2036 		err = -ENOTSOCK;
2037 		goto out;
2038 	}
2039 
2040 	err =
2041 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2042 	if (err)
2043 		goto out;
2044 
2045 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2046 				addrlen, sock->file->f_flags | file_flags);
2047 out:
2048 	return err;
2049 }
2050 
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2051 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2052 {
2053 	struct sockaddr_storage address;
2054 	CLASS(fd, f)(fd);
2055 	int ret;
2056 
2057 	if (fd_empty(f))
2058 		return -EBADF;
2059 
2060 	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2061 	if (ret)
2062 		return ret;
2063 
2064 	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2065 }
2066 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2067 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2068 		int, addrlen)
2069 {
2070 	return __sys_connect(fd, uservaddr, addrlen);
2071 }
2072 
2073 /*
2074  *	Get the local address ('name') of a socket object. Move the obtained
2075  *	name to user space.
2076  */
2077 
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2078 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2079 		      int __user *usockaddr_len)
2080 {
2081 	struct socket *sock;
2082 	struct sockaddr_storage address;
2083 	CLASS(fd, f)(fd);
2084 	int err;
2085 
2086 	if (fd_empty(f))
2087 		return -EBADF;
2088 	sock = sock_from_file(fd_file(f));
2089 	if (unlikely(!sock))
2090 		return -ENOTSOCK;
2091 
2092 	err = security_socket_getsockname(sock);
2093 	if (err)
2094 		return err;
2095 
2096 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2097 	if (err < 0)
2098 		return err;
2099 
2100 	/* "err" is actually length in this case */
2101 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2102 }
2103 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2104 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2105 		int __user *, usockaddr_len)
2106 {
2107 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2108 }
2109 
2110 /*
2111  *	Get the remote address ('name') of a socket object. Move the obtained
2112  *	name to user space.
2113  */
2114 
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2115 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2116 		      int __user *usockaddr_len)
2117 {
2118 	struct socket *sock;
2119 	struct sockaddr_storage address;
2120 	CLASS(fd, f)(fd);
2121 	int err;
2122 
2123 	if (fd_empty(f))
2124 		return -EBADF;
2125 	sock = sock_from_file(fd_file(f));
2126 	if (unlikely(!sock))
2127 		return -ENOTSOCK;
2128 
2129 	err = security_socket_getpeername(sock);
2130 	if (err)
2131 		return err;
2132 
2133 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2134 	if (err < 0)
2135 		return err;
2136 
2137 	/* "err" is actually length in this case */
2138 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2139 }
2140 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2141 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2142 		int __user *, usockaddr_len)
2143 {
2144 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2145 }
2146 
2147 /*
2148  *	Send a datagram to a given address. We move the address into kernel
2149  *	space and check the user space data area is readable before invoking
2150  *	the protocol.
2151  */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2152 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2153 		 struct sockaddr __user *addr,  int addr_len)
2154 {
2155 	struct socket *sock;
2156 	struct sockaddr_storage address;
2157 	int err;
2158 	struct msghdr msg;
2159 
2160 	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2161 	if (unlikely(err))
2162 		return err;
2163 
2164 	CLASS(fd, f)(fd);
2165 	if (fd_empty(f))
2166 		return -EBADF;
2167 	sock = sock_from_file(fd_file(f));
2168 	if (unlikely(!sock))
2169 		return -ENOTSOCK;
2170 
2171 	msg.msg_name = NULL;
2172 	msg.msg_control = NULL;
2173 	msg.msg_controllen = 0;
2174 	msg.msg_namelen = 0;
2175 	msg.msg_ubuf = NULL;
2176 	if (addr) {
2177 		err = move_addr_to_kernel(addr, addr_len, &address);
2178 		if (err < 0)
2179 			return err;
2180 		msg.msg_name = (struct sockaddr *)&address;
2181 		msg.msg_namelen = addr_len;
2182 	}
2183 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2184 	if (sock->file->f_flags & O_NONBLOCK)
2185 		flags |= MSG_DONTWAIT;
2186 	msg.msg_flags = flags;
2187 	return __sock_sendmsg(sock, &msg);
2188 }
2189 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2190 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2191 		unsigned int, flags, struct sockaddr __user *, addr,
2192 		int, addr_len)
2193 {
2194 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2195 }
2196 
2197 /*
2198  *	Send a datagram down a socket.
2199  */
2200 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2201 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2202 		unsigned int, flags)
2203 {
2204 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2205 }
2206 
2207 /*
2208  *	Receive a frame from the socket and optionally record the address of the
2209  *	sender. We verify the buffers are writable and if needed move the
2210  *	sender address from kernel to user space.
2211  */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2212 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2213 		   struct sockaddr __user *addr, int __user *addr_len)
2214 {
2215 	struct sockaddr_storage address;
2216 	struct msghdr msg = {
2217 		/* Save some cycles and don't copy the address if not needed */
2218 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2219 	};
2220 	struct socket *sock;
2221 	int err, err2;
2222 
2223 	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2224 	if (unlikely(err))
2225 		return err;
2226 
2227 	CLASS(fd, f)(fd);
2228 
2229 	if (fd_empty(f))
2230 		return -EBADF;
2231 	sock = sock_from_file(fd_file(f));
2232 	if (unlikely(!sock))
2233 		return -ENOTSOCK;
2234 
2235 	if (sock->file->f_flags & O_NONBLOCK)
2236 		flags |= MSG_DONTWAIT;
2237 	err = sock_recvmsg(sock, &msg, flags);
2238 
2239 	if (err >= 0 && addr != NULL) {
2240 		err2 = move_addr_to_user(&address,
2241 					 msg.msg_namelen, addr, addr_len);
2242 		if (err2 < 0)
2243 			err = err2;
2244 	}
2245 	return err;
2246 }
2247 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2248 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2249 		unsigned int, flags, struct sockaddr __user *, addr,
2250 		int __user *, addr_len)
2251 {
2252 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2253 }
2254 
2255 /*
2256  *	Receive a datagram from a socket.
2257  */
2258 
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2259 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2260 		unsigned int, flags)
2261 {
2262 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2263 }
2264 
sock_use_custom_sol_socket(const struct socket * sock)2265 static bool sock_use_custom_sol_socket(const struct socket *sock)
2266 {
2267 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2268 }
2269 
do_sock_setsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,int optlen)2270 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2271 		       int optname, sockptr_t optval, int optlen)
2272 {
2273 	const struct proto_ops *ops;
2274 	char *kernel_optval = NULL;
2275 	int err;
2276 
2277 	if (optlen < 0)
2278 		return -EINVAL;
2279 
2280 	err = security_socket_setsockopt(sock, level, optname);
2281 	if (err)
2282 		goto out_put;
2283 
2284 	if (!compat)
2285 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2286 						     optval, &optlen,
2287 						     &kernel_optval);
2288 	if (err < 0)
2289 		goto out_put;
2290 	if (err > 0) {
2291 		err = 0;
2292 		goto out_put;
2293 	}
2294 
2295 	if (kernel_optval)
2296 		optval = KERNEL_SOCKPTR(kernel_optval);
2297 	ops = READ_ONCE(sock->ops);
2298 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2299 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2300 	else if (unlikely(!ops->setsockopt))
2301 		err = -EOPNOTSUPP;
2302 	else
2303 		err = ops->setsockopt(sock, level, optname, optval,
2304 					    optlen);
2305 	kfree(kernel_optval);
2306 out_put:
2307 	return err;
2308 }
2309 EXPORT_SYMBOL(do_sock_setsockopt);
2310 
2311 /* Set a socket option. Because we don't know the option lengths we have
2312  * to pass the user mode parameter for the protocols to sort out.
2313  */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2314 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2315 		     int optlen)
2316 {
2317 	sockptr_t optval = USER_SOCKPTR(user_optval);
2318 	bool compat = in_compat_syscall();
2319 	struct socket *sock;
2320 	CLASS(fd, f)(fd);
2321 
2322 	if (fd_empty(f))
2323 		return -EBADF;
2324 	sock = sock_from_file(fd_file(f));
2325 	if (unlikely(!sock))
2326 		return -ENOTSOCK;
2327 
2328 	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2329 }
2330 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2331 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2332 		char __user *, optval, int, optlen)
2333 {
2334 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2335 }
2336 
2337 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2338 							 int optname));
2339 
do_sock_getsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,sockptr_t optlen)2340 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2341 		       int optname, sockptr_t optval, sockptr_t optlen)
2342 {
2343 	int max_optlen __maybe_unused = 0;
2344 	const struct proto_ops *ops;
2345 	int err;
2346 
2347 	err = security_socket_getsockopt(sock, level, optname);
2348 	if (err)
2349 		return err;
2350 
2351 	if (!compat)
2352 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2353 
2354 	ops = READ_ONCE(sock->ops);
2355 	if (level == SOL_SOCKET) {
2356 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2357 	} else if (unlikely(!ops->getsockopt)) {
2358 		err = -EOPNOTSUPP;
2359 	} else {
2360 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2361 			      "Invalid argument type"))
2362 			return -EOPNOTSUPP;
2363 
2364 		err = ops->getsockopt(sock, level, optname, optval.user,
2365 				      optlen.user);
2366 	}
2367 
2368 	if (!compat)
2369 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2370 						     optval, optlen, max_optlen,
2371 						     err);
2372 
2373 	return err;
2374 }
2375 EXPORT_SYMBOL(do_sock_getsockopt);
2376 
2377 /*
2378  *	Get a socket option. Because we don't know the option lengths we have
2379  *	to pass a user mode parameter for the protocols to sort out.
2380  */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2381 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2382 		int __user *optlen)
2383 {
2384 	struct socket *sock;
2385 	CLASS(fd, f)(fd);
2386 
2387 	if (fd_empty(f))
2388 		return -EBADF;
2389 	sock = sock_from_file(fd_file(f));
2390 	if (unlikely(!sock))
2391 		return -ENOTSOCK;
2392 
2393 	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2394 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2395 }
2396 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2397 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2398 		char __user *, optval, int __user *, optlen)
2399 {
2400 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2401 }
2402 
2403 /*
2404  *	Shutdown a socket.
2405  */
2406 
__sys_shutdown_sock(struct socket * sock,int how)2407 int __sys_shutdown_sock(struct socket *sock, int how)
2408 {
2409 	int err;
2410 
2411 	err = security_socket_shutdown(sock, how);
2412 	if (!err)
2413 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2414 
2415 	return err;
2416 }
2417 
__sys_shutdown(int fd,int how)2418 int __sys_shutdown(int fd, int how)
2419 {
2420 	struct socket *sock;
2421 	CLASS(fd, f)(fd);
2422 
2423 	if (fd_empty(f))
2424 		return -EBADF;
2425 	sock = sock_from_file(fd_file(f));
2426 	if (unlikely(!sock))
2427 		return -ENOTSOCK;
2428 
2429 	return __sys_shutdown_sock(sock, how);
2430 }
2431 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2432 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2433 {
2434 	return __sys_shutdown(fd, how);
2435 }
2436 
2437 /* A couple of helpful macros for getting the address of the 32/64 bit
2438  * fields which are the same type (int / unsigned) on our platforms.
2439  */
2440 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2441 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2442 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2443 
2444 struct used_address {
2445 	struct sockaddr_storage name;
2446 	unsigned int name_len;
2447 };
2448 
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2449 int __copy_msghdr(struct msghdr *kmsg,
2450 		  struct user_msghdr *msg,
2451 		  struct sockaddr __user **save_addr)
2452 {
2453 	ssize_t err;
2454 
2455 	kmsg->msg_control_is_user = true;
2456 	kmsg->msg_get_inq = 0;
2457 	kmsg->msg_control_user = msg->msg_control;
2458 	kmsg->msg_controllen = msg->msg_controllen;
2459 	kmsg->msg_flags = msg->msg_flags;
2460 
2461 	kmsg->msg_namelen = msg->msg_namelen;
2462 	if (!msg->msg_name)
2463 		kmsg->msg_namelen = 0;
2464 
2465 	if (kmsg->msg_namelen < 0)
2466 		return -EINVAL;
2467 
2468 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2469 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2470 
2471 	if (save_addr)
2472 		*save_addr = msg->msg_name;
2473 
2474 	if (msg->msg_name && kmsg->msg_namelen) {
2475 		if (!save_addr) {
2476 			err = move_addr_to_kernel(msg->msg_name,
2477 						  kmsg->msg_namelen,
2478 						  kmsg->msg_name);
2479 			if (err < 0)
2480 				return err;
2481 		}
2482 	} else {
2483 		kmsg->msg_name = NULL;
2484 		kmsg->msg_namelen = 0;
2485 	}
2486 
2487 	if (msg->msg_iovlen > UIO_MAXIOV)
2488 		return -EMSGSIZE;
2489 
2490 	kmsg->msg_iocb = NULL;
2491 	kmsg->msg_ubuf = NULL;
2492 	return 0;
2493 }
2494 
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2495 static int copy_msghdr_from_user(struct msghdr *kmsg,
2496 				 struct user_msghdr __user *umsg,
2497 				 struct sockaddr __user **save_addr,
2498 				 struct iovec **iov)
2499 {
2500 	struct user_msghdr msg;
2501 	ssize_t err;
2502 
2503 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2504 		return -EFAULT;
2505 
2506 	err = __copy_msghdr(kmsg, &msg, save_addr);
2507 	if (err)
2508 		return err;
2509 
2510 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2511 			    msg.msg_iov, msg.msg_iovlen,
2512 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2513 	return err < 0 ? err : 0;
2514 }
2515 
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2516 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2517 			   unsigned int flags, struct used_address *used_address,
2518 			   unsigned int allowed_msghdr_flags)
2519 {
2520 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2521 				__aligned(sizeof(__kernel_size_t));
2522 	/* 20 is size of ipv6_pktinfo */
2523 	unsigned char *ctl_buf = ctl;
2524 	int ctl_len;
2525 	ssize_t err;
2526 
2527 	err = -ENOBUFS;
2528 
2529 	if (msg_sys->msg_controllen > INT_MAX)
2530 		goto out;
2531 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2532 	ctl_len = msg_sys->msg_controllen;
2533 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2534 		err =
2535 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2536 						     sizeof(ctl));
2537 		if (err)
2538 			goto out;
2539 		ctl_buf = msg_sys->msg_control;
2540 		ctl_len = msg_sys->msg_controllen;
2541 	} else if (ctl_len) {
2542 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2543 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2544 		if (ctl_len > sizeof(ctl)) {
2545 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2546 			if (ctl_buf == NULL)
2547 				goto out;
2548 		}
2549 		err = -EFAULT;
2550 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2551 			goto out_freectl;
2552 		msg_sys->msg_control = ctl_buf;
2553 		msg_sys->msg_control_is_user = false;
2554 	}
2555 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2556 	msg_sys->msg_flags = flags;
2557 
2558 	if (sock->file->f_flags & O_NONBLOCK)
2559 		msg_sys->msg_flags |= MSG_DONTWAIT;
2560 	/*
2561 	 * If this is sendmmsg() and current destination address is same as
2562 	 * previously succeeded address, omit asking LSM's decision.
2563 	 * used_address->name_len is initialized to UINT_MAX so that the first
2564 	 * destination address never matches.
2565 	 */
2566 	if (used_address && msg_sys->msg_name &&
2567 	    used_address->name_len == msg_sys->msg_namelen &&
2568 	    !memcmp(&used_address->name, msg_sys->msg_name,
2569 		    used_address->name_len)) {
2570 		err = sock_sendmsg_nosec(sock, msg_sys);
2571 		goto out_freectl;
2572 	}
2573 	err = __sock_sendmsg(sock, msg_sys);
2574 	/*
2575 	 * If this is sendmmsg() and sending to current destination address was
2576 	 * successful, remember it.
2577 	 */
2578 	if (used_address && err >= 0) {
2579 		used_address->name_len = msg_sys->msg_namelen;
2580 		if (msg_sys->msg_name)
2581 			memcpy(&used_address->name, msg_sys->msg_name,
2582 			       used_address->name_len);
2583 	}
2584 
2585 out_freectl:
2586 	if (ctl_buf != ctl)
2587 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2588 out:
2589 	return err;
2590 }
2591 
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2592 static int sendmsg_copy_msghdr(struct msghdr *msg,
2593 			       struct user_msghdr __user *umsg, unsigned flags,
2594 			       struct iovec **iov)
2595 {
2596 	int err;
2597 
2598 	if (flags & MSG_CMSG_COMPAT) {
2599 		struct compat_msghdr __user *msg_compat;
2600 
2601 		msg_compat = (struct compat_msghdr __user *) umsg;
2602 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2603 	} else {
2604 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2605 	}
2606 	if (err < 0)
2607 		return err;
2608 
2609 	return 0;
2610 }
2611 
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2612 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2613 			 struct msghdr *msg_sys, unsigned int flags,
2614 			 struct used_address *used_address,
2615 			 unsigned int allowed_msghdr_flags)
2616 {
2617 	struct sockaddr_storage address;
2618 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2619 	ssize_t err;
2620 
2621 	msg_sys->msg_name = &address;
2622 
2623 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2624 	if (err < 0)
2625 		return err;
2626 
2627 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2628 				allowed_msghdr_flags);
2629 	kfree(iov);
2630 	return err;
2631 }
2632 
2633 /*
2634  *	BSD sendmsg interface
2635  */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2636 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2637 			unsigned int flags)
2638 {
2639 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2640 }
2641 
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2642 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2643 		   bool forbid_cmsg_compat)
2644 {
2645 	struct msghdr msg_sys;
2646 	struct socket *sock;
2647 
2648 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2649 		return -EINVAL;
2650 
2651 	CLASS(fd, f)(fd);
2652 
2653 	if (fd_empty(f))
2654 		return -EBADF;
2655 	sock = sock_from_file(fd_file(f));
2656 	if (unlikely(!sock))
2657 		return -ENOTSOCK;
2658 
2659 	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2660 }
2661 
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2662 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2663 {
2664 	return __sys_sendmsg(fd, msg, flags, true);
2665 }
2666 
2667 /*
2668  *	Linux sendmmsg interface
2669  */
2670 
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2671 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2672 		   unsigned int flags, bool forbid_cmsg_compat)
2673 {
2674 	int err, datagrams;
2675 	struct socket *sock;
2676 	struct mmsghdr __user *entry;
2677 	struct compat_mmsghdr __user *compat_entry;
2678 	struct msghdr msg_sys;
2679 	struct used_address used_address;
2680 	unsigned int oflags = flags;
2681 
2682 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2683 		return -EINVAL;
2684 
2685 	if (vlen > UIO_MAXIOV)
2686 		vlen = UIO_MAXIOV;
2687 
2688 	datagrams = 0;
2689 
2690 	CLASS(fd, f)(fd);
2691 
2692 	if (fd_empty(f))
2693 		return -EBADF;
2694 	sock = sock_from_file(fd_file(f));
2695 	if (unlikely(!sock))
2696 		return -ENOTSOCK;
2697 
2698 	used_address.name_len = UINT_MAX;
2699 	entry = mmsg;
2700 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2701 	err = 0;
2702 	flags |= MSG_BATCH;
2703 
2704 	while (datagrams < vlen) {
2705 		if (datagrams == vlen - 1)
2706 			flags = oflags;
2707 
2708 		if (MSG_CMSG_COMPAT & flags) {
2709 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2710 					     &msg_sys, flags, &used_address, MSG_EOR);
2711 			if (err < 0)
2712 				break;
2713 			err = __put_user(err, &compat_entry->msg_len);
2714 			++compat_entry;
2715 		} else {
2716 			err = ___sys_sendmsg(sock,
2717 					     (struct user_msghdr __user *)entry,
2718 					     &msg_sys, flags, &used_address, MSG_EOR);
2719 			if (err < 0)
2720 				break;
2721 			err = put_user(err, &entry->msg_len);
2722 			++entry;
2723 		}
2724 
2725 		if (err)
2726 			break;
2727 		++datagrams;
2728 		if (msg_data_left(&msg_sys))
2729 			break;
2730 		cond_resched();
2731 	}
2732 
2733 	/* We only return an error if no datagrams were able to be sent */
2734 	if (datagrams != 0)
2735 		return datagrams;
2736 
2737 	return err;
2738 }
2739 
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2740 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2741 		unsigned int, vlen, unsigned int, flags)
2742 {
2743 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2744 }
2745 
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2746 static int recvmsg_copy_msghdr(struct msghdr *msg,
2747 			       struct user_msghdr __user *umsg, unsigned flags,
2748 			       struct sockaddr __user **uaddr,
2749 			       struct iovec **iov)
2750 {
2751 	ssize_t err;
2752 
2753 	if (MSG_CMSG_COMPAT & flags) {
2754 		struct compat_msghdr __user *msg_compat;
2755 
2756 		msg_compat = (struct compat_msghdr __user *) umsg;
2757 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2758 	} else {
2759 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2760 	}
2761 	if (err < 0)
2762 		return err;
2763 
2764 	return 0;
2765 }
2766 
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2767 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2768 			   struct user_msghdr __user *msg,
2769 			   struct sockaddr __user *uaddr,
2770 			   unsigned int flags, int nosec)
2771 {
2772 	struct compat_msghdr __user *msg_compat =
2773 					(struct compat_msghdr __user *) msg;
2774 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2775 	struct sockaddr_storage addr;
2776 	unsigned long cmsg_ptr;
2777 	int len;
2778 	ssize_t err;
2779 
2780 	msg_sys->msg_name = &addr;
2781 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2782 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2783 
2784 	/* We assume all kernel code knows the size of sockaddr_storage */
2785 	msg_sys->msg_namelen = 0;
2786 
2787 	if (sock->file->f_flags & O_NONBLOCK)
2788 		flags |= MSG_DONTWAIT;
2789 
2790 	if (unlikely(nosec))
2791 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2792 	else
2793 		err = sock_recvmsg(sock, msg_sys, flags);
2794 
2795 	if (err < 0)
2796 		goto out;
2797 	len = err;
2798 
2799 	if (uaddr != NULL) {
2800 		err = move_addr_to_user(&addr,
2801 					msg_sys->msg_namelen, uaddr,
2802 					uaddr_len);
2803 		if (err < 0)
2804 			goto out;
2805 	}
2806 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2807 			 COMPAT_FLAGS(msg));
2808 	if (err)
2809 		goto out;
2810 	if (MSG_CMSG_COMPAT & flags)
2811 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2812 				 &msg_compat->msg_controllen);
2813 	else
2814 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2815 				 &msg->msg_controllen);
2816 	if (err)
2817 		goto out;
2818 	err = len;
2819 out:
2820 	return err;
2821 }
2822 
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2823 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2824 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2825 {
2826 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2827 	/* user mode address pointers */
2828 	struct sockaddr __user *uaddr;
2829 	ssize_t err;
2830 
2831 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2832 	if (err < 0)
2833 		return err;
2834 
2835 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2836 	kfree(iov);
2837 	return err;
2838 }
2839 
2840 /*
2841  *	BSD recvmsg interface
2842  */
2843 
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2844 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2845 			struct user_msghdr __user *umsg,
2846 			struct sockaddr __user *uaddr, unsigned int flags)
2847 {
2848 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2849 }
2850 
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2851 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2852 		   bool forbid_cmsg_compat)
2853 {
2854 	struct msghdr msg_sys;
2855 	struct socket *sock;
2856 
2857 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2858 		return -EINVAL;
2859 
2860 	CLASS(fd, f)(fd);
2861 
2862 	if (fd_empty(f))
2863 		return -EBADF;
2864 	sock = sock_from_file(fd_file(f));
2865 	if (unlikely(!sock))
2866 		return -ENOTSOCK;
2867 
2868 	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2869 }
2870 
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2871 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2872 		unsigned int, flags)
2873 {
2874 	return __sys_recvmsg(fd, msg, flags, true);
2875 }
2876 
2877 /*
2878  *     Linux recvmmsg interface
2879  */
2880 
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2881 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2882 			  unsigned int vlen, unsigned int flags,
2883 			  struct timespec64 *timeout)
2884 {
2885 	int err = 0, datagrams;
2886 	struct socket *sock;
2887 	struct mmsghdr __user *entry;
2888 	struct compat_mmsghdr __user *compat_entry;
2889 	struct msghdr msg_sys;
2890 	struct timespec64 end_time;
2891 	struct timespec64 timeout64;
2892 
2893 	if (timeout &&
2894 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2895 				    timeout->tv_nsec))
2896 		return -EINVAL;
2897 
2898 	datagrams = 0;
2899 
2900 	CLASS(fd, f)(fd);
2901 
2902 	if (fd_empty(f))
2903 		return -EBADF;
2904 	sock = sock_from_file(fd_file(f));
2905 	if (unlikely(!sock))
2906 		return -ENOTSOCK;
2907 
2908 	if (likely(!(flags & MSG_ERRQUEUE))) {
2909 		err = sock_error(sock->sk);
2910 		if (err)
2911 			return err;
2912 	}
2913 
2914 	entry = mmsg;
2915 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2916 
2917 	while (datagrams < vlen) {
2918 		/*
2919 		 * No need to ask LSM for more than the first datagram.
2920 		 */
2921 		if (MSG_CMSG_COMPAT & flags) {
2922 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2923 					     &msg_sys, flags & ~MSG_WAITFORONE,
2924 					     datagrams);
2925 			if (err < 0)
2926 				break;
2927 			err = __put_user(err, &compat_entry->msg_len);
2928 			++compat_entry;
2929 		} else {
2930 			err = ___sys_recvmsg(sock,
2931 					     (struct user_msghdr __user *)entry,
2932 					     &msg_sys, flags & ~MSG_WAITFORONE,
2933 					     datagrams);
2934 			if (err < 0)
2935 				break;
2936 			err = put_user(err, &entry->msg_len);
2937 			++entry;
2938 		}
2939 
2940 		if (err)
2941 			break;
2942 		++datagrams;
2943 
2944 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2945 		if (flags & MSG_WAITFORONE)
2946 			flags |= MSG_DONTWAIT;
2947 
2948 		if (timeout) {
2949 			ktime_get_ts64(&timeout64);
2950 			*timeout = timespec64_sub(end_time, timeout64);
2951 			if (timeout->tv_sec < 0) {
2952 				timeout->tv_sec = timeout->tv_nsec = 0;
2953 				break;
2954 			}
2955 
2956 			/* Timeout, return less than vlen datagrams */
2957 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2958 				break;
2959 		}
2960 
2961 		/* Out of band data, return right away */
2962 		if (msg_sys.msg_flags & MSG_OOB)
2963 			break;
2964 		cond_resched();
2965 	}
2966 
2967 	if (err == 0)
2968 		return datagrams;
2969 
2970 	if (datagrams == 0)
2971 		return err;
2972 
2973 	/*
2974 	 * We may return less entries than requested (vlen) if the
2975 	 * sock is non block and there aren't enough datagrams...
2976 	 */
2977 	if (err != -EAGAIN) {
2978 		/*
2979 		 * ... or  if recvmsg returns an error after we
2980 		 * received some datagrams, where we record the
2981 		 * error to return on the next call or if the
2982 		 * app asks about it using getsockopt(SO_ERROR).
2983 		 */
2984 		WRITE_ONCE(sock->sk->sk_err, -err);
2985 	}
2986 	return datagrams;
2987 }
2988 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2989 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2990 		   unsigned int vlen, unsigned int flags,
2991 		   struct __kernel_timespec __user *timeout,
2992 		   struct old_timespec32 __user *timeout32)
2993 {
2994 	int datagrams;
2995 	struct timespec64 timeout_sys;
2996 
2997 	if (timeout && get_timespec64(&timeout_sys, timeout))
2998 		return -EFAULT;
2999 
3000 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3001 		return -EFAULT;
3002 
3003 	if (!timeout && !timeout32)
3004 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3005 
3006 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3007 
3008 	if (datagrams <= 0)
3009 		return datagrams;
3010 
3011 	if (timeout && put_timespec64(&timeout_sys, timeout))
3012 		datagrams = -EFAULT;
3013 
3014 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3015 		datagrams = -EFAULT;
3016 
3017 	return datagrams;
3018 }
3019 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3020 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3021 		unsigned int, vlen, unsigned int, flags,
3022 		struct __kernel_timespec __user *, timeout)
3023 {
3024 	if (flags & MSG_CMSG_COMPAT)
3025 		return -EINVAL;
3026 
3027 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3028 }
3029 
3030 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3031 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3032 		unsigned int, vlen, unsigned int, flags,
3033 		struct old_timespec32 __user *, timeout)
3034 {
3035 	if (flags & MSG_CMSG_COMPAT)
3036 		return -EINVAL;
3037 
3038 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3039 }
3040 #endif
3041 
3042 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3043 /* Argument list sizes for sys_socketcall */
3044 #define AL(x) ((x) * sizeof(unsigned long))
3045 static const unsigned char nargs[21] = {
3046 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3047 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3048 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3049 	AL(4), AL(5), AL(4)
3050 };
3051 
3052 #undef AL
3053 
3054 /*
3055  *	System call vectors.
3056  *
3057  *	Argument checking cleaned up. Saved 20% in size.
3058  *  This function doesn't need to set the kernel lock because
3059  *  it is set by the callees.
3060  */
3061 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3062 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3063 {
3064 	unsigned long a[AUDITSC_ARGS];
3065 	unsigned long a0, a1;
3066 	int err;
3067 	unsigned int len;
3068 
3069 	if (call < 1 || call > SYS_SENDMMSG)
3070 		return -EINVAL;
3071 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3072 
3073 	len = nargs[call];
3074 	if (len > sizeof(a))
3075 		return -EINVAL;
3076 
3077 	/* copy_from_user should be SMP safe. */
3078 	if (copy_from_user(a, args, len))
3079 		return -EFAULT;
3080 
3081 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3082 	if (err)
3083 		return err;
3084 
3085 	a0 = a[0];
3086 	a1 = a[1];
3087 
3088 	switch (call) {
3089 	case SYS_SOCKET:
3090 		err = __sys_socket(a0, a1, a[2]);
3091 		break;
3092 	case SYS_BIND:
3093 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3094 		break;
3095 	case SYS_CONNECT:
3096 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3097 		break;
3098 	case SYS_LISTEN:
3099 		err = __sys_listen(a0, a1);
3100 		break;
3101 	case SYS_ACCEPT:
3102 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3103 				    (int __user *)a[2], 0);
3104 		break;
3105 	case SYS_GETSOCKNAME:
3106 		err =
3107 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3108 				      (int __user *)a[2]);
3109 		break;
3110 	case SYS_GETPEERNAME:
3111 		err =
3112 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3113 				      (int __user *)a[2]);
3114 		break;
3115 	case SYS_SOCKETPAIR:
3116 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3117 		break;
3118 	case SYS_SEND:
3119 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3120 				   NULL, 0);
3121 		break;
3122 	case SYS_SENDTO:
3123 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3124 				   (struct sockaddr __user *)a[4], a[5]);
3125 		break;
3126 	case SYS_RECV:
3127 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3128 				     NULL, NULL);
3129 		break;
3130 	case SYS_RECVFROM:
3131 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3132 				     (struct sockaddr __user *)a[4],
3133 				     (int __user *)a[5]);
3134 		break;
3135 	case SYS_SHUTDOWN:
3136 		err = __sys_shutdown(a0, a1);
3137 		break;
3138 	case SYS_SETSOCKOPT:
3139 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3140 				       a[4]);
3141 		break;
3142 	case SYS_GETSOCKOPT:
3143 		err =
3144 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3145 				     (int __user *)a[4]);
3146 		break;
3147 	case SYS_SENDMSG:
3148 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3149 				    a[2], true);
3150 		break;
3151 	case SYS_SENDMMSG:
3152 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3153 				     a[3], true);
3154 		break;
3155 	case SYS_RECVMSG:
3156 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3157 				    a[2], true);
3158 		break;
3159 	case SYS_RECVMMSG:
3160 		if (IS_ENABLED(CONFIG_64BIT))
3161 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3162 					     a[2], a[3],
3163 					     (struct __kernel_timespec __user *)a[4],
3164 					     NULL);
3165 		else
3166 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3167 					     a[2], a[3], NULL,
3168 					     (struct old_timespec32 __user *)a[4]);
3169 		break;
3170 	case SYS_ACCEPT4:
3171 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3172 				    (int __user *)a[2], a[3]);
3173 		break;
3174 	default:
3175 		err = -EINVAL;
3176 		break;
3177 	}
3178 	return err;
3179 }
3180 
3181 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3182 
3183 /**
3184  *	sock_register - add a socket protocol handler
3185  *	@ops: description of protocol
3186  *
3187  *	This function is called by a protocol handler that wants to
3188  *	advertise its address family, and have it linked into the
3189  *	socket interface. The value ops->family corresponds to the
3190  *	socket system call protocol family.
3191  */
sock_register(const struct net_proto_family * ops)3192 int sock_register(const struct net_proto_family *ops)
3193 {
3194 	int err;
3195 
3196 	if (ops->family >= NPROTO) {
3197 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3198 		return -ENOBUFS;
3199 	}
3200 
3201 	spin_lock(&net_family_lock);
3202 	if (rcu_dereference_protected(net_families[ops->family],
3203 				      lockdep_is_held(&net_family_lock)))
3204 		err = -EEXIST;
3205 	else {
3206 		rcu_assign_pointer(net_families[ops->family], ops);
3207 		err = 0;
3208 	}
3209 	spin_unlock(&net_family_lock);
3210 
3211 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3212 	return err;
3213 }
3214 EXPORT_SYMBOL(sock_register);
3215 
3216 /**
3217  *	sock_unregister - remove a protocol handler
3218  *	@family: protocol family to remove
3219  *
3220  *	This function is called by a protocol handler that wants to
3221  *	remove its address family, and have it unlinked from the
3222  *	new socket creation.
3223  *
3224  *	If protocol handler is a module, then it can use module reference
3225  *	counts to protect against new references. If protocol handler is not
3226  *	a module then it needs to provide its own protection in
3227  *	the ops->create routine.
3228  */
sock_unregister(int family)3229 void sock_unregister(int family)
3230 {
3231 	BUG_ON(family < 0 || family >= NPROTO);
3232 
3233 	spin_lock(&net_family_lock);
3234 	RCU_INIT_POINTER(net_families[family], NULL);
3235 	spin_unlock(&net_family_lock);
3236 
3237 	synchronize_rcu();
3238 
3239 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3240 }
3241 EXPORT_SYMBOL(sock_unregister);
3242 
sock_is_registered(int family)3243 bool sock_is_registered(int family)
3244 {
3245 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3246 }
3247 
sock_init(void)3248 static int __init sock_init(void)
3249 {
3250 	int err;
3251 	/*
3252 	 *      Initialize the network sysctl infrastructure.
3253 	 */
3254 	err = net_sysctl_init();
3255 	if (err)
3256 		goto out;
3257 
3258 	/*
3259 	 *      Initialize skbuff SLAB cache
3260 	 */
3261 	skb_init();
3262 
3263 	/*
3264 	 *      Initialize the protocols module.
3265 	 */
3266 
3267 	init_inodecache();
3268 
3269 	err = register_filesystem(&sock_fs_type);
3270 	if (err)
3271 		goto out;
3272 	sock_mnt = kern_mount(&sock_fs_type);
3273 	if (IS_ERR(sock_mnt)) {
3274 		err = PTR_ERR(sock_mnt);
3275 		goto out_mount;
3276 	}
3277 
3278 	/* The real protocol initialization is performed in later initcalls.
3279 	 */
3280 
3281 #ifdef CONFIG_NETFILTER
3282 	err = netfilter_init();
3283 	if (err)
3284 		goto out;
3285 #endif
3286 
3287 	ptp_classifier_init();
3288 
3289 out:
3290 	return err;
3291 
3292 out_mount:
3293 	unregister_filesystem(&sock_fs_type);
3294 	goto out;
3295 }
3296 
3297 core_initcall(sock_init);	/* early initcall */
3298 
3299 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3300 void socket_seq_show(struct seq_file *seq)
3301 {
3302 	seq_printf(seq, "sockets: used %d\n",
3303 		   sock_inuse_get(seq->private));
3304 }
3305 #endif				/* CONFIG_PROC_FS */
3306 
3307 /* Handle the fact that while struct ifreq has the same *layout* on
3308  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3309  * which are handled elsewhere, it still has different *size* due to
3310  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3311  * resulting in struct ifreq being 32 and 40 bytes respectively).
3312  * As a result, if the struct happens to be at the end of a page and
3313  * the next page isn't readable/writable, we get a fault. To prevent
3314  * that, copy back and forth to the full size.
3315  */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3316 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3317 {
3318 	if (in_compat_syscall()) {
3319 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3320 
3321 		memset(ifr, 0, sizeof(*ifr));
3322 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3323 			return -EFAULT;
3324 
3325 		if (ifrdata)
3326 			*ifrdata = compat_ptr(ifr32->ifr_data);
3327 
3328 		return 0;
3329 	}
3330 
3331 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3332 		return -EFAULT;
3333 
3334 	if (ifrdata)
3335 		*ifrdata = ifr->ifr_data;
3336 
3337 	return 0;
3338 }
3339 EXPORT_SYMBOL(get_user_ifreq);
3340 
put_user_ifreq(struct ifreq * ifr,void __user * arg)3341 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3342 {
3343 	size_t size = sizeof(*ifr);
3344 
3345 	if (in_compat_syscall())
3346 		size = sizeof(struct compat_ifreq);
3347 
3348 	if (copy_to_user(arg, ifr, size))
3349 		return -EFAULT;
3350 
3351 	return 0;
3352 }
3353 EXPORT_SYMBOL(put_user_ifreq);
3354 
3355 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3356 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3357 {
3358 	compat_uptr_t uptr32;
3359 	struct ifreq ifr;
3360 	void __user *saved;
3361 	int err;
3362 
3363 	if (get_user_ifreq(&ifr, NULL, uifr32))
3364 		return -EFAULT;
3365 
3366 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3367 		return -EFAULT;
3368 
3369 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3370 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3371 
3372 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3373 	if (!err) {
3374 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3375 		if (put_user_ifreq(&ifr, uifr32))
3376 			err = -EFAULT;
3377 	}
3378 	return err;
3379 }
3380 
3381 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3382 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3383 				 struct compat_ifreq __user *u_ifreq32)
3384 {
3385 	struct ifreq ifreq;
3386 	void __user *data;
3387 
3388 	if (!is_socket_ioctl_cmd(cmd))
3389 		return -ENOTTY;
3390 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3391 		return -EFAULT;
3392 	ifreq.ifr_data = data;
3393 
3394 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3395 }
3396 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3397 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3398 			 unsigned int cmd, unsigned long arg)
3399 {
3400 	void __user *argp = compat_ptr(arg);
3401 	struct sock *sk = sock->sk;
3402 	struct net *net = sock_net(sk);
3403 	const struct proto_ops *ops;
3404 
3405 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3406 		return sock_ioctl(file, cmd, (unsigned long)argp);
3407 
3408 	switch (cmd) {
3409 	case SIOCWANDEV:
3410 		return compat_siocwandev(net, argp);
3411 	case SIOCGSTAMP_OLD:
3412 	case SIOCGSTAMPNS_OLD:
3413 		ops = READ_ONCE(sock->ops);
3414 		if (!ops->gettstamp)
3415 			return -ENOIOCTLCMD;
3416 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3417 				      !COMPAT_USE_64BIT_TIME);
3418 
3419 	case SIOCETHTOOL:
3420 	case SIOCBONDSLAVEINFOQUERY:
3421 	case SIOCBONDINFOQUERY:
3422 	case SIOCSHWTSTAMP:
3423 	case SIOCGHWTSTAMP:
3424 		return compat_ifr_data_ioctl(net, cmd, argp);
3425 
3426 	case FIOSETOWN:
3427 	case SIOCSPGRP:
3428 	case FIOGETOWN:
3429 	case SIOCGPGRP:
3430 	case SIOCBRADDBR:
3431 	case SIOCBRDELBR:
3432 	case SIOCGIFVLAN:
3433 	case SIOCSIFVLAN:
3434 	case SIOCGSKNS:
3435 	case SIOCGSTAMP_NEW:
3436 	case SIOCGSTAMPNS_NEW:
3437 	case SIOCGIFCONF:
3438 	case SIOCSIFBR:
3439 	case SIOCGIFBR:
3440 		return sock_ioctl(file, cmd, arg);
3441 
3442 	case SIOCGIFFLAGS:
3443 	case SIOCSIFFLAGS:
3444 	case SIOCGIFMAP:
3445 	case SIOCSIFMAP:
3446 	case SIOCGIFMETRIC:
3447 	case SIOCSIFMETRIC:
3448 	case SIOCGIFMTU:
3449 	case SIOCSIFMTU:
3450 	case SIOCGIFMEM:
3451 	case SIOCSIFMEM:
3452 	case SIOCGIFHWADDR:
3453 	case SIOCSIFHWADDR:
3454 	case SIOCADDMULTI:
3455 	case SIOCDELMULTI:
3456 	case SIOCGIFINDEX:
3457 	case SIOCGIFADDR:
3458 	case SIOCSIFADDR:
3459 	case SIOCSIFHWBROADCAST:
3460 	case SIOCDIFADDR:
3461 	case SIOCGIFBRDADDR:
3462 	case SIOCSIFBRDADDR:
3463 	case SIOCGIFDSTADDR:
3464 	case SIOCSIFDSTADDR:
3465 	case SIOCGIFNETMASK:
3466 	case SIOCSIFNETMASK:
3467 	case SIOCSIFPFLAGS:
3468 	case SIOCGIFPFLAGS:
3469 	case SIOCGIFTXQLEN:
3470 	case SIOCSIFTXQLEN:
3471 	case SIOCBRADDIF:
3472 	case SIOCBRDELIF:
3473 	case SIOCGIFNAME:
3474 	case SIOCSIFNAME:
3475 	case SIOCGMIIPHY:
3476 	case SIOCGMIIREG:
3477 	case SIOCSMIIREG:
3478 	case SIOCBONDENSLAVE:
3479 	case SIOCBONDRELEASE:
3480 	case SIOCBONDSETHWADDR:
3481 	case SIOCBONDCHANGEACTIVE:
3482 	case SIOCSARP:
3483 	case SIOCGARP:
3484 	case SIOCDARP:
3485 	case SIOCOUTQ:
3486 	case SIOCOUTQNSD:
3487 	case SIOCATMARK:
3488 		return sock_do_ioctl(net, sock, cmd, arg);
3489 	}
3490 
3491 	return -ENOIOCTLCMD;
3492 }
3493 
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3494 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3495 			      unsigned long arg)
3496 {
3497 	struct socket *sock = file->private_data;
3498 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3499 	int ret = -ENOIOCTLCMD;
3500 	struct sock *sk;
3501 	struct net *net;
3502 
3503 	sk = sock->sk;
3504 	net = sock_net(sk);
3505 
3506 	if (ops->compat_ioctl)
3507 		ret = ops->compat_ioctl(sock, cmd, arg);
3508 
3509 	if (ret == -ENOIOCTLCMD &&
3510 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3511 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3512 
3513 	if (ret == -ENOIOCTLCMD)
3514 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3515 
3516 	return ret;
3517 }
3518 #endif
3519 
3520 /**
3521  *	kernel_bind - bind an address to a socket (kernel space)
3522  *	@sock: socket
3523  *	@addr: address
3524  *	@addrlen: length of address
3525  *
3526  *	Returns 0 or an error.
3527  */
3528 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3529 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3530 {
3531 	struct sockaddr_storage address;
3532 
3533 	memcpy(&address, addr, addrlen);
3534 
3535 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3536 					  addrlen);
3537 }
3538 EXPORT_SYMBOL(kernel_bind);
3539 
3540 /**
3541  *	kernel_listen - move socket to listening state (kernel space)
3542  *	@sock: socket
3543  *	@backlog: pending connections queue size
3544  *
3545  *	Returns 0 or an error.
3546  */
3547 
kernel_listen(struct socket * sock,int backlog)3548 int kernel_listen(struct socket *sock, int backlog)
3549 {
3550 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3551 }
3552 EXPORT_SYMBOL(kernel_listen);
3553 
3554 /**
3555  *	kernel_accept - accept a connection (kernel space)
3556  *	@sock: listening socket
3557  *	@newsock: new connected socket
3558  *	@flags: flags
3559  *
3560  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3561  *	If it fails, @newsock is guaranteed to be %NULL.
3562  *	Returns 0 or an error.
3563  */
3564 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3565 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3566 {
3567 	struct sock *sk = sock->sk;
3568 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3569 	struct proto_accept_arg arg = {
3570 		.flags = flags,
3571 		.kern = true,
3572 	};
3573 	int err;
3574 
3575 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3576 			       newsock);
3577 	if (err < 0)
3578 		goto done;
3579 
3580 	err = ops->accept(sock, *newsock, &arg);
3581 	if (err < 0) {
3582 		sock_release(*newsock);
3583 		*newsock = NULL;
3584 		goto done;
3585 	}
3586 
3587 	(*newsock)->ops = ops;
3588 	__module_get(ops->owner);
3589 
3590 done:
3591 	return err;
3592 }
3593 EXPORT_SYMBOL(kernel_accept);
3594 
3595 /**
3596  *	kernel_connect - connect a socket (kernel space)
3597  *	@sock: socket
3598  *	@addr: address
3599  *	@addrlen: address length
3600  *	@flags: flags (O_NONBLOCK, ...)
3601  *
3602  *	For datagram sockets, @addr is the address to which datagrams are sent
3603  *	by default, and the only address from which datagrams are received.
3604  *	For stream sockets, attempts to connect to @addr.
3605  *	Returns 0 or an error code.
3606  */
3607 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3608 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3609 		   int flags)
3610 {
3611 	struct sockaddr_storage address;
3612 
3613 	memcpy(&address, addr, addrlen);
3614 
3615 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3616 					     addrlen, flags);
3617 }
3618 EXPORT_SYMBOL(kernel_connect);
3619 
3620 /**
3621  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3622  *	@sock: socket
3623  *	@addr: address holder
3624  *
3625  * 	Fills the @addr pointer with the address which the socket is bound.
3626  *	Returns the length of the address in bytes or an error code.
3627  */
3628 
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3629 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3630 {
3631 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3632 }
3633 EXPORT_SYMBOL(kernel_getsockname);
3634 
3635 /**
3636  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3637  *	@sock: socket
3638  *	@addr: address holder
3639  *
3640  * 	Fills the @addr pointer with the address which the socket is connected.
3641  *	Returns the length of the address in bytes or an error code.
3642  */
3643 
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3644 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3645 {
3646 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3647 }
3648 EXPORT_SYMBOL(kernel_getpeername);
3649 
3650 /**
3651  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3652  *	@sock: socket
3653  *	@how: connection part
3654  *
3655  *	Returns 0 or an error.
3656  */
3657 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3658 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3659 {
3660 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3661 }
3662 EXPORT_SYMBOL(kernel_sock_shutdown);
3663 
3664 /**
3665  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3666  *	@sk: socket
3667  *
3668  *	This routine returns the IP overhead imposed by a socket i.e.
3669  *	the length of the underlying IP header, depending on whether
3670  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3671  *	on at the socket. Assumes that the caller has a lock on the socket.
3672  */
3673 
kernel_sock_ip_overhead(struct sock * sk)3674 u32 kernel_sock_ip_overhead(struct sock *sk)
3675 {
3676 	struct inet_sock *inet;
3677 	struct ip_options_rcu *opt;
3678 	u32 overhead = 0;
3679 #if IS_ENABLED(CONFIG_IPV6)
3680 	struct ipv6_pinfo *np;
3681 	struct ipv6_txoptions *optv6 = NULL;
3682 #endif /* IS_ENABLED(CONFIG_IPV6) */
3683 
3684 	if (!sk)
3685 		return overhead;
3686 
3687 	switch (sk->sk_family) {
3688 	case AF_INET:
3689 		inet = inet_sk(sk);
3690 		overhead += sizeof(struct iphdr);
3691 		opt = rcu_dereference_protected(inet->inet_opt,
3692 						sock_owned_by_user(sk));
3693 		if (opt)
3694 			overhead += opt->opt.optlen;
3695 		return overhead;
3696 #if IS_ENABLED(CONFIG_IPV6)
3697 	case AF_INET6:
3698 		np = inet6_sk(sk);
3699 		overhead += sizeof(struct ipv6hdr);
3700 		if (np)
3701 			optv6 = rcu_dereference_protected(np->opt,
3702 							  sock_owned_by_user(sk));
3703 		if (optv6)
3704 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3705 		return overhead;
3706 #endif /* IS_ENABLED(CONFIG_IPV6) */
3707 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3708 		return overhead;
3709 	}
3710 }
3711 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3712