xref: /linux/drivers/firmware/arm_ffa/driver.c (revision be4d4543f78074fbebd530ba5109d39a2a34e668)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Arm Firmware Framework for ARMv8-A(FFA) interface driver
4  *
5  * The Arm FFA specification[1] describes a software architecture to
6  * leverages the virtualization extension to isolate software images
7  * provided by an ecosystem of vendors from each other and describes
8  * interfaces that standardize communication between the various software
9  * images including communication between images in the Secure world and
10  * Normal world. Any Hypervisor could use the FFA interfaces to enable
11  * communication between VMs it manages.
12  *
13  * The Hypervisor a.k.a Partition managers in FFA terminology can assign
14  * system resources(Memory regions, Devices, CPU cycles) to the partitions
15  * and manage isolation amongst them.
16  *
17  * [1] https://developer.arm.com/docs/den0077/latest
18  *
19  * Copyright (C) 2021 ARM Ltd.
20  */
21 
22 #define DRIVER_NAME "ARM FF-A"
23 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
24 
25 #include <linux/acpi.h>
26 #include <linux/arm_ffa.h>
27 #include <linux/bitfield.h>
28 #include <linux/cpuhotplug.h>
29 #include <linux/delay.h>
30 #include <linux/device.h>
31 #include <linux/hashtable.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/of_irq.h>
39 #include <linux/scatterlist.h>
40 #include <linux/slab.h>
41 #include <linux/smp.h>
42 #include <linux/uuid.h>
43 #include <linux/xarray.h>
44 
45 #include "common.h"
46 
47 #define FFA_DRIVER_VERSION	FFA_VERSION_1_2
48 #define FFA_MIN_VERSION		FFA_VERSION_1_0
49 
50 #define SENDER_ID_MASK		GENMASK(31, 16)
51 #define RECEIVER_ID_MASK	GENMASK(15, 0)
52 #define SENDER_ID(x)		((u16)(FIELD_GET(SENDER_ID_MASK, (x))))
53 #define RECEIVER_ID(x)		((u16)(FIELD_GET(RECEIVER_ID_MASK, (x))))
54 #define PACK_TARGET_INFO(s, r)		\
55 	(FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r)))
56 
57 #define RXTX_MAP_MIN_BUFSZ_MASK	GENMASK(1, 0)
58 #define RXTX_MAP_MIN_BUFSZ(x)	((x) & RXTX_MAP_MIN_BUFSZ_MASK)
59 
60 #define FFA_MAX_NOTIFICATIONS		64
61 
62 static ffa_fn *invoke_ffa_fn;
63 
64 static const int ffa_linux_errmap[] = {
65 	/* better than switch case as long as return value is continuous */
66 	0,		/* FFA_RET_SUCCESS */
67 	-EOPNOTSUPP,	/* FFA_RET_NOT_SUPPORTED */
68 	-EINVAL,	/* FFA_RET_INVALID_PARAMETERS */
69 	-ENOMEM,	/* FFA_RET_NO_MEMORY */
70 	-EBUSY,		/* FFA_RET_BUSY */
71 	-EINTR,		/* FFA_RET_INTERRUPTED */
72 	-EACCES,	/* FFA_RET_DENIED */
73 	-EAGAIN,	/* FFA_RET_RETRY */
74 	-ECANCELED,	/* FFA_RET_ABORTED */
75 	-ENODATA,	/* FFA_RET_NO_DATA */
76 	-EAGAIN,	/* FFA_RET_NOT_READY */
77 };
78 
79 static inline int ffa_to_linux_errno(int errno)
80 {
81 	int err_idx = -errno;
82 
83 	if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap))
84 		return ffa_linux_errmap[err_idx];
85 	return -EINVAL;
86 }
87 
88 struct ffa_pcpu_irq {
89 	struct ffa_drv_info *info;
90 };
91 
92 struct ffa_drv_info {
93 	u32 version;
94 	u16 vm_id;
95 	struct mutex rx_lock; /* lock to protect Rx buffer */
96 	struct mutex tx_lock; /* lock to protect Tx buffer */
97 	void *rx_buffer;
98 	void *tx_buffer;
99 	size_t rxtx_bufsz;
100 	bool mem_ops_native;
101 	bool msg_direct_req2_supp;
102 	bool bitmap_created;
103 	bool notif_enabled;
104 	unsigned int sched_recv_irq;
105 	unsigned int notif_pend_irq;
106 	unsigned int cpuhp_state;
107 	struct ffa_pcpu_irq __percpu *irq_pcpu;
108 	struct workqueue_struct *notif_pcpu_wq;
109 	struct work_struct notif_pcpu_work;
110 	struct work_struct sched_recv_irq_work;
111 	struct xarray partition_info;
112 	DECLARE_HASHTABLE(notifier_hash, ilog2(FFA_MAX_NOTIFICATIONS));
113 	rwlock_t notify_lock; /* lock to protect notifier hashtable  */
114 };
115 
116 static struct ffa_drv_info *drv_info;
117 
118 /*
119  * The driver must be able to support all the versions from the earliest
120  * supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION.
121  * The specification states that if firmware supports a FFA implementation
122  * that is incompatible with and at a greater version number than specified
123  * by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION),
124  * it must return the NOT_SUPPORTED error code.
125  */
126 static u32 ffa_compatible_version_find(u32 version)
127 {
128 	u16 major = FFA_MAJOR_VERSION(version), minor = FFA_MINOR_VERSION(version);
129 	u16 drv_major = FFA_MAJOR_VERSION(FFA_DRIVER_VERSION);
130 	u16 drv_minor = FFA_MINOR_VERSION(FFA_DRIVER_VERSION);
131 
132 	if ((major < drv_major) || (major == drv_major && minor <= drv_minor))
133 		return version;
134 
135 	pr_info("Firmware version higher than driver version, downgrading\n");
136 	return FFA_DRIVER_VERSION;
137 }
138 
139 static int ffa_version_check(u32 *version)
140 {
141 	ffa_value_t ver;
142 
143 	invoke_ffa_fn((ffa_value_t){
144 		      .a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION,
145 		      }, &ver);
146 
147 	if ((s32)ver.a0 == FFA_RET_NOT_SUPPORTED) {
148 		pr_info("FFA_VERSION returned not supported\n");
149 		return -EOPNOTSUPP;
150 	}
151 
152 	if (FFA_MAJOR_VERSION(ver.a0) > FFA_MAJOR_VERSION(FFA_DRIVER_VERSION)) {
153 		pr_err("Incompatible v%d.%d! Latest supported v%d.%d\n",
154 		       FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0),
155 		       FFA_MAJOR_VERSION(FFA_DRIVER_VERSION),
156 		       FFA_MINOR_VERSION(FFA_DRIVER_VERSION));
157 		return -EINVAL;
158 	}
159 
160 	if (ver.a0 < FFA_MIN_VERSION) {
161 		pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n",
162 		       FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0),
163 		       FFA_MAJOR_VERSION(FFA_MIN_VERSION),
164 		       FFA_MINOR_VERSION(FFA_MIN_VERSION));
165 		return -EINVAL;
166 	}
167 
168 	pr_info("Driver version %d.%d\n", FFA_MAJOR_VERSION(FFA_DRIVER_VERSION),
169 		FFA_MINOR_VERSION(FFA_DRIVER_VERSION));
170 	pr_info("Firmware version %d.%d found\n", FFA_MAJOR_VERSION(ver.a0),
171 		FFA_MINOR_VERSION(ver.a0));
172 	*version = ffa_compatible_version_find(ver.a0);
173 
174 	return 0;
175 }
176 
177 static int ffa_rx_release(void)
178 {
179 	ffa_value_t ret;
180 
181 	invoke_ffa_fn((ffa_value_t){
182 		      .a0 = FFA_RX_RELEASE,
183 		      }, &ret);
184 
185 	if (ret.a0 == FFA_ERROR)
186 		return ffa_to_linux_errno((int)ret.a2);
187 
188 	/* check for ret.a0 == FFA_RX_RELEASE ? */
189 
190 	return 0;
191 }
192 
193 static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt)
194 {
195 	ffa_value_t ret;
196 
197 	invoke_ffa_fn((ffa_value_t){
198 		      .a0 = FFA_FN_NATIVE(RXTX_MAP),
199 		      .a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt,
200 		      }, &ret);
201 
202 	if (ret.a0 == FFA_ERROR)
203 		return ffa_to_linux_errno((int)ret.a2);
204 
205 	return 0;
206 }
207 
208 static int ffa_rxtx_unmap(u16 vm_id)
209 {
210 	ffa_value_t ret;
211 
212 	invoke_ffa_fn((ffa_value_t){
213 		      .a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0),
214 		      }, &ret);
215 
216 	if (ret.a0 == FFA_ERROR)
217 		return ffa_to_linux_errno((int)ret.a2);
218 
219 	return 0;
220 }
221 
222 static int ffa_features(u32 func_feat_id, u32 input_props,
223 			u32 *if_props_1, u32 *if_props_2)
224 {
225 	ffa_value_t id;
226 
227 	if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) {
228 		pr_err("%s: Invalid Parameters: %x, %x", __func__,
229 		       func_feat_id, input_props);
230 		return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS);
231 	}
232 
233 	invoke_ffa_fn((ffa_value_t){
234 		.a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props,
235 		}, &id);
236 
237 	if (id.a0 == FFA_ERROR)
238 		return ffa_to_linux_errno((int)id.a2);
239 
240 	if (if_props_1)
241 		*if_props_1 = id.a2;
242 	if (if_props_2)
243 		*if_props_2 = id.a3;
244 
245 	return 0;
246 }
247 
248 #define PARTITION_INFO_GET_RETURN_COUNT_ONLY	BIT(0)
249 #define FFA_SUPPORTS_GET_COUNT_ONLY(version)	((version) > FFA_VERSION_1_0)
250 #define FFA_PART_INFO_HAS_SIZE_IN_RESP(version)	((version) > FFA_VERSION_1_0)
251 #define FFA_PART_INFO_HAS_UUID_IN_RESP(version)	((version) > FFA_VERSION_1_0)
252 #define FFA_PART_INFO_HAS_EXEC_STATE_IN_RESP(version)	\
253 	((version) > FFA_VERSION_1_0)
254 
255 /* buffer must be sizeof(struct ffa_partition_info) * num_partitions */
256 static int
257 __ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3,
258 			 struct ffa_partition_info *buffer, int num_partitions)
259 {
260 	int idx, count, flags = 0, sz, buf_sz;
261 	ffa_value_t partition_info;
262 
263 	if (FFA_SUPPORTS_GET_COUNT_ONLY(drv_info->version) &&
264 	    (!buffer || !num_partitions)) /* Just get the count for now */
265 		flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY;
266 
267 	mutex_lock(&drv_info->rx_lock);
268 	invoke_ffa_fn((ffa_value_t){
269 		      .a0 = FFA_PARTITION_INFO_GET,
270 		      .a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3,
271 		      .a5 = flags,
272 		      }, &partition_info);
273 
274 	if (partition_info.a0 == FFA_ERROR) {
275 		mutex_unlock(&drv_info->rx_lock);
276 		return ffa_to_linux_errno((int)partition_info.a2);
277 	}
278 
279 	count = partition_info.a2;
280 
281 	if (FFA_PART_INFO_HAS_SIZE_IN_RESP(drv_info->version)) {
282 		buf_sz = sz = partition_info.a3;
283 		if (sz > sizeof(*buffer))
284 			buf_sz = sizeof(*buffer);
285 	} else {
286 		buf_sz = sz = 8;
287 	}
288 
289 	if (buffer && count <= num_partitions)
290 		for (idx = 0; idx < count; idx++) {
291 			struct ffa_partition_info_le {
292 				__le16 id;
293 				__le16 exec_ctxt;
294 				__le32 properties;
295 				uuid_t uuid;
296 			} *rx_buf = drv_info->rx_buffer + idx * sz;
297 			struct ffa_partition_info *buf = buffer + idx;
298 
299 			buf->id = le16_to_cpu(rx_buf->id);
300 			buf->exec_ctxt = le16_to_cpu(rx_buf->exec_ctxt);
301 			buf->properties = le32_to_cpu(rx_buf->properties);
302 			if (buf_sz > 8)
303 				import_uuid(&buf->uuid, (u8 *)&rx_buf->uuid);
304 		}
305 
306 	if (!(flags & PARTITION_INFO_GET_RETURN_COUNT_ONLY))
307 		ffa_rx_release();
308 
309 	mutex_unlock(&drv_info->rx_lock);
310 
311 	return count;
312 }
313 
314 #define LAST_INDEX_MASK		GENMASK(15, 0)
315 #define CURRENT_INDEX_MASK	GENMASK(31, 16)
316 #define UUID_INFO_TAG_MASK	GENMASK(47, 32)
317 #define PARTITION_INFO_SZ_MASK	GENMASK(63, 48)
318 #define PARTITION_COUNT(x)	((u16)(FIELD_GET(LAST_INDEX_MASK, (x))) + 1)
319 #define CURRENT_INDEX(x)	((u16)(FIELD_GET(CURRENT_INDEX_MASK, (x))))
320 #define UUID_INFO_TAG(x)	((u16)(FIELD_GET(UUID_INFO_TAG_MASK, (x))))
321 #define PARTITION_INFO_SZ(x)	((u16)(FIELD_GET(PARTITION_INFO_SZ_MASK, (x))))
322 #define PART_INFO_ID_MASK	GENMASK(15, 0)
323 #define PART_INFO_EXEC_CXT_MASK	GENMASK(31, 16)
324 #define PART_INFO_PROPS_MASK	GENMASK(63, 32)
325 #define PART_INFO_ID(x)		((u16)(FIELD_GET(PART_INFO_ID_MASK, (x))))
326 #define PART_INFO_EXEC_CXT(x)	((u16)(FIELD_GET(PART_INFO_EXEC_CXT_MASK, (x))))
327 #define PART_INFO_PROPERTIES(x)	((u32)(FIELD_GET(PART_INFO_PROPS_MASK, (x))))
328 static int
329 __ffa_partition_info_get_regs(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3,
330 			      struct ffa_partition_info *buffer, int num_parts)
331 {
332 	u16 buf_sz, start_idx, cur_idx, count = 0, prev_idx = 0, tag = 0;
333 	struct ffa_partition_info *buf = buffer;
334 	ffa_value_t partition_info;
335 
336 	do {
337 		__le64 *regs;
338 		int idx;
339 
340 		start_idx = prev_idx ? prev_idx + 1 : 0;
341 
342 		invoke_ffa_fn((ffa_value_t){
343 			      .a0 = FFA_PARTITION_INFO_GET_REGS,
344 			      .a1 = (u64)uuid1 << 32 | uuid0,
345 			      .a2 = (u64)uuid3 << 32 | uuid2,
346 			      .a3 = start_idx | tag << 16,
347 			      }, &partition_info);
348 
349 		if (partition_info.a0 == FFA_ERROR)
350 			return ffa_to_linux_errno((int)partition_info.a2);
351 
352 		if (!count)
353 			count = PARTITION_COUNT(partition_info.a2);
354 		if (!buffer || !num_parts) /* count only */
355 			return count;
356 
357 		cur_idx = CURRENT_INDEX(partition_info.a2);
358 		tag = UUID_INFO_TAG(partition_info.a2);
359 		buf_sz = PARTITION_INFO_SZ(partition_info.a2);
360 		if (buf_sz > sizeof(*buffer))
361 			buf_sz = sizeof(*buffer);
362 
363 		regs = (void *)&partition_info.a3;
364 		for (idx = 0; idx < cur_idx - start_idx + 1; idx++, buf++) {
365 			union {
366 				uuid_t uuid;
367 				u64 regs[2];
368 			} uuid_regs = {
369 				.regs = {
370 					le64_to_cpu(*(regs + 1)),
371 					le64_to_cpu(*(regs + 2)),
372 					}
373 			};
374 			u64 val = *(u64 *)regs;
375 
376 			buf->id = PART_INFO_ID(val);
377 			buf->exec_ctxt = PART_INFO_EXEC_CXT(val);
378 			buf->properties = PART_INFO_PROPERTIES(val);
379 			uuid_copy(&buf->uuid, &uuid_regs.uuid);
380 			regs += 3;
381 		}
382 		prev_idx = cur_idx;
383 
384 	} while (cur_idx < (count - 1));
385 
386 	return count;
387 }
388 
389 /* buffer is allocated and caller must free the same if returned count > 0 */
390 static int
391 ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer)
392 {
393 	int count;
394 	u32 uuid0_4[4];
395 	bool reg_mode = false;
396 	struct ffa_partition_info *pbuf;
397 
398 	if (!ffa_features(FFA_PARTITION_INFO_GET_REGS, 0, NULL, NULL))
399 		reg_mode = true;
400 
401 	export_uuid((u8 *)uuid0_4, uuid);
402 	if (reg_mode)
403 		count = __ffa_partition_info_get_regs(uuid0_4[0], uuid0_4[1],
404 						      uuid0_4[2], uuid0_4[3],
405 						      NULL, 0);
406 	else
407 		count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1],
408 						 uuid0_4[2], uuid0_4[3],
409 						 NULL, 0);
410 	if (count <= 0)
411 		return count;
412 
413 	pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL);
414 	if (!pbuf)
415 		return -ENOMEM;
416 
417 	if (reg_mode)
418 		count = __ffa_partition_info_get_regs(uuid0_4[0], uuid0_4[1],
419 						      uuid0_4[2], uuid0_4[3],
420 						      pbuf, count);
421 	else
422 		count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1],
423 						 uuid0_4[2], uuid0_4[3],
424 						 pbuf, count);
425 	if (count <= 0)
426 		kfree(pbuf);
427 	else
428 		*buffer = pbuf;
429 
430 	return count;
431 }
432 
433 #define VM_ID_MASK	GENMASK(15, 0)
434 static int ffa_id_get(u16 *vm_id)
435 {
436 	ffa_value_t id;
437 
438 	invoke_ffa_fn((ffa_value_t){
439 		      .a0 = FFA_ID_GET,
440 		      }, &id);
441 
442 	if (id.a0 == FFA_ERROR)
443 		return ffa_to_linux_errno((int)id.a2);
444 
445 	*vm_id = FIELD_GET(VM_ID_MASK, (id.a2));
446 
447 	return 0;
448 }
449 
450 static inline void ffa_msg_send_wait_for_completion(ffa_value_t *ret)
451 {
452 	while (ret->a0 == FFA_INTERRUPT || ret->a0 == FFA_YIELD) {
453 		if (ret->a0 == FFA_YIELD)
454 			fsleep(1000);
455 
456 		invoke_ffa_fn((ffa_value_t){
457 			      .a0 = FFA_RUN, .a1 = ret->a1,
458 			      }, ret);
459 	}
460 }
461 
462 static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit,
463 				   struct ffa_send_direct_data *data)
464 {
465 	u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id);
466 	ffa_value_t ret;
467 
468 	if (mode_32bit) {
469 		req_id = FFA_MSG_SEND_DIRECT_REQ;
470 		resp_id = FFA_MSG_SEND_DIRECT_RESP;
471 	} else {
472 		req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ);
473 		resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP);
474 	}
475 
476 	invoke_ffa_fn((ffa_value_t){
477 		      .a0 = req_id, .a1 = src_dst_ids, .a2 = 0,
478 		      .a3 = data->data0, .a4 = data->data1, .a5 = data->data2,
479 		      .a6 = data->data3, .a7 = data->data4,
480 		      }, &ret);
481 
482 	ffa_msg_send_wait_for_completion(&ret);
483 
484 	if (ret.a0 == FFA_ERROR)
485 		return ffa_to_linux_errno((int)ret.a2);
486 
487 	if (ret.a0 == resp_id) {
488 		data->data0 = ret.a3;
489 		data->data1 = ret.a4;
490 		data->data2 = ret.a5;
491 		data->data3 = ret.a6;
492 		data->data4 = ret.a7;
493 		return 0;
494 	}
495 
496 	return -EINVAL;
497 }
498 
499 static int ffa_msg_send2(struct ffa_device *dev, u16 src_id, void *buf, size_t sz)
500 {
501 	u32 src_dst_ids = PACK_TARGET_INFO(src_id, dev->vm_id);
502 	struct ffa_indirect_msg_hdr *msg;
503 	ffa_value_t ret;
504 	int retval = 0;
505 
506 	if (sz > (drv_info->rxtx_bufsz - sizeof(*msg)))
507 		return -ERANGE;
508 
509 	mutex_lock(&drv_info->tx_lock);
510 
511 	msg = drv_info->tx_buffer;
512 	msg->flags = 0;
513 	msg->res0 = 0;
514 	msg->offset = sizeof(*msg);
515 	msg->send_recv_id = src_dst_ids;
516 	msg->size = sz;
517 	uuid_copy(&msg->uuid, &dev->uuid);
518 	memcpy((u8 *)msg + msg->offset, buf, sz);
519 
520 	/* flags = 0, sender VMID = 0 works for both physical/virtual NS */
521 	invoke_ffa_fn((ffa_value_t){
522 		      .a0 = FFA_MSG_SEND2, .a1 = 0, .a2 = 0
523 		      }, &ret);
524 
525 	if (ret.a0 == FFA_ERROR)
526 		retval = ffa_to_linux_errno((int)ret.a2);
527 
528 	mutex_unlock(&drv_info->tx_lock);
529 	return retval;
530 }
531 
532 static int ffa_msg_send_direct_req2(u16 src_id, u16 dst_id, const uuid_t *uuid,
533 				    struct ffa_send_direct_data2 *data)
534 {
535 	u32 src_dst_ids = PACK_TARGET_INFO(src_id, dst_id);
536 	union {
537 		uuid_t uuid;
538 		__le64 regs[2];
539 	} uuid_regs = { .uuid = *uuid };
540 	ffa_value_t ret, args = {
541 		.a0 = FFA_MSG_SEND_DIRECT_REQ2,
542 		.a1 = src_dst_ids,
543 		.a2 = le64_to_cpu(uuid_regs.regs[0]),
544 		.a3 = le64_to_cpu(uuid_regs.regs[1]),
545 	};
546 	memcpy((void *)&args + offsetof(ffa_value_t, a4), data, sizeof(*data));
547 
548 	invoke_ffa_fn(args, &ret);
549 
550 	ffa_msg_send_wait_for_completion(&ret);
551 
552 	if (ret.a0 == FFA_ERROR)
553 		return ffa_to_linux_errno((int)ret.a2);
554 
555 	if (ret.a0 == FFA_MSG_SEND_DIRECT_RESP2) {
556 		memcpy(data, (void *)&ret + offsetof(ffa_value_t, a4), sizeof(*data));
557 		return 0;
558 	}
559 
560 	return -EINVAL;
561 }
562 
563 static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz,
564 			      u32 frag_len, u32 len, u64 *handle)
565 {
566 	ffa_value_t ret;
567 
568 	invoke_ffa_fn((ffa_value_t){
569 		      .a0 = func_id, .a1 = len, .a2 = frag_len,
570 		      .a3 = buf, .a4 = buf_sz,
571 		      }, &ret);
572 
573 	while (ret.a0 == FFA_MEM_OP_PAUSE)
574 		invoke_ffa_fn((ffa_value_t){
575 			      .a0 = FFA_MEM_OP_RESUME,
576 			      .a1 = ret.a1, .a2 = ret.a2,
577 			      }, &ret);
578 
579 	if (ret.a0 == FFA_ERROR)
580 		return ffa_to_linux_errno((int)ret.a2);
581 
582 	if (ret.a0 == FFA_SUCCESS) {
583 		if (handle)
584 			*handle = PACK_HANDLE(ret.a2, ret.a3);
585 	} else if (ret.a0 == FFA_MEM_FRAG_RX) {
586 		if (handle)
587 			*handle = PACK_HANDLE(ret.a1, ret.a2);
588 	} else {
589 		return -EOPNOTSUPP;
590 	}
591 
592 	return frag_len;
593 }
594 
595 static int ffa_mem_next_frag(u64 handle, u32 frag_len)
596 {
597 	ffa_value_t ret;
598 
599 	invoke_ffa_fn((ffa_value_t){
600 		      .a0 = FFA_MEM_FRAG_TX,
601 		      .a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle),
602 		      .a3 = frag_len,
603 		      }, &ret);
604 
605 	while (ret.a0 == FFA_MEM_OP_PAUSE)
606 		invoke_ffa_fn((ffa_value_t){
607 			      .a0 = FFA_MEM_OP_RESUME,
608 			      .a1 = ret.a1, .a2 = ret.a2,
609 			      }, &ret);
610 
611 	if (ret.a0 == FFA_ERROR)
612 		return ffa_to_linux_errno((int)ret.a2);
613 
614 	if (ret.a0 == FFA_MEM_FRAG_RX)
615 		return ret.a3;
616 	else if (ret.a0 == FFA_SUCCESS)
617 		return 0;
618 
619 	return -EOPNOTSUPP;
620 }
621 
622 static int
623 ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len,
624 		      u32 len, u64 *handle, bool first)
625 {
626 	if (!first)
627 		return ffa_mem_next_frag(*handle, frag_len);
628 
629 	return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle);
630 }
631 
632 static u32 ffa_get_num_pages_sg(struct scatterlist *sg)
633 {
634 	u32 num_pages = 0;
635 
636 	do {
637 		num_pages += sg->length / FFA_PAGE_SIZE;
638 	} while ((sg = sg_next(sg)));
639 
640 	return num_pages;
641 }
642 
643 static u16 ffa_memory_attributes_get(u32 func_id)
644 {
645 	/*
646 	 * For the memory lend or donate operation, if the receiver is a PE or
647 	 * a proxy endpoint, the owner/sender must not specify the attributes
648 	 */
649 	if (func_id == FFA_FN_NATIVE(MEM_LEND) ||
650 	    func_id == FFA_MEM_LEND)
651 		return 0;
652 
653 	return FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK | FFA_MEM_INNER_SHAREABLE;
654 }
655 
656 static void ffa_emad_impdef_value_init(u32 version, void *dst, void *src)
657 {
658 	struct ffa_mem_region_attributes *ep_mem_access;
659 
660 	if (FFA_EMAD_HAS_IMPDEF_FIELD(version))
661 		memcpy(dst, src, sizeof(ep_mem_access->impdef_val));
662 }
663 
664 static void
665 ffa_mem_region_additional_setup(u32 version, struct ffa_mem_region *mem_region)
666 {
667 	if (!FFA_MEM_REGION_HAS_EP_MEM_OFFSET(version)) {
668 		mem_region->ep_mem_size = 0;
669 	} else {
670 		mem_region->ep_mem_size = ffa_emad_size_get(version);
671 		mem_region->ep_mem_offset = sizeof(*mem_region);
672 		memset(mem_region->reserved, 0, 12);
673 	}
674 }
675 
676 static int
677 ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize,
678 		       struct ffa_mem_ops_args *args)
679 {
680 	int rc = 0;
681 	bool first = true;
682 	u32 composite_offset;
683 	phys_addr_t addr = 0;
684 	struct ffa_mem_region *mem_region = buffer;
685 	struct ffa_composite_mem_region *composite;
686 	struct ffa_mem_region_addr_range *constituents;
687 	struct ffa_mem_region_attributes *ep_mem_access;
688 	u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg);
689 
690 	mem_region->tag = args->tag;
691 	mem_region->flags = args->flags;
692 	mem_region->sender_id = drv_info->vm_id;
693 	mem_region->attributes = ffa_memory_attributes_get(func_id);
694 	composite_offset = ffa_mem_desc_offset(buffer, args->nattrs,
695 					       drv_info->version);
696 
697 	for (idx = 0; idx < args->nattrs; idx++) {
698 		ep_mem_access = buffer +
699 			ffa_mem_desc_offset(buffer, idx, drv_info->version);
700 		ep_mem_access->receiver = args->attrs[idx].receiver;
701 		ep_mem_access->attrs = args->attrs[idx].attrs;
702 		ep_mem_access->composite_off = composite_offset;
703 		ep_mem_access->flag = 0;
704 		ep_mem_access->reserved = 0;
705 		ffa_emad_impdef_value_init(drv_info->version,
706 					   ep_mem_access->impdef_val,
707 					   args->attrs[idx].impdef_val);
708 	}
709 	mem_region->handle = 0;
710 	mem_region->ep_count = args->nattrs;
711 	ffa_mem_region_additional_setup(drv_info->version, mem_region);
712 
713 	composite = buffer + composite_offset;
714 	composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg);
715 	composite->addr_range_cnt = num_entries;
716 	composite->reserved = 0;
717 
718 	length = composite_offset + CONSTITUENTS_OFFSET(num_entries);
719 	frag_len = composite_offset + CONSTITUENTS_OFFSET(0);
720 	if (frag_len > max_fragsize)
721 		return -ENXIO;
722 
723 	if (!args->use_txbuf) {
724 		addr = virt_to_phys(buffer);
725 		buf_sz = max_fragsize / FFA_PAGE_SIZE;
726 	}
727 
728 	constituents = buffer + frag_len;
729 	idx = 0;
730 	do {
731 		if (frag_len == max_fragsize) {
732 			rc = ffa_transmit_fragment(func_id, addr, buf_sz,
733 						   frag_len, length,
734 						   &args->g_handle, first);
735 			if (rc < 0)
736 				return -ENXIO;
737 
738 			first = false;
739 			idx = 0;
740 			frag_len = 0;
741 			constituents = buffer;
742 		}
743 
744 		if ((void *)constituents - buffer > max_fragsize) {
745 			pr_err("Memory Region Fragment > Tx Buffer size\n");
746 			return -EFAULT;
747 		}
748 
749 		constituents->address = sg_phys(args->sg);
750 		constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE;
751 		constituents->reserved = 0;
752 		constituents++;
753 		frag_len += sizeof(struct ffa_mem_region_addr_range);
754 	} while ((args->sg = sg_next(args->sg)));
755 
756 	return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len,
757 				     length, &args->g_handle, first);
758 }
759 
760 static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args)
761 {
762 	int ret;
763 	void *buffer;
764 	size_t rxtx_bufsz = drv_info->rxtx_bufsz;
765 
766 	if (!args->use_txbuf) {
767 		buffer = alloc_pages_exact(rxtx_bufsz, GFP_KERNEL);
768 		if (!buffer)
769 			return -ENOMEM;
770 	} else {
771 		buffer = drv_info->tx_buffer;
772 		mutex_lock(&drv_info->tx_lock);
773 	}
774 
775 	ret = ffa_setup_and_transmit(func_id, buffer, rxtx_bufsz, args);
776 
777 	if (args->use_txbuf)
778 		mutex_unlock(&drv_info->tx_lock);
779 	else
780 		free_pages_exact(buffer, rxtx_bufsz);
781 
782 	return ret < 0 ? ret : 0;
783 }
784 
785 static int ffa_memory_reclaim(u64 g_handle, u32 flags)
786 {
787 	ffa_value_t ret;
788 
789 	invoke_ffa_fn((ffa_value_t){
790 		      .a0 = FFA_MEM_RECLAIM,
791 		      .a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle),
792 		      .a3 = flags,
793 		      }, &ret);
794 
795 	if (ret.a0 == FFA_ERROR)
796 		return ffa_to_linux_errno((int)ret.a2);
797 
798 	return 0;
799 }
800 
801 static int ffa_notification_bitmap_create(void)
802 {
803 	ffa_value_t ret;
804 	u16 vcpu_count = nr_cpu_ids;
805 
806 	invoke_ffa_fn((ffa_value_t){
807 		      .a0 = FFA_NOTIFICATION_BITMAP_CREATE,
808 		      .a1 = drv_info->vm_id, .a2 = vcpu_count,
809 		      }, &ret);
810 
811 	if (ret.a0 == FFA_ERROR)
812 		return ffa_to_linux_errno((int)ret.a2);
813 
814 	return 0;
815 }
816 
817 static int ffa_notification_bitmap_destroy(void)
818 {
819 	ffa_value_t ret;
820 
821 	invoke_ffa_fn((ffa_value_t){
822 		      .a0 = FFA_NOTIFICATION_BITMAP_DESTROY,
823 		      .a1 = drv_info->vm_id,
824 		      }, &ret);
825 
826 	if (ret.a0 == FFA_ERROR)
827 		return ffa_to_linux_errno((int)ret.a2);
828 
829 	return 0;
830 }
831 
832 enum notify_type {
833 	SECURE_PARTITION,
834 	NON_SECURE_VM,
835 	SPM_FRAMEWORK,
836 	NS_HYP_FRAMEWORK,
837 };
838 
839 #define NOTIFICATION_LOW_MASK		GENMASK(31, 0)
840 #define NOTIFICATION_HIGH_MASK		GENMASK(63, 32)
841 #define NOTIFICATION_BITMAP_HIGH(x)	\
842 		((u32)(FIELD_GET(NOTIFICATION_HIGH_MASK, (x))))
843 #define NOTIFICATION_BITMAP_LOW(x)	\
844 		((u32)(FIELD_GET(NOTIFICATION_LOW_MASK, (x))))
845 #define PACK_NOTIFICATION_BITMAP(low, high)	\
846 	(FIELD_PREP(NOTIFICATION_LOW_MASK, (low)) | \
847 	 FIELD_PREP(NOTIFICATION_HIGH_MASK, (high)))
848 
849 #define RECEIVER_VCPU_MASK		GENMASK(31, 16)
850 #define PACK_NOTIFICATION_GET_RECEIVER_INFO(vcpu_r, r) \
851 	(FIELD_PREP(RECEIVER_VCPU_MASK, (vcpu_r)) | \
852 	 FIELD_PREP(RECEIVER_ID_MASK, (r)))
853 
854 #define NOTIFICATION_INFO_GET_MORE_PEND_MASK	BIT(0)
855 #define NOTIFICATION_INFO_GET_ID_COUNT		GENMASK(11, 7)
856 #define ID_LIST_MASK_64				GENMASK(51, 12)
857 #define ID_LIST_MASK_32				GENMASK(31, 12)
858 #define MAX_IDS_64				20
859 #define MAX_IDS_32				10
860 
861 #define PER_VCPU_NOTIFICATION_FLAG		BIT(0)
862 #define SECURE_PARTITION_BITMAP_ENABLE		BIT(SECURE_PARTITION)
863 #define NON_SECURE_VM_BITMAP_ENABLE		BIT(NON_SECURE_VM)
864 #define SPM_FRAMEWORK_BITMAP_ENABLE		BIT(SPM_FRAMEWORK)
865 #define NS_HYP_FRAMEWORK_BITMAP_ENABLE		BIT(NS_HYP_FRAMEWORK)
866 #define FFA_BITMAP_SECURE_ENABLE_MASK		\
867 	(SECURE_PARTITION_BITMAP_ENABLE | SPM_FRAMEWORK_BITMAP_ENABLE)
868 #define FFA_BITMAP_NS_ENABLE_MASK		\
869 	(NON_SECURE_VM_BITMAP_ENABLE | NS_HYP_FRAMEWORK_BITMAP_ENABLE)
870 #define FFA_BITMAP_ALL_ENABLE_MASK		\
871 	(FFA_BITMAP_SECURE_ENABLE_MASK | FFA_BITMAP_NS_ENABLE_MASK)
872 
873 #define FFA_SECURE_PARTITION_ID_FLAG		BIT(15)
874 
875 #define SPM_FRAMEWORK_BITMAP(x)			NOTIFICATION_BITMAP_LOW(x)
876 #define NS_HYP_FRAMEWORK_BITMAP(x)		NOTIFICATION_BITMAP_HIGH(x)
877 #define FRAMEWORK_NOTIFY_RX_BUFFER_FULL		BIT(0)
878 
879 static int ffa_notification_bind_common(u16 dst_id, u64 bitmap,
880 					u32 flags, bool is_bind)
881 {
882 	ffa_value_t ret;
883 	u32 func, src_dst_ids = PACK_TARGET_INFO(dst_id, drv_info->vm_id);
884 
885 	func = is_bind ? FFA_NOTIFICATION_BIND : FFA_NOTIFICATION_UNBIND;
886 
887 	invoke_ffa_fn((ffa_value_t){
888 		  .a0 = func, .a1 = src_dst_ids, .a2 = flags,
889 		  .a3 = NOTIFICATION_BITMAP_LOW(bitmap),
890 		  .a4 = NOTIFICATION_BITMAP_HIGH(bitmap),
891 		  }, &ret);
892 
893 	if (ret.a0 == FFA_ERROR)
894 		return ffa_to_linux_errno((int)ret.a2);
895 	else if (ret.a0 != FFA_SUCCESS)
896 		return -EINVAL;
897 
898 	return 0;
899 }
900 
901 static
902 int ffa_notification_set(u16 src_id, u16 dst_id, u32 flags, u64 bitmap)
903 {
904 	ffa_value_t ret;
905 	u32 src_dst_ids = PACK_TARGET_INFO(dst_id, src_id);
906 
907 	invoke_ffa_fn((ffa_value_t) {
908 		  .a0 = FFA_NOTIFICATION_SET, .a1 = src_dst_ids, .a2 = flags,
909 		  .a3 = NOTIFICATION_BITMAP_LOW(bitmap),
910 		  .a4 = NOTIFICATION_BITMAP_HIGH(bitmap),
911 		  }, &ret);
912 
913 	if (ret.a0 == FFA_ERROR)
914 		return ffa_to_linux_errno((int)ret.a2);
915 	else if (ret.a0 != FFA_SUCCESS)
916 		return -EINVAL;
917 
918 	return 0;
919 }
920 
921 struct ffa_notify_bitmaps {
922 	u64 sp_map;
923 	u64 vm_map;
924 	u64 arch_map;
925 };
926 
927 static int ffa_notification_get(u32 flags, struct ffa_notify_bitmaps *notify)
928 {
929 	ffa_value_t ret;
930 	u16 src_id = drv_info->vm_id;
931 	u16 cpu_id = smp_processor_id();
932 	u32 rec_vcpu_ids = PACK_NOTIFICATION_GET_RECEIVER_INFO(cpu_id, src_id);
933 
934 	invoke_ffa_fn((ffa_value_t){
935 		  .a0 = FFA_NOTIFICATION_GET, .a1 = rec_vcpu_ids, .a2 = flags,
936 		  }, &ret);
937 
938 	if (ret.a0 == FFA_ERROR)
939 		return ffa_to_linux_errno((int)ret.a2);
940 	else if (ret.a0 != FFA_SUCCESS)
941 		return -EINVAL; /* Something else went wrong. */
942 
943 	if (flags & SECURE_PARTITION_BITMAP_ENABLE)
944 		notify->sp_map = PACK_NOTIFICATION_BITMAP(ret.a2, ret.a3);
945 	if (flags & NON_SECURE_VM_BITMAP_ENABLE)
946 		notify->vm_map = PACK_NOTIFICATION_BITMAP(ret.a4, ret.a5);
947 	if (flags & SPM_FRAMEWORK_BITMAP_ENABLE)
948 		notify->arch_map = SPM_FRAMEWORK_BITMAP(ret.a6);
949 	if (flags & NS_HYP_FRAMEWORK_BITMAP_ENABLE)
950 		notify->arch_map = PACK_NOTIFICATION_BITMAP(notify->arch_map,
951 							    ret.a7);
952 
953 	return 0;
954 }
955 
956 struct ffa_dev_part_info {
957 	ffa_sched_recv_cb callback;
958 	void *cb_data;
959 	rwlock_t rw_lock;
960 	struct ffa_device *dev;
961 	struct list_head node;
962 };
963 
964 static void __do_sched_recv_cb(u16 part_id, u16 vcpu, bool is_per_vcpu)
965 {
966 	struct ffa_dev_part_info *partition = NULL, *tmp;
967 	ffa_sched_recv_cb callback;
968 	struct list_head *phead;
969 	void *cb_data;
970 
971 	phead = xa_load(&drv_info->partition_info, part_id);
972 	if (!phead) {
973 		pr_err("%s: Invalid partition ID 0x%x\n", __func__, part_id);
974 		return;
975 	}
976 
977 	list_for_each_entry_safe(partition, tmp, phead, node) {
978 		read_lock(&partition->rw_lock);
979 		callback = partition->callback;
980 		cb_data = partition->cb_data;
981 		read_unlock(&partition->rw_lock);
982 
983 		if (callback)
984 			callback(vcpu, is_per_vcpu, cb_data);
985 	}
986 }
987 
988 /*
989  * Map logical ID index to the u16 index within the packed ID list.
990  *
991  * For native responses (FF-A width == kernel word size), IDs are
992  * tightly packed: idx -> idx.
993  *
994  * For 32-bit responses on a 64-bit kernel, each 64-bit register
995  * contributes 4 x u16 values but only the lower 2 are defined; the
996  * upper 2 are garbage. This mapping skips those upper halves:
997  *   0,1,2,3,4,5,... -> 0,1,4,5,8,9,...
998  */
999 static int list_idx_to_u16_idx(int idx, bool is_native_resp)
1000 {
1001 	return is_native_resp ? idx : idx + 2 * (idx >> 1);
1002 }
1003 
1004 static void ffa_notification_info_get(void)
1005 {
1006 	int ids_processed, ids_count[MAX_IDS_64];
1007 	int idx, list, max_ids, lists_cnt;
1008 	bool is_64b_resp, is_native_resp;
1009 	ffa_value_t ret;
1010 	u64 id_list;
1011 
1012 	do {
1013 		invoke_ffa_fn((ffa_value_t){
1014 			  .a0 = FFA_FN_NATIVE(NOTIFICATION_INFO_GET),
1015 			  }, &ret);
1016 
1017 		if (ret.a0 != FFA_FN_NATIVE(SUCCESS) && ret.a0 != FFA_SUCCESS) {
1018 			if ((s32)ret.a2 != FFA_RET_NO_DATA)
1019 				pr_err("Notification Info fetch failed: 0x%lx (0x%lx)",
1020 				       ret.a0, ret.a2);
1021 			return;
1022 		}
1023 
1024 		is_64b_resp = (ret.a0 == FFA_FN64_SUCCESS);
1025 		is_native_resp = (ret.a0 == FFA_FN_NATIVE(SUCCESS));
1026 
1027 		ids_processed = 0;
1028 		lists_cnt = FIELD_GET(NOTIFICATION_INFO_GET_ID_COUNT, ret.a2);
1029 		if (is_64b_resp) {
1030 			max_ids = MAX_IDS_64;
1031 			id_list = FIELD_GET(ID_LIST_MASK_64, ret.a2);
1032 		} else {
1033 			max_ids = MAX_IDS_32;
1034 			id_list = FIELD_GET(ID_LIST_MASK_32, ret.a2);
1035 		}
1036 
1037 		for (idx = 0; idx < lists_cnt; idx++, id_list >>= 2)
1038 			ids_count[idx] = (id_list & 0x3) + 1;
1039 
1040 		/* Process IDs */
1041 		for (list = 0; list < lists_cnt; list++) {
1042 			int u16_idx;
1043 			u16 vcpu_id, part_id, *packed_id_list = (u16 *)&ret.a3;
1044 
1045 			if (ids_processed >= max_ids - 1)
1046 				break;
1047 
1048 			u16_idx = list_idx_to_u16_idx(ids_processed,
1049 						      is_native_resp);
1050 			part_id = packed_id_list[u16_idx];
1051 			ids_processed++;
1052 
1053 			if (ids_count[list] == 1) { /* Global Notification */
1054 				__do_sched_recv_cb(part_id, 0, false);
1055 				continue;
1056 			}
1057 
1058 			/* Per vCPU Notification */
1059 			for (idx = 1; idx < ids_count[list]; idx++) {
1060 				if (ids_processed >= max_ids - 1)
1061 					break;
1062 
1063 				u16_idx = list_idx_to_u16_idx(ids_processed,
1064 							      is_native_resp);
1065 				vcpu_id = packed_id_list[u16_idx];
1066 				ids_processed++;
1067 
1068 				__do_sched_recv_cb(part_id, vcpu_id, true);
1069 			}
1070 		}
1071 	} while (ret.a2 & NOTIFICATION_INFO_GET_MORE_PEND_MASK);
1072 }
1073 
1074 static int ffa_run(struct ffa_device *dev, u16 vcpu)
1075 {
1076 	ffa_value_t ret;
1077 	u32 target = dev->vm_id << 16 | vcpu;
1078 
1079 	invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = target, }, &ret);
1080 
1081 	while (ret.a0 == FFA_INTERRUPT)
1082 		invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = ret.a1, },
1083 			      &ret);
1084 
1085 	if (ret.a0 == FFA_ERROR)
1086 		return ffa_to_linux_errno((int)ret.a2);
1087 
1088 	return 0;
1089 }
1090 
1091 static void ffa_drvinfo_flags_init(void)
1092 {
1093 	if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) ||
1094 	    !ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL))
1095 		drv_info->mem_ops_native = true;
1096 
1097 	if (!ffa_features(FFA_MSG_SEND_DIRECT_REQ2, 0, NULL, NULL) ||
1098 	    !ffa_features(FFA_MSG_SEND_DIRECT_RESP2, 0, NULL, NULL))
1099 		drv_info->msg_direct_req2_supp = true;
1100 }
1101 
1102 static u32 ffa_api_version_get(void)
1103 {
1104 	return drv_info->version;
1105 }
1106 
1107 static int ffa_partition_info_get(const char *uuid_str,
1108 				  struct ffa_partition_info *buffer)
1109 {
1110 	int count;
1111 	uuid_t uuid;
1112 	struct ffa_partition_info *pbuf;
1113 
1114 	if (uuid_parse(uuid_str, &uuid)) {
1115 		pr_err("invalid uuid (%s)\n", uuid_str);
1116 		return -ENODEV;
1117 	}
1118 
1119 	count = ffa_partition_probe(&uuid, &pbuf);
1120 	if (count <= 0)
1121 		return -ENOENT;
1122 
1123 	memcpy(buffer, pbuf, sizeof(*pbuf) * count);
1124 	kfree(pbuf);
1125 	return 0;
1126 }
1127 
1128 static void ffa_mode_32bit_set(struct ffa_device *dev)
1129 {
1130 	dev->mode_32bit = true;
1131 }
1132 
1133 static int ffa_sync_send_receive(struct ffa_device *dev,
1134 				 struct ffa_send_direct_data *data)
1135 {
1136 	return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id,
1137 				       dev->mode_32bit, data);
1138 }
1139 
1140 static int ffa_indirect_msg_send(struct ffa_device *dev, void *buf, size_t sz)
1141 {
1142 	return ffa_msg_send2(dev, drv_info->vm_id, buf, sz);
1143 }
1144 
1145 static int ffa_sync_send_receive2(struct ffa_device *dev,
1146 				  struct ffa_send_direct_data2 *data)
1147 {
1148 	if (!drv_info->msg_direct_req2_supp)
1149 		return -EOPNOTSUPP;
1150 
1151 	return ffa_msg_send_direct_req2(drv_info->vm_id, dev->vm_id,
1152 					&dev->uuid, data);
1153 }
1154 
1155 static int ffa_memory_share(struct ffa_mem_ops_args *args)
1156 {
1157 	if (drv_info->mem_ops_native)
1158 		return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args);
1159 
1160 	return ffa_memory_ops(FFA_MEM_SHARE, args);
1161 }
1162 
1163 static int ffa_memory_lend(struct ffa_mem_ops_args *args)
1164 {
1165 	/* Note that upon a successful MEM_LEND request the caller
1166 	 * must ensure that the memory region specified is not accessed
1167 	 * until a successful MEM_RECALIM call has been made.
1168 	 * On systems with a hypervisor present this will been enforced,
1169 	 * however on systems without a hypervisor the responsibility
1170 	 * falls to the calling kernel driver to prevent access.
1171 	 */
1172 	if (drv_info->mem_ops_native)
1173 		return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args);
1174 
1175 	return ffa_memory_ops(FFA_MEM_LEND, args);
1176 }
1177 
1178 #define ffa_notifications_disabled()	(!drv_info->notif_enabled)
1179 
1180 struct notifier_cb_info {
1181 	struct hlist_node hnode;
1182 	struct ffa_device *dev;
1183 	ffa_fwk_notifier_cb fwk_cb;
1184 	ffa_notifier_cb cb;
1185 	void *cb_data;
1186 };
1187 
1188 static int
1189 ffa_sched_recv_cb_update(struct ffa_device *dev, ffa_sched_recv_cb callback,
1190 			 void *cb_data, bool is_registration)
1191 {
1192 	struct ffa_dev_part_info *partition = NULL, *tmp;
1193 	struct list_head *phead;
1194 	bool cb_valid;
1195 
1196 	if (ffa_notifications_disabled())
1197 		return -EOPNOTSUPP;
1198 
1199 	phead = xa_load(&drv_info->partition_info, dev->vm_id);
1200 	if (!phead) {
1201 		pr_err("%s: Invalid partition ID 0x%x\n", __func__, dev->vm_id);
1202 		return -EINVAL;
1203 	}
1204 
1205 	list_for_each_entry_safe(partition, tmp, phead, node)
1206 		if (partition->dev == dev)
1207 			break;
1208 
1209 	if (!partition) {
1210 		pr_err("%s: No such partition ID 0x%x\n", __func__, dev->vm_id);
1211 		return -EINVAL;
1212 	}
1213 
1214 	write_lock(&partition->rw_lock);
1215 
1216 	cb_valid = !!partition->callback;
1217 	if (!(is_registration ^ cb_valid)) {
1218 		write_unlock(&partition->rw_lock);
1219 		return -EINVAL;
1220 	}
1221 
1222 	partition->callback = callback;
1223 	partition->cb_data = cb_data;
1224 
1225 	write_unlock(&partition->rw_lock);
1226 	return 0;
1227 }
1228 
1229 static int ffa_sched_recv_cb_register(struct ffa_device *dev,
1230 				      ffa_sched_recv_cb cb, void *cb_data)
1231 {
1232 	return ffa_sched_recv_cb_update(dev, cb, cb_data, true);
1233 }
1234 
1235 static int ffa_sched_recv_cb_unregister(struct ffa_device *dev)
1236 {
1237 	return ffa_sched_recv_cb_update(dev, NULL, NULL, false);
1238 }
1239 
1240 static int ffa_notification_bind(u16 dst_id, u64 bitmap, u32 flags)
1241 {
1242 	return ffa_notification_bind_common(dst_id, bitmap, flags, true);
1243 }
1244 
1245 static int ffa_notification_unbind(u16 dst_id, u64 bitmap)
1246 {
1247 	return ffa_notification_bind_common(dst_id, bitmap, 0, false);
1248 }
1249 
1250 static enum notify_type ffa_notify_type_get(u16 vm_id)
1251 {
1252 	if (vm_id & FFA_SECURE_PARTITION_ID_FLAG)
1253 		return SECURE_PARTITION;
1254 	else
1255 		return NON_SECURE_VM;
1256 }
1257 
1258 /* notifier_hnode_get* should be called with notify_lock held */
1259 static struct notifier_cb_info *
1260 notifier_hnode_get_by_vmid(u16 notify_id, int vmid)
1261 {
1262 	struct notifier_cb_info *node;
1263 
1264 	hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id)
1265 		if (node->fwk_cb && vmid == node->dev->vm_id)
1266 			return node;
1267 
1268 	return NULL;
1269 }
1270 
1271 static struct notifier_cb_info *
1272 notifier_hnode_get_by_vmid_uuid(u16 notify_id, int vmid, const uuid_t *uuid)
1273 {
1274 	struct notifier_cb_info *node;
1275 
1276 	if (uuid_is_null(uuid))
1277 		return notifier_hnode_get_by_vmid(notify_id, vmid);
1278 
1279 	hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id)
1280 		if (node->fwk_cb && vmid == node->dev->vm_id &&
1281 		    uuid_equal(&node->dev->uuid, uuid))
1282 			return node;
1283 
1284 	return NULL;
1285 }
1286 
1287 static struct notifier_cb_info *
1288 notifier_hnode_get_by_type(u16 notify_id, enum notify_type type)
1289 {
1290 	struct notifier_cb_info *node;
1291 
1292 	hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id)
1293 		if (node->cb && type == ffa_notify_type_get(node->dev->vm_id))
1294 			return node;
1295 
1296 	return NULL;
1297 }
1298 
1299 static int update_notifier_cb(struct ffa_device *dev, int notify_id,
1300 			      struct notifier_cb_info *cb, bool is_framework)
1301 {
1302 	struct notifier_cb_info *cb_info = NULL;
1303 	enum notify_type type = ffa_notify_type_get(dev->vm_id);
1304 	bool cb_found, is_registration = !!cb;
1305 
1306 	if (is_framework)
1307 		cb_info = notifier_hnode_get_by_vmid_uuid(notify_id, dev->vm_id,
1308 							  &dev->uuid);
1309 	else
1310 		cb_info = notifier_hnode_get_by_type(notify_id, type);
1311 
1312 	cb_found = !!cb_info;
1313 
1314 	if (!(is_registration ^ cb_found))
1315 		return -EINVAL;
1316 
1317 	if (is_registration) {
1318 		hash_add(drv_info->notifier_hash, &cb->hnode, notify_id);
1319 	} else {
1320 		hash_del(&cb_info->hnode);
1321 		kfree(cb_info);
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 static int __ffa_notify_relinquish(struct ffa_device *dev, int notify_id,
1328 				   bool is_framework)
1329 {
1330 	int rc;
1331 
1332 	if (ffa_notifications_disabled())
1333 		return -EOPNOTSUPP;
1334 
1335 	if (notify_id >= FFA_MAX_NOTIFICATIONS)
1336 		return -EINVAL;
1337 
1338 	write_lock(&drv_info->notify_lock);
1339 
1340 	rc = update_notifier_cb(dev, notify_id, NULL, is_framework);
1341 	if (rc) {
1342 		pr_err("Could not unregister notification callback\n");
1343 		write_unlock(&drv_info->notify_lock);
1344 		return rc;
1345 	}
1346 
1347 	if (!is_framework)
1348 		rc = ffa_notification_unbind(dev->vm_id, BIT(notify_id));
1349 
1350 	write_unlock(&drv_info->notify_lock);
1351 
1352 	return rc;
1353 }
1354 
1355 static int ffa_notify_relinquish(struct ffa_device *dev, int notify_id)
1356 {
1357 	return __ffa_notify_relinquish(dev, notify_id, false);
1358 }
1359 
1360 static int ffa_fwk_notify_relinquish(struct ffa_device *dev, int notify_id)
1361 {
1362 	return __ffa_notify_relinquish(dev, notify_id, true);
1363 }
1364 
1365 static int __ffa_notify_request(struct ffa_device *dev, bool is_per_vcpu,
1366 				void *cb, void *cb_data,
1367 				int notify_id, bool is_framework)
1368 {
1369 	int rc;
1370 	u32 flags = 0;
1371 	struct notifier_cb_info *cb_info = NULL;
1372 
1373 	if (ffa_notifications_disabled())
1374 		return -EOPNOTSUPP;
1375 
1376 	if (notify_id >= FFA_MAX_NOTIFICATIONS)
1377 		return -EINVAL;
1378 
1379 	cb_info = kzalloc(sizeof(*cb_info), GFP_KERNEL);
1380 	if (!cb_info)
1381 		return -ENOMEM;
1382 
1383 	cb_info->dev = dev;
1384 	cb_info->cb_data = cb_data;
1385 	if (is_framework)
1386 		cb_info->fwk_cb = cb;
1387 	else
1388 		cb_info->cb = cb;
1389 
1390 	write_lock(&drv_info->notify_lock);
1391 
1392 	if (!is_framework) {
1393 		if (is_per_vcpu)
1394 			flags = PER_VCPU_NOTIFICATION_FLAG;
1395 
1396 		rc = ffa_notification_bind(dev->vm_id, BIT(notify_id), flags);
1397 		if (rc)
1398 			goto out_unlock_free;
1399 	}
1400 
1401 	rc = update_notifier_cb(dev, notify_id, cb_info, is_framework);
1402 	if (rc) {
1403 		pr_err("Failed to register callback for %d - %d\n",
1404 		       notify_id, rc);
1405 		if (!is_framework)
1406 			ffa_notification_unbind(dev->vm_id, BIT(notify_id));
1407 	}
1408 
1409 out_unlock_free:
1410 	write_unlock(&drv_info->notify_lock);
1411 	if (rc)
1412 		kfree(cb_info);
1413 
1414 	return rc;
1415 }
1416 
1417 static int ffa_notify_request(struct ffa_device *dev, bool is_per_vcpu,
1418 			      ffa_notifier_cb cb, void *cb_data, int notify_id)
1419 {
1420 	return __ffa_notify_request(dev, is_per_vcpu, cb, cb_data, notify_id,
1421 				    false);
1422 }
1423 
1424 static int
1425 ffa_fwk_notify_request(struct ffa_device *dev, ffa_fwk_notifier_cb cb,
1426 		       void *cb_data, int notify_id)
1427 {
1428 	return __ffa_notify_request(dev, false, cb, cb_data, notify_id, true);
1429 }
1430 
1431 static int ffa_notify_send(struct ffa_device *dev, int notify_id,
1432 			   bool is_per_vcpu, u16 vcpu)
1433 {
1434 	u32 flags = 0;
1435 
1436 	if (ffa_notifications_disabled())
1437 		return -EOPNOTSUPP;
1438 
1439 	if (is_per_vcpu)
1440 		flags |= (PER_VCPU_NOTIFICATION_FLAG | vcpu << 16);
1441 
1442 	return ffa_notification_set(dev->vm_id, drv_info->vm_id, flags,
1443 				    BIT(notify_id));
1444 }
1445 
1446 static void handle_notif_callbacks(u64 bitmap, enum notify_type type)
1447 {
1448 	int notify_id;
1449 	struct notifier_cb_info *cb_info = NULL;
1450 
1451 	for (notify_id = 0; notify_id <= FFA_MAX_NOTIFICATIONS && bitmap;
1452 	     notify_id++, bitmap >>= 1) {
1453 		if (!(bitmap & 1))
1454 			continue;
1455 
1456 		read_lock(&drv_info->notify_lock);
1457 		cb_info = notifier_hnode_get_by_type(notify_id, type);
1458 		read_unlock(&drv_info->notify_lock);
1459 
1460 		if (cb_info && cb_info->cb)
1461 			cb_info->cb(notify_id, cb_info->cb_data);
1462 	}
1463 }
1464 
1465 static void handle_fwk_notif_callbacks(u32 bitmap)
1466 {
1467 	void *buf;
1468 	uuid_t uuid;
1469 	int notify_id = 0, target;
1470 	struct ffa_indirect_msg_hdr *msg;
1471 	struct notifier_cb_info *cb_info = NULL;
1472 
1473 	/* Only one framework notification defined and supported for now */
1474 	if (!(bitmap & FRAMEWORK_NOTIFY_RX_BUFFER_FULL))
1475 		return;
1476 
1477 	mutex_lock(&drv_info->rx_lock);
1478 
1479 	msg = drv_info->rx_buffer;
1480 	buf = kmemdup((void *)msg + msg->offset, msg->size, GFP_KERNEL);
1481 	if (!buf) {
1482 		mutex_unlock(&drv_info->rx_lock);
1483 		return;
1484 	}
1485 
1486 	target = SENDER_ID(msg->send_recv_id);
1487 	if (msg->offset >= sizeof(*msg))
1488 		uuid_copy(&uuid, &msg->uuid);
1489 	else
1490 		uuid_copy(&uuid, &uuid_null);
1491 
1492 	mutex_unlock(&drv_info->rx_lock);
1493 
1494 	ffa_rx_release();
1495 
1496 	read_lock(&drv_info->notify_lock);
1497 	cb_info = notifier_hnode_get_by_vmid_uuid(notify_id, target, &uuid);
1498 	read_unlock(&drv_info->notify_lock);
1499 
1500 	if (cb_info && cb_info->fwk_cb)
1501 		cb_info->fwk_cb(notify_id, cb_info->cb_data, buf);
1502 	kfree(buf);
1503 }
1504 
1505 static void notif_get_and_handle(void *cb_data)
1506 {
1507 	int rc;
1508 	u32 flags;
1509 	struct ffa_drv_info *info = cb_data;
1510 	struct ffa_notify_bitmaps bitmaps = { 0 };
1511 
1512 	if (info->vm_id == 0) /* Non secure physical instance */
1513 		flags = FFA_BITMAP_SECURE_ENABLE_MASK;
1514 	else
1515 		flags = FFA_BITMAP_ALL_ENABLE_MASK;
1516 
1517 	rc = ffa_notification_get(flags, &bitmaps);
1518 	if (rc) {
1519 		pr_err("Failed to retrieve notifications with %d!\n", rc);
1520 		return;
1521 	}
1522 
1523 	handle_fwk_notif_callbacks(SPM_FRAMEWORK_BITMAP(bitmaps.arch_map));
1524 	handle_fwk_notif_callbacks(NS_HYP_FRAMEWORK_BITMAP(bitmaps.arch_map));
1525 	handle_notif_callbacks(bitmaps.vm_map, NON_SECURE_VM);
1526 	handle_notif_callbacks(bitmaps.sp_map, SECURE_PARTITION);
1527 }
1528 
1529 static void
1530 ffa_self_notif_handle(u16 vcpu, bool is_per_vcpu, void *cb_data)
1531 {
1532 	struct ffa_drv_info *info = cb_data;
1533 
1534 	if (!is_per_vcpu)
1535 		notif_get_and_handle(info);
1536 	else
1537 		smp_call_function_single(vcpu, notif_get_and_handle, info, 0);
1538 }
1539 
1540 static void notif_pcpu_irq_work_fn(struct work_struct *work)
1541 {
1542 	struct ffa_drv_info *info = container_of(work, struct ffa_drv_info,
1543 						 notif_pcpu_work);
1544 
1545 	ffa_self_notif_handle(smp_processor_id(), true, info);
1546 }
1547 
1548 static const struct ffa_info_ops ffa_drv_info_ops = {
1549 	.api_version_get = ffa_api_version_get,
1550 	.partition_info_get = ffa_partition_info_get,
1551 };
1552 
1553 static const struct ffa_msg_ops ffa_drv_msg_ops = {
1554 	.mode_32bit_set = ffa_mode_32bit_set,
1555 	.sync_send_receive = ffa_sync_send_receive,
1556 	.indirect_send = ffa_indirect_msg_send,
1557 	.sync_send_receive2 = ffa_sync_send_receive2,
1558 };
1559 
1560 static const struct ffa_mem_ops ffa_drv_mem_ops = {
1561 	.memory_reclaim = ffa_memory_reclaim,
1562 	.memory_share = ffa_memory_share,
1563 	.memory_lend = ffa_memory_lend,
1564 };
1565 
1566 static const struct ffa_cpu_ops ffa_drv_cpu_ops = {
1567 	.run = ffa_run,
1568 };
1569 
1570 static const struct ffa_notifier_ops ffa_drv_notifier_ops = {
1571 	.sched_recv_cb_register = ffa_sched_recv_cb_register,
1572 	.sched_recv_cb_unregister = ffa_sched_recv_cb_unregister,
1573 	.notify_request = ffa_notify_request,
1574 	.notify_relinquish = ffa_notify_relinquish,
1575 	.fwk_notify_request = ffa_fwk_notify_request,
1576 	.fwk_notify_relinquish = ffa_fwk_notify_relinquish,
1577 	.notify_send = ffa_notify_send,
1578 };
1579 
1580 static const struct ffa_ops ffa_drv_ops = {
1581 	.info_ops = &ffa_drv_info_ops,
1582 	.msg_ops = &ffa_drv_msg_ops,
1583 	.mem_ops = &ffa_drv_mem_ops,
1584 	.cpu_ops = &ffa_drv_cpu_ops,
1585 	.notifier_ops = &ffa_drv_notifier_ops,
1586 };
1587 
1588 void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid)
1589 {
1590 	int count, idx;
1591 	struct ffa_partition_info *pbuf, *tpbuf;
1592 
1593 	count = ffa_partition_probe(uuid, &pbuf);
1594 	if (count <= 0)
1595 		return;
1596 
1597 	for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++)
1598 		if (tpbuf->id == ffa_dev->vm_id)
1599 			uuid_copy(&ffa_dev->uuid, uuid);
1600 	kfree(pbuf);
1601 }
1602 
1603 static int
1604 ffa_bus_notifier(struct notifier_block *nb, unsigned long action, void *data)
1605 {
1606 	struct device *dev = data;
1607 	struct ffa_device *fdev = to_ffa_dev(dev);
1608 
1609 	if (action == BUS_NOTIFY_BIND_DRIVER) {
1610 		struct ffa_driver *ffa_drv = to_ffa_driver(dev->driver);
1611 		const struct ffa_device_id *id_table = ffa_drv->id_table;
1612 
1613 		/*
1614 		 * FF-A v1.1 provides UUID for each partition as part of the
1615 		 * discovery API, the discovered UUID must be populated in the
1616 		 * device's UUID and there is no need to workaround by copying
1617 		 * the same from the driver table.
1618 		 */
1619 		if (uuid_is_null(&fdev->uuid))
1620 			ffa_device_match_uuid(fdev, &id_table->uuid);
1621 
1622 		return NOTIFY_OK;
1623 	}
1624 
1625 	return NOTIFY_DONE;
1626 }
1627 
1628 static struct notifier_block ffa_bus_nb = {
1629 	.notifier_call = ffa_bus_notifier,
1630 };
1631 
1632 static int ffa_xa_add_partition_info(struct ffa_device *dev)
1633 {
1634 	struct ffa_dev_part_info *info;
1635 	struct list_head *head, *phead;
1636 	int ret = -ENOMEM;
1637 
1638 	phead = xa_load(&drv_info->partition_info, dev->vm_id);
1639 	if (phead) {
1640 		head = phead;
1641 		list_for_each_entry(info, head, node) {
1642 			if (info->dev == dev) {
1643 				pr_err("%s: duplicate dev %p part ID 0x%x\n",
1644 				       __func__, dev, dev->vm_id);
1645 				return -EEXIST;
1646 			}
1647 		}
1648 	}
1649 
1650 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1651 	if (!info)
1652 		return ret;
1653 
1654 	rwlock_init(&info->rw_lock);
1655 	info->dev = dev;
1656 
1657 	if (!phead) {
1658 		phead = kzalloc(sizeof(*phead), GFP_KERNEL);
1659 		if (!phead)
1660 			goto free_out;
1661 
1662 		INIT_LIST_HEAD(phead);
1663 
1664 		ret = xa_insert(&drv_info->partition_info, dev->vm_id, phead,
1665 				GFP_KERNEL);
1666 		if (ret) {
1667 			pr_err("%s: failed to save part ID 0x%x Ret:%d\n",
1668 			       __func__, dev->vm_id, ret);
1669 			goto free_out;
1670 		}
1671 	}
1672 	list_add(&info->node, phead);
1673 	return 0;
1674 
1675 free_out:
1676 	kfree(phead);
1677 	kfree(info);
1678 	return ret;
1679 }
1680 
1681 static int ffa_setup_host_partition(int vm_id)
1682 {
1683 	struct ffa_partition_info buf = { 0 };
1684 	struct ffa_device *ffa_dev;
1685 	int ret;
1686 
1687 	buf.id = vm_id;
1688 	ffa_dev = ffa_device_register(&buf, &ffa_drv_ops);
1689 	if (!ffa_dev) {
1690 		pr_err("%s: failed to register host partition ID 0x%x\n",
1691 		       __func__, vm_id);
1692 		return -EINVAL;
1693 	}
1694 
1695 	ret = ffa_xa_add_partition_info(ffa_dev);
1696 	if (ret)
1697 		return ret;
1698 
1699 	if (ffa_notifications_disabled())
1700 		return 0;
1701 
1702 	ret = ffa_sched_recv_cb_update(ffa_dev, ffa_self_notif_handle,
1703 				       drv_info, true);
1704 	if (ret)
1705 		pr_info("Failed to register driver sched callback %d\n", ret);
1706 
1707 	return ret;
1708 }
1709 
1710 static void ffa_partitions_cleanup(void)
1711 {
1712 	struct list_head *phead;
1713 	unsigned long idx;
1714 
1715 	/* Clean up/free all registered devices */
1716 	ffa_devices_unregister();
1717 
1718 	xa_for_each(&drv_info->partition_info, idx, phead) {
1719 		struct ffa_dev_part_info *info, *tmp;
1720 
1721 		xa_erase(&drv_info->partition_info, idx);
1722 		list_for_each_entry_safe(info, tmp, phead, node) {
1723 			list_del(&info->node);
1724 			kfree(info);
1725 		}
1726 		kfree(phead);
1727 	}
1728 
1729 	xa_destroy(&drv_info->partition_info);
1730 }
1731 
1732 static int ffa_setup_partitions(void)
1733 {
1734 	int count, idx, ret;
1735 	struct ffa_device *ffa_dev;
1736 	struct ffa_partition_info *pbuf, *tpbuf;
1737 
1738 	if (!FFA_PART_INFO_HAS_UUID_IN_RESP(drv_info->version)) {
1739 		ret = bus_register_notifier(&ffa_bus_type, &ffa_bus_nb);
1740 		if (ret)
1741 			pr_err("Failed to register FF-A bus notifiers\n");
1742 	}
1743 
1744 	count = ffa_partition_probe(&uuid_null, &pbuf);
1745 	if (count <= 0) {
1746 		pr_info("%s: No partitions found, error %d\n", __func__, count);
1747 		return -EINVAL;
1748 	}
1749 
1750 	xa_init(&drv_info->partition_info);
1751 	for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) {
1752 		/* Note that if the UUID will be uuid_null, that will require
1753 		 * ffa_bus_notifier() to find the UUID of this partition id
1754 		 * with help of ffa_device_match_uuid(). FF-A v1.1 and above
1755 		 * provides UUID here for each partition as part of the
1756 		 * discovery API and the same is passed.
1757 		 */
1758 		ffa_dev = ffa_device_register(tpbuf, &ffa_drv_ops);
1759 		if (!ffa_dev) {
1760 			pr_err("%s: failed to register partition ID 0x%x\n",
1761 			       __func__, tpbuf->id);
1762 			continue;
1763 		}
1764 
1765 		if (FFA_PART_INFO_HAS_EXEC_STATE_IN_RESP(drv_info->version) &&
1766 		    !(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC))
1767 			ffa_mode_32bit_set(ffa_dev);
1768 
1769 		if (ffa_xa_add_partition_info(ffa_dev)) {
1770 			ffa_device_unregister(ffa_dev);
1771 			continue;
1772 		}
1773 	}
1774 
1775 	kfree(pbuf);
1776 
1777 	/*
1778 	 * Check if the host is already added as part of partition info
1779 	 * No multiple UUID possible for the host, so just checking if
1780 	 * there is an entry will suffice
1781 	 */
1782 	if (xa_load(&drv_info->partition_info, drv_info->vm_id))
1783 		return 0;
1784 
1785 	/* Allocate for the host */
1786 	ret = ffa_setup_host_partition(drv_info->vm_id);
1787 	if (ret)
1788 		ffa_partitions_cleanup();
1789 
1790 	return ret;
1791 }
1792 
1793 /* FFA FEATURE IDs */
1794 #define FFA_FEAT_NOTIFICATION_PENDING_INT	(1)
1795 #define FFA_FEAT_SCHEDULE_RECEIVER_INT		(2)
1796 #define FFA_FEAT_MANAGED_EXIT_INT		(3)
1797 
1798 static irqreturn_t ffa_sched_recv_irq_handler(int irq, void *irq_data)
1799 {
1800 	struct ffa_pcpu_irq *pcpu = irq_data;
1801 	struct ffa_drv_info *info = pcpu->info;
1802 
1803 	queue_work(info->notif_pcpu_wq, &info->sched_recv_irq_work);
1804 
1805 	return IRQ_HANDLED;
1806 }
1807 
1808 static irqreturn_t notif_pend_irq_handler(int irq, void *irq_data)
1809 {
1810 	struct ffa_pcpu_irq *pcpu = irq_data;
1811 	struct ffa_drv_info *info = pcpu->info;
1812 
1813 	queue_work_on(smp_processor_id(), info->notif_pcpu_wq,
1814 		      &info->notif_pcpu_work);
1815 
1816 	return IRQ_HANDLED;
1817 }
1818 
1819 static void ffa_sched_recv_irq_work_fn(struct work_struct *work)
1820 {
1821 	ffa_notification_info_get();
1822 }
1823 
1824 static int ffa_irq_map(u32 id)
1825 {
1826 	char *err_str;
1827 	int ret, irq, intid;
1828 
1829 	if (id == FFA_FEAT_NOTIFICATION_PENDING_INT)
1830 		err_str = "Notification Pending Interrupt";
1831 	else if (id == FFA_FEAT_SCHEDULE_RECEIVER_INT)
1832 		err_str = "Schedule Receiver Interrupt";
1833 	else
1834 		err_str = "Unknown ID";
1835 
1836 	/* The returned intid is assumed to be SGI donated to NS world */
1837 	ret = ffa_features(id, 0, &intid, NULL);
1838 	if (ret < 0) {
1839 		if (ret != -EOPNOTSUPP)
1840 			pr_err("Failed to retrieve FF-A %s %u\n", err_str, id);
1841 		return ret;
1842 	}
1843 
1844 	if (acpi_disabled) {
1845 		struct of_phandle_args oirq = {};
1846 		struct device_node *gic;
1847 
1848 		/* Only GICv3 supported currently with the device tree */
1849 		gic = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1850 		if (!gic)
1851 			return -ENXIO;
1852 
1853 		oirq.np = gic;
1854 		oirq.args_count = 1;
1855 		oirq.args[0] = intid;
1856 		irq = irq_create_of_mapping(&oirq);
1857 		of_node_put(gic);
1858 #ifdef CONFIG_ACPI
1859 	} else {
1860 		irq = acpi_register_gsi(NULL, intid, ACPI_EDGE_SENSITIVE,
1861 					ACPI_ACTIVE_HIGH);
1862 #endif
1863 	}
1864 
1865 	if (irq <= 0) {
1866 		pr_err("Failed to create IRQ mapping!\n");
1867 		return -ENODATA;
1868 	}
1869 
1870 	return irq;
1871 }
1872 
1873 static void ffa_irq_unmap(unsigned int irq)
1874 {
1875 	if (!irq)
1876 		return;
1877 	irq_dispose_mapping(irq);
1878 }
1879 
1880 static int ffa_cpuhp_pcpu_irq_enable(unsigned int cpu)
1881 {
1882 	if (drv_info->sched_recv_irq)
1883 		enable_percpu_irq(drv_info->sched_recv_irq, IRQ_TYPE_NONE);
1884 	if (drv_info->notif_pend_irq)
1885 		enable_percpu_irq(drv_info->notif_pend_irq, IRQ_TYPE_NONE);
1886 	return 0;
1887 }
1888 
1889 static int ffa_cpuhp_pcpu_irq_disable(unsigned int cpu)
1890 {
1891 	if (drv_info->sched_recv_irq)
1892 		disable_percpu_irq(drv_info->sched_recv_irq);
1893 	if (drv_info->notif_pend_irq)
1894 		disable_percpu_irq(drv_info->notif_pend_irq);
1895 	return 0;
1896 }
1897 
1898 static void ffa_uninit_pcpu_irq(void)
1899 {
1900 	if (drv_info->cpuhp_state) {
1901 		cpuhp_remove_state(drv_info->cpuhp_state);
1902 		drv_info->cpuhp_state = 0;
1903 	}
1904 
1905 	if (drv_info->notif_pcpu_wq) {
1906 		destroy_workqueue(drv_info->notif_pcpu_wq);
1907 		drv_info->notif_pcpu_wq = NULL;
1908 	}
1909 
1910 	if (drv_info->sched_recv_irq)
1911 		free_percpu_irq(drv_info->sched_recv_irq, drv_info->irq_pcpu);
1912 
1913 	if (drv_info->notif_pend_irq)
1914 		free_percpu_irq(drv_info->notif_pend_irq, drv_info->irq_pcpu);
1915 
1916 	if (drv_info->irq_pcpu) {
1917 		free_percpu(drv_info->irq_pcpu);
1918 		drv_info->irq_pcpu = NULL;
1919 	}
1920 }
1921 
1922 static int ffa_init_pcpu_irq(void)
1923 {
1924 	struct ffa_pcpu_irq __percpu *irq_pcpu;
1925 	int ret, cpu;
1926 
1927 	irq_pcpu = alloc_percpu(struct ffa_pcpu_irq);
1928 	if (!irq_pcpu)
1929 		return -ENOMEM;
1930 
1931 	for_each_present_cpu(cpu)
1932 		per_cpu_ptr(irq_pcpu, cpu)->info = drv_info;
1933 
1934 	drv_info->irq_pcpu = irq_pcpu;
1935 
1936 	if (drv_info->sched_recv_irq) {
1937 		ret = request_percpu_irq(drv_info->sched_recv_irq,
1938 					 ffa_sched_recv_irq_handler,
1939 					 "ARM-FFA-SRI", irq_pcpu);
1940 		if (ret) {
1941 			pr_err("Error registering percpu SRI nIRQ %d : %d\n",
1942 			       drv_info->sched_recv_irq, ret);
1943 			drv_info->sched_recv_irq = 0;
1944 			return ret;
1945 		}
1946 	}
1947 
1948 	if (drv_info->notif_pend_irq) {
1949 		ret = request_percpu_irq(drv_info->notif_pend_irq,
1950 					 notif_pend_irq_handler,
1951 					 "ARM-FFA-NPI", irq_pcpu);
1952 		if (ret) {
1953 			pr_err("Error registering percpu NPI nIRQ %d : %d\n",
1954 			       drv_info->notif_pend_irq, ret);
1955 			drv_info->notif_pend_irq = 0;
1956 			return ret;
1957 		}
1958 	}
1959 
1960 	INIT_WORK(&drv_info->sched_recv_irq_work, ffa_sched_recv_irq_work_fn);
1961 	INIT_WORK(&drv_info->notif_pcpu_work, notif_pcpu_irq_work_fn);
1962 	drv_info->notif_pcpu_wq = create_workqueue("ffa_pcpu_irq_notification");
1963 	if (!drv_info->notif_pcpu_wq)
1964 		return -EINVAL;
1965 
1966 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ffa/pcpu-irq:starting",
1967 				ffa_cpuhp_pcpu_irq_enable,
1968 				ffa_cpuhp_pcpu_irq_disable);
1969 
1970 	if (ret < 0)
1971 		return ret;
1972 
1973 	drv_info->cpuhp_state = ret;
1974 	return 0;
1975 }
1976 
1977 static void ffa_notifications_cleanup(void)
1978 {
1979 	ffa_uninit_pcpu_irq();
1980 	ffa_irq_unmap(drv_info->sched_recv_irq);
1981 	drv_info->sched_recv_irq = 0;
1982 	ffa_irq_unmap(drv_info->notif_pend_irq);
1983 	drv_info->notif_pend_irq = 0;
1984 
1985 	if (drv_info->bitmap_created) {
1986 		ffa_notification_bitmap_destroy();
1987 		drv_info->bitmap_created = false;
1988 	}
1989 	drv_info->notif_enabled = false;
1990 }
1991 
1992 static void ffa_notifications_setup(void)
1993 {
1994 	int ret;
1995 
1996 	ret = ffa_features(FFA_NOTIFICATION_BITMAP_CREATE, 0, NULL, NULL);
1997 	if (!ret) {
1998 		ret = ffa_notification_bitmap_create();
1999 		if (ret) {
2000 			pr_err("Notification bitmap create error %d\n", ret);
2001 			return;
2002 		}
2003 
2004 		drv_info->bitmap_created = true;
2005 	}
2006 
2007 	ret = ffa_irq_map(FFA_FEAT_SCHEDULE_RECEIVER_INT);
2008 	if (ret > 0)
2009 		drv_info->sched_recv_irq = ret;
2010 
2011 	ret = ffa_irq_map(FFA_FEAT_NOTIFICATION_PENDING_INT);
2012 	if (ret > 0)
2013 		drv_info->notif_pend_irq = ret;
2014 
2015 	if (!drv_info->sched_recv_irq && !drv_info->notif_pend_irq)
2016 		goto cleanup;
2017 
2018 	ret = ffa_init_pcpu_irq();
2019 	if (ret)
2020 		goto cleanup;
2021 
2022 	hash_init(drv_info->notifier_hash);
2023 	rwlock_init(&drv_info->notify_lock);
2024 
2025 	drv_info->notif_enabled = true;
2026 	return;
2027 cleanup:
2028 	pr_info("Notification setup failed %d, not enabled\n", ret);
2029 	ffa_notifications_cleanup();
2030 }
2031 
2032 static int __init ffa_init(void)
2033 {
2034 	int ret;
2035 	u32 buf_sz;
2036 	size_t rxtx_bufsz = SZ_4K;
2037 
2038 	ret = ffa_transport_init(&invoke_ffa_fn);
2039 	if (ret)
2040 		return ret;
2041 
2042 	drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL);
2043 	if (!drv_info)
2044 		return -ENOMEM;
2045 
2046 	ret = ffa_version_check(&drv_info->version);
2047 	if (ret)
2048 		goto free_drv_info;
2049 
2050 	if (ffa_id_get(&drv_info->vm_id)) {
2051 		pr_err("failed to obtain VM id for self\n");
2052 		ret = -ENODEV;
2053 		goto free_drv_info;
2054 	}
2055 
2056 	ret = ffa_features(FFA_FN_NATIVE(RXTX_MAP), 0, &buf_sz, NULL);
2057 	if (!ret) {
2058 		if (RXTX_MAP_MIN_BUFSZ(buf_sz) == 1)
2059 			rxtx_bufsz = SZ_64K;
2060 		else if (RXTX_MAP_MIN_BUFSZ(buf_sz) == 2)
2061 			rxtx_bufsz = SZ_16K;
2062 		else
2063 			rxtx_bufsz = SZ_4K;
2064 	}
2065 
2066 	drv_info->rxtx_bufsz = rxtx_bufsz;
2067 	drv_info->rx_buffer = alloc_pages_exact(rxtx_bufsz, GFP_KERNEL);
2068 	if (!drv_info->rx_buffer) {
2069 		ret = -ENOMEM;
2070 		goto free_pages;
2071 	}
2072 
2073 	drv_info->tx_buffer = alloc_pages_exact(rxtx_bufsz, GFP_KERNEL);
2074 	if (!drv_info->tx_buffer) {
2075 		ret = -ENOMEM;
2076 		goto free_pages;
2077 	}
2078 
2079 	ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer),
2080 			   virt_to_phys(drv_info->rx_buffer),
2081 			   rxtx_bufsz / FFA_PAGE_SIZE);
2082 	if (ret) {
2083 		pr_err("failed to register FFA RxTx buffers\n");
2084 		goto free_pages;
2085 	}
2086 
2087 	mutex_init(&drv_info->rx_lock);
2088 	mutex_init(&drv_info->tx_lock);
2089 
2090 	ffa_drvinfo_flags_init();
2091 
2092 	ffa_notifications_setup();
2093 
2094 	ret = ffa_setup_partitions();
2095 	if (!ret)
2096 		return ret;
2097 
2098 	pr_err("failed to setup partitions\n");
2099 	ffa_notifications_cleanup();
2100 	ffa_rxtx_unmap(drv_info->vm_id);
2101 free_pages:
2102 	if (drv_info->tx_buffer)
2103 		free_pages_exact(drv_info->tx_buffer, rxtx_bufsz);
2104 	free_pages_exact(drv_info->rx_buffer, rxtx_bufsz);
2105 free_drv_info:
2106 	kfree(drv_info);
2107 	return ret;
2108 }
2109 rootfs_initcall(ffa_init);
2110 
2111 static void __exit ffa_exit(void)
2112 {
2113 	ffa_notifications_cleanup();
2114 	ffa_partitions_cleanup();
2115 	ffa_rxtx_unmap(drv_info->vm_id);
2116 	free_pages_exact(drv_info->tx_buffer, drv_info->rxtx_bufsz);
2117 	free_pages_exact(drv_info->rx_buffer, drv_info->rxtx_bufsz);
2118 	kfree(drv_info);
2119 }
2120 module_exit(ffa_exit);
2121 
2122 MODULE_ALIAS("arm-ffa");
2123 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
2124 MODULE_DESCRIPTION("Arm FF-A interface driver");
2125 MODULE_LICENSE("GPL v2");
2126