1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * guest access functions
4 *
5 * Copyright IBM Corp. 2014
6 *
7 */
8
9 #include <linux/vmalloc.h>
10 #include <linux/mm_types.h>
11 #include <linux/err.h>
12 #include <linux/pgtable.h>
13 #include <linux/bitfield.h>
14 #include <asm/access-regs.h>
15 #include <asm/fault.h>
16 #include <asm/gmap.h>
17 #include <asm/dat-bits.h>
18 #include "kvm-s390.h"
19 #include "gaccess.h"
20
21 #define GMAP_SHADOW_FAKE_TABLE 1ULL
22
23 /*
24 * vaddress union in order to easily decode a virtual address into its
25 * region first index, region second index etc. parts.
26 */
27 union vaddress {
28 unsigned long addr;
29 struct {
30 unsigned long rfx : 11;
31 unsigned long rsx : 11;
32 unsigned long rtx : 11;
33 unsigned long sx : 11;
34 unsigned long px : 8;
35 unsigned long bx : 12;
36 };
37 struct {
38 unsigned long rfx01 : 2;
39 unsigned long : 9;
40 unsigned long rsx01 : 2;
41 unsigned long : 9;
42 unsigned long rtx01 : 2;
43 unsigned long : 9;
44 unsigned long sx01 : 2;
45 unsigned long : 29;
46 };
47 };
48
49 /*
50 * raddress union which will contain the result (real or absolute address)
51 * after a page table walk. The rfaa, sfaa and pfra members are used to
52 * simply assign them the value of a region, segment or page table entry.
53 */
54 union raddress {
55 unsigned long addr;
56 unsigned long rfaa : 33; /* Region-Frame Absolute Address */
57 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
58 unsigned long pfra : 52; /* Page-Frame Real Address */
59 };
60
61 union alet {
62 u32 val;
63 struct {
64 u32 reserved : 7;
65 u32 p : 1;
66 u32 alesn : 8;
67 u32 alen : 16;
68 };
69 };
70
71 union ald {
72 u32 val;
73 struct {
74 u32 : 1;
75 u32 alo : 24;
76 u32 all : 7;
77 };
78 };
79
80 struct ale {
81 unsigned long i : 1; /* ALEN-Invalid Bit */
82 unsigned long : 5;
83 unsigned long fo : 1; /* Fetch-Only Bit */
84 unsigned long p : 1; /* Private Bit */
85 unsigned long alesn : 8; /* Access-List-Entry Sequence Number */
86 unsigned long aleax : 16; /* Access-List-Entry Authorization Index */
87 unsigned long : 32;
88 unsigned long : 1;
89 unsigned long asteo : 25; /* ASN-Second-Table-Entry Origin */
90 unsigned long : 6;
91 unsigned long astesn : 32; /* ASTE Sequence Number */
92 };
93
94 struct aste {
95 unsigned long i : 1; /* ASX-Invalid Bit */
96 unsigned long ato : 29; /* Authority-Table Origin */
97 unsigned long : 1;
98 unsigned long b : 1; /* Base-Space Bit */
99 unsigned long ax : 16; /* Authorization Index */
100 unsigned long atl : 12; /* Authority-Table Length */
101 unsigned long : 2;
102 unsigned long ca : 1; /* Controlled-ASN Bit */
103 unsigned long ra : 1; /* Reusable-ASN Bit */
104 unsigned long asce : 64; /* Address-Space-Control Element */
105 unsigned long ald : 32;
106 unsigned long astesn : 32;
107 /* .. more fields there */
108 };
109
ipte_lock_held(struct kvm * kvm)110 int ipte_lock_held(struct kvm *kvm)
111 {
112 if (sclp.has_siif)
113 return kvm->arch.sca->ipte_control.kh != 0;
114
115 return kvm->arch.ipte_lock_count != 0;
116 }
117
ipte_lock_simple(struct kvm * kvm)118 static void ipte_lock_simple(struct kvm *kvm)
119 {
120 union ipte_control old, new, *ic;
121
122 mutex_lock(&kvm->arch.ipte_mutex);
123 kvm->arch.ipte_lock_count++;
124 if (kvm->arch.ipte_lock_count > 1)
125 goto out;
126 retry:
127 ic = &kvm->arch.sca->ipte_control;
128 old = READ_ONCE(*ic);
129 do {
130 if (old.k) {
131 cond_resched();
132 goto retry;
133 }
134 new = old;
135 new.k = 1;
136 } while (!try_cmpxchg(&ic->val, &old.val, new.val));
137 out:
138 mutex_unlock(&kvm->arch.ipte_mutex);
139 }
140
ipte_unlock_simple(struct kvm * kvm)141 static void ipte_unlock_simple(struct kvm *kvm)
142 {
143 union ipte_control old, new, *ic;
144
145 mutex_lock(&kvm->arch.ipte_mutex);
146 kvm->arch.ipte_lock_count--;
147 if (kvm->arch.ipte_lock_count)
148 goto out;
149 ic = &kvm->arch.sca->ipte_control;
150 old = READ_ONCE(*ic);
151 do {
152 new = old;
153 new.k = 0;
154 } while (!try_cmpxchg(&ic->val, &old.val, new.val));
155 wake_up(&kvm->arch.ipte_wq);
156 out:
157 mutex_unlock(&kvm->arch.ipte_mutex);
158 }
159
ipte_lock_siif(struct kvm * kvm)160 static void ipte_lock_siif(struct kvm *kvm)
161 {
162 union ipte_control old, new, *ic;
163
164 retry:
165 ic = &kvm->arch.sca->ipte_control;
166 old = READ_ONCE(*ic);
167 do {
168 if (old.kg) {
169 cond_resched();
170 goto retry;
171 }
172 new = old;
173 new.k = 1;
174 new.kh++;
175 } while (!try_cmpxchg(&ic->val, &old.val, new.val));
176 }
177
ipte_unlock_siif(struct kvm * kvm)178 static void ipte_unlock_siif(struct kvm *kvm)
179 {
180 union ipte_control old, new, *ic;
181
182 ic = &kvm->arch.sca->ipte_control;
183 old = READ_ONCE(*ic);
184 do {
185 new = old;
186 new.kh--;
187 if (!new.kh)
188 new.k = 0;
189 } while (!try_cmpxchg(&ic->val, &old.val, new.val));
190 if (!new.kh)
191 wake_up(&kvm->arch.ipte_wq);
192 }
193
ipte_lock(struct kvm * kvm)194 void ipte_lock(struct kvm *kvm)
195 {
196 if (sclp.has_siif)
197 ipte_lock_siif(kvm);
198 else
199 ipte_lock_simple(kvm);
200 }
201
ipte_unlock(struct kvm * kvm)202 void ipte_unlock(struct kvm *kvm)
203 {
204 if (sclp.has_siif)
205 ipte_unlock_siif(kvm);
206 else
207 ipte_unlock_simple(kvm);
208 }
209
ar_translation(struct kvm_vcpu * vcpu,union asce * asce,u8 ar,enum gacc_mode mode)210 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
211 enum gacc_mode mode)
212 {
213 union alet alet;
214 struct ale ale;
215 struct aste aste;
216 unsigned long ald_addr, authority_table_addr;
217 union ald ald;
218 int eax, rc;
219 u8 authority_table;
220
221 if (ar >= NUM_ACRS)
222 return -EINVAL;
223
224 if (vcpu->arch.acrs_loaded)
225 save_access_regs(vcpu->run->s.regs.acrs);
226 alet.val = vcpu->run->s.regs.acrs[ar];
227
228 if (ar == 0 || alet.val == 0) {
229 asce->val = vcpu->arch.sie_block->gcr[1];
230 return 0;
231 } else if (alet.val == 1) {
232 asce->val = vcpu->arch.sie_block->gcr[7];
233 return 0;
234 }
235
236 if (alet.reserved)
237 return PGM_ALET_SPECIFICATION;
238
239 if (alet.p)
240 ald_addr = vcpu->arch.sie_block->gcr[5];
241 else
242 ald_addr = vcpu->arch.sie_block->gcr[2];
243 ald_addr &= 0x7fffffc0;
244
245 rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
246 if (rc)
247 return rc;
248
249 if (alet.alen / 8 > ald.all)
250 return PGM_ALEN_TRANSLATION;
251
252 if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
253 return PGM_ADDRESSING;
254
255 rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
256 sizeof(struct ale));
257 if (rc)
258 return rc;
259
260 if (ale.i == 1)
261 return PGM_ALEN_TRANSLATION;
262 if (ale.alesn != alet.alesn)
263 return PGM_ALE_SEQUENCE;
264
265 rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
266 if (rc)
267 return rc;
268
269 if (aste.i)
270 return PGM_ASTE_VALIDITY;
271 if (aste.astesn != ale.astesn)
272 return PGM_ASTE_SEQUENCE;
273
274 if (ale.p == 1) {
275 eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
276 if (ale.aleax != eax) {
277 if (eax / 16 > aste.atl)
278 return PGM_EXTENDED_AUTHORITY;
279
280 authority_table_addr = aste.ato * 4 + eax / 4;
281
282 rc = read_guest_real(vcpu, authority_table_addr,
283 &authority_table,
284 sizeof(u8));
285 if (rc)
286 return rc;
287
288 if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
289 return PGM_EXTENDED_AUTHORITY;
290 }
291 }
292
293 if (ale.fo == 1 && mode == GACC_STORE)
294 return PGM_PROTECTION;
295
296 asce->val = aste.asce;
297 return 0;
298 }
299
300 enum prot_type {
301 PROT_TYPE_LA = 0,
302 PROT_TYPE_KEYC = 1,
303 PROT_TYPE_ALC = 2,
304 PROT_TYPE_DAT = 3,
305 PROT_TYPE_IEP = 4,
306 /* Dummy value for passing an initialized value when code != PGM_PROTECTION */
307 PROT_TYPE_DUMMY,
308 };
309
trans_exc_ending(struct kvm_vcpu * vcpu,int code,unsigned long gva,u8 ar,enum gacc_mode mode,enum prot_type prot,bool terminate)310 static int trans_exc_ending(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
311 enum gacc_mode mode, enum prot_type prot, bool terminate)
312 {
313 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
314 union teid *teid;
315
316 memset(pgm, 0, sizeof(*pgm));
317 pgm->code = code;
318 teid = (union teid *)&pgm->trans_exc_code;
319
320 switch (code) {
321 case PGM_PROTECTION:
322 switch (prot) {
323 case PROT_TYPE_DUMMY:
324 /* We should never get here, acts like termination */
325 WARN_ON_ONCE(1);
326 break;
327 case PROT_TYPE_IEP:
328 teid->b61 = 1;
329 fallthrough;
330 case PROT_TYPE_LA:
331 teid->b56 = 1;
332 break;
333 case PROT_TYPE_KEYC:
334 teid->b60 = 1;
335 break;
336 case PROT_TYPE_ALC:
337 teid->b60 = 1;
338 fallthrough;
339 case PROT_TYPE_DAT:
340 teid->b61 = 1;
341 break;
342 }
343 if (terminate) {
344 teid->b56 = 0;
345 teid->b60 = 0;
346 teid->b61 = 0;
347 }
348 fallthrough;
349 case PGM_ASCE_TYPE:
350 case PGM_PAGE_TRANSLATION:
351 case PGM_REGION_FIRST_TRANS:
352 case PGM_REGION_SECOND_TRANS:
353 case PGM_REGION_THIRD_TRANS:
354 case PGM_SEGMENT_TRANSLATION:
355 /*
356 * op_access_id only applies to MOVE_PAGE -> set bit 61
357 * exc_access_id has to be set to 0 for some instructions. Both
358 * cases have to be handled by the caller.
359 */
360 teid->addr = gva >> PAGE_SHIFT;
361 teid->fsi = mode == GACC_STORE ? TEID_FSI_STORE : TEID_FSI_FETCH;
362 teid->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
363 fallthrough;
364 case PGM_ALEN_TRANSLATION:
365 case PGM_ALE_SEQUENCE:
366 case PGM_ASTE_VALIDITY:
367 case PGM_ASTE_SEQUENCE:
368 case PGM_EXTENDED_AUTHORITY:
369 /*
370 * We can always store exc_access_id, as it is
371 * undefined for non-ar cases. It is undefined for
372 * most DAT protection exceptions.
373 */
374 pgm->exc_access_id = ar;
375 break;
376 }
377 return code;
378 }
379
trans_exc(struct kvm_vcpu * vcpu,int code,unsigned long gva,u8 ar,enum gacc_mode mode,enum prot_type prot)380 static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
381 enum gacc_mode mode, enum prot_type prot)
382 {
383 return trans_exc_ending(vcpu, code, gva, ar, mode, prot, false);
384 }
385
get_vcpu_asce(struct kvm_vcpu * vcpu,union asce * asce,unsigned long ga,u8 ar,enum gacc_mode mode)386 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
387 unsigned long ga, u8 ar, enum gacc_mode mode)
388 {
389 int rc;
390 struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
391
392 if (!psw.dat) {
393 asce->val = 0;
394 asce->r = 1;
395 return 0;
396 }
397
398 if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME))
399 psw.as = PSW_BITS_AS_PRIMARY;
400
401 switch (psw.as) {
402 case PSW_BITS_AS_PRIMARY:
403 asce->val = vcpu->arch.sie_block->gcr[1];
404 return 0;
405 case PSW_BITS_AS_SECONDARY:
406 asce->val = vcpu->arch.sie_block->gcr[7];
407 return 0;
408 case PSW_BITS_AS_HOME:
409 asce->val = vcpu->arch.sie_block->gcr[13];
410 return 0;
411 case PSW_BITS_AS_ACCREG:
412 rc = ar_translation(vcpu, asce, ar, mode);
413 if (rc > 0)
414 return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
415 return rc;
416 }
417 return 0;
418 }
419
deref_table(struct kvm * kvm,unsigned long gpa,unsigned long * val)420 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
421 {
422 return kvm_read_guest(kvm, gpa, val, sizeof(*val));
423 }
424
425 /**
426 * guest_translate - translate a guest virtual into a guest absolute address
427 * @vcpu: virtual cpu
428 * @gva: guest virtual address
429 * @gpa: points to where guest physical (absolute) address should be stored
430 * @asce: effective asce
431 * @mode: indicates the access mode to be used
432 * @prot: returns the type for protection exceptions
433 *
434 * Translate a guest virtual address into a guest absolute address by means
435 * of dynamic address translation as specified by the architecture.
436 * If the resulting absolute address is not available in the configuration
437 * an addressing exception is indicated and @gpa will not be changed.
438 *
439 * Returns: - zero on success; @gpa contains the resulting absolute address
440 * - a negative value if guest access failed due to e.g. broken
441 * guest mapping
442 * - a positive value if an access exception happened. In this case
443 * the returned value is the program interruption code as defined
444 * by the architecture
445 */
guest_translate(struct kvm_vcpu * vcpu,unsigned long gva,unsigned long * gpa,const union asce asce,enum gacc_mode mode,enum prot_type * prot)446 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
447 unsigned long *gpa, const union asce asce,
448 enum gacc_mode mode, enum prot_type *prot)
449 {
450 union vaddress vaddr = {.addr = gva};
451 union raddress raddr = {.addr = gva};
452 union page_table_entry pte;
453 int dat_protection = 0;
454 int iep_protection = 0;
455 union ctlreg0 ctlreg0;
456 unsigned long ptr;
457 int edat1, edat2, iep;
458
459 ctlreg0.val = vcpu->arch.sie_block->gcr[0];
460 edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
461 edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
462 iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130);
463 if (asce.r)
464 goto real_address;
465 ptr = asce.rsto * PAGE_SIZE;
466 switch (asce.dt) {
467 case ASCE_TYPE_REGION1:
468 if (vaddr.rfx01 > asce.tl)
469 return PGM_REGION_FIRST_TRANS;
470 ptr += vaddr.rfx * 8;
471 break;
472 case ASCE_TYPE_REGION2:
473 if (vaddr.rfx)
474 return PGM_ASCE_TYPE;
475 if (vaddr.rsx01 > asce.tl)
476 return PGM_REGION_SECOND_TRANS;
477 ptr += vaddr.rsx * 8;
478 break;
479 case ASCE_TYPE_REGION3:
480 if (vaddr.rfx || vaddr.rsx)
481 return PGM_ASCE_TYPE;
482 if (vaddr.rtx01 > asce.tl)
483 return PGM_REGION_THIRD_TRANS;
484 ptr += vaddr.rtx * 8;
485 break;
486 case ASCE_TYPE_SEGMENT:
487 if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
488 return PGM_ASCE_TYPE;
489 if (vaddr.sx01 > asce.tl)
490 return PGM_SEGMENT_TRANSLATION;
491 ptr += vaddr.sx * 8;
492 break;
493 }
494 switch (asce.dt) {
495 case ASCE_TYPE_REGION1: {
496 union region1_table_entry rfte;
497
498 if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
499 return PGM_ADDRESSING;
500 if (deref_table(vcpu->kvm, ptr, &rfte.val))
501 return -EFAULT;
502 if (rfte.i)
503 return PGM_REGION_FIRST_TRANS;
504 if (rfte.tt != TABLE_TYPE_REGION1)
505 return PGM_TRANSLATION_SPEC;
506 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
507 return PGM_REGION_SECOND_TRANS;
508 if (edat1)
509 dat_protection |= rfte.p;
510 ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8;
511 }
512 fallthrough;
513 case ASCE_TYPE_REGION2: {
514 union region2_table_entry rste;
515
516 if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
517 return PGM_ADDRESSING;
518 if (deref_table(vcpu->kvm, ptr, &rste.val))
519 return -EFAULT;
520 if (rste.i)
521 return PGM_REGION_SECOND_TRANS;
522 if (rste.tt != TABLE_TYPE_REGION2)
523 return PGM_TRANSLATION_SPEC;
524 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
525 return PGM_REGION_THIRD_TRANS;
526 if (edat1)
527 dat_protection |= rste.p;
528 ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8;
529 }
530 fallthrough;
531 case ASCE_TYPE_REGION3: {
532 union region3_table_entry rtte;
533
534 if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
535 return PGM_ADDRESSING;
536 if (deref_table(vcpu->kvm, ptr, &rtte.val))
537 return -EFAULT;
538 if (rtte.i)
539 return PGM_REGION_THIRD_TRANS;
540 if (rtte.tt != TABLE_TYPE_REGION3)
541 return PGM_TRANSLATION_SPEC;
542 if (rtte.cr && asce.p && edat2)
543 return PGM_TRANSLATION_SPEC;
544 if (rtte.fc && edat2) {
545 dat_protection |= rtte.fc1.p;
546 iep_protection = rtte.fc1.iep;
547 raddr.rfaa = rtte.fc1.rfaa;
548 goto absolute_address;
549 }
550 if (vaddr.sx01 < rtte.fc0.tf)
551 return PGM_SEGMENT_TRANSLATION;
552 if (vaddr.sx01 > rtte.fc0.tl)
553 return PGM_SEGMENT_TRANSLATION;
554 if (edat1)
555 dat_protection |= rtte.fc0.p;
556 ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8;
557 }
558 fallthrough;
559 case ASCE_TYPE_SEGMENT: {
560 union segment_table_entry ste;
561
562 if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
563 return PGM_ADDRESSING;
564 if (deref_table(vcpu->kvm, ptr, &ste.val))
565 return -EFAULT;
566 if (ste.i)
567 return PGM_SEGMENT_TRANSLATION;
568 if (ste.tt != TABLE_TYPE_SEGMENT)
569 return PGM_TRANSLATION_SPEC;
570 if (ste.cs && asce.p)
571 return PGM_TRANSLATION_SPEC;
572 if (ste.fc && edat1) {
573 dat_protection |= ste.fc1.p;
574 iep_protection = ste.fc1.iep;
575 raddr.sfaa = ste.fc1.sfaa;
576 goto absolute_address;
577 }
578 dat_protection |= ste.fc0.p;
579 ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8;
580 }
581 }
582 if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
583 return PGM_ADDRESSING;
584 if (deref_table(vcpu->kvm, ptr, &pte.val))
585 return -EFAULT;
586 if (pte.i)
587 return PGM_PAGE_TRANSLATION;
588 if (pte.z)
589 return PGM_TRANSLATION_SPEC;
590 dat_protection |= pte.p;
591 iep_protection = pte.iep;
592 raddr.pfra = pte.pfra;
593 real_address:
594 raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
595 absolute_address:
596 if (mode == GACC_STORE && dat_protection) {
597 *prot = PROT_TYPE_DAT;
598 return PGM_PROTECTION;
599 }
600 if (mode == GACC_IFETCH && iep_protection && iep) {
601 *prot = PROT_TYPE_IEP;
602 return PGM_PROTECTION;
603 }
604 if (!kvm_is_gpa_in_memslot(vcpu->kvm, raddr.addr))
605 return PGM_ADDRESSING;
606 *gpa = raddr.addr;
607 return 0;
608 }
609
is_low_address(unsigned long ga)610 static inline int is_low_address(unsigned long ga)
611 {
612 /* Check for address ranges 0..511 and 4096..4607 */
613 return (ga & ~0x11fful) == 0;
614 }
615
low_address_protection_enabled(struct kvm_vcpu * vcpu,const union asce asce)616 static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
617 const union asce asce)
618 {
619 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
620 psw_t *psw = &vcpu->arch.sie_block->gpsw;
621
622 if (!ctlreg0.lap)
623 return 0;
624 if (psw_bits(*psw).dat && asce.p)
625 return 0;
626 return 1;
627 }
628
vm_check_access_key(struct kvm * kvm,u8 access_key,enum gacc_mode mode,gpa_t gpa)629 static int vm_check_access_key(struct kvm *kvm, u8 access_key,
630 enum gacc_mode mode, gpa_t gpa)
631 {
632 u8 storage_key, access_control;
633 bool fetch_protected;
634 unsigned long hva;
635 int r;
636
637 if (access_key == 0)
638 return 0;
639
640 hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
641 if (kvm_is_error_hva(hva))
642 return PGM_ADDRESSING;
643
644 mmap_read_lock(current->mm);
645 r = get_guest_storage_key(current->mm, hva, &storage_key);
646 mmap_read_unlock(current->mm);
647 if (r)
648 return r;
649 access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
650 if (access_control == access_key)
651 return 0;
652 fetch_protected = storage_key & _PAGE_FP_BIT;
653 if ((mode == GACC_FETCH || mode == GACC_IFETCH) && !fetch_protected)
654 return 0;
655 return PGM_PROTECTION;
656 }
657
fetch_prot_override_applicable(struct kvm_vcpu * vcpu,enum gacc_mode mode,union asce asce)658 static bool fetch_prot_override_applicable(struct kvm_vcpu *vcpu, enum gacc_mode mode,
659 union asce asce)
660 {
661 psw_t *psw = &vcpu->arch.sie_block->gpsw;
662 unsigned long override;
663
664 if (mode == GACC_FETCH || mode == GACC_IFETCH) {
665 /* check if fetch protection override enabled */
666 override = vcpu->arch.sie_block->gcr[0];
667 override &= CR0_FETCH_PROTECTION_OVERRIDE;
668 /* not applicable if subject to DAT && private space */
669 override = override && !(psw_bits(*psw).dat && asce.p);
670 return override;
671 }
672 return false;
673 }
674
fetch_prot_override_applies(unsigned long ga,unsigned int len)675 static bool fetch_prot_override_applies(unsigned long ga, unsigned int len)
676 {
677 return ga < 2048 && ga + len <= 2048;
678 }
679
storage_prot_override_applicable(struct kvm_vcpu * vcpu)680 static bool storage_prot_override_applicable(struct kvm_vcpu *vcpu)
681 {
682 /* check if storage protection override enabled */
683 return vcpu->arch.sie_block->gcr[0] & CR0_STORAGE_PROTECTION_OVERRIDE;
684 }
685
storage_prot_override_applies(u8 access_control)686 static bool storage_prot_override_applies(u8 access_control)
687 {
688 /* matches special storage protection override key (9) -> allow */
689 return access_control == PAGE_SPO_ACC;
690 }
691
vcpu_check_access_key(struct kvm_vcpu * vcpu,u8 access_key,enum gacc_mode mode,union asce asce,gpa_t gpa,unsigned long ga,unsigned int len)692 static int vcpu_check_access_key(struct kvm_vcpu *vcpu, u8 access_key,
693 enum gacc_mode mode, union asce asce, gpa_t gpa,
694 unsigned long ga, unsigned int len)
695 {
696 u8 storage_key, access_control;
697 unsigned long hva;
698 int r;
699
700 /* access key 0 matches any storage key -> allow */
701 if (access_key == 0)
702 return 0;
703 /*
704 * caller needs to ensure that gfn is accessible, so we can
705 * assume that this cannot fail
706 */
707 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gpa));
708 mmap_read_lock(current->mm);
709 r = get_guest_storage_key(current->mm, hva, &storage_key);
710 mmap_read_unlock(current->mm);
711 if (r)
712 return r;
713 access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
714 /* access key matches storage key -> allow */
715 if (access_control == access_key)
716 return 0;
717 if (mode == GACC_FETCH || mode == GACC_IFETCH) {
718 /* it is a fetch and fetch protection is off -> allow */
719 if (!(storage_key & _PAGE_FP_BIT))
720 return 0;
721 if (fetch_prot_override_applicable(vcpu, mode, asce) &&
722 fetch_prot_override_applies(ga, len))
723 return 0;
724 }
725 if (storage_prot_override_applicable(vcpu) &&
726 storage_prot_override_applies(access_control))
727 return 0;
728 return PGM_PROTECTION;
729 }
730
731 /**
732 * guest_range_to_gpas() - Calculate guest physical addresses of page fragments
733 * covering a logical range
734 * @vcpu: virtual cpu
735 * @ga: guest address, start of range
736 * @ar: access register
737 * @gpas: output argument, may be NULL
738 * @len: length of range in bytes
739 * @asce: address-space-control element to use for translation
740 * @mode: access mode
741 * @access_key: access key to mach the range's storage keys against
742 *
743 * Translate a logical range to a series of guest absolute addresses,
744 * such that the concatenation of page fragments starting at each gpa make up
745 * the whole range.
746 * The translation is performed as if done by the cpu for the given @asce, @ar,
747 * @mode and state of the @vcpu.
748 * If the translation causes an exception, its program interruption code is
749 * returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified
750 * such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject
751 * a correct exception into the guest.
752 * The resulting gpas are stored into @gpas, unless it is NULL.
753 *
754 * Note: All fragments except the first one start at the beginning of a page.
755 * When deriving the boundaries of a fragment from a gpa, all but the last
756 * fragment end at the end of the page.
757 *
758 * Return:
759 * * 0 - success
760 * * <0 - translation could not be performed, for example if guest
761 * memory could not be accessed
762 * * >0 - an access exception occurred. In this case the returned value
763 * is the program interruption code and the contents of pgm may
764 * be used to inject an exception into the guest.
765 */
guest_range_to_gpas(struct kvm_vcpu * vcpu,unsigned long ga,u8 ar,unsigned long * gpas,unsigned long len,const union asce asce,enum gacc_mode mode,u8 access_key)766 static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
767 unsigned long *gpas, unsigned long len,
768 const union asce asce, enum gacc_mode mode,
769 u8 access_key)
770 {
771 psw_t *psw = &vcpu->arch.sie_block->gpsw;
772 unsigned int offset = offset_in_page(ga);
773 unsigned int fragment_len;
774 int lap_enabled, rc = 0;
775 enum prot_type prot;
776 unsigned long gpa;
777
778 lap_enabled = low_address_protection_enabled(vcpu, asce);
779 while (min(PAGE_SIZE - offset, len) > 0) {
780 fragment_len = min(PAGE_SIZE - offset, len);
781 ga = kvm_s390_logical_to_effective(vcpu, ga);
782 if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
783 return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
784 PROT_TYPE_LA);
785 if (psw_bits(*psw).dat) {
786 rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot);
787 if (rc < 0)
788 return rc;
789 } else {
790 gpa = kvm_s390_real_to_abs(vcpu, ga);
791 if (!kvm_is_gpa_in_memslot(vcpu->kvm, gpa)) {
792 rc = PGM_ADDRESSING;
793 prot = PROT_TYPE_DUMMY;
794 }
795 }
796 if (rc)
797 return trans_exc(vcpu, rc, ga, ar, mode, prot);
798 rc = vcpu_check_access_key(vcpu, access_key, mode, asce, gpa, ga,
799 fragment_len);
800 if (rc)
801 return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_KEYC);
802 if (gpas)
803 *gpas++ = gpa;
804 offset = 0;
805 ga += fragment_len;
806 len -= fragment_len;
807 }
808 return 0;
809 }
810
access_guest_page(struct kvm * kvm,enum gacc_mode mode,gpa_t gpa,void * data,unsigned int len)811 static int access_guest_page(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
812 void *data, unsigned int len)
813 {
814 const unsigned int offset = offset_in_page(gpa);
815 const gfn_t gfn = gpa_to_gfn(gpa);
816 int rc;
817
818 if (!gfn_to_memslot(kvm, gfn))
819 return PGM_ADDRESSING;
820 if (mode == GACC_STORE)
821 rc = kvm_write_guest_page(kvm, gfn, data, offset, len);
822 else
823 rc = kvm_read_guest_page(kvm, gfn, data, offset, len);
824 return rc;
825 }
826
827 static int
access_guest_page_with_key(struct kvm * kvm,enum gacc_mode mode,gpa_t gpa,void * data,unsigned int len,u8 access_key)828 access_guest_page_with_key(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
829 void *data, unsigned int len, u8 access_key)
830 {
831 struct kvm_memory_slot *slot;
832 bool writable;
833 gfn_t gfn;
834 hva_t hva;
835 int rc;
836
837 gfn = gpa >> PAGE_SHIFT;
838 slot = gfn_to_memslot(kvm, gfn);
839 hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
840
841 if (kvm_is_error_hva(hva))
842 return PGM_ADDRESSING;
843 /*
844 * Check if it's a ro memslot, even tho that can't occur (they're unsupported).
845 * Don't try to actually handle that case.
846 */
847 if (!writable && mode == GACC_STORE)
848 return -EOPNOTSUPP;
849 hva += offset_in_page(gpa);
850 if (mode == GACC_STORE)
851 rc = copy_to_user_key((void __user *)hva, data, len, access_key);
852 else
853 rc = copy_from_user_key(data, (void __user *)hva, len, access_key);
854 if (rc)
855 return PGM_PROTECTION;
856 if (mode == GACC_STORE)
857 mark_page_dirty_in_slot(kvm, slot, gfn);
858 return 0;
859 }
860
access_guest_abs_with_key(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len,enum gacc_mode mode,u8 access_key)861 int access_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, void *data,
862 unsigned long len, enum gacc_mode mode, u8 access_key)
863 {
864 int offset = offset_in_page(gpa);
865 int fragment_len;
866 int rc;
867
868 while (min(PAGE_SIZE - offset, len) > 0) {
869 fragment_len = min(PAGE_SIZE - offset, len);
870 rc = access_guest_page_with_key(kvm, mode, gpa, data, fragment_len, access_key);
871 if (rc)
872 return rc;
873 offset = 0;
874 len -= fragment_len;
875 data += fragment_len;
876 gpa += fragment_len;
877 }
878 return 0;
879 }
880
access_guest_with_key(struct kvm_vcpu * vcpu,unsigned long ga,u8 ar,void * data,unsigned long len,enum gacc_mode mode,u8 access_key)881 int access_guest_with_key(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
882 void *data, unsigned long len, enum gacc_mode mode,
883 u8 access_key)
884 {
885 psw_t *psw = &vcpu->arch.sie_block->gpsw;
886 unsigned long nr_pages, idx;
887 unsigned long gpa_array[2];
888 unsigned int fragment_len;
889 unsigned long *gpas;
890 enum prot_type prot;
891 int need_ipte_lock;
892 union asce asce;
893 bool try_storage_prot_override;
894 bool try_fetch_prot_override;
895 int rc;
896
897 if (!len)
898 return 0;
899 ga = kvm_s390_logical_to_effective(vcpu, ga);
900 rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
901 if (rc)
902 return rc;
903 nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
904 gpas = gpa_array;
905 if (nr_pages > ARRAY_SIZE(gpa_array))
906 gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long)));
907 if (!gpas)
908 return -ENOMEM;
909 try_fetch_prot_override = fetch_prot_override_applicable(vcpu, mode, asce);
910 try_storage_prot_override = storage_prot_override_applicable(vcpu);
911 need_ipte_lock = psw_bits(*psw).dat && !asce.r;
912 if (need_ipte_lock)
913 ipte_lock(vcpu->kvm);
914 /*
915 * Since we do the access further down ultimately via a move instruction
916 * that does key checking and returns an error in case of a protection
917 * violation, we don't need to do the check during address translation.
918 * Skip it by passing access key 0, which matches any storage key,
919 * obviating the need for any further checks. As a result the check is
920 * handled entirely in hardware on access, we only need to take care to
921 * forego key protection checking if fetch protection override applies or
922 * retry with the special key 9 in case of storage protection override.
923 */
924 rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode, 0);
925 if (rc)
926 goto out_unlock;
927 for (idx = 0; idx < nr_pages; idx++) {
928 fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len);
929 if (try_fetch_prot_override && fetch_prot_override_applies(ga, fragment_len)) {
930 rc = access_guest_page(vcpu->kvm, mode, gpas[idx],
931 data, fragment_len);
932 } else {
933 rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
934 data, fragment_len, access_key);
935 }
936 if (rc == PGM_PROTECTION && try_storage_prot_override)
937 rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
938 data, fragment_len, PAGE_SPO_ACC);
939 if (rc)
940 break;
941 len -= fragment_len;
942 data += fragment_len;
943 ga = kvm_s390_logical_to_effective(vcpu, ga + fragment_len);
944 }
945 if (rc > 0) {
946 bool terminate = (mode == GACC_STORE) && (idx > 0);
947
948 if (rc == PGM_PROTECTION)
949 prot = PROT_TYPE_KEYC;
950 else
951 prot = PROT_TYPE_DUMMY;
952 rc = trans_exc_ending(vcpu, rc, ga, ar, mode, prot, terminate);
953 }
954 out_unlock:
955 if (need_ipte_lock)
956 ipte_unlock(vcpu->kvm);
957 if (nr_pages > ARRAY_SIZE(gpa_array))
958 vfree(gpas);
959 return rc;
960 }
961
access_guest_real(struct kvm_vcpu * vcpu,unsigned long gra,void * data,unsigned long len,enum gacc_mode mode)962 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
963 void *data, unsigned long len, enum gacc_mode mode)
964 {
965 unsigned int fragment_len;
966 unsigned long gpa;
967 int rc = 0;
968
969 while (len && !rc) {
970 gpa = kvm_s390_real_to_abs(vcpu, gra);
971 fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len);
972 rc = access_guest_page(vcpu->kvm, mode, gpa, data, fragment_len);
973 len -= fragment_len;
974 gra += fragment_len;
975 data += fragment_len;
976 }
977 if (rc > 0)
978 vcpu->arch.pgm.code = rc;
979 return rc;
980 }
981
982 /**
983 * cmpxchg_guest_abs_with_key() - Perform cmpxchg on guest absolute address.
984 * @kvm: Virtual machine instance.
985 * @gpa: Absolute guest address of the location to be changed.
986 * @len: Operand length of the cmpxchg, required: 1 <= len <= 16. Providing a
987 * non power of two will result in failure.
988 * @old_addr: Pointer to old value. If the location at @gpa contains this value,
989 * the exchange will succeed. After calling cmpxchg_guest_abs_with_key()
990 * *@old_addr contains the value at @gpa before the attempt to
991 * exchange the value.
992 * @new: The value to place at @gpa.
993 * @access_key: The access key to use for the guest access.
994 * @success: output value indicating if an exchange occurred.
995 *
996 * Atomically exchange the value at @gpa by @new, if it contains *@old.
997 * Honors storage keys.
998 *
999 * Return: * 0: successful exchange
1000 * * >0: a program interruption code indicating the reason cmpxchg could
1001 * not be attempted
1002 * * -EINVAL: address misaligned or len not power of two
1003 * * -EAGAIN: transient failure (len 1 or 2)
1004 * * -EOPNOTSUPP: read-only memslot (should never occur)
1005 */
cmpxchg_guest_abs_with_key(struct kvm * kvm,gpa_t gpa,int len,__uint128_t * old_addr,__uint128_t new,u8 access_key,bool * success)1006 int cmpxchg_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, int len,
1007 __uint128_t *old_addr, __uint128_t new,
1008 u8 access_key, bool *success)
1009 {
1010 gfn_t gfn = gpa_to_gfn(gpa);
1011 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1012 bool writable;
1013 hva_t hva;
1014 int ret;
1015
1016 if (!IS_ALIGNED(gpa, len))
1017 return -EINVAL;
1018
1019 hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
1020 if (kvm_is_error_hva(hva))
1021 return PGM_ADDRESSING;
1022 /*
1023 * Check if it's a read-only memslot, even though that cannot occur
1024 * since those are unsupported.
1025 * Don't try to actually handle that case.
1026 */
1027 if (!writable)
1028 return -EOPNOTSUPP;
1029
1030 hva += offset_in_page(gpa);
1031 /*
1032 * The cmpxchg_user_key macro depends on the type of "old", so we need
1033 * a case for each valid length and get some code duplication as long
1034 * as we don't introduce a new macro.
1035 */
1036 switch (len) {
1037 case 1: {
1038 u8 old;
1039
1040 ret = cmpxchg_user_key((u8 __user *)hva, &old, *old_addr, new, access_key);
1041 *success = !ret && old == *old_addr;
1042 *old_addr = old;
1043 break;
1044 }
1045 case 2: {
1046 u16 old;
1047
1048 ret = cmpxchg_user_key((u16 __user *)hva, &old, *old_addr, new, access_key);
1049 *success = !ret && old == *old_addr;
1050 *old_addr = old;
1051 break;
1052 }
1053 case 4: {
1054 u32 old;
1055
1056 ret = cmpxchg_user_key((u32 __user *)hva, &old, *old_addr, new, access_key);
1057 *success = !ret && old == *old_addr;
1058 *old_addr = old;
1059 break;
1060 }
1061 case 8: {
1062 u64 old;
1063
1064 ret = cmpxchg_user_key((u64 __user *)hva, &old, *old_addr, new, access_key);
1065 *success = !ret && old == *old_addr;
1066 *old_addr = old;
1067 break;
1068 }
1069 case 16: {
1070 __uint128_t old;
1071
1072 ret = cmpxchg_user_key((__uint128_t __user *)hva, &old, *old_addr, new, access_key);
1073 *success = !ret && old == *old_addr;
1074 *old_addr = old;
1075 break;
1076 }
1077 default:
1078 return -EINVAL;
1079 }
1080 if (*success)
1081 mark_page_dirty_in_slot(kvm, slot, gfn);
1082 /*
1083 * Assume that the fault is caused by protection, either key protection
1084 * or user page write protection.
1085 */
1086 if (ret == -EFAULT)
1087 ret = PGM_PROTECTION;
1088 return ret;
1089 }
1090
1091 /**
1092 * guest_translate_address_with_key - translate guest logical into guest absolute address
1093 * @vcpu: virtual cpu
1094 * @gva: Guest virtual address
1095 * @ar: Access register
1096 * @gpa: Guest physical address
1097 * @mode: Translation access mode
1098 * @access_key: access key to mach the storage key with
1099 *
1100 * Parameter semantics are the same as the ones from guest_translate.
1101 * The memory contents at the guest address are not changed.
1102 *
1103 * Note: The IPTE lock is not taken during this function, so the caller
1104 * has to take care of this.
1105 */
guest_translate_address_with_key(struct kvm_vcpu * vcpu,unsigned long gva,u8 ar,unsigned long * gpa,enum gacc_mode mode,u8 access_key)1106 int guest_translate_address_with_key(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
1107 unsigned long *gpa, enum gacc_mode mode,
1108 u8 access_key)
1109 {
1110 union asce asce;
1111 int rc;
1112
1113 gva = kvm_s390_logical_to_effective(vcpu, gva);
1114 rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
1115 if (rc)
1116 return rc;
1117 return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode,
1118 access_key);
1119 }
1120
1121 /**
1122 * check_gva_range - test a range of guest virtual addresses for accessibility
1123 * @vcpu: virtual cpu
1124 * @gva: Guest virtual address
1125 * @ar: Access register
1126 * @length: Length of test range
1127 * @mode: Translation access mode
1128 * @access_key: access key to mach the storage keys with
1129 */
check_gva_range(struct kvm_vcpu * vcpu,unsigned long gva,u8 ar,unsigned long length,enum gacc_mode mode,u8 access_key)1130 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
1131 unsigned long length, enum gacc_mode mode, u8 access_key)
1132 {
1133 union asce asce;
1134 int rc = 0;
1135
1136 rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
1137 if (rc)
1138 return rc;
1139 ipte_lock(vcpu->kvm);
1140 rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode,
1141 access_key);
1142 ipte_unlock(vcpu->kvm);
1143
1144 return rc;
1145 }
1146
1147 /**
1148 * check_gpa_range - test a range of guest physical addresses for accessibility
1149 * @kvm: virtual machine instance
1150 * @gpa: guest physical address
1151 * @length: length of test range
1152 * @mode: access mode to test, relevant for storage keys
1153 * @access_key: access key to mach the storage keys with
1154 */
check_gpa_range(struct kvm * kvm,unsigned long gpa,unsigned long length,enum gacc_mode mode,u8 access_key)1155 int check_gpa_range(struct kvm *kvm, unsigned long gpa, unsigned long length,
1156 enum gacc_mode mode, u8 access_key)
1157 {
1158 unsigned int fragment_len;
1159 int rc = 0;
1160
1161 while (length && !rc) {
1162 fragment_len = min(PAGE_SIZE - offset_in_page(gpa), length);
1163 rc = vm_check_access_key(kvm, access_key, mode, gpa);
1164 length -= fragment_len;
1165 gpa += fragment_len;
1166 }
1167 return rc;
1168 }
1169
1170 /**
1171 * kvm_s390_check_low_addr_prot_real - check for low-address protection
1172 * @vcpu: virtual cpu
1173 * @gra: Guest real address
1174 *
1175 * Checks whether an address is subject to low-address protection and set
1176 * up vcpu->arch.pgm accordingly if necessary.
1177 *
1178 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
1179 */
kvm_s390_check_low_addr_prot_real(struct kvm_vcpu * vcpu,unsigned long gra)1180 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
1181 {
1182 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
1183
1184 if (!ctlreg0.lap || !is_low_address(gra))
1185 return 0;
1186 return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
1187 }
1188
1189 /**
1190 * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
1191 * @sg: pointer to the shadow guest address space structure
1192 * @saddr: faulting address in the shadow gmap
1193 * @pgt: pointer to the beginning of the page table for the given address if
1194 * successful (return value 0), or to the first invalid DAT entry in
1195 * case of exceptions (return value > 0)
1196 * @dat_protection: referenced memory is write protected
1197 * @fake: pgt references contiguous guest memory block, not a pgtable
1198 */
kvm_s390_shadow_tables(struct gmap * sg,unsigned long saddr,unsigned long * pgt,int * dat_protection,int * fake)1199 static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
1200 unsigned long *pgt, int *dat_protection,
1201 int *fake)
1202 {
1203 struct kvm *kvm;
1204 struct gmap *parent;
1205 union asce asce;
1206 union vaddress vaddr;
1207 unsigned long ptr;
1208 int rc;
1209
1210 *fake = 0;
1211 *dat_protection = 0;
1212 kvm = sg->private;
1213 parent = sg->parent;
1214 vaddr.addr = saddr;
1215 asce.val = sg->orig_asce;
1216 ptr = asce.rsto * PAGE_SIZE;
1217 if (asce.r) {
1218 *fake = 1;
1219 ptr = 0;
1220 asce.dt = ASCE_TYPE_REGION1;
1221 }
1222 switch (asce.dt) {
1223 case ASCE_TYPE_REGION1:
1224 if (vaddr.rfx01 > asce.tl && !*fake)
1225 return PGM_REGION_FIRST_TRANS;
1226 break;
1227 case ASCE_TYPE_REGION2:
1228 if (vaddr.rfx)
1229 return PGM_ASCE_TYPE;
1230 if (vaddr.rsx01 > asce.tl)
1231 return PGM_REGION_SECOND_TRANS;
1232 break;
1233 case ASCE_TYPE_REGION3:
1234 if (vaddr.rfx || vaddr.rsx)
1235 return PGM_ASCE_TYPE;
1236 if (vaddr.rtx01 > asce.tl)
1237 return PGM_REGION_THIRD_TRANS;
1238 break;
1239 case ASCE_TYPE_SEGMENT:
1240 if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
1241 return PGM_ASCE_TYPE;
1242 if (vaddr.sx01 > asce.tl)
1243 return PGM_SEGMENT_TRANSLATION;
1244 break;
1245 }
1246
1247 switch (asce.dt) {
1248 case ASCE_TYPE_REGION1: {
1249 union region1_table_entry rfte;
1250
1251 if (*fake) {
1252 ptr += vaddr.rfx * _REGION1_SIZE;
1253 rfte.val = ptr;
1254 goto shadow_r2t;
1255 }
1256 *pgt = ptr + vaddr.rfx * 8;
1257 rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1258 if (rc)
1259 return rc;
1260 if (rfte.i)
1261 return PGM_REGION_FIRST_TRANS;
1262 if (rfte.tt != TABLE_TYPE_REGION1)
1263 return PGM_TRANSLATION_SPEC;
1264 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1265 return PGM_REGION_SECOND_TRANS;
1266 if (sg->edat_level >= 1)
1267 *dat_protection |= rfte.p;
1268 ptr = rfte.rto * PAGE_SIZE;
1269 shadow_r2t:
1270 rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1271 if (rc)
1272 return rc;
1273 kvm->stat.gmap_shadow_r1_entry++;
1274 }
1275 fallthrough;
1276 case ASCE_TYPE_REGION2: {
1277 union region2_table_entry rste;
1278
1279 if (*fake) {
1280 ptr += vaddr.rsx * _REGION2_SIZE;
1281 rste.val = ptr;
1282 goto shadow_r3t;
1283 }
1284 *pgt = ptr + vaddr.rsx * 8;
1285 rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1286 if (rc)
1287 return rc;
1288 if (rste.i)
1289 return PGM_REGION_SECOND_TRANS;
1290 if (rste.tt != TABLE_TYPE_REGION2)
1291 return PGM_TRANSLATION_SPEC;
1292 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1293 return PGM_REGION_THIRD_TRANS;
1294 if (sg->edat_level >= 1)
1295 *dat_protection |= rste.p;
1296 ptr = rste.rto * PAGE_SIZE;
1297 shadow_r3t:
1298 rste.p |= *dat_protection;
1299 rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1300 if (rc)
1301 return rc;
1302 kvm->stat.gmap_shadow_r2_entry++;
1303 }
1304 fallthrough;
1305 case ASCE_TYPE_REGION3: {
1306 union region3_table_entry rtte;
1307
1308 if (*fake) {
1309 ptr += vaddr.rtx * _REGION3_SIZE;
1310 rtte.val = ptr;
1311 goto shadow_sgt;
1312 }
1313 *pgt = ptr + vaddr.rtx * 8;
1314 rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1315 if (rc)
1316 return rc;
1317 if (rtte.i)
1318 return PGM_REGION_THIRD_TRANS;
1319 if (rtte.tt != TABLE_TYPE_REGION3)
1320 return PGM_TRANSLATION_SPEC;
1321 if (rtte.cr && asce.p && sg->edat_level >= 2)
1322 return PGM_TRANSLATION_SPEC;
1323 if (rtte.fc && sg->edat_level >= 2) {
1324 *dat_protection |= rtte.fc0.p;
1325 *fake = 1;
1326 ptr = rtte.fc1.rfaa * _REGION3_SIZE;
1327 rtte.val = ptr;
1328 goto shadow_sgt;
1329 }
1330 if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1331 return PGM_SEGMENT_TRANSLATION;
1332 if (sg->edat_level >= 1)
1333 *dat_protection |= rtte.fc0.p;
1334 ptr = rtte.fc0.sto * PAGE_SIZE;
1335 shadow_sgt:
1336 rtte.fc0.p |= *dat_protection;
1337 rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1338 if (rc)
1339 return rc;
1340 kvm->stat.gmap_shadow_r3_entry++;
1341 }
1342 fallthrough;
1343 case ASCE_TYPE_SEGMENT: {
1344 union segment_table_entry ste;
1345
1346 if (*fake) {
1347 ptr += vaddr.sx * _SEGMENT_SIZE;
1348 ste.val = ptr;
1349 goto shadow_pgt;
1350 }
1351 *pgt = ptr + vaddr.sx * 8;
1352 rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1353 if (rc)
1354 return rc;
1355 if (ste.i)
1356 return PGM_SEGMENT_TRANSLATION;
1357 if (ste.tt != TABLE_TYPE_SEGMENT)
1358 return PGM_TRANSLATION_SPEC;
1359 if (ste.cs && asce.p)
1360 return PGM_TRANSLATION_SPEC;
1361 *dat_protection |= ste.fc0.p;
1362 if (ste.fc && sg->edat_level >= 1) {
1363 *fake = 1;
1364 ptr = ste.fc1.sfaa * _SEGMENT_SIZE;
1365 ste.val = ptr;
1366 goto shadow_pgt;
1367 }
1368 ptr = ste.fc0.pto * (PAGE_SIZE / 2);
1369 shadow_pgt:
1370 ste.fc0.p |= *dat_protection;
1371 rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1372 if (rc)
1373 return rc;
1374 kvm->stat.gmap_shadow_sg_entry++;
1375 }
1376 }
1377 /* Return the parent address of the page table */
1378 *pgt = ptr;
1379 return 0;
1380 }
1381
1382 /**
1383 * shadow_pgt_lookup() - find a shadow page table
1384 * @sg: pointer to the shadow guest address space structure
1385 * @saddr: the address in the shadow aguest address space
1386 * @pgt: parent gmap address of the page table to get shadowed
1387 * @dat_protection: if the pgtable is marked as protected by dat
1388 * @fake: pgt references contiguous guest memory block, not a pgtable
1389 *
1390 * Returns 0 if the shadow page table was found and -EAGAIN if the page
1391 * table was not found.
1392 *
1393 * Called with sg->mm->mmap_lock in read.
1394 */
shadow_pgt_lookup(struct gmap * sg,unsigned long saddr,unsigned long * pgt,int * dat_protection,int * fake)1395 static int shadow_pgt_lookup(struct gmap *sg, unsigned long saddr, unsigned long *pgt,
1396 int *dat_protection, int *fake)
1397 {
1398 unsigned long pt_index;
1399 unsigned long *table;
1400 struct page *page;
1401 int rc;
1402
1403 spin_lock(&sg->guest_table_lock);
1404 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1405 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
1406 /* Shadow page tables are full pages (pte+pgste) */
1407 page = pfn_to_page(*table >> PAGE_SHIFT);
1408 pt_index = gmap_pgste_get_pgt_addr(page_to_virt(page));
1409 *pgt = pt_index & ~GMAP_SHADOW_FAKE_TABLE;
1410 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
1411 *fake = !!(pt_index & GMAP_SHADOW_FAKE_TABLE);
1412 rc = 0;
1413 } else {
1414 rc = -EAGAIN;
1415 }
1416 spin_unlock(&sg->guest_table_lock);
1417 return rc;
1418 }
1419
1420 /**
1421 * kvm_s390_shadow_fault - handle fault on a shadow page table
1422 * @vcpu: virtual cpu
1423 * @sg: pointer to the shadow guest address space structure
1424 * @saddr: faulting address in the shadow gmap
1425 * @datptr: will contain the address of the faulting DAT table entry, or of
1426 * the valid leaf, plus some flags
1427 *
1428 * Returns: - 0 if the shadow fault was successfully resolved
1429 * - > 0 (pgm exception code) on exceptions while faulting
1430 * - -EAGAIN if the caller can retry immediately
1431 * - -EFAULT when accessing invalid guest addresses
1432 * - -ENOMEM if out of memory
1433 */
kvm_s390_shadow_fault(struct kvm_vcpu * vcpu,struct gmap * sg,unsigned long saddr,unsigned long * datptr)1434 int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1435 unsigned long saddr, unsigned long *datptr)
1436 {
1437 union vaddress vaddr;
1438 union page_table_entry pte;
1439 unsigned long pgt = 0;
1440 int dat_protection, fake;
1441 int rc;
1442
1443 if (KVM_BUG_ON(!gmap_is_shadow(sg), vcpu->kvm))
1444 return -EFAULT;
1445
1446 mmap_read_lock(sg->mm);
1447 /*
1448 * We don't want any guest-2 tables to change - so the parent
1449 * tables/pointers we read stay valid - unshadowing is however
1450 * always possible - only guest_table_lock protects us.
1451 */
1452 ipte_lock(vcpu->kvm);
1453
1454 rc = shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1455 if (rc)
1456 rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1457 &fake);
1458
1459 vaddr.addr = saddr;
1460 if (fake) {
1461 pte.val = pgt + vaddr.px * PAGE_SIZE;
1462 goto shadow_page;
1463 }
1464
1465 switch (rc) {
1466 case PGM_SEGMENT_TRANSLATION:
1467 case PGM_REGION_THIRD_TRANS:
1468 case PGM_REGION_SECOND_TRANS:
1469 case PGM_REGION_FIRST_TRANS:
1470 pgt |= PEI_NOT_PTE;
1471 break;
1472 case 0:
1473 pgt += vaddr.px * 8;
1474 rc = gmap_read_table(sg->parent, pgt, &pte.val);
1475 }
1476 if (datptr)
1477 *datptr = pgt | dat_protection * PEI_DAT_PROT;
1478 if (!rc && pte.i)
1479 rc = PGM_PAGE_TRANSLATION;
1480 if (!rc && pte.z)
1481 rc = PGM_TRANSLATION_SPEC;
1482 shadow_page:
1483 pte.p |= dat_protection;
1484 if (!rc)
1485 rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1486 vcpu->kvm->stat.gmap_shadow_pg_entry++;
1487 ipte_unlock(vcpu->kvm);
1488 mmap_read_unlock(sg->mm);
1489 return rc;
1490 }
1491