1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2023 Intel Corporation */
3
4 #include <linux/export.h>
5 #include <net/libeth/rx.h>
6
7 #include "idpf.h"
8 #include "idpf_virtchnl.h"
9 #include "idpf_ptp.h"
10
11 /**
12 * struct idpf_vc_xn_manager - Manager for tracking transactions
13 * @ring: backing and lookup for transactions
14 * @free_xn_bm: bitmap for free transactions
15 * @xn_bm_lock: make bitmap access synchronous where necessary
16 * @salt: used to make cookie unique every message
17 */
18 struct idpf_vc_xn_manager {
19 struct idpf_vc_xn ring[IDPF_VC_XN_RING_LEN];
20 DECLARE_BITMAP(free_xn_bm, IDPF_VC_XN_RING_LEN);
21 spinlock_t xn_bm_lock;
22 u8 salt;
23 };
24
25 /**
26 * idpf_vid_to_vport - Translate vport id to vport pointer
27 * @adapter: private data struct
28 * @v_id: vport id to translate
29 *
30 * Returns vport matching v_id, NULL if not found.
31 */
32 static
idpf_vid_to_vport(struct idpf_adapter * adapter,u32 v_id)33 struct idpf_vport *idpf_vid_to_vport(struct idpf_adapter *adapter, u32 v_id)
34 {
35 u16 num_max_vports = idpf_get_max_vports(adapter);
36 int i;
37
38 for (i = 0; i < num_max_vports; i++)
39 if (adapter->vport_ids[i] == v_id)
40 return adapter->vports[i];
41
42 return NULL;
43 }
44
45 /**
46 * idpf_handle_event_link - Handle link event message
47 * @adapter: private data struct
48 * @v2e: virtchnl event message
49 */
idpf_handle_event_link(struct idpf_adapter * adapter,const struct virtchnl2_event * v2e)50 static void idpf_handle_event_link(struct idpf_adapter *adapter,
51 const struct virtchnl2_event *v2e)
52 {
53 struct idpf_netdev_priv *np;
54 struct idpf_vport *vport;
55
56 vport = idpf_vid_to_vport(adapter, le32_to_cpu(v2e->vport_id));
57 if (!vport) {
58 dev_err_ratelimited(&adapter->pdev->dev, "Failed to find vport_id %d for link event\n",
59 v2e->vport_id);
60 return;
61 }
62 np = netdev_priv(vport->netdev);
63
64 np->link_speed_mbps = le32_to_cpu(v2e->link_speed);
65
66 if (vport->link_up == v2e->link_status)
67 return;
68
69 vport->link_up = v2e->link_status;
70
71 if (np->state != __IDPF_VPORT_UP)
72 return;
73
74 if (vport->link_up) {
75 netif_tx_start_all_queues(vport->netdev);
76 netif_carrier_on(vport->netdev);
77 } else {
78 netif_tx_stop_all_queues(vport->netdev);
79 netif_carrier_off(vport->netdev);
80 }
81 }
82
83 /**
84 * idpf_recv_event_msg - Receive virtchnl event message
85 * @adapter: Driver specific private structure
86 * @ctlq_msg: message to copy from
87 *
88 * Receive virtchnl event message
89 */
idpf_recv_event_msg(struct idpf_adapter * adapter,struct idpf_ctlq_msg * ctlq_msg)90 static void idpf_recv_event_msg(struct idpf_adapter *adapter,
91 struct idpf_ctlq_msg *ctlq_msg)
92 {
93 int payload_size = ctlq_msg->ctx.indirect.payload->size;
94 struct virtchnl2_event *v2e;
95 u32 event;
96
97 if (payload_size < sizeof(*v2e)) {
98 dev_err_ratelimited(&adapter->pdev->dev, "Failed to receive valid payload for event msg (op %d len %d)\n",
99 ctlq_msg->cookie.mbx.chnl_opcode,
100 payload_size);
101 return;
102 }
103
104 v2e = (struct virtchnl2_event *)ctlq_msg->ctx.indirect.payload->va;
105 event = le32_to_cpu(v2e->event);
106
107 switch (event) {
108 case VIRTCHNL2_EVENT_LINK_CHANGE:
109 idpf_handle_event_link(adapter, v2e);
110 return;
111 default:
112 dev_err(&adapter->pdev->dev,
113 "Unknown event %d from PF\n", event);
114 break;
115 }
116 }
117
118 /**
119 * idpf_mb_clean - Reclaim the send mailbox queue entries
120 * @adapter: Driver specific private structure
121 *
122 * Reclaim the send mailbox queue entries to be used to send further messages
123 *
124 * Returns 0 on success, negative on failure
125 */
idpf_mb_clean(struct idpf_adapter * adapter)126 static int idpf_mb_clean(struct idpf_adapter *adapter)
127 {
128 u16 i, num_q_msg = IDPF_DFLT_MBX_Q_LEN;
129 struct idpf_ctlq_msg **q_msg;
130 struct idpf_dma_mem *dma_mem;
131 int err;
132
133 q_msg = kcalloc(num_q_msg, sizeof(struct idpf_ctlq_msg *), GFP_ATOMIC);
134 if (!q_msg)
135 return -ENOMEM;
136
137 err = idpf_ctlq_clean_sq(adapter->hw.asq, &num_q_msg, q_msg);
138 if (err)
139 goto err_kfree;
140
141 for (i = 0; i < num_q_msg; i++) {
142 if (!q_msg[i])
143 continue;
144 dma_mem = q_msg[i]->ctx.indirect.payload;
145 if (dma_mem)
146 dma_free_coherent(&adapter->pdev->dev, dma_mem->size,
147 dma_mem->va, dma_mem->pa);
148 kfree(q_msg[i]);
149 kfree(dma_mem);
150 }
151
152 err_kfree:
153 kfree(q_msg);
154
155 return err;
156 }
157
158 #if IS_ENABLED(CONFIG_PTP_1588_CLOCK)
159 /**
160 * idpf_ptp_is_mb_msg - Check if the message is PTP-related
161 * @op: virtchnl opcode
162 *
163 * Return: true if msg is PTP-related, false otherwise.
164 */
idpf_ptp_is_mb_msg(u32 op)165 static bool idpf_ptp_is_mb_msg(u32 op)
166 {
167 switch (op) {
168 case VIRTCHNL2_OP_PTP_GET_DEV_CLK_TIME:
169 case VIRTCHNL2_OP_PTP_GET_CROSS_TIME:
170 case VIRTCHNL2_OP_PTP_SET_DEV_CLK_TIME:
171 case VIRTCHNL2_OP_PTP_ADJ_DEV_CLK_FINE:
172 case VIRTCHNL2_OP_PTP_ADJ_DEV_CLK_TIME:
173 case VIRTCHNL2_OP_PTP_GET_VPORT_TX_TSTAMP_CAPS:
174 case VIRTCHNL2_OP_PTP_GET_VPORT_TX_TSTAMP:
175 return true;
176 default:
177 return false;
178 }
179 }
180
181 /**
182 * idpf_prepare_ptp_mb_msg - Prepare PTP related message
183 *
184 * @adapter: Driver specific private structure
185 * @op: virtchnl opcode
186 * @ctlq_msg: Corresponding control queue message
187 */
idpf_prepare_ptp_mb_msg(struct idpf_adapter * adapter,u32 op,struct idpf_ctlq_msg * ctlq_msg)188 static void idpf_prepare_ptp_mb_msg(struct idpf_adapter *adapter, u32 op,
189 struct idpf_ctlq_msg *ctlq_msg)
190 {
191 /* If the message is PTP-related and the secondary mailbox is available,
192 * send the message through the secondary mailbox.
193 */
194 if (!idpf_ptp_is_mb_msg(op) || !adapter->ptp->secondary_mbx.valid)
195 return;
196
197 ctlq_msg->opcode = idpf_mbq_opc_send_msg_to_peer_drv;
198 ctlq_msg->func_id = adapter->ptp->secondary_mbx.peer_mbx_q_id;
199 ctlq_msg->host_id = adapter->ptp->secondary_mbx.peer_id;
200 }
201 #else /* !CONFIG_PTP_1588_CLOCK */
idpf_prepare_ptp_mb_msg(struct idpf_adapter * adapter,u32 op,struct idpf_ctlq_msg * ctlq_msg)202 static void idpf_prepare_ptp_mb_msg(struct idpf_adapter *adapter, u32 op,
203 struct idpf_ctlq_msg *ctlq_msg)
204 { }
205 #endif /* CONFIG_PTP_1588_CLOCK */
206
207 /**
208 * idpf_send_mb_msg - Send message over mailbox
209 * @adapter: Driver specific private structure
210 * @op: virtchnl opcode
211 * @msg_size: size of the payload
212 * @msg: pointer to buffer holding the payload
213 * @cookie: unique SW generated cookie per message
214 *
215 * Will prepare the control queue message and initiates the send api
216 *
217 * Returns 0 on success, negative on failure
218 */
idpf_send_mb_msg(struct idpf_adapter * adapter,u32 op,u16 msg_size,u8 * msg,u16 cookie)219 int idpf_send_mb_msg(struct idpf_adapter *adapter, u32 op,
220 u16 msg_size, u8 *msg, u16 cookie)
221 {
222 struct idpf_ctlq_msg *ctlq_msg;
223 struct idpf_dma_mem *dma_mem;
224 int err;
225
226 /* If we are here and a reset is detected nothing much can be
227 * done. This thread should silently abort and expected to
228 * be corrected with a new run either by user or driver
229 * flows after reset
230 */
231 if (idpf_is_reset_detected(adapter))
232 return 0;
233
234 err = idpf_mb_clean(adapter);
235 if (err)
236 return err;
237
238 ctlq_msg = kzalloc(sizeof(*ctlq_msg), GFP_ATOMIC);
239 if (!ctlq_msg)
240 return -ENOMEM;
241
242 dma_mem = kzalloc(sizeof(*dma_mem), GFP_ATOMIC);
243 if (!dma_mem) {
244 err = -ENOMEM;
245 goto dma_mem_error;
246 }
247
248 ctlq_msg->opcode = idpf_mbq_opc_send_msg_to_cp;
249 ctlq_msg->func_id = 0;
250
251 idpf_prepare_ptp_mb_msg(adapter, op, ctlq_msg);
252
253 ctlq_msg->data_len = msg_size;
254 ctlq_msg->cookie.mbx.chnl_opcode = op;
255 ctlq_msg->cookie.mbx.chnl_retval = 0;
256 dma_mem->size = IDPF_CTLQ_MAX_BUF_LEN;
257 dma_mem->va = dma_alloc_coherent(&adapter->pdev->dev, dma_mem->size,
258 &dma_mem->pa, GFP_ATOMIC);
259 if (!dma_mem->va) {
260 err = -ENOMEM;
261 goto dma_alloc_error;
262 }
263
264 /* It's possible we're just sending an opcode but no buffer */
265 if (msg && msg_size)
266 memcpy(dma_mem->va, msg, msg_size);
267 ctlq_msg->ctx.indirect.payload = dma_mem;
268 ctlq_msg->ctx.sw_cookie.data = cookie;
269
270 err = idpf_ctlq_send(&adapter->hw, adapter->hw.asq, 1, ctlq_msg);
271 if (err)
272 goto send_error;
273
274 return 0;
275
276 send_error:
277 dma_free_coherent(&adapter->pdev->dev, dma_mem->size, dma_mem->va,
278 dma_mem->pa);
279 dma_alloc_error:
280 kfree(dma_mem);
281 dma_mem_error:
282 kfree(ctlq_msg);
283
284 return err;
285 }
286
287 /* API for virtchnl "transaction" support ("xn" for short).
288 *
289 * We are reusing the completion lock to serialize the accesses to the
290 * transaction state for simplicity, but it could be its own separate synchro
291 * as well. For now, this API is only used from within a workqueue context;
292 * raw_spin_lock() is enough.
293 */
294 /**
295 * idpf_vc_xn_lock - Request exclusive access to vc transaction
296 * @xn: struct idpf_vc_xn* to access
297 */
298 #define idpf_vc_xn_lock(xn) \
299 raw_spin_lock(&(xn)->completed.wait.lock)
300
301 /**
302 * idpf_vc_xn_unlock - Release exclusive access to vc transaction
303 * @xn: struct idpf_vc_xn* to access
304 */
305 #define idpf_vc_xn_unlock(xn) \
306 raw_spin_unlock(&(xn)->completed.wait.lock)
307
308 /**
309 * idpf_vc_xn_release_bufs - Release reference to reply buffer(s) and
310 * reset the transaction state.
311 * @xn: struct idpf_vc_xn to update
312 */
idpf_vc_xn_release_bufs(struct idpf_vc_xn * xn)313 static void idpf_vc_xn_release_bufs(struct idpf_vc_xn *xn)
314 {
315 xn->reply.iov_base = NULL;
316 xn->reply.iov_len = 0;
317
318 if (xn->state != IDPF_VC_XN_SHUTDOWN)
319 xn->state = IDPF_VC_XN_IDLE;
320 }
321
322 /**
323 * idpf_vc_xn_init - Initialize virtchnl transaction object
324 * @vcxn_mngr: pointer to vc transaction manager struct
325 */
idpf_vc_xn_init(struct idpf_vc_xn_manager * vcxn_mngr)326 static void idpf_vc_xn_init(struct idpf_vc_xn_manager *vcxn_mngr)
327 {
328 int i;
329
330 spin_lock_init(&vcxn_mngr->xn_bm_lock);
331
332 for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
333 struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
334
335 xn->state = IDPF_VC_XN_IDLE;
336 xn->idx = i;
337 idpf_vc_xn_release_bufs(xn);
338 init_completion(&xn->completed);
339 }
340
341 bitmap_fill(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
342 }
343
344 /**
345 * idpf_vc_xn_shutdown - Uninitialize virtchnl transaction object
346 * @vcxn_mngr: pointer to vc transaction manager struct
347 *
348 * All waiting threads will be woken-up and their transaction aborted. Further
349 * operations on that object will fail.
350 */
idpf_vc_xn_shutdown(struct idpf_vc_xn_manager * vcxn_mngr)351 void idpf_vc_xn_shutdown(struct idpf_vc_xn_manager *vcxn_mngr)
352 {
353 int i;
354
355 spin_lock_bh(&vcxn_mngr->xn_bm_lock);
356 bitmap_zero(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
357 spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
358
359 for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
360 struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
361
362 idpf_vc_xn_lock(xn);
363 xn->state = IDPF_VC_XN_SHUTDOWN;
364 idpf_vc_xn_release_bufs(xn);
365 idpf_vc_xn_unlock(xn);
366 complete_all(&xn->completed);
367 }
368 }
369
370 /**
371 * idpf_vc_xn_pop_free - Pop a free transaction from free list
372 * @vcxn_mngr: transaction manager to pop from
373 *
374 * Returns NULL if no free transactions
375 */
376 static
idpf_vc_xn_pop_free(struct idpf_vc_xn_manager * vcxn_mngr)377 struct idpf_vc_xn *idpf_vc_xn_pop_free(struct idpf_vc_xn_manager *vcxn_mngr)
378 {
379 struct idpf_vc_xn *xn = NULL;
380 unsigned long free_idx;
381
382 spin_lock_bh(&vcxn_mngr->xn_bm_lock);
383 free_idx = find_first_bit(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
384 if (free_idx == IDPF_VC_XN_RING_LEN)
385 goto do_unlock;
386
387 clear_bit(free_idx, vcxn_mngr->free_xn_bm);
388 xn = &vcxn_mngr->ring[free_idx];
389 xn->salt = vcxn_mngr->salt++;
390
391 do_unlock:
392 spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
393
394 return xn;
395 }
396
397 /**
398 * idpf_vc_xn_push_free - Push a free transaction to free list
399 * @vcxn_mngr: transaction manager to push to
400 * @xn: transaction to push
401 */
idpf_vc_xn_push_free(struct idpf_vc_xn_manager * vcxn_mngr,struct idpf_vc_xn * xn)402 static void idpf_vc_xn_push_free(struct idpf_vc_xn_manager *vcxn_mngr,
403 struct idpf_vc_xn *xn)
404 {
405 idpf_vc_xn_release_bufs(xn);
406 set_bit(xn->idx, vcxn_mngr->free_xn_bm);
407 }
408
409 /**
410 * idpf_vc_xn_exec - Perform a send/recv virtchnl transaction
411 * @adapter: driver specific private structure with vcxn_mngr
412 * @params: parameters for this particular transaction including
413 * -vc_op: virtchannel operation to send
414 * -send_buf: kvec iov for send buf and len
415 * -recv_buf: kvec iov for recv buf and len (ignored if NULL)
416 * -timeout_ms: timeout waiting for a reply (milliseconds)
417 * -async: don't wait for message reply, will lose caller context
418 * -async_handler: callback to handle async replies
419 *
420 * @returns >= 0 for success, the size of the initial reply (may or may not be
421 * >= @recv_buf.iov_len, but we never overflow @@recv_buf_iov_base). < 0 for
422 * error.
423 */
idpf_vc_xn_exec(struct idpf_adapter * adapter,const struct idpf_vc_xn_params * params)424 ssize_t idpf_vc_xn_exec(struct idpf_adapter *adapter,
425 const struct idpf_vc_xn_params *params)
426 {
427 const struct kvec *send_buf = ¶ms->send_buf;
428 struct idpf_vc_xn *xn;
429 ssize_t retval;
430 u16 cookie;
431
432 xn = idpf_vc_xn_pop_free(adapter->vcxn_mngr);
433 /* no free transactions available */
434 if (!xn)
435 return -ENOSPC;
436
437 idpf_vc_xn_lock(xn);
438 if (xn->state == IDPF_VC_XN_SHUTDOWN) {
439 retval = -ENXIO;
440 goto only_unlock;
441 } else if (xn->state != IDPF_VC_XN_IDLE) {
442 /* We're just going to clobber this transaction even though
443 * it's not IDLE. If we don't reuse it we could theoretically
444 * eventually leak all the free transactions and not be able to
445 * send any messages. At least this way we make an attempt to
446 * remain functional even though something really bad is
447 * happening that's corrupting what was supposed to be free
448 * transactions.
449 */
450 WARN_ONCE(1, "There should only be idle transactions in free list (idx %d op %d)\n",
451 xn->idx, xn->vc_op);
452 }
453
454 xn->reply = params->recv_buf;
455 xn->reply_sz = 0;
456 xn->state = params->async ? IDPF_VC_XN_ASYNC : IDPF_VC_XN_WAITING;
457 xn->vc_op = params->vc_op;
458 xn->async_handler = params->async_handler;
459 idpf_vc_xn_unlock(xn);
460
461 if (!params->async)
462 reinit_completion(&xn->completed);
463 cookie = FIELD_PREP(IDPF_VC_XN_SALT_M, xn->salt) |
464 FIELD_PREP(IDPF_VC_XN_IDX_M, xn->idx);
465
466 retval = idpf_send_mb_msg(adapter, params->vc_op,
467 send_buf->iov_len, send_buf->iov_base,
468 cookie);
469 if (retval) {
470 idpf_vc_xn_lock(xn);
471 goto release_and_unlock;
472 }
473
474 if (params->async)
475 return 0;
476
477 wait_for_completion_timeout(&xn->completed,
478 msecs_to_jiffies(params->timeout_ms));
479
480 /* No need to check the return value; we check the final state of the
481 * transaction below. It's possible the transaction actually gets more
482 * timeout than specified if we get preempted here but after
483 * wait_for_completion_timeout returns. This should be non-issue
484 * however.
485 */
486 idpf_vc_xn_lock(xn);
487 switch (xn->state) {
488 case IDPF_VC_XN_SHUTDOWN:
489 retval = -ENXIO;
490 goto only_unlock;
491 case IDPF_VC_XN_WAITING:
492 dev_notice_ratelimited(&adapter->pdev->dev,
493 "Transaction timed-out (op:%d cookie:%04x vc_op:%d salt:%02x timeout:%dms)\n",
494 params->vc_op, cookie, xn->vc_op,
495 xn->salt, params->timeout_ms);
496 retval = -ETIME;
497 break;
498 case IDPF_VC_XN_COMPLETED_SUCCESS:
499 retval = xn->reply_sz;
500 break;
501 case IDPF_VC_XN_COMPLETED_FAILED:
502 dev_notice_ratelimited(&adapter->pdev->dev, "Transaction failed (op %d)\n",
503 params->vc_op);
504 retval = -EIO;
505 break;
506 default:
507 /* Invalid state. */
508 WARN_ON_ONCE(1);
509 retval = -EIO;
510 break;
511 }
512
513 release_and_unlock:
514 idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
515 /* If we receive a VC reply after here, it will be dropped. */
516 only_unlock:
517 idpf_vc_xn_unlock(xn);
518
519 return retval;
520 }
521
522 /**
523 * idpf_vc_xn_forward_async - Handle async reply receives
524 * @adapter: private data struct
525 * @xn: transaction to handle
526 * @ctlq_msg: corresponding ctlq_msg
527 *
528 * For async sends we're going to lose the caller's context so, if an
529 * async_handler was provided, it can deal with the reply, otherwise we'll just
530 * check and report if there is an error.
531 */
532 static int
idpf_vc_xn_forward_async(struct idpf_adapter * adapter,struct idpf_vc_xn * xn,const struct idpf_ctlq_msg * ctlq_msg)533 idpf_vc_xn_forward_async(struct idpf_adapter *adapter, struct idpf_vc_xn *xn,
534 const struct idpf_ctlq_msg *ctlq_msg)
535 {
536 int err = 0;
537
538 if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
539 dev_err_ratelimited(&adapter->pdev->dev, "Async message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
540 ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
541 xn->reply_sz = 0;
542 err = -EINVAL;
543 goto release_bufs;
544 }
545
546 if (xn->async_handler) {
547 err = xn->async_handler(adapter, xn, ctlq_msg);
548 goto release_bufs;
549 }
550
551 if (ctlq_msg->cookie.mbx.chnl_retval) {
552 xn->reply_sz = 0;
553 dev_err_ratelimited(&adapter->pdev->dev, "Async message failure (op %d)\n",
554 ctlq_msg->cookie.mbx.chnl_opcode);
555 err = -EINVAL;
556 }
557
558 release_bufs:
559 idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
560
561 return err;
562 }
563
564 /**
565 * idpf_vc_xn_forward_reply - copy a reply back to receiving thread
566 * @adapter: driver specific private structure with vcxn_mngr
567 * @ctlq_msg: controlq message to send back to receiving thread
568 */
569 static int
idpf_vc_xn_forward_reply(struct idpf_adapter * adapter,const struct idpf_ctlq_msg * ctlq_msg)570 idpf_vc_xn_forward_reply(struct idpf_adapter *adapter,
571 const struct idpf_ctlq_msg *ctlq_msg)
572 {
573 const void *payload = NULL;
574 size_t payload_size = 0;
575 struct idpf_vc_xn *xn;
576 u16 msg_info;
577 int err = 0;
578 u16 xn_idx;
579 u16 salt;
580
581 msg_info = ctlq_msg->ctx.sw_cookie.data;
582 xn_idx = FIELD_GET(IDPF_VC_XN_IDX_M, msg_info);
583 if (xn_idx >= ARRAY_SIZE(adapter->vcxn_mngr->ring)) {
584 dev_err_ratelimited(&adapter->pdev->dev, "Out of bounds cookie received: %02x\n",
585 xn_idx);
586 return -EINVAL;
587 }
588 xn = &adapter->vcxn_mngr->ring[xn_idx];
589 idpf_vc_xn_lock(xn);
590 salt = FIELD_GET(IDPF_VC_XN_SALT_M, msg_info);
591 if (xn->salt != salt) {
592 dev_err_ratelimited(&adapter->pdev->dev, "Transaction salt does not match (exp:%d@%02x(%d) != got:%d@%02x)\n",
593 xn->vc_op, xn->salt, xn->state,
594 ctlq_msg->cookie.mbx.chnl_opcode, salt);
595 idpf_vc_xn_unlock(xn);
596 return -EINVAL;
597 }
598
599 switch (xn->state) {
600 case IDPF_VC_XN_WAITING:
601 /* success */
602 break;
603 case IDPF_VC_XN_IDLE:
604 dev_err_ratelimited(&adapter->pdev->dev, "Unexpected or belated VC reply (op %d)\n",
605 ctlq_msg->cookie.mbx.chnl_opcode);
606 err = -EINVAL;
607 goto out_unlock;
608 case IDPF_VC_XN_SHUTDOWN:
609 /* ENXIO is a bit special here as the recv msg loop uses that
610 * know if it should stop trying to clean the ring if we lost
611 * the virtchnl. We need to stop playing with registers and
612 * yield.
613 */
614 err = -ENXIO;
615 goto out_unlock;
616 case IDPF_VC_XN_ASYNC:
617 err = idpf_vc_xn_forward_async(adapter, xn, ctlq_msg);
618 idpf_vc_xn_unlock(xn);
619 return err;
620 default:
621 dev_err_ratelimited(&adapter->pdev->dev, "Overwriting VC reply (op %d)\n",
622 ctlq_msg->cookie.mbx.chnl_opcode);
623 err = -EBUSY;
624 goto out_unlock;
625 }
626
627 if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
628 dev_err_ratelimited(&adapter->pdev->dev, "Message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
629 ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
630 xn->reply_sz = 0;
631 xn->state = IDPF_VC_XN_COMPLETED_FAILED;
632 err = -EINVAL;
633 goto out_unlock;
634 }
635
636 if (ctlq_msg->cookie.mbx.chnl_retval) {
637 xn->reply_sz = 0;
638 xn->state = IDPF_VC_XN_COMPLETED_FAILED;
639 err = -EINVAL;
640 goto out_unlock;
641 }
642
643 if (ctlq_msg->data_len) {
644 payload = ctlq_msg->ctx.indirect.payload->va;
645 payload_size = ctlq_msg->data_len;
646 }
647
648 xn->reply_sz = payload_size;
649 xn->state = IDPF_VC_XN_COMPLETED_SUCCESS;
650
651 if (xn->reply.iov_base && xn->reply.iov_len && payload_size)
652 memcpy(xn->reply.iov_base, payload,
653 min_t(size_t, xn->reply.iov_len, payload_size));
654
655 out_unlock:
656 idpf_vc_xn_unlock(xn);
657 /* we _cannot_ hold lock while calling complete */
658 complete(&xn->completed);
659
660 return err;
661 }
662
663 /**
664 * idpf_recv_mb_msg - Receive message over mailbox
665 * @adapter: Driver specific private structure
666 *
667 * Will receive control queue message and posts the receive buffer. Returns 0
668 * on success and negative on failure.
669 */
idpf_recv_mb_msg(struct idpf_adapter * adapter)670 int idpf_recv_mb_msg(struct idpf_adapter *adapter)
671 {
672 struct idpf_ctlq_msg ctlq_msg;
673 struct idpf_dma_mem *dma_mem;
674 int post_err, err;
675 u16 num_recv;
676
677 while (1) {
678 /* This will get <= num_recv messages and output how many
679 * actually received on num_recv.
680 */
681 num_recv = 1;
682 err = idpf_ctlq_recv(adapter->hw.arq, &num_recv, &ctlq_msg);
683 if (err || !num_recv)
684 break;
685
686 if (ctlq_msg.data_len) {
687 dma_mem = ctlq_msg.ctx.indirect.payload;
688 } else {
689 dma_mem = NULL;
690 num_recv = 0;
691 }
692
693 if (ctlq_msg.cookie.mbx.chnl_opcode == VIRTCHNL2_OP_EVENT)
694 idpf_recv_event_msg(adapter, &ctlq_msg);
695 else
696 err = idpf_vc_xn_forward_reply(adapter, &ctlq_msg);
697
698 post_err = idpf_ctlq_post_rx_buffs(&adapter->hw,
699 adapter->hw.arq,
700 &num_recv, &dma_mem);
701
702 /* If post failed clear the only buffer we supplied */
703 if (post_err) {
704 if (dma_mem)
705 dmam_free_coherent(&adapter->pdev->dev,
706 dma_mem->size, dma_mem->va,
707 dma_mem->pa);
708 break;
709 }
710
711 /* virtchnl trying to shutdown, stop cleaning */
712 if (err == -ENXIO)
713 break;
714 }
715
716 return err;
717 }
718
719 /**
720 * idpf_wait_for_marker_event - wait for software marker response
721 * @vport: virtual port data structure
722 *
723 * Returns 0 success, negative on failure.
724 **/
idpf_wait_for_marker_event(struct idpf_vport * vport)725 static int idpf_wait_for_marker_event(struct idpf_vport *vport)
726 {
727 int event;
728 int i;
729
730 for (i = 0; i < vport->num_txq; i++)
731 idpf_queue_set(SW_MARKER, vport->txqs[i]);
732
733 event = wait_event_timeout(vport->sw_marker_wq,
734 test_and_clear_bit(IDPF_VPORT_SW_MARKER,
735 vport->flags),
736 msecs_to_jiffies(500));
737
738 for (i = 0; i < vport->num_txq; i++)
739 idpf_queue_clear(POLL_MODE, vport->txqs[i]);
740
741 if (event)
742 return 0;
743
744 dev_warn(&vport->adapter->pdev->dev, "Failed to receive marker packets\n");
745
746 return -ETIMEDOUT;
747 }
748
749 /**
750 * idpf_send_ver_msg - send virtchnl version message
751 * @adapter: Driver specific private structure
752 *
753 * Send virtchnl version message. Returns 0 on success, negative on failure.
754 */
idpf_send_ver_msg(struct idpf_adapter * adapter)755 static int idpf_send_ver_msg(struct idpf_adapter *adapter)
756 {
757 struct idpf_vc_xn_params xn_params = {};
758 struct virtchnl2_version_info vvi;
759 ssize_t reply_sz;
760 u32 major, minor;
761 int err = 0;
762
763 if (adapter->virt_ver_maj) {
764 vvi.major = cpu_to_le32(adapter->virt_ver_maj);
765 vvi.minor = cpu_to_le32(adapter->virt_ver_min);
766 } else {
767 vvi.major = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MAJOR);
768 vvi.minor = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MINOR);
769 }
770
771 xn_params.vc_op = VIRTCHNL2_OP_VERSION;
772 xn_params.send_buf.iov_base = &vvi;
773 xn_params.send_buf.iov_len = sizeof(vvi);
774 xn_params.recv_buf = xn_params.send_buf;
775 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
776
777 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
778 if (reply_sz < 0)
779 return reply_sz;
780 if (reply_sz < sizeof(vvi))
781 return -EIO;
782
783 major = le32_to_cpu(vvi.major);
784 minor = le32_to_cpu(vvi.minor);
785
786 if (major > IDPF_VIRTCHNL_VERSION_MAJOR) {
787 dev_warn(&adapter->pdev->dev, "Virtchnl major version greater than supported\n");
788 return -EINVAL;
789 }
790
791 if (major == IDPF_VIRTCHNL_VERSION_MAJOR &&
792 minor > IDPF_VIRTCHNL_VERSION_MINOR)
793 dev_warn(&adapter->pdev->dev, "Virtchnl minor version didn't match\n");
794
795 /* If we have a mismatch, resend version to update receiver on what
796 * version we will use.
797 */
798 if (!adapter->virt_ver_maj &&
799 major != IDPF_VIRTCHNL_VERSION_MAJOR &&
800 minor != IDPF_VIRTCHNL_VERSION_MINOR)
801 err = -EAGAIN;
802
803 adapter->virt_ver_maj = major;
804 adapter->virt_ver_min = minor;
805
806 return err;
807 }
808
809 /**
810 * idpf_send_get_caps_msg - Send virtchnl get capabilities message
811 * @adapter: Driver specific private structure
812 *
813 * Send virtchl get capabilities message. Returns 0 on success, negative on
814 * failure.
815 */
idpf_send_get_caps_msg(struct idpf_adapter * adapter)816 static int idpf_send_get_caps_msg(struct idpf_adapter *adapter)
817 {
818 struct virtchnl2_get_capabilities caps = {};
819 struct idpf_vc_xn_params xn_params = {};
820 ssize_t reply_sz;
821
822 caps.csum_caps =
823 cpu_to_le32(VIRTCHNL2_CAP_TX_CSUM_L3_IPV4 |
824 VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_TCP |
825 VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_UDP |
826 VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_SCTP |
827 VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_TCP |
828 VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_UDP |
829 VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_SCTP |
830 VIRTCHNL2_CAP_RX_CSUM_L3_IPV4 |
831 VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_TCP |
832 VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_UDP |
833 VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_SCTP |
834 VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_TCP |
835 VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_UDP |
836 VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_SCTP |
837 VIRTCHNL2_CAP_TX_CSUM_L3_SINGLE_TUNNEL |
838 VIRTCHNL2_CAP_RX_CSUM_L3_SINGLE_TUNNEL |
839 VIRTCHNL2_CAP_TX_CSUM_L4_SINGLE_TUNNEL |
840 VIRTCHNL2_CAP_RX_CSUM_L4_SINGLE_TUNNEL |
841 VIRTCHNL2_CAP_RX_CSUM_GENERIC);
842
843 caps.seg_caps =
844 cpu_to_le32(VIRTCHNL2_CAP_SEG_IPV4_TCP |
845 VIRTCHNL2_CAP_SEG_IPV4_UDP |
846 VIRTCHNL2_CAP_SEG_IPV4_SCTP |
847 VIRTCHNL2_CAP_SEG_IPV6_TCP |
848 VIRTCHNL2_CAP_SEG_IPV6_UDP |
849 VIRTCHNL2_CAP_SEG_IPV6_SCTP |
850 VIRTCHNL2_CAP_SEG_TX_SINGLE_TUNNEL);
851
852 caps.rss_caps =
853 cpu_to_le64(VIRTCHNL2_FLOW_IPV4_TCP |
854 VIRTCHNL2_FLOW_IPV4_UDP |
855 VIRTCHNL2_FLOW_IPV4_SCTP |
856 VIRTCHNL2_FLOW_IPV4_OTHER |
857 VIRTCHNL2_FLOW_IPV6_TCP |
858 VIRTCHNL2_FLOW_IPV6_UDP |
859 VIRTCHNL2_FLOW_IPV6_SCTP |
860 VIRTCHNL2_FLOW_IPV6_OTHER);
861
862 caps.hsplit_caps =
863 cpu_to_le32(VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V4 |
864 VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V6);
865
866 caps.rsc_caps =
867 cpu_to_le32(VIRTCHNL2_CAP_RSC_IPV4_TCP |
868 VIRTCHNL2_CAP_RSC_IPV6_TCP);
869
870 caps.other_caps =
871 cpu_to_le64(VIRTCHNL2_CAP_SRIOV |
872 VIRTCHNL2_CAP_RDMA |
873 VIRTCHNL2_CAP_LAN_MEMORY_REGIONS |
874 VIRTCHNL2_CAP_MACFILTER |
875 VIRTCHNL2_CAP_SPLITQ_QSCHED |
876 VIRTCHNL2_CAP_PROMISC |
877 VIRTCHNL2_CAP_LOOPBACK |
878 VIRTCHNL2_CAP_PTP);
879
880 xn_params.vc_op = VIRTCHNL2_OP_GET_CAPS;
881 xn_params.send_buf.iov_base = ∩︀
882 xn_params.send_buf.iov_len = sizeof(caps);
883 xn_params.recv_buf.iov_base = &adapter->caps;
884 xn_params.recv_buf.iov_len = sizeof(adapter->caps);
885 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
886
887 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
888 if (reply_sz < 0)
889 return reply_sz;
890 if (reply_sz < sizeof(adapter->caps))
891 return -EIO;
892
893 return 0;
894 }
895
896 /**
897 * idpf_send_get_lan_memory_regions - Send virtchnl get LAN memory regions msg
898 * @adapter: Driver specific private struct
899 *
900 * Return: 0 on success or error code on failure.
901 */
idpf_send_get_lan_memory_regions(struct idpf_adapter * adapter)902 static int idpf_send_get_lan_memory_regions(struct idpf_adapter *adapter)
903 {
904 struct virtchnl2_get_lan_memory_regions *rcvd_regions __free(kfree);
905 struct idpf_vc_xn_params xn_params = {
906 .vc_op = VIRTCHNL2_OP_GET_LAN_MEMORY_REGIONS,
907 .recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN,
908 .timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC,
909 };
910 int num_regions, size;
911 struct idpf_hw *hw;
912 ssize_t reply_sz;
913 int err = 0;
914
915 rcvd_regions = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
916 if (!rcvd_regions)
917 return -ENOMEM;
918
919 xn_params.recv_buf.iov_base = rcvd_regions;
920 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
921 if (reply_sz < 0)
922 return reply_sz;
923
924 num_regions = le16_to_cpu(rcvd_regions->num_memory_regions);
925 size = struct_size(rcvd_regions, mem_reg, num_regions);
926 if (reply_sz < size)
927 return -EIO;
928
929 if (size > IDPF_CTLQ_MAX_BUF_LEN)
930 return -EINVAL;
931
932 hw = &adapter->hw;
933 hw->lan_regs = kcalloc(num_regions, sizeof(*hw->lan_regs), GFP_KERNEL);
934 if (!hw->lan_regs)
935 return -ENOMEM;
936
937 for (int i = 0; i < num_regions; i++) {
938 hw->lan_regs[i].addr_len =
939 le64_to_cpu(rcvd_regions->mem_reg[i].size);
940 hw->lan_regs[i].addr_start =
941 le64_to_cpu(rcvd_regions->mem_reg[i].start_offset);
942 }
943 hw->num_lan_regs = num_regions;
944
945 return err;
946 }
947
948 /**
949 * idpf_calc_remaining_mmio_regs - calculate MMIO regions outside mbx and rstat
950 * @adapter: Driver specific private structure
951 *
952 * Called when idpf_send_get_lan_memory_regions is not supported. This will
953 * calculate the offsets and sizes for the regions before, in between, and
954 * after the mailbox and rstat MMIO mappings.
955 *
956 * Return: 0 on success or error code on failure.
957 */
idpf_calc_remaining_mmio_regs(struct idpf_adapter * adapter)958 static int idpf_calc_remaining_mmio_regs(struct idpf_adapter *adapter)
959 {
960 struct resource *rstat_reg = &adapter->dev_ops.static_reg_info[1];
961 struct resource *mbx_reg = &adapter->dev_ops.static_reg_info[0];
962 struct idpf_hw *hw = &adapter->hw;
963
964 hw->num_lan_regs = IDPF_MMIO_MAP_FALLBACK_MAX_REMAINING;
965 hw->lan_regs = kcalloc(hw->num_lan_regs, sizeof(*hw->lan_regs),
966 GFP_KERNEL);
967 if (!hw->lan_regs)
968 return -ENOMEM;
969
970 /* Region preceding mailbox */
971 hw->lan_regs[0].addr_start = 0;
972 hw->lan_regs[0].addr_len = mbx_reg->start;
973 /* Region between mailbox and rstat */
974 hw->lan_regs[1].addr_start = mbx_reg->end + 1;
975 hw->lan_regs[1].addr_len = rstat_reg->start -
976 hw->lan_regs[1].addr_start;
977 /* Region after rstat */
978 hw->lan_regs[2].addr_start = rstat_reg->end + 1;
979 hw->lan_regs[2].addr_len = pci_resource_len(adapter->pdev, 0) -
980 hw->lan_regs[2].addr_start;
981
982 return 0;
983 }
984
985 /**
986 * idpf_map_lan_mmio_regs - map remaining LAN BAR regions
987 * @adapter: Driver specific private structure
988 *
989 * Return: 0 on success or error code on failure.
990 */
idpf_map_lan_mmio_regs(struct idpf_adapter * adapter)991 static int idpf_map_lan_mmio_regs(struct idpf_adapter *adapter)
992 {
993 struct pci_dev *pdev = adapter->pdev;
994 struct idpf_hw *hw = &adapter->hw;
995 resource_size_t res_start;
996
997 res_start = pci_resource_start(pdev, 0);
998
999 for (int i = 0; i < hw->num_lan_regs; i++) {
1000 resource_size_t start;
1001 long len;
1002
1003 len = hw->lan_regs[i].addr_len;
1004 if (!len)
1005 continue;
1006 start = hw->lan_regs[i].addr_start + res_start;
1007
1008 hw->lan_regs[i].vaddr = devm_ioremap(&pdev->dev, start, len);
1009 if (!hw->lan_regs[i].vaddr) {
1010 pci_err(pdev, "failed to allocate BAR0 region\n");
1011 return -ENOMEM;
1012 }
1013 }
1014
1015 return 0;
1016 }
1017
1018 /**
1019 * idpf_add_del_fsteer_filters - Send virtchnl add/del Flow Steering message
1020 * @adapter: adapter info struct
1021 * @rule: Flow steering rule to add/delete
1022 * @opcode: VIRTCHNL2_OP_ADD_FLOW_RULE to add filter, or
1023 * VIRTCHNL2_OP_DEL_FLOW_RULE to delete. All other values are invalid.
1024 *
1025 * Send ADD/DELETE flow steering virtchnl message and receive the result.
1026 *
1027 * Return: 0 on success, negative on failure.
1028 */
idpf_add_del_fsteer_filters(struct idpf_adapter * adapter,struct virtchnl2_flow_rule_add_del * rule,enum virtchnl2_op opcode)1029 int idpf_add_del_fsteer_filters(struct idpf_adapter *adapter,
1030 struct virtchnl2_flow_rule_add_del *rule,
1031 enum virtchnl2_op opcode)
1032 {
1033 int rule_count = le32_to_cpu(rule->count);
1034 struct idpf_vc_xn_params xn_params = {};
1035 ssize_t reply_sz;
1036
1037 if (opcode != VIRTCHNL2_OP_ADD_FLOW_RULE &&
1038 opcode != VIRTCHNL2_OP_DEL_FLOW_RULE)
1039 return -EINVAL;
1040
1041 xn_params.vc_op = opcode;
1042 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1043 xn_params.async = false;
1044 xn_params.send_buf.iov_base = rule;
1045 xn_params.send_buf.iov_len = struct_size(rule, rule_info, rule_count);
1046 xn_params.recv_buf.iov_base = rule;
1047 xn_params.recv_buf.iov_len = struct_size(rule, rule_info, rule_count);
1048
1049 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
1050 return reply_sz < 0 ? reply_sz : 0;
1051 }
1052
1053 /**
1054 * idpf_vport_alloc_max_qs - Allocate max queues for a vport
1055 * @adapter: Driver specific private structure
1056 * @max_q: vport max queue structure
1057 */
idpf_vport_alloc_max_qs(struct idpf_adapter * adapter,struct idpf_vport_max_q * max_q)1058 int idpf_vport_alloc_max_qs(struct idpf_adapter *adapter,
1059 struct idpf_vport_max_q *max_q)
1060 {
1061 struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
1062 struct virtchnl2_get_capabilities *caps = &adapter->caps;
1063 u16 default_vports = idpf_get_default_vports(adapter);
1064 int max_rx_q, max_tx_q;
1065
1066 mutex_lock(&adapter->queue_lock);
1067
1068 max_rx_q = le16_to_cpu(caps->max_rx_q) / default_vports;
1069 max_tx_q = le16_to_cpu(caps->max_tx_q) / default_vports;
1070 if (adapter->num_alloc_vports < default_vports) {
1071 max_q->max_rxq = min_t(u16, max_rx_q, IDPF_MAX_Q);
1072 max_q->max_txq = min_t(u16, max_tx_q, IDPF_MAX_Q);
1073 } else {
1074 max_q->max_rxq = IDPF_MIN_Q;
1075 max_q->max_txq = IDPF_MIN_Q;
1076 }
1077 max_q->max_bufq = max_q->max_rxq * IDPF_MAX_BUFQS_PER_RXQ_GRP;
1078 max_q->max_complq = max_q->max_txq;
1079
1080 if (avail_queues->avail_rxq < max_q->max_rxq ||
1081 avail_queues->avail_txq < max_q->max_txq ||
1082 avail_queues->avail_bufq < max_q->max_bufq ||
1083 avail_queues->avail_complq < max_q->max_complq) {
1084 mutex_unlock(&adapter->queue_lock);
1085
1086 return -EINVAL;
1087 }
1088
1089 avail_queues->avail_rxq -= max_q->max_rxq;
1090 avail_queues->avail_txq -= max_q->max_txq;
1091 avail_queues->avail_bufq -= max_q->max_bufq;
1092 avail_queues->avail_complq -= max_q->max_complq;
1093
1094 mutex_unlock(&adapter->queue_lock);
1095
1096 return 0;
1097 }
1098
1099 /**
1100 * idpf_vport_dealloc_max_qs - Deallocate max queues of a vport
1101 * @adapter: Driver specific private structure
1102 * @max_q: vport max queue structure
1103 */
idpf_vport_dealloc_max_qs(struct idpf_adapter * adapter,struct idpf_vport_max_q * max_q)1104 void idpf_vport_dealloc_max_qs(struct idpf_adapter *adapter,
1105 struct idpf_vport_max_q *max_q)
1106 {
1107 struct idpf_avail_queue_info *avail_queues;
1108
1109 mutex_lock(&adapter->queue_lock);
1110 avail_queues = &adapter->avail_queues;
1111
1112 avail_queues->avail_rxq += max_q->max_rxq;
1113 avail_queues->avail_txq += max_q->max_txq;
1114 avail_queues->avail_bufq += max_q->max_bufq;
1115 avail_queues->avail_complq += max_q->max_complq;
1116
1117 mutex_unlock(&adapter->queue_lock);
1118 }
1119
1120 /**
1121 * idpf_init_avail_queues - Initialize available queues on the device
1122 * @adapter: Driver specific private structure
1123 */
idpf_init_avail_queues(struct idpf_adapter * adapter)1124 static void idpf_init_avail_queues(struct idpf_adapter *adapter)
1125 {
1126 struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
1127 struct virtchnl2_get_capabilities *caps = &adapter->caps;
1128
1129 avail_queues->avail_rxq = le16_to_cpu(caps->max_rx_q);
1130 avail_queues->avail_txq = le16_to_cpu(caps->max_tx_q);
1131 avail_queues->avail_bufq = le16_to_cpu(caps->max_rx_bufq);
1132 avail_queues->avail_complq = le16_to_cpu(caps->max_tx_complq);
1133 }
1134
1135 /**
1136 * idpf_get_reg_intr_vecs - Get vector queue register offset
1137 * @vport: virtual port structure
1138 * @reg_vals: Register offsets to store in
1139 *
1140 * Returns number of registers that got populated
1141 */
idpf_get_reg_intr_vecs(struct idpf_vport * vport,struct idpf_vec_regs * reg_vals)1142 int idpf_get_reg_intr_vecs(struct idpf_vport *vport,
1143 struct idpf_vec_regs *reg_vals)
1144 {
1145 struct virtchnl2_vector_chunks *chunks;
1146 struct idpf_vec_regs reg_val;
1147 u16 num_vchunks, num_vec;
1148 int num_regs = 0, i, j;
1149
1150 chunks = &vport->adapter->req_vec_chunks->vchunks;
1151 num_vchunks = le16_to_cpu(chunks->num_vchunks);
1152
1153 for (j = 0; j < num_vchunks; j++) {
1154 struct virtchnl2_vector_chunk *chunk;
1155 u32 dynctl_reg_spacing;
1156 u32 itrn_reg_spacing;
1157
1158 chunk = &chunks->vchunks[j];
1159 num_vec = le16_to_cpu(chunk->num_vectors);
1160 reg_val.dyn_ctl_reg = le32_to_cpu(chunk->dynctl_reg_start);
1161 reg_val.itrn_reg = le32_to_cpu(chunk->itrn_reg_start);
1162 reg_val.itrn_index_spacing = le32_to_cpu(chunk->itrn_index_spacing);
1163
1164 dynctl_reg_spacing = le32_to_cpu(chunk->dynctl_reg_spacing);
1165 itrn_reg_spacing = le32_to_cpu(chunk->itrn_reg_spacing);
1166
1167 for (i = 0; i < num_vec; i++) {
1168 reg_vals[num_regs].dyn_ctl_reg = reg_val.dyn_ctl_reg;
1169 reg_vals[num_regs].itrn_reg = reg_val.itrn_reg;
1170 reg_vals[num_regs].itrn_index_spacing =
1171 reg_val.itrn_index_spacing;
1172
1173 reg_val.dyn_ctl_reg += dynctl_reg_spacing;
1174 reg_val.itrn_reg += itrn_reg_spacing;
1175 num_regs++;
1176 }
1177 }
1178
1179 return num_regs;
1180 }
1181
1182 /**
1183 * idpf_vport_get_q_reg - Get the queue registers for the vport
1184 * @reg_vals: register values needing to be set
1185 * @num_regs: amount we expect to fill
1186 * @q_type: queue model
1187 * @chunks: queue regs received over mailbox
1188 *
1189 * This function parses the queue register offsets from the queue register
1190 * chunk information, with a specific queue type and stores it into the array
1191 * passed as an argument. It returns the actual number of queue registers that
1192 * are filled.
1193 */
idpf_vport_get_q_reg(u32 * reg_vals,int num_regs,u32 q_type,struct virtchnl2_queue_reg_chunks * chunks)1194 static int idpf_vport_get_q_reg(u32 *reg_vals, int num_regs, u32 q_type,
1195 struct virtchnl2_queue_reg_chunks *chunks)
1196 {
1197 u16 num_chunks = le16_to_cpu(chunks->num_chunks);
1198 int reg_filled = 0, i;
1199 u32 reg_val;
1200
1201 while (num_chunks--) {
1202 struct virtchnl2_queue_reg_chunk *chunk;
1203 u16 num_q;
1204
1205 chunk = &chunks->chunks[num_chunks];
1206 if (le32_to_cpu(chunk->type) != q_type)
1207 continue;
1208
1209 num_q = le32_to_cpu(chunk->num_queues);
1210 reg_val = le64_to_cpu(chunk->qtail_reg_start);
1211 for (i = 0; i < num_q && reg_filled < num_regs ; i++) {
1212 reg_vals[reg_filled++] = reg_val;
1213 reg_val += le32_to_cpu(chunk->qtail_reg_spacing);
1214 }
1215 }
1216
1217 return reg_filled;
1218 }
1219
1220 /**
1221 * __idpf_queue_reg_init - initialize queue registers
1222 * @vport: virtual port structure
1223 * @reg_vals: registers we are initializing
1224 * @num_regs: how many registers there are in total
1225 * @q_type: queue model
1226 *
1227 * Return number of queues that are initialized
1228 */
__idpf_queue_reg_init(struct idpf_vport * vport,u32 * reg_vals,int num_regs,u32 q_type)1229 static int __idpf_queue_reg_init(struct idpf_vport *vport, u32 *reg_vals,
1230 int num_regs, u32 q_type)
1231 {
1232 struct idpf_adapter *adapter = vport->adapter;
1233 int i, j, k = 0;
1234
1235 switch (q_type) {
1236 case VIRTCHNL2_QUEUE_TYPE_TX:
1237 for (i = 0; i < vport->num_txq_grp; i++) {
1238 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1239
1240 for (j = 0; j < tx_qgrp->num_txq && k < num_regs; j++, k++)
1241 tx_qgrp->txqs[j]->tail =
1242 idpf_get_reg_addr(adapter, reg_vals[k]);
1243 }
1244 break;
1245 case VIRTCHNL2_QUEUE_TYPE_RX:
1246 for (i = 0; i < vport->num_rxq_grp; i++) {
1247 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1248 u16 num_rxq = rx_qgrp->singleq.num_rxq;
1249
1250 for (j = 0; j < num_rxq && k < num_regs; j++, k++) {
1251 struct idpf_rx_queue *q;
1252
1253 q = rx_qgrp->singleq.rxqs[j];
1254 q->tail = idpf_get_reg_addr(adapter,
1255 reg_vals[k]);
1256 }
1257 }
1258 break;
1259 case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
1260 for (i = 0; i < vport->num_rxq_grp; i++) {
1261 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1262 u8 num_bufqs = vport->num_bufqs_per_qgrp;
1263
1264 for (j = 0; j < num_bufqs && k < num_regs; j++, k++) {
1265 struct idpf_buf_queue *q;
1266
1267 q = &rx_qgrp->splitq.bufq_sets[j].bufq;
1268 q->tail = idpf_get_reg_addr(adapter,
1269 reg_vals[k]);
1270 }
1271 }
1272 break;
1273 default:
1274 break;
1275 }
1276
1277 return k;
1278 }
1279
1280 /**
1281 * idpf_queue_reg_init - initialize queue registers
1282 * @vport: virtual port structure
1283 *
1284 * Return 0 on success, negative on failure
1285 */
idpf_queue_reg_init(struct idpf_vport * vport)1286 int idpf_queue_reg_init(struct idpf_vport *vport)
1287 {
1288 struct virtchnl2_create_vport *vport_params;
1289 struct virtchnl2_queue_reg_chunks *chunks;
1290 struct idpf_vport_config *vport_config;
1291 u16 vport_idx = vport->idx;
1292 int num_regs, ret = 0;
1293 u32 *reg_vals;
1294
1295 /* We may never deal with more than 256 same type of queues */
1296 reg_vals = kzalloc(sizeof(void *) * IDPF_LARGE_MAX_Q, GFP_KERNEL);
1297 if (!reg_vals)
1298 return -ENOMEM;
1299
1300 vport_config = vport->adapter->vport_config[vport_idx];
1301 if (vport_config->req_qs_chunks) {
1302 struct virtchnl2_add_queues *vc_aq =
1303 (struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
1304 chunks = &vc_aq->chunks;
1305 } else {
1306 vport_params = vport->adapter->vport_params_recvd[vport_idx];
1307 chunks = &vport_params->chunks;
1308 }
1309
1310 /* Initialize Tx queue tail register address */
1311 num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1312 VIRTCHNL2_QUEUE_TYPE_TX,
1313 chunks);
1314 if (num_regs < vport->num_txq) {
1315 ret = -EINVAL;
1316 goto free_reg_vals;
1317 }
1318
1319 num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1320 VIRTCHNL2_QUEUE_TYPE_TX);
1321 if (num_regs < vport->num_txq) {
1322 ret = -EINVAL;
1323 goto free_reg_vals;
1324 }
1325
1326 /* Initialize Rx/buffer queue tail register address based on Rx queue
1327 * model
1328 */
1329 if (idpf_is_queue_model_split(vport->rxq_model)) {
1330 num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1331 VIRTCHNL2_QUEUE_TYPE_RX_BUFFER,
1332 chunks);
1333 if (num_regs < vport->num_bufq) {
1334 ret = -EINVAL;
1335 goto free_reg_vals;
1336 }
1337
1338 num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1339 VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1340 if (num_regs < vport->num_bufq) {
1341 ret = -EINVAL;
1342 goto free_reg_vals;
1343 }
1344 } else {
1345 num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1346 VIRTCHNL2_QUEUE_TYPE_RX,
1347 chunks);
1348 if (num_regs < vport->num_rxq) {
1349 ret = -EINVAL;
1350 goto free_reg_vals;
1351 }
1352
1353 num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1354 VIRTCHNL2_QUEUE_TYPE_RX);
1355 if (num_regs < vport->num_rxq) {
1356 ret = -EINVAL;
1357 goto free_reg_vals;
1358 }
1359 }
1360
1361 free_reg_vals:
1362 kfree(reg_vals);
1363
1364 return ret;
1365 }
1366
1367 /**
1368 * idpf_send_create_vport_msg - Send virtchnl create vport message
1369 * @adapter: Driver specific private structure
1370 * @max_q: vport max queue info
1371 *
1372 * send virtchnl creae vport message
1373 *
1374 * Returns 0 on success, negative on failure
1375 */
idpf_send_create_vport_msg(struct idpf_adapter * adapter,struct idpf_vport_max_q * max_q)1376 int idpf_send_create_vport_msg(struct idpf_adapter *adapter,
1377 struct idpf_vport_max_q *max_q)
1378 {
1379 struct virtchnl2_create_vport *vport_msg;
1380 struct idpf_vc_xn_params xn_params = {};
1381 u16 idx = adapter->next_vport;
1382 int err, buf_size;
1383 ssize_t reply_sz;
1384
1385 buf_size = sizeof(struct virtchnl2_create_vport);
1386 if (!adapter->vport_params_reqd[idx]) {
1387 adapter->vport_params_reqd[idx] = kzalloc(buf_size,
1388 GFP_KERNEL);
1389 if (!adapter->vport_params_reqd[idx])
1390 return -ENOMEM;
1391 }
1392
1393 vport_msg = adapter->vport_params_reqd[idx];
1394 vport_msg->vport_type = cpu_to_le16(VIRTCHNL2_VPORT_TYPE_DEFAULT);
1395 vport_msg->vport_index = cpu_to_le16(idx);
1396
1397 if (adapter->req_tx_splitq || !IS_ENABLED(CONFIG_IDPF_SINGLEQ))
1398 vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
1399 else
1400 vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
1401
1402 if (adapter->req_rx_splitq || !IS_ENABLED(CONFIG_IDPF_SINGLEQ))
1403 vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
1404 else
1405 vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
1406
1407 err = idpf_vport_calc_total_qs(adapter, idx, vport_msg, max_q);
1408 if (err) {
1409 dev_err(&adapter->pdev->dev, "Enough queues are not available");
1410
1411 return err;
1412 }
1413
1414 if (!adapter->vport_params_recvd[idx]) {
1415 adapter->vport_params_recvd[idx] = kzalloc(IDPF_CTLQ_MAX_BUF_LEN,
1416 GFP_KERNEL);
1417 if (!adapter->vport_params_recvd[idx]) {
1418 err = -ENOMEM;
1419 goto free_vport_params;
1420 }
1421 }
1422
1423 xn_params.vc_op = VIRTCHNL2_OP_CREATE_VPORT;
1424 xn_params.send_buf.iov_base = vport_msg;
1425 xn_params.send_buf.iov_len = buf_size;
1426 xn_params.recv_buf.iov_base = adapter->vport_params_recvd[idx];
1427 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
1428 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1429 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
1430 if (reply_sz < 0) {
1431 err = reply_sz;
1432 goto free_vport_params;
1433 }
1434
1435 return 0;
1436
1437 free_vport_params:
1438 kfree(adapter->vport_params_recvd[idx]);
1439 adapter->vport_params_recvd[idx] = NULL;
1440 kfree(adapter->vport_params_reqd[idx]);
1441 adapter->vport_params_reqd[idx] = NULL;
1442
1443 return err;
1444 }
1445
1446 /**
1447 * idpf_check_supported_desc_ids - Verify we have required descriptor support
1448 * @vport: virtual port structure
1449 *
1450 * Return 0 on success, error on failure
1451 */
idpf_check_supported_desc_ids(struct idpf_vport * vport)1452 int idpf_check_supported_desc_ids(struct idpf_vport *vport)
1453 {
1454 struct idpf_adapter *adapter = vport->adapter;
1455 struct virtchnl2_create_vport *vport_msg;
1456 u64 rx_desc_ids, tx_desc_ids;
1457
1458 vport_msg = adapter->vport_params_recvd[vport->idx];
1459
1460 if (!IS_ENABLED(CONFIG_IDPF_SINGLEQ) &&
1461 (vport_msg->rxq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE ||
1462 vport_msg->txq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE)) {
1463 pci_err(adapter->pdev, "singleq mode requested, but not compiled-in\n");
1464 return -EOPNOTSUPP;
1465 }
1466
1467 rx_desc_ids = le64_to_cpu(vport_msg->rx_desc_ids);
1468 tx_desc_ids = le64_to_cpu(vport_msg->tx_desc_ids);
1469
1470 if (idpf_is_queue_model_split(vport->rxq_model)) {
1471 if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M)) {
1472 dev_info(&adapter->pdev->dev, "Minimum RX descriptor support not provided, using the default\n");
1473 vport_msg->rx_desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1474 }
1475 } else {
1476 if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SQ_NIC_M))
1477 vport->base_rxd = true;
1478 }
1479
1480 if (!idpf_is_queue_model_split(vport->txq_model))
1481 return 0;
1482
1483 if ((tx_desc_ids & MIN_SUPPORT_TXDID) != MIN_SUPPORT_TXDID) {
1484 dev_info(&adapter->pdev->dev, "Minimum TX descriptor support not provided, using the default\n");
1485 vport_msg->tx_desc_ids = cpu_to_le64(MIN_SUPPORT_TXDID);
1486 }
1487
1488 return 0;
1489 }
1490
1491 /**
1492 * idpf_send_destroy_vport_msg - Send virtchnl destroy vport message
1493 * @vport: virtual port data structure
1494 *
1495 * Send virtchnl destroy vport message. Returns 0 on success, negative on
1496 * failure.
1497 */
idpf_send_destroy_vport_msg(struct idpf_vport * vport)1498 int idpf_send_destroy_vport_msg(struct idpf_vport *vport)
1499 {
1500 struct idpf_vc_xn_params xn_params = {};
1501 struct virtchnl2_vport v_id;
1502 ssize_t reply_sz;
1503
1504 v_id.vport_id = cpu_to_le32(vport->vport_id);
1505
1506 xn_params.vc_op = VIRTCHNL2_OP_DESTROY_VPORT;
1507 xn_params.send_buf.iov_base = &v_id;
1508 xn_params.send_buf.iov_len = sizeof(v_id);
1509 xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1510 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1511
1512 return reply_sz < 0 ? reply_sz : 0;
1513 }
1514
1515 /**
1516 * idpf_send_enable_vport_msg - Send virtchnl enable vport message
1517 * @vport: virtual port data structure
1518 *
1519 * Send enable vport virtchnl message. Returns 0 on success, negative on
1520 * failure.
1521 */
idpf_send_enable_vport_msg(struct idpf_vport * vport)1522 int idpf_send_enable_vport_msg(struct idpf_vport *vport)
1523 {
1524 struct idpf_vc_xn_params xn_params = {};
1525 struct virtchnl2_vport v_id;
1526 ssize_t reply_sz;
1527
1528 v_id.vport_id = cpu_to_le32(vport->vport_id);
1529
1530 xn_params.vc_op = VIRTCHNL2_OP_ENABLE_VPORT;
1531 xn_params.send_buf.iov_base = &v_id;
1532 xn_params.send_buf.iov_len = sizeof(v_id);
1533 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1534 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1535
1536 return reply_sz < 0 ? reply_sz : 0;
1537 }
1538
1539 /**
1540 * idpf_send_disable_vport_msg - Send virtchnl disable vport message
1541 * @vport: virtual port data structure
1542 *
1543 * Send disable vport virtchnl message. Returns 0 on success, negative on
1544 * failure.
1545 */
idpf_send_disable_vport_msg(struct idpf_vport * vport)1546 int idpf_send_disable_vport_msg(struct idpf_vport *vport)
1547 {
1548 struct idpf_vc_xn_params xn_params = {};
1549 struct virtchnl2_vport v_id;
1550 ssize_t reply_sz;
1551
1552 v_id.vport_id = cpu_to_le32(vport->vport_id);
1553
1554 xn_params.vc_op = VIRTCHNL2_OP_DISABLE_VPORT;
1555 xn_params.send_buf.iov_base = &v_id;
1556 xn_params.send_buf.iov_len = sizeof(v_id);
1557 xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1558 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1559
1560 return reply_sz < 0 ? reply_sz : 0;
1561 }
1562
1563 /**
1564 * idpf_send_config_tx_queues_msg - Send virtchnl config tx queues message
1565 * @vport: virtual port data structure
1566 *
1567 * Send config tx queues virtchnl message. Returns 0 on success, negative on
1568 * failure.
1569 */
idpf_send_config_tx_queues_msg(struct idpf_vport * vport)1570 static int idpf_send_config_tx_queues_msg(struct idpf_vport *vport)
1571 {
1572 struct virtchnl2_config_tx_queues *ctq __free(kfree) = NULL;
1573 struct virtchnl2_txq_info *qi __free(kfree) = NULL;
1574 struct idpf_vc_xn_params xn_params = {};
1575 u32 config_sz, chunk_sz, buf_sz;
1576 int totqs, num_msgs, num_chunks;
1577 ssize_t reply_sz;
1578 int i, k = 0;
1579
1580 totqs = vport->num_txq + vport->num_complq;
1581 qi = kcalloc(totqs, sizeof(struct virtchnl2_txq_info), GFP_KERNEL);
1582 if (!qi)
1583 return -ENOMEM;
1584
1585 /* Populate the queue info buffer with all queue context info */
1586 for (i = 0; i < vport->num_txq_grp; i++) {
1587 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1588 int j, sched_mode;
1589
1590 for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
1591 qi[k].queue_id =
1592 cpu_to_le32(tx_qgrp->txqs[j]->q_id);
1593 qi[k].model =
1594 cpu_to_le16(vport->txq_model);
1595 qi[k].type =
1596 cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
1597 qi[k].ring_len =
1598 cpu_to_le16(tx_qgrp->txqs[j]->desc_count);
1599 qi[k].dma_ring_addr =
1600 cpu_to_le64(tx_qgrp->txqs[j]->dma);
1601 if (idpf_is_queue_model_split(vport->txq_model)) {
1602 struct idpf_tx_queue *q = tx_qgrp->txqs[j];
1603
1604 qi[k].tx_compl_queue_id =
1605 cpu_to_le16(tx_qgrp->complq->q_id);
1606 qi[k].relative_queue_id = cpu_to_le16(j);
1607
1608 if (idpf_queue_has(FLOW_SCH_EN, q))
1609 qi[k].sched_mode =
1610 cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_FLOW);
1611 else
1612 qi[k].sched_mode =
1613 cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_QUEUE);
1614 } else {
1615 qi[k].sched_mode =
1616 cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_QUEUE);
1617 }
1618 }
1619
1620 if (!idpf_is_queue_model_split(vport->txq_model))
1621 continue;
1622
1623 qi[k].queue_id = cpu_to_le32(tx_qgrp->complq->q_id);
1624 qi[k].model = cpu_to_le16(vport->txq_model);
1625 qi[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION);
1626 qi[k].ring_len = cpu_to_le16(tx_qgrp->complq->desc_count);
1627 qi[k].dma_ring_addr = cpu_to_le64(tx_qgrp->complq->dma);
1628
1629 if (idpf_queue_has(FLOW_SCH_EN, tx_qgrp->complq))
1630 sched_mode = VIRTCHNL2_TXQ_SCHED_MODE_FLOW;
1631 else
1632 sched_mode = VIRTCHNL2_TXQ_SCHED_MODE_QUEUE;
1633 qi[k].sched_mode = cpu_to_le16(sched_mode);
1634
1635 k++;
1636 }
1637
1638 /* Make sure accounting agrees */
1639 if (k != totqs)
1640 return -EINVAL;
1641
1642 /* Chunk up the queue contexts into multiple messages to avoid
1643 * sending a control queue message buffer that is too large
1644 */
1645 config_sz = sizeof(struct virtchnl2_config_tx_queues);
1646 chunk_sz = sizeof(struct virtchnl2_txq_info);
1647
1648 num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1649 totqs);
1650 num_msgs = DIV_ROUND_UP(totqs, num_chunks);
1651
1652 buf_sz = struct_size(ctq, qinfo, num_chunks);
1653 ctq = kzalloc(buf_sz, GFP_KERNEL);
1654 if (!ctq)
1655 return -ENOMEM;
1656
1657 xn_params.vc_op = VIRTCHNL2_OP_CONFIG_TX_QUEUES;
1658 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1659
1660 for (i = 0, k = 0; i < num_msgs; i++) {
1661 memset(ctq, 0, buf_sz);
1662 ctq->vport_id = cpu_to_le32(vport->vport_id);
1663 ctq->num_qinfo = cpu_to_le16(num_chunks);
1664 memcpy(ctq->qinfo, &qi[k], chunk_sz * num_chunks);
1665
1666 xn_params.send_buf.iov_base = ctq;
1667 xn_params.send_buf.iov_len = buf_sz;
1668 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1669 if (reply_sz < 0)
1670 return reply_sz;
1671
1672 k += num_chunks;
1673 totqs -= num_chunks;
1674 num_chunks = min(num_chunks, totqs);
1675 /* Recalculate buffer size */
1676 buf_sz = struct_size(ctq, qinfo, num_chunks);
1677 }
1678
1679 return 0;
1680 }
1681
1682 /**
1683 * idpf_send_config_rx_queues_msg - Send virtchnl config rx queues message
1684 * @vport: virtual port data structure
1685 *
1686 * Send config rx queues virtchnl message. Returns 0 on success, negative on
1687 * failure.
1688 */
idpf_send_config_rx_queues_msg(struct idpf_vport * vport)1689 static int idpf_send_config_rx_queues_msg(struct idpf_vport *vport)
1690 {
1691 struct virtchnl2_config_rx_queues *crq __free(kfree) = NULL;
1692 struct virtchnl2_rxq_info *qi __free(kfree) = NULL;
1693 struct idpf_vc_xn_params xn_params = {};
1694 u32 config_sz, chunk_sz, buf_sz;
1695 int totqs, num_msgs, num_chunks;
1696 ssize_t reply_sz;
1697 int i, k = 0;
1698
1699 totqs = vport->num_rxq + vport->num_bufq;
1700 qi = kcalloc(totqs, sizeof(struct virtchnl2_rxq_info), GFP_KERNEL);
1701 if (!qi)
1702 return -ENOMEM;
1703
1704 /* Populate the queue info buffer with all queue context info */
1705 for (i = 0; i < vport->num_rxq_grp; i++) {
1706 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1707 u16 num_rxq;
1708 int j;
1709
1710 if (!idpf_is_queue_model_split(vport->rxq_model))
1711 goto setup_rxqs;
1712
1713 for (j = 0; j < vport->num_bufqs_per_qgrp; j++, k++) {
1714 struct idpf_buf_queue *bufq =
1715 &rx_qgrp->splitq.bufq_sets[j].bufq;
1716
1717 qi[k].queue_id = cpu_to_le32(bufq->q_id);
1718 qi[k].model = cpu_to_le16(vport->rxq_model);
1719 qi[k].type =
1720 cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1721 qi[k].desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1722 qi[k].ring_len = cpu_to_le16(bufq->desc_count);
1723 qi[k].dma_ring_addr = cpu_to_le64(bufq->dma);
1724 qi[k].data_buffer_size = cpu_to_le32(bufq->rx_buf_size);
1725 qi[k].buffer_notif_stride = IDPF_RX_BUF_STRIDE;
1726 qi[k].rx_buffer_low_watermark =
1727 cpu_to_le16(bufq->rx_buffer_low_watermark);
1728 if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
1729 qi[k].qflags |= cpu_to_le16(VIRTCHNL2_RXQ_RSC);
1730 }
1731
1732 setup_rxqs:
1733 if (idpf_is_queue_model_split(vport->rxq_model))
1734 num_rxq = rx_qgrp->splitq.num_rxq_sets;
1735 else
1736 num_rxq = rx_qgrp->singleq.num_rxq;
1737
1738 for (j = 0; j < num_rxq; j++, k++) {
1739 const struct idpf_bufq_set *sets;
1740 struct idpf_rx_queue *rxq;
1741
1742 if (!idpf_is_queue_model_split(vport->rxq_model)) {
1743 rxq = rx_qgrp->singleq.rxqs[j];
1744 goto common_qi_fields;
1745 }
1746
1747 rxq = &rx_qgrp->splitq.rxq_sets[j]->rxq;
1748 sets = rxq->bufq_sets;
1749
1750 /* In splitq mode, RXQ buffer size should be
1751 * set to that of the first buffer queue
1752 * associated with this RXQ.
1753 */
1754 rxq->rx_buf_size = sets[0].bufq.rx_buf_size;
1755
1756 qi[k].rx_bufq1_id = cpu_to_le16(sets[0].bufq.q_id);
1757 if (vport->num_bufqs_per_qgrp > IDPF_SINGLE_BUFQ_PER_RXQ_GRP) {
1758 qi[k].bufq2_ena = IDPF_BUFQ2_ENA;
1759 qi[k].rx_bufq2_id =
1760 cpu_to_le16(sets[1].bufq.q_id);
1761 }
1762 qi[k].rx_buffer_low_watermark =
1763 cpu_to_le16(rxq->rx_buffer_low_watermark);
1764 if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
1765 qi[k].qflags |= cpu_to_le16(VIRTCHNL2_RXQ_RSC);
1766
1767 rxq->rx_hbuf_size = sets[0].bufq.rx_hbuf_size;
1768
1769 if (idpf_queue_has(HSPLIT_EN, rxq)) {
1770 qi[k].qflags |=
1771 cpu_to_le16(VIRTCHNL2_RXQ_HDR_SPLIT);
1772 qi[k].hdr_buffer_size =
1773 cpu_to_le16(rxq->rx_hbuf_size);
1774 }
1775
1776 common_qi_fields:
1777 qi[k].queue_id = cpu_to_le32(rxq->q_id);
1778 qi[k].model = cpu_to_le16(vport->rxq_model);
1779 qi[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1780 qi[k].ring_len = cpu_to_le16(rxq->desc_count);
1781 qi[k].dma_ring_addr = cpu_to_le64(rxq->dma);
1782 qi[k].max_pkt_size = cpu_to_le32(rxq->rx_max_pkt_size);
1783 qi[k].data_buffer_size = cpu_to_le32(rxq->rx_buf_size);
1784 qi[k].qflags |=
1785 cpu_to_le16(VIRTCHNL2_RX_DESC_SIZE_32BYTE);
1786 qi[k].desc_ids = cpu_to_le64(rxq->rxdids);
1787 }
1788 }
1789
1790 /* Make sure accounting agrees */
1791 if (k != totqs)
1792 return -EINVAL;
1793
1794 /* Chunk up the queue contexts into multiple messages to avoid
1795 * sending a control queue message buffer that is too large
1796 */
1797 config_sz = sizeof(struct virtchnl2_config_rx_queues);
1798 chunk_sz = sizeof(struct virtchnl2_rxq_info);
1799
1800 num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1801 totqs);
1802 num_msgs = DIV_ROUND_UP(totqs, num_chunks);
1803
1804 buf_sz = struct_size(crq, qinfo, num_chunks);
1805 crq = kzalloc(buf_sz, GFP_KERNEL);
1806 if (!crq)
1807 return -ENOMEM;
1808
1809 xn_params.vc_op = VIRTCHNL2_OP_CONFIG_RX_QUEUES;
1810 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1811
1812 for (i = 0, k = 0; i < num_msgs; i++) {
1813 memset(crq, 0, buf_sz);
1814 crq->vport_id = cpu_to_le32(vport->vport_id);
1815 crq->num_qinfo = cpu_to_le16(num_chunks);
1816 memcpy(crq->qinfo, &qi[k], chunk_sz * num_chunks);
1817
1818 xn_params.send_buf.iov_base = crq;
1819 xn_params.send_buf.iov_len = buf_sz;
1820 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1821 if (reply_sz < 0)
1822 return reply_sz;
1823
1824 k += num_chunks;
1825 totqs -= num_chunks;
1826 num_chunks = min(num_chunks, totqs);
1827 /* Recalculate buffer size */
1828 buf_sz = struct_size(crq, qinfo, num_chunks);
1829 }
1830
1831 return 0;
1832 }
1833
1834 /**
1835 * idpf_send_ena_dis_queues_msg - Send virtchnl enable or disable
1836 * queues message
1837 * @vport: virtual port data structure
1838 * @ena: if true enable, false disable
1839 *
1840 * Send enable or disable queues virtchnl message. Returns 0 on success,
1841 * negative on failure.
1842 */
idpf_send_ena_dis_queues_msg(struct idpf_vport * vport,bool ena)1843 static int idpf_send_ena_dis_queues_msg(struct idpf_vport *vport, bool ena)
1844 {
1845 struct virtchnl2_del_ena_dis_queues *eq __free(kfree) = NULL;
1846 struct virtchnl2_queue_chunk *qc __free(kfree) = NULL;
1847 u32 num_msgs, num_chunks, num_txq, num_rxq, num_q;
1848 struct idpf_vc_xn_params xn_params = {};
1849 struct virtchnl2_queue_chunks *qcs;
1850 u32 config_sz, chunk_sz, buf_sz;
1851 ssize_t reply_sz;
1852 int i, j, k = 0;
1853
1854 num_txq = vport->num_txq + vport->num_complq;
1855 num_rxq = vport->num_rxq + vport->num_bufq;
1856 num_q = num_txq + num_rxq;
1857 buf_sz = sizeof(struct virtchnl2_queue_chunk) * num_q;
1858 qc = kzalloc(buf_sz, GFP_KERNEL);
1859 if (!qc)
1860 return -ENOMEM;
1861
1862 for (i = 0; i < vport->num_txq_grp; i++) {
1863 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1864
1865 for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
1866 qc[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
1867 qc[k].start_queue_id = cpu_to_le32(tx_qgrp->txqs[j]->q_id);
1868 qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1869 }
1870 }
1871 if (vport->num_txq != k)
1872 return -EINVAL;
1873
1874 if (!idpf_is_queue_model_split(vport->txq_model))
1875 goto setup_rx;
1876
1877 for (i = 0; i < vport->num_txq_grp; i++, k++) {
1878 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1879
1880 qc[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION);
1881 qc[k].start_queue_id = cpu_to_le32(tx_qgrp->complq->q_id);
1882 qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1883 }
1884 if (vport->num_complq != (k - vport->num_txq))
1885 return -EINVAL;
1886
1887 setup_rx:
1888 for (i = 0; i < vport->num_rxq_grp; i++) {
1889 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1890
1891 if (idpf_is_queue_model_split(vport->rxq_model))
1892 num_rxq = rx_qgrp->splitq.num_rxq_sets;
1893 else
1894 num_rxq = rx_qgrp->singleq.num_rxq;
1895
1896 for (j = 0; j < num_rxq; j++, k++) {
1897 if (idpf_is_queue_model_split(vport->rxq_model)) {
1898 qc[k].start_queue_id =
1899 cpu_to_le32(rx_qgrp->splitq.rxq_sets[j]->rxq.q_id);
1900 qc[k].type =
1901 cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1902 } else {
1903 qc[k].start_queue_id =
1904 cpu_to_le32(rx_qgrp->singleq.rxqs[j]->q_id);
1905 qc[k].type =
1906 cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1907 }
1908 qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1909 }
1910 }
1911 if (vport->num_rxq != k - (vport->num_txq + vport->num_complq))
1912 return -EINVAL;
1913
1914 if (!idpf_is_queue_model_split(vport->rxq_model))
1915 goto send_msg;
1916
1917 for (i = 0; i < vport->num_rxq_grp; i++) {
1918 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1919
1920 for (j = 0; j < vport->num_bufqs_per_qgrp; j++, k++) {
1921 const struct idpf_buf_queue *q;
1922
1923 q = &rx_qgrp->splitq.bufq_sets[j].bufq;
1924 qc[k].type =
1925 cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1926 qc[k].start_queue_id = cpu_to_le32(q->q_id);
1927 qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1928 }
1929 }
1930 if (vport->num_bufq != k - (vport->num_txq +
1931 vport->num_complq +
1932 vport->num_rxq))
1933 return -EINVAL;
1934
1935 send_msg:
1936 /* Chunk up the queue info into multiple messages */
1937 config_sz = sizeof(struct virtchnl2_del_ena_dis_queues);
1938 chunk_sz = sizeof(struct virtchnl2_queue_chunk);
1939
1940 num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1941 num_q);
1942 num_msgs = DIV_ROUND_UP(num_q, num_chunks);
1943
1944 buf_sz = struct_size(eq, chunks.chunks, num_chunks);
1945 eq = kzalloc(buf_sz, GFP_KERNEL);
1946 if (!eq)
1947 return -ENOMEM;
1948
1949 if (ena) {
1950 xn_params.vc_op = VIRTCHNL2_OP_ENABLE_QUEUES;
1951 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1952 } else {
1953 xn_params.vc_op = VIRTCHNL2_OP_DISABLE_QUEUES;
1954 xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1955 }
1956
1957 for (i = 0, k = 0; i < num_msgs; i++) {
1958 memset(eq, 0, buf_sz);
1959 eq->vport_id = cpu_to_le32(vport->vport_id);
1960 eq->chunks.num_chunks = cpu_to_le16(num_chunks);
1961 qcs = &eq->chunks;
1962 memcpy(qcs->chunks, &qc[k], chunk_sz * num_chunks);
1963
1964 xn_params.send_buf.iov_base = eq;
1965 xn_params.send_buf.iov_len = buf_sz;
1966 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1967 if (reply_sz < 0)
1968 return reply_sz;
1969
1970 k += num_chunks;
1971 num_q -= num_chunks;
1972 num_chunks = min(num_chunks, num_q);
1973 /* Recalculate buffer size */
1974 buf_sz = struct_size(eq, chunks.chunks, num_chunks);
1975 }
1976
1977 return 0;
1978 }
1979
1980 /**
1981 * idpf_send_map_unmap_queue_vector_msg - Send virtchnl map or unmap queue
1982 * vector message
1983 * @vport: virtual port data structure
1984 * @map: true for map and false for unmap
1985 *
1986 * Send map or unmap queue vector virtchnl message. Returns 0 on success,
1987 * negative on failure.
1988 */
idpf_send_map_unmap_queue_vector_msg(struct idpf_vport * vport,bool map)1989 int idpf_send_map_unmap_queue_vector_msg(struct idpf_vport *vport, bool map)
1990 {
1991 struct virtchnl2_queue_vector_maps *vqvm __free(kfree) = NULL;
1992 struct virtchnl2_queue_vector *vqv __free(kfree) = NULL;
1993 struct idpf_vc_xn_params xn_params = {};
1994 u32 config_sz, chunk_sz, buf_sz;
1995 u32 num_msgs, num_chunks, num_q;
1996 ssize_t reply_sz;
1997 int i, j, k = 0;
1998
1999 num_q = vport->num_txq + vport->num_rxq;
2000
2001 buf_sz = sizeof(struct virtchnl2_queue_vector) * num_q;
2002 vqv = kzalloc(buf_sz, GFP_KERNEL);
2003 if (!vqv)
2004 return -ENOMEM;
2005
2006 for (i = 0; i < vport->num_txq_grp; i++) {
2007 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
2008
2009 for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
2010 vqv[k].queue_type =
2011 cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
2012 vqv[k].queue_id = cpu_to_le32(tx_qgrp->txqs[j]->q_id);
2013
2014 if (idpf_is_queue_model_split(vport->txq_model)) {
2015 vqv[k].vector_id =
2016 cpu_to_le16(tx_qgrp->complq->q_vector->v_idx);
2017 vqv[k].itr_idx =
2018 cpu_to_le32(tx_qgrp->complq->q_vector->tx_itr_idx);
2019 } else {
2020 vqv[k].vector_id =
2021 cpu_to_le16(tx_qgrp->txqs[j]->q_vector->v_idx);
2022 vqv[k].itr_idx =
2023 cpu_to_le32(tx_qgrp->txqs[j]->q_vector->tx_itr_idx);
2024 }
2025 }
2026 }
2027
2028 if (vport->num_txq != k)
2029 return -EINVAL;
2030
2031 for (i = 0; i < vport->num_rxq_grp; i++) {
2032 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
2033 u16 num_rxq;
2034
2035 if (idpf_is_queue_model_split(vport->rxq_model))
2036 num_rxq = rx_qgrp->splitq.num_rxq_sets;
2037 else
2038 num_rxq = rx_qgrp->singleq.num_rxq;
2039
2040 for (j = 0; j < num_rxq; j++, k++) {
2041 struct idpf_rx_queue *rxq;
2042
2043 if (idpf_is_queue_model_split(vport->rxq_model))
2044 rxq = &rx_qgrp->splitq.rxq_sets[j]->rxq;
2045 else
2046 rxq = rx_qgrp->singleq.rxqs[j];
2047
2048 vqv[k].queue_type =
2049 cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
2050 vqv[k].queue_id = cpu_to_le32(rxq->q_id);
2051 vqv[k].vector_id = cpu_to_le16(rxq->q_vector->v_idx);
2052 vqv[k].itr_idx = cpu_to_le32(rxq->q_vector->rx_itr_idx);
2053 }
2054 }
2055
2056 if (idpf_is_queue_model_split(vport->txq_model)) {
2057 if (vport->num_rxq != k - vport->num_complq)
2058 return -EINVAL;
2059 } else {
2060 if (vport->num_rxq != k - vport->num_txq)
2061 return -EINVAL;
2062 }
2063
2064 /* Chunk up the vector info into multiple messages */
2065 config_sz = sizeof(struct virtchnl2_queue_vector_maps);
2066 chunk_sz = sizeof(struct virtchnl2_queue_vector);
2067
2068 num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
2069 num_q);
2070 num_msgs = DIV_ROUND_UP(num_q, num_chunks);
2071
2072 buf_sz = struct_size(vqvm, qv_maps, num_chunks);
2073 vqvm = kzalloc(buf_sz, GFP_KERNEL);
2074 if (!vqvm)
2075 return -ENOMEM;
2076
2077 if (map) {
2078 xn_params.vc_op = VIRTCHNL2_OP_MAP_QUEUE_VECTOR;
2079 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2080 } else {
2081 xn_params.vc_op = VIRTCHNL2_OP_UNMAP_QUEUE_VECTOR;
2082 xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
2083 }
2084
2085 for (i = 0, k = 0; i < num_msgs; i++) {
2086 memset(vqvm, 0, buf_sz);
2087 xn_params.send_buf.iov_base = vqvm;
2088 xn_params.send_buf.iov_len = buf_sz;
2089 vqvm->vport_id = cpu_to_le32(vport->vport_id);
2090 vqvm->num_qv_maps = cpu_to_le16(num_chunks);
2091 memcpy(vqvm->qv_maps, &vqv[k], chunk_sz * num_chunks);
2092
2093 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2094 if (reply_sz < 0)
2095 return reply_sz;
2096
2097 k += num_chunks;
2098 num_q -= num_chunks;
2099 num_chunks = min(num_chunks, num_q);
2100 /* Recalculate buffer size */
2101 buf_sz = struct_size(vqvm, qv_maps, num_chunks);
2102 }
2103
2104 return 0;
2105 }
2106
2107 /**
2108 * idpf_send_enable_queues_msg - send enable queues virtchnl message
2109 * @vport: Virtual port private data structure
2110 *
2111 * Will send enable queues virtchnl message. Returns 0 on success, negative on
2112 * failure.
2113 */
idpf_send_enable_queues_msg(struct idpf_vport * vport)2114 int idpf_send_enable_queues_msg(struct idpf_vport *vport)
2115 {
2116 return idpf_send_ena_dis_queues_msg(vport, true);
2117 }
2118
2119 /**
2120 * idpf_send_disable_queues_msg - send disable queues virtchnl message
2121 * @vport: Virtual port private data structure
2122 *
2123 * Will send disable queues virtchnl message. Returns 0 on success, negative
2124 * on failure.
2125 */
idpf_send_disable_queues_msg(struct idpf_vport * vport)2126 int idpf_send_disable_queues_msg(struct idpf_vport *vport)
2127 {
2128 int err, i;
2129
2130 err = idpf_send_ena_dis_queues_msg(vport, false);
2131 if (err)
2132 return err;
2133
2134 /* switch to poll mode as interrupts will be disabled after disable
2135 * queues virtchnl message is sent
2136 */
2137 for (i = 0; i < vport->num_txq; i++)
2138 idpf_queue_set(POLL_MODE, vport->txqs[i]);
2139
2140 /* schedule the napi to receive all the marker packets */
2141 local_bh_disable();
2142 for (i = 0; i < vport->num_q_vectors; i++)
2143 napi_schedule(&vport->q_vectors[i].napi);
2144 local_bh_enable();
2145
2146 return idpf_wait_for_marker_event(vport);
2147 }
2148
2149 /**
2150 * idpf_convert_reg_to_queue_chunks - Copy queue chunk information to the right
2151 * structure
2152 * @dchunks: Destination chunks to store data to
2153 * @schunks: Source chunks to copy data from
2154 * @num_chunks: number of chunks to copy
2155 */
idpf_convert_reg_to_queue_chunks(struct virtchnl2_queue_chunk * dchunks,struct virtchnl2_queue_reg_chunk * schunks,u16 num_chunks)2156 static void idpf_convert_reg_to_queue_chunks(struct virtchnl2_queue_chunk *dchunks,
2157 struct virtchnl2_queue_reg_chunk *schunks,
2158 u16 num_chunks)
2159 {
2160 u16 i;
2161
2162 for (i = 0; i < num_chunks; i++) {
2163 dchunks[i].type = schunks[i].type;
2164 dchunks[i].start_queue_id = schunks[i].start_queue_id;
2165 dchunks[i].num_queues = schunks[i].num_queues;
2166 }
2167 }
2168
2169 /**
2170 * idpf_send_delete_queues_msg - send delete queues virtchnl message
2171 * @vport: Virtual port private data structure
2172 *
2173 * Will send delete queues virtchnl message. Return 0 on success, negative on
2174 * failure.
2175 */
idpf_send_delete_queues_msg(struct idpf_vport * vport)2176 int idpf_send_delete_queues_msg(struct idpf_vport *vport)
2177 {
2178 struct virtchnl2_del_ena_dis_queues *eq __free(kfree) = NULL;
2179 struct virtchnl2_create_vport *vport_params;
2180 struct virtchnl2_queue_reg_chunks *chunks;
2181 struct idpf_vc_xn_params xn_params = {};
2182 struct idpf_vport_config *vport_config;
2183 u16 vport_idx = vport->idx;
2184 ssize_t reply_sz;
2185 u16 num_chunks;
2186 int buf_size;
2187
2188 vport_config = vport->adapter->vport_config[vport_idx];
2189 if (vport_config->req_qs_chunks) {
2190 chunks = &vport_config->req_qs_chunks->chunks;
2191 } else {
2192 vport_params = vport->adapter->vport_params_recvd[vport_idx];
2193 chunks = &vport_params->chunks;
2194 }
2195
2196 num_chunks = le16_to_cpu(chunks->num_chunks);
2197 buf_size = struct_size(eq, chunks.chunks, num_chunks);
2198
2199 eq = kzalloc(buf_size, GFP_KERNEL);
2200 if (!eq)
2201 return -ENOMEM;
2202
2203 eq->vport_id = cpu_to_le32(vport->vport_id);
2204 eq->chunks.num_chunks = cpu_to_le16(num_chunks);
2205
2206 idpf_convert_reg_to_queue_chunks(eq->chunks.chunks, chunks->chunks,
2207 num_chunks);
2208
2209 xn_params.vc_op = VIRTCHNL2_OP_DEL_QUEUES;
2210 xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
2211 xn_params.send_buf.iov_base = eq;
2212 xn_params.send_buf.iov_len = buf_size;
2213 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2214
2215 return reply_sz < 0 ? reply_sz : 0;
2216 }
2217
2218 /**
2219 * idpf_send_config_queues_msg - Send config queues virtchnl message
2220 * @vport: Virtual port private data structure
2221 *
2222 * Will send config queues virtchnl message. Returns 0 on success, negative on
2223 * failure.
2224 */
idpf_send_config_queues_msg(struct idpf_vport * vport)2225 int idpf_send_config_queues_msg(struct idpf_vport *vport)
2226 {
2227 int err;
2228
2229 err = idpf_send_config_tx_queues_msg(vport);
2230 if (err)
2231 return err;
2232
2233 return idpf_send_config_rx_queues_msg(vport);
2234 }
2235
2236 /**
2237 * idpf_send_add_queues_msg - Send virtchnl add queues message
2238 * @vport: Virtual port private data structure
2239 * @num_tx_q: number of transmit queues
2240 * @num_complq: number of transmit completion queues
2241 * @num_rx_q: number of receive queues
2242 * @num_rx_bufq: number of receive buffer queues
2243 *
2244 * Returns 0 on success, negative on failure. vport _MUST_ be const here as
2245 * we should not change any fields within vport itself in this function.
2246 */
idpf_send_add_queues_msg(const struct idpf_vport * vport,u16 num_tx_q,u16 num_complq,u16 num_rx_q,u16 num_rx_bufq)2247 int idpf_send_add_queues_msg(const struct idpf_vport *vport, u16 num_tx_q,
2248 u16 num_complq, u16 num_rx_q, u16 num_rx_bufq)
2249 {
2250 struct virtchnl2_add_queues *vc_msg __free(kfree) = NULL;
2251 struct idpf_vc_xn_params xn_params = {};
2252 struct idpf_vport_config *vport_config;
2253 struct virtchnl2_add_queues aq = {};
2254 u16 vport_idx = vport->idx;
2255 ssize_t reply_sz;
2256 int size;
2257
2258 vc_msg = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2259 if (!vc_msg)
2260 return -ENOMEM;
2261
2262 vport_config = vport->adapter->vport_config[vport_idx];
2263 kfree(vport_config->req_qs_chunks);
2264 vport_config->req_qs_chunks = NULL;
2265
2266 aq.vport_id = cpu_to_le32(vport->vport_id);
2267 aq.num_tx_q = cpu_to_le16(num_tx_q);
2268 aq.num_tx_complq = cpu_to_le16(num_complq);
2269 aq.num_rx_q = cpu_to_le16(num_rx_q);
2270 aq.num_rx_bufq = cpu_to_le16(num_rx_bufq);
2271
2272 xn_params.vc_op = VIRTCHNL2_OP_ADD_QUEUES;
2273 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2274 xn_params.send_buf.iov_base = &aq;
2275 xn_params.send_buf.iov_len = sizeof(aq);
2276 xn_params.recv_buf.iov_base = vc_msg;
2277 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2278 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2279 if (reply_sz < 0)
2280 return reply_sz;
2281
2282 /* compare vc_msg num queues with vport num queues */
2283 if (le16_to_cpu(vc_msg->num_tx_q) != num_tx_q ||
2284 le16_to_cpu(vc_msg->num_rx_q) != num_rx_q ||
2285 le16_to_cpu(vc_msg->num_tx_complq) != num_complq ||
2286 le16_to_cpu(vc_msg->num_rx_bufq) != num_rx_bufq)
2287 return -EINVAL;
2288
2289 size = struct_size(vc_msg, chunks.chunks,
2290 le16_to_cpu(vc_msg->chunks.num_chunks));
2291 if (reply_sz < size)
2292 return -EIO;
2293
2294 vport_config->req_qs_chunks = kmemdup(vc_msg, size, GFP_KERNEL);
2295 if (!vport_config->req_qs_chunks)
2296 return -ENOMEM;
2297
2298 return 0;
2299 }
2300
2301 /**
2302 * idpf_send_alloc_vectors_msg - Send virtchnl alloc vectors message
2303 * @adapter: Driver specific private structure
2304 * @num_vectors: number of vectors to be allocated
2305 *
2306 * Returns 0 on success, negative on failure.
2307 */
idpf_send_alloc_vectors_msg(struct idpf_adapter * adapter,u16 num_vectors)2308 int idpf_send_alloc_vectors_msg(struct idpf_adapter *adapter, u16 num_vectors)
2309 {
2310 struct virtchnl2_alloc_vectors *rcvd_vec __free(kfree) = NULL;
2311 struct idpf_vc_xn_params xn_params = {};
2312 struct virtchnl2_alloc_vectors ac = {};
2313 ssize_t reply_sz;
2314 u16 num_vchunks;
2315 int size;
2316
2317 ac.num_vectors = cpu_to_le16(num_vectors);
2318
2319 rcvd_vec = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2320 if (!rcvd_vec)
2321 return -ENOMEM;
2322
2323 xn_params.vc_op = VIRTCHNL2_OP_ALLOC_VECTORS;
2324 xn_params.send_buf.iov_base = ∾
2325 xn_params.send_buf.iov_len = sizeof(ac);
2326 xn_params.recv_buf.iov_base = rcvd_vec;
2327 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2328 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2329 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2330 if (reply_sz < 0)
2331 return reply_sz;
2332
2333 num_vchunks = le16_to_cpu(rcvd_vec->vchunks.num_vchunks);
2334 size = struct_size(rcvd_vec, vchunks.vchunks, num_vchunks);
2335 if (reply_sz < size)
2336 return -EIO;
2337
2338 if (size > IDPF_CTLQ_MAX_BUF_LEN)
2339 return -EINVAL;
2340
2341 kfree(adapter->req_vec_chunks);
2342 adapter->req_vec_chunks = kmemdup(rcvd_vec, size, GFP_KERNEL);
2343 if (!adapter->req_vec_chunks)
2344 return -ENOMEM;
2345
2346 if (le16_to_cpu(adapter->req_vec_chunks->num_vectors) < num_vectors) {
2347 kfree(adapter->req_vec_chunks);
2348 adapter->req_vec_chunks = NULL;
2349 return -EINVAL;
2350 }
2351
2352 return 0;
2353 }
2354
2355 /**
2356 * idpf_send_dealloc_vectors_msg - Send virtchnl de allocate vectors message
2357 * @adapter: Driver specific private structure
2358 *
2359 * Returns 0 on success, negative on failure.
2360 */
idpf_send_dealloc_vectors_msg(struct idpf_adapter * adapter)2361 int idpf_send_dealloc_vectors_msg(struct idpf_adapter *adapter)
2362 {
2363 struct virtchnl2_alloc_vectors *ac = adapter->req_vec_chunks;
2364 struct virtchnl2_vector_chunks *vcs = &ac->vchunks;
2365 struct idpf_vc_xn_params xn_params = {};
2366 ssize_t reply_sz;
2367 int buf_size;
2368
2369 buf_size = struct_size(vcs, vchunks, le16_to_cpu(vcs->num_vchunks));
2370
2371 xn_params.vc_op = VIRTCHNL2_OP_DEALLOC_VECTORS;
2372 xn_params.send_buf.iov_base = vcs;
2373 xn_params.send_buf.iov_len = buf_size;
2374 xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
2375 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2376 if (reply_sz < 0)
2377 return reply_sz;
2378
2379 kfree(adapter->req_vec_chunks);
2380 adapter->req_vec_chunks = NULL;
2381
2382 return 0;
2383 }
2384
2385 /**
2386 * idpf_get_max_vfs - Get max number of vfs supported
2387 * @adapter: Driver specific private structure
2388 *
2389 * Returns max number of VFs
2390 */
idpf_get_max_vfs(struct idpf_adapter * adapter)2391 static int idpf_get_max_vfs(struct idpf_adapter *adapter)
2392 {
2393 return le16_to_cpu(adapter->caps.max_sriov_vfs);
2394 }
2395
2396 /**
2397 * idpf_send_set_sriov_vfs_msg - Send virtchnl set sriov vfs message
2398 * @adapter: Driver specific private structure
2399 * @num_vfs: number of virtual functions to be created
2400 *
2401 * Returns 0 on success, negative on failure.
2402 */
idpf_send_set_sriov_vfs_msg(struct idpf_adapter * adapter,u16 num_vfs)2403 int idpf_send_set_sriov_vfs_msg(struct idpf_adapter *adapter, u16 num_vfs)
2404 {
2405 struct virtchnl2_sriov_vfs_info svi = {};
2406 struct idpf_vc_xn_params xn_params = {};
2407 ssize_t reply_sz;
2408
2409 svi.num_vfs = cpu_to_le16(num_vfs);
2410 xn_params.vc_op = VIRTCHNL2_OP_SET_SRIOV_VFS;
2411 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2412 xn_params.send_buf.iov_base = &svi;
2413 xn_params.send_buf.iov_len = sizeof(svi);
2414 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2415
2416 return reply_sz < 0 ? reply_sz : 0;
2417 }
2418
2419 /**
2420 * idpf_send_get_stats_msg - Send virtchnl get statistics message
2421 * @vport: vport to get stats for
2422 *
2423 * Returns 0 on success, negative on failure.
2424 */
idpf_send_get_stats_msg(struct idpf_vport * vport)2425 int idpf_send_get_stats_msg(struct idpf_vport *vport)
2426 {
2427 struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
2428 struct rtnl_link_stats64 *netstats = &np->netstats;
2429 struct virtchnl2_vport_stats stats_msg = {};
2430 struct idpf_vc_xn_params xn_params = {};
2431 ssize_t reply_sz;
2432
2433
2434 /* Don't send get_stats message if the link is down */
2435 if (np->state <= __IDPF_VPORT_DOWN)
2436 return 0;
2437
2438 stats_msg.vport_id = cpu_to_le32(vport->vport_id);
2439
2440 xn_params.vc_op = VIRTCHNL2_OP_GET_STATS;
2441 xn_params.send_buf.iov_base = &stats_msg;
2442 xn_params.send_buf.iov_len = sizeof(stats_msg);
2443 xn_params.recv_buf = xn_params.send_buf;
2444 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2445
2446 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2447 if (reply_sz < 0)
2448 return reply_sz;
2449 if (reply_sz < sizeof(stats_msg))
2450 return -EIO;
2451
2452 spin_lock_bh(&np->stats_lock);
2453
2454 netstats->rx_packets = le64_to_cpu(stats_msg.rx_unicast) +
2455 le64_to_cpu(stats_msg.rx_multicast) +
2456 le64_to_cpu(stats_msg.rx_broadcast);
2457 netstats->tx_packets = le64_to_cpu(stats_msg.tx_unicast) +
2458 le64_to_cpu(stats_msg.tx_multicast) +
2459 le64_to_cpu(stats_msg.tx_broadcast);
2460 netstats->rx_bytes = le64_to_cpu(stats_msg.rx_bytes);
2461 netstats->tx_bytes = le64_to_cpu(stats_msg.tx_bytes);
2462 netstats->rx_errors = le64_to_cpu(stats_msg.rx_errors);
2463 netstats->tx_errors = le64_to_cpu(stats_msg.tx_errors);
2464 netstats->rx_dropped = le64_to_cpu(stats_msg.rx_discards);
2465 netstats->tx_dropped = le64_to_cpu(stats_msg.tx_discards);
2466
2467 vport->port_stats.vport_stats = stats_msg;
2468
2469 spin_unlock_bh(&np->stats_lock);
2470
2471 return 0;
2472 }
2473
2474 /**
2475 * idpf_send_get_set_rss_lut_msg - Send virtchnl get or set rss lut message
2476 * @vport: virtual port data structure
2477 * @get: flag to set or get rss look up table
2478 *
2479 * Returns 0 on success, negative on failure.
2480 */
idpf_send_get_set_rss_lut_msg(struct idpf_vport * vport,bool get)2481 int idpf_send_get_set_rss_lut_msg(struct idpf_vport *vport, bool get)
2482 {
2483 struct virtchnl2_rss_lut *recv_rl __free(kfree) = NULL;
2484 struct virtchnl2_rss_lut *rl __free(kfree) = NULL;
2485 struct idpf_vc_xn_params xn_params = {};
2486 struct idpf_rss_data *rss_data;
2487 int buf_size, lut_buf_size;
2488 ssize_t reply_sz;
2489 int i;
2490
2491 rss_data =
2492 &vport->adapter->vport_config[vport->idx]->user_config.rss_data;
2493 buf_size = struct_size(rl, lut, rss_data->rss_lut_size);
2494 rl = kzalloc(buf_size, GFP_KERNEL);
2495 if (!rl)
2496 return -ENOMEM;
2497
2498 rl->vport_id = cpu_to_le32(vport->vport_id);
2499
2500 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2501 xn_params.send_buf.iov_base = rl;
2502 xn_params.send_buf.iov_len = buf_size;
2503
2504 if (get) {
2505 recv_rl = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2506 if (!recv_rl)
2507 return -ENOMEM;
2508 xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_LUT;
2509 xn_params.recv_buf.iov_base = recv_rl;
2510 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2511 } else {
2512 rl->lut_entries = cpu_to_le16(rss_data->rss_lut_size);
2513 for (i = 0; i < rss_data->rss_lut_size; i++)
2514 rl->lut[i] = cpu_to_le32(rss_data->rss_lut[i]);
2515
2516 xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_LUT;
2517 }
2518 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2519 if (reply_sz < 0)
2520 return reply_sz;
2521 if (!get)
2522 return 0;
2523 if (reply_sz < sizeof(struct virtchnl2_rss_lut))
2524 return -EIO;
2525
2526 lut_buf_size = le16_to_cpu(recv_rl->lut_entries) * sizeof(u32);
2527 if (reply_sz < lut_buf_size)
2528 return -EIO;
2529
2530 /* size didn't change, we can reuse existing lut buf */
2531 if (rss_data->rss_lut_size == le16_to_cpu(recv_rl->lut_entries))
2532 goto do_memcpy;
2533
2534 rss_data->rss_lut_size = le16_to_cpu(recv_rl->lut_entries);
2535 kfree(rss_data->rss_lut);
2536
2537 rss_data->rss_lut = kzalloc(lut_buf_size, GFP_KERNEL);
2538 if (!rss_data->rss_lut) {
2539 rss_data->rss_lut_size = 0;
2540 return -ENOMEM;
2541 }
2542
2543 do_memcpy:
2544 memcpy(rss_data->rss_lut, recv_rl->lut, rss_data->rss_lut_size);
2545
2546 return 0;
2547 }
2548
2549 /**
2550 * idpf_send_get_set_rss_key_msg - Send virtchnl get or set rss key message
2551 * @vport: virtual port data structure
2552 * @get: flag to set or get rss look up table
2553 *
2554 * Returns 0 on success, negative on failure
2555 */
idpf_send_get_set_rss_key_msg(struct idpf_vport * vport,bool get)2556 int idpf_send_get_set_rss_key_msg(struct idpf_vport *vport, bool get)
2557 {
2558 struct virtchnl2_rss_key *recv_rk __free(kfree) = NULL;
2559 struct virtchnl2_rss_key *rk __free(kfree) = NULL;
2560 struct idpf_vc_xn_params xn_params = {};
2561 struct idpf_rss_data *rss_data;
2562 ssize_t reply_sz;
2563 int i, buf_size;
2564 u16 key_size;
2565
2566 rss_data =
2567 &vport->adapter->vport_config[vport->idx]->user_config.rss_data;
2568 buf_size = struct_size(rk, key_flex, rss_data->rss_key_size);
2569 rk = kzalloc(buf_size, GFP_KERNEL);
2570 if (!rk)
2571 return -ENOMEM;
2572
2573 rk->vport_id = cpu_to_le32(vport->vport_id);
2574 xn_params.send_buf.iov_base = rk;
2575 xn_params.send_buf.iov_len = buf_size;
2576 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2577 if (get) {
2578 recv_rk = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2579 if (!recv_rk)
2580 return -ENOMEM;
2581
2582 xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_KEY;
2583 xn_params.recv_buf.iov_base = recv_rk;
2584 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2585 } else {
2586 rk->key_len = cpu_to_le16(rss_data->rss_key_size);
2587 for (i = 0; i < rss_data->rss_key_size; i++)
2588 rk->key_flex[i] = rss_data->rss_key[i];
2589
2590 xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_KEY;
2591 }
2592
2593 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2594 if (reply_sz < 0)
2595 return reply_sz;
2596 if (!get)
2597 return 0;
2598 if (reply_sz < sizeof(struct virtchnl2_rss_key))
2599 return -EIO;
2600
2601 key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
2602 le16_to_cpu(recv_rk->key_len));
2603 if (reply_sz < key_size)
2604 return -EIO;
2605
2606 /* key len didn't change, reuse existing buf */
2607 if (rss_data->rss_key_size == key_size)
2608 goto do_memcpy;
2609
2610 rss_data->rss_key_size = key_size;
2611 kfree(rss_data->rss_key);
2612 rss_data->rss_key = kzalloc(key_size, GFP_KERNEL);
2613 if (!rss_data->rss_key) {
2614 rss_data->rss_key_size = 0;
2615 return -ENOMEM;
2616 }
2617
2618 do_memcpy:
2619 memcpy(rss_data->rss_key, recv_rk->key_flex, rss_data->rss_key_size);
2620
2621 return 0;
2622 }
2623
2624 /**
2625 * idpf_fill_ptype_lookup - Fill L3 specific fields in ptype lookup table
2626 * @ptype: ptype lookup table
2627 * @pstate: state machine for ptype lookup table
2628 * @ipv4: ipv4 or ipv6
2629 * @frag: fragmentation allowed
2630 *
2631 */
idpf_fill_ptype_lookup(struct libeth_rx_pt * ptype,struct idpf_ptype_state * pstate,bool ipv4,bool frag)2632 static void idpf_fill_ptype_lookup(struct libeth_rx_pt *ptype,
2633 struct idpf_ptype_state *pstate,
2634 bool ipv4, bool frag)
2635 {
2636 if (!pstate->outer_ip || !pstate->outer_frag) {
2637 pstate->outer_ip = true;
2638
2639 if (ipv4)
2640 ptype->outer_ip = LIBETH_RX_PT_OUTER_IPV4;
2641 else
2642 ptype->outer_ip = LIBETH_RX_PT_OUTER_IPV6;
2643
2644 if (frag) {
2645 ptype->outer_frag = LIBETH_RX_PT_FRAG;
2646 pstate->outer_frag = true;
2647 }
2648 } else {
2649 ptype->tunnel_type = LIBETH_RX_PT_TUNNEL_IP_IP;
2650 pstate->tunnel_state = IDPF_PTYPE_TUNNEL_IP;
2651
2652 if (ipv4)
2653 ptype->tunnel_end_prot = LIBETH_RX_PT_TUNNEL_END_IPV4;
2654 else
2655 ptype->tunnel_end_prot = LIBETH_RX_PT_TUNNEL_END_IPV6;
2656
2657 if (frag)
2658 ptype->tunnel_end_frag = LIBETH_RX_PT_FRAG;
2659 }
2660 }
2661
idpf_finalize_ptype_lookup(struct libeth_rx_pt * ptype)2662 static void idpf_finalize_ptype_lookup(struct libeth_rx_pt *ptype)
2663 {
2664 if (ptype->payload_layer == LIBETH_RX_PT_PAYLOAD_L2 &&
2665 ptype->inner_prot)
2666 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L4;
2667 else if (ptype->payload_layer == LIBETH_RX_PT_PAYLOAD_L2 &&
2668 ptype->outer_ip)
2669 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L3;
2670 else if (ptype->outer_ip == LIBETH_RX_PT_OUTER_L2)
2671 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L2;
2672 else
2673 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_NONE;
2674
2675 libeth_rx_pt_gen_hash_type(ptype);
2676 }
2677
2678 /**
2679 * idpf_send_get_rx_ptype_msg - Send virtchnl for ptype info
2680 * @vport: virtual port data structure
2681 *
2682 * Returns 0 on success, negative on failure.
2683 */
idpf_send_get_rx_ptype_msg(struct idpf_vport * vport)2684 int idpf_send_get_rx_ptype_msg(struct idpf_vport *vport)
2685 {
2686 struct virtchnl2_get_ptype_info *get_ptype_info __free(kfree) = NULL;
2687 struct virtchnl2_get_ptype_info *ptype_info __free(kfree) = NULL;
2688 struct libeth_rx_pt *ptype_lkup __free(kfree) = NULL;
2689 int max_ptype, ptypes_recvd = 0, ptype_offset;
2690 struct idpf_adapter *adapter = vport->adapter;
2691 struct idpf_vc_xn_params xn_params = {};
2692 u16 next_ptype_id = 0;
2693 ssize_t reply_sz;
2694 int i, j, k;
2695
2696 if (vport->rx_ptype_lkup)
2697 return 0;
2698
2699 if (idpf_is_queue_model_split(vport->rxq_model))
2700 max_ptype = IDPF_RX_MAX_PTYPE;
2701 else
2702 max_ptype = IDPF_RX_MAX_BASE_PTYPE;
2703
2704 ptype_lkup = kcalloc(max_ptype, sizeof(*ptype_lkup), GFP_KERNEL);
2705 if (!ptype_lkup)
2706 return -ENOMEM;
2707
2708 get_ptype_info = kzalloc(sizeof(*get_ptype_info), GFP_KERNEL);
2709 if (!get_ptype_info)
2710 return -ENOMEM;
2711
2712 ptype_info = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2713 if (!ptype_info)
2714 return -ENOMEM;
2715
2716 xn_params.vc_op = VIRTCHNL2_OP_GET_PTYPE_INFO;
2717 xn_params.send_buf.iov_base = get_ptype_info;
2718 xn_params.send_buf.iov_len = sizeof(*get_ptype_info);
2719 xn_params.recv_buf.iov_base = ptype_info;
2720 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2721 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2722
2723 while (next_ptype_id < max_ptype) {
2724 get_ptype_info->start_ptype_id = cpu_to_le16(next_ptype_id);
2725
2726 if ((next_ptype_id + IDPF_RX_MAX_PTYPES_PER_BUF) > max_ptype)
2727 get_ptype_info->num_ptypes =
2728 cpu_to_le16(max_ptype - next_ptype_id);
2729 else
2730 get_ptype_info->num_ptypes =
2731 cpu_to_le16(IDPF_RX_MAX_PTYPES_PER_BUF);
2732
2733 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2734 if (reply_sz < 0)
2735 return reply_sz;
2736
2737 ptypes_recvd += le16_to_cpu(ptype_info->num_ptypes);
2738 if (ptypes_recvd > max_ptype)
2739 return -EINVAL;
2740
2741 next_ptype_id = le16_to_cpu(get_ptype_info->start_ptype_id) +
2742 le16_to_cpu(get_ptype_info->num_ptypes);
2743
2744 ptype_offset = IDPF_RX_PTYPE_HDR_SZ;
2745
2746 for (i = 0; i < le16_to_cpu(ptype_info->num_ptypes); i++) {
2747 struct idpf_ptype_state pstate = { };
2748 struct virtchnl2_ptype *ptype;
2749 u16 id;
2750
2751 ptype = (struct virtchnl2_ptype *)
2752 ((u8 *)ptype_info + ptype_offset);
2753
2754 ptype_offset += IDPF_GET_PTYPE_SIZE(ptype);
2755 if (ptype_offset > IDPF_CTLQ_MAX_BUF_LEN)
2756 return -EINVAL;
2757
2758 /* 0xFFFF indicates end of ptypes */
2759 if (le16_to_cpu(ptype->ptype_id_10) ==
2760 IDPF_INVALID_PTYPE_ID)
2761 goto out;
2762
2763 if (idpf_is_queue_model_split(vport->rxq_model))
2764 k = le16_to_cpu(ptype->ptype_id_10);
2765 else
2766 k = ptype->ptype_id_8;
2767
2768 for (j = 0; j < ptype->proto_id_count; j++) {
2769 id = le16_to_cpu(ptype->proto_id[j]);
2770 switch (id) {
2771 case VIRTCHNL2_PROTO_HDR_GRE:
2772 if (pstate.tunnel_state ==
2773 IDPF_PTYPE_TUNNEL_IP) {
2774 ptype_lkup[k].tunnel_type =
2775 LIBETH_RX_PT_TUNNEL_IP_GRENAT;
2776 pstate.tunnel_state |=
2777 IDPF_PTYPE_TUNNEL_IP_GRENAT;
2778 }
2779 break;
2780 case VIRTCHNL2_PROTO_HDR_MAC:
2781 ptype_lkup[k].outer_ip =
2782 LIBETH_RX_PT_OUTER_L2;
2783 if (pstate.tunnel_state ==
2784 IDPF_TUN_IP_GRE) {
2785 ptype_lkup[k].tunnel_type =
2786 LIBETH_RX_PT_TUNNEL_IP_GRENAT_MAC;
2787 pstate.tunnel_state |=
2788 IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC;
2789 }
2790 break;
2791 case VIRTCHNL2_PROTO_HDR_IPV4:
2792 idpf_fill_ptype_lookup(&ptype_lkup[k],
2793 &pstate, true,
2794 false);
2795 break;
2796 case VIRTCHNL2_PROTO_HDR_IPV6:
2797 idpf_fill_ptype_lookup(&ptype_lkup[k],
2798 &pstate, false,
2799 false);
2800 break;
2801 case VIRTCHNL2_PROTO_HDR_IPV4_FRAG:
2802 idpf_fill_ptype_lookup(&ptype_lkup[k],
2803 &pstate, true,
2804 true);
2805 break;
2806 case VIRTCHNL2_PROTO_HDR_IPV6_FRAG:
2807 idpf_fill_ptype_lookup(&ptype_lkup[k],
2808 &pstate, false,
2809 true);
2810 break;
2811 case VIRTCHNL2_PROTO_HDR_UDP:
2812 ptype_lkup[k].inner_prot =
2813 LIBETH_RX_PT_INNER_UDP;
2814 break;
2815 case VIRTCHNL2_PROTO_HDR_TCP:
2816 ptype_lkup[k].inner_prot =
2817 LIBETH_RX_PT_INNER_TCP;
2818 break;
2819 case VIRTCHNL2_PROTO_HDR_SCTP:
2820 ptype_lkup[k].inner_prot =
2821 LIBETH_RX_PT_INNER_SCTP;
2822 break;
2823 case VIRTCHNL2_PROTO_HDR_ICMP:
2824 ptype_lkup[k].inner_prot =
2825 LIBETH_RX_PT_INNER_ICMP;
2826 break;
2827 case VIRTCHNL2_PROTO_HDR_PAY:
2828 ptype_lkup[k].payload_layer =
2829 LIBETH_RX_PT_PAYLOAD_L2;
2830 break;
2831 case VIRTCHNL2_PROTO_HDR_ICMPV6:
2832 case VIRTCHNL2_PROTO_HDR_IPV6_EH:
2833 case VIRTCHNL2_PROTO_HDR_PRE_MAC:
2834 case VIRTCHNL2_PROTO_HDR_POST_MAC:
2835 case VIRTCHNL2_PROTO_HDR_ETHERTYPE:
2836 case VIRTCHNL2_PROTO_HDR_SVLAN:
2837 case VIRTCHNL2_PROTO_HDR_CVLAN:
2838 case VIRTCHNL2_PROTO_HDR_MPLS:
2839 case VIRTCHNL2_PROTO_HDR_MMPLS:
2840 case VIRTCHNL2_PROTO_HDR_PTP:
2841 case VIRTCHNL2_PROTO_HDR_CTRL:
2842 case VIRTCHNL2_PROTO_HDR_LLDP:
2843 case VIRTCHNL2_PROTO_HDR_ARP:
2844 case VIRTCHNL2_PROTO_HDR_ECP:
2845 case VIRTCHNL2_PROTO_HDR_EAPOL:
2846 case VIRTCHNL2_PROTO_HDR_PPPOD:
2847 case VIRTCHNL2_PROTO_HDR_PPPOE:
2848 case VIRTCHNL2_PROTO_HDR_IGMP:
2849 case VIRTCHNL2_PROTO_HDR_AH:
2850 case VIRTCHNL2_PROTO_HDR_ESP:
2851 case VIRTCHNL2_PROTO_HDR_IKE:
2852 case VIRTCHNL2_PROTO_HDR_NATT_KEEP:
2853 case VIRTCHNL2_PROTO_HDR_L2TPV2:
2854 case VIRTCHNL2_PROTO_HDR_L2TPV2_CONTROL:
2855 case VIRTCHNL2_PROTO_HDR_L2TPV3:
2856 case VIRTCHNL2_PROTO_HDR_GTP:
2857 case VIRTCHNL2_PROTO_HDR_GTP_EH:
2858 case VIRTCHNL2_PROTO_HDR_GTPCV2:
2859 case VIRTCHNL2_PROTO_HDR_GTPC_TEID:
2860 case VIRTCHNL2_PROTO_HDR_GTPU:
2861 case VIRTCHNL2_PROTO_HDR_GTPU_UL:
2862 case VIRTCHNL2_PROTO_HDR_GTPU_DL:
2863 case VIRTCHNL2_PROTO_HDR_ECPRI:
2864 case VIRTCHNL2_PROTO_HDR_VRRP:
2865 case VIRTCHNL2_PROTO_HDR_OSPF:
2866 case VIRTCHNL2_PROTO_HDR_TUN:
2867 case VIRTCHNL2_PROTO_HDR_NVGRE:
2868 case VIRTCHNL2_PROTO_HDR_VXLAN:
2869 case VIRTCHNL2_PROTO_HDR_VXLAN_GPE:
2870 case VIRTCHNL2_PROTO_HDR_GENEVE:
2871 case VIRTCHNL2_PROTO_HDR_NSH:
2872 case VIRTCHNL2_PROTO_HDR_QUIC:
2873 case VIRTCHNL2_PROTO_HDR_PFCP:
2874 case VIRTCHNL2_PROTO_HDR_PFCP_NODE:
2875 case VIRTCHNL2_PROTO_HDR_PFCP_SESSION:
2876 case VIRTCHNL2_PROTO_HDR_RTP:
2877 case VIRTCHNL2_PROTO_HDR_NO_PROTO:
2878 break;
2879 default:
2880 break;
2881 }
2882 }
2883
2884 idpf_finalize_ptype_lookup(&ptype_lkup[k]);
2885 }
2886 }
2887
2888 out:
2889 vport->rx_ptype_lkup = no_free_ptr(ptype_lkup);
2890
2891 return 0;
2892 }
2893
2894 /**
2895 * idpf_send_ena_dis_loopback_msg - Send virtchnl enable/disable loopback
2896 * message
2897 * @vport: virtual port data structure
2898 *
2899 * Returns 0 on success, negative on failure.
2900 */
idpf_send_ena_dis_loopback_msg(struct idpf_vport * vport)2901 int idpf_send_ena_dis_loopback_msg(struct idpf_vport *vport)
2902 {
2903 struct idpf_vc_xn_params xn_params = {};
2904 struct virtchnl2_loopback loopback;
2905 ssize_t reply_sz;
2906
2907 loopback.vport_id = cpu_to_le32(vport->vport_id);
2908 loopback.enable = idpf_is_feature_ena(vport, NETIF_F_LOOPBACK);
2909
2910 xn_params.vc_op = VIRTCHNL2_OP_LOOPBACK;
2911 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2912 xn_params.send_buf.iov_base = &loopback;
2913 xn_params.send_buf.iov_len = sizeof(loopback);
2914 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2915
2916 return reply_sz < 0 ? reply_sz : 0;
2917 }
2918
2919 /**
2920 * idpf_find_ctlq - Given a type and id, find ctlq info
2921 * @hw: hardware struct
2922 * @type: type of ctrlq to find
2923 * @id: ctlq id to find
2924 *
2925 * Returns pointer to found ctlq info struct, NULL otherwise.
2926 */
idpf_find_ctlq(struct idpf_hw * hw,enum idpf_ctlq_type type,int id)2927 static struct idpf_ctlq_info *idpf_find_ctlq(struct idpf_hw *hw,
2928 enum idpf_ctlq_type type, int id)
2929 {
2930 struct idpf_ctlq_info *cq, *tmp;
2931
2932 list_for_each_entry_safe(cq, tmp, &hw->cq_list_head, cq_list)
2933 if (cq->q_id == id && cq->cq_type == type)
2934 return cq;
2935
2936 return NULL;
2937 }
2938
2939 /**
2940 * idpf_init_dflt_mbx - Setup default mailbox parameters and make request
2941 * @adapter: adapter info struct
2942 *
2943 * Returns 0 on success, negative otherwise
2944 */
idpf_init_dflt_mbx(struct idpf_adapter * adapter)2945 int idpf_init_dflt_mbx(struct idpf_adapter *adapter)
2946 {
2947 struct idpf_ctlq_create_info ctlq_info[] = {
2948 {
2949 .type = IDPF_CTLQ_TYPE_MAILBOX_TX,
2950 .id = IDPF_DFLT_MBX_ID,
2951 .len = IDPF_DFLT_MBX_Q_LEN,
2952 .buf_size = IDPF_CTLQ_MAX_BUF_LEN
2953 },
2954 {
2955 .type = IDPF_CTLQ_TYPE_MAILBOX_RX,
2956 .id = IDPF_DFLT_MBX_ID,
2957 .len = IDPF_DFLT_MBX_Q_LEN,
2958 .buf_size = IDPF_CTLQ_MAX_BUF_LEN
2959 }
2960 };
2961 struct idpf_hw *hw = &adapter->hw;
2962 int err;
2963
2964 adapter->dev_ops.reg_ops.ctlq_reg_init(adapter, ctlq_info);
2965
2966 err = idpf_ctlq_init(hw, IDPF_NUM_DFLT_MBX_Q, ctlq_info);
2967 if (err)
2968 return err;
2969
2970 hw->asq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_TX,
2971 IDPF_DFLT_MBX_ID);
2972 hw->arq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_RX,
2973 IDPF_DFLT_MBX_ID);
2974
2975 if (!hw->asq || !hw->arq) {
2976 idpf_ctlq_deinit(hw);
2977
2978 return -ENOENT;
2979 }
2980
2981 adapter->state = __IDPF_VER_CHECK;
2982
2983 return 0;
2984 }
2985
2986 /**
2987 * idpf_deinit_dflt_mbx - Free up ctlqs setup
2988 * @adapter: Driver specific private data structure
2989 */
idpf_deinit_dflt_mbx(struct idpf_adapter * adapter)2990 void idpf_deinit_dflt_mbx(struct idpf_adapter *adapter)
2991 {
2992 if (adapter->hw.arq && adapter->hw.asq) {
2993 idpf_mb_clean(adapter);
2994 idpf_ctlq_deinit(&adapter->hw);
2995 }
2996 adapter->hw.arq = NULL;
2997 adapter->hw.asq = NULL;
2998 }
2999
3000 /**
3001 * idpf_vport_params_buf_rel - Release memory for MailBox resources
3002 * @adapter: Driver specific private data structure
3003 *
3004 * Will release memory to hold the vport parameters received on MailBox
3005 */
idpf_vport_params_buf_rel(struct idpf_adapter * adapter)3006 static void idpf_vport_params_buf_rel(struct idpf_adapter *adapter)
3007 {
3008 kfree(adapter->vport_params_recvd);
3009 adapter->vport_params_recvd = NULL;
3010 kfree(adapter->vport_params_reqd);
3011 adapter->vport_params_reqd = NULL;
3012 kfree(adapter->vport_ids);
3013 adapter->vport_ids = NULL;
3014 }
3015
3016 /**
3017 * idpf_vport_params_buf_alloc - Allocate memory for MailBox resources
3018 * @adapter: Driver specific private data structure
3019 *
3020 * Will alloc memory to hold the vport parameters received on MailBox
3021 */
idpf_vport_params_buf_alloc(struct idpf_adapter * adapter)3022 static int idpf_vport_params_buf_alloc(struct idpf_adapter *adapter)
3023 {
3024 u16 num_max_vports = idpf_get_max_vports(adapter);
3025
3026 adapter->vport_params_reqd = kcalloc(num_max_vports,
3027 sizeof(*adapter->vport_params_reqd),
3028 GFP_KERNEL);
3029 if (!adapter->vport_params_reqd)
3030 return -ENOMEM;
3031
3032 adapter->vport_params_recvd = kcalloc(num_max_vports,
3033 sizeof(*adapter->vport_params_recvd),
3034 GFP_KERNEL);
3035 if (!adapter->vport_params_recvd)
3036 goto err_mem;
3037
3038 adapter->vport_ids = kcalloc(num_max_vports, sizeof(u32), GFP_KERNEL);
3039 if (!adapter->vport_ids)
3040 goto err_mem;
3041
3042 if (adapter->vport_config)
3043 return 0;
3044
3045 adapter->vport_config = kcalloc(num_max_vports,
3046 sizeof(*adapter->vport_config),
3047 GFP_KERNEL);
3048 if (!adapter->vport_config)
3049 goto err_mem;
3050
3051 return 0;
3052
3053 err_mem:
3054 idpf_vport_params_buf_rel(adapter);
3055
3056 return -ENOMEM;
3057 }
3058
3059 /**
3060 * idpf_vc_core_init - Initialize state machine and get driver specific
3061 * resources
3062 * @adapter: Driver specific private structure
3063 *
3064 * This function will initialize the state machine and request all necessary
3065 * resources required by the device driver. Once the state machine is
3066 * initialized, allocate memory to store vport specific information and also
3067 * requests required interrupts.
3068 *
3069 * Returns 0 on success, -EAGAIN function will get called again,
3070 * otherwise negative on failure.
3071 */
idpf_vc_core_init(struct idpf_adapter * adapter)3072 int idpf_vc_core_init(struct idpf_adapter *adapter)
3073 {
3074 int task_delay = 30;
3075 u16 num_max_vports;
3076 int err = 0;
3077
3078 if (!adapter->vcxn_mngr) {
3079 adapter->vcxn_mngr = kzalloc(sizeof(*adapter->vcxn_mngr), GFP_KERNEL);
3080 if (!adapter->vcxn_mngr) {
3081 err = -ENOMEM;
3082 goto init_failed;
3083 }
3084 }
3085 idpf_vc_xn_init(adapter->vcxn_mngr);
3086
3087 while (adapter->state != __IDPF_INIT_SW) {
3088 switch (adapter->state) {
3089 case __IDPF_VER_CHECK:
3090 err = idpf_send_ver_msg(adapter);
3091 switch (err) {
3092 case 0:
3093 /* success, move state machine forward */
3094 adapter->state = __IDPF_GET_CAPS;
3095 fallthrough;
3096 case -EAGAIN:
3097 goto restart;
3098 default:
3099 /* Something bad happened, try again but only a
3100 * few times.
3101 */
3102 goto init_failed;
3103 }
3104 case __IDPF_GET_CAPS:
3105 err = idpf_send_get_caps_msg(adapter);
3106 if (err)
3107 goto init_failed;
3108 adapter->state = __IDPF_INIT_SW;
3109 break;
3110 default:
3111 dev_err(&adapter->pdev->dev, "Device is in bad state: %d\n",
3112 adapter->state);
3113 err = -EINVAL;
3114 goto init_failed;
3115 }
3116 break;
3117 restart:
3118 /* Give enough time before proceeding further with
3119 * state machine
3120 */
3121 msleep(task_delay);
3122 }
3123
3124 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_LAN_MEMORY_REGIONS)) {
3125 err = idpf_send_get_lan_memory_regions(adapter);
3126 if (err) {
3127 dev_err(&adapter->pdev->dev, "Failed to get LAN memory regions: %d\n",
3128 err);
3129 return -EINVAL;
3130 }
3131 } else {
3132 /* Fallback to mapping the remaining regions of the entire BAR */
3133 err = idpf_calc_remaining_mmio_regs(adapter);
3134 if (err) {
3135 dev_err(&adapter->pdev->dev, "Failed to allocate BAR0 region(s): %d\n",
3136 err);
3137 return -ENOMEM;
3138 }
3139 }
3140
3141 err = idpf_map_lan_mmio_regs(adapter);
3142 if (err) {
3143 dev_err(&adapter->pdev->dev, "Failed to map BAR0 region(s): %d\n",
3144 err);
3145 return -ENOMEM;
3146 }
3147
3148 pci_sriov_set_totalvfs(adapter->pdev, idpf_get_max_vfs(adapter));
3149 num_max_vports = idpf_get_max_vports(adapter);
3150 adapter->max_vports = num_max_vports;
3151 adapter->vports = kcalloc(num_max_vports, sizeof(*adapter->vports),
3152 GFP_KERNEL);
3153 if (!adapter->vports)
3154 return -ENOMEM;
3155
3156 if (!adapter->netdevs) {
3157 adapter->netdevs = kcalloc(num_max_vports,
3158 sizeof(struct net_device *),
3159 GFP_KERNEL);
3160 if (!adapter->netdevs) {
3161 err = -ENOMEM;
3162 goto err_netdev_alloc;
3163 }
3164 }
3165
3166 err = idpf_vport_params_buf_alloc(adapter);
3167 if (err) {
3168 dev_err(&adapter->pdev->dev, "Failed to alloc vport params buffer: %d\n",
3169 err);
3170 goto err_netdev_alloc;
3171 }
3172
3173 /* Start the mailbox task before requesting vectors. This will ensure
3174 * vector information response from mailbox is handled
3175 */
3176 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
3177
3178 queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
3179 msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
3180
3181 err = idpf_intr_req(adapter);
3182 if (err) {
3183 dev_err(&adapter->pdev->dev, "failed to enable interrupt vectors: %d\n",
3184 err);
3185 goto err_intr_req;
3186 }
3187
3188 err = idpf_ptp_init(adapter);
3189 if (err)
3190 pci_err(adapter->pdev, "PTP init failed, err=%pe\n",
3191 ERR_PTR(err));
3192
3193 idpf_init_avail_queues(adapter);
3194
3195 /* Skew the delay for init tasks for each function based on fn number
3196 * to prevent every function from making the same call simultaneously.
3197 */
3198 queue_delayed_work(adapter->init_wq, &adapter->init_task,
3199 msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
3200
3201 set_bit(IDPF_VC_CORE_INIT, adapter->flags);
3202
3203 return 0;
3204
3205 err_intr_req:
3206 cancel_delayed_work_sync(&adapter->serv_task);
3207 cancel_delayed_work_sync(&adapter->mbx_task);
3208 idpf_vport_params_buf_rel(adapter);
3209 err_netdev_alloc:
3210 kfree(adapter->vports);
3211 adapter->vports = NULL;
3212 return err;
3213
3214 init_failed:
3215 /* Don't retry if we're trying to go down, just bail. */
3216 if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
3217 return err;
3218
3219 if (++adapter->mb_wait_count > IDPF_MB_MAX_ERR) {
3220 dev_err(&adapter->pdev->dev, "Failed to establish mailbox communications with hardware\n");
3221
3222 return -EFAULT;
3223 }
3224 /* If it reached here, it is possible that mailbox queue initialization
3225 * register writes might not have taken effect. Retry to initialize
3226 * the mailbox again
3227 */
3228 adapter->state = __IDPF_VER_CHECK;
3229 if (adapter->vcxn_mngr)
3230 idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3231 set_bit(IDPF_HR_DRV_LOAD, adapter->flags);
3232 queue_delayed_work(adapter->vc_event_wq, &adapter->vc_event_task,
3233 msecs_to_jiffies(task_delay));
3234
3235 return -EAGAIN;
3236 }
3237
3238 /**
3239 * idpf_vc_core_deinit - Device deinit routine
3240 * @adapter: Driver specific private structure
3241 *
3242 */
idpf_vc_core_deinit(struct idpf_adapter * adapter)3243 void idpf_vc_core_deinit(struct idpf_adapter *adapter)
3244 {
3245 bool remove_in_prog;
3246
3247 if (!test_bit(IDPF_VC_CORE_INIT, adapter->flags))
3248 return;
3249
3250 /* Avoid transaction timeouts when called during reset */
3251 remove_in_prog = test_bit(IDPF_REMOVE_IN_PROG, adapter->flags);
3252 if (!remove_in_prog)
3253 idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3254
3255 idpf_ptp_release(adapter);
3256 idpf_deinit_task(adapter);
3257 idpf_idc_deinit_core_aux_device(adapter->cdev_info);
3258 idpf_intr_rel(adapter);
3259
3260 if (remove_in_prog)
3261 idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3262
3263 cancel_delayed_work_sync(&adapter->serv_task);
3264 cancel_delayed_work_sync(&adapter->mbx_task);
3265
3266 idpf_vport_params_buf_rel(adapter);
3267
3268 kfree(adapter->vports);
3269 adapter->vports = NULL;
3270
3271 clear_bit(IDPF_VC_CORE_INIT, adapter->flags);
3272 }
3273
3274 /**
3275 * idpf_vport_alloc_vec_indexes - Get relative vector indexes
3276 * @vport: virtual port data struct
3277 *
3278 * This function requests the vector information required for the vport and
3279 * stores the vector indexes received from the 'global vector distribution'
3280 * in the vport's queue vectors array.
3281 *
3282 * Return 0 on success, error on failure
3283 */
idpf_vport_alloc_vec_indexes(struct idpf_vport * vport)3284 int idpf_vport_alloc_vec_indexes(struct idpf_vport *vport)
3285 {
3286 struct idpf_vector_info vec_info;
3287 int num_alloc_vecs;
3288
3289 vec_info.num_curr_vecs = vport->num_q_vectors;
3290 vec_info.num_req_vecs = max(vport->num_txq, vport->num_rxq);
3291 vec_info.default_vport = vport->default_vport;
3292 vec_info.index = vport->idx;
3293
3294 num_alloc_vecs = idpf_req_rel_vector_indexes(vport->adapter,
3295 vport->q_vector_idxs,
3296 &vec_info);
3297 if (num_alloc_vecs <= 0) {
3298 dev_err(&vport->adapter->pdev->dev, "Vector distribution failed: %d\n",
3299 num_alloc_vecs);
3300 return -EINVAL;
3301 }
3302
3303 vport->num_q_vectors = num_alloc_vecs;
3304
3305 return 0;
3306 }
3307
3308 /**
3309 * idpf_vport_init - Initialize virtual port
3310 * @vport: virtual port to be initialized
3311 * @max_q: vport max queue info
3312 *
3313 * Will initialize vport with the info received through MB earlier
3314 */
idpf_vport_init(struct idpf_vport * vport,struct idpf_vport_max_q * max_q)3315 void idpf_vport_init(struct idpf_vport *vport, struct idpf_vport_max_q *max_q)
3316 {
3317 struct idpf_adapter *adapter = vport->adapter;
3318 struct virtchnl2_create_vport *vport_msg;
3319 struct idpf_vport_config *vport_config;
3320 u16 tx_itr[] = {2, 8, 64, 128, 256};
3321 u16 rx_itr[] = {2, 8, 32, 96, 128};
3322 struct idpf_rss_data *rss_data;
3323 u16 idx = vport->idx;
3324 int err;
3325
3326 vport_config = adapter->vport_config[idx];
3327 rss_data = &vport_config->user_config.rss_data;
3328 vport_msg = adapter->vport_params_recvd[idx];
3329
3330 vport_config->max_q.max_txq = max_q->max_txq;
3331 vport_config->max_q.max_rxq = max_q->max_rxq;
3332 vport_config->max_q.max_complq = max_q->max_complq;
3333 vport_config->max_q.max_bufq = max_q->max_bufq;
3334
3335 vport->txq_model = le16_to_cpu(vport_msg->txq_model);
3336 vport->rxq_model = le16_to_cpu(vport_msg->rxq_model);
3337 vport->vport_type = le16_to_cpu(vport_msg->vport_type);
3338 vport->vport_id = le32_to_cpu(vport_msg->vport_id);
3339
3340 rss_data->rss_key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
3341 le16_to_cpu(vport_msg->rss_key_size));
3342 rss_data->rss_lut_size = le16_to_cpu(vport_msg->rss_lut_size);
3343
3344 ether_addr_copy(vport->default_mac_addr, vport_msg->default_mac_addr);
3345 vport->max_mtu = le16_to_cpu(vport_msg->max_mtu) - LIBETH_RX_LL_LEN;
3346
3347 /* Initialize Tx and Rx profiles for Dynamic Interrupt Moderation */
3348 memcpy(vport->rx_itr_profile, rx_itr, IDPF_DIM_PROFILE_SLOTS);
3349 memcpy(vport->tx_itr_profile, tx_itr, IDPF_DIM_PROFILE_SLOTS);
3350
3351 idpf_vport_set_hsplit(vport, ETHTOOL_TCP_DATA_SPLIT_ENABLED);
3352
3353 idpf_vport_init_num_qs(vport, vport_msg);
3354 idpf_vport_calc_num_q_desc(vport);
3355 idpf_vport_calc_num_q_groups(vport);
3356 idpf_vport_alloc_vec_indexes(vport);
3357
3358 vport->crc_enable = adapter->crc_enable;
3359
3360 if (!(vport_msg->vport_flags &
3361 cpu_to_le16(VIRTCHNL2_VPORT_UPLINK_PORT)))
3362 return;
3363
3364 err = idpf_ptp_get_vport_tstamps_caps(vport);
3365 if (err) {
3366 pci_dbg(vport->adapter->pdev, "Tx timestamping not supported\n");
3367 return;
3368 }
3369
3370 INIT_WORK(&vport->tstamp_task, idpf_tstamp_task);
3371 }
3372
3373 /**
3374 * idpf_get_vec_ids - Initialize vector id from Mailbox parameters
3375 * @adapter: adapter structure to get the mailbox vector id
3376 * @vecids: Array of vector ids
3377 * @num_vecids: number of vector ids
3378 * @chunks: vector ids received over mailbox
3379 *
3380 * Will initialize the mailbox vector id which is received from the
3381 * get capabilities and data queue vector ids with ids received as
3382 * mailbox parameters.
3383 * Returns number of ids filled
3384 */
idpf_get_vec_ids(struct idpf_adapter * adapter,u16 * vecids,int num_vecids,struct virtchnl2_vector_chunks * chunks)3385 int idpf_get_vec_ids(struct idpf_adapter *adapter,
3386 u16 *vecids, int num_vecids,
3387 struct virtchnl2_vector_chunks *chunks)
3388 {
3389 u16 num_chunks = le16_to_cpu(chunks->num_vchunks);
3390 int num_vecid_filled = 0;
3391 int i, j;
3392
3393 vecids[num_vecid_filled] = adapter->mb_vector.v_idx;
3394 num_vecid_filled++;
3395
3396 for (j = 0; j < num_chunks; j++) {
3397 struct virtchnl2_vector_chunk *chunk;
3398 u16 start_vecid, num_vec;
3399
3400 chunk = &chunks->vchunks[j];
3401 num_vec = le16_to_cpu(chunk->num_vectors);
3402 start_vecid = le16_to_cpu(chunk->start_vector_id);
3403
3404 for (i = 0; i < num_vec; i++) {
3405 if ((num_vecid_filled + i) < num_vecids) {
3406 vecids[num_vecid_filled + i] = start_vecid;
3407 start_vecid++;
3408 } else {
3409 break;
3410 }
3411 }
3412 num_vecid_filled = num_vecid_filled + i;
3413 }
3414
3415 return num_vecid_filled;
3416 }
3417
3418 /**
3419 * idpf_vport_get_queue_ids - Initialize queue id from Mailbox parameters
3420 * @qids: Array of queue ids
3421 * @num_qids: number of queue ids
3422 * @q_type: queue model
3423 * @chunks: queue ids received over mailbox
3424 *
3425 * Will initialize all queue ids with ids received as mailbox parameters
3426 * Returns number of ids filled
3427 */
idpf_vport_get_queue_ids(u32 * qids,int num_qids,u16 q_type,struct virtchnl2_queue_reg_chunks * chunks)3428 static int idpf_vport_get_queue_ids(u32 *qids, int num_qids, u16 q_type,
3429 struct virtchnl2_queue_reg_chunks *chunks)
3430 {
3431 u16 num_chunks = le16_to_cpu(chunks->num_chunks);
3432 u32 num_q_id_filled = 0, i;
3433 u32 start_q_id, num_q;
3434
3435 while (num_chunks--) {
3436 struct virtchnl2_queue_reg_chunk *chunk;
3437
3438 chunk = &chunks->chunks[num_chunks];
3439 if (le32_to_cpu(chunk->type) != q_type)
3440 continue;
3441
3442 num_q = le32_to_cpu(chunk->num_queues);
3443 start_q_id = le32_to_cpu(chunk->start_queue_id);
3444
3445 for (i = 0; i < num_q; i++) {
3446 if ((num_q_id_filled + i) < num_qids) {
3447 qids[num_q_id_filled + i] = start_q_id;
3448 start_q_id++;
3449 } else {
3450 break;
3451 }
3452 }
3453 num_q_id_filled = num_q_id_filled + i;
3454 }
3455
3456 return num_q_id_filled;
3457 }
3458
3459 /**
3460 * __idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
3461 * @vport: virtual port for which the queues ids are initialized
3462 * @qids: queue ids
3463 * @num_qids: number of queue ids
3464 * @q_type: type of queue
3465 *
3466 * Will initialize all queue ids with ids received as mailbox
3467 * parameters. Returns number of queue ids initialized.
3468 */
__idpf_vport_queue_ids_init(struct idpf_vport * vport,const u32 * qids,int num_qids,u32 q_type)3469 static int __idpf_vport_queue_ids_init(struct idpf_vport *vport,
3470 const u32 *qids,
3471 int num_qids,
3472 u32 q_type)
3473 {
3474 int i, j, k = 0;
3475
3476 switch (q_type) {
3477 case VIRTCHNL2_QUEUE_TYPE_TX:
3478 for (i = 0; i < vport->num_txq_grp; i++) {
3479 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
3480
3481 for (j = 0; j < tx_qgrp->num_txq && k < num_qids; j++, k++)
3482 tx_qgrp->txqs[j]->q_id = qids[k];
3483 }
3484 break;
3485 case VIRTCHNL2_QUEUE_TYPE_RX:
3486 for (i = 0; i < vport->num_rxq_grp; i++) {
3487 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
3488 u16 num_rxq;
3489
3490 if (idpf_is_queue_model_split(vport->rxq_model))
3491 num_rxq = rx_qgrp->splitq.num_rxq_sets;
3492 else
3493 num_rxq = rx_qgrp->singleq.num_rxq;
3494
3495 for (j = 0; j < num_rxq && k < num_qids; j++, k++) {
3496 struct idpf_rx_queue *q;
3497
3498 if (idpf_is_queue_model_split(vport->rxq_model))
3499 q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
3500 else
3501 q = rx_qgrp->singleq.rxqs[j];
3502 q->q_id = qids[k];
3503 }
3504 }
3505 break;
3506 case VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION:
3507 for (i = 0; i < vport->num_txq_grp && k < num_qids; i++, k++) {
3508 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
3509
3510 tx_qgrp->complq->q_id = qids[k];
3511 }
3512 break;
3513 case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
3514 for (i = 0; i < vport->num_rxq_grp; i++) {
3515 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
3516 u8 num_bufqs = vport->num_bufqs_per_qgrp;
3517
3518 for (j = 0; j < num_bufqs && k < num_qids; j++, k++) {
3519 struct idpf_buf_queue *q;
3520
3521 q = &rx_qgrp->splitq.bufq_sets[j].bufq;
3522 q->q_id = qids[k];
3523 }
3524 }
3525 break;
3526 default:
3527 break;
3528 }
3529
3530 return k;
3531 }
3532
3533 /**
3534 * idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
3535 * @vport: virtual port for which the queues ids are initialized
3536 *
3537 * Will initialize all queue ids with ids received as mailbox parameters.
3538 * Returns 0 on success, negative if all the queues are not initialized.
3539 */
idpf_vport_queue_ids_init(struct idpf_vport * vport)3540 int idpf_vport_queue_ids_init(struct idpf_vport *vport)
3541 {
3542 struct virtchnl2_create_vport *vport_params;
3543 struct virtchnl2_queue_reg_chunks *chunks;
3544 struct idpf_vport_config *vport_config;
3545 u16 vport_idx = vport->idx;
3546 int num_ids, err = 0;
3547 u16 q_type;
3548 u32 *qids;
3549
3550 vport_config = vport->adapter->vport_config[vport_idx];
3551 if (vport_config->req_qs_chunks) {
3552 struct virtchnl2_add_queues *vc_aq =
3553 (struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
3554 chunks = &vc_aq->chunks;
3555 } else {
3556 vport_params = vport->adapter->vport_params_recvd[vport_idx];
3557 chunks = &vport_params->chunks;
3558 }
3559
3560 qids = kcalloc(IDPF_MAX_QIDS, sizeof(u32), GFP_KERNEL);
3561 if (!qids)
3562 return -ENOMEM;
3563
3564 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
3565 VIRTCHNL2_QUEUE_TYPE_TX,
3566 chunks);
3567 if (num_ids < vport->num_txq) {
3568 err = -EINVAL;
3569 goto mem_rel;
3570 }
3571 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
3572 VIRTCHNL2_QUEUE_TYPE_TX);
3573 if (num_ids < vport->num_txq) {
3574 err = -EINVAL;
3575 goto mem_rel;
3576 }
3577
3578 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
3579 VIRTCHNL2_QUEUE_TYPE_RX,
3580 chunks);
3581 if (num_ids < vport->num_rxq) {
3582 err = -EINVAL;
3583 goto mem_rel;
3584 }
3585 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
3586 VIRTCHNL2_QUEUE_TYPE_RX);
3587 if (num_ids < vport->num_rxq) {
3588 err = -EINVAL;
3589 goto mem_rel;
3590 }
3591
3592 if (!idpf_is_queue_model_split(vport->txq_model))
3593 goto check_rxq;
3594
3595 q_type = VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION;
3596 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
3597 if (num_ids < vport->num_complq) {
3598 err = -EINVAL;
3599 goto mem_rel;
3600 }
3601 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
3602 if (num_ids < vport->num_complq) {
3603 err = -EINVAL;
3604 goto mem_rel;
3605 }
3606
3607 check_rxq:
3608 if (!idpf_is_queue_model_split(vport->rxq_model))
3609 goto mem_rel;
3610
3611 q_type = VIRTCHNL2_QUEUE_TYPE_RX_BUFFER;
3612 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
3613 if (num_ids < vport->num_bufq) {
3614 err = -EINVAL;
3615 goto mem_rel;
3616 }
3617 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
3618 if (num_ids < vport->num_bufq)
3619 err = -EINVAL;
3620
3621 mem_rel:
3622 kfree(qids);
3623
3624 return err;
3625 }
3626
3627 /**
3628 * idpf_vport_adjust_qs - Adjust to new requested queues
3629 * @vport: virtual port data struct
3630 *
3631 * Renegotiate queues. Returns 0 on success, negative on failure.
3632 */
idpf_vport_adjust_qs(struct idpf_vport * vport)3633 int idpf_vport_adjust_qs(struct idpf_vport *vport)
3634 {
3635 struct virtchnl2_create_vport vport_msg;
3636 int err;
3637
3638 vport_msg.txq_model = cpu_to_le16(vport->txq_model);
3639 vport_msg.rxq_model = cpu_to_le16(vport->rxq_model);
3640 err = idpf_vport_calc_total_qs(vport->adapter, vport->idx, &vport_msg,
3641 NULL);
3642 if (err)
3643 return err;
3644
3645 idpf_vport_init_num_qs(vport, &vport_msg);
3646 idpf_vport_calc_num_q_groups(vport);
3647
3648 return 0;
3649 }
3650
3651 /**
3652 * idpf_is_capability_ena - Default implementation of capability checking
3653 * @adapter: Private data struct
3654 * @all: all or one flag
3655 * @field: caps field to check for flags
3656 * @flag: flag to check
3657 *
3658 * Return true if all capabilities are supported, false otherwise
3659 */
idpf_is_capability_ena(struct idpf_adapter * adapter,bool all,enum idpf_cap_field field,u64 flag)3660 bool idpf_is_capability_ena(struct idpf_adapter *adapter, bool all,
3661 enum idpf_cap_field field, u64 flag)
3662 {
3663 u8 *caps = (u8 *)&adapter->caps;
3664 u32 *cap_field;
3665
3666 if (!caps)
3667 return false;
3668
3669 if (field == IDPF_BASE_CAPS)
3670 return false;
3671
3672 cap_field = (u32 *)(caps + field);
3673
3674 if (all)
3675 return (*cap_field & flag) == flag;
3676 else
3677 return !!(*cap_field & flag);
3678 }
3679
3680 /**
3681 * idpf_vport_is_cap_ena - Check if vport capability is enabled
3682 * @vport: Private data struct
3683 * @flag: flag(s) to check
3684 *
3685 * Return: true if the capability is supported, false otherwise
3686 */
idpf_vport_is_cap_ena(struct idpf_vport * vport,u16 flag)3687 bool idpf_vport_is_cap_ena(struct idpf_vport *vport, u16 flag)
3688 {
3689 struct virtchnl2_create_vport *vport_msg;
3690
3691 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
3692
3693 return !!(le16_to_cpu(vport_msg->vport_flags) & flag);
3694 }
3695
3696 /**
3697 * idpf_sideband_flow_type_ena - Check if steering is enabled for flow type
3698 * @vport: Private data struct
3699 * @flow_type: flow type to check (from ethtool.h)
3700 *
3701 * Return: true if sideband filters are allowed for @flow_type, false otherwise
3702 */
idpf_sideband_flow_type_ena(struct idpf_vport * vport,u32 flow_type)3703 bool idpf_sideband_flow_type_ena(struct idpf_vport *vport, u32 flow_type)
3704 {
3705 struct virtchnl2_create_vport *vport_msg;
3706 __le64 caps;
3707
3708 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
3709 caps = vport_msg->sideband_flow_caps;
3710
3711 switch (flow_type) {
3712 case TCP_V4_FLOW:
3713 return !!(caps & cpu_to_le64(VIRTCHNL2_FLOW_IPV4_TCP));
3714 case UDP_V4_FLOW:
3715 return !!(caps & cpu_to_le64(VIRTCHNL2_FLOW_IPV4_UDP));
3716 default:
3717 return false;
3718 }
3719 }
3720
3721 /**
3722 * idpf_sideband_action_ena - Check if steering is enabled for action
3723 * @vport: Private data struct
3724 * @fsp: flow spec
3725 *
3726 * Return: true if sideband filters are allowed for @fsp, false otherwise
3727 */
idpf_sideband_action_ena(struct idpf_vport * vport,struct ethtool_rx_flow_spec * fsp)3728 bool idpf_sideband_action_ena(struct idpf_vport *vport,
3729 struct ethtool_rx_flow_spec *fsp)
3730 {
3731 struct virtchnl2_create_vport *vport_msg;
3732 unsigned int supp_actions;
3733
3734 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
3735 supp_actions = le32_to_cpu(vport_msg->sideband_flow_actions);
3736
3737 /* Actions Drop/Wake are not supported */
3738 if (fsp->ring_cookie == RX_CLS_FLOW_DISC ||
3739 fsp->ring_cookie == RX_CLS_FLOW_WAKE)
3740 return false;
3741
3742 return !!(supp_actions & VIRTCHNL2_ACTION_QUEUE);
3743 }
3744
idpf_fsteer_max_rules(struct idpf_vport * vport)3745 unsigned int idpf_fsteer_max_rules(struct idpf_vport *vport)
3746 {
3747 struct virtchnl2_create_vport *vport_msg;
3748
3749 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
3750 return le32_to_cpu(vport_msg->flow_steer_max_rules);
3751 }
3752
3753 /**
3754 * idpf_get_vport_id: Get vport id
3755 * @vport: virtual port structure
3756 *
3757 * Return vport id from the adapter persistent data
3758 */
idpf_get_vport_id(struct idpf_vport * vport)3759 u32 idpf_get_vport_id(struct idpf_vport *vport)
3760 {
3761 struct virtchnl2_create_vport *vport_msg;
3762
3763 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
3764
3765 return le32_to_cpu(vport_msg->vport_id);
3766 }
3767
3768 /**
3769 * idpf_mac_filter_async_handler - Async callback for mac filters
3770 * @adapter: private data struct
3771 * @xn: transaction for message
3772 * @ctlq_msg: received message
3773 *
3774 * In some scenarios driver can't sleep and wait for a reply (e.g.: stack is
3775 * holding rtnl_lock) when adding a new mac filter. It puts us in a difficult
3776 * situation to deal with errors returned on the reply. The best we can
3777 * ultimately do is remove it from our list of mac filters and report the
3778 * error.
3779 */
idpf_mac_filter_async_handler(struct idpf_adapter * adapter,struct idpf_vc_xn * xn,const struct idpf_ctlq_msg * ctlq_msg)3780 static int idpf_mac_filter_async_handler(struct idpf_adapter *adapter,
3781 struct idpf_vc_xn *xn,
3782 const struct idpf_ctlq_msg *ctlq_msg)
3783 {
3784 struct virtchnl2_mac_addr_list *ma_list;
3785 struct idpf_vport_config *vport_config;
3786 struct virtchnl2_mac_addr *mac_addr;
3787 struct idpf_mac_filter *f, *tmp;
3788 struct list_head *ma_list_head;
3789 struct idpf_vport *vport;
3790 u16 num_entries;
3791 int i;
3792
3793 /* if success we're done, we're only here if something bad happened */
3794 if (!ctlq_msg->cookie.mbx.chnl_retval)
3795 return 0;
3796
3797 /* make sure at least struct is there */
3798 if (xn->reply_sz < sizeof(*ma_list))
3799 goto invalid_payload;
3800
3801 ma_list = ctlq_msg->ctx.indirect.payload->va;
3802 mac_addr = ma_list->mac_addr_list;
3803 num_entries = le16_to_cpu(ma_list->num_mac_addr);
3804 /* we should have received a buffer at least this big */
3805 if (xn->reply_sz < struct_size(ma_list, mac_addr_list, num_entries))
3806 goto invalid_payload;
3807
3808 vport = idpf_vid_to_vport(adapter, le32_to_cpu(ma_list->vport_id));
3809 if (!vport)
3810 goto invalid_payload;
3811
3812 vport_config = adapter->vport_config[le32_to_cpu(ma_list->vport_id)];
3813 ma_list_head = &vport_config->user_config.mac_filter_list;
3814
3815 /* We can't do much to reconcile bad filters at this point, however we
3816 * should at least remove them from our list one way or the other so we
3817 * have some idea what good filters we have.
3818 */
3819 spin_lock_bh(&vport_config->mac_filter_list_lock);
3820 list_for_each_entry_safe(f, tmp, ma_list_head, list)
3821 for (i = 0; i < num_entries; i++)
3822 if (ether_addr_equal(mac_addr[i].addr, f->macaddr))
3823 list_del(&f->list);
3824 spin_unlock_bh(&vport_config->mac_filter_list_lock);
3825 dev_err_ratelimited(&adapter->pdev->dev, "Received error sending MAC filter request (op %d)\n",
3826 xn->vc_op);
3827
3828 return 0;
3829
3830 invalid_payload:
3831 dev_err_ratelimited(&adapter->pdev->dev, "Received invalid MAC filter payload (op %d) (len %zd)\n",
3832 xn->vc_op, xn->reply_sz);
3833
3834 return -EINVAL;
3835 }
3836
3837 /**
3838 * idpf_add_del_mac_filters - Add/del mac filters
3839 * @vport: Virtual port data structure
3840 * @np: Netdev private structure
3841 * @add: Add or delete flag
3842 * @async: Don't wait for return message
3843 *
3844 * Returns 0 on success, error on failure.
3845 **/
idpf_add_del_mac_filters(struct idpf_vport * vport,struct idpf_netdev_priv * np,bool add,bool async)3846 int idpf_add_del_mac_filters(struct idpf_vport *vport,
3847 struct idpf_netdev_priv *np,
3848 bool add, bool async)
3849 {
3850 struct virtchnl2_mac_addr_list *ma_list __free(kfree) = NULL;
3851 struct virtchnl2_mac_addr *mac_addr __free(kfree) = NULL;
3852 struct idpf_adapter *adapter = np->adapter;
3853 struct idpf_vc_xn_params xn_params = {};
3854 struct idpf_vport_config *vport_config;
3855 u32 num_msgs, total_filters = 0;
3856 struct idpf_mac_filter *f;
3857 ssize_t reply_sz;
3858 int i = 0, k;
3859
3860 xn_params.vc_op = add ? VIRTCHNL2_OP_ADD_MAC_ADDR :
3861 VIRTCHNL2_OP_DEL_MAC_ADDR;
3862 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
3863 xn_params.async = async;
3864 xn_params.async_handler = idpf_mac_filter_async_handler;
3865
3866 vport_config = adapter->vport_config[np->vport_idx];
3867 spin_lock_bh(&vport_config->mac_filter_list_lock);
3868
3869 /* Find the number of newly added filters */
3870 list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
3871 list) {
3872 if (add && f->add)
3873 total_filters++;
3874 else if (!add && f->remove)
3875 total_filters++;
3876 }
3877
3878 if (!total_filters) {
3879 spin_unlock_bh(&vport_config->mac_filter_list_lock);
3880
3881 return 0;
3882 }
3883
3884 /* Fill all the new filters into virtchannel message */
3885 mac_addr = kcalloc(total_filters, sizeof(struct virtchnl2_mac_addr),
3886 GFP_ATOMIC);
3887 if (!mac_addr) {
3888 spin_unlock_bh(&vport_config->mac_filter_list_lock);
3889
3890 return -ENOMEM;
3891 }
3892
3893 list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
3894 list) {
3895 if (add && f->add) {
3896 ether_addr_copy(mac_addr[i].addr, f->macaddr);
3897 i++;
3898 f->add = false;
3899 if (i == total_filters)
3900 break;
3901 }
3902 if (!add && f->remove) {
3903 ether_addr_copy(mac_addr[i].addr, f->macaddr);
3904 i++;
3905 f->remove = false;
3906 if (i == total_filters)
3907 break;
3908 }
3909 }
3910
3911 spin_unlock_bh(&vport_config->mac_filter_list_lock);
3912
3913 /* Chunk up the filters into multiple messages to avoid
3914 * sending a control queue message buffer that is too large
3915 */
3916 num_msgs = DIV_ROUND_UP(total_filters, IDPF_NUM_FILTERS_PER_MSG);
3917
3918 for (i = 0, k = 0; i < num_msgs; i++) {
3919 u32 entries_size, buf_size, num_entries;
3920
3921 num_entries = min_t(u32, total_filters,
3922 IDPF_NUM_FILTERS_PER_MSG);
3923 entries_size = sizeof(struct virtchnl2_mac_addr) * num_entries;
3924 buf_size = struct_size(ma_list, mac_addr_list, num_entries);
3925
3926 if (!ma_list || num_entries != IDPF_NUM_FILTERS_PER_MSG) {
3927 kfree(ma_list);
3928 ma_list = kzalloc(buf_size, GFP_ATOMIC);
3929 if (!ma_list)
3930 return -ENOMEM;
3931 } else {
3932 memset(ma_list, 0, buf_size);
3933 }
3934
3935 ma_list->vport_id = cpu_to_le32(np->vport_id);
3936 ma_list->num_mac_addr = cpu_to_le16(num_entries);
3937 memcpy(ma_list->mac_addr_list, &mac_addr[k], entries_size);
3938
3939 xn_params.send_buf.iov_base = ma_list;
3940 xn_params.send_buf.iov_len = buf_size;
3941 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
3942 if (reply_sz < 0)
3943 return reply_sz;
3944
3945 k += num_entries;
3946 total_filters -= num_entries;
3947 }
3948
3949 return 0;
3950 }
3951
3952 /**
3953 * idpf_set_promiscuous - set promiscuous and send message to mailbox
3954 * @adapter: Driver specific private structure
3955 * @config_data: Vport specific config data
3956 * @vport_id: Vport identifier
3957 *
3958 * Request to enable promiscuous mode for the vport. Message is sent
3959 * asynchronously and won't wait for response. Returns 0 on success, negative
3960 * on failure;
3961 */
idpf_set_promiscuous(struct idpf_adapter * adapter,struct idpf_vport_user_config_data * config_data,u32 vport_id)3962 int idpf_set_promiscuous(struct idpf_adapter *adapter,
3963 struct idpf_vport_user_config_data *config_data,
3964 u32 vport_id)
3965 {
3966 struct idpf_vc_xn_params xn_params = {};
3967 struct virtchnl2_promisc_info vpi;
3968 ssize_t reply_sz;
3969 u16 flags = 0;
3970
3971 if (test_bit(__IDPF_PROMISC_UC, config_data->user_flags))
3972 flags |= VIRTCHNL2_UNICAST_PROMISC;
3973 if (test_bit(__IDPF_PROMISC_MC, config_data->user_flags))
3974 flags |= VIRTCHNL2_MULTICAST_PROMISC;
3975
3976 vpi.vport_id = cpu_to_le32(vport_id);
3977 vpi.flags = cpu_to_le16(flags);
3978
3979 xn_params.vc_op = VIRTCHNL2_OP_CONFIG_PROMISCUOUS_MODE;
3980 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
3981 xn_params.send_buf.iov_base = &vpi;
3982 xn_params.send_buf.iov_len = sizeof(vpi);
3983 /* setting promiscuous is only ever done asynchronously */
3984 xn_params.async = true;
3985 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
3986
3987 return reply_sz < 0 ? reply_sz : 0;
3988 }
3989
3990 /**
3991 * idpf_idc_rdma_vc_send_sync - virtchnl send callback for IDC registered drivers
3992 * @cdev_info: IDC core device info pointer
3993 * @send_msg: message to send
3994 * @msg_size: size of message to send
3995 * @recv_msg: message to populate on reception of response
3996 * @recv_len: length of message copied into recv_msg or 0 on error
3997 *
3998 * Return: 0 on success or error code on failure.
3999 */
idpf_idc_rdma_vc_send_sync(struct iidc_rdma_core_dev_info * cdev_info,u8 * send_msg,u16 msg_size,u8 * recv_msg,u16 * recv_len)4000 int idpf_idc_rdma_vc_send_sync(struct iidc_rdma_core_dev_info *cdev_info,
4001 u8 *send_msg, u16 msg_size,
4002 u8 *recv_msg, u16 *recv_len)
4003 {
4004 struct idpf_adapter *adapter = pci_get_drvdata(cdev_info->pdev);
4005 struct idpf_vc_xn_params xn_params = { };
4006 ssize_t reply_sz;
4007 u16 recv_size;
4008
4009 if (!recv_msg || !recv_len || msg_size > IDPF_CTLQ_MAX_BUF_LEN)
4010 return -EINVAL;
4011
4012 recv_size = min_t(u16, *recv_len, IDPF_CTLQ_MAX_BUF_LEN);
4013 *recv_len = 0;
4014 xn_params.vc_op = VIRTCHNL2_OP_RDMA;
4015 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
4016 xn_params.send_buf.iov_base = send_msg;
4017 xn_params.send_buf.iov_len = msg_size;
4018 xn_params.recv_buf.iov_base = recv_msg;
4019 xn_params.recv_buf.iov_len = recv_size;
4020 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
4021 if (reply_sz < 0)
4022 return reply_sz;
4023 *recv_len = reply_sz;
4024
4025 return 0;
4026 }
4027 EXPORT_SYMBOL_GPL(idpf_idc_rdma_vc_send_sync);
4028