xref: /linux/arch/riscv/kvm/vcpu_insn.c (revision cb7e3669c683669d93139184adff68a7d9000536)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  * Copyright (c) 2022 Ventana Micro Systems Inc.
5  */
6 
7 #include <linux/bitops.h>
8 #include <linux/kvm_host.h>
9 
10 #include <asm/cpufeature.h>
11 #include <asm/insn.h>
12 
13 struct insn_func {
14 	unsigned long mask;
15 	unsigned long match;
16 	/*
17 	 * Possible return values are as follows:
18 	 * 1) Returns < 0 for error case
19 	 * 2) Returns 0 for exit to user-space
20 	 * 3) Returns 1 to continue with next sepc
21 	 * 4) Returns 2 to continue with same sepc
22 	 * 5) Returns 3 to inject illegal instruction trap and continue
23 	 * 6) Returns 4 to inject virtual instruction trap and continue
24 	 *
25 	 * Use enum kvm_insn_return for return values
26 	 */
27 	int (*func)(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn);
28 };
29 
truly_illegal_insn(struct kvm_vcpu * vcpu,struct kvm_run * run,ulong insn)30 static int truly_illegal_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
31 			      ulong insn)
32 {
33 	struct kvm_cpu_trap utrap = { 0 };
34 
35 	/* Redirect trap to Guest VCPU */
36 	utrap.sepc = vcpu->arch.guest_context.sepc;
37 	utrap.scause = EXC_INST_ILLEGAL;
38 	utrap.stval = insn;
39 	utrap.htval = 0;
40 	utrap.htinst = 0;
41 	kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
42 
43 	return 1;
44 }
45 
truly_virtual_insn(struct kvm_vcpu * vcpu,struct kvm_run * run,ulong insn)46 static int truly_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
47 			      ulong insn)
48 {
49 	struct kvm_cpu_trap utrap = { 0 };
50 
51 	/* Redirect trap to Guest VCPU */
52 	utrap.sepc = vcpu->arch.guest_context.sepc;
53 	utrap.scause = EXC_VIRTUAL_INST_FAULT;
54 	utrap.stval = insn;
55 	utrap.htval = 0;
56 	utrap.htinst = 0;
57 	kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
58 
59 	return 1;
60 }
61 
62 /**
63  * kvm_riscv_vcpu_wfi -- Emulate wait for interrupt (WFI) behaviour
64  *
65  * @vcpu: The VCPU pointer
66  */
kvm_riscv_vcpu_wfi(struct kvm_vcpu * vcpu)67 void kvm_riscv_vcpu_wfi(struct kvm_vcpu *vcpu)
68 {
69 	if (!kvm_arch_vcpu_runnable(vcpu)) {
70 		kvm_vcpu_srcu_read_unlock(vcpu);
71 		kvm_vcpu_halt(vcpu);
72 		kvm_vcpu_srcu_read_lock(vcpu);
73 	}
74 }
75 
wfi_insn(struct kvm_vcpu * vcpu,struct kvm_run * run,ulong insn)76 static int wfi_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
77 {
78 	vcpu->stat.wfi_exit_stat++;
79 	kvm_riscv_vcpu_wfi(vcpu);
80 	return KVM_INSN_CONTINUE_NEXT_SEPC;
81 }
82 
wrs_insn(struct kvm_vcpu * vcpu,struct kvm_run * run,ulong insn)83 static int wrs_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
84 {
85 	vcpu->stat.wrs_exit_stat++;
86 	kvm_vcpu_on_spin(vcpu, vcpu->arch.guest_context.sstatus & SR_SPP);
87 	return KVM_INSN_CONTINUE_NEXT_SEPC;
88 }
89 
90 struct csr_func {
91 	unsigned int base;
92 	unsigned int count;
93 	/*
94 	 * Possible return values are as same as "func" callback in
95 	 * "struct insn_func".
96 	 */
97 	int (*func)(struct kvm_vcpu *vcpu, unsigned int csr_num,
98 		    unsigned long *val, unsigned long new_val,
99 		    unsigned long wr_mask);
100 };
101 
seed_csr_rmw(struct kvm_vcpu * vcpu,unsigned int csr_num,unsigned long * val,unsigned long new_val,unsigned long wr_mask)102 static int seed_csr_rmw(struct kvm_vcpu *vcpu, unsigned int csr_num,
103 			unsigned long *val, unsigned long new_val,
104 			unsigned long wr_mask)
105 {
106 	if (!riscv_isa_extension_available(vcpu->arch.isa, ZKR))
107 		return KVM_INSN_ILLEGAL_TRAP;
108 
109 	return KVM_INSN_EXIT_TO_USER_SPACE;
110 }
111 
112 static const struct csr_func csr_funcs[] = {
113 	KVM_RISCV_VCPU_AIA_CSR_FUNCS
114 	KVM_RISCV_VCPU_HPMCOUNTER_CSR_FUNCS
115 	{ .base = CSR_SEED, .count = 1, .func = seed_csr_rmw },
116 };
117 
118 /**
119  * kvm_riscv_vcpu_csr_return -- Handle CSR read/write after user space
120  *				emulation or in-kernel emulation
121  *
122  * @vcpu: The VCPU pointer
123  * @run:  The VCPU run struct containing the CSR data
124  *
125  * Returns > 0 upon failure and 0 upon success
126  */
kvm_riscv_vcpu_csr_return(struct kvm_vcpu * vcpu,struct kvm_run * run)127 int kvm_riscv_vcpu_csr_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
128 {
129 	ulong insn;
130 
131 	if (vcpu->arch.csr_decode.return_handled)
132 		return 0;
133 	vcpu->arch.csr_decode.return_handled = 1;
134 
135 	/* Update destination register for CSR reads */
136 	insn = vcpu->arch.csr_decode.insn;
137 	if ((insn >> SH_RD) & MASK_RX)
138 		SET_RD(insn, &vcpu->arch.guest_context,
139 		       run->riscv_csr.ret_value);
140 
141 	/* Move to next instruction */
142 	vcpu->arch.guest_context.sepc += INSN_LEN(insn);
143 
144 	return 0;
145 }
146 
csr_insn(struct kvm_vcpu * vcpu,struct kvm_run * run,ulong insn)147 static int csr_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
148 {
149 	int i, rc = KVM_INSN_ILLEGAL_TRAP;
150 	unsigned int csr_num = insn >> SH_RS2;
151 	unsigned int rs1_num = (insn >> SH_RS1) & MASK_RX;
152 	ulong rs1_val = GET_RS1(insn, &vcpu->arch.guest_context);
153 	const struct csr_func *tcfn, *cfn = NULL;
154 	ulong val = 0, wr_mask = 0, new_val = 0;
155 
156 	/* Decode the CSR instruction */
157 	switch (GET_FUNCT3(insn)) {
158 	case GET_FUNCT3(INSN_MATCH_CSRRW):
159 		wr_mask = -1UL;
160 		new_val = rs1_val;
161 		break;
162 	case GET_FUNCT3(INSN_MATCH_CSRRS):
163 		wr_mask = rs1_val;
164 		new_val = -1UL;
165 		break;
166 	case GET_FUNCT3(INSN_MATCH_CSRRC):
167 		wr_mask = rs1_val;
168 		new_val = 0;
169 		break;
170 	case GET_FUNCT3(INSN_MATCH_CSRRWI):
171 		wr_mask = -1UL;
172 		new_val = rs1_num;
173 		break;
174 	case GET_FUNCT3(INSN_MATCH_CSRRSI):
175 		wr_mask = rs1_num;
176 		new_val = -1UL;
177 		break;
178 	case GET_FUNCT3(INSN_MATCH_CSRRCI):
179 		wr_mask = rs1_num;
180 		new_val = 0;
181 		break;
182 	default:
183 		return rc;
184 	}
185 
186 	/* Save instruction decode info */
187 	vcpu->arch.csr_decode.insn = insn;
188 	vcpu->arch.csr_decode.return_handled = 0;
189 
190 	/* Update CSR details in kvm_run struct */
191 	run->riscv_csr.csr_num = csr_num;
192 	run->riscv_csr.new_value = new_val;
193 	run->riscv_csr.write_mask = wr_mask;
194 	run->riscv_csr.ret_value = 0;
195 
196 	/* Find in-kernel CSR function */
197 	for (i = 0; i < ARRAY_SIZE(csr_funcs); i++) {
198 		tcfn = &csr_funcs[i];
199 		if ((tcfn->base <= csr_num) &&
200 		    (csr_num < (tcfn->base + tcfn->count))) {
201 			cfn = tcfn;
202 			break;
203 		}
204 	}
205 
206 	/* First try in-kernel CSR emulation */
207 	if (cfn && cfn->func) {
208 		rc = cfn->func(vcpu, csr_num, &val, new_val, wr_mask);
209 		if (rc > KVM_INSN_EXIT_TO_USER_SPACE) {
210 			if (rc == KVM_INSN_CONTINUE_NEXT_SEPC) {
211 				run->riscv_csr.ret_value = val;
212 				vcpu->stat.csr_exit_kernel++;
213 				kvm_riscv_vcpu_csr_return(vcpu, run);
214 				rc = KVM_INSN_CONTINUE_SAME_SEPC;
215 			}
216 			return rc;
217 		}
218 	}
219 
220 	/* Exit to user-space for CSR emulation */
221 	if (rc <= KVM_INSN_EXIT_TO_USER_SPACE) {
222 		vcpu->stat.csr_exit_user++;
223 		run->exit_reason = KVM_EXIT_RISCV_CSR;
224 	}
225 
226 	return rc;
227 }
228 
229 static const struct insn_func system_opcode_funcs[] = {
230 	{
231 		.mask  = INSN_MASK_CSRRW,
232 		.match = INSN_MATCH_CSRRW,
233 		.func  = csr_insn,
234 	},
235 	{
236 		.mask  = INSN_MASK_CSRRS,
237 		.match = INSN_MATCH_CSRRS,
238 		.func  = csr_insn,
239 	},
240 	{
241 		.mask  = INSN_MASK_CSRRC,
242 		.match = INSN_MATCH_CSRRC,
243 		.func  = csr_insn,
244 	},
245 	{
246 		.mask  = INSN_MASK_CSRRWI,
247 		.match = INSN_MATCH_CSRRWI,
248 		.func  = csr_insn,
249 	},
250 	{
251 		.mask  = INSN_MASK_CSRRSI,
252 		.match = INSN_MATCH_CSRRSI,
253 		.func  = csr_insn,
254 	},
255 	{
256 		.mask  = INSN_MASK_CSRRCI,
257 		.match = INSN_MATCH_CSRRCI,
258 		.func  = csr_insn,
259 	},
260 	{
261 		.mask  = INSN_MASK_WFI,
262 		.match = INSN_MATCH_WFI,
263 		.func  = wfi_insn,
264 	},
265 	{
266 		.mask  = INSN_MASK_WRS,
267 		.match = INSN_MATCH_WRS,
268 		.func  = wrs_insn,
269 	},
270 };
271 
system_opcode_insn(struct kvm_vcpu * vcpu,struct kvm_run * run,ulong insn)272 static int system_opcode_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
273 			      ulong insn)
274 {
275 	int i, rc = KVM_INSN_ILLEGAL_TRAP;
276 	const struct insn_func *ifn;
277 
278 	for (i = 0; i < ARRAY_SIZE(system_opcode_funcs); i++) {
279 		ifn = &system_opcode_funcs[i];
280 		if ((insn & ifn->mask) == ifn->match) {
281 			rc = ifn->func(vcpu, run, insn);
282 			break;
283 		}
284 	}
285 
286 	switch (rc) {
287 	case KVM_INSN_ILLEGAL_TRAP:
288 		return truly_illegal_insn(vcpu, run, insn);
289 	case KVM_INSN_VIRTUAL_TRAP:
290 		return truly_virtual_insn(vcpu, run, insn);
291 	case KVM_INSN_CONTINUE_NEXT_SEPC:
292 		vcpu->arch.guest_context.sepc += INSN_LEN(insn);
293 		break;
294 	default:
295 		break;
296 	}
297 
298 	return (rc <= 0) ? rc : 1;
299 }
300 
301 /**
302  * kvm_riscv_vcpu_virtual_insn -- Handle virtual instruction trap
303  *
304  * @vcpu: The VCPU pointer
305  * @run:  The VCPU run struct containing the mmio data
306  * @trap: Trap details
307  *
308  * Returns > 0 to continue run-loop
309  * Returns   0 to exit run-loop and handle in user-space.
310  * Returns < 0 to report failure and exit run-loop
311  */
kvm_riscv_vcpu_virtual_insn(struct kvm_vcpu * vcpu,struct kvm_run * run,struct kvm_cpu_trap * trap)312 int kvm_riscv_vcpu_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
313 				struct kvm_cpu_trap *trap)
314 {
315 	unsigned long insn = trap->stval;
316 	struct kvm_cpu_trap utrap = { 0 };
317 	struct kvm_cpu_context *ct;
318 
319 	if (unlikely(INSN_IS_16BIT(insn))) {
320 		if (insn == 0) {
321 			ct = &vcpu->arch.guest_context;
322 			insn = kvm_riscv_vcpu_unpriv_read(vcpu, true,
323 							  ct->sepc,
324 							  &utrap);
325 			if (utrap.scause) {
326 				utrap.sepc = ct->sepc;
327 				kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
328 				return 1;
329 			}
330 		}
331 		if (INSN_IS_16BIT(insn))
332 			return truly_illegal_insn(vcpu, run, insn);
333 	}
334 
335 	switch ((insn & INSN_OPCODE_MASK) >> INSN_OPCODE_SHIFT) {
336 	case INSN_OPCODE_SYSTEM:
337 		return system_opcode_insn(vcpu, run, insn);
338 	default:
339 		return truly_illegal_insn(vcpu, run, insn);
340 	}
341 }
342 
343 /**
344  * kvm_riscv_vcpu_mmio_load -- Emulate MMIO load instruction
345  *
346  * @vcpu: The VCPU pointer
347  * @run:  The VCPU run struct containing the mmio data
348  * @fault_addr: Guest physical address to load
349  * @htinst: Transformed encoding of the load instruction
350  *
351  * Returns > 0 to continue run-loop
352  * Returns   0 to exit run-loop and handle in user-space.
353  * Returns < 0 to report failure and exit run-loop
354  */
kvm_riscv_vcpu_mmio_load(struct kvm_vcpu * vcpu,struct kvm_run * run,unsigned long fault_addr,unsigned long htinst)355 int kvm_riscv_vcpu_mmio_load(struct kvm_vcpu *vcpu, struct kvm_run *run,
356 			     unsigned long fault_addr,
357 			     unsigned long htinst)
358 {
359 	u8 data_buf[8];
360 	unsigned long insn;
361 	int shift = 0, len = 0, insn_len = 0;
362 	struct kvm_cpu_trap utrap = { 0 };
363 	struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
364 
365 	/* Determine trapped instruction */
366 	if (htinst & 0x1) {
367 		/*
368 		 * Bit[0] == 1 implies trapped instruction value is
369 		 * transformed instruction or custom instruction.
370 		 */
371 		insn = htinst | INSN_16BIT_MASK;
372 		insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
373 	} else {
374 		/*
375 		 * Bit[0] == 0 implies trapped instruction value is
376 		 * zero or special value.
377 		 */
378 		insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
379 						  &utrap);
380 		if (utrap.scause) {
381 			/* Redirect trap if we failed to read instruction */
382 			utrap.sepc = ct->sepc;
383 			kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
384 			return 1;
385 		}
386 		insn_len = INSN_LEN(insn);
387 	}
388 
389 	/* Decode length of MMIO and shift */
390 	if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
391 		len = 4;
392 		shift = 8 * (sizeof(ulong) - len);
393 	} else if ((insn & INSN_MASK_LB) == INSN_MATCH_LB) {
394 		len = 1;
395 		shift = 8 * (sizeof(ulong) - len);
396 	} else if ((insn & INSN_MASK_LBU) == INSN_MATCH_LBU) {
397 		len = 1;
398 		shift = 8 * (sizeof(ulong) - len);
399 #ifdef CONFIG_64BIT
400 	} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
401 		len = 8;
402 		shift = 8 * (sizeof(ulong) - len);
403 	} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
404 		len = 4;
405 #endif
406 	} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
407 		len = 2;
408 		shift = 8 * (sizeof(ulong) - len);
409 	} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
410 		len = 2;
411 #ifdef CONFIG_64BIT
412 	} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
413 		len = 8;
414 		shift = 8 * (sizeof(ulong) - len);
415 		insn = RVC_RS2S(insn) << SH_RD;
416 	} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
417 		   ((insn >> SH_RD) & 0x1f)) {
418 		len = 8;
419 		shift = 8 * (sizeof(ulong) - len);
420 #endif
421 	} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
422 		len = 4;
423 		shift = 8 * (sizeof(ulong) - len);
424 		insn = RVC_RS2S(insn) << SH_RD;
425 	} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
426 		   ((insn >> SH_RD) & 0x1f)) {
427 		len = 4;
428 		shift = 8 * (sizeof(ulong) - len);
429 	} else {
430 		return -EOPNOTSUPP;
431 	}
432 
433 	/* Fault address should be aligned to length of MMIO */
434 	if (fault_addr & (len - 1))
435 		return -EIO;
436 
437 	/* Save instruction decode info */
438 	vcpu->arch.mmio_decode.insn = insn;
439 	vcpu->arch.mmio_decode.insn_len = insn_len;
440 	vcpu->arch.mmio_decode.shift = shift;
441 	vcpu->arch.mmio_decode.len = len;
442 	vcpu->arch.mmio_decode.return_handled = 0;
443 
444 	/* Update MMIO details in kvm_run struct */
445 	run->mmio.is_write = false;
446 	run->mmio.phys_addr = fault_addr;
447 	run->mmio.len = len;
448 
449 	/* Try to handle MMIO access in the kernel */
450 	if (!kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_addr, len, data_buf)) {
451 		/* Successfully handled MMIO access in the kernel so resume */
452 		memcpy(run->mmio.data, data_buf, len);
453 		vcpu->stat.mmio_exit_kernel++;
454 		kvm_riscv_vcpu_mmio_return(vcpu, run);
455 		return 1;
456 	}
457 
458 	/* Exit to userspace for MMIO emulation */
459 	vcpu->stat.mmio_exit_user++;
460 	run->exit_reason = KVM_EXIT_MMIO;
461 
462 	return 0;
463 }
464 
465 /**
466  * kvm_riscv_vcpu_mmio_store -- Emulate MMIO store instruction
467  *
468  * @vcpu: The VCPU pointer
469  * @run:  The VCPU run struct containing the mmio data
470  * @fault_addr: Guest physical address to store
471  * @htinst: Transformed encoding of the store instruction
472  *
473  * Returns > 0 to continue run-loop
474  * Returns   0 to exit run-loop and handle in user-space.
475  * Returns < 0 to report failure and exit run-loop
476  */
kvm_riscv_vcpu_mmio_store(struct kvm_vcpu * vcpu,struct kvm_run * run,unsigned long fault_addr,unsigned long htinst)477 int kvm_riscv_vcpu_mmio_store(struct kvm_vcpu *vcpu, struct kvm_run *run,
478 			      unsigned long fault_addr,
479 			      unsigned long htinst)
480 {
481 	u8 data8;
482 	u16 data16;
483 	u32 data32;
484 	u64 data64;
485 	ulong data;
486 	unsigned long insn;
487 	int len = 0, insn_len = 0;
488 	struct kvm_cpu_trap utrap = { 0 };
489 	struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
490 
491 	/* Determine trapped instruction */
492 	if (htinst & 0x1) {
493 		/*
494 		 * Bit[0] == 1 implies trapped instruction value is
495 		 * transformed instruction or custom instruction.
496 		 */
497 		insn = htinst | INSN_16BIT_MASK;
498 		insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
499 	} else {
500 		/*
501 		 * Bit[0] == 0 implies trapped instruction value is
502 		 * zero or special value.
503 		 */
504 		insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
505 						  &utrap);
506 		if (utrap.scause) {
507 			/* Redirect trap if we failed to read instruction */
508 			utrap.sepc = ct->sepc;
509 			kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
510 			return 1;
511 		}
512 		insn_len = INSN_LEN(insn);
513 	}
514 
515 	data = GET_RS2(insn, &vcpu->arch.guest_context);
516 	data8 = data16 = data32 = data64 = data;
517 
518 	if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
519 		len = 4;
520 	} else if ((insn & INSN_MASK_SB) == INSN_MATCH_SB) {
521 		len = 1;
522 #ifdef CONFIG_64BIT
523 	} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
524 		len = 8;
525 #endif
526 	} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
527 		len = 2;
528 #ifdef CONFIG_64BIT
529 	} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
530 		len = 8;
531 		data64 = GET_RS2S(insn, &vcpu->arch.guest_context);
532 	} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP &&
533 		   ((insn >> SH_RD) & 0x1f)) {
534 		len = 8;
535 		data64 = GET_RS2C(insn, &vcpu->arch.guest_context);
536 #endif
537 	} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
538 		len = 4;
539 		data32 = GET_RS2S(insn, &vcpu->arch.guest_context);
540 	} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP &&
541 		   ((insn >> SH_RD) & 0x1f)) {
542 		len = 4;
543 		data32 = GET_RS2C(insn, &vcpu->arch.guest_context);
544 	} else {
545 		return -EOPNOTSUPP;
546 	}
547 
548 	/* Fault address should be aligned to length of MMIO */
549 	if (fault_addr & (len - 1))
550 		return -EIO;
551 
552 	/* Save instruction decode info */
553 	vcpu->arch.mmio_decode.insn = insn;
554 	vcpu->arch.mmio_decode.insn_len = insn_len;
555 	vcpu->arch.mmio_decode.shift = 0;
556 	vcpu->arch.mmio_decode.len = len;
557 	vcpu->arch.mmio_decode.return_handled = 0;
558 
559 	/* Copy data to kvm_run instance */
560 	switch (len) {
561 	case 1:
562 		*((u8 *)run->mmio.data) = data8;
563 		break;
564 	case 2:
565 		*((u16 *)run->mmio.data) = data16;
566 		break;
567 	case 4:
568 		*((u32 *)run->mmio.data) = data32;
569 		break;
570 	case 8:
571 		*((u64 *)run->mmio.data) = data64;
572 		break;
573 	default:
574 		return -EOPNOTSUPP;
575 	}
576 
577 	/* Update MMIO details in kvm_run struct */
578 	run->mmio.is_write = true;
579 	run->mmio.phys_addr = fault_addr;
580 	run->mmio.len = len;
581 
582 	/* Try to handle MMIO access in the kernel */
583 	if (!kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
584 			      fault_addr, len, run->mmio.data)) {
585 		/* Successfully handled MMIO access in the kernel so resume */
586 		vcpu->stat.mmio_exit_kernel++;
587 		kvm_riscv_vcpu_mmio_return(vcpu, run);
588 		return 1;
589 	}
590 
591 	/* Exit to userspace for MMIO emulation */
592 	vcpu->stat.mmio_exit_user++;
593 	run->exit_reason = KVM_EXIT_MMIO;
594 
595 	return 0;
596 }
597 
598 /**
599  * kvm_riscv_vcpu_mmio_return -- Handle MMIO loads after user space emulation
600  *			     or in-kernel IO emulation
601  *
602  * @vcpu: The VCPU pointer
603  * @run:  The VCPU run struct containing the mmio data
604  */
kvm_riscv_vcpu_mmio_return(struct kvm_vcpu * vcpu,struct kvm_run * run)605 int kvm_riscv_vcpu_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
606 {
607 	u8 data8;
608 	u16 data16;
609 	u32 data32;
610 	u64 data64;
611 	ulong insn;
612 	int len, shift;
613 
614 	if (vcpu->arch.mmio_decode.return_handled)
615 		return 0;
616 
617 	vcpu->arch.mmio_decode.return_handled = 1;
618 	insn = vcpu->arch.mmio_decode.insn;
619 
620 	if (run->mmio.is_write)
621 		goto done;
622 
623 	len = vcpu->arch.mmio_decode.len;
624 	shift = vcpu->arch.mmio_decode.shift;
625 
626 	switch (len) {
627 	case 1:
628 		data8 = *((u8 *)run->mmio.data);
629 		SET_RD(insn, &vcpu->arch.guest_context,
630 			(ulong)data8 << shift >> shift);
631 		break;
632 	case 2:
633 		data16 = *((u16 *)run->mmio.data);
634 		SET_RD(insn, &vcpu->arch.guest_context,
635 			(ulong)data16 << shift >> shift);
636 		break;
637 	case 4:
638 		data32 = *((u32 *)run->mmio.data);
639 		SET_RD(insn, &vcpu->arch.guest_context,
640 			(ulong)data32 << shift >> shift);
641 		break;
642 	case 8:
643 		data64 = *((u64 *)run->mmio.data);
644 		SET_RD(insn, &vcpu->arch.guest_context,
645 			(ulong)data64 << shift >> shift);
646 		break;
647 	default:
648 		return -EOPNOTSUPP;
649 	}
650 
651 done:
652 	/* Move to next instruction */
653 	vcpu->arch.guest_context.sepc += vcpu->arch.mmio_decode.insn_len;
654 
655 	return 0;
656 }
657