1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (C) 2023 Intel Corporation */ 3 4 #include "idpf.h" 5 #include "idpf_virtchnl.h" 6 #include "idpf_ptp.h" 7 #include "xdp.h" 8 #include "xsk.h" 9 10 static const struct net_device_ops idpf_netdev_ops; 11 12 /** 13 * idpf_init_vector_stack - Fill the MSIX vector stack with vector index 14 * @adapter: private data struct 15 * 16 * Return 0 on success, error on failure 17 */ 18 static int idpf_init_vector_stack(struct idpf_adapter *adapter) 19 { 20 struct idpf_vector_lifo *stack; 21 u16 min_vec; 22 u32 i; 23 24 mutex_lock(&adapter->vector_lock); 25 min_vec = adapter->num_msix_entries - adapter->num_avail_msix; 26 stack = &adapter->vector_stack; 27 stack->size = adapter->num_msix_entries; 28 /* set the base and top to point at start of the 'free pool' to 29 * distribute the unused vectors on-demand basis 30 */ 31 stack->base = min_vec; 32 stack->top = min_vec; 33 34 stack->vec_idx = kcalloc(stack->size, sizeof(u16), GFP_KERNEL); 35 if (!stack->vec_idx) { 36 mutex_unlock(&adapter->vector_lock); 37 38 return -ENOMEM; 39 } 40 41 for (i = 0; i < stack->size; i++) 42 stack->vec_idx[i] = i; 43 44 mutex_unlock(&adapter->vector_lock); 45 46 return 0; 47 } 48 49 /** 50 * idpf_deinit_vector_stack - zero out the MSIX vector stack 51 * @adapter: private data struct 52 */ 53 static void idpf_deinit_vector_stack(struct idpf_adapter *adapter) 54 { 55 struct idpf_vector_lifo *stack; 56 57 mutex_lock(&adapter->vector_lock); 58 stack = &adapter->vector_stack; 59 kfree(stack->vec_idx); 60 stack->vec_idx = NULL; 61 mutex_unlock(&adapter->vector_lock); 62 } 63 64 /** 65 * idpf_mb_intr_rel_irq - Free the IRQ association with the OS 66 * @adapter: adapter structure 67 * 68 * This will also disable interrupt mode and queue up mailbox task. Mailbox 69 * task will reschedule itself if not in interrupt mode. 70 */ 71 static void idpf_mb_intr_rel_irq(struct idpf_adapter *adapter) 72 { 73 clear_bit(IDPF_MB_INTR_MODE, adapter->flags); 74 kfree(free_irq(adapter->msix_entries[0].vector, adapter)); 75 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0); 76 } 77 78 /** 79 * idpf_intr_rel - Release interrupt capabilities and free memory 80 * @adapter: adapter to disable interrupts on 81 */ 82 void idpf_intr_rel(struct idpf_adapter *adapter) 83 { 84 if (!adapter->msix_entries) 85 return; 86 87 idpf_mb_intr_rel_irq(adapter); 88 pci_free_irq_vectors(adapter->pdev); 89 idpf_send_dealloc_vectors_msg(adapter); 90 idpf_deinit_vector_stack(adapter); 91 kfree(adapter->msix_entries); 92 adapter->msix_entries = NULL; 93 kfree(adapter->rdma_msix_entries); 94 adapter->rdma_msix_entries = NULL; 95 } 96 97 /** 98 * idpf_mb_intr_clean - Interrupt handler for the mailbox 99 * @irq: interrupt number 100 * @data: pointer to the adapter structure 101 */ 102 static irqreturn_t idpf_mb_intr_clean(int __always_unused irq, void *data) 103 { 104 struct idpf_adapter *adapter = (struct idpf_adapter *)data; 105 106 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0); 107 108 return IRQ_HANDLED; 109 } 110 111 /** 112 * idpf_mb_irq_enable - Enable MSIX interrupt for the mailbox 113 * @adapter: adapter to get the hardware address for register write 114 */ 115 static void idpf_mb_irq_enable(struct idpf_adapter *adapter) 116 { 117 struct idpf_intr_reg *intr = &adapter->mb_vector.intr_reg; 118 u32 val; 119 120 val = intr->dyn_ctl_intena_m | intr->dyn_ctl_itridx_m; 121 writel(val, intr->dyn_ctl); 122 writel(intr->icr_ena_ctlq_m, intr->icr_ena); 123 } 124 125 /** 126 * idpf_mb_intr_req_irq - Request irq for the mailbox interrupt 127 * @adapter: adapter structure to pass to the mailbox irq handler 128 */ 129 static int idpf_mb_intr_req_irq(struct idpf_adapter *adapter) 130 { 131 int irq_num, mb_vidx = 0, err; 132 char *name; 133 134 irq_num = adapter->msix_entries[mb_vidx].vector; 135 name = kasprintf(GFP_KERNEL, "%s-%s-%d", 136 dev_driver_string(&adapter->pdev->dev), 137 "Mailbox", mb_vidx); 138 err = request_irq(irq_num, adapter->irq_mb_handler, 0, name, adapter); 139 if (err) { 140 dev_err(&adapter->pdev->dev, 141 "IRQ request for mailbox failed, error: %d\n", err); 142 143 return err; 144 } 145 146 set_bit(IDPF_MB_INTR_MODE, adapter->flags); 147 148 return 0; 149 } 150 151 /** 152 * idpf_mb_intr_init - Initialize the mailbox interrupt 153 * @adapter: adapter structure to store the mailbox vector 154 */ 155 static int idpf_mb_intr_init(struct idpf_adapter *adapter) 156 { 157 adapter->dev_ops.reg_ops.mb_intr_reg_init(adapter); 158 adapter->irq_mb_handler = idpf_mb_intr_clean; 159 160 return idpf_mb_intr_req_irq(adapter); 161 } 162 163 /** 164 * idpf_vector_lifo_push - push MSIX vector index onto stack 165 * @adapter: private data struct 166 * @vec_idx: vector index to store 167 */ 168 static int idpf_vector_lifo_push(struct idpf_adapter *adapter, u16 vec_idx) 169 { 170 struct idpf_vector_lifo *stack = &adapter->vector_stack; 171 172 lockdep_assert_held(&adapter->vector_lock); 173 174 if (stack->top == stack->base) { 175 dev_err(&adapter->pdev->dev, "Exceeded the vector stack limit: %d\n", 176 stack->top); 177 return -EINVAL; 178 } 179 180 stack->vec_idx[--stack->top] = vec_idx; 181 182 return 0; 183 } 184 185 /** 186 * idpf_vector_lifo_pop - pop MSIX vector index from stack 187 * @adapter: private data struct 188 */ 189 static int idpf_vector_lifo_pop(struct idpf_adapter *adapter) 190 { 191 struct idpf_vector_lifo *stack = &adapter->vector_stack; 192 193 lockdep_assert_held(&adapter->vector_lock); 194 195 if (stack->top == stack->size) { 196 dev_err(&adapter->pdev->dev, "No interrupt vectors are available to distribute!\n"); 197 198 return -EINVAL; 199 } 200 201 return stack->vec_idx[stack->top++]; 202 } 203 204 /** 205 * idpf_vector_stash - Store the vector indexes onto the stack 206 * @adapter: private data struct 207 * @q_vector_idxs: vector index array 208 * @vec_info: info related to the number of vectors 209 * 210 * This function is a no-op if there are no vectors indexes to be stashed 211 */ 212 static void idpf_vector_stash(struct idpf_adapter *adapter, u16 *q_vector_idxs, 213 struct idpf_vector_info *vec_info) 214 { 215 int i, base = 0; 216 u16 vec_idx; 217 218 lockdep_assert_held(&adapter->vector_lock); 219 220 if (!vec_info->num_curr_vecs) 221 return; 222 223 /* For default vports, no need to stash vector allocated from the 224 * default pool onto the stack 225 */ 226 if (vec_info->default_vport) 227 base = IDPF_MIN_Q_VEC; 228 229 for (i = vec_info->num_curr_vecs - 1; i >= base ; i--) { 230 vec_idx = q_vector_idxs[i]; 231 idpf_vector_lifo_push(adapter, vec_idx); 232 adapter->num_avail_msix++; 233 } 234 } 235 236 /** 237 * idpf_req_rel_vector_indexes - Request or release MSIX vector indexes 238 * @adapter: driver specific private structure 239 * @q_vector_idxs: vector index array 240 * @vec_info: info related to the number of vectors 241 * 242 * This is the core function to distribute the MSIX vectors acquired from the 243 * OS. It expects the caller to pass the number of vectors required and 244 * also previously allocated. First, it stashes previously allocated vector 245 * indexes on to the stack and then figures out if it can allocate requested 246 * vectors. It can wait on acquiring the mutex lock. If the caller passes 0 as 247 * requested vectors, then this function just stashes the already allocated 248 * vectors and returns 0. 249 * 250 * Returns actual number of vectors allocated on success, error value on failure 251 * If 0 is returned, implies the stack has no vectors to allocate which is also 252 * a failure case for the caller 253 */ 254 int idpf_req_rel_vector_indexes(struct idpf_adapter *adapter, 255 u16 *q_vector_idxs, 256 struct idpf_vector_info *vec_info) 257 { 258 u16 num_req_vecs, num_alloc_vecs = 0, max_vecs; 259 struct idpf_vector_lifo *stack; 260 int i, j, vecid; 261 262 mutex_lock(&adapter->vector_lock); 263 stack = &adapter->vector_stack; 264 num_req_vecs = vec_info->num_req_vecs; 265 266 /* Stash interrupt vector indexes onto the stack if required */ 267 idpf_vector_stash(adapter, q_vector_idxs, vec_info); 268 269 if (!num_req_vecs) 270 goto rel_lock; 271 272 if (vec_info->default_vport) { 273 /* As IDPF_MIN_Q_VEC per default vport is put aside in the 274 * default pool of the stack, use them for default vports 275 */ 276 j = vec_info->index * IDPF_MIN_Q_VEC + IDPF_MBX_Q_VEC; 277 for (i = 0; i < IDPF_MIN_Q_VEC; i++) { 278 q_vector_idxs[num_alloc_vecs++] = stack->vec_idx[j++]; 279 num_req_vecs--; 280 } 281 } 282 283 /* Find if stack has enough vector to allocate */ 284 max_vecs = min(adapter->num_avail_msix, num_req_vecs); 285 286 for (j = 0; j < max_vecs; j++) { 287 vecid = idpf_vector_lifo_pop(adapter); 288 q_vector_idxs[num_alloc_vecs++] = vecid; 289 } 290 adapter->num_avail_msix -= max_vecs; 291 292 rel_lock: 293 mutex_unlock(&adapter->vector_lock); 294 295 return num_alloc_vecs; 296 } 297 298 /** 299 * idpf_intr_req - Request interrupt capabilities 300 * @adapter: adapter to enable interrupts on 301 * 302 * Returns 0 on success, negative on failure 303 */ 304 int idpf_intr_req(struct idpf_adapter *adapter) 305 { 306 u16 num_lan_vecs, min_lan_vecs, num_rdma_vecs = 0, min_rdma_vecs = 0; 307 u16 default_vports = idpf_get_default_vports(adapter); 308 int num_q_vecs, total_vecs, num_vec_ids; 309 int min_vectors, actual_vecs, err; 310 unsigned int vector; 311 u16 *vecids; 312 int i; 313 314 total_vecs = idpf_get_reserved_vecs(adapter); 315 num_lan_vecs = total_vecs; 316 if (idpf_is_rdma_cap_ena(adapter)) { 317 num_rdma_vecs = idpf_get_reserved_rdma_vecs(adapter); 318 min_rdma_vecs = IDPF_MIN_RDMA_VEC; 319 320 if (!num_rdma_vecs) { 321 /* If idpf_get_reserved_rdma_vecs is 0, vectors are 322 * pulled from the LAN pool. 323 */ 324 num_rdma_vecs = min_rdma_vecs; 325 } else if (num_rdma_vecs < min_rdma_vecs) { 326 dev_err(&adapter->pdev->dev, 327 "Not enough vectors reserved for RDMA (min: %u, current: %u)\n", 328 min_rdma_vecs, num_rdma_vecs); 329 return -EINVAL; 330 } 331 } 332 333 num_q_vecs = total_vecs - IDPF_MBX_Q_VEC; 334 335 err = idpf_send_alloc_vectors_msg(adapter, num_q_vecs); 336 if (err) { 337 dev_err(&adapter->pdev->dev, 338 "Failed to allocate %d vectors: %d\n", num_q_vecs, err); 339 340 return -EAGAIN; 341 } 342 343 min_lan_vecs = IDPF_MBX_Q_VEC + IDPF_MIN_Q_VEC * default_vports; 344 min_vectors = min_lan_vecs + min_rdma_vecs; 345 actual_vecs = pci_alloc_irq_vectors(adapter->pdev, min_vectors, 346 total_vecs, PCI_IRQ_MSIX); 347 if (actual_vecs < 0) { 348 dev_err(&adapter->pdev->dev, "Failed to allocate minimum MSIX vectors required: %d\n", 349 min_vectors); 350 err = actual_vecs; 351 goto send_dealloc_vecs; 352 } 353 354 if (idpf_is_rdma_cap_ena(adapter)) { 355 if (actual_vecs < total_vecs) { 356 dev_warn(&adapter->pdev->dev, 357 "Warning: %d vectors requested, only %d available. Defaulting to minimum (%d) for RDMA and remaining for LAN.\n", 358 total_vecs, actual_vecs, IDPF_MIN_RDMA_VEC); 359 num_rdma_vecs = IDPF_MIN_RDMA_VEC; 360 } 361 362 adapter->rdma_msix_entries = kcalloc(num_rdma_vecs, 363 sizeof(struct msix_entry), 364 GFP_KERNEL); 365 if (!adapter->rdma_msix_entries) { 366 err = -ENOMEM; 367 goto free_irq; 368 } 369 } 370 371 num_lan_vecs = actual_vecs - num_rdma_vecs; 372 adapter->msix_entries = kcalloc(num_lan_vecs, sizeof(struct msix_entry), 373 GFP_KERNEL); 374 if (!adapter->msix_entries) { 375 err = -ENOMEM; 376 goto free_rdma_msix; 377 } 378 379 adapter->mb_vector.v_idx = le16_to_cpu(adapter->caps.mailbox_vector_id); 380 381 vecids = kcalloc(actual_vecs, sizeof(u16), GFP_KERNEL); 382 if (!vecids) { 383 err = -ENOMEM; 384 goto free_msix; 385 } 386 387 num_vec_ids = idpf_get_vec_ids(adapter, vecids, actual_vecs, 388 &adapter->req_vec_chunks->vchunks); 389 if (num_vec_ids < actual_vecs) { 390 err = -EINVAL; 391 goto free_vecids; 392 } 393 394 for (vector = 0; vector < num_lan_vecs; vector++) { 395 adapter->msix_entries[vector].entry = vecids[vector]; 396 adapter->msix_entries[vector].vector = 397 pci_irq_vector(adapter->pdev, vector); 398 } 399 for (i = 0; i < num_rdma_vecs; vector++, i++) { 400 adapter->rdma_msix_entries[i].entry = vecids[vector]; 401 adapter->rdma_msix_entries[i].vector = 402 pci_irq_vector(adapter->pdev, vector); 403 } 404 405 /* 'num_avail_msix' is used to distribute excess vectors to the vports 406 * after considering the minimum vectors required per each default 407 * vport 408 */ 409 adapter->num_avail_msix = num_lan_vecs - min_lan_vecs; 410 adapter->num_msix_entries = num_lan_vecs; 411 if (idpf_is_rdma_cap_ena(adapter)) 412 adapter->num_rdma_msix_entries = num_rdma_vecs; 413 414 /* Fill MSIX vector lifo stack with vector indexes */ 415 err = idpf_init_vector_stack(adapter); 416 if (err) 417 goto free_vecids; 418 419 err = idpf_mb_intr_init(adapter); 420 if (err) 421 goto deinit_vec_stack; 422 idpf_mb_irq_enable(adapter); 423 kfree(vecids); 424 425 return 0; 426 427 deinit_vec_stack: 428 idpf_deinit_vector_stack(adapter); 429 free_vecids: 430 kfree(vecids); 431 free_msix: 432 kfree(adapter->msix_entries); 433 adapter->msix_entries = NULL; 434 free_rdma_msix: 435 kfree(adapter->rdma_msix_entries); 436 adapter->rdma_msix_entries = NULL; 437 free_irq: 438 pci_free_irq_vectors(adapter->pdev); 439 send_dealloc_vecs: 440 idpf_send_dealloc_vectors_msg(adapter); 441 442 return err; 443 } 444 445 /** 446 * idpf_del_all_flow_steer_filters - Delete all flow steer filters in list 447 * @vport: main vport struct 448 * 449 * Takes flow_steer_list_lock spinlock. Deletes all filters 450 */ 451 static void idpf_del_all_flow_steer_filters(struct idpf_vport *vport) 452 { 453 struct idpf_vport_config *vport_config; 454 struct idpf_fsteer_fltr *f, *ftmp; 455 456 vport_config = vport->adapter->vport_config[vport->idx]; 457 458 spin_lock_bh(&vport_config->flow_steer_list_lock); 459 list_for_each_entry_safe(f, ftmp, &vport_config->user_config.flow_steer_list, 460 list) { 461 list_del(&f->list); 462 kfree(f); 463 } 464 vport_config->user_config.num_fsteer_fltrs = 0; 465 spin_unlock_bh(&vport_config->flow_steer_list_lock); 466 } 467 468 /** 469 * idpf_find_mac_filter - Search filter list for specific mac filter 470 * @vconfig: Vport config structure 471 * @macaddr: The MAC address 472 * 473 * Returns ptr to the filter object or NULL. Must be called while holding the 474 * mac_filter_list_lock. 475 **/ 476 static struct idpf_mac_filter *idpf_find_mac_filter(struct idpf_vport_config *vconfig, 477 const u8 *macaddr) 478 { 479 struct idpf_mac_filter *f; 480 481 if (!macaddr) 482 return NULL; 483 484 list_for_each_entry(f, &vconfig->user_config.mac_filter_list, list) { 485 if (ether_addr_equal(macaddr, f->macaddr)) 486 return f; 487 } 488 489 return NULL; 490 } 491 492 /** 493 * __idpf_del_mac_filter - Delete a MAC filter from the filter list 494 * @vport_config: Vport config structure 495 * @macaddr: The MAC address 496 * 497 * Returns 0 on success, error value on failure 498 **/ 499 static int __idpf_del_mac_filter(struct idpf_vport_config *vport_config, 500 const u8 *macaddr) 501 { 502 struct idpf_mac_filter *f; 503 504 spin_lock_bh(&vport_config->mac_filter_list_lock); 505 f = idpf_find_mac_filter(vport_config, macaddr); 506 if (f) { 507 list_del(&f->list); 508 kfree(f); 509 } 510 spin_unlock_bh(&vport_config->mac_filter_list_lock); 511 512 return 0; 513 } 514 515 /** 516 * idpf_del_mac_filter - Delete a MAC filter from the filter list 517 * @vport: Main vport structure 518 * @np: Netdev private structure 519 * @macaddr: The MAC address 520 * @async: Don't wait for return message 521 * 522 * Removes filter from list and if interface is up, tells hardware about the 523 * removed filter. 524 **/ 525 static int idpf_del_mac_filter(struct idpf_vport *vport, 526 struct idpf_netdev_priv *np, 527 const u8 *macaddr, bool async) 528 { 529 struct idpf_vport_config *vport_config; 530 struct idpf_mac_filter *f; 531 532 vport_config = np->adapter->vport_config[np->vport_idx]; 533 534 spin_lock_bh(&vport_config->mac_filter_list_lock); 535 f = idpf_find_mac_filter(vport_config, macaddr); 536 if (f) { 537 f->remove = true; 538 } else { 539 spin_unlock_bh(&vport_config->mac_filter_list_lock); 540 541 return -EINVAL; 542 } 543 spin_unlock_bh(&vport_config->mac_filter_list_lock); 544 545 if (test_bit(IDPF_VPORT_UP, np->state)) { 546 int err; 547 548 err = idpf_add_del_mac_filters(np->adapter, vport_config, 549 vport->default_mac_addr, 550 np->vport_id, false, async); 551 if (err) 552 return err; 553 } 554 555 return __idpf_del_mac_filter(vport_config, macaddr); 556 } 557 558 /** 559 * __idpf_add_mac_filter - Add mac filter helper function 560 * @vport_config: Vport config structure 561 * @macaddr: Address to add 562 * 563 * Takes mac_filter_list_lock spinlock to add new filter to list. 564 */ 565 static int __idpf_add_mac_filter(struct idpf_vport_config *vport_config, 566 const u8 *macaddr) 567 { 568 struct idpf_mac_filter *f; 569 570 spin_lock_bh(&vport_config->mac_filter_list_lock); 571 572 f = idpf_find_mac_filter(vport_config, macaddr); 573 if (f) { 574 f->remove = false; 575 spin_unlock_bh(&vport_config->mac_filter_list_lock); 576 577 return 0; 578 } 579 580 f = kzalloc(sizeof(*f), GFP_ATOMIC); 581 if (!f) { 582 spin_unlock_bh(&vport_config->mac_filter_list_lock); 583 584 return -ENOMEM; 585 } 586 587 ether_addr_copy(f->macaddr, macaddr); 588 list_add_tail(&f->list, &vport_config->user_config.mac_filter_list); 589 f->add = true; 590 591 spin_unlock_bh(&vport_config->mac_filter_list_lock); 592 593 return 0; 594 } 595 596 /** 597 * idpf_add_mac_filter - Add a mac filter to the filter list 598 * @vport: Main vport structure 599 * @np: Netdev private structure 600 * @macaddr: The MAC address 601 * @async: Don't wait for return message 602 * 603 * Returns 0 on success or error on failure. If interface is up, we'll also 604 * send the virtchnl message to tell hardware about the filter. 605 **/ 606 static int idpf_add_mac_filter(struct idpf_vport *vport, 607 struct idpf_netdev_priv *np, 608 const u8 *macaddr, bool async) 609 { 610 struct idpf_vport_config *vport_config; 611 int err; 612 613 vport_config = np->adapter->vport_config[np->vport_idx]; 614 err = __idpf_add_mac_filter(vport_config, macaddr); 615 if (err) 616 return err; 617 618 if (test_bit(IDPF_VPORT_UP, np->state)) 619 err = idpf_add_del_mac_filters(np->adapter, vport_config, 620 vport->default_mac_addr, 621 np->vport_id, true, async); 622 623 return err; 624 } 625 626 /** 627 * idpf_del_all_mac_filters - Delete all MAC filters in list 628 * @vport: main vport struct 629 * 630 * Takes mac_filter_list_lock spinlock. Deletes all filters 631 */ 632 static void idpf_del_all_mac_filters(struct idpf_vport *vport) 633 { 634 struct idpf_vport_config *vport_config; 635 struct idpf_mac_filter *f, *ftmp; 636 637 vport_config = vport->adapter->vport_config[vport->idx]; 638 spin_lock_bh(&vport_config->mac_filter_list_lock); 639 640 list_for_each_entry_safe(f, ftmp, &vport_config->user_config.mac_filter_list, 641 list) { 642 list_del(&f->list); 643 kfree(f); 644 } 645 646 spin_unlock_bh(&vport_config->mac_filter_list_lock); 647 } 648 649 /** 650 * idpf_restore_mac_filters - Re-add all MAC filters in list 651 * @vport: main vport struct 652 * 653 * Takes mac_filter_list_lock spinlock. Sets add field to true for filters to 654 * resync filters back to HW. 655 */ 656 static void idpf_restore_mac_filters(struct idpf_vport *vport) 657 { 658 struct idpf_vport_config *vport_config; 659 struct idpf_mac_filter *f; 660 661 vport_config = vport->adapter->vport_config[vport->idx]; 662 spin_lock_bh(&vport_config->mac_filter_list_lock); 663 664 list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list) 665 f->add = true; 666 667 spin_unlock_bh(&vport_config->mac_filter_list_lock); 668 669 idpf_add_del_mac_filters(vport->adapter, vport_config, 670 vport->default_mac_addr, vport->vport_id, 671 true, false); 672 } 673 674 /** 675 * idpf_remove_mac_filters - Remove all MAC filters in list 676 * @vport: main vport struct 677 * 678 * Takes mac_filter_list_lock spinlock. Sets remove field to true for filters 679 * to remove filters in HW. 680 */ 681 static void idpf_remove_mac_filters(struct idpf_vport *vport) 682 { 683 struct idpf_vport_config *vport_config; 684 struct idpf_mac_filter *f; 685 686 vport_config = vport->adapter->vport_config[vport->idx]; 687 spin_lock_bh(&vport_config->mac_filter_list_lock); 688 689 list_for_each_entry(f, &vport_config->user_config.mac_filter_list, list) 690 f->remove = true; 691 692 spin_unlock_bh(&vport_config->mac_filter_list_lock); 693 694 idpf_add_del_mac_filters(vport->adapter, vport_config, 695 vport->default_mac_addr, vport->vport_id, 696 false, false); 697 } 698 699 /** 700 * idpf_deinit_mac_addr - deinitialize mac address for vport 701 * @vport: main vport structure 702 */ 703 static void idpf_deinit_mac_addr(struct idpf_vport *vport) 704 { 705 struct idpf_vport_config *vport_config; 706 struct idpf_mac_filter *f; 707 708 vport_config = vport->adapter->vport_config[vport->idx]; 709 710 spin_lock_bh(&vport_config->mac_filter_list_lock); 711 712 f = idpf_find_mac_filter(vport_config, vport->default_mac_addr); 713 if (f) { 714 list_del(&f->list); 715 kfree(f); 716 } 717 718 spin_unlock_bh(&vport_config->mac_filter_list_lock); 719 } 720 721 /** 722 * idpf_init_mac_addr - initialize mac address for vport 723 * @vport: main vport structure 724 * @netdev: pointer to netdev struct associated with this vport 725 */ 726 static int idpf_init_mac_addr(struct idpf_vport *vport, 727 struct net_device *netdev) 728 { 729 struct idpf_netdev_priv *np = netdev_priv(netdev); 730 struct idpf_adapter *adapter = vport->adapter; 731 int err; 732 733 if (is_valid_ether_addr(vport->default_mac_addr)) { 734 eth_hw_addr_set(netdev, vport->default_mac_addr); 735 ether_addr_copy(netdev->perm_addr, vport->default_mac_addr); 736 737 return idpf_add_mac_filter(vport, np, vport->default_mac_addr, 738 false); 739 } 740 741 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, 742 VIRTCHNL2_CAP_MACFILTER)) { 743 dev_err(&adapter->pdev->dev, 744 "MAC address is not provided and capability is not set\n"); 745 746 return -EINVAL; 747 } 748 749 eth_hw_addr_random(netdev); 750 err = idpf_add_mac_filter(vport, np, netdev->dev_addr, false); 751 if (err) 752 return err; 753 754 dev_info(&adapter->pdev->dev, "Invalid MAC address %pM, using random %pM\n", 755 vport->default_mac_addr, netdev->dev_addr); 756 ether_addr_copy(vport->default_mac_addr, netdev->dev_addr); 757 758 return 0; 759 } 760 761 static void idpf_detach_and_close(struct idpf_adapter *adapter) 762 { 763 int max_vports = adapter->max_vports; 764 765 for (int i = 0; i < max_vports; i++) { 766 struct net_device *netdev = adapter->netdevs[i]; 767 768 /* If the interface is in detached state, that means the 769 * previous reset was not handled successfully for this 770 * vport. 771 */ 772 if (!netif_device_present(netdev)) 773 continue; 774 775 /* Hold RTNL to protect racing with callbacks */ 776 rtnl_lock(); 777 netif_device_detach(netdev); 778 if (netif_running(netdev)) { 779 set_bit(IDPF_VPORT_UP_REQUESTED, 780 adapter->vport_config[i]->flags); 781 dev_close(netdev); 782 } 783 rtnl_unlock(); 784 } 785 } 786 787 static void idpf_attach_and_open(struct idpf_adapter *adapter) 788 { 789 int max_vports = adapter->max_vports; 790 791 for (int i = 0; i < max_vports; i++) { 792 struct idpf_vport *vport = adapter->vports[i]; 793 struct idpf_vport_config *vport_config; 794 struct net_device *netdev; 795 796 /* In case of a critical error in the init task, the vport 797 * will be freed. Only continue to restore the netdevs 798 * if the vport is allocated. 799 */ 800 if (!vport) 801 continue; 802 803 /* No need for RTNL on attach as this function is called 804 * following detach and dev_close(). We do take RTNL for 805 * dev_open() below as it can race with external callbacks 806 * following the call to netif_device_attach(). 807 */ 808 netdev = adapter->netdevs[i]; 809 netif_device_attach(netdev); 810 vport_config = adapter->vport_config[vport->idx]; 811 if (test_and_clear_bit(IDPF_VPORT_UP_REQUESTED, 812 vport_config->flags)) { 813 rtnl_lock(); 814 dev_open(netdev, NULL); 815 rtnl_unlock(); 816 } 817 } 818 } 819 820 /** 821 * idpf_cfg_netdev - Allocate, configure and register a netdev 822 * @vport: main vport structure 823 * 824 * Returns 0 on success, negative value on failure. 825 */ 826 static int idpf_cfg_netdev(struct idpf_vport *vport) 827 { 828 struct idpf_adapter *adapter = vport->adapter; 829 struct idpf_vport_config *vport_config; 830 netdev_features_t other_offloads = 0; 831 netdev_features_t csum_offloads = 0; 832 netdev_features_t tso_offloads = 0; 833 netdev_features_t dflt_features; 834 struct idpf_netdev_priv *np; 835 struct net_device *netdev; 836 u16 idx = vport->idx; 837 int err; 838 839 vport_config = adapter->vport_config[idx]; 840 841 /* It's possible we already have a netdev allocated and registered for 842 * this vport 843 */ 844 if (test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags)) { 845 netdev = adapter->netdevs[idx]; 846 np = netdev_priv(netdev); 847 np->vport = vport; 848 np->vport_idx = vport->idx; 849 np->vport_id = vport->vport_id; 850 np->max_tx_hdr_size = idpf_get_max_tx_hdr_size(adapter); 851 vport->netdev = netdev; 852 853 return idpf_init_mac_addr(vport, netdev); 854 } 855 856 netdev = alloc_etherdev_mqs(sizeof(struct idpf_netdev_priv), 857 vport_config->max_q.max_txq, 858 vport_config->max_q.max_rxq); 859 if (!netdev) 860 return -ENOMEM; 861 862 vport->netdev = netdev; 863 np = netdev_priv(netdev); 864 np->vport = vport; 865 np->adapter = adapter; 866 np->vport_idx = vport->idx; 867 np->vport_id = vport->vport_id; 868 np->max_tx_hdr_size = idpf_get_max_tx_hdr_size(adapter); 869 np->tx_max_bufs = idpf_get_max_tx_bufs(adapter); 870 871 spin_lock_init(&np->stats_lock); 872 873 err = idpf_init_mac_addr(vport, netdev); 874 if (err) { 875 free_netdev(vport->netdev); 876 vport->netdev = NULL; 877 878 return err; 879 } 880 881 /* assign netdev_ops */ 882 netdev->netdev_ops = &idpf_netdev_ops; 883 884 /* setup watchdog timeout value to be 5 second */ 885 netdev->watchdog_timeo = 5 * HZ; 886 887 netdev->dev_port = idx; 888 889 /* configure default MTU size */ 890 netdev->min_mtu = ETH_MIN_MTU; 891 netdev->max_mtu = vport->max_mtu; 892 893 dflt_features = NETIF_F_SG | 894 NETIF_F_HIGHDMA; 895 896 if (idpf_is_cap_ena_all(adapter, IDPF_RSS_CAPS, IDPF_CAP_RSS)) 897 dflt_features |= NETIF_F_RXHASH; 898 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, 899 VIRTCHNL2_CAP_FLOW_STEER) && 900 idpf_vport_is_cap_ena(vport, VIRTCHNL2_VPORT_SIDEBAND_FLOW_STEER)) 901 dflt_features |= NETIF_F_NTUPLE; 902 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_CSUM_L4V4)) 903 csum_offloads |= NETIF_F_IP_CSUM; 904 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_CSUM_L4V6)) 905 csum_offloads |= NETIF_F_IPV6_CSUM; 906 if (idpf_is_cap_ena(adapter, IDPF_CSUM_CAPS, IDPF_CAP_RX_CSUM)) 907 csum_offloads |= NETIF_F_RXCSUM; 908 if (idpf_is_cap_ena_all(adapter, IDPF_CSUM_CAPS, IDPF_CAP_TX_SCTP_CSUM)) 909 csum_offloads |= NETIF_F_SCTP_CRC; 910 911 if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV4_TCP)) 912 tso_offloads |= NETIF_F_TSO; 913 if (idpf_is_cap_ena(adapter, IDPF_SEG_CAPS, VIRTCHNL2_CAP_SEG_IPV6_TCP)) 914 tso_offloads |= NETIF_F_TSO6; 915 if (idpf_is_cap_ena_all(adapter, IDPF_SEG_CAPS, 916 VIRTCHNL2_CAP_SEG_IPV4_UDP | 917 VIRTCHNL2_CAP_SEG_IPV6_UDP)) 918 tso_offloads |= NETIF_F_GSO_UDP_L4; 919 if (idpf_is_cap_ena_all(adapter, IDPF_RSC_CAPS, IDPF_CAP_RSC)) 920 other_offloads |= NETIF_F_GRO_HW; 921 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_LOOPBACK)) 922 other_offloads |= NETIF_F_LOOPBACK; 923 924 netdev->features |= dflt_features | csum_offloads | tso_offloads; 925 netdev->hw_features |= netdev->features | other_offloads; 926 netdev->vlan_features |= netdev->features | other_offloads; 927 netdev->hw_enc_features |= dflt_features | other_offloads; 928 idpf_xdp_set_features(vport); 929 930 idpf_set_ethtool_ops(netdev); 931 netif_set_affinity_auto(netdev); 932 SET_NETDEV_DEV(netdev, &adapter->pdev->dev); 933 934 /* carrier off on init to avoid Tx hangs */ 935 netif_carrier_off(netdev); 936 937 /* make sure transmit queues start off as stopped */ 938 netif_tx_stop_all_queues(netdev); 939 940 /* The vport can be arbitrarily released so we need to also track 941 * netdevs in the adapter struct 942 */ 943 adapter->netdevs[idx] = netdev; 944 945 return 0; 946 } 947 948 /** 949 * idpf_get_free_slot - get the next non-NULL location index in array 950 * @adapter: adapter in which to look for a free vport slot 951 */ 952 static int idpf_get_free_slot(struct idpf_adapter *adapter) 953 { 954 unsigned int i; 955 956 for (i = 0; i < adapter->max_vports; i++) { 957 if (!adapter->vports[i]) 958 return i; 959 } 960 961 return IDPF_NO_FREE_SLOT; 962 } 963 964 /** 965 * idpf_remove_features - Turn off feature configs 966 * @vport: virtual port structure 967 */ 968 static void idpf_remove_features(struct idpf_vport *vport) 969 { 970 struct idpf_adapter *adapter = vport->adapter; 971 972 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) 973 idpf_remove_mac_filters(vport); 974 } 975 976 /** 977 * idpf_vport_stop - Disable a vport 978 * @vport: vport to disable 979 * @rtnl: whether to take RTNL lock 980 */ 981 static void idpf_vport_stop(struct idpf_vport *vport, bool rtnl) 982 { 983 struct idpf_netdev_priv *np = netdev_priv(vport->netdev); 984 struct idpf_q_vec_rsrc *rsrc = &vport->dflt_qv_rsrc; 985 struct idpf_adapter *adapter = vport->adapter; 986 struct idpf_queue_id_reg_info *chunks; 987 u32 vport_id = vport->vport_id; 988 989 if (!test_bit(IDPF_VPORT_UP, np->state)) 990 return; 991 992 if (rtnl) 993 rtnl_lock(); 994 995 netif_carrier_off(vport->netdev); 996 netif_tx_disable(vport->netdev); 997 998 chunks = &adapter->vport_config[vport->idx]->qid_reg_info; 999 1000 idpf_send_disable_vport_msg(adapter, vport_id); 1001 idpf_send_disable_queues_msg(vport); 1002 idpf_send_map_unmap_queue_vector_msg(adapter, rsrc, vport_id, false); 1003 /* Normally we ask for queues in create_vport, but if the number of 1004 * initially requested queues have changed, for example via ethtool 1005 * set channels, we do delete queues and then add the queues back 1006 * instead of deleting and reallocating the vport. 1007 */ 1008 if (test_and_clear_bit(IDPF_VPORT_DEL_QUEUES, vport->flags)) 1009 idpf_send_delete_queues_msg(adapter, chunks, vport_id); 1010 1011 idpf_remove_features(vport); 1012 1013 vport->link_up = false; 1014 idpf_vport_intr_deinit(vport, rsrc); 1015 idpf_xdp_rxq_info_deinit_all(rsrc); 1016 idpf_vport_queues_rel(vport, rsrc); 1017 idpf_vport_intr_rel(rsrc); 1018 clear_bit(IDPF_VPORT_UP, np->state); 1019 1020 if (rtnl) 1021 rtnl_unlock(); 1022 } 1023 1024 /** 1025 * idpf_stop - Disables a network interface 1026 * @netdev: network interface device structure 1027 * 1028 * The stop entry point is called when an interface is de-activated by the OS, 1029 * and the netdevice enters the DOWN state. The hardware is still under the 1030 * driver's control, but the netdev interface is disabled. 1031 * 1032 * Returns success only - not allowed to fail 1033 */ 1034 static int idpf_stop(struct net_device *netdev) 1035 { 1036 struct idpf_netdev_priv *np = netdev_priv(netdev); 1037 struct idpf_vport *vport; 1038 1039 if (test_bit(IDPF_REMOVE_IN_PROG, np->adapter->flags)) 1040 return 0; 1041 1042 idpf_vport_ctrl_lock(netdev); 1043 vport = idpf_netdev_to_vport(netdev); 1044 1045 idpf_vport_stop(vport, false); 1046 1047 idpf_vport_ctrl_unlock(netdev); 1048 1049 return 0; 1050 } 1051 1052 /** 1053 * idpf_decfg_netdev - Unregister the netdev 1054 * @vport: vport for which netdev to be unregistered 1055 */ 1056 static void idpf_decfg_netdev(struct idpf_vport *vport) 1057 { 1058 struct idpf_adapter *adapter = vport->adapter; 1059 u16 idx = vport->idx; 1060 1061 if (test_and_clear_bit(IDPF_VPORT_REG_NETDEV, 1062 adapter->vport_config[idx]->flags)) { 1063 unregister_netdev(vport->netdev); 1064 free_netdev(vport->netdev); 1065 } 1066 vport->netdev = NULL; 1067 1068 adapter->netdevs[idx] = NULL; 1069 } 1070 1071 /** 1072 * idpf_vport_rel - Delete a vport and free its resources 1073 * @vport: the vport being removed 1074 */ 1075 static void idpf_vport_rel(struct idpf_vport *vport) 1076 { 1077 struct idpf_q_vec_rsrc *rsrc = &vport->dflt_qv_rsrc; 1078 struct idpf_adapter *adapter = vport->adapter; 1079 struct idpf_vport_config *vport_config; 1080 struct idpf_vector_info vec_info; 1081 struct idpf_rss_data *rss_data; 1082 struct idpf_vport_max_q max_q; 1083 u16 idx = vport->idx; 1084 1085 vport_config = adapter->vport_config[vport->idx]; 1086 rss_data = &vport_config->user_config.rss_data; 1087 idpf_deinit_rss_lut(rss_data); 1088 kfree(rss_data->rss_key); 1089 rss_data->rss_key = NULL; 1090 1091 idpf_send_destroy_vport_msg(adapter, vport->vport_id); 1092 1093 /* Release all max queues allocated to the adapter's pool */ 1094 max_q.max_rxq = vport_config->max_q.max_rxq; 1095 max_q.max_txq = vport_config->max_q.max_txq; 1096 max_q.max_bufq = vport_config->max_q.max_bufq; 1097 max_q.max_complq = vport_config->max_q.max_complq; 1098 idpf_vport_dealloc_max_qs(adapter, &max_q); 1099 1100 /* Release all the allocated vectors on the stack */ 1101 vec_info.num_req_vecs = 0; 1102 vec_info.num_curr_vecs = rsrc->num_q_vectors; 1103 vec_info.default_vport = vport->default_vport; 1104 1105 idpf_req_rel_vector_indexes(adapter, rsrc->q_vector_idxs, &vec_info); 1106 1107 kfree(rsrc->q_vector_idxs); 1108 rsrc->q_vector_idxs = NULL; 1109 1110 idpf_vport_deinit_queue_reg_chunks(vport_config); 1111 1112 kfree(adapter->vport_params_recvd[idx]); 1113 adapter->vport_params_recvd[idx] = NULL; 1114 kfree(adapter->vport_params_reqd[idx]); 1115 adapter->vport_params_reqd[idx] = NULL; 1116 1117 kfree(vport); 1118 adapter->num_alloc_vports--; 1119 } 1120 1121 /** 1122 * idpf_vport_dealloc - cleanup and release a given vport 1123 * @vport: pointer to idpf vport structure 1124 * 1125 * returns nothing 1126 */ 1127 static void idpf_vport_dealloc(struct idpf_vport *vport) 1128 { 1129 struct idpf_adapter *adapter = vport->adapter; 1130 unsigned int i = vport->idx; 1131 1132 idpf_idc_deinit_vport_aux_device(vport->vdev_info); 1133 1134 idpf_deinit_mac_addr(vport); 1135 1136 if (!test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags)) { 1137 idpf_vport_stop(vport, true); 1138 idpf_decfg_netdev(vport); 1139 } 1140 if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) { 1141 idpf_del_all_mac_filters(vport); 1142 idpf_del_all_flow_steer_filters(vport); 1143 } 1144 1145 if (adapter->netdevs[i]) { 1146 struct idpf_netdev_priv *np = netdev_priv(adapter->netdevs[i]); 1147 1148 np->vport = NULL; 1149 } 1150 1151 idpf_vport_rel(vport); 1152 1153 adapter->vports[i] = NULL; 1154 adapter->next_vport = idpf_get_free_slot(adapter); 1155 } 1156 1157 /** 1158 * idpf_is_hsplit_supported - check whether the header split is supported 1159 * @vport: virtual port to check the capability for 1160 * 1161 * Return: true if it's supported by the HW/FW, false if not. 1162 */ 1163 static bool idpf_is_hsplit_supported(const struct idpf_vport *vport) 1164 { 1165 return idpf_is_queue_model_split(vport->dflt_qv_rsrc.rxq_model) && 1166 idpf_is_cap_ena_all(vport->adapter, IDPF_HSPLIT_CAPS, 1167 IDPF_CAP_HSPLIT); 1168 } 1169 1170 /** 1171 * idpf_vport_get_hsplit - get the current header split feature state 1172 * @vport: virtual port to query the state for 1173 * 1174 * Return: ``ETHTOOL_TCP_DATA_SPLIT_UNKNOWN`` if not supported, 1175 * ``ETHTOOL_TCP_DATA_SPLIT_DISABLED`` if disabled, 1176 * ``ETHTOOL_TCP_DATA_SPLIT_ENABLED`` if active. 1177 */ 1178 u8 idpf_vport_get_hsplit(const struct idpf_vport *vport) 1179 { 1180 const struct idpf_vport_user_config_data *config; 1181 1182 if (!idpf_is_hsplit_supported(vport)) 1183 return ETHTOOL_TCP_DATA_SPLIT_UNKNOWN; 1184 1185 config = &vport->adapter->vport_config[vport->idx]->user_config; 1186 1187 return test_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags) ? 1188 ETHTOOL_TCP_DATA_SPLIT_ENABLED : 1189 ETHTOOL_TCP_DATA_SPLIT_DISABLED; 1190 } 1191 1192 /** 1193 * idpf_vport_set_hsplit - enable or disable header split on a given vport 1194 * @vport: virtual port to configure 1195 * @val: Ethtool flag controlling the header split state 1196 * 1197 * Return: true on success, false if not supported by the HW. 1198 */ 1199 bool idpf_vport_set_hsplit(const struct idpf_vport *vport, u8 val) 1200 { 1201 struct idpf_vport_user_config_data *config; 1202 1203 if (!idpf_is_hsplit_supported(vport)) 1204 return val == ETHTOOL_TCP_DATA_SPLIT_UNKNOWN; 1205 1206 config = &vport->adapter->vport_config[vport->idx]->user_config; 1207 1208 switch (val) { 1209 case ETHTOOL_TCP_DATA_SPLIT_UNKNOWN: 1210 /* Default is to enable */ 1211 case ETHTOOL_TCP_DATA_SPLIT_ENABLED: 1212 __set_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags); 1213 return true; 1214 case ETHTOOL_TCP_DATA_SPLIT_DISABLED: 1215 __clear_bit(__IDPF_USER_FLAG_HSPLIT, config->user_flags); 1216 return true; 1217 default: 1218 return false; 1219 } 1220 } 1221 1222 /** 1223 * idpf_vport_alloc - Allocates the next available struct vport in the adapter 1224 * @adapter: board private structure 1225 * @max_q: vport max queue info 1226 * 1227 * returns a pointer to a vport on success, NULL on failure. 1228 */ 1229 static struct idpf_vport *idpf_vport_alloc(struct idpf_adapter *adapter, 1230 struct idpf_vport_max_q *max_q) 1231 { 1232 struct idpf_rss_data *rss_data; 1233 u16 idx = adapter->next_vport; 1234 struct idpf_q_vec_rsrc *rsrc; 1235 struct idpf_vport *vport; 1236 u16 num_max_q; 1237 int err; 1238 1239 if (idx == IDPF_NO_FREE_SLOT) 1240 return NULL; 1241 1242 vport = kzalloc(sizeof(*vport), GFP_KERNEL); 1243 if (!vport) 1244 return vport; 1245 1246 num_max_q = max(max_q->max_txq, max_q->max_rxq) + IDPF_RESERVED_VECS; 1247 if (!adapter->vport_config[idx]) { 1248 struct idpf_vport_config *vport_config; 1249 struct idpf_q_coalesce *q_coal; 1250 1251 vport_config = kzalloc(sizeof(*vport_config), GFP_KERNEL); 1252 if (!vport_config) { 1253 kfree(vport); 1254 1255 return NULL; 1256 } 1257 1258 q_coal = kcalloc(num_max_q, sizeof(*q_coal), GFP_KERNEL); 1259 if (!q_coal) { 1260 kfree(vport_config); 1261 kfree(vport); 1262 1263 return NULL; 1264 } 1265 for (int i = 0; i < num_max_q; i++) { 1266 q_coal[i].tx_intr_mode = IDPF_ITR_DYNAMIC; 1267 q_coal[i].tx_coalesce_usecs = IDPF_ITR_TX_DEF; 1268 q_coal[i].rx_intr_mode = IDPF_ITR_DYNAMIC; 1269 q_coal[i].rx_coalesce_usecs = IDPF_ITR_RX_DEF; 1270 } 1271 vport_config->user_config.q_coalesce = q_coal; 1272 1273 adapter->vport_config[idx] = vport_config; 1274 } 1275 1276 vport->idx = idx; 1277 vport->adapter = adapter; 1278 vport->compln_clean_budget = IDPF_TX_COMPLQ_CLEAN_BUDGET; 1279 vport->default_vport = adapter->num_alloc_vports < 1280 idpf_get_default_vports(adapter); 1281 1282 rsrc = &vport->dflt_qv_rsrc; 1283 rsrc->dev = &adapter->pdev->dev; 1284 rsrc->q_vector_idxs = kcalloc(num_max_q, sizeof(u16), GFP_KERNEL); 1285 if (!rsrc->q_vector_idxs) 1286 goto free_vport; 1287 1288 err = idpf_vport_init(vport, max_q); 1289 if (err) 1290 goto free_vector_idxs; 1291 1292 /* LUT and key are both initialized here. Key is not strictly dependent 1293 * on how many queues we have. If we change number of queues and soft 1294 * reset is initiated, LUT will be freed and a new LUT will be allocated 1295 * as per the updated number of queues during vport bringup. However, 1296 * the key remains the same for as long as the vport exists. 1297 */ 1298 rss_data = &adapter->vport_config[idx]->user_config.rss_data; 1299 rss_data->rss_key = kzalloc(rss_data->rss_key_size, GFP_KERNEL); 1300 if (!rss_data->rss_key) 1301 goto free_qreg_chunks; 1302 1303 /* Initialize default RSS key */ 1304 netdev_rss_key_fill((void *)rss_data->rss_key, rss_data->rss_key_size); 1305 1306 /* Initialize default RSS LUT */ 1307 err = idpf_init_rss_lut(vport, rss_data); 1308 if (err) 1309 goto free_rss_key; 1310 1311 /* fill vport slot in the adapter struct */ 1312 adapter->vports[idx] = vport; 1313 adapter->vport_ids[idx] = idpf_get_vport_id(vport); 1314 1315 adapter->num_alloc_vports++; 1316 /* prepare adapter->next_vport for next use */ 1317 adapter->next_vport = idpf_get_free_slot(adapter); 1318 1319 return vport; 1320 1321 free_rss_key: 1322 kfree(rss_data->rss_key); 1323 free_qreg_chunks: 1324 idpf_vport_deinit_queue_reg_chunks(adapter->vport_config[idx]); 1325 free_vector_idxs: 1326 kfree(rsrc->q_vector_idxs); 1327 free_vport: 1328 kfree(vport); 1329 1330 return NULL; 1331 } 1332 1333 /** 1334 * idpf_get_stats64 - get statistics for network device structure 1335 * @netdev: network interface device structure 1336 * @stats: main device statistics structure 1337 */ 1338 static void idpf_get_stats64(struct net_device *netdev, 1339 struct rtnl_link_stats64 *stats) 1340 { 1341 struct idpf_netdev_priv *np = netdev_priv(netdev); 1342 1343 spin_lock_bh(&np->stats_lock); 1344 *stats = np->netstats; 1345 spin_unlock_bh(&np->stats_lock); 1346 } 1347 1348 /** 1349 * idpf_statistics_task - Delayed task to get statistics over mailbox 1350 * @work: work_struct handle to our data 1351 */ 1352 void idpf_statistics_task(struct work_struct *work) 1353 { 1354 struct idpf_adapter *adapter; 1355 int i; 1356 1357 adapter = container_of(work, struct idpf_adapter, stats_task.work); 1358 1359 for (i = 0; i < adapter->max_vports; i++) { 1360 struct idpf_vport *vport = adapter->vports[i]; 1361 1362 if (vport && !test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags)) 1363 idpf_send_get_stats_msg(netdev_priv(vport->netdev), 1364 &vport->port_stats); 1365 } 1366 1367 queue_delayed_work(adapter->stats_wq, &adapter->stats_task, 1368 msecs_to_jiffies(10000)); 1369 } 1370 1371 /** 1372 * idpf_mbx_task - Delayed task to handle mailbox responses 1373 * @work: work_struct handle 1374 */ 1375 void idpf_mbx_task(struct work_struct *work) 1376 { 1377 struct idpf_adapter *adapter; 1378 1379 adapter = container_of(work, struct idpf_adapter, mbx_task.work); 1380 1381 if (test_bit(IDPF_MB_INTR_MODE, adapter->flags)) 1382 idpf_mb_irq_enable(adapter); 1383 else 1384 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 1385 usecs_to_jiffies(300)); 1386 1387 idpf_recv_mb_msg(adapter, adapter->hw.arq); 1388 } 1389 1390 /** 1391 * idpf_service_task - Delayed task for handling mailbox responses 1392 * @work: work_struct handle to our data 1393 * 1394 */ 1395 void idpf_service_task(struct work_struct *work) 1396 { 1397 struct idpf_adapter *adapter; 1398 1399 adapter = container_of(work, struct idpf_adapter, serv_task.work); 1400 1401 if (idpf_is_reset_detected(adapter) && 1402 !idpf_is_reset_in_prog(adapter) && 1403 !test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) { 1404 dev_info(&adapter->pdev->dev, "HW reset detected\n"); 1405 set_bit(IDPF_HR_FUNC_RESET, adapter->flags); 1406 queue_delayed_work(adapter->vc_event_wq, 1407 &adapter->vc_event_task, 1408 msecs_to_jiffies(10)); 1409 } 1410 1411 queue_delayed_work(adapter->serv_wq, &adapter->serv_task, 1412 msecs_to_jiffies(300)); 1413 } 1414 1415 /** 1416 * idpf_restore_features - Restore feature configs 1417 * @vport: virtual port structure 1418 */ 1419 static void idpf_restore_features(struct idpf_vport *vport) 1420 { 1421 struct idpf_adapter *adapter = vport->adapter; 1422 1423 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) 1424 idpf_restore_mac_filters(vport); 1425 } 1426 1427 /** 1428 * idpf_set_real_num_queues - set number of queues for netdev 1429 * @vport: virtual port structure 1430 * 1431 * Returns 0 on success, negative on failure. 1432 */ 1433 static int idpf_set_real_num_queues(struct idpf_vport *vport) 1434 { 1435 int err, txq = vport->dflt_qv_rsrc.num_txq - vport->num_xdp_txq; 1436 1437 err = netif_set_real_num_rx_queues(vport->netdev, 1438 vport->dflt_qv_rsrc.num_rxq); 1439 if (err) 1440 return err; 1441 1442 return netif_set_real_num_tx_queues(vport->netdev, txq); 1443 } 1444 1445 /** 1446 * idpf_up_complete - Complete interface up sequence 1447 * @vport: virtual port structure 1448 */ 1449 static void idpf_up_complete(struct idpf_vport *vport) 1450 { 1451 struct idpf_netdev_priv *np = netdev_priv(vport->netdev); 1452 1453 if (vport->link_up && !netif_carrier_ok(vport->netdev)) { 1454 netif_carrier_on(vport->netdev); 1455 netif_tx_start_all_queues(vport->netdev); 1456 } 1457 1458 set_bit(IDPF_VPORT_UP, np->state); 1459 } 1460 1461 /** 1462 * idpf_rx_init_buf_tail - Write initial buffer ring tail value 1463 * @rsrc: pointer to queue and vector resources 1464 */ 1465 static void idpf_rx_init_buf_tail(struct idpf_q_vec_rsrc *rsrc) 1466 { 1467 for (unsigned int i = 0; i < rsrc->num_rxq_grp; i++) { 1468 struct idpf_rxq_group *grp = &rsrc->rxq_grps[i]; 1469 1470 if (idpf_is_queue_model_split(rsrc->rxq_model)) { 1471 for (unsigned int j = 0; j < rsrc->num_bufqs_per_qgrp; j++) { 1472 const struct idpf_buf_queue *q = 1473 &grp->splitq.bufq_sets[j].bufq; 1474 1475 writel(q->next_to_alloc, q->tail); 1476 } 1477 } else { 1478 for (unsigned int j = 0; j < grp->singleq.num_rxq; j++) { 1479 const struct idpf_rx_queue *q = 1480 grp->singleq.rxqs[j]; 1481 1482 writel(q->next_to_alloc, q->tail); 1483 } 1484 } 1485 } 1486 } 1487 1488 /** 1489 * idpf_vport_open - Bring up a vport 1490 * @vport: vport to bring up 1491 * @rtnl: whether to take RTNL lock 1492 */ 1493 static int idpf_vport_open(struct idpf_vport *vport, bool rtnl) 1494 { 1495 struct idpf_netdev_priv *np = netdev_priv(vport->netdev); 1496 struct idpf_q_vec_rsrc *rsrc = &vport->dflt_qv_rsrc; 1497 struct idpf_adapter *adapter = vport->adapter; 1498 struct idpf_vport_config *vport_config; 1499 struct idpf_queue_id_reg_info *chunks; 1500 struct idpf_rss_data *rss_data; 1501 u32 vport_id = vport->vport_id; 1502 int err; 1503 1504 if (test_bit(IDPF_VPORT_UP, np->state)) 1505 return -EBUSY; 1506 1507 if (rtnl) 1508 rtnl_lock(); 1509 1510 /* we do not allow interface up just yet */ 1511 netif_carrier_off(vport->netdev); 1512 1513 err = idpf_vport_intr_alloc(vport, rsrc); 1514 if (err) { 1515 dev_err(&adapter->pdev->dev, "Failed to allocate interrupts for vport %u: %d\n", 1516 vport->vport_id, err); 1517 goto err_rtnl_unlock; 1518 } 1519 1520 err = idpf_vport_queues_alloc(vport, rsrc); 1521 if (err) 1522 goto intr_rel; 1523 1524 vport_config = adapter->vport_config[vport->idx]; 1525 chunks = &vport_config->qid_reg_info; 1526 1527 err = idpf_vport_queue_ids_init(vport, rsrc, chunks); 1528 if (err) { 1529 dev_err(&adapter->pdev->dev, "Failed to initialize queue ids for vport %u: %d\n", 1530 vport->vport_id, err); 1531 goto queues_rel; 1532 } 1533 1534 err = idpf_vport_intr_init(vport, rsrc); 1535 if (err) { 1536 dev_err(&adapter->pdev->dev, "Failed to initialize interrupts for vport %u: %d\n", 1537 vport->vport_id, err); 1538 goto queues_rel; 1539 } 1540 1541 err = idpf_queue_reg_init(vport, rsrc, chunks); 1542 if (err) { 1543 dev_err(&adapter->pdev->dev, "Failed to initialize queue registers for vport %u: %d\n", 1544 vport->vport_id, err); 1545 goto intr_deinit; 1546 } 1547 1548 err = idpf_rx_bufs_init_all(vport, rsrc); 1549 if (err) { 1550 dev_err(&adapter->pdev->dev, "Failed to initialize RX buffers for vport %u: %d\n", 1551 vport->vport_id, err); 1552 goto intr_deinit; 1553 } 1554 1555 idpf_rx_init_buf_tail(rsrc); 1556 1557 err = idpf_xdp_rxq_info_init_all(rsrc); 1558 if (err) { 1559 netdev_err(vport->netdev, 1560 "Failed to initialize XDP RxQ info for vport %u: %pe\n", 1561 vport->vport_id, ERR_PTR(err)); 1562 goto intr_deinit; 1563 } 1564 1565 idpf_vport_intr_ena(vport, rsrc); 1566 1567 err = idpf_send_config_queues_msg(adapter, rsrc, vport_id); 1568 if (err) { 1569 dev_err(&adapter->pdev->dev, "Failed to configure queues for vport %u, %d\n", 1570 vport->vport_id, err); 1571 goto rxq_deinit; 1572 } 1573 1574 err = idpf_send_map_unmap_queue_vector_msg(adapter, rsrc, vport_id, 1575 true); 1576 if (err) { 1577 dev_err(&adapter->pdev->dev, "Failed to map queue vectors for vport %u: %d\n", 1578 vport->vport_id, err); 1579 goto rxq_deinit; 1580 } 1581 1582 err = idpf_send_enable_queues_msg(vport); 1583 if (err) { 1584 dev_err(&adapter->pdev->dev, "Failed to enable queues for vport %u: %d\n", 1585 vport->vport_id, err); 1586 goto unmap_queue_vectors; 1587 } 1588 1589 err = idpf_send_enable_vport_msg(adapter, vport_id); 1590 if (err) { 1591 dev_err(&adapter->pdev->dev, "Failed to enable vport %u: %d\n", 1592 vport->vport_id, err); 1593 err = -EAGAIN; 1594 goto disable_queues; 1595 } 1596 1597 idpf_restore_features(vport); 1598 1599 rss_data = &vport_config->user_config.rss_data; 1600 err = idpf_config_rss(vport, rss_data); 1601 if (err) { 1602 dev_err(&adapter->pdev->dev, "Failed to configure RSS for vport %u: %d\n", 1603 vport->vport_id, err); 1604 goto disable_vport; 1605 } 1606 1607 idpf_up_complete(vport); 1608 1609 if (rtnl) 1610 rtnl_unlock(); 1611 1612 return 0; 1613 1614 disable_vport: 1615 idpf_send_disable_vport_msg(adapter, vport_id); 1616 disable_queues: 1617 idpf_send_disable_queues_msg(vport); 1618 unmap_queue_vectors: 1619 idpf_send_map_unmap_queue_vector_msg(adapter, rsrc, vport_id, false); 1620 rxq_deinit: 1621 idpf_xdp_rxq_info_deinit_all(rsrc); 1622 intr_deinit: 1623 idpf_vport_intr_deinit(vport, rsrc); 1624 queues_rel: 1625 idpf_vport_queues_rel(vport, rsrc); 1626 intr_rel: 1627 idpf_vport_intr_rel(rsrc); 1628 1629 err_rtnl_unlock: 1630 if (rtnl) 1631 rtnl_unlock(); 1632 1633 return err; 1634 } 1635 1636 /** 1637 * idpf_init_task - Delayed initialization task 1638 * @work: work_struct handle to our data 1639 * 1640 * Init task finishes up pending work started in probe. Due to the asynchronous 1641 * nature in which the device communicates with hardware, we may have to wait 1642 * several milliseconds to get a response. Instead of busy polling in probe, 1643 * pulling it out into a delayed work task prevents us from bogging down the 1644 * whole system waiting for a response from hardware. 1645 */ 1646 void idpf_init_task(struct work_struct *work) 1647 { 1648 struct idpf_vport_config *vport_config; 1649 struct idpf_vport_max_q max_q; 1650 struct idpf_adapter *adapter; 1651 struct idpf_vport *vport; 1652 u16 num_default_vports; 1653 struct pci_dev *pdev; 1654 bool default_vport; 1655 int index, err; 1656 1657 adapter = container_of(work, struct idpf_adapter, init_task.work); 1658 1659 num_default_vports = idpf_get_default_vports(adapter); 1660 if (adapter->num_alloc_vports < num_default_vports) 1661 default_vport = true; 1662 else 1663 default_vport = false; 1664 1665 err = idpf_vport_alloc_max_qs(adapter, &max_q); 1666 if (err) 1667 goto unwind_vports; 1668 1669 err = idpf_send_create_vport_msg(adapter, &max_q); 1670 if (err) { 1671 idpf_vport_dealloc_max_qs(adapter, &max_q); 1672 goto unwind_vports; 1673 } 1674 1675 pdev = adapter->pdev; 1676 vport = idpf_vport_alloc(adapter, &max_q); 1677 if (!vport) { 1678 err = -EFAULT; 1679 dev_err(&pdev->dev, "failed to allocate vport: %d\n", 1680 err); 1681 idpf_vport_dealloc_max_qs(adapter, &max_q); 1682 goto unwind_vports; 1683 } 1684 1685 index = vport->idx; 1686 vport_config = adapter->vport_config[index]; 1687 1688 spin_lock_init(&vport_config->mac_filter_list_lock); 1689 spin_lock_init(&vport_config->flow_steer_list_lock); 1690 1691 INIT_LIST_HEAD(&vport_config->user_config.mac_filter_list); 1692 INIT_LIST_HEAD(&vport_config->user_config.flow_steer_list); 1693 1694 err = idpf_check_supported_desc_ids(vport); 1695 if (err) { 1696 dev_err(&pdev->dev, "failed to get required descriptor ids\n"); 1697 goto unwind_vports; 1698 } 1699 1700 if (idpf_cfg_netdev(vport)) 1701 goto unwind_vports; 1702 1703 /* Spawn and return 'idpf_init_task' work queue until all the 1704 * default vports are created 1705 */ 1706 if (adapter->num_alloc_vports < num_default_vports) { 1707 queue_delayed_work(adapter->init_wq, &adapter->init_task, 1708 msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07))); 1709 1710 return; 1711 } 1712 1713 for (index = 0; index < adapter->max_vports; index++) { 1714 struct net_device *netdev = adapter->netdevs[index]; 1715 struct idpf_vport_config *vport_config; 1716 1717 vport_config = adapter->vport_config[index]; 1718 1719 if (!netdev || 1720 test_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags)) 1721 continue; 1722 1723 err = register_netdev(netdev); 1724 if (err) { 1725 dev_err(&pdev->dev, "failed to register netdev for vport %d: %pe\n", 1726 index, ERR_PTR(err)); 1727 continue; 1728 } 1729 set_bit(IDPF_VPORT_REG_NETDEV, vport_config->flags); 1730 } 1731 1732 /* Clear the reset and load bits as all vports are created */ 1733 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); 1734 clear_bit(IDPF_HR_DRV_LOAD, adapter->flags); 1735 /* Start the statistics task now */ 1736 queue_delayed_work(adapter->stats_wq, &adapter->stats_task, 1737 msecs_to_jiffies(10 * (pdev->devfn & 0x07))); 1738 1739 return; 1740 1741 unwind_vports: 1742 if (default_vport) { 1743 for (index = 0; index < adapter->max_vports; index++) { 1744 if (adapter->vports[index]) 1745 idpf_vport_dealloc(adapter->vports[index]); 1746 } 1747 } 1748 /* Cleanup after vc_core_init, which has no way of knowing the 1749 * init task failed on driver load. 1750 */ 1751 if (test_and_clear_bit(IDPF_HR_DRV_LOAD, adapter->flags)) { 1752 cancel_delayed_work_sync(&adapter->serv_task); 1753 cancel_delayed_work_sync(&adapter->mbx_task); 1754 } 1755 idpf_ptp_release(adapter); 1756 1757 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); 1758 } 1759 1760 /** 1761 * idpf_sriov_ena - Enable or change number of VFs 1762 * @adapter: private data struct 1763 * @num_vfs: number of VFs to allocate 1764 */ 1765 static int idpf_sriov_ena(struct idpf_adapter *adapter, int num_vfs) 1766 { 1767 struct device *dev = &adapter->pdev->dev; 1768 int err; 1769 1770 err = idpf_send_set_sriov_vfs_msg(adapter, num_vfs); 1771 if (err) { 1772 dev_err(dev, "Failed to allocate VFs: %d\n", err); 1773 1774 return err; 1775 } 1776 1777 err = pci_enable_sriov(adapter->pdev, num_vfs); 1778 if (err) { 1779 idpf_send_set_sriov_vfs_msg(adapter, 0); 1780 dev_err(dev, "Failed to enable SR-IOV: %d\n", err); 1781 1782 return err; 1783 } 1784 1785 adapter->num_vfs = num_vfs; 1786 1787 return num_vfs; 1788 } 1789 1790 /** 1791 * idpf_sriov_configure - Configure the requested VFs 1792 * @pdev: pointer to a pci_dev structure 1793 * @num_vfs: number of vfs to allocate 1794 * 1795 * Enable or change the number of VFs. Called when the user updates the number 1796 * of VFs in sysfs. 1797 **/ 1798 int idpf_sriov_configure(struct pci_dev *pdev, int num_vfs) 1799 { 1800 struct idpf_adapter *adapter = pci_get_drvdata(pdev); 1801 1802 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_SRIOV)) { 1803 dev_info(&pdev->dev, "SR-IOV is not supported on this device\n"); 1804 1805 return -EOPNOTSUPP; 1806 } 1807 1808 if (num_vfs) 1809 return idpf_sriov_ena(adapter, num_vfs); 1810 1811 if (pci_vfs_assigned(pdev)) { 1812 dev_warn(&pdev->dev, "Unable to free VFs because some are assigned to VMs\n"); 1813 1814 return -EBUSY; 1815 } 1816 1817 pci_disable_sriov(adapter->pdev); 1818 idpf_send_set_sriov_vfs_msg(adapter, 0); 1819 adapter->num_vfs = 0; 1820 1821 return 0; 1822 } 1823 1824 /** 1825 * idpf_deinit_task - Device deinit routine 1826 * @adapter: Driver specific private structure 1827 * 1828 * Extended remove logic which will be used for 1829 * hard reset as well 1830 */ 1831 void idpf_deinit_task(struct idpf_adapter *adapter) 1832 { 1833 unsigned int i; 1834 1835 /* Wait until the init_task is done else this thread might release 1836 * the resources first and the other thread might end up in a bad state 1837 */ 1838 cancel_delayed_work_sync(&adapter->init_task); 1839 1840 if (!adapter->vports) 1841 return; 1842 1843 cancel_delayed_work_sync(&adapter->stats_task); 1844 1845 for (i = 0; i < adapter->max_vports; i++) { 1846 if (adapter->vports[i]) 1847 idpf_vport_dealloc(adapter->vports[i]); 1848 } 1849 } 1850 1851 /** 1852 * idpf_check_reset_complete - check that reset is complete 1853 * @hw: pointer to hw struct 1854 * @reset_reg: struct with reset registers 1855 * 1856 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 1857 **/ 1858 static int idpf_check_reset_complete(struct idpf_hw *hw, 1859 struct idpf_reset_reg *reset_reg) 1860 { 1861 struct idpf_adapter *adapter = hw->back; 1862 int i; 1863 1864 for (i = 0; i < 2000; i++) { 1865 u32 reg_val = readl(reset_reg->rstat); 1866 1867 /* 0xFFFFFFFF might be read if other side hasn't cleared the 1868 * register for us yet and 0xFFFFFFFF is not a valid value for 1869 * the register, so treat that as invalid. 1870 */ 1871 if (reg_val != 0xFFFFFFFF && (reg_val & reset_reg->rstat_m)) 1872 return 0; 1873 1874 usleep_range(5000, 10000); 1875 } 1876 1877 dev_warn(&adapter->pdev->dev, "Device reset timeout!\n"); 1878 /* Clear the reset flag unconditionally here since the reset 1879 * technically isn't in progress anymore from the driver's perspective 1880 */ 1881 clear_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); 1882 1883 return -EBUSY; 1884 } 1885 1886 /** 1887 * idpf_init_hard_reset - Initiate a hardware reset 1888 * @adapter: Driver specific private structure 1889 * 1890 * Deallocate the vports and all the resources associated with them and 1891 * reallocate. Also reinitialize the mailbox. Return 0 on success, 1892 * negative on failure. 1893 */ 1894 static void idpf_init_hard_reset(struct idpf_adapter *adapter) 1895 { 1896 struct idpf_reg_ops *reg_ops = &adapter->dev_ops.reg_ops; 1897 struct device *dev = &adapter->pdev->dev; 1898 int err; 1899 1900 idpf_detach_and_close(adapter); 1901 mutex_lock(&adapter->vport_ctrl_lock); 1902 1903 dev_info(dev, "Device HW Reset initiated\n"); 1904 1905 /* Prepare for reset */ 1906 if (test_bit(IDPF_HR_DRV_LOAD, adapter->flags)) { 1907 reg_ops->trigger_reset(adapter, IDPF_HR_DRV_LOAD); 1908 } else if (test_and_clear_bit(IDPF_HR_FUNC_RESET, adapter->flags)) { 1909 bool is_reset = idpf_is_reset_detected(adapter); 1910 1911 idpf_idc_issue_reset_event(adapter->cdev_info); 1912 1913 idpf_vc_core_deinit(adapter); 1914 if (!is_reset) 1915 reg_ops->trigger_reset(adapter, IDPF_HR_FUNC_RESET); 1916 idpf_deinit_dflt_mbx(adapter); 1917 } else { 1918 dev_err(dev, "Unhandled hard reset cause\n"); 1919 err = -EBADRQC; 1920 goto unlock_mutex; 1921 } 1922 1923 /* Wait for reset to complete */ 1924 err = idpf_check_reset_complete(&adapter->hw, &adapter->reset_reg); 1925 if (err) { 1926 dev_err(dev, "The driver was unable to contact the device's firmware. Check that the FW is running. Driver state= 0x%x\n", 1927 adapter->state); 1928 goto unlock_mutex; 1929 } 1930 1931 /* Reset is complete and so start building the driver resources again */ 1932 err = idpf_init_dflt_mbx(adapter); 1933 if (err) { 1934 dev_err(dev, "Failed to initialize default mailbox: %d\n", err); 1935 goto unlock_mutex; 1936 } 1937 1938 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0); 1939 1940 /* Initialize the state machine, also allocate memory and request 1941 * resources 1942 */ 1943 err = idpf_vc_core_init(adapter); 1944 if (err) { 1945 cancel_delayed_work_sync(&adapter->mbx_task); 1946 idpf_deinit_dflt_mbx(adapter); 1947 goto unlock_mutex; 1948 } 1949 1950 /* Wait till all the vports are initialized to release the reset lock, 1951 * else user space callbacks may access uninitialized vports 1952 */ 1953 while (test_bit(IDPF_HR_RESET_IN_PROG, adapter->flags)) 1954 msleep(100); 1955 1956 unlock_mutex: 1957 mutex_unlock(&adapter->vport_ctrl_lock); 1958 1959 /* Attempt to restore netdevs and initialize RDMA CORE AUX device, 1960 * provided vc_core_init succeeded. It is still possible that 1961 * vports are not allocated at this point if the init task failed. 1962 */ 1963 if (!err) { 1964 idpf_attach_and_open(adapter); 1965 idpf_idc_init(adapter); 1966 } 1967 } 1968 1969 /** 1970 * idpf_vc_event_task - Handle virtchannel event logic 1971 * @work: work queue struct 1972 */ 1973 void idpf_vc_event_task(struct work_struct *work) 1974 { 1975 struct idpf_adapter *adapter; 1976 1977 adapter = container_of(work, struct idpf_adapter, vc_event_task.work); 1978 1979 if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags)) 1980 return; 1981 1982 if (test_bit(IDPF_HR_FUNC_RESET, adapter->flags)) 1983 goto func_reset; 1984 1985 if (test_bit(IDPF_HR_DRV_LOAD, adapter->flags)) 1986 goto drv_load; 1987 1988 return; 1989 1990 func_reset: 1991 idpf_vc_xn_shutdown(adapter->vcxn_mngr); 1992 drv_load: 1993 set_bit(IDPF_HR_RESET_IN_PROG, adapter->flags); 1994 idpf_init_hard_reset(adapter); 1995 } 1996 1997 /** 1998 * idpf_initiate_soft_reset - Initiate a software reset 1999 * @vport: virtual port data struct 2000 * @reset_cause: reason for the soft reset 2001 * 2002 * Soft reset only reallocs vport queue resources. Returns 0 on success, 2003 * negative on failure. 2004 */ 2005 int idpf_initiate_soft_reset(struct idpf_vport *vport, 2006 enum idpf_vport_reset_cause reset_cause) 2007 { 2008 struct idpf_netdev_priv *np = netdev_priv(vport->netdev); 2009 bool vport_is_up = test_bit(IDPF_VPORT_UP, np->state); 2010 struct idpf_q_vec_rsrc *rsrc = &vport->dflt_qv_rsrc; 2011 struct idpf_adapter *adapter = vport->adapter; 2012 struct idpf_vport_config *vport_config; 2013 struct idpf_q_vec_rsrc *new_rsrc; 2014 u32 vport_id = vport->vport_id; 2015 struct idpf_vport *new_vport; 2016 int err, tmp_err = 0; 2017 2018 /* If the system is low on memory, we can end up in bad state if we 2019 * free all the memory for queue resources and try to allocate them 2020 * again. Instead, we can pre-allocate the new resources before doing 2021 * anything and bailing if the alloc fails. 2022 * 2023 * Make a clone of the existing vport to mimic its current 2024 * configuration, then modify the new structure with any requested 2025 * changes. Once the allocation of the new resources is done, stop the 2026 * existing vport and copy the configuration to the main vport. If an 2027 * error occurred, the existing vport will be untouched. 2028 * 2029 */ 2030 new_vport = kzalloc(sizeof(*vport), GFP_KERNEL); 2031 if (!new_vport) 2032 return -ENOMEM; 2033 2034 /* This purposely avoids copying the end of the struct because it 2035 * contains wait_queues and mutexes and other stuff we don't want to 2036 * mess with. Nothing below should use those variables from new_vport 2037 * and should instead always refer to them in vport if they need to. 2038 */ 2039 memcpy(new_vport, vport, offsetof(struct idpf_vport, link_up)); 2040 2041 new_rsrc = &new_vport->dflt_qv_rsrc; 2042 2043 /* Adjust resource parameters prior to reallocating resources */ 2044 switch (reset_cause) { 2045 case IDPF_SR_Q_CHANGE: 2046 err = idpf_vport_adjust_qs(new_vport, new_rsrc); 2047 if (err) 2048 goto free_vport; 2049 break; 2050 case IDPF_SR_Q_DESC_CHANGE: 2051 /* Update queue parameters before allocating resources */ 2052 idpf_vport_calc_num_q_desc(new_vport, new_rsrc); 2053 break; 2054 case IDPF_SR_MTU_CHANGE: 2055 idpf_idc_vdev_mtu_event(vport->vdev_info, 2056 IIDC_RDMA_EVENT_BEFORE_MTU_CHANGE); 2057 break; 2058 case IDPF_SR_RSC_CHANGE: 2059 break; 2060 default: 2061 dev_err(&adapter->pdev->dev, "Unhandled soft reset cause\n"); 2062 err = -EINVAL; 2063 goto free_vport; 2064 } 2065 2066 vport_config = adapter->vport_config[vport->idx]; 2067 2068 if (!vport_is_up) { 2069 idpf_send_delete_queues_msg(adapter, &vport_config->qid_reg_info, 2070 vport_id); 2071 } else { 2072 set_bit(IDPF_VPORT_DEL_QUEUES, vport->flags); 2073 idpf_vport_stop(vport, false); 2074 } 2075 2076 err = idpf_send_add_queues_msg(adapter, vport_config, new_rsrc, 2077 vport_id); 2078 if (err) 2079 goto err_reset; 2080 2081 /* Avoid copying the wait_queues and mutexes. We do not want to mess 2082 * with those if possible. 2083 */ 2084 memcpy(vport, new_vport, offsetof(struct idpf_vport, link_up)); 2085 2086 if (reset_cause == IDPF_SR_Q_CHANGE) 2087 idpf_vport_alloc_vec_indexes(vport, &vport->dflt_qv_rsrc); 2088 2089 err = idpf_set_real_num_queues(vport); 2090 if (err) 2091 goto err_open; 2092 2093 if (reset_cause == IDPF_SR_Q_CHANGE && 2094 !netif_is_rxfh_configured(vport->netdev)) { 2095 struct idpf_rss_data *rss_data; 2096 2097 rss_data = &vport_config->user_config.rss_data; 2098 idpf_fill_dflt_rss_lut(vport, rss_data); 2099 } 2100 2101 if (vport_is_up) 2102 err = idpf_vport_open(vport, false); 2103 2104 goto free_vport; 2105 2106 err_reset: 2107 tmp_err = idpf_send_add_queues_msg(adapter, vport_config, rsrc, 2108 vport_id); 2109 2110 err_open: 2111 if (!tmp_err && vport_is_up) 2112 idpf_vport_open(vport, false); 2113 2114 free_vport: 2115 kfree(new_vport); 2116 2117 if (reset_cause == IDPF_SR_MTU_CHANGE) 2118 idpf_idc_vdev_mtu_event(vport->vdev_info, 2119 IIDC_RDMA_EVENT_AFTER_MTU_CHANGE); 2120 2121 return err; 2122 } 2123 2124 /** 2125 * idpf_addr_sync - Callback for dev_(mc|uc)_sync to add address 2126 * @netdev: the netdevice 2127 * @addr: address to add 2128 * 2129 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2130 * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock 2131 * meaning we cannot sleep in this context. Due to this, we have to add the 2132 * filter and send the virtchnl message asynchronously without waiting for the 2133 * response from the other side. We won't know whether or not the operation 2134 * actually succeeded until we get the message back. Returns 0 on success, 2135 * negative on failure. 2136 */ 2137 static int idpf_addr_sync(struct net_device *netdev, const u8 *addr) 2138 { 2139 struct idpf_netdev_priv *np = netdev_priv(netdev); 2140 2141 return idpf_add_mac_filter(np->vport, np, addr, true); 2142 } 2143 2144 /** 2145 * idpf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 2146 * @netdev: the netdevice 2147 * @addr: address to add 2148 * 2149 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 2150 * __dev_(uc|mc)_sync from .set_rx_mode. Kernel takes addr_list_lock spinlock 2151 * meaning we cannot sleep in this context. Due to this we have to delete the 2152 * filter and send the virtchnl message asynchronously without waiting for the 2153 * return from the other side. We won't know whether or not the operation 2154 * actually succeeded until we get the message back. Returns 0 on success, 2155 * negative on failure. 2156 */ 2157 static int idpf_addr_unsync(struct net_device *netdev, const u8 *addr) 2158 { 2159 struct idpf_netdev_priv *np = netdev_priv(netdev); 2160 2161 /* Under some circumstances, we might receive a request to delete 2162 * our own device address from our uc list. Because we store the 2163 * device address in the VSI's MAC filter list, we need to ignore 2164 * such requests and not delete our device address from this list. 2165 */ 2166 if (ether_addr_equal(addr, netdev->dev_addr)) 2167 return 0; 2168 2169 idpf_del_mac_filter(np->vport, np, addr, true); 2170 2171 return 0; 2172 } 2173 2174 /** 2175 * idpf_set_rx_mode - NDO callback to set the netdev filters 2176 * @netdev: network interface device structure 2177 * 2178 * Stack takes addr_list_lock spinlock before calling our .set_rx_mode. We 2179 * cannot sleep in this context. 2180 */ 2181 static void idpf_set_rx_mode(struct net_device *netdev) 2182 { 2183 struct idpf_netdev_priv *np = netdev_priv(netdev); 2184 struct idpf_vport_user_config_data *config_data; 2185 struct idpf_adapter *adapter; 2186 bool changed = false; 2187 struct device *dev; 2188 int err; 2189 2190 adapter = np->adapter; 2191 dev = &adapter->pdev->dev; 2192 2193 if (idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_MACFILTER)) { 2194 __dev_uc_sync(netdev, idpf_addr_sync, idpf_addr_unsync); 2195 __dev_mc_sync(netdev, idpf_addr_sync, idpf_addr_unsync); 2196 } 2197 2198 if (!idpf_is_cap_ena(adapter, IDPF_OTHER_CAPS, VIRTCHNL2_CAP_PROMISC)) 2199 return; 2200 2201 config_data = &adapter->vport_config[np->vport_idx]->user_config; 2202 /* IFF_PROMISC enables both unicast and multicast promiscuous, 2203 * while IFF_ALLMULTI only enables multicast such that: 2204 * 2205 * promisc + allmulti = unicast | multicast 2206 * promisc + !allmulti = unicast | multicast 2207 * !promisc + allmulti = multicast 2208 */ 2209 if ((netdev->flags & IFF_PROMISC) && 2210 !test_and_set_bit(__IDPF_PROMISC_UC, config_data->user_flags)) { 2211 changed = true; 2212 dev_info(&adapter->pdev->dev, "Entering promiscuous mode\n"); 2213 if (!test_and_set_bit(__IDPF_PROMISC_MC, adapter->flags)) 2214 dev_info(dev, "Entering multicast promiscuous mode\n"); 2215 } 2216 2217 if (!(netdev->flags & IFF_PROMISC) && 2218 test_and_clear_bit(__IDPF_PROMISC_UC, config_data->user_flags)) { 2219 changed = true; 2220 dev_info(dev, "Leaving promiscuous mode\n"); 2221 } 2222 2223 if (netdev->flags & IFF_ALLMULTI && 2224 !test_and_set_bit(__IDPF_PROMISC_MC, config_data->user_flags)) { 2225 changed = true; 2226 dev_info(dev, "Entering multicast promiscuous mode\n"); 2227 } 2228 2229 if (!(netdev->flags & (IFF_ALLMULTI | IFF_PROMISC)) && 2230 test_and_clear_bit(__IDPF_PROMISC_MC, config_data->user_flags)) { 2231 changed = true; 2232 dev_info(dev, "Leaving multicast promiscuous mode\n"); 2233 } 2234 2235 if (!changed) 2236 return; 2237 2238 err = idpf_set_promiscuous(adapter, config_data, np->vport_id); 2239 if (err) 2240 dev_err(dev, "Failed to set promiscuous mode: %d\n", err); 2241 } 2242 2243 /** 2244 * idpf_set_features - set the netdev feature flags 2245 * @netdev: ptr to the netdev being adjusted 2246 * @features: the feature set that the stack is suggesting 2247 */ 2248 static int idpf_set_features(struct net_device *netdev, 2249 netdev_features_t features) 2250 { 2251 netdev_features_t changed = netdev->features ^ features; 2252 struct idpf_adapter *adapter; 2253 struct idpf_vport *vport; 2254 int err = 0; 2255 2256 idpf_vport_ctrl_lock(netdev); 2257 vport = idpf_netdev_to_vport(netdev); 2258 2259 adapter = vport->adapter; 2260 2261 if (idpf_is_reset_in_prog(adapter)) { 2262 dev_err(&adapter->pdev->dev, "Device is resetting, changing netdev features temporarily unavailable.\n"); 2263 err = -EBUSY; 2264 goto unlock_mutex; 2265 } 2266 2267 if (changed & NETIF_F_RXHASH) { 2268 struct idpf_netdev_priv *np = netdev_priv(netdev); 2269 2270 netdev->features ^= NETIF_F_RXHASH; 2271 2272 /* If the interface is not up when changing the rxhash, update 2273 * to the HW is skipped. The updated LUT will be committed to 2274 * the HW when the interface is brought up. 2275 */ 2276 if (test_bit(IDPF_VPORT_UP, np->state)) { 2277 struct idpf_vport_config *vport_config; 2278 struct idpf_rss_data *rss_data; 2279 2280 vport_config = adapter->vport_config[vport->idx]; 2281 rss_data = &vport_config->user_config.rss_data; 2282 err = idpf_config_rss(vport, rss_data); 2283 if (err) 2284 goto unlock_mutex; 2285 } 2286 } 2287 2288 if (changed & NETIF_F_GRO_HW) { 2289 netdev->features ^= NETIF_F_GRO_HW; 2290 err = idpf_initiate_soft_reset(vport, IDPF_SR_RSC_CHANGE); 2291 if (err) 2292 goto unlock_mutex; 2293 } 2294 2295 if (changed & NETIF_F_LOOPBACK) { 2296 bool loopback_ena; 2297 2298 netdev->features ^= NETIF_F_LOOPBACK; 2299 loopback_ena = idpf_is_feature_ena(vport, NETIF_F_LOOPBACK); 2300 2301 err = idpf_send_ena_dis_loopback_msg(adapter, vport->vport_id, 2302 loopback_ena); 2303 } 2304 2305 unlock_mutex: 2306 idpf_vport_ctrl_unlock(netdev); 2307 2308 return err; 2309 } 2310 2311 /** 2312 * idpf_open - Called when a network interface becomes active 2313 * @netdev: network interface device structure 2314 * 2315 * The open entry point is called when a network interface is made 2316 * active by the system (IFF_UP). At this point all resources needed 2317 * for transmit and receive operations are allocated, the interrupt 2318 * handler is registered with the OS, the netdev watchdog is enabled, 2319 * and the stack is notified that the interface is ready. 2320 * 2321 * Returns 0 on success, negative value on failure 2322 */ 2323 static int idpf_open(struct net_device *netdev) 2324 { 2325 struct idpf_vport *vport; 2326 int err; 2327 2328 idpf_vport_ctrl_lock(netdev); 2329 vport = idpf_netdev_to_vport(netdev); 2330 2331 err = idpf_set_real_num_queues(vport); 2332 if (err) 2333 goto unlock; 2334 2335 err = idpf_vport_open(vport, false); 2336 2337 unlock: 2338 idpf_vport_ctrl_unlock(netdev); 2339 2340 return err; 2341 } 2342 2343 /** 2344 * idpf_change_mtu - NDO callback to change the MTU 2345 * @netdev: network interface device structure 2346 * @new_mtu: new value for maximum frame size 2347 * 2348 * Returns 0 on success, negative on failure 2349 */ 2350 static int idpf_change_mtu(struct net_device *netdev, int new_mtu) 2351 { 2352 struct idpf_vport *vport; 2353 int err; 2354 2355 idpf_vport_ctrl_lock(netdev); 2356 vport = idpf_netdev_to_vport(netdev); 2357 2358 WRITE_ONCE(netdev->mtu, new_mtu); 2359 2360 err = idpf_initiate_soft_reset(vport, IDPF_SR_MTU_CHANGE); 2361 2362 idpf_vport_ctrl_unlock(netdev); 2363 2364 return err; 2365 } 2366 2367 /** 2368 * idpf_chk_tso_segment - Check skb is not using too many buffers 2369 * @skb: send buffer 2370 * @max_bufs: maximum number of buffers 2371 * 2372 * For TSO we need to count the TSO header and segment payload separately. As 2373 * such we need to check cases where we have max_bufs-1 fragments or more as we 2374 * can potentially require max_bufs+1 DMA transactions, 1 for the TSO header, 1 2375 * for the segment payload in the first descriptor, and another max_buf-1 for 2376 * the fragments. 2377 * 2378 * Returns true if the packet needs to be software segmented by core stack. 2379 */ 2380 static bool idpf_chk_tso_segment(const struct sk_buff *skb, 2381 unsigned int max_bufs) 2382 { 2383 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2384 const skb_frag_t *frag, *stale; 2385 int nr_frags, sum; 2386 2387 /* no need to check if number of frags is less than max_bufs - 1 */ 2388 nr_frags = shinfo->nr_frags; 2389 if (nr_frags < (max_bufs - 1)) 2390 return false; 2391 2392 /* We need to walk through the list and validate that each group 2393 * of max_bufs-2 fragments totals at least gso_size. 2394 */ 2395 nr_frags -= max_bufs - 2; 2396 frag = &shinfo->frags[0]; 2397 2398 /* Initialize size to the negative value of gso_size minus 1. We use 2399 * this as the worst case scenario in which the frag ahead of us only 2400 * provides one byte which is why we are limited to max_bufs-2 2401 * descriptors for a single transmit as the header and previous 2402 * fragment are already consuming 2 descriptors. 2403 */ 2404 sum = 1 - shinfo->gso_size; 2405 2406 /* Add size of frags 0 through 4 to create our initial sum */ 2407 sum += skb_frag_size(frag++); 2408 sum += skb_frag_size(frag++); 2409 sum += skb_frag_size(frag++); 2410 sum += skb_frag_size(frag++); 2411 sum += skb_frag_size(frag++); 2412 2413 /* Walk through fragments adding latest fragment, testing it, and 2414 * then removing stale fragments from the sum. 2415 */ 2416 for (stale = &shinfo->frags[0];; stale++) { 2417 int stale_size = skb_frag_size(stale); 2418 2419 sum += skb_frag_size(frag++); 2420 2421 /* The stale fragment may present us with a smaller 2422 * descriptor than the actual fragment size. To account 2423 * for that we need to remove all the data on the front and 2424 * figure out what the remainder would be in the last 2425 * descriptor associated with the fragment. 2426 */ 2427 if (stale_size > IDPF_TX_MAX_DESC_DATA) { 2428 int align_pad = -(skb_frag_off(stale)) & 2429 (IDPF_TX_MAX_READ_REQ_SIZE - 1); 2430 2431 sum -= align_pad; 2432 stale_size -= align_pad; 2433 2434 do { 2435 sum -= IDPF_TX_MAX_DESC_DATA_ALIGNED; 2436 stale_size -= IDPF_TX_MAX_DESC_DATA_ALIGNED; 2437 } while (stale_size > IDPF_TX_MAX_DESC_DATA); 2438 } 2439 2440 /* if sum is negative we failed to make sufficient progress */ 2441 if (sum < 0) 2442 return true; 2443 2444 if (!nr_frags--) 2445 break; 2446 2447 sum -= stale_size; 2448 } 2449 2450 return false; 2451 } 2452 2453 /** 2454 * idpf_features_check - Validate packet conforms to limits 2455 * @skb: skb buffer 2456 * @netdev: This port's netdev 2457 * @features: Offload features that the stack believes apply 2458 */ 2459 static netdev_features_t idpf_features_check(struct sk_buff *skb, 2460 struct net_device *netdev, 2461 netdev_features_t features) 2462 { 2463 struct idpf_netdev_priv *np = netdev_priv(netdev); 2464 u16 max_tx_hdr_size = np->max_tx_hdr_size; 2465 size_t len; 2466 2467 /* No point in doing any of this if neither checksum nor GSO are 2468 * being requested for this frame. We can rule out both by just 2469 * checking for CHECKSUM_PARTIAL 2470 */ 2471 if (skb->ip_summed != CHECKSUM_PARTIAL) 2472 return features; 2473 2474 if (skb_is_gso(skb)) { 2475 /* We cannot support GSO if the MSS is going to be less than 2476 * 88 bytes. If it is then we need to drop support for GSO. 2477 */ 2478 if (skb_shinfo(skb)->gso_size < IDPF_TX_TSO_MIN_MSS) 2479 features &= ~NETIF_F_GSO_MASK; 2480 else if (idpf_chk_tso_segment(skb, np->tx_max_bufs)) 2481 features &= ~NETIF_F_GSO_MASK; 2482 } 2483 2484 /* Ensure MACLEN is <= 126 bytes (63 words) and not an odd size */ 2485 len = skb_network_offset(skb); 2486 if (unlikely(len & ~(126))) 2487 goto unsupported; 2488 2489 len = skb_network_header_len(skb); 2490 if (unlikely(len > max_tx_hdr_size)) 2491 goto unsupported; 2492 2493 if (!skb->encapsulation) 2494 return features; 2495 2496 /* L4TUNLEN can support 127 words */ 2497 len = skb_inner_network_header(skb) - skb_transport_header(skb); 2498 if (unlikely(len & ~(127 * 2))) 2499 goto unsupported; 2500 2501 /* IPLEN can support at most 127 dwords */ 2502 len = skb_inner_network_header_len(skb); 2503 if (unlikely(len > max_tx_hdr_size)) 2504 goto unsupported; 2505 2506 /* No need to validate L4LEN as TCP is the only protocol with a 2507 * a flexible value and we support all possible values supported 2508 * by TCP, which is at most 15 dwords 2509 */ 2510 2511 return features; 2512 2513 unsupported: 2514 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2515 } 2516 2517 /** 2518 * idpf_set_mac - NDO callback to set port mac address 2519 * @netdev: network interface device structure 2520 * @p: pointer to an address structure 2521 * 2522 * Returns 0 on success, negative on failure 2523 **/ 2524 static int idpf_set_mac(struct net_device *netdev, void *p) 2525 { 2526 struct idpf_netdev_priv *np = netdev_priv(netdev); 2527 struct idpf_vport_config *vport_config; 2528 struct sockaddr *addr = p; 2529 u8 old_mac_addr[ETH_ALEN]; 2530 struct idpf_vport *vport; 2531 int err = 0; 2532 2533 idpf_vport_ctrl_lock(netdev); 2534 vport = idpf_netdev_to_vport(netdev); 2535 2536 if (!idpf_is_cap_ena(vport->adapter, IDPF_OTHER_CAPS, 2537 VIRTCHNL2_CAP_MACFILTER)) { 2538 dev_info(&vport->adapter->pdev->dev, "Setting MAC address is not supported\n"); 2539 err = -EOPNOTSUPP; 2540 goto unlock_mutex; 2541 } 2542 2543 if (!is_valid_ether_addr(addr->sa_data)) { 2544 dev_info(&vport->adapter->pdev->dev, "Invalid MAC address: %pM\n", 2545 addr->sa_data); 2546 err = -EADDRNOTAVAIL; 2547 goto unlock_mutex; 2548 } 2549 2550 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) 2551 goto unlock_mutex; 2552 2553 ether_addr_copy(old_mac_addr, vport->default_mac_addr); 2554 ether_addr_copy(vport->default_mac_addr, addr->sa_data); 2555 vport_config = vport->adapter->vport_config[vport->idx]; 2556 err = idpf_add_mac_filter(vport, np, addr->sa_data, false); 2557 if (err) { 2558 __idpf_del_mac_filter(vport_config, addr->sa_data); 2559 ether_addr_copy(vport->default_mac_addr, netdev->dev_addr); 2560 goto unlock_mutex; 2561 } 2562 2563 if (is_valid_ether_addr(old_mac_addr)) 2564 __idpf_del_mac_filter(vport_config, old_mac_addr); 2565 2566 eth_hw_addr_set(netdev, addr->sa_data); 2567 2568 unlock_mutex: 2569 idpf_vport_ctrl_unlock(netdev); 2570 2571 return err; 2572 } 2573 2574 /** 2575 * idpf_alloc_dma_mem - Allocate dma memory 2576 * @hw: pointer to hw struct 2577 * @mem: pointer to dma_mem struct 2578 * @size: size of the memory to allocate 2579 */ 2580 void *idpf_alloc_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem, u64 size) 2581 { 2582 struct idpf_adapter *adapter = hw->back; 2583 size_t sz = ALIGN(size, 4096); 2584 2585 /* The control queue resources are freed under a spinlock, contiguous 2586 * pages will avoid IOMMU remapping and the use vmap (and vunmap in 2587 * dma_free_*() path. 2588 */ 2589 mem->va = dma_alloc_attrs(&adapter->pdev->dev, sz, &mem->pa, 2590 GFP_KERNEL, DMA_ATTR_FORCE_CONTIGUOUS); 2591 mem->size = sz; 2592 2593 return mem->va; 2594 } 2595 2596 /** 2597 * idpf_free_dma_mem - Free the allocated dma memory 2598 * @hw: pointer to hw struct 2599 * @mem: pointer to dma_mem struct 2600 */ 2601 void idpf_free_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem) 2602 { 2603 struct idpf_adapter *adapter = hw->back; 2604 2605 dma_free_attrs(&adapter->pdev->dev, mem->size, 2606 mem->va, mem->pa, DMA_ATTR_FORCE_CONTIGUOUS); 2607 mem->size = 0; 2608 mem->va = NULL; 2609 mem->pa = 0; 2610 } 2611 2612 static int idpf_hwtstamp_set(struct net_device *netdev, 2613 struct kernel_hwtstamp_config *config, 2614 struct netlink_ext_ack *extack) 2615 { 2616 struct idpf_vport *vport; 2617 int err; 2618 2619 idpf_vport_ctrl_lock(netdev); 2620 vport = idpf_netdev_to_vport(netdev); 2621 2622 if (!vport->link_up) { 2623 idpf_vport_ctrl_unlock(netdev); 2624 return -EPERM; 2625 } 2626 2627 if (!idpf_ptp_is_vport_tx_tstamp_ena(vport) && 2628 !idpf_ptp_is_vport_rx_tstamp_ena(vport)) { 2629 idpf_vport_ctrl_unlock(netdev); 2630 return -EOPNOTSUPP; 2631 } 2632 2633 err = idpf_ptp_set_timestamp_mode(vport, config); 2634 2635 idpf_vport_ctrl_unlock(netdev); 2636 2637 return err; 2638 } 2639 2640 static int idpf_hwtstamp_get(struct net_device *netdev, 2641 struct kernel_hwtstamp_config *config) 2642 { 2643 struct idpf_vport *vport; 2644 2645 idpf_vport_ctrl_lock(netdev); 2646 vport = idpf_netdev_to_vport(netdev); 2647 2648 if (!vport->link_up) { 2649 idpf_vport_ctrl_unlock(netdev); 2650 return -EPERM; 2651 } 2652 2653 if (!idpf_ptp_is_vport_tx_tstamp_ena(vport) && 2654 !idpf_ptp_is_vport_rx_tstamp_ena(vport)) { 2655 idpf_vport_ctrl_unlock(netdev); 2656 return 0; 2657 } 2658 2659 *config = vport->tstamp_config; 2660 2661 idpf_vport_ctrl_unlock(netdev); 2662 2663 return 0; 2664 } 2665 2666 static const struct net_device_ops idpf_netdev_ops = { 2667 .ndo_open = idpf_open, 2668 .ndo_stop = idpf_stop, 2669 .ndo_start_xmit = idpf_tx_start, 2670 .ndo_features_check = idpf_features_check, 2671 .ndo_set_rx_mode = idpf_set_rx_mode, 2672 .ndo_validate_addr = eth_validate_addr, 2673 .ndo_set_mac_address = idpf_set_mac, 2674 .ndo_change_mtu = idpf_change_mtu, 2675 .ndo_get_stats64 = idpf_get_stats64, 2676 .ndo_set_features = idpf_set_features, 2677 .ndo_tx_timeout = idpf_tx_timeout, 2678 .ndo_hwtstamp_get = idpf_hwtstamp_get, 2679 .ndo_hwtstamp_set = idpf_hwtstamp_set, 2680 .ndo_bpf = idpf_xdp, 2681 .ndo_xdp_xmit = idpf_xdp_xmit, 2682 .ndo_xsk_wakeup = idpf_xsk_wakeup, 2683 }; 2684