xref: /linux/net/wireless/util.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2023, 2025 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 const struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
47 {
48 	struct ieee80211_rate *bitrates;
49 	u32 mandatory_rates = 0;
50 	enum ieee80211_rate_flags mandatory_flag;
51 	int i;
52 
53 	if (WARN_ON(!sband))
54 		return 1;
55 
56 	if (sband->band == NL80211_BAND_2GHZ)
57 		mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 	else
59 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60 
61 	bitrates = sband->bitrates;
62 	for (i = 0; i < sband->n_bitrates; i++)
63 		if (bitrates[i].flags & mandatory_flag)
64 			mandatory_rates |= BIT(i);
65 	return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68 
69 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
70 {
71 	/* see 802.11 17.3.8.3.2 and Annex J
72 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 	if (chan <= 0)
74 		return 0; /* not supported */
75 	switch (band) {
76 	case NL80211_BAND_2GHZ:
77 	case NL80211_BAND_LC:
78 		if (chan == 14)
79 			return MHZ_TO_KHZ(2484);
80 		else if (chan < 14)
81 			return MHZ_TO_KHZ(2407 + chan * 5);
82 		break;
83 	case NL80211_BAND_5GHZ:
84 		if (chan >= 182 && chan <= 196)
85 			return MHZ_TO_KHZ(4000 + chan * 5);
86 		else
87 			return MHZ_TO_KHZ(5000 + chan * 5);
88 		break;
89 	case NL80211_BAND_6GHZ:
90 		/* see 802.11ax D6.1 27.3.23.2 */
91 		if (chan == 2)
92 			return MHZ_TO_KHZ(5935);
93 		if (chan <= 233)
94 			return MHZ_TO_KHZ(5950 + chan * 5);
95 		break;
96 	case NL80211_BAND_60GHZ:
97 		if (chan < 7)
98 			return MHZ_TO_KHZ(56160 + chan * 2160);
99 		break;
100 	case NL80211_BAND_S1GHZ:
101 		return 902000 + chan * 500;
102 	default:
103 		;
104 	}
105 	return 0; /* not supported */
106 }
107 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
108 
109 int ieee80211_freq_khz_to_channel(u32 freq)
110 {
111 	/* TODO: just handle MHz for now */
112 	freq = KHZ_TO_MHZ(freq);
113 
114 	/* see 802.11 17.3.8.3.2 and Annex J */
115 	if (freq == 2484)
116 		return 14;
117 	else if (freq < 2484)
118 		return (freq - 2407) / 5;
119 	else if (freq >= 4910 && freq <= 4980)
120 		return (freq - 4000) / 5;
121 	else if (freq < 5925)
122 		return (freq - 5000) / 5;
123 	else if (freq == 5935)
124 		return 2;
125 	else if (freq <= 45000) /* DMG band lower limit */
126 		/* see 802.11ax D6.1 27.3.22.2 */
127 		return (freq - 5950) / 5;
128 	else if (freq >= 58320 && freq <= 70200)
129 		return (freq - 56160) / 2160;
130 	else
131 		return 0;
132 }
133 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
134 
135 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
136 						    u32 freq)
137 {
138 	enum nl80211_band band;
139 	struct ieee80211_supported_band *sband;
140 	int i;
141 
142 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
143 		sband = wiphy->bands[band];
144 
145 		if (!sband)
146 			continue;
147 
148 		for (i = 0; i < sband->n_channels; i++) {
149 			struct ieee80211_channel *chan = &sband->channels[i];
150 
151 			if (ieee80211_channel_to_khz(chan) == freq)
152 				return chan;
153 		}
154 	}
155 
156 	return NULL;
157 }
158 EXPORT_SYMBOL(ieee80211_get_channel_khz);
159 
160 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
161 {
162 	int i, want;
163 
164 	switch (sband->band) {
165 	case NL80211_BAND_5GHZ:
166 	case NL80211_BAND_6GHZ:
167 		want = 3;
168 		for (i = 0; i < sband->n_bitrates; i++) {
169 			if (sband->bitrates[i].bitrate == 60 ||
170 			    sband->bitrates[i].bitrate == 120 ||
171 			    sband->bitrates[i].bitrate == 240) {
172 				sband->bitrates[i].flags |=
173 					IEEE80211_RATE_MANDATORY_A;
174 				want--;
175 			}
176 		}
177 		WARN_ON(want);
178 		break;
179 	case NL80211_BAND_2GHZ:
180 	case NL80211_BAND_LC:
181 		want = 7;
182 		for (i = 0; i < sband->n_bitrates; i++) {
183 			switch (sband->bitrates[i].bitrate) {
184 			case 10:
185 			case 20:
186 			case 55:
187 			case 110:
188 				sband->bitrates[i].flags |=
189 					IEEE80211_RATE_MANDATORY_B |
190 					IEEE80211_RATE_MANDATORY_G;
191 				want--;
192 				break;
193 			case 60:
194 			case 120:
195 			case 240:
196 				sband->bitrates[i].flags |=
197 					IEEE80211_RATE_MANDATORY_G;
198 				want--;
199 				fallthrough;
200 			default:
201 				sband->bitrates[i].flags |=
202 					IEEE80211_RATE_ERP_G;
203 				break;
204 			}
205 		}
206 		WARN_ON(want != 0 && want != 3);
207 		break;
208 	case NL80211_BAND_60GHZ:
209 		/* check for mandatory HT MCS 1..4 */
210 		WARN_ON(!sband->ht_cap.ht_supported);
211 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
212 		break;
213 	case NL80211_BAND_S1GHZ:
214 		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
215 		 * mandatory is ok.
216 		 */
217 		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
218 		break;
219 	case NUM_NL80211_BANDS:
220 	default:
221 		WARN_ON(1);
222 		break;
223 	}
224 }
225 
226 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
227 {
228 	enum nl80211_band band;
229 
230 	for (band = 0; band < NUM_NL80211_BANDS; band++)
231 		if (wiphy->bands[band])
232 			set_mandatory_flags_band(wiphy->bands[band]);
233 }
234 
235 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
236 {
237 	int i;
238 	for (i = 0; i < wiphy->n_cipher_suites; i++)
239 		if (cipher == wiphy->cipher_suites[i])
240 			return true;
241 	return false;
242 }
243 
244 static bool
245 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
246 {
247 	struct wiphy *wiphy = &rdev->wiphy;
248 	int i;
249 
250 	for (i = 0; i < wiphy->n_cipher_suites; i++) {
251 		switch (wiphy->cipher_suites[i]) {
252 		case WLAN_CIPHER_SUITE_AES_CMAC:
253 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
254 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
255 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
256 			return true;
257 		}
258 	}
259 
260 	return false;
261 }
262 
263 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
264 			    int key_idx, bool pairwise)
265 {
266 	int max_key_idx;
267 
268 	if (pairwise)
269 		max_key_idx = 3;
270 	else if (wiphy_ext_feature_isset(&rdev->wiphy,
271 					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
272 		 wiphy_ext_feature_isset(&rdev->wiphy,
273 					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
274 		max_key_idx = 7;
275 	else if (cfg80211_igtk_cipher_supported(rdev))
276 		max_key_idx = 5;
277 	else
278 		max_key_idx = 3;
279 
280 	if (key_idx < 0 || key_idx > max_key_idx)
281 		return false;
282 
283 	return true;
284 }
285 
286 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
287 				   struct key_params *params, int key_idx,
288 				   bool pairwise, const u8 *mac_addr)
289 {
290 	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
291 		return -EINVAL;
292 
293 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
294 		return -EINVAL;
295 
296 	if (pairwise && !mac_addr)
297 		return -EINVAL;
298 
299 	switch (params->cipher) {
300 	case WLAN_CIPHER_SUITE_TKIP:
301 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
302 		if ((pairwise && key_idx) ||
303 		    params->mode != NL80211_KEY_RX_TX)
304 			return -EINVAL;
305 		break;
306 	case WLAN_CIPHER_SUITE_CCMP:
307 	case WLAN_CIPHER_SUITE_CCMP_256:
308 	case WLAN_CIPHER_SUITE_GCMP:
309 	case WLAN_CIPHER_SUITE_GCMP_256:
310 		/* IEEE802.11-2016 allows only 0 and - when supporting
311 		 * Extended Key ID - 1 as index for pairwise keys.
312 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
313 		 * the driver supports Extended Key ID.
314 		 * @NL80211_KEY_SET_TX can't be set when installing and
315 		 * validating a key.
316 		 */
317 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
318 		    params->mode == NL80211_KEY_SET_TX)
319 			return -EINVAL;
320 		if (wiphy_ext_feature_isset(&rdev->wiphy,
321 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
322 			if (pairwise && (key_idx < 0 || key_idx > 1))
323 				return -EINVAL;
324 		} else if (pairwise && key_idx) {
325 			return -EINVAL;
326 		}
327 		break;
328 	case WLAN_CIPHER_SUITE_AES_CMAC:
329 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
330 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
331 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
332 		/* Disallow BIP (group-only) cipher as pairwise cipher */
333 		if (pairwise)
334 			return -EINVAL;
335 		if (key_idx < 4)
336 			return -EINVAL;
337 		break;
338 	case WLAN_CIPHER_SUITE_WEP40:
339 	case WLAN_CIPHER_SUITE_WEP104:
340 		if (key_idx > 3)
341 			return -EINVAL;
342 		break;
343 	default:
344 		break;
345 	}
346 
347 	switch (params->cipher) {
348 	case WLAN_CIPHER_SUITE_WEP40:
349 		if (params->key_len != WLAN_KEY_LEN_WEP40)
350 			return -EINVAL;
351 		break;
352 	case WLAN_CIPHER_SUITE_TKIP:
353 		if (params->key_len != WLAN_KEY_LEN_TKIP)
354 			return -EINVAL;
355 		break;
356 	case WLAN_CIPHER_SUITE_CCMP:
357 		if (params->key_len != WLAN_KEY_LEN_CCMP)
358 			return -EINVAL;
359 		break;
360 	case WLAN_CIPHER_SUITE_CCMP_256:
361 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
362 			return -EINVAL;
363 		break;
364 	case WLAN_CIPHER_SUITE_GCMP:
365 		if (params->key_len != WLAN_KEY_LEN_GCMP)
366 			return -EINVAL;
367 		break;
368 	case WLAN_CIPHER_SUITE_GCMP_256:
369 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
370 			return -EINVAL;
371 		break;
372 	case WLAN_CIPHER_SUITE_WEP104:
373 		if (params->key_len != WLAN_KEY_LEN_WEP104)
374 			return -EINVAL;
375 		break;
376 	case WLAN_CIPHER_SUITE_AES_CMAC:
377 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
378 			return -EINVAL;
379 		break;
380 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
381 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
382 			return -EINVAL;
383 		break;
384 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
385 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
386 			return -EINVAL;
387 		break;
388 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
389 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
390 			return -EINVAL;
391 		break;
392 	default:
393 		/*
394 		 * We don't know anything about this algorithm,
395 		 * allow using it -- but the driver must check
396 		 * all parameters! We still check below whether
397 		 * or not the driver supports this algorithm,
398 		 * of course.
399 		 */
400 		break;
401 	}
402 
403 	if (params->seq) {
404 		switch (params->cipher) {
405 		case WLAN_CIPHER_SUITE_WEP40:
406 		case WLAN_CIPHER_SUITE_WEP104:
407 			/* These ciphers do not use key sequence */
408 			return -EINVAL;
409 		case WLAN_CIPHER_SUITE_TKIP:
410 		case WLAN_CIPHER_SUITE_CCMP:
411 		case WLAN_CIPHER_SUITE_CCMP_256:
412 		case WLAN_CIPHER_SUITE_GCMP:
413 		case WLAN_CIPHER_SUITE_GCMP_256:
414 		case WLAN_CIPHER_SUITE_AES_CMAC:
415 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
416 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
417 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
418 			if (params->seq_len != 6)
419 				return -EINVAL;
420 			break;
421 		}
422 	}
423 
424 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
425 		return -EINVAL;
426 
427 	return 0;
428 }
429 
430 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
431 {
432 	unsigned int hdrlen = 24;
433 
434 	if (ieee80211_is_ext(fc)) {
435 		hdrlen = 4;
436 		goto out;
437 	}
438 
439 	if (ieee80211_is_data(fc)) {
440 		if (ieee80211_has_a4(fc))
441 			hdrlen = 30;
442 		if (ieee80211_is_data_qos(fc)) {
443 			hdrlen += IEEE80211_QOS_CTL_LEN;
444 			if (ieee80211_has_order(fc))
445 				hdrlen += IEEE80211_HT_CTL_LEN;
446 		}
447 		goto out;
448 	}
449 
450 	if (ieee80211_is_mgmt(fc)) {
451 		if (ieee80211_has_order(fc))
452 			hdrlen += IEEE80211_HT_CTL_LEN;
453 		goto out;
454 	}
455 
456 	if (ieee80211_is_ctl(fc)) {
457 		/*
458 		 * ACK and CTS are 10 bytes, all others 16. To see how
459 		 * to get this condition consider
460 		 *   subtype mask:   0b0000000011110000 (0x00F0)
461 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
462 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
463 		 *   bits that matter:         ^^^      (0x00E0)
464 		 *   value of those: 0b0000000011000000 (0x00C0)
465 		 */
466 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
467 			hdrlen = 10;
468 		else
469 			hdrlen = 16;
470 	}
471 out:
472 	return hdrlen;
473 }
474 EXPORT_SYMBOL(ieee80211_hdrlen);
475 
476 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
477 {
478 	const struct ieee80211_hdr *hdr =
479 			(const struct ieee80211_hdr *)skb->data;
480 	unsigned int hdrlen;
481 
482 	if (unlikely(skb->len < 10))
483 		return 0;
484 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
485 	if (unlikely(hdrlen > skb->len))
486 		return 0;
487 	return hdrlen;
488 }
489 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
490 
491 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
492 {
493 	int ae = flags & MESH_FLAGS_AE;
494 	/* 802.11-2012, 8.2.4.7.3 */
495 	switch (ae) {
496 	default:
497 	case 0:
498 		return 6;
499 	case MESH_FLAGS_AE_A4:
500 		return 12;
501 	case MESH_FLAGS_AE_A5_A6:
502 		return 18;
503 	}
504 }
505 
506 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
507 {
508 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
509 }
510 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
511 
512 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
513 {
514 	const __be16 *hdr_proto = hdr + ETH_ALEN;
515 
516 	if (!(ether_addr_equal(hdr, rfc1042_header) &&
517 	      *hdr_proto != htons(ETH_P_AARP) &&
518 	      *hdr_proto != htons(ETH_P_IPX)) &&
519 	    !ether_addr_equal(hdr, bridge_tunnel_header))
520 		return false;
521 
522 	*proto = *hdr_proto;
523 
524 	return true;
525 }
526 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
527 
528 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
529 {
530 	const void *mesh_addr;
531 	struct {
532 		struct ethhdr eth;
533 		u8 flags;
534 	} payload;
535 	int hdrlen;
536 	int ret;
537 
538 	ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
539 	if (ret)
540 		return ret;
541 
542 	hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
543 
544 	if (likely(pskb_may_pull(skb, hdrlen + 8) &&
545 		   ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
546 						   &payload.eth.h_proto)))
547 		hdrlen += ETH_ALEN + 2;
548 	else if (!pskb_may_pull(skb, hdrlen))
549 		return -EINVAL;
550 	else
551 		payload.eth.h_proto = htons(skb->len - hdrlen);
552 
553 	mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
554 	switch (payload.flags & MESH_FLAGS_AE) {
555 	case MESH_FLAGS_AE_A4:
556 		memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
557 		break;
558 	case MESH_FLAGS_AE_A5_A6:
559 		memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
560 		break;
561 	default:
562 		break;
563 	}
564 
565 	pskb_pull(skb, hdrlen - sizeof(payload.eth));
566 	memcpy(skb->data, &payload.eth, sizeof(payload.eth));
567 
568 	return 0;
569 }
570 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
571 
572 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
573 				  const u8 *addr, enum nl80211_iftype iftype,
574 				  u8 data_offset, bool is_amsdu)
575 {
576 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
577 	struct {
578 		u8 hdr[ETH_ALEN] __aligned(2);
579 		__be16 proto;
580 	} payload;
581 	struct ethhdr tmp;
582 	u16 hdrlen;
583 
584 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
585 		return -1;
586 
587 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
588 	if (skb->len < hdrlen)
589 		return -1;
590 
591 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
592 	 * header
593 	 * IEEE 802.11 address fields:
594 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
595 	 *   0     0   DA    SA    BSSID n/a
596 	 *   0     1   DA    BSSID SA    n/a
597 	 *   1     0   BSSID SA    DA    n/a
598 	 *   1     1   RA    TA    DA    SA
599 	 */
600 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
601 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
602 
603 	switch (hdr->frame_control &
604 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
605 	case cpu_to_le16(IEEE80211_FCTL_TODS):
606 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
607 			     iftype != NL80211_IFTYPE_AP_VLAN &&
608 			     iftype != NL80211_IFTYPE_P2P_GO))
609 			return -1;
610 		break;
611 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
612 		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
613 			     iftype != NL80211_IFTYPE_AP_VLAN &&
614 			     iftype != NL80211_IFTYPE_STATION))
615 			return -1;
616 		break;
617 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
618 		if ((iftype != NL80211_IFTYPE_STATION &&
619 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
620 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
621 		    (is_multicast_ether_addr(tmp.h_dest) &&
622 		     ether_addr_equal(tmp.h_source, addr)))
623 			return -1;
624 		break;
625 	case cpu_to_le16(0):
626 		if (iftype != NL80211_IFTYPE_ADHOC &&
627 		    iftype != NL80211_IFTYPE_STATION &&
628 		    iftype != NL80211_IFTYPE_OCB)
629 				return -1;
630 		break;
631 	}
632 
633 	if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
634 		   skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
635 		   ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
636 		/* remove RFC1042 or Bridge-Tunnel encapsulation */
637 		hdrlen += ETH_ALEN + 2;
638 		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
639 	} else {
640 		tmp.h_proto = htons(skb->len - hdrlen);
641 	}
642 
643 	pskb_pull(skb, hdrlen);
644 
645 	if (!ehdr)
646 		ehdr = skb_push(skb, sizeof(struct ethhdr));
647 	memcpy(ehdr, &tmp, sizeof(tmp));
648 
649 	return 0;
650 }
651 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
652 
653 static void
654 __frame_add_frag(struct sk_buff *skb, struct page *page,
655 		 void *ptr, int len, int size)
656 {
657 	struct skb_shared_info *sh = skb_shinfo(skb);
658 	int page_offset;
659 
660 	get_page(page);
661 	page_offset = ptr - page_address(page);
662 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
663 }
664 
665 static void
666 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
667 			    int offset, int len)
668 {
669 	struct skb_shared_info *sh = skb_shinfo(skb);
670 	const skb_frag_t *frag = &sh->frags[0];
671 	struct page *frag_page;
672 	void *frag_ptr;
673 	int frag_len, frag_size;
674 	int head_size = skb->len - skb->data_len;
675 	int cur_len;
676 
677 	frag_page = virt_to_head_page(skb->head);
678 	frag_ptr = skb->data;
679 	frag_size = head_size;
680 
681 	while (offset >= frag_size) {
682 		offset -= frag_size;
683 		frag_page = skb_frag_page(frag);
684 		frag_ptr = skb_frag_address(frag);
685 		frag_size = skb_frag_size(frag);
686 		frag++;
687 	}
688 
689 	frag_ptr += offset;
690 	frag_len = frag_size - offset;
691 
692 	cur_len = min(len, frag_len);
693 
694 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
695 	len -= cur_len;
696 
697 	while (len > 0) {
698 		frag_len = skb_frag_size(frag);
699 		cur_len = min(len, frag_len);
700 		__frame_add_frag(frame, skb_frag_page(frag),
701 				 skb_frag_address(frag), cur_len, frag_len);
702 		len -= cur_len;
703 		frag++;
704 	}
705 }
706 
707 static struct sk_buff *
708 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
709 		       int offset, int len, bool reuse_frag,
710 		       int min_len)
711 {
712 	struct sk_buff *frame;
713 	int cur_len = len;
714 
715 	if (skb->len - offset < len)
716 		return NULL;
717 
718 	/*
719 	 * When reusing fragments, copy some data to the head to simplify
720 	 * ethernet header handling and speed up protocol header processing
721 	 * in the stack later.
722 	 */
723 	if (reuse_frag)
724 		cur_len = min_t(int, len, min_len);
725 
726 	/*
727 	 * Allocate and reserve two bytes more for payload
728 	 * alignment since sizeof(struct ethhdr) is 14.
729 	 */
730 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
731 	if (!frame)
732 		return NULL;
733 
734 	frame->priority = skb->priority;
735 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
736 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
737 
738 	len -= cur_len;
739 	if (!len)
740 		return frame;
741 
742 	offset += cur_len;
743 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
744 
745 	return frame;
746 }
747 
748 static u16
749 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
750 {
751 	__le16 *field_le = field;
752 	__be16 *field_be = field;
753 	u16 len;
754 
755 	if (hdr_type >= 2)
756 		len = le16_to_cpu(*field_le);
757 	else
758 		len = be16_to_cpu(*field_be);
759 	if (hdr_type)
760 		len += __ieee80211_get_mesh_hdrlen(mesh_flags);
761 
762 	return len;
763 }
764 
765 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
766 {
767 	int offset = 0, subframe_len, padding;
768 
769 	for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
770 		int remaining = skb->len - offset;
771 		struct {
772 		    __be16 len;
773 		    u8 mesh_flags;
774 		} hdr;
775 		u16 len;
776 
777 		if (sizeof(hdr) > remaining)
778 			return false;
779 
780 		if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
781 			return false;
782 
783 		len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
784 						      mesh_hdr);
785 		subframe_len = sizeof(struct ethhdr) + len;
786 		padding = (4 - subframe_len) & 0x3;
787 
788 		if (subframe_len > remaining)
789 			return false;
790 	}
791 
792 	return true;
793 }
794 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
795 
796 
797 /*
798  * Detects if an MSDU frame was maliciously converted into an A-MSDU
799  * frame by an adversary. This is done by parsing the received frame
800  * as if it were a regular MSDU, even though the A-MSDU flag is set.
801  *
802  * For non-mesh interfaces, detection involves checking whether the
803  * payload, when interpreted as an MSDU, begins with a valid RFC1042
804  * header. This is done by comparing the A-MSDU subheader's destination
805  * address to the start of the RFC1042 header.
806  *
807  * For mesh interfaces, the MSDU includes a 6-byte Mesh Control field
808  * and an optional variable-length Mesh Address Extension field before
809  * the RFC1042 header. The position of the RFC1042 header must therefore
810  * be calculated based on the mesh header length.
811  *
812  * Since this function intentionally parses an A-MSDU frame as an MSDU,
813  * it only assumes that the A-MSDU subframe header is present, and
814  * beyond this it performs its own bounds checks under the assumption
815  * that the frame is instead parsed as a non-aggregated MSDU.
816  */
817 static bool
818 is_amsdu_aggregation_attack(struct ethhdr *eth, struct sk_buff *skb,
819 			    enum nl80211_iftype iftype)
820 {
821 	int offset;
822 
823 	/* Non-mesh case can be directly compared */
824 	if (iftype != NL80211_IFTYPE_MESH_POINT)
825 		return ether_addr_equal(eth->h_dest, rfc1042_header);
826 
827 	offset = __ieee80211_get_mesh_hdrlen(eth->h_dest[0]);
828 	if (offset == 6) {
829 		/* Mesh case with empty address extension field */
830 		return ether_addr_equal(eth->h_source, rfc1042_header);
831 	} else if (offset + ETH_ALEN <= skb->len) {
832 		/* Mesh case with non-empty address extension field */
833 		u8 temp[ETH_ALEN];
834 
835 		skb_copy_bits(skb, offset, temp, ETH_ALEN);
836 		return ether_addr_equal(temp, rfc1042_header);
837 	}
838 
839 	return false;
840 }
841 
842 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
843 			      const u8 *addr, enum nl80211_iftype iftype,
844 			      const unsigned int extra_headroom,
845 			      const u8 *check_da, const u8 *check_sa,
846 			      u8 mesh_control)
847 {
848 	unsigned int hlen = ALIGN(extra_headroom, 4);
849 	struct sk_buff *frame = NULL;
850 	int offset = 0;
851 	struct {
852 		struct ethhdr eth;
853 		uint8_t flags;
854 	} hdr;
855 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
856 	bool reuse_skb = false;
857 	bool last = false;
858 	int copy_len = sizeof(hdr.eth);
859 
860 	if (iftype == NL80211_IFTYPE_MESH_POINT)
861 		copy_len = sizeof(hdr);
862 
863 	while (!last) {
864 		int remaining = skb->len - offset;
865 		unsigned int subframe_len;
866 		int len, mesh_len = 0;
867 		u8 padding;
868 
869 		if (copy_len > remaining)
870 			goto purge;
871 
872 		skb_copy_bits(skb, offset, &hdr, copy_len);
873 		if (iftype == NL80211_IFTYPE_MESH_POINT)
874 			mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
875 		len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
876 						      mesh_control);
877 		subframe_len = sizeof(struct ethhdr) + len;
878 		padding = (4 - subframe_len) & 0x3;
879 
880 		/* the last MSDU has no padding */
881 		if (subframe_len > remaining)
882 			goto purge;
883 		/* mitigate A-MSDU aggregation injection attacks, to be
884 		 * checked when processing first subframe (offset == 0).
885 		 */
886 		if (offset == 0 && is_amsdu_aggregation_attack(&hdr.eth, skb, iftype))
887 			goto purge;
888 
889 		offset += sizeof(struct ethhdr);
890 		last = remaining <= subframe_len + padding;
891 
892 		/* FIXME: should we really accept multicast DA? */
893 		if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
894 		     !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
895 		    (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
896 			offset += len + padding;
897 			continue;
898 		}
899 
900 		/* reuse skb for the last subframe */
901 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
902 			skb_pull(skb, offset);
903 			frame = skb;
904 			reuse_skb = true;
905 		} else {
906 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
907 						       reuse_frag, 32 + mesh_len);
908 			if (!frame)
909 				goto purge;
910 
911 			offset += len + padding;
912 		}
913 
914 		skb_reset_network_header(frame);
915 		frame->dev = skb->dev;
916 		frame->priority = skb->priority;
917 
918 		if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
919 			   ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
920 			skb_pull(frame, ETH_ALEN + 2);
921 
922 		memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
923 		__skb_queue_tail(list, frame);
924 	}
925 
926 	if (!reuse_skb)
927 		dev_kfree_skb(skb);
928 
929 	return;
930 
931  purge:
932 	__skb_queue_purge(list);
933 	dev_kfree_skb(skb);
934 }
935 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
936 
937 /* Given a data frame determine the 802.1p/1d tag to use. */
938 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
939 				    struct cfg80211_qos_map *qos_map)
940 {
941 	unsigned int dscp;
942 	unsigned char vlan_priority;
943 	unsigned int ret;
944 
945 	/* skb->priority values from 256->263 are magic values to
946 	 * directly indicate a specific 802.1d priority.  This is used
947 	 * to allow 802.1d priority to be passed directly in from VLAN
948 	 * tags, etc.
949 	 */
950 	if (skb->priority >= 256 && skb->priority <= 263) {
951 		ret = skb->priority - 256;
952 		goto out;
953 	}
954 
955 	if (skb_vlan_tag_present(skb)) {
956 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
957 			>> VLAN_PRIO_SHIFT;
958 		if (vlan_priority > 0) {
959 			ret = vlan_priority;
960 			goto out;
961 		}
962 	}
963 
964 	switch (skb->protocol) {
965 	case htons(ETH_P_IP):
966 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
967 		break;
968 	case htons(ETH_P_IPV6):
969 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
970 		break;
971 	case htons(ETH_P_MPLS_UC):
972 	case htons(ETH_P_MPLS_MC): {
973 		struct mpls_label mpls_tmp, *mpls;
974 
975 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
976 					  sizeof(*mpls), &mpls_tmp);
977 		if (!mpls)
978 			return 0;
979 
980 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
981 			>> MPLS_LS_TC_SHIFT;
982 		goto out;
983 	}
984 	case htons(ETH_P_80221):
985 		/* 802.21 is always network control traffic */
986 		return 7;
987 	default:
988 		return 0;
989 	}
990 
991 	if (qos_map) {
992 		unsigned int i, tmp_dscp = dscp >> 2;
993 
994 		for (i = 0; i < qos_map->num_des; i++) {
995 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
996 				ret = qos_map->dscp_exception[i].up;
997 				goto out;
998 			}
999 		}
1000 
1001 		for (i = 0; i < 8; i++) {
1002 			if (tmp_dscp >= qos_map->up[i].low &&
1003 			    tmp_dscp <= qos_map->up[i].high) {
1004 				ret = i;
1005 				goto out;
1006 			}
1007 		}
1008 	}
1009 
1010 	/* The default mapping as defined Section 2.3 in RFC8325: The three
1011 	 * Most Significant Bits (MSBs) of the DSCP are used as the
1012 	 * corresponding L2 markings.
1013 	 */
1014 	ret = dscp >> 5;
1015 
1016 	/* Handle specific DSCP values for which the default mapping (as
1017 	 * described above) doesn't adhere to the intended usage of the DSCP
1018 	 * value. See section 4 in RFC8325. Specifically, for the following
1019 	 * Diffserv Service Classes no update is needed:
1020 	 * - Standard: DF
1021 	 * - Low Priority Data: CS1
1022 	 * - Multimedia Conferencing: AF41, AF42, AF43
1023 	 * - Network Control Traffic: CS7
1024 	 * - Real-Time Interactive: CS4
1025 	 * - Signaling: CS5
1026 	 */
1027 	switch (dscp >> 2) {
1028 	case 10:
1029 	case 12:
1030 	case 14:
1031 		/* High throughput data: AF11, AF12, AF13 */
1032 		ret = 0;
1033 		break;
1034 	case 16:
1035 		/* Operations, Administration, and Maintenance and Provisioning:
1036 		 * CS2
1037 		 */
1038 		ret = 0;
1039 		break;
1040 	case 18:
1041 	case 20:
1042 	case 22:
1043 		/* Low latency data: AF21, AF22, AF23 */
1044 		ret = 3;
1045 		break;
1046 	case 24:
1047 		/* Broadcasting video: CS3 */
1048 		ret = 4;
1049 		break;
1050 	case 26:
1051 	case 28:
1052 	case 30:
1053 		/* Multimedia Streaming: AF31, AF32, AF33 */
1054 		ret = 4;
1055 		break;
1056 	case 44:
1057 		/* Voice Admit: VA */
1058 		ret = 6;
1059 		break;
1060 	case 46:
1061 		/* Telephony traffic: EF */
1062 		ret = 6;
1063 		break;
1064 	case 48:
1065 		/* Network Control Traffic: CS6 */
1066 		ret = 7;
1067 		break;
1068 	}
1069 out:
1070 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1071 }
1072 EXPORT_SYMBOL(cfg80211_classify8021d);
1073 
1074 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1075 {
1076 	const struct cfg80211_bss_ies *ies;
1077 
1078 	ies = rcu_dereference(bss->ies);
1079 	if (!ies)
1080 		return NULL;
1081 
1082 	return cfg80211_find_elem(id, ies->data, ies->len);
1083 }
1084 EXPORT_SYMBOL(ieee80211_bss_get_elem);
1085 
1086 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1087 {
1088 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1089 	struct net_device *dev = wdev->netdev;
1090 	int i;
1091 
1092 	if (!wdev->connect_keys)
1093 		return;
1094 
1095 	for (i = 0; i < 4; i++) {
1096 		if (!wdev->connect_keys->params[i].cipher)
1097 			continue;
1098 		if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1099 				 &wdev->connect_keys->params[i])) {
1100 			netdev_err(dev, "failed to set key %d\n", i);
1101 			continue;
1102 		}
1103 		if (wdev->connect_keys->def == i &&
1104 		    rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1105 			netdev_err(dev, "failed to set defkey %d\n", i);
1106 			continue;
1107 		}
1108 	}
1109 
1110 	kfree_sensitive(wdev->connect_keys);
1111 	wdev->connect_keys = NULL;
1112 }
1113 
1114 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1115 {
1116 	struct cfg80211_event *ev;
1117 	unsigned long flags;
1118 
1119 	spin_lock_irqsave(&wdev->event_lock, flags);
1120 	while (!list_empty(&wdev->event_list)) {
1121 		ev = list_first_entry(&wdev->event_list,
1122 				      struct cfg80211_event, list);
1123 		list_del(&ev->list);
1124 		spin_unlock_irqrestore(&wdev->event_lock, flags);
1125 
1126 		switch (ev->type) {
1127 		case EVENT_CONNECT_RESULT:
1128 			__cfg80211_connect_result(
1129 				wdev->netdev,
1130 				&ev->cr,
1131 				ev->cr.status == WLAN_STATUS_SUCCESS);
1132 			break;
1133 		case EVENT_ROAMED:
1134 			__cfg80211_roamed(wdev, &ev->rm);
1135 			break;
1136 		case EVENT_DISCONNECTED:
1137 			__cfg80211_disconnected(wdev->netdev,
1138 						ev->dc.ie, ev->dc.ie_len,
1139 						ev->dc.reason,
1140 						!ev->dc.locally_generated);
1141 			break;
1142 		case EVENT_IBSS_JOINED:
1143 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1144 					       ev->ij.channel);
1145 			break;
1146 		case EVENT_STOPPED:
1147 			cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1148 			break;
1149 		case EVENT_PORT_AUTHORIZED:
1150 			__cfg80211_port_authorized(wdev, ev->pa.peer_addr,
1151 						   ev->pa.td_bitmap,
1152 						   ev->pa.td_bitmap_len);
1153 			break;
1154 		}
1155 
1156 		kfree(ev);
1157 
1158 		spin_lock_irqsave(&wdev->event_lock, flags);
1159 	}
1160 	spin_unlock_irqrestore(&wdev->event_lock, flags);
1161 }
1162 
1163 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1164 {
1165 	struct wireless_dev *wdev;
1166 
1167 	lockdep_assert_held(&rdev->wiphy.mtx);
1168 
1169 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1170 		cfg80211_process_wdev_events(wdev);
1171 }
1172 
1173 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1174 			  struct net_device *dev, enum nl80211_iftype ntype,
1175 			  struct vif_params *params)
1176 {
1177 	int err;
1178 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1179 
1180 	lockdep_assert_held(&rdev->wiphy.mtx);
1181 
1182 	/* don't support changing VLANs, you just re-create them */
1183 	if (otype == NL80211_IFTYPE_AP_VLAN)
1184 		return -EOPNOTSUPP;
1185 
1186 	/* cannot change into P2P device or NAN */
1187 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1188 	    ntype == NL80211_IFTYPE_NAN)
1189 		return -EOPNOTSUPP;
1190 
1191 	if (!rdev->ops->change_virtual_intf ||
1192 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1193 		return -EOPNOTSUPP;
1194 
1195 	if (ntype != otype) {
1196 		/* if it's part of a bridge, reject changing type to station/ibss */
1197 		if (netif_is_bridge_port(dev) &&
1198 		    (ntype == NL80211_IFTYPE_ADHOC ||
1199 		     ntype == NL80211_IFTYPE_STATION ||
1200 		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1201 			return -EBUSY;
1202 
1203 		dev->ieee80211_ptr->use_4addr = false;
1204 		rdev_set_qos_map(rdev, dev, NULL);
1205 
1206 		switch (otype) {
1207 		case NL80211_IFTYPE_AP:
1208 		case NL80211_IFTYPE_P2P_GO:
1209 			cfg80211_stop_ap(rdev, dev, -1, true);
1210 			break;
1211 		case NL80211_IFTYPE_ADHOC:
1212 			cfg80211_leave_ibss(rdev, dev, false);
1213 			break;
1214 		case NL80211_IFTYPE_STATION:
1215 		case NL80211_IFTYPE_P2P_CLIENT:
1216 			cfg80211_disconnect(rdev, dev,
1217 					    WLAN_REASON_DEAUTH_LEAVING, true);
1218 			break;
1219 		case NL80211_IFTYPE_MESH_POINT:
1220 			/* mesh should be handled? */
1221 			break;
1222 		case NL80211_IFTYPE_OCB:
1223 			cfg80211_leave_ocb(rdev, dev);
1224 			break;
1225 		default:
1226 			break;
1227 		}
1228 
1229 		cfg80211_process_rdev_events(rdev);
1230 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1231 
1232 		memset(&dev->ieee80211_ptr->u, 0,
1233 		       sizeof(dev->ieee80211_ptr->u));
1234 		memset(&dev->ieee80211_ptr->links, 0,
1235 		       sizeof(dev->ieee80211_ptr->links));
1236 	}
1237 
1238 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1239 
1240 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1241 
1242 	if (!err && params && params->use_4addr != -1)
1243 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1244 
1245 	if (!err) {
1246 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1247 		switch (ntype) {
1248 		case NL80211_IFTYPE_STATION:
1249 			if (dev->ieee80211_ptr->use_4addr)
1250 				break;
1251 			fallthrough;
1252 		case NL80211_IFTYPE_OCB:
1253 		case NL80211_IFTYPE_P2P_CLIENT:
1254 		case NL80211_IFTYPE_ADHOC:
1255 			dev->priv_flags |= IFF_DONT_BRIDGE;
1256 			break;
1257 		case NL80211_IFTYPE_P2P_GO:
1258 		case NL80211_IFTYPE_AP:
1259 		case NL80211_IFTYPE_AP_VLAN:
1260 		case NL80211_IFTYPE_MESH_POINT:
1261 			/* bridging OK */
1262 			break;
1263 		case NL80211_IFTYPE_MONITOR:
1264 			/* monitor can't bridge anyway */
1265 			break;
1266 		case NL80211_IFTYPE_UNSPECIFIED:
1267 		case NUM_NL80211_IFTYPES:
1268 			/* not happening */
1269 			break;
1270 		case NL80211_IFTYPE_P2P_DEVICE:
1271 		case NL80211_IFTYPE_WDS:
1272 		case NL80211_IFTYPE_NAN:
1273 			WARN_ON(1);
1274 			break;
1275 		}
1276 	}
1277 
1278 	if (!err && ntype != otype && netif_running(dev)) {
1279 		cfg80211_update_iface_num(rdev, ntype, 1);
1280 		cfg80211_update_iface_num(rdev, otype, -1);
1281 	}
1282 
1283 	return err;
1284 }
1285 
1286 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1287 {
1288 	int modulation, streams, bitrate;
1289 
1290 	/* the formula below does only work for MCS values smaller than 32 */
1291 	if (WARN_ON_ONCE(rate->mcs >= 32))
1292 		return 0;
1293 
1294 	modulation = rate->mcs & 7;
1295 	streams = (rate->mcs >> 3) + 1;
1296 
1297 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1298 
1299 	if (modulation < 4)
1300 		bitrate *= (modulation + 1);
1301 	else if (modulation == 4)
1302 		bitrate *= (modulation + 2);
1303 	else
1304 		bitrate *= (modulation + 3);
1305 
1306 	bitrate *= streams;
1307 
1308 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1309 		bitrate = (bitrate / 9) * 10;
1310 
1311 	/* do NOT round down here */
1312 	return (bitrate + 50000) / 100000;
1313 }
1314 
1315 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1316 {
1317 	static const u32 __mcs2bitrate[] = {
1318 		/* control PHY */
1319 		[0] =   275,
1320 		/* SC PHY */
1321 		[1] =  3850,
1322 		[2] =  7700,
1323 		[3] =  9625,
1324 		[4] = 11550,
1325 		[5] = 12512, /* 1251.25 mbps */
1326 		[6] = 15400,
1327 		[7] = 19250,
1328 		[8] = 23100,
1329 		[9] = 25025,
1330 		[10] = 30800,
1331 		[11] = 38500,
1332 		[12] = 46200,
1333 		/* OFDM PHY */
1334 		[13] =  6930,
1335 		[14] =  8662, /* 866.25 mbps */
1336 		[15] = 13860,
1337 		[16] = 17325,
1338 		[17] = 20790,
1339 		[18] = 27720,
1340 		[19] = 34650,
1341 		[20] = 41580,
1342 		[21] = 45045,
1343 		[22] = 51975,
1344 		[23] = 62370,
1345 		[24] = 67568, /* 6756.75 mbps */
1346 		/* LP-SC PHY */
1347 		[25] =  6260,
1348 		[26] =  8340,
1349 		[27] = 11120,
1350 		[28] = 12510,
1351 		[29] = 16680,
1352 		[30] = 22240,
1353 		[31] = 25030,
1354 	};
1355 
1356 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1357 		return 0;
1358 
1359 	return __mcs2bitrate[rate->mcs];
1360 }
1361 
1362 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1363 {
1364 	static const u32 __mcs2bitrate[] = {
1365 		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1366 		[7 - 6] = 50050, /* MCS 12.1 */
1367 		[8 - 6] = 53900,
1368 		[9 - 6] = 57750,
1369 		[10 - 6] = 63900,
1370 		[11 - 6] = 75075,
1371 		[12 - 6] = 80850,
1372 	};
1373 
1374 	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
1375 	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1376 		return 0;
1377 
1378 	return __mcs2bitrate[rate->mcs - 6];
1379 }
1380 
1381 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1382 {
1383 	static const u32 __mcs2bitrate[] = {
1384 		/* control PHY */
1385 		[0] =   275,
1386 		/* SC PHY */
1387 		[1] =  3850,
1388 		[2] =  7700,
1389 		[3] =  9625,
1390 		[4] = 11550,
1391 		[5] = 12512, /* 1251.25 mbps */
1392 		[6] = 13475,
1393 		[7] = 15400,
1394 		[8] = 19250,
1395 		[9] = 23100,
1396 		[10] = 25025,
1397 		[11] = 26950,
1398 		[12] = 30800,
1399 		[13] = 38500,
1400 		[14] = 46200,
1401 		[15] = 50050,
1402 		[16] = 53900,
1403 		[17] = 57750,
1404 		[18] = 69300,
1405 		[19] = 75075,
1406 		[20] = 80850,
1407 	};
1408 
1409 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1410 		return 0;
1411 
1412 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1413 }
1414 
1415 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1416 {
1417 	static const u32 base[4][12] = {
1418 		{   6500000,
1419 		   13000000,
1420 		   19500000,
1421 		   26000000,
1422 		   39000000,
1423 		   52000000,
1424 		   58500000,
1425 		   65000000,
1426 		   78000000,
1427 		/* not in the spec, but some devices use this: */
1428 		   86700000,
1429 		   97500000,
1430 		  108300000,
1431 		},
1432 		{  13500000,
1433 		   27000000,
1434 		   40500000,
1435 		   54000000,
1436 		   81000000,
1437 		  108000000,
1438 		  121500000,
1439 		  135000000,
1440 		  162000000,
1441 		  180000000,
1442 		  202500000,
1443 		  225000000,
1444 		},
1445 		{  29300000,
1446 		   58500000,
1447 		   87800000,
1448 		  117000000,
1449 		  175500000,
1450 		  234000000,
1451 		  263300000,
1452 		  292500000,
1453 		  351000000,
1454 		  390000000,
1455 		  438800000,
1456 		  487500000,
1457 		},
1458 		{  58500000,
1459 		  117000000,
1460 		  175500000,
1461 		  234000000,
1462 		  351000000,
1463 		  468000000,
1464 		  526500000,
1465 		  585000000,
1466 		  702000000,
1467 		  780000000,
1468 		  877500000,
1469 		  975000000,
1470 		},
1471 	};
1472 	u32 bitrate;
1473 	int idx;
1474 
1475 	if (rate->mcs > 11)
1476 		goto warn;
1477 
1478 	switch (rate->bw) {
1479 	case RATE_INFO_BW_160:
1480 		idx = 3;
1481 		break;
1482 	case RATE_INFO_BW_80:
1483 		idx = 2;
1484 		break;
1485 	case RATE_INFO_BW_40:
1486 		idx = 1;
1487 		break;
1488 	case RATE_INFO_BW_5:
1489 	case RATE_INFO_BW_10:
1490 	default:
1491 		goto warn;
1492 	case RATE_INFO_BW_20:
1493 		idx = 0;
1494 	}
1495 
1496 	bitrate = base[idx][rate->mcs];
1497 	bitrate *= rate->nss;
1498 
1499 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1500 		bitrate = (bitrate / 9) * 10;
1501 
1502 	/* do NOT round down here */
1503 	return (bitrate + 50000) / 100000;
1504  warn:
1505 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1506 		  rate->bw, rate->mcs, rate->nss);
1507 	return 0;
1508 }
1509 
1510 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1511 {
1512 #define SCALE 6144
1513 	u32 mcs_divisors[14] = {
1514 		102399, /* 16.666666... */
1515 		 51201, /*  8.333333... */
1516 		 34134, /*  5.555555... */
1517 		 25599, /*  4.166666... */
1518 		 17067, /*  2.777777... */
1519 		 12801, /*  2.083333... */
1520 		 11377, /*  1.851725... */
1521 		 10239, /*  1.666666... */
1522 		  8532, /*  1.388888... */
1523 		  7680, /*  1.250000... */
1524 		  6828, /*  1.111111... */
1525 		  6144, /*  1.000000... */
1526 		  5690, /*  0.926106... */
1527 		  5120, /*  0.833333... */
1528 	};
1529 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1530 	u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1531 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1532 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1533 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1534 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1535 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1536 	u64 tmp;
1537 	u32 result;
1538 
1539 	if (WARN_ON_ONCE(rate->mcs > 13))
1540 		return 0;
1541 
1542 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1543 		return 0;
1544 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1545 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1546 		return 0;
1547 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1548 		return 0;
1549 
1550 	if (rate->bw == RATE_INFO_BW_160 ||
1551 	    (rate->bw == RATE_INFO_BW_HE_RU &&
1552 	     rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1553 		result = rates_160M[rate->he_gi];
1554 	else if (rate->bw == RATE_INFO_BW_80 ||
1555 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1556 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1557 		result = rates_996[rate->he_gi];
1558 	else if (rate->bw == RATE_INFO_BW_40 ||
1559 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1560 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1561 		result = rates_484[rate->he_gi];
1562 	else if (rate->bw == RATE_INFO_BW_20 ||
1563 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1564 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1565 		result = rates_242[rate->he_gi];
1566 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1567 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1568 		result = rates_106[rate->he_gi];
1569 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1570 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1571 		result = rates_52[rate->he_gi];
1572 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1573 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1574 		result = rates_26[rate->he_gi];
1575 	else {
1576 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1577 		     rate->bw, rate->he_ru_alloc);
1578 		return 0;
1579 	}
1580 
1581 	/* now scale to the appropriate MCS */
1582 	tmp = result;
1583 	tmp *= SCALE;
1584 	do_div(tmp, mcs_divisors[rate->mcs]);
1585 	result = tmp;
1586 
1587 	/* and take NSS, DCM into account */
1588 	result = (result * rate->nss) / 8;
1589 	if (rate->he_dcm)
1590 		result /= 2;
1591 
1592 	return result / 10000;
1593 }
1594 
1595 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1596 {
1597 #define SCALE 6144
1598 	static const u32 mcs_divisors[16] = {
1599 		102399, /* 16.666666... */
1600 		 51201, /*  8.333333... */
1601 		 34134, /*  5.555555... */
1602 		 25599, /*  4.166666... */
1603 		 17067, /*  2.777777... */
1604 		 12801, /*  2.083333... */
1605 		 11377, /*  1.851725... */
1606 		 10239, /*  1.666666... */
1607 		  8532, /*  1.388888... */
1608 		  7680, /*  1.250000... */
1609 		  6828, /*  1.111111... */
1610 		  6144, /*  1.000000... */
1611 		  5690, /*  0.926106... */
1612 		  5120, /*  0.833333... */
1613 		409600, /* 66.666666... */
1614 		204800, /* 33.333333... */
1615 	};
1616 	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1617 	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1618 	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1619 	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1620 	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1621 	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1622 	u64 tmp;
1623 	u32 result;
1624 
1625 	if (WARN_ON_ONCE(rate->mcs > 15))
1626 		return 0;
1627 	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1628 		return 0;
1629 	if (WARN_ON_ONCE(rate->eht_ru_alloc >
1630 			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1631 		return 0;
1632 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1633 		return 0;
1634 
1635 	/* Bandwidth checks for MCS 14 */
1636 	if (rate->mcs == 14) {
1637 		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1638 		     rate->bw != RATE_INFO_BW_80 &&
1639 		     rate->bw != RATE_INFO_BW_160 &&
1640 		     rate->bw != RATE_INFO_BW_320) ||
1641 		    (rate->bw == RATE_INFO_BW_EHT_RU &&
1642 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1643 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1644 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1645 			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1646 			     rate->bw, rate->eht_ru_alloc);
1647 			return 0;
1648 		}
1649 	}
1650 
1651 	if (rate->bw == RATE_INFO_BW_320 ||
1652 	    (rate->bw == RATE_INFO_BW_EHT_RU &&
1653 	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1654 		result = 4 * rates_996[rate->eht_gi];
1655 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1656 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1657 		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1658 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1659 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1660 		result = 3 * rates_996[rate->eht_gi];
1661 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1662 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1663 		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1664 	else if (rate->bw == RATE_INFO_BW_160 ||
1665 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1666 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1667 		result = 2 * rates_996[rate->eht_gi];
1668 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1669 		 rate->eht_ru_alloc ==
1670 		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1671 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1672 			 + rates_242[rate->eht_gi];
1673 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1674 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1675 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1676 	else if (rate->bw == RATE_INFO_BW_80 ||
1677 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1678 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1679 		result = rates_996[rate->eht_gi];
1680 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1681 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1682 		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1683 	else if (rate->bw == RATE_INFO_BW_40 ||
1684 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1685 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1686 		result = rates_484[rate->eht_gi];
1687 	else if (rate->bw == RATE_INFO_BW_20 ||
1688 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1689 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1690 		result = rates_242[rate->eht_gi];
1691 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1692 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1693 		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1694 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1695 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1696 		result = rates_106[rate->eht_gi];
1697 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1698 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1699 		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1700 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1701 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1702 		result = rates_52[rate->eht_gi];
1703 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1704 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1705 		result = rates_26[rate->eht_gi];
1706 	else {
1707 		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1708 		     rate->bw, rate->eht_ru_alloc);
1709 		return 0;
1710 	}
1711 
1712 	/* now scale to the appropriate MCS */
1713 	tmp = result;
1714 	tmp *= SCALE;
1715 	do_div(tmp, mcs_divisors[rate->mcs]);
1716 
1717 	/* and take NSS */
1718 	tmp *= rate->nss;
1719 	do_div(tmp, 8);
1720 
1721 	result = tmp;
1722 
1723 	return result / 10000;
1724 }
1725 
1726 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1727 {
1728 	/* For 1, 2, 4, 8 and 16 MHz channels */
1729 	static const u32 base[5][11] = {
1730 		{  300000,
1731 		   600000,
1732 		   900000,
1733 		  1200000,
1734 		  1800000,
1735 		  2400000,
1736 		  2700000,
1737 		  3000000,
1738 		  3600000,
1739 		  4000000,
1740 		  /* MCS 10 supported in 1 MHz only */
1741 		  150000,
1742 		},
1743 		{  650000,
1744 		  1300000,
1745 		  1950000,
1746 		  2600000,
1747 		  3900000,
1748 		  5200000,
1749 		  5850000,
1750 		  6500000,
1751 		  7800000,
1752 		  /* MCS 9 not valid */
1753 		},
1754 		{  1350000,
1755 		   2700000,
1756 		   4050000,
1757 		   5400000,
1758 		   8100000,
1759 		  10800000,
1760 		  12150000,
1761 		  13500000,
1762 		  16200000,
1763 		  18000000,
1764 		},
1765 		{  2925000,
1766 		   5850000,
1767 		   8775000,
1768 		  11700000,
1769 		  17550000,
1770 		  23400000,
1771 		  26325000,
1772 		  29250000,
1773 		  35100000,
1774 		  39000000,
1775 		},
1776 		{  8580000,
1777 		  11700000,
1778 		  17550000,
1779 		  23400000,
1780 		  35100000,
1781 		  46800000,
1782 		  52650000,
1783 		  58500000,
1784 		  70200000,
1785 		  78000000,
1786 		},
1787 	};
1788 	u32 bitrate;
1789 	/* default is 1 MHz index */
1790 	int idx = 0;
1791 
1792 	if (rate->mcs >= 11)
1793 		goto warn;
1794 
1795 	switch (rate->bw) {
1796 	case RATE_INFO_BW_16:
1797 		idx = 4;
1798 		break;
1799 	case RATE_INFO_BW_8:
1800 		idx = 3;
1801 		break;
1802 	case RATE_INFO_BW_4:
1803 		idx = 2;
1804 		break;
1805 	case RATE_INFO_BW_2:
1806 		idx = 1;
1807 		break;
1808 	case RATE_INFO_BW_1:
1809 		idx = 0;
1810 		break;
1811 	case RATE_INFO_BW_5:
1812 	case RATE_INFO_BW_10:
1813 	case RATE_INFO_BW_20:
1814 	case RATE_INFO_BW_40:
1815 	case RATE_INFO_BW_80:
1816 	case RATE_INFO_BW_160:
1817 	default:
1818 		goto warn;
1819 	}
1820 
1821 	bitrate = base[idx][rate->mcs];
1822 	bitrate *= rate->nss;
1823 
1824 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1825 		bitrate = (bitrate / 9) * 10;
1826 	/* do NOT round down here */
1827 	return (bitrate + 50000) / 100000;
1828 warn:
1829 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1830 		  rate->bw, rate->mcs, rate->nss);
1831 	return 0;
1832 }
1833 
1834 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1835 {
1836 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1837 		return cfg80211_calculate_bitrate_ht(rate);
1838 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1839 		return cfg80211_calculate_bitrate_dmg(rate);
1840 	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1841 		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1842 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1843 		return cfg80211_calculate_bitrate_edmg(rate);
1844 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1845 		return cfg80211_calculate_bitrate_vht(rate);
1846 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1847 		return cfg80211_calculate_bitrate_he(rate);
1848 	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1849 		return cfg80211_calculate_bitrate_eht(rate);
1850 	if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1851 		return cfg80211_calculate_bitrate_s1g(rate);
1852 
1853 	return rate->legacy;
1854 }
1855 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1856 
1857 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1858 			  enum ieee80211_p2p_attr_id attr,
1859 			  u8 *buf, unsigned int bufsize)
1860 {
1861 	u8 *out = buf;
1862 	u16 attr_remaining = 0;
1863 	bool desired_attr = false;
1864 	u16 desired_len = 0;
1865 
1866 	while (len > 0) {
1867 		unsigned int iedatalen;
1868 		unsigned int copy;
1869 		const u8 *iedata;
1870 
1871 		if (len < 2)
1872 			return -EILSEQ;
1873 		iedatalen = ies[1];
1874 		if (iedatalen + 2 > len)
1875 			return -EILSEQ;
1876 
1877 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1878 			goto cont;
1879 
1880 		if (iedatalen < 4)
1881 			goto cont;
1882 
1883 		iedata = ies + 2;
1884 
1885 		/* check WFA OUI, P2P subtype */
1886 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1887 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1888 			goto cont;
1889 
1890 		iedatalen -= 4;
1891 		iedata += 4;
1892 
1893 		/* check attribute continuation into this IE */
1894 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1895 		if (copy && desired_attr) {
1896 			desired_len += copy;
1897 			if (out) {
1898 				memcpy(out, iedata, min(bufsize, copy));
1899 				out += min(bufsize, copy);
1900 				bufsize -= min(bufsize, copy);
1901 			}
1902 
1903 
1904 			if (copy == attr_remaining)
1905 				return desired_len;
1906 		}
1907 
1908 		attr_remaining -= copy;
1909 		if (attr_remaining)
1910 			goto cont;
1911 
1912 		iedatalen -= copy;
1913 		iedata += copy;
1914 
1915 		while (iedatalen > 0) {
1916 			u16 attr_len;
1917 
1918 			/* P2P attribute ID & size must fit */
1919 			if (iedatalen < 3)
1920 				return -EILSEQ;
1921 			desired_attr = iedata[0] == attr;
1922 			attr_len = get_unaligned_le16(iedata + 1);
1923 			iedatalen -= 3;
1924 			iedata += 3;
1925 
1926 			copy = min_t(unsigned int, attr_len, iedatalen);
1927 
1928 			if (desired_attr) {
1929 				desired_len += copy;
1930 				if (out) {
1931 					memcpy(out, iedata, min(bufsize, copy));
1932 					out += min(bufsize, copy);
1933 					bufsize -= min(bufsize, copy);
1934 				}
1935 
1936 				if (copy == attr_len)
1937 					return desired_len;
1938 			}
1939 
1940 			iedata += copy;
1941 			iedatalen -= copy;
1942 			attr_remaining = attr_len - copy;
1943 		}
1944 
1945  cont:
1946 		len -= ies[1] + 2;
1947 		ies += ies[1] + 2;
1948 	}
1949 
1950 	if (attr_remaining && desired_attr)
1951 		return -EILSEQ;
1952 
1953 	return -ENOENT;
1954 }
1955 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1956 
1957 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1958 {
1959 	int i;
1960 
1961 	/* Make sure array values are legal */
1962 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1963 		return false;
1964 
1965 	i = 0;
1966 	while (i < n_ids) {
1967 		if (ids[i] == WLAN_EID_EXTENSION) {
1968 			if (id_ext && (ids[i + 1] == id))
1969 				return true;
1970 
1971 			i += 2;
1972 			continue;
1973 		}
1974 
1975 		if (ids[i] == id && !id_ext)
1976 			return true;
1977 
1978 		i++;
1979 	}
1980 	return false;
1981 }
1982 
1983 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1984 {
1985 	/* we assume a validly formed IEs buffer */
1986 	u8 len = ies[pos + 1];
1987 
1988 	pos += 2 + len;
1989 
1990 	/* the IE itself must have 255 bytes for fragments to follow */
1991 	if (len < 255)
1992 		return pos;
1993 
1994 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1995 		len = ies[pos + 1];
1996 		pos += 2 + len;
1997 	}
1998 
1999 	return pos;
2000 }
2001 
2002 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
2003 			      const u8 *ids, int n_ids,
2004 			      const u8 *after_ric, int n_after_ric,
2005 			      size_t offset)
2006 {
2007 	size_t pos = offset;
2008 
2009 	while (pos < ielen) {
2010 		u8 ext = 0;
2011 
2012 		if (ies[pos] == WLAN_EID_EXTENSION)
2013 			ext = 2;
2014 		if ((pos + ext) >= ielen)
2015 			break;
2016 
2017 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
2018 					  ies[pos] == WLAN_EID_EXTENSION))
2019 			break;
2020 
2021 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
2022 			pos = skip_ie(ies, ielen, pos);
2023 
2024 			while (pos < ielen) {
2025 				if (ies[pos] == WLAN_EID_EXTENSION)
2026 					ext = 2;
2027 				else
2028 					ext = 0;
2029 
2030 				if ((pos + ext) >= ielen)
2031 					break;
2032 
2033 				if (!ieee80211_id_in_list(after_ric,
2034 							  n_after_ric,
2035 							  ies[pos + ext],
2036 							  ext == 2))
2037 					pos = skip_ie(ies, ielen, pos);
2038 				else
2039 					break;
2040 			}
2041 		} else {
2042 			pos = skip_ie(ies, ielen, pos);
2043 		}
2044 	}
2045 
2046 	return pos;
2047 }
2048 EXPORT_SYMBOL(ieee80211_ie_split_ric);
2049 
2050 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id)
2051 {
2052 	unsigned int elem_len;
2053 
2054 	if (!len_pos)
2055 		return;
2056 
2057 	elem_len = skb->data + skb->len - len_pos - 1;
2058 
2059 	while (elem_len > 255) {
2060 		/* this one is 255 */
2061 		*len_pos = 255;
2062 		/* remaining data gets smaller */
2063 		elem_len -= 255;
2064 		/* make space for the fragment ID/len in SKB */
2065 		skb_put(skb, 2);
2066 		/* shift back the remaining data to place fragment ID/len */
2067 		memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len);
2068 		/* place the fragment ID */
2069 		len_pos += 255 + 1;
2070 		*len_pos = frag_id;
2071 		/* and point to fragment length to update later */
2072 		len_pos++;
2073 	}
2074 
2075 	*len_pos = elem_len;
2076 }
2077 EXPORT_SYMBOL(ieee80211_fragment_element);
2078 
2079 bool ieee80211_operating_class_to_band(u8 operating_class,
2080 				       enum nl80211_band *band)
2081 {
2082 	switch (operating_class) {
2083 	case 112:
2084 	case 115 ... 127:
2085 	case 128 ... 130:
2086 		*band = NL80211_BAND_5GHZ;
2087 		return true;
2088 	case 131 ... 135:
2089 	case 137:
2090 		*band = NL80211_BAND_6GHZ;
2091 		return true;
2092 	case 81:
2093 	case 82:
2094 	case 83:
2095 	case 84:
2096 		*band = NL80211_BAND_2GHZ;
2097 		return true;
2098 	case 180:
2099 		*band = NL80211_BAND_60GHZ;
2100 		return true;
2101 	}
2102 
2103 	return false;
2104 }
2105 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2106 
2107 bool ieee80211_operating_class_to_chandef(u8 operating_class,
2108 					  struct ieee80211_channel *chan,
2109 					  struct cfg80211_chan_def *chandef)
2110 {
2111 	u32 control_freq, offset = 0;
2112 	enum nl80211_band band;
2113 
2114 	if (!ieee80211_operating_class_to_band(operating_class, &band) ||
2115 	    !chan || band != chan->band)
2116 		return false;
2117 
2118 	control_freq = chan->center_freq;
2119 	chandef->chan = chan;
2120 
2121 	if (control_freq >= 5955)
2122 		offset = control_freq - 5955;
2123 	else if (control_freq >= 5745)
2124 		offset = control_freq - 5745;
2125 	else if (control_freq >= 5180)
2126 		offset = control_freq - 5180;
2127 	offset /= 20;
2128 
2129 	switch (operating_class) {
2130 	case 81:  /* 2 GHz band; 20 MHz; channels 1..13 */
2131 	case 82:  /* 2 GHz band; 20 MHz; channel 14 */
2132 	case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */
2133 	case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */
2134 	case 121: /* 5 GHz band; 20 MHz; channels 100..144 */
2135 	case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */
2136 	case 125: /* 5 GHz band; 20 MHz; channels 149..177 */
2137 	case 131: /* 6 GHz band; 20 MHz; channels 1..233*/
2138 	case 136: /* 6 GHz band; 20 MHz; channel 2 */
2139 		chandef->center_freq1 = control_freq;
2140 		chandef->width = NL80211_CHAN_WIDTH_20;
2141 		return true;
2142 	case 83:  /* 2 GHz band; 40 MHz; channels 1..9 */
2143 	case 116: /* 5 GHz band; 40 MHz; channels 36,44 */
2144 	case 119: /* 5 GHz band; 40 MHz; channels 52,60 */
2145 	case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */
2146 	case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */
2147 		chandef->center_freq1 = control_freq + 10;
2148 		chandef->width = NL80211_CHAN_WIDTH_40;
2149 		return true;
2150 	case 84:  /* 2 GHz band; 40 MHz; channels 5..13 */
2151 	case 117: /* 5 GHz band; 40 MHz; channels 40,48 */
2152 	case 120: /* 5 GHz band; 40 MHz; channels 56,64 */
2153 	case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */
2154 	case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */
2155 		chandef->center_freq1 = control_freq - 10;
2156 		chandef->width = NL80211_CHAN_WIDTH_40;
2157 		return true;
2158 	case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/
2159 		chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20;
2160 		chandef->width = NL80211_CHAN_WIDTH_40;
2161 		return true;
2162 	case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */
2163 	case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */
2164 		chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20;
2165 		chandef->width = NL80211_CHAN_WIDTH_80;
2166 		return true;
2167 	case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */
2168 	case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */
2169 		chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20;
2170 		chandef->width = NL80211_CHAN_WIDTH_160;
2171 		return true;
2172 	case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */
2173 	case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */
2174 		  /* The center_freq2 of 80+80 MHz is unknown */
2175 	case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */
2176 		  /* 320-1 or 320-2 channelization is unknown */
2177 	default:
2178 		return false;
2179 	}
2180 }
2181 EXPORT_SYMBOL(ieee80211_operating_class_to_chandef);
2182 
2183 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2184 					  u8 *op_class)
2185 {
2186 	u8 vht_opclass;
2187 	u32 freq = chandef->center_freq1;
2188 
2189 	if (freq >= 2412 && freq <= 2472) {
2190 		if (chandef->width > NL80211_CHAN_WIDTH_40)
2191 			return false;
2192 
2193 		/* 2.407 GHz, channels 1..13 */
2194 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
2195 			if (freq > chandef->chan->center_freq)
2196 				*op_class = 83; /* HT40+ */
2197 			else
2198 				*op_class = 84; /* HT40- */
2199 		} else {
2200 			*op_class = 81;
2201 		}
2202 
2203 		return true;
2204 	}
2205 
2206 	if (freq == 2484) {
2207 		/* channel 14 is only for IEEE 802.11b */
2208 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2209 			return false;
2210 
2211 		*op_class = 82; /* channel 14 */
2212 		return true;
2213 	}
2214 
2215 	switch (chandef->width) {
2216 	case NL80211_CHAN_WIDTH_80:
2217 		vht_opclass = 128;
2218 		break;
2219 	case NL80211_CHAN_WIDTH_160:
2220 		vht_opclass = 129;
2221 		break;
2222 	case NL80211_CHAN_WIDTH_80P80:
2223 		vht_opclass = 130;
2224 		break;
2225 	case NL80211_CHAN_WIDTH_10:
2226 	case NL80211_CHAN_WIDTH_5:
2227 		return false; /* unsupported for now */
2228 	default:
2229 		vht_opclass = 0;
2230 		break;
2231 	}
2232 
2233 	/* 5 GHz, channels 36..48 */
2234 	if (freq >= 5180 && freq <= 5240) {
2235 		if (vht_opclass) {
2236 			*op_class = vht_opclass;
2237 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2238 			if (freq > chandef->chan->center_freq)
2239 				*op_class = 116;
2240 			else
2241 				*op_class = 117;
2242 		} else {
2243 			*op_class = 115;
2244 		}
2245 
2246 		return true;
2247 	}
2248 
2249 	/* 5 GHz, channels 52..64 */
2250 	if (freq >= 5260 && freq <= 5320) {
2251 		if (vht_opclass) {
2252 			*op_class = vht_opclass;
2253 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2254 			if (freq > chandef->chan->center_freq)
2255 				*op_class = 119;
2256 			else
2257 				*op_class = 120;
2258 		} else {
2259 			*op_class = 118;
2260 		}
2261 
2262 		return true;
2263 	}
2264 
2265 	/* 5 GHz, channels 100..144 */
2266 	if (freq >= 5500 && freq <= 5720) {
2267 		if (vht_opclass) {
2268 			*op_class = vht_opclass;
2269 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2270 			if (freq > chandef->chan->center_freq)
2271 				*op_class = 122;
2272 			else
2273 				*op_class = 123;
2274 		} else {
2275 			*op_class = 121;
2276 		}
2277 
2278 		return true;
2279 	}
2280 
2281 	/* 5 GHz, channels 149..169 */
2282 	if (freq >= 5745 && freq <= 5845) {
2283 		if (vht_opclass) {
2284 			*op_class = vht_opclass;
2285 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2286 			if (freq > chandef->chan->center_freq)
2287 				*op_class = 126;
2288 			else
2289 				*op_class = 127;
2290 		} else if (freq <= 5805) {
2291 			*op_class = 124;
2292 		} else {
2293 			*op_class = 125;
2294 		}
2295 
2296 		return true;
2297 	}
2298 
2299 	/* 56.16 GHz, channel 1..4 */
2300 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2301 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
2302 			return false;
2303 
2304 		*op_class = 180;
2305 		return true;
2306 	}
2307 
2308 	/* not supported yet */
2309 	return false;
2310 }
2311 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2312 
2313 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2314 {
2315 	switch (wdev->iftype) {
2316 	case NL80211_IFTYPE_AP:
2317 	case NL80211_IFTYPE_P2P_GO:
2318 		WARN_ON(wdev->valid_links);
2319 		return wdev->links[0].ap.beacon_interval;
2320 	case NL80211_IFTYPE_MESH_POINT:
2321 		return wdev->u.mesh.beacon_interval;
2322 	case NL80211_IFTYPE_ADHOC:
2323 		return wdev->u.ibss.beacon_interval;
2324 	default:
2325 		break;
2326 	}
2327 
2328 	return 0;
2329 }
2330 
2331 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2332 				       u32 *beacon_int_gcd,
2333 				       bool *beacon_int_different,
2334 				       int radio_idx)
2335 {
2336 	struct cfg80211_registered_device *rdev;
2337 	struct wireless_dev *wdev;
2338 
2339 	*beacon_int_gcd = 0;
2340 	*beacon_int_different = false;
2341 
2342 	rdev = wiphy_to_rdev(wiphy);
2343 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2344 		int wdev_bi;
2345 
2346 		/* this feature isn't supported with MLO */
2347 		if (wdev->valid_links)
2348 			continue;
2349 
2350 		/* skip wdevs not active on the given wiphy radio */
2351 		if (radio_idx >= 0 &&
2352 		    !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx)))
2353 			continue;
2354 
2355 		wdev_bi = cfg80211_wdev_bi(wdev);
2356 
2357 		if (!wdev_bi)
2358 			continue;
2359 
2360 		if (!*beacon_int_gcd) {
2361 			*beacon_int_gcd = wdev_bi;
2362 			continue;
2363 		}
2364 
2365 		if (wdev_bi == *beacon_int_gcd)
2366 			continue;
2367 
2368 		*beacon_int_different = true;
2369 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2370 	}
2371 
2372 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2373 		if (*beacon_int_gcd)
2374 			*beacon_int_different = true;
2375 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2376 	}
2377 }
2378 
2379 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2380 				 enum nl80211_iftype iftype, u32 beacon_int)
2381 {
2382 	/*
2383 	 * This is just a basic pre-condition check; if interface combinations
2384 	 * are possible the driver must already be checking those with a call
2385 	 * to cfg80211_check_combinations(), in which case we'll validate more
2386 	 * through the cfg80211_calculate_bi_data() call and code in
2387 	 * cfg80211_iter_combinations().
2388 	 */
2389 
2390 	if (beacon_int < 10 || beacon_int > 10000)
2391 		return -EINVAL;
2392 
2393 	return 0;
2394 }
2395 
2396 int cfg80211_iter_combinations(struct wiphy *wiphy,
2397 			       struct iface_combination_params *params,
2398 			       void (*iter)(const struct ieee80211_iface_combination *c,
2399 					    void *data),
2400 			       void *data)
2401 {
2402 	const struct wiphy_radio *radio = NULL;
2403 	const struct ieee80211_iface_combination *c, *cs;
2404 	const struct ieee80211_regdomain *regdom;
2405 	enum nl80211_dfs_regions region = 0;
2406 	int i, j, n, iftype;
2407 	int num_interfaces = 0;
2408 	u32 used_iftypes = 0;
2409 	u32 beacon_int_gcd;
2410 	bool beacon_int_different;
2411 
2412 	if (params->radio_idx >= 0)
2413 		radio = &wiphy->radio[params->radio_idx];
2414 
2415 	/*
2416 	 * This is a bit strange, since the iteration used to rely only on
2417 	 * the data given by the driver, but here it now relies on context,
2418 	 * in form of the currently operating interfaces.
2419 	 * This is OK for all current users, and saves us from having to
2420 	 * push the GCD calculations into all the drivers.
2421 	 * In the future, this should probably rely more on data that's in
2422 	 * cfg80211 already - the only thing not would appear to be any new
2423 	 * interfaces (while being brought up) and channel/radar data.
2424 	 */
2425 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2426 				   &beacon_int_gcd, &beacon_int_different,
2427 				   params->radio_idx);
2428 
2429 	if (params->radar_detect) {
2430 		rcu_read_lock();
2431 		regdom = rcu_dereference(cfg80211_regdomain);
2432 		if (regdom)
2433 			region = regdom->dfs_region;
2434 		rcu_read_unlock();
2435 	}
2436 
2437 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2438 		num_interfaces += params->iftype_num[iftype];
2439 		if (params->iftype_num[iftype] > 0 &&
2440 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2441 			used_iftypes |= BIT(iftype);
2442 	}
2443 
2444 	if (radio) {
2445 		cs = radio->iface_combinations;
2446 		n = radio->n_iface_combinations;
2447 	} else {
2448 		cs = wiphy->iface_combinations;
2449 		n = wiphy->n_iface_combinations;
2450 	}
2451 	for (i = 0; i < n; i++) {
2452 		struct ieee80211_iface_limit *limits;
2453 		u32 all_iftypes = 0;
2454 
2455 		c = &cs[i];
2456 		if (num_interfaces > c->max_interfaces)
2457 			continue;
2458 		if (params->num_different_channels > c->num_different_channels)
2459 			continue;
2460 
2461 		limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits),
2462 				       GFP_KERNEL);
2463 		if (!limits)
2464 			return -ENOMEM;
2465 
2466 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2467 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2468 				continue;
2469 			for (j = 0; j < c->n_limits; j++) {
2470 				all_iftypes |= limits[j].types;
2471 				if (!(limits[j].types & BIT(iftype)))
2472 					continue;
2473 				if (limits[j].max < params->iftype_num[iftype])
2474 					goto cont;
2475 				limits[j].max -= params->iftype_num[iftype];
2476 			}
2477 		}
2478 
2479 		if (params->radar_detect !=
2480 			(c->radar_detect_widths & params->radar_detect))
2481 			goto cont;
2482 
2483 		if (params->radar_detect && c->radar_detect_regions &&
2484 		    !(c->radar_detect_regions & BIT(region)))
2485 			goto cont;
2486 
2487 		/* Finally check that all iftypes that we're currently
2488 		 * using are actually part of this combination. If they
2489 		 * aren't then we can't use this combination and have
2490 		 * to continue to the next.
2491 		 */
2492 		if ((all_iftypes & used_iftypes) != used_iftypes)
2493 			goto cont;
2494 
2495 		if (beacon_int_gcd) {
2496 			if (c->beacon_int_min_gcd &&
2497 			    beacon_int_gcd < c->beacon_int_min_gcd)
2498 				goto cont;
2499 			if (!c->beacon_int_min_gcd && beacon_int_different)
2500 				goto cont;
2501 		}
2502 
2503 		/* This combination covered all interface types and
2504 		 * supported the requested numbers, so we're good.
2505 		 */
2506 
2507 		(*iter)(c, data);
2508  cont:
2509 		kfree(limits);
2510 	}
2511 
2512 	return 0;
2513 }
2514 EXPORT_SYMBOL(cfg80211_iter_combinations);
2515 
2516 static void
2517 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2518 			  void *data)
2519 {
2520 	int *num = data;
2521 	(*num)++;
2522 }
2523 
2524 int cfg80211_check_combinations(struct wiphy *wiphy,
2525 				struct iface_combination_params *params)
2526 {
2527 	int err, num = 0;
2528 
2529 	err = cfg80211_iter_combinations(wiphy, params,
2530 					 cfg80211_iter_sum_ifcombs, &num);
2531 	if (err)
2532 		return err;
2533 	if (num == 0)
2534 		return -EBUSY;
2535 
2536 	return 0;
2537 }
2538 EXPORT_SYMBOL(cfg80211_check_combinations);
2539 
2540 int cfg80211_get_radio_idx_by_chan(struct wiphy *wiphy,
2541 				   const struct ieee80211_channel *chan)
2542 {
2543 	const struct wiphy_radio *radio;
2544 	int i, j;
2545 	u32 freq;
2546 
2547 	if (!chan)
2548 		return -EINVAL;
2549 
2550 	freq = ieee80211_channel_to_khz(chan);
2551 	for (i = 0; i < wiphy->n_radio; i++) {
2552 		radio = &wiphy->radio[i];
2553 		for (j = 0; j < radio->n_freq_range; j++) {
2554 			if (freq >= radio->freq_range[j].start_freq &&
2555 			    freq < radio->freq_range[j].end_freq)
2556 				return i;
2557 		}
2558 	}
2559 
2560 	return -EINVAL;
2561 }
2562 EXPORT_SYMBOL(cfg80211_get_radio_idx_by_chan);
2563 
2564 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2565 			   const u8 *rates, unsigned int n_rates,
2566 			   u32 *mask)
2567 {
2568 	int i, j;
2569 
2570 	if (!sband)
2571 		return -EINVAL;
2572 
2573 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2574 		return -EINVAL;
2575 
2576 	*mask = 0;
2577 
2578 	for (i = 0; i < n_rates; i++) {
2579 		int rate = (rates[i] & 0x7f) * 5;
2580 		bool found = false;
2581 
2582 		for (j = 0; j < sband->n_bitrates; j++) {
2583 			if (sband->bitrates[j].bitrate == rate) {
2584 				found = true;
2585 				*mask |= BIT(j);
2586 				break;
2587 			}
2588 		}
2589 		if (!found)
2590 			return -EINVAL;
2591 	}
2592 
2593 	/*
2594 	 * mask must have at least one bit set here since we
2595 	 * didn't accept a 0-length rates array nor allowed
2596 	 * entries in the array that didn't exist
2597 	 */
2598 
2599 	return 0;
2600 }
2601 
2602 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2603 {
2604 	enum nl80211_band band;
2605 	unsigned int n_channels = 0;
2606 
2607 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2608 		if (wiphy->bands[band])
2609 			n_channels += wiphy->bands[band]->n_channels;
2610 
2611 	return n_channels;
2612 }
2613 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2614 
2615 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2616 			 struct station_info *sinfo)
2617 {
2618 	struct cfg80211_registered_device *rdev;
2619 	struct wireless_dev *wdev;
2620 
2621 	wdev = dev->ieee80211_ptr;
2622 	if (!wdev)
2623 		return -EOPNOTSUPP;
2624 
2625 	rdev = wiphy_to_rdev(wdev->wiphy);
2626 	if (!rdev->ops->get_station)
2627 		return -EOPNOTSUPP;
2628 
2629 	memset(sinfo, 0, sizeof(*sinfo));
2630 
2631 	guard(wiphy)(&rdev->wiphy);
2632 
2633 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
2634 }
2635 EXPORT_SYMBOL(cfg80211_get_station);
2636 
2637 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2638 {
2639 	int i;
2640 
2641 	if (!f)
2642 		return;
2643 
2644 	kfree(f->serv_spec_info);
2645 	kfree(f->srf_bf);
2646 	kfree(f->srf_macs);
2647 	for (i = 0; i < f->num_rx_filters; i++)
2648 		kfree(f->rx_filters[i].filter);
2649 
2650 	for (i = 0; i < f->num_tx_filters; i++)
2651 		kfree(f->tx_filters[i].filter);
2652 
2653 	kfree(f->rx_filters);
2654 	kfree(f->tx_filters);
2655 	kfree(f);
2656 }
2657 EXPORT_SYMBOL(cfg80211_free_nan_func);
2658 
2659 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2660 				u32 center_freq_khz, u32 bw_khz)
2661 {
2662 	u32 start_freq_khz, end_freq_khz;
2663 
2664 	start_freq_khz = center_freq_khz - (bw_khz / 2);
2665 	end_freq_khz = center_freq_khz + (bw_khz / 2);
2666 
2667 	if (start_freq_khz >= freq_range->start_freq_khz &&
2668 	    end_freq_khz <= freq_range->end_freq_khz)
2669 		return true;
2670 
2671 	return false;
2672 }
2673 
2674 int cfg80211_link_sinfo_alloc_tid_stats(struct link_station_info *link_sinfo,
2675 					gfp_t gfp)
2676 {
2677 	link_sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2678 				     sizeof(*link_sinfo->pertid), gfp);
2679 	if (!link_sinfo->pertid)
2680 		return -ENOMEM;
2681 
2682 	return 0;
2683 }
2684 EXPORT_SYMBOL(cfg80211_link_sinfo_alloc_tid_stats);
2685 
2686 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2687 {
2688 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2689 				sizeof(*(sinfo->pertid)),
2690 				gfp);
2691 	if (!sinfo->pertid)
2692 		return -ENOMEM;
2693 
2694 	return 0;
2695 }
2696 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2697 
2698 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2699 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2700 const unsigned char rfc1042_header[] __aligned(2) =
2701 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2702 EXPORT_SYMBOL(rfc1042_header);
2703 
2704 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2705 const unsigned char bridge_tunnel_header[] __aligned(2) =
2706 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2707 EXPORT_SYMBOL(bridge_tunnel_header);
2708 
2709 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2710 struct iapp_layer2_update {
2711 	u8 da[ETH_ALEN];	/* broadcast */
2712 	u8 sa[ETH_ALEN];	/* STA addr */
2713 	__be16 len;		/* 6 */
2714 	u8 dsap;		/* 0 */
2715 	u8 ssap;		/* 0 */
2716 	u8 control;
2717 	u8 xid_info[3];
2718 } __packed;
2719 
2720 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2721 {
2722 	struct iapp_layer2_update *msg;
2723 	struct sk_buff *skb;
2724 
2725 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2726 	 * bridge devices */
2727 
2728 	skb = dev_alloc_skb(sizeof(*msg));
2729 	if (!skb)
2730 		return;
2731 	msg = skb_put(skb, sizeof(*msg));
2732 
2733 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2734 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2735 
2736 	eth_broadcast_addr(msg->da);
2737 	ether_addr_copy(msg->sa, addr);
2738 	msg->len = htons(6);
2739 	msg->dsap = 0;
2740 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2741 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2742 				 * F=0 (no poll command; unsolicited frame) */
2743 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2744 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2745 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2746 
2747 	skb->dev = dev;
2748 	skb->protocol = eth_type_trans(skb, dev);
2749 	memset(skb->cb, 0, sizeof(skb->cb));
2750 	netif_rx(skb);
2751 }
2752 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2753 
2754 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2755 			      enum ieee80211_vht_chanwidth bw,
2756 			      int mcs, bool ext_nss_bw_capable,
2757 			      unsigned int max_vht_nss)
2758 {
2759 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2760 	int ext_nss_bw;
2761 	int supp_width;
2762 	int i, mcs_encoding;
2763 
2764 	if (map == 0xffff)
2765 		return 0;
2766 
2767 	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2768 		return 0;
2769 	if (mcs <= 7)
2770 		mcs_encoding = 0;
2771 	else if (mcs == 8)
2772 		mcs_encoding = 1;
2773 	else
2774 		mcs_encoding = 2;
2775 
2776 	if (!max_vht_nss) {
2777 		/* find max_vht_nss for the given MCS */
2778 		for (i = 7; i >= 0; i--) {
2779 			int supp = (map >> (2 * i)) & 3;
2780 
2781 			if (supp == 3)
2782 				continue;
2783 
2784 			if (supp >= mcs_encoding) {
2785 				max_vht_nss = i + 1;
2786 				break;
2787 			}
2788 		}
2789 	}
2790 
2791 	if (!(cap->supp_mcs.tx_mcs_map &
2792 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2793 		return max_vht_nss;
2794 
2795 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2796 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2797 	supp_width = le32_get_bits(cap->vht_cap_info,
2798 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2799 
2800 	/* if not capable, treat ext_nss_bw as 0 */
2801 	if (!ext_nss_bw_capable)
2802 		ext_nss_bw = 0;
2803 
2804 	/* This is invalid */
2805 	if (supp_width == 3)
2806 		return 0;
2807 
2808 	/* This is an invalid combination so pretend nothing is supported */
2809 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2810 		return 0;
2811 
2812 	/*
2813 	 * Cover all the special cases according to IEEE 802.11-2016
2814 	 * Table 9-250. All other cases are either factor of 1 or not
2815 	 * valid/supported.
2816 	 */
2817 	switch (bw) {
2818 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2819 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2820 		if ((supp_width == 1 || supp_width == 2) &&
2821 		    ext_nss_bw == 3)
2822 			return 2 * max_vht_nss;
2823 		break;
2824 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2825 		if (supp_width == 0 &&
2826 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2827 			return max_vht_nss / 2;
2828 		if (supp_width == 0 &&
2829 		    ext_nss_bw == 3)
2830 			return (3 * max_vht_nss) / 4;
2831 		if (supp_width == 1 &&
2832 		    ext_nss_bw == 3)
2833 			return 2 * max_vht_nss;
2834 		break;
2835 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2836 		if (supp_width == 0 && ext_nss_bw == 1)
2837 			return 0; /* not possible */
2838 		if (supp_width == 0 &&
2839 		    ext_nss_bw == 2)
2840 			return max_vht_nss / 2;
2841 		if (supp_width == 0 &&
2842 		    ext_nss_bw == 3)
2843 			return (3 * max_vht_nss) / 4;
2844 		if (supp_width == 1 &&
2845 		    ext_nss_bw == 0)
2846 			return 0; /* not possible */
2847 		if (supp_width == 1 &&
2848 		    ext_nss_bw == 1)
2849 			return max_vht_nss / 2;
2850 		if (supp_width == 1 &&
2851 		    ext_nss_bw == 2)
2852 			return (3 * max_vht_nss) / 4;
2853 		break;
2854 	}
2855 
2856 	/* not covered or invalid combination received */
2857 	return max_vht_nss;
2858 }
2859 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2860 
2861 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2862 			     bool is_4addr, u8 check_swif)
2863 
2864 {
2865 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2866 
2867 	switch (check_swif) {
2868 	case 0:
2869 		if (is_vlan && is_4addr)
2870 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2871 		return wiphy->interface_modes & BIT(iftype);
2872 	case 1:
2873 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2874 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2875 		return wiphy->software_iftypes & BIT(iftype);
2876 	default:
2877 		break;
2878 	}
2879 
2880 	return false;
2881 }
2882 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2883 
2884 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2885 {
2886 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2887 
2888 	lockdep_assert_wiphy(wdev->wiphy);
2889 
2890 	switch (wdev->iftype) {
2891 	case NL80211_IFTYPE_AP:
2892 	case NL80211_IFTYPE_P2P_GO:
2893 		cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2894 		break;
2895 	default:
2896 		/* per-link not relevant */
2897 		break;
2898 	}
2899 
2900 	rdev_del_intf_link(rdev, wdev, link_id);
2901 
2902 	wdev->valid_links &= ~BIT(link_id);
2903 	eth_zero_addr(wdev->links[link_id].addr);
2904 }
2905 
2906 void cfg80211_remove_links(struct wireless_dev *wdev)
2907 {
2908 	unsigned int link_id;
2909 
2910 	/*
2911 	 * links are controlled by upper layers (userspace/cfg)
2912 	 * only for AP mode, so only remove them here for AP
2913 	 */
2914 	if (wdev->iftype != NL80211_IFTYPE_AP)
2915 		return;
2916 
2917 	if (wdev->valid_links) {
2918 		for_each_valid_link(wdev, link_id)
2919 			cfg80211_remove_link(wdev, link_id);
2920 	}
2921 }
2922 
2923 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2924 				 struct wireless_dev *wdev)
2925 {
2926 	cfg80211_remove_links(wdev);
2927 
2928 	return rdev_del_virtual_intf(rdev, wdev);
2929 }
2930 
2931 const struct wiphy_iftype_ext_capab *
2932 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2933 {
2934 	int i;
2935 
2936 	for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2937 		if (wiphy->iftype_ext_capab[i].iftype == type)
2938 			return &wiphy->iftype_ext_capab[i];
2939 	}
2940 
2941 	return NULL;
2942 }
2943 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2944 
2945 static bool
2946 ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio,
2947 				 u32 freq, u32 width)
2948 {
2949 	const struct wiphy_radio_freq_range *r;
2950 	int i;
2951 
2952 	for (i = 0; i < radio->n_freq_range; i++) {
2953 		r = &radio->freq_range[i];
2954 		if (freq - width / 2 >= r->start_freq &&
2955 		    freq + width / 2 <= r->end_freq)
2956 			return true;
2957 	}
2958 
2959 	return false;
2960 }
2961 
2962 bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio,
2963 				  const struct cfg80211_chan_def *chandef)
2964 {
2965 	u32 freq, width;
2966 
2967 	freq = ieee80211_chandef_to_khz(chandef);
2968 	width = MHZ_TO_KHZ(cfg80211_chandef_get_width(chandef));
2969 	if (!ieee80211_radio_freq_range_valid(radio, freq, width))
2970 		return false;
2971 
2972 	freq = MHZ_TO_KHZ(chandef->center_freq2);
2973 	if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width))
2974 		return false;
2975 
2976 	return true;
2977 }
2978 EXPORT_SYMBOL(cfg80211_radio_chandef_valid);
2979 
2980 bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev,
2981 				   struct ieee80211_channel *chan)
2982 {
2983 	struct wiphy *wiphy = wdev->wiphy;
2984 	const struct wiphy_radio *radio;
2985 	struct cfg80211_chan_def chandef;
2986 	u32 radio_mask;
2987 	int i;
2988 
2989 	radio_mask = wdev->radio_mask;
2990 	if (!wiphy->n_radio || radio_mask == BIT(wiphy->n_radio) - 1)
2991 		return true;
2992 
2993 	cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20);
2994 	for (i = 0; i < wiphy->n_radio; i++) {
2995 		if (!(radio_mask & BIT(i)))
2996 			continue;
2997 
2998 		radio = &wiphy->radio[i];
2999 		if (!cfg80211_radio_chandef_valid(radio, &chandef))
3000 			continue;
3001 
3002 		return true;
3003 	}
3004 
3005 	return false;
3006 }
3007 EXPORT_SYMBOL(cfg80211_wdev_channel_allowed);
3008