1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2023 Intel Corporation */
3
4 #include <net/libeth/rx.h>
5
6 #include "idpf.h"
7 #include "idpf_virtchnl.h"
8
9 #define IDPF_VC_XN_MIN_TIMEOUT_MSEC 2000
10 #define IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC (60 * 1000)
11 #define IDPF_VC_XN_IDX_M GENMASK(7, 0)
12 #define IDPF_VC_XN_SALT_M GENMASK(15, 8)
13 #define IDPF_VC_XN_RING_LEN U8_MAX
14
15 /**
16 * enum idpf_vc_xn_state - Virtchnl transaction status
17 * @IDPF_VC_XN_IDLE: not expecting a reply, ready to be used
18 * @IDPF_VC_XN_WAITING: expecting a reply, not yet received
19 * @IDPF_VC_XN_COMPLETED_SUCCESS: a reply was expected and received,
20 * buffer updated
21 * @IDPF_VC_XN_COMPLETED_FAILED: a reply was expected and received, but there
22 * was an error, buffer not updated
23 * @IDPF_VC_XN_SHUTDOWN: transaction object cannot be used, VC torn down
24 * @IDPF_VC_XN_ASYNC: transaction sent asynchronously and doesn't have the
25 * return context; a callback may be provided to handle
26 * return
27 */
28 enum idpf_vc_xn_state {
29 IDPF_VC_XN_IDLE = 1,
30 IDPF_VC_XN_WAITING,
31 IDPF_VC_XN_COMPLETED_SUCCESS,
32 IDPF_VC_XN_COMPLETED_FAILED,
33 IDPF_VC_XN_SHUTDOWN,
34 IDPF_VC_XN_ASYNC,
35 };
36
37 struct idpf_vc_xn;
38 /* Callback for asynchronous messages */
39 typedef int (*async_vc_cb) (struct idpf_adapter *, struct idpf_vc_xn *,
40 const struct idpf_ctlq_msg *);
41
42 /**
43 * struct idpf_vc_xn - Data structure representing virtchnl transactions
44 * @completed: virtchnl event loop uses that to signal when a reply is
45 * available, uses kernel completion API
46 * @state: virtchnl event loop stores the data below, protected by the
47 * completion's lock.
48 * @reply_sz: Original size of reply, may be > reply_buf.iov_len; it will be
49 * truncated on its way to the receiver thread according to
50 * reply_buf.iov_len.
51 * @reply: Reference to the buffer(s) where the reply data should be written
52 * to. May be 0-length (then NULL address permitted) if the reply data
53 * should be ignored.
54 * @async_handler: if sent asynchronously, a callback can be provided to handle
55 * the reply when it's received
56 * @vc_op: corresponding opcode sent with this transaction
57 * @idx: index used as retrieval on reply receive, used for cookie
58 * @salt: changed every message to make unique, used for cookie
59 */
60 struct idpf_vc_xn {
61 struct completion completed;
62 enum idpf_vc_xn_state state;
63 size_t reply_sz;
64 struct kvec reply;
65 async_vc_cb async_handler;
66 u32 vc_op;
67 u8 idx;
68 u8 salt;
69 };
70
71 /**
72 * struct idpf_vc_xn_params - Parameters for executing transaction
73 * @send_buf: kvec for send buffer
74 * @recv_buf: kvec for recv buffer, may be NULL, must then have zero length
75 * @timeout_ms: timeout to wait for reply
76 * @async: send message asynchronously, will not wait on completion
77 * @async_handler: If sent asynchronously, optional callback handler. The user
78 * must be careful when using async handlers as the memory for
79 * the recv_buf _cannot_ be on stack if this is async.
80 * @vc_op: virtchnl op to send
81 */
82 struct idpf_vc_xn_params {
83 struct kvec send_buf;
84 struct kvec recv_buf;
85 int timeout_ms;
86 bool async;
87 async_vc_cb async_handler;
88 u32 vc_op;
89 };
90
91 /**
92 * struct idpf_vc_xn_manager - Manager for tracking transactions
93 * @ring: backing and lookup for transactions
94 * @free_xn_bm: bitmap for free transactions
95 * @xn_bm_lock: make bitmap access synchronous where necessary
96 * @salt: used to make cookie unique every message
97 */
98 struct idpf_vc_xn_manager {
99 struct idpf_vc_xn ring[IDPF_VC_XN_RING_LEN];
100 DECLARE_BITMAP(free_xn_bm, IDPF_VC_XN_RING_LEN);
101 spinlock_t xn_bm_lock;
102 u8 salt;
103 };
104
105 /**
106 * idpf_vid_to_vport - Translate vport id to vport pointer
107 * @adapter: private data struct
108 * @v_id: vport id to translate
109 *
110 * Returns vport matching v_id, NULL if not found.
111 */
112 static
idpf_vid_to_vport(struct idpf_adapter * adapter,u32 v_id)113 struct idpf_vport *idpf_vid_to_vport(struct idpf_adapter *adapter, u32 v_id)
114 {
115 u16 num_max_vports = idpf_get_max_vports(adapter);
116 int i;
117
118 for (i = 0; i < num_max_vports; i++)
119 if (adapter->vport_ids[i] == v_id)
120 return adapter->vports[i];
121
122 return NULL;
123 }
124
125 /**
126 * idpf_handle_event_link - Handle link event message
127 * @adapter: private data struct
128 * @v2e: virtchnl event message
129 */
idpf_handle_event_link(struct idpf_adapter * adapter,const struct virtchnl2_event * v2e)130 static void idpf_handle_event_link(struct idpf_adapter *adapter,
131 const struct virtchnl2_event *v2e)
132 {
133 struct idpf_netdev_priv *np;
134 struct idpf_vport *vport;
135
136 vport = idpf_vid_to_vport(adapter, le32_to_cpu(v2e->vport_id));
137 if (!vport) {
138 dev_err_ratelimited(&adapter->pdev->dev, "Failed to find vport_id %d for link event\n",
139 v2e->vport_id);
140 return;
141 }
142 np = netdev_priv(vport->netdev);
143
144 np->link_speed_mbps = le32_to_cpu(v2e->link_speed);
145
146 if (vport->link_up == v2e->link_status)
147 return;
148
149 vport->link_up = v2e->link_status;
150
151 if (np->state != __IDPF_VPORT_UP)
152 return;
153
154 if (vport->link_up) {
155 netif_tx_start_all_queues(vport->netdev);
156 netif_carrier_on(vport->netdev);
157 } else {
158 netif_tx_stop_all_queues(vport->netdev);
159 netif_carrier_off(vport->netdev);
160 }
161 }
162
163 /**
164 * idpf_recv_event_msg - Receive virtchnl event message
165 * @adapter: Driver specific private structure
166 * @ctlq_msg: message to copy from
167 *
168 * Receive virtchnl event message
169 */
idpf_recv_event_msg(struct idpf_adapter * adapter,struct idpf_ctlq_msg * ctlq_msg)170 static void idpf_recv_event_msg(struct idpf_adapter *adapter,
171 struct idpf_ctlq_msg *ctlq_msg)
172 {
173 int payload_size = ctlq_msg->ctx.indirect.payload->size;
174 struct virtchnl2_event *v2e;
175 u32 event;
176
177 if (payload_size < sizeof(*v2e)) {
178 dev_err_ratelimited(&adapter->pdev->dev, "Failed to receive valid payload for event msg (op %d len %d)\n",
179 ctlq_msg->cookie.mbx.chnl_opcode,
180 payload_size);
181 return;
182 }
183
184 v2e = (struct virtchnl2_event *)ctlq_msg->ctx.indirect.payload->va;
185 event = le32_to_cpu(v2e->event);
186
187 switch (event) {
188 case VIRTCHNL2_EVENT_LINK_CHANGE:
189 idpf_handle_event_link(adapter, v2e);
190 return;
191 default:
192 dev_err(&adapter->pdev->dev,
193 "Unknown event %d from PF\n", event);
194 break;
195 }
196 }
197
198 /**
199 * idpf_mb_clean - Reclaim the send mailbox queue entries
200 * @adapter: Driver specific private structure
201 *
202 * Reclaim the send mailbox queue entries to be used to send further messages
203 *
204 * Returns 0 on success, negative on failure
205 */
idpf_mb_clean(struct idpf_adapter * adapter)206 static int idpf_mb_clean(struct idpf_adapter *adapter)
207 {
208 u16 i, num_q_msg = IDPF_DFLT_MBX_Q_LEN;
209 struct idpf_ctlq_msg **q_msg;
210 struct idpf_dma_mem *dma_mem;
211 int err;
212
213 q_msg = kcalloc(num_q_msg, sizeof(struct idpf_ctlq_msg *), GFP_ATOMIC);
214 if (!q_msg)
215 return -ENOMEM;
216
217 err = idpf_ctlq_clean_sq(adapter->hw.asq, &num_q_msg, q_msg);
218 if (err)
219 goto err_kfree;
220
221 for (i = 0; i < num_q_msg; i++) {
222 if (!q_msg[i])
223 continue;
224 dma_mem = q_msg[i]->ctx.indirect.payload;
225 if (dma_mem)
226 dma_free_coherent(&adapter->pdev->dev, dma_mem->size,
227 dma_mem->va, dma_mem->pa);
228 kfree(q_msg[i]);
229 kfree(dma_mem);
230 }
231
232 err_kfree:
233 kfree(q_msg);
234
235 return err;
236 }
237
238 /**
239 * idpf_send_mb_msg - Send message over mailbox
240 * @adapter: Driver specific private structure
241 * @op: virtchnl opcode
242 * @msg_size: size of the payload
243 * @msg: pointer to buffer holding the payload
244 * @cookie: unique SW generated cookie per message
245 *
246 * Will prepare the control queue message and initiates the send api
247 *
248 * Returns 0 on success, negative on failure
249 */
idpf_send_mb_msg(struct idpf_adapter * adapter,u32 op,u16 msg_size,u8 * msg,u16 cookie)250 int idpf_send_mb_msg(struct idpf_adapter *adapter, u32 op,
251 u16 msg_size, u8 *msg, u16 cookie)
252 {
253 struct idpf_ctlq_msg *ctlq_msg;
254 struct idpf_dma_mem *dma_mem;
255 int err;
256
257 /* If we are here and a reset is detected nothing much can be
258 * done. This thread should silently abort and expected to
259 * be corrected with a new run either by user or driver
260 * flows after reset
261 */
262 if (idpf_is_reset_detected(adapter))
263 return 0;
264
265 err = idpf_mb_clean(adapter);
266 if (err)
267 return err;
268
269 ctlq_msg = kzalloc(sizeof(*ctlq_msg), GFP_ATOMIC);
270 if (!ctlq_msg)
271 return -ENOMEM;
272
273 dma_mem = kzalloc(sizeof(*dma_mem), GFP_ATOMIC);
274 if (!dma_mem) {
275 err = -ENOMEM;
276 goto dma_mem_error;
277 }
278
279 ctlq_msg->opcode = idpf_mbq_opc_send_msg_to_cp;
280 ctlq_msg->func_id = 0;
281 ctlq_msg->data_len = msg_size;
282 ctlq_msg->cookie.mbx.chnl_opcode = op;
283 ctlq_msg->cookie.mbx.chnl_retval = 0;
284 dma_mem->size = IDPF_CTLQ_MAX_BUF_LEN;
285 dma_mem->va = dma_alloc_coherent(&adapter->pdev->dev, dma_mem->size,
286 &dma_mem->pa, GFP_ATOMIC);
287 if (!dma_mem->va) {
288 err = -ENOMEM;
289 goto dma_alloc_error;
290 }
291
292 /* It's possible we're just sending an opcode but no buffer */
293 if (msg && msg_size)
294 memcpy(dma_mem->va, msg, msg_size);
295 ctlq_msg->ctx.indirect.payload = dma_mem;
296 ctlq_msg->ctx.sw_cookie.data = cookie;
297
298 err = idpf_ctlq_send(&adapter->hw, adapter->hw.asq, 1, ctlq_msg);
299 if (err)
300 goto send_error;
301
302 return 0;
303
304 send_error:
305 dma_free_coherent(&adapter->pdev->dev, dma_mem->size, dma_mem->va,
306 dma_mem->pa);
307 dma_alloc_error:
308 kfree(dma_mem);
309 dma_mem_error:
310 kfree(ctlq_msg);
311
312 return err;
313 }
314
315 /* API for virtchnl "transaction" support ("xn" for short).
316 *
317 * We are reusing the completion lock to serialize the accesses to the
318 * transaction state for simplicity, but it could be its own separate synchro
319 * as well. For now, this API is only used from within a workqueue context;
320 * raw_spin_lock() is enough.
321 */
322 /**
323 * idpf_vc_xn_lock - Request exclusive access to vc transaction
324 * @xn: struct idpf_vc_xn* to access
325 */
326 #define idpf_vc_xn_lock(xn) \
327 raw_spin_lock(&(xn)->completed.wait.lock)
328
329 /**
330 * idpf_vc_xn_unlock - Release exclusive access to vc transaction
331 * @xn: struct idpf_vc_xn* to access
332 */
333 #define idpf_vc_xn_unlock(xn) \
334 raw_spin_unlock(&(xn)->completed.wait.lock)
335
336 /**
337 * idpf_vc_xn_release_bufs - Release reference to reply buffer(s) and
338 * reset the transaction state.
339 * @xn: struct idpf_vc_xn to update
340 */
idpf_vc_xn_release_bufs(struct idpf_vc_xn * xn)341 static void idpf_vc_xn_release_bufs(struct idpf_vc_xn *xn)
342 {
343 xn->reply.iov_base = NULL;
344 xn->reply.iov_len = 0;
345
346 if (xn->state != IDPF_VC_XN_SHUTDOWN)
347 xn->state = IDPF_VC_XN_IDLE;
348 }
349
350 /**
351 * idpf_vc_xn_init - Initialize virtchnl transaction object
352 * @vcxn_mngr: pointer to vc transaction manager struct
353 */
idpf_vc_xn_init(struct idpf_vc_xn_manager * vcxn_mngr)354 static void idpf_vc_xn_init(struct idpf_vc_xn_manager *vcxn_mngr)
355 {
356 int i;
357
358 spin_lock_init(&vcxn_mngr->xn_bm_lock);
359
360 for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
361 struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
362
363 xn->state = IDPF_VC_XN_IDLE;
364 xn->idx = i;
365 idpf_vc_xn_release_bufs(xn);
366 init_completion(&xn->completed);
367 }
368
369 bitmap_fill(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
370 }
371
372 /**
373 * idpf_vc_xn_shutdown - Uninitialize virtchnl transaction object
374 * @vcxn_mngr: pointer to vc transaction manager struct
375 *
376 * All waiting threads will be woken-up and their transaction aborted. Further
377 * operations on that object will fail.
378 */
idpf_vc_xn_shutdown(struct idpf_vc_xn_manager * vcxn_mngr)379 static void idpf_vc_xn_shutdown(struct idpf_vc_xn_manager *vcxn_mngr)
380 {
381 int i;
382
383 spin_lock_bh(&vcxn_mngr->xn_bm_lock);
384 bitmap_zero(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
385 spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
386
387 for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
388 struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
389
390 idpf_vc_xn_lock(xn);
391 xn->state = IDPF_VC_XN_SHUTDOWN;
392 idpf_vc_xn_release_bufs(xn);
393 idpf_vc_xn_unlock(xn);
394 complete_all(&xn->completed);
395 }
396 }
397
398 /**
399 * idpf_vc_xn_pop_free - Pop a free transaction from free list
400 * @vcxn_mngr: transaction manager to pop from
401 *
402 * Returns NULL if no free transactions
403 */
404 static
idpf_vc_xn_pop_free(struct idpf_vc_xn_manager * vcxn_mngr)405 struct idpf_vc_xn *idpf_vc_xn_pop_free(struct idpf_vc_xn_manager *vcxn_mngr)
406 {
407 struct idpf_vc_xn *xn = NULL;
408 unsigned long free_idx;
409
410 spin_lock_bh(&vcxn_mngr->xn_bm_lock);
411 free_idx = find_first_bit(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
412 if (free_idx == IDPF_VC_XN_RING_LEN)
413 goto do_unlock;
414
415 clear_bit(free_idx, vcxn_mngr->free_xn_bm);
416 xn = &vcxn_mngr->ring[free_idx];
417 xn->salt = vcxn_mngr->salt++;
418
419 do_unlock:
420 spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
421
422 return xn;
423 }
424
425 /**
426 * idpf_vc_xn_push_free - Push a free transaction to free list
427 * @vcxn_mngr: transaction manager to push to
428 * @xn: transaction to push
429 */
idpf_vc_xn_push_free(struct idpf_vc_xn_manager * vcxn_mngr,struct idpf_vc_xn * xn)430 static void idpf_vc_xn_push_free(struct idpf_vc_xn_manager *vcxn_mngr,
431 struct idpf_vc_xn *xn)
432 {
433 idpf_vc_xn_release_bufs(xn);
434 set_bit(xn->idx, vcxn_mngr->free_xn_bm);
435 }
436
437 /**
438 * idpf_vc_xn_exec - Perform a send/recv virtchnl transaction
439 * @adapter: driver specific private structure with vcxn_mngr
440 * @params: parameters for this particular transaction including
441 * -vc_op: virtchannel operation to send
442 * -send_buf: kvec iov for send buf and len
443 * -recv_buf: kvec iov for recv buf and len (ignored if NULL)
444 * -timeout_ms: timeout waiting for a reply (milliseconds)
445 * -async: don't wait for message reply, will lose caller context
446 * -async_handler: callback to handle async replies
447 *
448 * @returns >= 0 for success, the size of the initial reply (may or may not be
449 * >= @recv_buf.iov_len, but we never overflow @@recv_buf_iov_base). < 0 for
450 * error.
451 */
idpf_vc_xn_exec(struct idpf_adapter * adapter,const struct idpf_vc_xn_params * params)452 static ssize_t idpf_vc_xn_exec(struct idpf_adapter *adapter,
453 const struct idpf_vc_xn_params *params)
454 {
455 const struct kvec *send_buf = ¶ms->send_buf;
456 struct idpf_vc_xn *xn;
457 ssize_t retval;
458 u16 cookie;
459
460 xn = idpf_vc_xn_pop_free(adapter->vcxn_mngr);
461 /* no free transactions available */
462 if (!xn)
463 return -ENOSPC;
464
465 idpf_vc_xn_lock(xn);
466 if (xn->state == IDPF_VC_XN_SHUTDOWN) {
467 retval = -ENXIO;
468 goto only_unlock;
469 } else if (xn->state != IDPF_VC_XN_IDLE) {
470 /* We're just going to clobber this transaction even though
471 * it's not IDLE. If we don't reuse it we could theoretically
472 * eventually leak all the free transactions and not be able to
473 * send any messages. At least this way we make an attempt to
474 * remain functional even though something really bad is
475 * happening that's corrupting what was supposed to be free
476 * transactions.
477 */
478 WARN_ONCE(1, "There should only be idle transactions in free list (idx %d op %d)\n",
479 xn->idx, xn->vc_op);
480 }
481
482 xn->reply = params->recv_buf;
483 xn->reply_sz = 0;
484 xn->state = params->async ? IDPF_VC_XN_ASYNC : IDPF_VC_XN_WAITING;
485 xn->vc_op = params->vc_op;
486 xn->async_handler = params->async_handler;
487 idpf_vc_xn_unlock(xn);
488
489 if (!params->async)
490 reinit_completion(&xn->completed);
491 cookie = FIELD_PREP(IDPF_VC_XN_SALT_M, xn->salt) |
492 FIELD_PREP(IDPF_VC_XN_IDX_M, xn->idx);
493
494 retval = idpf_send_mb_msg(adapter, params->vc_op,
495 send_buf->iov_len, send_buf->iov_base,
496 cookie);
497 if (retval) {
498 idpf_vc_xn_lock(xn);
499 goto release_and_unlock;
500 }
501
502 if (params->async)
503 return 0;
504
505 wait_for_completion_timeout(&xn->completed,
506 msecs_to_jiffies(params->timeout_ms));
507
508 /* No need to check the return value; we check the final state of the
509 * transaction below. It's possible the transaction actually gets more
510 * timeout than specified if we get preempted here but after
511 * wait_for_completion_timeout returns. This should be non-issue
512 * however.
513 */
514 idpf_vc_xn_lock(xn);
515 switch (xn->state) {
516 case IDPF_VC_XN_SHUTDOWN:
517 retval = -ENXIO;
518 goto only_unlock;
519 case IDPF_VC_XN_WAITING:
520 dev_notice_ratelimited(&adapter->pdev->dev, "Transaction timed-out (op %d, %dms)\n",
521 params->vc_op, params->timeout_ms);
522 retval = -ETIME;
523 break;
524 case IDPF_VC_XN_COMPLETED_SUCCESS:
525 retval = xn->reply_sz;
526 break;
527 case IDPF_VC_XN_COMPLETED_FAILED:
528 dev_notice_ratelimited(&adapter->pdev->dev, "Transaction failed (op %d)\n",
529 params->vc_op);
530 retval = -EIO;
531 break;
532 default:
533 /* Invalid state. */
534 WARN_ON_ONCE(1);
535 retval = -EIO;
536 break;
537 }
538
539 release_and_unlock:
540 idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
541 /* If we receive a VC reply after here, it will be dropped. */
542 only_unlock:
543 idpf_vc_xn_unlock(xn);
544
545 return retval;
546 }
547
548 /**
549 * idpf_vc_xn_forward_async - Handle async reply receives
550 * @adapter: private data struct
551 * @xn: transaction to handle
552 * @ctlq_msg: corresponding ctlq_msg
553 *
554 * For async sends we're going to lose the caller's context so, if an
555 * async_handler was provided, it can deal with the reply, otherwise we'll just
556 * check and report if there is an error.
557 */
558 static int
idpf_vc_xn_forward_async(struct idpf_adapter * adapter,struct idpf_vc_xn * xn,const struct idpf_ctlq_msg * ctlq_msg)559 idpf_vc_xn_forward_async(struct idpf_adapter *adapter, struct idpf_vc_xn *xn,
560 const struct idpf_ctlq_msg *ctlq_msg)
561 {
562 int err = 0;
563
564 if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
565 dev_err_ratelimited(&adapter->pdev->dev, "Async message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
566 ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
567 xn->reply_sz = 0;
568 err = -EINVAL;
569 goto release_bufs;
570 }
571
572 if (xn->async_handler) {
573 err = xn->async_handler(adapter, xn, ctlq_msg);
574 goto release_bufs;
575 }
576
577 if (ctlq_msg->cookie.mbx.chnl_retval) {
578 xn->reply_sz = 0;
579 dev_err_ratelimited(&adapter->pdev->dev, "Async message failure (op %d)\n",
580 ctlq_msg->cookie.mbx.chnl_opcode);
581 err = -EINVAL;
582 }
583
584 release_bufs:
585 idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
586
587 return err;
588 }
589
590 /**
591 * idpf_vc_xn_forward_reply - copy a reply back to receiving thread
592 * @adapter: driver specific private structure with vcxn_mngr
593 * @ctlq_msg: controlq message to send back to receiving thread
594 */
595 static int
idpf_vc_xn_forward_reply(struct idpf_adapter * adapter,const struct idpf_ctlq_msg * ctlq_msg)596 idpf_vc_xn_forward_reply(struct idpf_adapter *adapter,
597 const struct idpf_ctlq_msg *ctlq_msg)
598 {
599 const void *payload = NULL;
600 size_t payload_size = 0;
601 struct idpf_vc_xn *xn;
602 u16 msg_info;
603 int err = 0;
604 u16 xn_idx;
605 u16 salt;
606
607 msg_info = ctlq_msg->ctx.sw_cookie.data;
608 xn_idx = FIELD_GET(IDPF_VC_XN_IDX_M, msg_info);
609 if (xn_idx >= ARRAY_SIZE(adapter->vcxn_mngr->ring)) {
610 dev_err_ratelimited(&adapter->pdev->dev, "Out of bounds cookie received: %02x\n",
611 xn_idx);
612 return -EINVAL;
613 }
614 xn = &adapter->vcxn_mngr->ring[xn_idx];
615 salt = FIELD_GET(IDPF_VC_XN_SALT_M, msg_info);
616 if (xn->salt != salt) {
617 dev_err_ratelimited(&adapter->pdev->dev, "Transaction salt does not match (%02x != %02x)\n",
618 xn->salt, salt);
619 return -EINVAL;
620 }
621
622 idpf_vc_xn_lock(xn);
623 switch (xn->state) {
624 case IDPF_VC_XN_WAITING:
625 /* success */
626 break;
627 case IDPF_VC_XN_IDLE:
628 dev_err_ratelimited(&adapter->pdev->dev, "Unexpected or belated VC reply (op %d)\n",
629 ctlq_msg->cookie.mbx.chnl_opcode);
630 err = -EINVAL;
631 goto out_unlock;
632 case IDPF_VC_XN_SHUTDOWN:
633 /* ENXIO is a bit special here as the recv msg loop uses that
634 * know if it should stop trying to clean the ring if we lost
635 * the virtchnl. We need to stop playing with registers and
636 * yield.
637 */
638 err = -ENXIO;
639 goto out_unlock;
640 case IDPF_VC_XN_ASYNC:
641 err = idpf_vc_xn_forward_async(adapter, xn, ctlq_msg);
642 idpf_vc_xn_unlock(xn);
643 return err;
644 default:
645 dev_err_ratelimited(&adapter->pdev->dev, "Overwriting VC reply (op %d)\n",
646 ctlq_msg->cookie.mbx.chnl_opcode);
647 err = -EBUSY;
648 goto out_unlock;
649 }
650
651 if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
652 dev_err_ratelimited(&adapter->pdev->dev, "Message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
653 ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
654 xn->reply_sz = 0;
655 xn->state = IDPF_VC_XN_COMPLETED_FAILED;
656 err = -EINVAL;
657 goto out_unlock;
658 }
659
660 if (ctlq_msg->cookie.mbx.chnl_retval) {
661 xn->reply_sz = 0;
662 xn->state = IDPF_VC_XN_COMPLETED_FAILED;
663 err = -EINVAL;
664 goto out_unlock;
665 }
666
667 if (ctlq_msg->data_len) {
668 payload = ctlq_msg->ctx.indirect.payload->va;
669 payload_size = ctlq_msg->data_len;
670 }
671
672 xn->reply_sz = payload_size;
673 xn->state = IDPF_VC_XN_COMPLETED_SUCCESS;
674
675 if (xn->reply.iov_base && xn->reply.iov_len && payload_size)
676 memcpy(xn->reply.iov_base, payload,
677 min_t(size_t, xn->reply.iov_len, payload_size));
678
679 out_unlock:
680 idpf_vc_xn_unlock(xn);
681 /* we _cannot_ hold lock while calling complete */
682 complete(&xn->completed);
683
684 return err;
685 }
686
687 /**
688 * idpf_recv_mb_msg - Receive message over mailbox
689 * @adapter: Driver specific private structure
690 *
691 * Will receive control queue message and posts the receive buffer. Returns 0
692 * on success and negative on failure.
693 */
idpf_recv_mb_msg(struct idpf_adapter * adapter)694 int idpf_recv_mb_msg(struct idpf_adapter *adapter)
695 {
696 struct idpf_ctlq_msg ctlq_msg;
697 struct idpf_dma_mem *dma_mem;
698 int post_err, err;
699 u16 num_recv;
700
701 while (1) {
702 /* This will get <= num_recv messages and output how many
703 * actually received on num_recv.
704 */
705 num_recv = 1;
706 err = idpf_ctlq_recv(adapter->hw.arq, &num_recv, &ctlq_msg);
707 if (err || !num_recv)
708 break;
709
710 if (ctlq_msg.data_len) {
711 dma_mem = ctlq_msg.ctx.indirect.payload;
712 } else {
713 dma_mem = NULL;
714 num_recv = 0;
715 }
716
717 if (ctlq_msg.cookie.mbx.chnl_opcode == VIRTCHNL2_OP_EVENT)
718 idpf_recv_event_msg(adapter, &ctlq_msg);
719 else
720 err = idpf_vc_xn_forward_reply(adapter, &ctlq_msg);
721
722 post_err = idpf_ctlq_post_rx_buffs(&adapter->hw,
723 adapter->hw.arq,
724 &num_recv, &dma_mem);
725
726 /* If post failed clear the only buffer we supplied */
727 if (post_err) {
728 if (dma_mem)
729 dmam_free_coherent(&adapter->pdev->dev,
730 dma_mem->size, dma_mem->va,
731 dma_mem->pa);
732 break;
733 }
734
735 /* virtchnl trying to shutdown, stop cleaning */
736 if (err == -ENXIO)
737 break;
738 }
739
740 return err;
741 }
742
743 /**
744 * idpf_wait_for_marker_event - wait for software marker response
745 * @vport: virtual port data structure
746 *
747 * Returns 0 success, negative on failure.
748 **/
idpf_wait_for_marker_event(struct idpf_vport * vport)749 static int idpf_wait_for_marker_event(struct idpf_vport *vport)
750 {
751 int event;
752 int i;
753
754 for (i = 0; i < vport->num_txq; i++)
755 idpf_queue_set(SW_MARKER, vport->txqs[i]);
756
757 event = wait_event_timeout(vport->sw_marker_wq,
758 test_and_clear_bit(IDPF_VPORT_SW_MARKER,
759 vport->flags),
760 msecs_to_jiffies(500));
761
762 for (i = 0; i < vport->num_txq; i++)
763 idpf_queue_clear(POLL_MODE, vport->txqs[i]);
764
765 if (event)
766 return 0;
767
768 dev_warn(&vport->adapter->pdev->dev, "Failed to receive marker packets\n");
769
770 return -ETIMEDOUT;
771 }
772
773 /**
774 * idpf_send_ver_msg - send virtchnl version message
775 * @adapter: Driver specific private structure
776 *
777 * Send virtchnl version message. Returns 0 on success, negative on failure.
778 */
idpf_send_ver_msg(struct idpf_adapter * adapter)779 static int idpf_send_ver_msg(struct idpf_adapter *adapter)
780 {
781 struct idpf_vc_xn_params xn_params = {};
782 struct virtchnl2_version_info vvi;
783 ssize_t reply_sz;
784 u32 major, minor;
785 int err = 0;
786
787 if (adapter->virt_ver_maj) {
788 vvi.major = cpu_to_le32(adapter->virt_ver_maj);
789 vvi.minor = cpu_to_le32(adapter->virt_ver_min);
790 } else {
791 vvi.major = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MAJOR);
792 vvi.minor = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MINOR);
793 }
794
795 xn_params.vc_op = VIRTCHNL2_OP_VERSION;
796 xn_params.send_buf.iov_base = &vvi;
797 xn_params.send_buf.iov_len = sizeof(vvi);
798 xn_params.recv_buf = xn_params.send_buf;
799 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
800
801 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
802 if (reply_sz < 0)
803 return reply_sz;
804 if (reply_sz < sizeof(vvi))
805 return -EIO;
806
807 major = le32_to_cpu(vvi.major);
808 minor = le32_to_cpu(vvi.minor);
809
810 if (major > IDPF_VIRTCHNL_VERSION_MAJOR) {
811 dev_warn(&adapter->pdev->dev, "Virtchnl major version greater than supported\n");
812 return -EINVAL;
813 }
814
815 if (major == IDPF_VIRTCHNL_VERSION_MAJOR &&
816 minor > IDPF_VIRTCHNL_VERSION_MINOR)
817 dev_warn(&adapter->pdev->dev, "Virtchnl minor version didn't match\n");
818
819 /* If we have a mismatch, resend version to update receiver on what
820 * version we will use.
821 */
822 if (!adapter->virt_ver_maj &&
823 major != IDPF_VIRTCHNL_VERSION_MAJOR &&
824 minor != IDPF_VIRTCHNL_VERSION_MINOR)
825 err = -EAGAIN;
826
827 adapter->virt_ver_maj = major;
828 adapter->virt_ver_min = minor;
829
830 return err;
831 }
832
833 /**
834 * idpf_send_get_caps_msg - Send virtchnl get capabilities message
835 * @adapter: Driver specific private structure
836 *
837 * Send virtchl get capabilities message. Returns 0 on success, negative on
838 * failure.
839 */
idpf_send_get_caps_msg(struct idpf_adapter * adapter)840 static int idpf_send_get_caps_msg(struct idpf_adapter *adapter)
841 {
842 struct virtchnl2_get_capabilities caps = {};
843 struct idpf_vc_xn_params xn_params = {};
844 ssize_t reply_sz;
845
846 caps.csum_caps =
847 cpu_to_le32(VIRTCHNL2_CAP_TX_CSUM_L3_IPV4 |
848 VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_TCP |
849 VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_UDP |
850 VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_SCTP |
851 VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_TCP |
852 VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_UDP |
853 VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_SCTP |
854 VIRTCHNL2_CAP_RX_CSUM_L3_IPV4 |
855 VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_TCP |
856 VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_UDP |
857 VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_SCTP |
858 VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_TCP |
859 VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_UDP |
860 VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_SCTP |
861 VIRTCHNL2_CAP_TX_CSUM_L3_SINGLE_TUNNEL |
862 VIRTCHNL2_CAP_RX_CSUM_L3_SINGLE_TUNNEL |
863 VIRTCHNL2_CAP_TX_CSUM_L4_SINGLE_TUNNEL |
864 VIRTCHNL2_CAP_RX_CSUM_L4_SINGLE_TUNNEL |
865 VIRTCHNL2_CAP_RX_CSUM_GENERIC);
866
867 caps.seg_caps =
868 cpu_to_le32(VIRTCHNL2_CAP_SEG_IPV4_TCP |
869 VIRTCHNL2_CAP_SEG_IPV4_UDP |
870 VIRTCHNL2_CAP_SEG_IPV4_SCTP |
871 VIRTCHNL2_CAP_SEG_IPV6_TCP |
872 VIRTCHNL2_CAP_SEG_IPV6_UDP |
873 VIRTCHNL2_CAP_SEG_IPV6_SCTP |
874 VIRTCHNL2_CAP_SEG_TX_SINGLE_TUNNEL);
875
876 caps.rss_caps =
877 cpu_to_le64(VIRTCHNL2_CAP_RSS_IPV4_TCP |
878 VIRTCHNL2_CAP_RSS_IPV4_UDP |
879 VIRTCHNL2_CAP_RSS_IPV4_SCTP |
880 VIRTCHNL2_CAP_RSS_IPV4_OTHER |
881 VIRTCHNL2_CAP_RSS_IPV6_TCP |
882 VIRTCHNL2_CAP_RSS_IPV6_UDP |
883 VIRTCHNL2_CAP_RSS_IPV6_SCTP |
884 VIRTCHNL2_CAP_RSS_IPV6_OTHER);
885
886 caps.hsplit_caps =
887 cpu_to_le32(VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V4 |
888 VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V6);
889
890 caps.rsc_caps =
891 cpu_to_le32(VIRTCHNL2_CAP_RSC_IPV4_TCP |
892 VIRTCHNL2_CAP_RSC_IPV6_TCP);
893
894 caps.other_caps =
895 cpu_to_le64(VIRTCHNL2_CAP_SRIOV |
896 VIRTCHNL2_CAP_MACFILTER |
897 VIRTCHNL2_CAP_SPLITQ_QSCHED |
898 VIRTCHNL2_CAP_PROMISC |
899 VIRTCHNL2_CAP_LOOPBACK);
900
901 xn_params.vc_op = VIRTCHNL2_OP_GET_CAPS;
902 xn_params.send_buf.iov_base = ∩︀
903 xn_params.send_buf.iov_len = sizeof(caps);
904 xn_params.recv_buf.iov_base = &adapter->caps;
905 xn_params.recv_buf.iov_len = sizeof(adapter->caps);
906 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
907
908 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
909 if (reply_sz < 0)
910 return reply_sz;
911 if (reply_sz < sizeof(adapter->caps))
912 return -EIO;
913
914 return 0;
915 }
916
917 /**
918 * idpf_vport_alloc_max_qs - Allocate max queues for a vport
919 * @adapter: Driver specific private structure
920 * @max_q: vport max queue structure
921 */
idpf_vport_alloc_max_qs(struct idpf_adapter * adapter,struct idpf_vport_max_q * max_q)922 int idpf_vport_alloc_max_qs(struct idpf_adapter *adapter,
923 struct idpf_vport_max_q *max_q)
924 {
925 struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
926 struct virtchnl2_get_capabilities *caps = &adapter->caps;
927 u16 default_vports = idpf_get_default_vports(adapter);
928 int max_rx_q, max_tx_q;
929
930 mutex_lock(&adapter->queue_lock);
931
932 max_rx_q = le16_to_cpu(caps->max_rx_q) / default_vports;
933 max_tx_q = le16_to_cpu(caps->max_tx_q) / default_vports;
934 if (adapter->num_alloc_vports < default_vports) {
935 max_q->max_rxq = min_t(u16, max_rx_q, IDPF_MAX_Q);
936 max_q->max_txq = min_t(u16, max_tx_q, IDPF_MAX_Q);
937 } else {
938 max_q->max_rxq = IDPF_MIN_Q;
939 max_q->max_txq = IDPF_MIN_Q;
940 }
941 max_q->max_bufq = max_q->max_rxq * IDPF_MAX_BUFQS_PER_RXQ_GRP;
942 max_q->max_complq = max_q->max_txq;
943
944 if (avail_queues->avail_rxq < max_q->max_rxq ||
945 avail_queues->avail_txq < max_q->max_txq ||
946 avail_queues->avail_bufq < max_q->max_bufq ||
947 avail_queues->avail_complq < max_q->max_complq) {
948 mutex_unlock(&adapter->queue_lock);
949
950 return -EINVAL;
951 }
952
953 avail_queues->avail_rxq -= max_q->max_rxq;
954 avail_queues->avail_txq -= max_q->max_txq;
955 avail_queues->avail_bufq -= max_q->max_bufq;
956 avail_queues->avail_complq -= max_q->max_complq;
957
958 mutex_unlock(&adapter->queue_lock);
959
960 return 0;
961 }
962
963 /**
964 * idpf_vport_dealloc_max_qs - Deallocate max queues of a vport
965 * @adapter: Driver specific private structure
966 * @max_q: vport max queue structure
967 */
idpf_vport_dealloc_max_qs(struct idpf_adapter * adapter,struct idpf_vport_max_q * max_q)968 void idpf_vport_dealloc_max_qs(struct idpf_adapter *adapter,
969 struct idpf_vport_max_q *max_q)
970 {
971 struct idpf_avail_queue_info *avail_queues;
972
973 mutex_lock(&adapter->queue_lock);
974 avail_queues = &adapter->avail_queues;
975
976 avail_queues->avail_rxq += max_q->max_rxq;
977 avail_queues->avail_txq += max_q->max_txq;
978 avail_queues->avail_bufq += max_q->max_bufq;
979 avail_queues->avail_complq += max_q->max_complq;
980
981 mutex_unlock(&adapter->queue_lock);
982 }
983
984 /**
985 * idpf_init_avail_queues - Initialize available queues on the device
986 * @adapter: Driver specific private structure
987 */
idpf_init_avail_queues(struct idpf_adapter * adapter)988 static void idpf_init_avail_queues(struct idpf_adapter *adapter)
989 {
990 struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
991 struct virtchnl2_get_capabilities *caps = &adapter->caps;
992
993 avail_queues->avail_rxq = le16_to_cpu(caps->max_rx_q);
994 avail_queues->avail_txq = le16_to_cpu(caps->max_tx_q);
995 avail_queues->avail_bufq = le16_to_cpu(caps->max_rx_bufq);
996 avail_queues->avail_complq = le16_to_cpu(caps->max_tx_complq);
997 }
998
999 /**
1000 * idpf_get_reg_intr_vecs - Get vector queue register offset
1001 * @vport: virtual port structure
1002 * @reg_vals: Register offsets to store in
1003 *
1004 * Returns number of registers that got populated
1005 */
idpf_get_reg_intr_vecs(struct idpf_vport * vport,struct idpf_vec_regs * reg_vals)1006 int idpf_get_reg_intr_vecs(struct idpf_vport *vport,
1007 struct idpf_vec_regs *reg_vals)
1008 {
1009 struct virtchnl2_vector_chunks *chunks;
1010 struct idpf_vec_regs reg_val;
1011 u16 num_vchunks, num_vec;
1012 int num_regs = 0, i, j;
1013
1014 chunks = &vport->adapter->req_vec_chunks->vchunks;
1015 num_vchunks = le16_to_cpu(chunks->num_vchunks);
1016
1017 for (j = 0; j < num_vchunks; j++) {
1018 struct virtchnl2_vector_chunk *chunk;
1019 u32 dynctl_reg_spacing;
1020 u32 itrn_reg_spacing;
1021
1022 chunk = &chunks->vchunks[j];
1023 num_vec = le16_to_cpu(chunk->num_vectors);
1024 reg_val.dyn_ctl_reg = le32_to_cpu(chunk->dynctl_reg_start);
1025 reg_val.itrn_reg = le32_to_cpu(chunk->itrn_reg_start);
1026 reg_val.itrn_index_spacing = le32_to_cpu(chunk->itrn_index_spacing);
1027
1028 dynctl_reg_spacing = le32_to_cpu(chunk->dynctl_reg_spacing);
1029 itrn_reg_spacing = le32_to_cpu(chunk->itrn_reg_spacing);
1030
1031 for (i = 0; i < num_vec; i++) {
1032 reg_vals[num_regs].dyn_ctl_reg = reg_val.dyn_ctl_reg;
1033 reg_vals[num_regs].itrn_reg = reg_val.itrn_reg;
1034 reg_vals[num_regs].itrn_index_spacing =
1035 reg_val.itrn_index_spacing;
1036
1037 reg_val.dyn_ctl_reg += dynctl_reg_spacing;
1038 reg_val.itrn_reg += itrn_reg_spacing;
1039 num_regs++;
1040 }
1041 }
1042
1043 return num_regs;
1044 }
1045
1046 /**
1047 * idpf_vport_get_q_reg - Get the queue registers for the vport
1048 * @reg_vals: register values needing to be set
1049 * @num_regs: amount we expect to fill
1050 * @q_type: queue model
1051 * @chunks: queue regs received over mailbox
1052 *
1053 * This function parses the queue register offsets from the queue register
1054 * chunk information, with a specific queue type and stores it into the array
1055 * passed as an argument. It returns the actual number of queue registers that
1056 * are filled.
1057 */
idpf_vport_get_q_reg(u32 * reg_vals,int num_regs,u32 q_type,struct virtchnl2_queue_reg_chunks * chunks)1058 static int idpf_vport_get_q_reg(u32 *reg_vals, int num_regs, u32 q_type,
1059 struct virtchnl2_queue_reg_chunks *chunks)
1060 {
1061 u16 num_chunks = le16_to_cpu(chunks->num_chunks);
1062 int reg_filled = 0, i;
1063 u32 reg_val;
1064
1065 while (num_chunks--) {
1066 struct virtchnl2_queue_reg_chunk *chunk;
1067 u16 num_q;
1068
1069 chunk = &chunks->chunks[num_chunks];
1070 if (le32_to_cpu(chunk->type) != q_type)
1071 continue;
1072
1073 num_q = le32_to_cpu(chunk->num_queues);
1074 reg_val = le64_to_cpu(chunk->qtail_reg_start);
1075 for (i = 0; i < num_q && reg_filled < num_regs ; i++) {
1076 reg_vals[reg_filled++] = reg_val;
1077 reg_val += le32_to_cpu(chunk->qtail_reg_spacing);
1078 }
1079 }
1080
1081 return reg_filled;
1082 }
1083
1084 /**
1085 * __idpf_queue_reg_init - initialize queue registers
1086 * @vport: virtual port structure
1087 * @reg_vals: registers we are initializing
1088 * @num_regs: how many registers there are in total
1089 * @q_type: queue model
1090 *
1091 * Return number of queues that are initialized
1092 */
__idpf_queue_reg_init(struct idpf_vport * vport,u32 * reg_vals,int num_regs,u32 q_type)1093 static int __idpf_queue_reg_init(struct idpf_vport *vport, u32 *reg_vals,
1094 int num_regs, u32 q_type)
1095 {
1096 struct idpf_adapter *adapter = vport->adapter;
1097 int i, j, k = 0;
1098
1099 switch (q_type) {
1100 case VIRTCHNL2_QUEUE_TYPE_TX:
1101 for (i = 0; i < vport->num_txq_grp; i++) {
1102 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1103
1104 for (j = 0; j < tx_qgrp->num_txq && k < num_regs; j++, k++)
1105 tx_qgrp->txqs[j]->tail =
1106 idpf_get_reg_addr(adapter, reg_vals[k]);
1107 }
1108 break;
1109 case VIRTCHNL2_QUEUE_TYPE_RX:
1110 for (i = 0; i < vport->num_rxq_grp; i++) {
1111 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1112 u16 num_rxq = rx_qgrp->singleq.num_rxq;
1113
1114 for (j = 0; j < num_rxq && k < num_regs; j++, k++) {
1115 struct idpf_rx_queue *q;
1116
1117 q = rx_qgrp->singleq.rxqs[j];
1118 q->tail = idpf_get_reg_addr(adapter,
1119 reg_vals[k]);
1120 }
1121 }
1122 break;
1123 case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
1124 for (i = 0; i < vport->num_rxq_grp; i++) {
1125 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1126 u8 num_bufqs = vport->num_bufqs_per_qgrp;
1127
1128 for (j = 0; j < num_bufqs && k < num_regs; j++, k++) {
1129 struct idpf_buf_queue *q;
1130
1131 q = &rx_qgrp->splitq.bufq_sets[j].bufq;
1132 q->tail = idpf_get_reg_addr(adapter,
1133 reg_vals[k]);
1134 }
1135 }
1136 break;
1137 default:
1138 break;
1139 }
1140
1141 return k;
1142 }
1143
1144 /**
1145 * idpf_queue_reg_init - initialize queue registers
1146 * @vport: virtual port structure
1147 *
1148 * Return 0 on success, negative on failure
1149 */
idpf_queue_reg_init(struct idpf_vport * vport)1150 int idpf_queue_reg_init(struct idpf_vport *vport)
1151 {
1152 struct virtchnl2_create_vport *vport_params;
1153 struct virtchnl2_queue_reg_chunks *chunks;
1154 struct idpf_vport_config *vport_config;
1155 u16 vport_idx = vport->idx;
1156 int num_regs, ret = 0;
1157 u32 *reg_vals;
1158
1159 /* We may never deal with more than 256 same type of queues */
1160 reg_vals = kzalloc(sizeof(void *) * IDPF_LARGE_MAX_Q, GFP_KERNEL);
1161 if (!reg_vals)
1162 return -ENOMEM;
1163
1164 vport_config = vport->adapter->vport_config[vport_idx];
1165 if (vport_config->req_qs_chunks) {
1166 struct virtchnl2_add_queues *vc_aq =
1167 (struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
1168 chunks = &vc_aq->chunks;
1169 } else {
1170 vport_params = vport->adapter->vport_params_recvd[vport_idx];
1171 chunks = &vport_params->chunks;
1172 }
1173
1174 /* Initialize Tx queue tail register address */
1175 num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1176 VIRTCHNL2_QUEUE_TYPE_TX,
1177 chunks);
1178 if (num_regs < vport->num_txq) {
1179 ret = -EINVAL;
1180 goto free_reg_vals;
1181 }
1182
1183 num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1184 VIRTCHNL2_QUEUE_TYPE_TX);
1185 if (num_regs < vport->num_txq) {
1186 ret = -EINVAL;
1187 goto free_reg_vals;
1188 }
1189
1190 /* Initialize Rx/buffer queue tail register address based on Rx queue
1191 * model
1192 */
1193 if (idpf_is_queue_model_split(vport->rxq_model)) {
1194 num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1195 VIRTCHNL2_QUEUE_TYPE_RX_BUFFER,
1196 chunks);
1197 if (num_regs < vport->num_bufq) {
1198 ret = -EINVAL;
1199 goto free_reg_vals;
1200 }
1201
1202 num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1203 VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1204 if (num_regs < vport->num_bufq) {
1205 ret = -EINVAL;
1206 goto free_reg_vals;
1207 }
1208 } else {
1209 num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1210 VIRTCHNL2_QUEUE_TYPE_RX,
1211 chunks);
1212 if (num_regs < vport->num_rxq) {
1213 ret = -EINVAL;
1214 goto free_reg_vals;
1215 }
1216
1217 num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1218 VIRTCHNL2_QUEUE_TYPE_RX);
1219 if (num_regs < vport->num_rxq) {
1220 ret = -EINVAL;
1221 goto free_reg_vals;
1222 }
1223 }
1224
1225 free_reg_vals:
1226 kfree(reg_vals);
1227
1228 return ret;
1229 }
1230
1231 /**
1232 * idpf_send_create_vport_msg - Send virtchnl create vport message
1233 * @adapter: Driver specific private structure
1234 * @max_q: vport max queue info
1235 *
1236 * send virtchnl creae vport message
1237 *
1238 * Returns 0 on success, negative on failure
1239 */
idpf_send_create_vport_msg(struct idpf_adapter * adapter,struct idpf_vport_max_q * max_q)1240 int idpf_send_create_vport_msg(struct idpf_adapter *adapter,
1241 struct idpf_vport_max_q *max_q)
1242 {
1243 struct virtchnl2_create_vport *vport_msg;
1244 struct idpf_vc_xn_params xn_params = {};
1245 u16 idx = adapter->next_vport;
1246 int err, buf_size;
1247 ssize_t reply_sz;
1248
1249 buf_size = sizeof(struct virtchnl2_create_vport);
1250 if (!adapter->vport_params_reqd[idx]) {
1251 adapter->vport_params_reqd[idx] = kzalloc(buf_size,
1252 GFP_KERNEL);
1253 if (!adapter->vport_params_reqd[idx])
1254 return -ENOMEM;
1255 }
1256
1257 vport_msg = adapter->vport_params_reqd[idx];
1258 vport_msg->vport_type = cpu_to_le16(VIRTCHNL2_VPORT_TYPE_DEFAULT);
1259 vport_msg->vport_index = cpu_to_le16(idx);
1260
1261 if (adapter->req_tx_splitq || !IS_ENABLED(CONFIG_IDPF_SINGLEQ))
1262 vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
1263 else
1264 vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
1265
1266 if (adapter->req_rx_splitq || !IS_ENABLED(CONFIG_IDPF_SINGLEQ))
1267 vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
1268 else
1269 vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
1270
1271 err = idpf_vport_calc_total_qs(adapter, idx, vport_msg, max_q);
1272 if (err) {
1273 dev_err(&adapter->pdev->dev, "Enough queues are not available");
1274
1275 return err;
1276 }
1277
1278 if (!adapter->vport_params_recvd[idx]) {
1279 adapter->vport_params_recvd[idx] = kzalloc(IDPF_CTLQ_MAX_BUF_LEN,
1280 GFP_KERNEL);
1281 if (!adapter->vport_params_recvd[idx]) {
1282 err = -ENOMEM;
1283 goto free_vport_params;
1284 }
1285 }
1286
1287 xn_params.vc_op = VIRTCHNL2_OP_CREATE_VPORT;
1288 xn_params.send_buf.iov_base = vport_msg;
1289 xn_params.send_buf.iov_len = buf_size;
1290 xn_params.recv_buf.iov_base = adapter->vport_params_recvd[idx];
1291 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
1292 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1293 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
1294 if (reply_sz < 0) {
1295 err = reply_sz;
1296 goto free_vport_params;
1297 }
1298
1299 return 0;
1300
1301 free_vport_params:
1302 kfree(adapter->vport_params_recvd[idx]);
1303 adapter->vport_params_recvd[idx] = NULL;
1304 kfree(adapter->vport_params_reqd[idx]);
1305 adapter->vport_params_reqd[idx] = NULL;
1306
1307 return err;
1308 }
1309
1310 /**
1311 * idpf_check_supported_desc_ids - Verify we have required descriptor support
1312 * @vport: virtual port structure
1313 *
1314 * Return 0 on success, error on failure
1315 */
idpf_check_supported_desc_ids(struct idpf_vport * vport)1316 int idpf_check_supported_desc_ids(struct idpf_vport *vport)
1317 {
1318 struct idpf_adapter *adapter = vport->adapter;
1319 struct virtchnl2_create_vport *vport_msg;
1320 u64 rx_desc_ids, tx_desc_ids;
1321
1322 vport_msg = adapter->vport_params_recvd[vport->idx];
1323
1324 if (!IS_ENABLED(CONFIG_IDPF_SINGLEQ) &&
1325 (vport_msg->rxq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE ||
1326 vport_msg->txq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE)) {
1327 pci_err(adapter->pdev, "singleq mode requested, but not compiled-in\n");
1328 return -EOPNOTSUPP;
1329 }
1330
1331 rx_desc_ids = le64_to_cpu(vport_msg->rx_desc_ids);
1332 tx_desc_ids = le64_to_cpu(vport_msg->tx_desc_ids);
1333
1334 if (idpf_is_queue_model_split(vport->rxq_model)) {
1335 if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M)) {
1336 dev_info(&adapter->pdev->dev, "Minimum RX descriptor support not provided, using the default\n");
1337 vport_msg->rx_desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1338 }
1339 } else {
1340 if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SQ_NIC_M))
1341 vport->base_rxd = true;
1342 }
1343
1344 if (!idpf_is_queue_model_split(vport->txq_model))
1345 return 0;
1346
1347 if ((tx_desc_ids & MIN_SUPPORT_TXDID) != MIN_SUPPORT_TXDID) {
1348 dev_info(&adapter->pdev->dev, "Minimum TX descriptor support not provided, using the default\n");
1349 vport_msg->tx_desc_ids = cpu_to_le64(MIN_SUPPORT_TXDID);
1350 }
1351
1352 return 0;
1353 }
1354
1355 /**
1356 * idpf_send_destroy_vport_msg - Send virtchnl destroy vport message
1357 * @vport: virtual port data structure
1358 *
1359 * Send virtchnl destroy vport message. Returns 0 on success, negative on
1360 * failure.
1361 */
idpf_send_destroy_vport_msg(struct idpf_vport * vport)1362 int idpf_send_destroy_vport_msg(struct idpf_vport *vport)
1363 {
1364 struct idpf_vc_xn_params xn_params = {};
1365 struct virtchnl2_vport v_id;
1366 ssize_t reply_sz;
1367
1368 v_id.vport_id = cpu_to_le32(vport->vport_id);
1369
1370 xn_params.vc_op = VIRTCHNL2_OP_DESTROY_VPORT;
1371 xn_params.send_buf.iov_base = &v_id;
1372 xn_params.send_buf.iov_len = sizeof(v_id);
1373 xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1374 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1375
1376 return reply_sz < 0 ? reply_sz : 0;
1377 }
1378
1379 /**
1380 * idpf_send_enable_vport_msg - Send virtchnl enable vport message
1381 * @vport: virtual port data structure
1382 *
1383 * Send enable vport virtchnl message. Returns 0 on success, negative on
1384 * failure.
1385 */
idpf_send_enable_vport_msg(struct idpf_vport * vport)1386 int idpf_send_enable_vport_msg(struct idpf_vport *vport)
1387 {
1388 struct idpf_vc_xn_params xn_params = {};
1389 struct virtchnl2_vport v_id;
1390 ssize_t reply_sz;
1391
1392 v_id.vport_id = cpu_to_le32(vport->vport_id);
1393
1394 xn_params.vc_op = VIRTCHNL2_OP_ENABLE_VPORT;
1395 xn_params.send_buf.iov_base = &v_id;
1396 xn_params.send_buf.iov_len = sizeof(v_id);
1397 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1398 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1399
1400 return reply_sz < 0 ? reply_sz : 0;
1401 }
1402
1403 /**
1404 * idpf_send_disable_vport_msg - Send virtchnl disable vport message
1405 * @vport: virtual port data structure
1406 *
1407 * Send disable vport virtchnl message. Returns 0 on success, negative on
1408 * failure.
1409 */
idpf_send_disable_vport_msg(struct idpf_vport * vport)1410 int idpf_send_disable_vport_msg(struct idpf_vport *vport)
1411 {
1412 struct idpf_vc_xn_params xn_params = {};
1413 struct virtchnl2_vport v_id;
1414 ssize_t reply_sz;
1415
1416 v_id.vport_id = cpu_to_le32(vport->vport_id);
1417
1418 xn_params.vc_op = VIRTCHNL2_OP_DISABLE_VPORT;
1419 xn_params.send_buf.iov_base = &v_id;
1420 xn_params.send_buf.iov_len = sizeof(v_id);
1421 xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1422 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1423
1424 return reply_sz < 0 ? reply_sz : 0;
1425 }
1426
1427 /**
1428 * idpf_send_config_tx_queues_msg - Send virtchnl config tx queues message
1429 * @vport: virtual port data structure
1430 *
1431 * Send config tx queues virtchnl message. Returns 0 on success, negative on
1432 * failure.
1433 */
idpf_send_config_tx_queues_msg(struct idpf_vport * vport)1434 static int idpf_send_config_tx_queues_msg(struct idpf_vport *vport)
1435 {
1436 struct virtchnl2_config_tx_queues *ctq __free(kfree) = NULL;
1437 struct virtchnl2_txq_info *qi __free(kfree) = NULL;
1438 struct idpf_vc_xn_params xn_params = {};
1439 u32 config_sz, chunk_sz, buf_sz;
1440 int totqs, num_msgs, num_chunks;
1441 ssize_t reply_sz;
1442 int i, k = 0;
1443
1444 totqs = vport->num_txq + vport->num_complq;
1445 qi = kcalloc(totqs, sizeof(struct virtchnl2_txq_info), GFP_KERNEL);
1446 if (!qi)
1447 return -ENOMEM;
1448
1449 /* Populate the queue info buffer with all queue context info */
1450 for (i = 0; i < vport->num_txq_grp; i++) {
1451 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1452 int j, sched_mode;
1453
1454 for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
1455 qi[k].queue_id =
1456 cpu_to_le32(tx_qgrp->txqs[j]->q_id);
1457 qi[k].model =
1458 cpu_to_le16(vport->txq_model);
1459 qi[k].type =
1460 cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
1461 qi[k].ring_len =
1462 cpu_to_le16(tx_qgrp->txqs[j]->desc_count);
1463 qi[k].dma_ring_addr =
1464 cpu_to_le64(tx_qgrp->txqs[j]->dma);
1465 if (idpf_is_queue_model_split(vport->txq_model)) {
1466 struct idpf_tx_queue *q = tx_qgrp->txqs[j];
1467
1468 qi[k].tx_compl_queue_id =
1469 cpu_to_le16(tx_qgrp->complq->q_id);
1470 qi[k].relative_queue_id = cpu_to_le16(j);
1471
1472 if (idpf_queue_has(FLOW_SCH_EN, q))
1473 qi[k].sched_mode =
1474 cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_FLOW);
1475 else
1476 qi[k].sched_mode =
1477 cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_QUEUE);
1478 } else {
1479 qi[k].sched_mode =
1480 cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_QUEUE);
1481 }
1482 }
1483
1484 if (!idpf_is_queue_model_split(vport->txq_model))
1485 continue;
1486
1487 qi[k].queue_id = cpu_to_le32(tx_qgrp->complq->q_id);
1488 qi[k].model = cpu_to_le16(vport->txq_model);
1489 qi[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION);
1490 qi[k].ring_len = cpu_to_le16(tx_qgrp->complq->desc_count);
1491 qi[k].dma_ring_addr = cpu_to_le64(tx_qgrp->complq->dma);
1492
1493 if (idpf_queue_has(FLOW_SCH_EN, tx_qgrp->complq))
1494 sched_mode = VIRTCHNL2_TXQ_SCHED_MODE_FLOW;
1495 else
1496 sched_mode = VIRTCHNL2_TXQ_SCHED_MODE_QUEUE;
1497 qi[k].sched_mode = cpu_to_le16(sched_mode);
1498
1499 k++;
1500 }
1501
1502 /* Make sure accounting agrees */
1503 if (k != totqs)
1504 return -EINVAL;
1505
1506 /* Chunk up the queue contexts into multiple messages to avoid
1507 * sending a control queue message buffer that is too large
1508 */
1509 config_sz = sizeof(struct virtchnl2_config_tx_queues);
1510 chunk_sz = sizeof(struct virtchnl2_txq_info);
1511
1512 num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1513 totqs);
1514 num_msgs = DIV_ROUND_UP(totqs, num_chunks);
1515
1516 buf_sz = struct_size(ctq, qinfo, num_chunks);
1517 ctq = kzalloc(buf_sz, GFP_KERNEL);
1518 if (!ctq)
1519 return -ENOMEM;
1520
1521 xn_params.vc_op = VIRTCHNL2_OP_CONFIG_TX_QUEUES;
1522 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1523
1524 for (i = 0, k = 0; i < num_msgs; i++) {
1525 memset(ctq, 0, buf_sz);
1526 ctq->vport_id = cpu_to_le32(vport->vport_id);
1527 ctq->num_qinfo = cpu_to_le16(num_chunks);
1528 memcpy(ctq->qinfo, &qi[k], chunk_sz * num_chunks);
1529
1530 xn_params.send_buf.iov_base = ctq;
1531 xn_params.send_buf.iov_len = buf_sz;
1532 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1533 if (reply_sz < 0)
1534 return reply_sz;
1535
1536 k += num_chunks;
1537 totqs -= num_chunks;
1538 num_chunks = min(num_chunks, totqs);
1539 /* Recalculate buffer size */
1540 buf_sz = struct_size(ctq, qinfo, num_chunks);
1541 }
1542
1543 return 0;
1544 }
1545
1546 /**
1547 * idpf_send_config_rx_queues_msg - Send virtchnl config rx queues message
1548 * @vport: virtual port data structure
1549 *
1550 * Send config rx queues virtchnl message. Returns 0 on success, negative on
1551 * failure.
1552 */
idpf_send_config_rx_queues_msg(struct idpf_vport * vport)1553 static int idpf_send_config_rx_queues_msg(struct idpf_vport *vport)
1554 {
1555 struct virtchnl2_config_rx_queues *crq __free(kfree) = NULL;
1556 struct virtchnl2_rxq_info *qi __free(kfree) = NULL;
1557 struct idpf_vc_xn_params xn_params = {};
1558 u32 config_sz, chunk_sz, buf_sz;
1559 int totqs, num_msgs, num_chunks;
1560 ssize_t reply_sz;
1561 int i, k = 0;
1562
1563 totqs = vport->num_rxq + vport->num_bufq;
1564 qi = kcalloc(totqs, sizeof(struct virtchnl2_rxq_info), GFP_KERNEL);
1565 if (!qi)
1566 return -ENOMEM;
1567
1568 /* Populate the queue info buffer with all queue context info */
1569 for (i = 0; i < vport->num_rxq_grp; i++) {
1570 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1571 u16 num_rxq;
1572 int j;
1573
1574 if (!idpf_is_queue_model_split(vport->rxq_model))
1575 goto setup_rxqs;
1576
1577 for (j = 0; j < vport->num_bufqs_per_qgrp; j++, k++) {
1578 struct idpf_buf_queue *bufq =
1579 &rx_qgrp->splitq.bufq_sets[j].bufq;
1580
1581 qi[k].queue_id = cpu_to_le32(bufq->q_id);
1582 qi[k].model = cpu_to_le16(vport->rxq_model);
1583 qi[k].type =
1584 cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1585 qi[k].desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1586 qi[k].ring_len = cpu_to_le16(bufq->desc_count);
1587 qi[k].dma_ring_addr = cpu_to_le64(bufq->dma);
1588 qi[k].data_buffer_size = cpu_to_le32(bufq->rx_buf_size);
1589 qi[k].buffer_notif_stride = IDPF_RX_BUF_STRIDE;
1590 qi[k].rx_buffer_low_watermark =
1591 cpu_to_le16(bufq->rx_buffer_low_watermark);
1592 if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
1593 qi[k].qflags |= cpu_to_le16(VIRTCHNL2_RXQ_RSC);
1594 }
1595
1596 setup_rxqs:
1597 if (idpf_is_queue_model_split(vport->rxq_model))
1598 num_rxq = rx_qgrp->splitq.num_rxq_sets;
1599 else
1600 num_rxq = rx_qgrp->singleq.num_rxq;
1601
1602 for (j = 0; j < num_rxq; j++, k++) {
1603 const struct idpf_bufq_set *sets;
1604 struct idpf_rx_queue *rxq;
1605
1606 if (!idpf_is_queue_model_split(vport->rxq_model)) {
1607 rxq = rx_qgrp->singleq.rxqs[j];
1608 goto common_qi_fields;
1609 }
1610
1611 rxq = &rx_qgrp->splitq.rxq_sets[j]->rxq;
1612 sets = rxq->bufq_sets;
1613
1614 /* In splitq mode, RXQ buffer size should be
1615 * set to that of the first buffer queue
1616 * associated with this RXQ.
1617 */
1618 rxq->rx_buf_size = sets[0].bufq.rx_buf_size;
1619
1620 qi[k].rx_bufq1_id = cpu_to_le16(sets[0].bufq.q_id);
1621 if (vport->num_bufqs_per_qgrp > IDPF_SINGLE_BUFQ_PER_RXQ_GRP) {
1622 qi[k].bufq2_ena = IDPF_BUFQ2_ENA;
1623 qi[k].rx_bufq2_id =
1624 cpu_to_le16(sets[1].bufq.q_id);
1625 }
1626 qi[k].rx_buffer_low_watermark =
1627 cpu_to_le16(rxq->rx_buffer_low_watermark);
1628 if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
1629 qi[k].qflags |= cpu_to_le16(VIRTCHNL2_RXQ_RSC);
1630
1631 rxq->rx_hbuf_size = sets[0].bufq.rx_hbuf_size;
1632
1633 if (idpf_queue_has(HSPLIT_EN, rxq)) {
1634 qi[k].qflags |=
1635 cpu_to_le16(VIRTCHNL2_RXQ_HDR_SPLIT);
1636 qi[k].hdr_buffer_size =
1637 cpu_to_le16(rxq->rx_hbuf_size);
1638 }
1639
1640 common_qi_fields:
1641 qi[k].queue_id = cpu_to_le32(rxq->q_id);
1642 qi[k].model = cpu_to_le16(vport->rxq_model);
1643 qi[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1644 qi[k].ring_len = cpu_to_le16(rxq->desc_count);
1645 qi[k].dma_ring_addr = cpu_to_le64(rxq->dma);
1646 qi[k].max_pkt_size = cpu_to_le32(rxq->rx_max_pkt_size);
1647 qi[k].data_buffer_size = cpu_to_le32(rxq->rx_buf_size);
1648 qi[k].qflags |=
1649 cpu_to_le16(VIRTCHNL2_RX_DESC_SIZE_32BYTE);
1650 qi[k].desc_ids = cpu_to_le64(rxq->rxdids);
1651 }
1652 }
1653
1654 /* Make sure accounting agrees */
1655 if (k != totqs)
1656 return -EINVAL;
1657
1658 /* Chunk up the queue contexts into multiple messages to avoid
1659 * sending a control queue message buffer that is too large
1660 */
1661 config_sz = sizeof(struct virtchnl2_config_rx_queues);
1662 chunk_sz = sizeof(struct virtchnl2_rxq_info);
1663
1664 num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1665 totqs);
1666 num_msgs = DIV_ROUND_UP(totqs, num_chunks);
1667
1668 buf_sz = struct_size(crq, qinfo, num_chunks);
1669 crq = kzalloc(buf_sz, GFP_KERNEL);
1670 if (!crq)
1671 return -ENOMEM;
1672
1673 xn_params.vc_op = VIRTCHNL2_OP_CONFIG_RX_QUEUES;
1674 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1675
1676 for (i = 0, k = 0; i < num_msgs; i++) {
1677 memset(crq, 0, buf_sz);
1678 crq->vport_id = cpu_to_le32(vport->vport_id);
1679 crq->num_qinfo = cpu_to_le16(num_chunks);
1680 memcpy(crq->qinfo, &qi[k], chunk_sz * num_chunks);
1681
1682 xn_params.send_buf.iov_base = crq;
1683 xn_params.send_buf.iov_len = buf_sz;
1684 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1685 if (reply_sz < 0)
1686 return reply_sz;
1687
1688 k += num_chunks;
1689 totqs -= num_chunks;
1690 num_chunks = min(num_chunks, totqs);
1691 /* Recalculate buffer size */
1692 buf_sz = struct_size(crq, qinfo, num_chunks);
1693 }
1694
1695 return 0;
1696 }
1697
1698 /**
1699 * idpf_send_ena_dis_queues_msg - Send virtchnl enable or disable
1700 * queues message
1701 * @vport: virtual port data structure
1702 * @ena: if true enable, false disable
1703 *
1704 * Send enable or disable queues virtchnl message. Returns 0 on success,
1705 * negative on failure.
1706 */
idpf_send_ena_dis_queues_msg(struct idpf_vport * vport,bool ena)1707 static int idpf_send_ena_dis_queues_msg(struct idpf_vport *vport, bool ena)
1708 {
1709 struct virtchnl2_del_ena_dis_queues *eq __free(kfree) = NULL;
1710 struct virtchnl2_queue_chunk *qc __free(kfree) = NULL;
1711 u32 num_msgs, num_chunks, num_txq, num_rxq, num_q;
1712 struct idpf_vc_xn_params xn_params = {};
1713 struct virtchnl2_queue_chunks *qcs;
1714 u32 config_sz, chunk_sz, buf_sz;
1715 ssize_t reply_sz;
1716 int i, j, k = 0;
1717
1718 num_txq = vport->num_txq + vport->num_complq;
1719 num_rxq = vport->num_rxq + vport->num_bufq;
1720 num_q = num_txq + num_rxq;
1721 buf_sz = sizeof(struct virtchnl2_queue_chunk) * num_q;
1722 qc = kzalloc(buf_sz, GFP_KERNEL);
1723 if (!qc)
1724 return -ENOMEM;
1725
1726 for (i = 0; i < vport->num_txq_grp; i++) {
1727 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1728
1729 for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
1730 qc[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
1731 qc[k].start_queue_id = cpu_to_le32(tx_qgrp->txqs[j]->q_id);
1732 qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1733 }
1734 }
1735 if (vport->num_txq != k)
1736 return -EINVAL;
1737
1738 if (!idpf_is_queue_model_split(vport->txq_model))
1739 goto setup_rx;
1740
1741 for (i = 0; i < vport->num_txq_grp; i++, k++) {
1742 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1743
1744 qc[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION);
1745 qc[k].start_queue_id = cpu_to_le32(tx_qgrp->complq->q_id);
1746 qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1747 }
1748 if (vport->num_complq != (k - vport->num_txq))
1749 return -EINVAL;
1750
1751 setup_rx:
1752 for (i = 0; i < vport->num_rxq_grp; i++) {
1753 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1754
1755 if (idpf_is_queue_model_split(vport->rxq_model))
1756 num_rxq = rx_qgrp->splitq.num_rxq_sets;
1757 else
1758 num_rxq = rx_qgrp->singleq.num_rxq;
1759
1760 for (j = 0; j < num_rxq; j++, k++) {
1761 if (idpf_is_queue_model_split(vport->rxq_model)) {
1762 qc[k].start_queue_id =
1763 cpu_to_le32(rx_qgrp->splitq.rxq_sets[j]->rxq.q_id);
1764 qc[k].type =
1765 cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1766 } else {
1767 qc[k].start_queue_id =
1768 cpu_to_le32(rx_qgrp->singleq.rxqs[j]->q_id);
1769 qc[k].type =
1770 cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1771 }
1772 qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1773 }
1774 }
1775 if (vport->num_rxq != k - (vport->num_txq + vport->num_complq))
1776 return -EINVAL;
1777
1778 if (!idpf_is_queue_model_split(vport->rxq_model))
1779 goto send_msg;
1780
1781 for (i = 0; i < vport->num_rxq_grp; i++) {
1782 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1783
1784 for (j = 0; j < vport->num_bufqs_per_qgrp; j++, k++) {
1785 const struct idpf_buf_queue *q;
1786
1787 q = &rx_qgrp->splitq.bufq_sets[j].bufq;
1788 qc[k].type =
1789 cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1790 qc[k].start_queue_id = cpu_to_le32(q->q_id);
1791 qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1792 }
1793 }
1794 if (vport->num_bufq != k - (vport->num_txq +
1795 vport->num_complq +
1796 vport->num_rxq))
1797 return -EINVAL;
1798
1799 send_msg:
1800 /* Chunk up the queue info into multiple messages */
1801 config_sz = sizeof(struct virtchnl2_del_ena_dis_queues);
1802 chunk_sz = sizeof(struct virtchnl2_queue_chunk);
1803
1804 num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1805 num_q);
1806 num_msgs = DIV_ROUND_UP(num_q, num_chunks);
1807
1808 buf_sz = struct_size(eq, chunks.chunks, num_chunks);
1809 eq = kzalloc(buf_sz, GFP_KERNEL);
1810 if (!eq)
1811 return -ENOMEM;
1812
1813 if (ena) {
1814 xn_params.vc_op = VIRTCHNL2_OP_ENABLE_QUEUES;
1815 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1816 } else {
1817 xn_params.vc_op = VIRTCHNL2_OP_DISABLE_QUEUES;
1818 xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1819 }
1820
1821 for (i = 0, k = 0; i < num_msgs; i++) {
1822 memset(eq, 0, buf_sz);
1823 eq->vport_id = cpu_to_le32(vport->vport_id);
1824 eq->chunks.num_chunks = cpu_to_le16(num_chunks);
1825 qcs = &eq->chunks;
1826 memcpy(qcs->chunks, &qc[k], chunk_sz * num_chunks);
1827
1828 xn_params.send_buf.iov_base = eq;
1829 xn_params.send_buf.iov_len = buf_sz;
1830 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1831 if (reply_sz < 0)
1832 return reply_sz;
1833
1834 k += num_chunks;
1835 num_q -= num_chunks;
1836 num_chunks = min(num_chunks, num_q);
1837 /* Recalculate buffer size */
1838 buf_sz = struct_size(eq, chunks.chunks, num_chunks);
1839 }
1840
1841 return 0;
1842 }
1843
1844 /**
1845 * idpf_send_map_unmap_queue_vector_msg - Send virtchnl map or unmap queue
1846 * vector message
1847 * @vport: virtual port data structure
1848 * @map: true for map and false for unmap
1849 *
1850 * Send map or unmap queue vector virtchnl message. Returns 0 on success,
1851 * negative on failure.
1852 */
idpf_send_map_unmap_queue_vector_msg(struct idpf_vport * vport,bool map)1853 int idpf_send_map_unmap_queue_vector_msg(struct idpf_vport *vport, bool map)
1854 {
1855 struct virtchnl2_queue_vector_maps *vqvm __free(kfree) = NULL;
1856 struct virtchnl2_queue_vector *vqv __free(kfree) = NULL;
1857 struct idpf_vc_xn_params xn_params = {};
1858 u32 config_sz, chunk_sz, buf_sz;
1859 u32 num_msgs, num_chunks, num_q;
1860 ssize_t reply_sz;
1861 int i, j, k = 0;
1862
1863 num_q = vport->num_txq + vport->num_rxq;
1864
1865 buf_sz = sizeof(struct virtchnl2_queue_vector) * num_q;
1866 vqv = kzalloc(buf_sz, GFP_KERNEL);
1867 if (!vqv)
1868 return -ENOMEM;
1869
1870 for (i = 0; i < vport->num_txq_grp; i++) {
1871 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1872
1873 for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
1874 vqv[k].queue_type =
1875 cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
1876 vqv[k].queue_id = cpu_to_le32(tx_qgrp->txqs[j]->q_id);
1877
1878 if (idpf_is_queue_model_split(vport->txq_model)) {
1879 vqv[k].vector_id =
1880 cpu_to_le16(tx_qgrp->complq->q_vector->v_idx);
1881 vqv[k].itr_idx =
1882 cpu_to_le32(tx_qgrp->complq->q_vector->tx_itr_idx);
1883 } else {
1884 vqv[k].vector_id =
1885 cpu_to_le16(tx_qgrp->txqs[j]->q_vector->v_idx);
1886 vqv[k].itr_idx =
1887 cpu_to_le32(tx_qgrp->txqs[j]->q_vector->tx_itr_idx);
1888 }
1889 }
1890 }
1891
1892 if (vport->num_txq != k)
1893 return -EINVAL;
1894
1895 for (i = 0; i < vport->num_rxq_grp; i++) {
1896 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1897 u16 num_rxq;
1898
1899 if (idpf_is_queue_model_split(vport->rxq_model))
1900 num_rxq = rx_qgrp->splitq.num_rxq_sets;
1901 else
1902 num_rxq = rx_qgrp->singleq.num_rxq;
1903
1904 for (j = 0; j < num_rxq; j++, k++) {
1905 struct idpf_rx_queue *rxq;
1906
1907 if (idpf_is_queue_model_split(vport->rxq_model))
1908 rxq = &rx_qgrp->splitq.rxq_sets[j]->rxq;
1909 else
1910 rxq = rx_qgrp->singleq.rxqs[j];
1911
1912 vqv[k].queue_type =
1913 cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1914 vqv[k].queue_id = cpu_to_le32(rxq->q_id);
1915 vqv[k].vector_id = cpu_to_le16(rxq->q_vector->v_idx);
1916 vqv[k].itr_idx = cpu_to_le32(rxq->q_vector->rx_itr_idx);
1917 }
1918 }
1919
1920 if (idpf_is_queue_model_split(vport->txq_model)) {
1921 if (vport->num_rxq != k - vport->num_complq)
1922 return -EINVAL;
1923 } else {
1924 if (vport->num_rxq != k - vport->num_txq)
1925 return -EINVAL;
1926 }
1927
1928 /* Chunk up the vector info into multiple messages */
1929 config_sz = sizeof(struct virtchnl2_queue_vector_maps);
1930 chunk_sz = sizeof(struct virtchnl2_queue_vector);
1931
1932 num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1933 num_q);
1934 num_msgs = DIV_ROUND_UP(num_q, num_chunks);
1935
1936 buf_sz = struct_size(vqvm, qv_maps, num_chunks);
1937 vqvm = kzalloc(buf_sz, GFP_KERNEL);
1938 if (!vqvm)
1939 return -ENOMEM;
1940
1941 if (map) {
1942 xn_params.vc_op = VIRTCHNL2_OP_MAP_QUEUE_VECTOR;
1943 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1944 } else {
1945 xn_params.vc_op = VIRTCHNL2_OP_UNMAP_QUEUE_VECTOR;
1946 xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1947 }
1948
1949 for (i = 0, k = 0; i < num_msgs; i++) {
1950 memset(vqvm, 0, buf_sz);
1951 xn_params.send_buf.iov_base = vqvm;
1952 xn_params.send_buf.iov_len = buf_sz;
1953 vqvm->vport_id = cpu_to_le32(vport->vport_id);
1954 vqvm->num_qv_maps = cpu_to_le16(num_chunks);
1955 memcpy(vqvm->qv_maps, &vqv[k], chunk_sz * num_chunks);
1956
1957 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1958 if (reply_sz < 0)
1959 return reply_sz;
1960
1961 k += num_chunks;
1962 num_q -= num_chunks;
1963 num_chunks = min(num_chunks, num_q);
1964 /* Recalculate buffer size */
1965 buf_sz = struct_size(vqvm, qv_maps, num_chunks);
1966 }
1967
1968 return 0;
1969 }
1970
1971 /**
1972 * idpf_send_enable_queues_msg - send enable queues virtchnl message
1973 * @vport: Virtual port private data structure
1974 *
1975 * Will send enable queues virtchnl message. Returns 0 on success, negative on
1976 * failure.
1977 */
idpf_send_enable_queues_msg(struct idpf_vport * vport)1978 int idpf_send_enable_queues_msg(struct idpf_vport *vport)
1979 {
1980 return idpf_send_ena_dis_queues_msg(vport, true);
1981 }
1982
1983 /**
1984 * idpf_send_disable_queues_msg - send disable queues virtchnl message
1985 * @vport: Virtual port private data structure
1986 *
1987 * Will send disable queues virtchnl message. Returns 0 on success, negative
1988 * on failure.
1989 */
idpf_send_disable_queues_msg(struct idpf_vport * vport)1990 int idpf_send_disable_queues_msg(struct idpf_vport *vport)
1991 {
1992 int err, i;
1993
1994 err = idpf_send_ena_dis_queues_msg(vport, false);
1995 if (err)
1996 return err;
1997
1998 /* switch to poll mode as interrupts will be disabled after disable
1999 * queues virtchnl message is sent
2000 */
2001 for (i = 0; i < vport->num_txq; i++)
2002 idpf_queue_set(POLL_MODE, vport->txqs[i]);
2003
2004 /* schedule the napi to receive all the marker packets */
2005 local_bh_disable();
2006 for (i = 0; i < vport->num_q_vectors; i++)
2007 napi_schedule(&vport->q_vectors[i].napi);
2008 local_bh_enable();
2009
2010 return idpf_wait_for_marker_event(vport);
2011 }
2012
2013 /**
2014 * idpf_convert_reg_to_queue_chunks - Copy queue chunk information to the right
2015 * structure
2016 * @dchunks: Destination chunks to store data to
2017 * @schunks: Source chunks to copy data from
2018 * @num_chunks: number of chunks to copy
2019 */
idpf_convert_reg_to_queue_chunks(struct virtchnl2_queue_chunk * dchunks,struct virtchnl2_queue_reg_chunk * schunks,u16 num_chunks)2020 static void idpf_convert_reg_to_queue_chunks(struct virtchnl2_queue_chunk *dchunks,
2021 struct virtchnl2_queue_reg_chunk *schunks,
2022 u16 num_chunks)
2023 {
2024 u16 i;
2025
2026 for (i = 0; i < num_chunks; i++) {
2027 dchunks[i].type = schunks[i].type;
2028 dchunks[i].start_queue_id = schunks[i].start_queue_id;
2029 dchunks[i].num_queues = schunks[i].num_queues;
2030 }
2031 }
2032
2033 /**
2034 * idpf_send_delete_queues_msg - send delete queues virtchnl message
2035 * @vport: Virtual port private data structure
2036 *
2037 * Will send delete queues virtchnl message. Return 0 on success, negative on
2038 * failure.
2039 */
idpf_send_delete_queues_msg(struct idpf_vport * vport)2040 int idpf_send_delete_queues_msg(struct idpf_vport *vport)
2041 {
2042 struct virtchnl2_del_ena_dis_queues *eq __free(kfree) = NULL;
2043 struct virtchnl2_create_vport *vport_params;
2044 struct virtchnl2_queue_reg_chunks *chunks;
2045 struct idpf_vc_xn_params xn_params = {};
2046 struct idpf_vport_config *vport_config;
2047 u16 vport_idx = vport->idx;
2048 ssize_t reply_sz;
2049 u16 num_chunks;
2050 int buf_size;
2051
2052 vport_config = vport->adapter->vport_config[vport_idx];
2053 if (vport_config->req_qs_chunks) {
2054 chunks = &vport_config->req_qs_chunks->chunks;
2055 } else {
2056 vport_params = vport->adapter->vport_params_recvd[vport_idx];
2057 chunks = &vport_params->chunks;
2058 }
2059
2060 num_chunks = le16_to_cpu(chunks->num_chunks);
2061 buf_size = struct_size(eq, chunks.chunks, num_chunks);
2062
2063 eq = kzalloc(buf_size, GFP_KERNEL);
2064 if (!eq)
2065 return -ENOMEM;
2066
2067 eq->vport_id = cpu_to_le32(vport->vport_id);
2068 eq->chunks.num_chunks = cpu_to_le16(num_chunks);
2069
2070 idpf_convert_reg_to_queue_chunks(eq->chunks.chunks, chunks->chunks,
2071 num_chunks);
2072
2073 xn_params.vc_op = VIRTCHNL2_OP_DEL_QUEUES;
2074 xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
2075 xn_params.send_buf.iov_base = eq;
2076 xn_params.send_buf.iov_len = buf_size;
2077 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2078
2079 return reply_sz < 0 ? reply_sz : 0;
2080 }
2081
2082 /**
2083 * idpf_send_config_queues_msg - Send config queues virtchnl message
2084 * @vport: Virtual port private data structure
2085 *
2086 * Will send config queues virtchnl message. Returns 0 on success, negative on
2087 * failure.
2088 */
idpf_send_config_queues_msg(struct idpf_vport * vport)2089 int idpf_send_config_queues_msg(struct idpf_vport *vport)
2090 {
2091 int err;
2092
2093 err = idpf_send_config_tx_queues_msg(vport);
2094 if (err)
2095 return err;
2096
2097 return idpf_send_config_rx_queues_msg(vport);
2098 }
2099
2100 /**
2101 * idpf_send_add_queues_msg - Send virtchnl add queues message
2102 * @vport: Virtual port private data structure
2103 * @num_tx_q: number of transmit queues
2104 * @num_complq: number of transmit completion queues
2105 * @num_rx_q: number of receive queues
2106 * @num_rx_bufq: number of receive buffer queues
2107 *
2108 * Returns 0 on success, negative on failure. vport _MUST_ be const here as
2109 * we should not change any fields within vport itself in this function.
2110 */
idpf_send_add_queues_msg(const struct idpf_vport * vport,u16 num_tx_q,u16 num_complq,u16 num_rx_q,u16 num_rx_bufq)2111 int idpf_send_add_queues_msg(const struct idpf_vport *vport, u16 num_tx_q,
2112 u16 num_complq, u16 num_rx_q, u16 num_rx_bufq)
2113 {
2114 struct virtchnl2_add_queues *vc_msg __free(kfree) = NULL;
2115 struct idpf_vc_xn_params xn_params = {};
2116 struct idpf_vport_config *vport_config;
2117 struct virtchnl2_add_queues aq = {};
2118 u16 vport_idx = vport->idx;
2119 ssize_t reply_sz;
2120 int size;
2121
2122 vc_msg = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2123 if (!vc_msg)
2124 return -ENOMEM;
2125
2126 vport_config = vport->adapter->vport_config[vport_idx];
2127 kfree(vport_config->req_qs_chunks);
2128 vport_config->req_qs_chunks = NULL;
2129
2130 aq.vport_id = cpu_to_le32(vport->vport_id);
2131 aq.num_tx_q = cpu_to_le16(num_tx_q);
2132 aq.num_tx_complq = cpu_to_le16(num_complq);
2133 aq.num_rx_q = cpu_to_le16(num_rx_q);
2134 aq.num_rx_bufq = cpu_to_le16(num_rx_bufq);
2135
2136 xn_params.vc_op = VIRTCHNL2_OP_ADD_QUEUES;
2137 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2138 xn_params.send_buf.iov_base = &aq;
2139 xn_params.send_buf.iov_len = sizeof(aq);
2140 xn_params.recv_buf.iov_base = vc_msg;
2141 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2142 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2143 if (reply_sz < 0)
2144 return reply_sz;
2145
2146 /* compare vc_msg num queues with vport num queues */
2147 if (le16_to_cpu(vc_msg->num_tx_q) != num_tx_q ||
2148 le16_to_cpu(vc_msg->num_rx_q) != num_rx_q ||
2149 le16_to_cpu(vc_msg->num_tx_complq) != num_complq ||
2150 le16_to_cpu(vc_msg->num_rx_bufq) != num_rx_bufq)
2151 return -EINVAL;
2152
2153 size = struct_size(vc_msg, chunks.chunks,
2154 le16_to_cpu(vc_msg->chunks.num_chunks));
2155 if (reply_sz < size)
2156 return -EIO;
2157
2158 vport_config->req_qs_chunks = kmemdup(vc_msg, size, GFP_KERNEL);
2159 if (!vport_config->req_qs_chunks)
2160 return -ENOMEM;
2161
2162 return 0;
2163 }
2164
2165 /**
2166 * idpf_send_alloc_vectors_msg - Send virtchnl alloc vectors message
2167 * @adapter: Driver specific private structure
2168 * @num_vectors: number of vectors to be allocated
2169 *
2170 * Returns 0 on success, negative on failure.
2171 */
idpf_send_alloc_vectors_msg(struct idpf_adapter * adapter,u16 num_vectors)2172 int idpf_send_alloc_vectors_msg(struct idpf_adapter *adapter, u16 num_vectors)
2173 {
2174 struct virtchnl2_alloc_vectors *rcvd_vec __free(kfree) = NULL;
2175 struct idpf_vc_xn_params xn_params = {};
2176 struct virtchnl2_alloc_vectors ac = {};
2177 ssize_t reply_sz;
2178 u16 num_vchunks;
2179 int size;
2180
2181 ac.num_vectors = cpu_to_le16(num_vectors);
2182
2183 rcvd_vec = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2184 if (!rcvd_vec)
2185 return -ENOMEM;
2186
2187 xn_params.vc_op = VIRTCHNL2_OP_ALLOC_VECTORS;
2188 xn_params.send_buf.iov_base = ∾
2189 xn_params.send_buf.iov_len = sizeof(ac);
2190 xn_params.recv_buf.iov_base = rcvd_vec;
2191 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2192 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2193 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2194 if (reply_sz < 0)
2195 return reply_sz;
2196
2197 num_vchunks = le16_to_cpu(rcvd_vec->vchunks.num_vchunks);
2198 size = struct_size(rcvd_vec, vchunks.vchunks, num_vchunks);
2199 if (reply_sz < size)
2200 return -EIO;
2201
2202 if (size > IDPF_CTLQ_MAX_BUF_LEN)
2203 return -EINVAL;
2204
2205 kfree(adapter->req_vec_chunks);
2206 adapter->req_vec_chunks = kmemdup(rcvd_vec, size, GFP_KERNEL);
2207 if (!adapter->req_vec_chunks)
2208 return -ENOMEM;
2209
2210 if (le16_to_cpu(adapter->req_vec_chunks->num_vectors) < num_vectors) {
2211 kfree(adapter->req_vec_chunks);
2212 adapter->req_vec_chunks = NULL;
2213 return -EINVAL;
2214 }
2215
2216 return 0;
2217 }
2218
2219 /**
2220 * idpf_send_dealloc_vectors_msg - Send virtchnl de allocate vectors message
2221 * @adapter: Driver specific private structure
2222 *
2223 * Returns 0 on success, negative on failure.
2224 */
idpf_send_dealloc_vectors_msg(struct idpf_adapter * adapter)2225 int idpf_send_dealloc_vectors_msg(struct idpf_adapter *adapter)
2226 {
2227 struct virtchnl2_alloc_vectors *ac = adapter->req_vec_chunks;
2228 struct virtchnl2_vector_chunks *vcs = &ac->vchunks;
2229 struct idpf_vc_xn_params xn_params = {};
2230 ssize_t reply_sz;
2231 int buf_size;
2232
2233 buf_size = struct_size(vcs, vchunks, le16_to_cpu(vcs->num_vchunks));
2234
2235 xn_params.vc_op = VIRTCHNL2_OP_DEALLOC_VECTORS;
2236 xn_params.send_buf.iov_base = vcs;
2237 xn_params.send_buf.iov_len = buf_size;
2238 xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
2239 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2240 if (reply_sz < 0)
2241 return reply_sz;
2242
2243 kfree(adapter->req_vec_chunks);
2244 adapter->req_vec_chunks = NULL;
2245
2246 return 0;
2247 }
2248
2249 /**
2250 * idpf_get_max_vfs - Get max number of vfs supported
2251 * @adapter: Driver specific private structure
2252 *
2253 * Returns max number of VFs
2254 */
idpf_get_max_vfs(struct idpf_adapter * adapter)2255 static int idpf_get_max_vfs(struct idpf_adapter *adapter)
2256 {
2257 return le16_to_cpu(adapter->caps.max_sriov_vfs);
2258 }
2259
2260 /**
2261 * idpf_send_set_sriov_vfs_msg - Send virtchnl set sriov vfs message
2262 * @adapter: Driver specific private structure
2263 * @num_vfs: number of virtual functions to be created
2264 *
2265 * Returns 0 on success, negative on failure.
2266 */
idpf_send_set_sriov_vfs_msg(struct idpf_adapter * adapter,u16 num_vfs)2267 int idpf_send_set_sriov_vfs_msg(struct idpf_adapter *adapter, u16 num_vfs)
2268 {
2269 struct virtchnl2_sriov_vfs_info svi = {};
2270 struct idpf_vc_xn_params xn_params = {};
2271 ssize_t reply_sz;
2272
2273 svi.num_vfs = cpu_to_le16(num_vfs);
2274 xn_params.vc_op = VIRTCHNL2_OP_SET_SRIOV_VFS;
2275 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2276 xn_params.send_buf.iov_base = &svi;
2277 xn_params.send_buf.iov_len = sizeof(svi);
2278 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2279
2280 return reply_sz < 0 ? reply_sz : 0;
2281 }
2282
2283 /**
2284 * idpf_send_get_stats_msg - Send virtchnl get statistics message
2285 * @vport: vport to get stats for
2286 *
2287 * Returns 0 on success, negative on failure.
2288 */
idpf_send_get_stats_msg(struct idpf_vport * vport)2289 int idpf_send_get_stats_msg(struct idpf_vport *vport)
2290 {
2291 struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
2292 struct rtnl_link_stats64 *netstats = &np->netstats;
2293 struct virtchnl2_vport_stats stats_msg = {};
2294 struct idpf_vc_xn_params xn_params = {};
2295 ssize_t reply_sz;
2296
2297
2298 /* Don't send get_stats message if the link is down */
2299 if (np->state <= __IDPF_VPORT_DOWN)
2300 return 0;
2301
2302 stats_msg.vport_id = cpu_to_le32(vport->vport_id);
2303
2304 xn_params.vc_op = VIRTCHNL2_OP_GET_STATS;
2305 xn_params.send_buf.iov_base = &stats_msg;
2306 xn_params.send_buf.iov_len = sizeof(stats_msg);
2307 xn_params.recv_buf = xn_params.send_buf;
2308 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2309
2310 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2311 if (reply_sz < 0)
2312 return reply_sz;
2313 if (reply_sz < sizeof(stats_msg))
2314 return -EIO;
2315
2316 spin_lock_bh(&np->stats_lock);
2317
2318 netstats->rx_packets = le64_to_cpu(stats_msg.rx_unicast) +
2319 le64_to_cpu(stats_msg.rx_multicast) +
2320 le64_to_cpu(stats_msg.rx_broadcast);
2321 netstats->tx_packets = le64_to_cpu(stats_msg.tx_unicast) +
2322 le64_to_cpu(stats_msg.tx_multicast) +
2323 le64_to_cpu(stats_msg.tx_broadcast);
2324 netstats->rx_bytes = le64_to_cpu(stats_msg.rx_bytes);
2325 netstats->tx_bytes = le64_to_cpu(stats_msg.tx_bytes);
2326 netstats->rx_errors = le64_to_cpu(stats_msg.rx_errors);
2327 netstats->tx_errors = le64_to_cpu(stats_msg.tx_errors);
2328 netstats->rx_dropped = le64_to_cpu(stats_msg.rx_discards);
2329 netstats->tx_dropped = le64_to_cpu(stats_msg.tx_discards);
2330
2331 vport->port_stats.vport_stats = stats_msg;
2332
2333 spin_unlock_bh(&np->stats_lock);
2334
2335 return 0;
2336 }
2337
2338 /**
2339 * idpf_send_get_set_rss_lut_msg - Send virtchnl get or set rss lut message
2340 * @vport: virtual port data structure
2341 * @get: flag to set or get rss look up table
2342 *
2343 * Returns 0 on success, negative on failure.
2344 */
idpf_send_get_set_rss_lut_msg(struct idpf_vport * vport,bool get)2345 int idpf_send_get_set_rss_lut_msg(struct idpf_vport *vport, bool get)
2346 {
2347 struct virtchnl2_rss_lut *recv_rl __free(kfree) = NULL;
2348 struct virtchnl2_rss_lut *rl __free(kfree) = NULL;
2349 struct idpf_vc_xn_params xn_params = {};
2350 struct idpf_rss_data *rss_data;
2351 int buf_size, lut_buf_size;
2352 ssize_t reply_sz;
2353 int i;
2354
2355 rss_data =
2356 &vport->adapter->vport_config[vport->idx]->user_config.rss_data;
2357 buf_size = struct_size(rl, lut, rss_data->rss_lut_size);
2358 rl = kzalloc(buf_size, GFP_KERNEL);
2359 if (!rl)
2360 return -ENOMEM;
2361
2362 rl->vport_id = cpu_to_le32(vport->vport_id);
2363
2364 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2365 xn_params.send_buf.iov_base = rl;
2366 xn_params.send_buf.iov_len = buf_size;
2367
2368 if (get) {
2369 recv_rl = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2370 if (!recv_rl)
2371 return -ENOMEM;
2372 xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_LUT;
2373 xn_params.recv_buf.iov_base = recv_rl;
2374 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2375 } else {
2376 rl->lut_entries = cpu_to_le16(rss_data->rss_lut_size);
2377 for (i = 0; i < rss_data->rss_lut_size; i++)
2378 rl->lut[i] = cpu_to_le32(rss_data->rss_lut[i]);
2379
2380 xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_LUT;
2381 }
2382 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2383 if (reply_sz < 0)
2384 return reply_sz;
2385 if (!get)
2386 return 0;
2387 if (reply_sz < sizeof(struct virtchnl2_rss_lut))
2388 return -EIO;
2389
2390 lut_buf_size = le16_to_cpu(recv_rl->lut_entries) * sizeof(u32);
2391 if (reply_sz < lut_buf_size)
2392 return -EIO;
2393
2394 /* size didn't change, we can reuse existing lut buf */
2395 if (rss_data->rss_lut_size == le16_to_cpu(recv_rl->lut_entries))
2396 goto do_memcpy;
2397
2398 rss_data->rss_lut_size = le16_to_cpu(recv_rl->lut_entries);
2399 kfree(rss_data->rss_lut);
2400
2401 rss_data->rss_lut = kzalloc(lut_buf_size, GFP_KERNEL);
2402 if (!rss_data->rss_lut) {
2403 rss_data->rss_lut_size = 0;
2404 return -ENOMEM;
2405 }
2406
2407 do_memcpy:
2408 memcpy(rss_data->rss_lut, recv_rl->lut, rss_data->rss_lut_size);
2409
2410 return 0;
2411 }
2412
2413 /**
2414 * idpf_send_get_set_rss_key_msg - Send virtchnl get or set rss key message
2415 * @vport: virtual port data structure
2416 * @get: flag to set or get rss look up table
2417 *
2418 * Returns 0 on success, negative on failure
2419 */
idpf_send_get_set_rss_key_msg(struct idpf_vport * vport,bool get)2420 int idpf_send_get_set_rss_key_msg(struct idpf_vport *vport, bool get)
2421 {
2422 struct virtchnl2_rss_key *recv_rk __free(kfree) = NULL;
2423 struct virtchnl2_rss_key *rk __free(kfree) = NULL;
2424 struct idpf_vc_xn_params xn_params = {};
2425 struct idpf_rss_data *rss_data;
2426 ssize_t reply_sz;
2427 int i, buf_size;
2428 u16 key_size;
2429
2430 rss_data =
2431 &vport->adapter->vport_config[vport->idx]->user_config.rss_data;
2432 buf_size = struct_size(rk, key_flex, rss_data->rss_key_size);
2433 rk = kzalloc(buf_size, GFP_KERNEL);
2434 if (!rk)
2435 return -ENOMEM;
2436
2437 rk->vport_id = cpu_to_le32(vport->vport_id);
2438 xn_params.send_buf.iov_base = rk;
2439 xn_params.send_buf.iov_len = buf_size;
2440 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2441 if (get) {
2442 recv_rk = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2443 if (!recv_rk)
2444 return -ENOMEM;
2445
2446 xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_KEY;
2447 xn_params.recv_buf.iov_base = recv_rk;
2448 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2449 } else {
2450 rk->key_len = cpu_to_le16(rss_data->rss_key_size);
2451 for (i = 0; i < rss_data->rss_key_size; i++)
2452 rk->key_flex[i] = rss_data->rss_key[i];
2453
2454 xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_KEY;
2455 }
2456
2457 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2458 if (reply_sz < 0)
2459 return reply_sz;
2460 if (!get)
2461 return 0;
2462 if (reply_sz < sizeof(struct virtchnl2_rss_key))
2463 return -EIO;
2464
2465 key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
2466 le16_to_cpu(recv_rk->key_len));
2467 if (reply_sz < key_size)
2468 return -EIO;
2469
2470 /* key len didn't change, reuse existing buf */
2471 if (rss_data->rss_key_size == key_size)
2472 goto do_memcpy;
2473
2474 rss_data->rss_key_size = key_size;
2475 kfree(rss_data->rss_key);
2476 rss_data->rss_key = kzalloc(key_size, GFP_KERNEL);
2477 if (!rss_data->rss_key) {
2478 rss_data->rss_key_size = 0;
2479 return -ENOMEM;
2480 }
2481
2482 do_memcpy:
2483 memcpy(rss_data->rss_key, recv_rk->key_flex, rss_data->rss_key_size);
2484
2485 return 0;
2486 }
2487
2488 /**
2489 * idpf_fill_ptype_lookup - Fill L3 specific fields in ptype lookup table
2490 * @ptype: ptype lookup table
2491 * @pstate: state machine for ptype lookup table
2492 * @ipv4: ipv4 or ipv6
2493 * @frag: fragmentation allowed
2494 *
2495 */
idpf_fill_ptype_lookup(struct libeth_rx_pt * ptype,struct idpf_ptype_state * pstate,bool ipv4,bool frag)2496 static void idpf_fill_ptype_lookup(struct libeth_rx_pt *ptype,
2497 struct idpf_ptype_state *pstate,
2498 bool ipv4, bool frag)
2499 {
2500 if (!pstate->outer_ip || !pstate->outer_frag) {
2501 pstate->outer_ip = true;
2502
2503 if (ipv4)
2504 ptype->outer_ip = LIBETH_RX_PT_OUTER_IPV4;
2505 else
2506 ptype->outer_ip = LIBETH_RX_PT_OUTER_IPV6;
2507
2508 if (frag) {
2509 ptype->outer_frag = LIBETH_RX_PT_FRAG;
2510 pstate->outer_frag = true;
2511 }
2512 } else {
2513 ptype->tunnel_type = LIBETH_RX_PT_TUNNEL_IP_IP;
2514 pstate->tunnel_state = IDPF_PTYPE_TUNNEL_IP;
2515
2516 if (ipv4)
2517 ptype->tunnel_end_prot = LIBETH_RX_PT_TUNNEL_END_IPV4;
2518 else
2519 ptype->tunnel_end_prot = LIBETH_RX_PT_TUNNEL_END_IPV6;
2520
2521 if (frag)
2522 ptype->tunnel_end_frag = LIBETH_RX_PT_FRAG;
2523 }
2524 }
2525
idpf_finalize_ptype_lookup(struct libeth_rx_pt * ptype)2526 static void idpf_finalize_ptype_lookup(struct libeth_rx_pt *ptype)
2527 {
2528 if (ptype->payload_layer == LIBETH_RX_PT_PAYLOAD_L2 &&
2529 ptype->inner_prot)
2530 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L4;
2531 else if (ptype->payload_layer == LIBETH_RX_PT_PAYLOAD_L2 &&
2532 ptype->outer_ip)
2533 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L3;
2534 else if (ptype->outer_ip == LIBETH_RX_PT_OUTER_L2)
2535 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L2;
2536 else
2537 ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_NONE;
2538
2539 libeth_rx_pt_gen_hash_type(ptype);
2540 }
2541
2542 /**
2543 * idpf_send_get_rx_ptype_msg - Send virtchnl for ptype info
2544 * @vport: virtual port data structure
2545 *
2546 * Returns 0 on success, negative on failure.
2547 */
idpf_send_get_rx_ptype_msg(struct idpf_vport * vport)2548 int idpf_send_get_rx_ptype_msg(struct idpf_vport *vport)
2549 {
2550 struct virtchnl2_get_ptype_info *get_ptype_info __free(kfree) = NULL;
2551 struct virtchnl2_get_ptype_info *ptype_info __free(kfree) = NULL;
2552 struct libeth_rx_pt *ptype_lkup __free(kfree) = NULL;
2553 int max_ptype, ptypes_recvd = 0, ptype_offset;
2554 struct idpf_adapter *adapter = vport->adapter;
2555 struct idpf_vc_xn_params xn_params = {};
2556 u16 next_ptype_id = 0;
2557 ssize_t reply_sz;
2558 int i, j, k;
2559
2560 if (vport->rx_ptype_lkup)
2561 return 0;
2562
2563 if (idpf_is_queue_model_split(vport->rxq_model))
2564 max_ptype = IDPF_RX_MAX_PTYPE;
2565 else
2566 max_ptype = IDPF_RX_MAX_BASE_PTYPE;
2567
2568 ptype_lkup = kcalloc(max_ptype, sizeof(*ptype_lkup), GFP_KERNEL);
2569 if (!ptype_lkup)
2570 return -ENOMEM;
2571
2572 get_ptype_info = kzalloc(sizeof(*get_ptype_info), GFP_KERNEL);
2573 if (!get_ptype_info)
2574 return -ENOMEM;
2575
2576 ptype_info = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2577 if (!ptype_info)
2578 return -ENOMEM;
2579
2580 xn_params.vc_op = VIRTCHNL2_OP_GET_PTYPE_INFO;
2581 xn_params.send_buf.iov_base = get_ptype_info;
2582 xn_params.send_buf.iov_len = sizeof(*get_ptype_info);
2583 xn_params.recv_buf.iov_base = ptype_info;
2584 xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2585 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2586
2587 while (next_ptype_id < max_ptype) {
2588 get_ptype_info->start_ptype_id = cpu_to_le16(next_ptype_id);
2589
2590 if ((next_ptype_id + IDPF_RX_MAX_PTYPES_PER_BUF) > max_ptype)
2591 get_ptype_info->num_ptypes =
2592 cpu_to_le16(max_ptype - next_ptype_id);
2593 else
2594 get_ptype_info->num_ptypes =
2595 cpu_to_le16(IDPF_RX_MAX_PTYPES_PER_BUF);
2596
2597 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2598 if (reply_sz < 0)
2599 return reply_sz;
2600
2601 ptypes_recvd += le16_to_cpu(ptype_info->num_ptypes);
2602 if (ptypes_recvd > max_ptype)
2603 return -EINVAL;
2604
2605 next_ptype_id = le16_to_cpu(get_ptype_info->start_ptype_id) +
2606 le16_to_cpu(get_ptype_info->num_ptypes);
2607
2608 ptype_offset = IDPF_RX_PTYPE_HDR_SZ;
2609
2610 for (i = 0; i < le16_to_cpu(ptype_info->num_ptypes); i++) {
2611 struct idpf_ptype_state pstate = { };
2612 struct virtchnl2_ptype *ptype;
2613 u16 id;
2614
2615 ptype = (struct virtchnl2_ptype *)
2616 ((u8 *)ptype_info + ptype_offset);
2617
2618 ptype_offset += IDPF_GET_PTYPE_SIZE(ptype);
2619 if (ptype_offset > IDPF_CTLQ_MAX_BUF_LEN)
2620 return -EINVAL;
2621
2622 /* 0xFFFF indicates end of ptypes */
2623 if (le16_to_cpu(ptype->ptype_id_10) ==
2624 IDPF_INVALID_PTYPE_ID)
2625 goto out;
2626
2627 if (idpf_is_queue_model_split(vport->rxq_model))
2628 k = le16_to_cpu(ptype->ptype_id_10);
2629 else
2630 k = ptype->ptype_id_8;
2631
2632 for (j = 0; j < ptype->proto_id_count; j++) {
2633 id = le16_to_cpu(ptype->proto_id[j]);
2634 switch (id) {
2635 case VIRTCHNL2_PROTO_HDR_GRE:
2636 if (pstate.tunnel_state ==
2637 IDPF_PTYPE_TUNNEL_IP) {
2638 ptype_lkup[k].tunnel_type =
2639 LIBETH_RX_PT_TUNNEL_IP_GRENAT;
2640 pstate.tunnel_state |=
2641 IDPF_PTYPE_TUNNEL_IP_GRENAT;
2642 }
2643 break;
2644 case VIRTCHNL2_PROTO_HDR_MAC:
2645 ptype_lkup[k].outer_ip =
2646 LIBETH_RX_PT_OUTER_L2;
2647 if (pstate.tunnel_state ==
2648 IDPF_TUN_IP_GRE) {
2649 ptype_lkup[k].tunnel_type =
2650 LIBETH_RX_PT_TUNNEL_IP_GRENAT_MAC;
2651 pstate.tunnel_state |=
2652 IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC;
2653 }
2654 break;
2655 case VIRTCHNL2_PROTO_HDR_IPV4:
2656 idpf_fill_ptype_lookup(&ptype_lkup[k],
2657 &pstate, true,
2658 false);
2659 break;
2660 case VIRTCHNL2_PROTO_HDR_IPV6:
2661 idpf_fill_ptype_lookup(&ptype_lkup[k],
2662 &pstate, false,
2663 false);
2664 break;
2665 case VIRTCHNL2_PROTO_HDR_IPV4_FRAG:
2666 idpf_fill_ptype_lookup(&ptype_lkup[k],
2667 &pstate, true,
2668 true);
2669 break;
2670 case VIRTCHNL2_PROTO_HDR_IPV6_FRAG:
2671 idpf_fill_ptype_lookup(&ptype_lkup[k],
2672 &pstate, false,
2673 true);
2674 break;
2675 case VIRTCHNL2_PROTO_HDR_UDP:
2676 ptype_lkup[k].inner_prot =
2677 LIBETH_RX_PT_INNER_UDP;
2678 break;
2679 case VIRTCHNL2_PROTO_HDR_TCP:
2680 ptype_lkup[k].inner_prot =
2681 LIBETH_RX_PT_INNER_TCP;
2682 break;
2683 case VIRTCHNL2_PROTO_HDR_SCTP:
2684 ptype_lkup[k].inner_prot =
2685 LIBETH_RX_PT_INNER_SCTP;
2686 break;
2687 case VIRTCHNL2_PROTO_HDR_ICMP:
2688 ptype_lkup[k].inner_prot =
2689 LIBETH_RX_PT_INNER_ICMP;
2690 break;
2691 case VIRTCHNL2_PROTO_HDR_PAY:
2692 ptype_lkup[k].payload_layer =
2693 LIBETH_RX_PT_PAYLOAD_L2;
2694 break;
2695 case VIRTCHNL2_PROTO_HDR_ICMPV6:
2696 case VIRTCHNL2_PROTO_HDR_IPV6_EH:
2697 case VIRTCHNL2_PROTO_HDR_PRE_MAC:
2698 case VIRTCHNL2_PROTO_HDR_POST_MAC:
2699 case VIRTCHNL2_PROTO_HDR_ETHERTYPE:
2700 case VIRTCHNL2_PROTO_HDR_SVLAN:
2701 case VIRTCHNL2_PROTO_HDR_CVLAN:
2702 case VIRTCHNL2_PROTO_HDR_MPLS:
2703 case VIRTCHNL2_PROTO_HDR_MMPLS:
2704 case VIRTCHNL2_PROTO_HDR_PTP:
2705 case VIRTCHNL2_PROTO_HDR_CTRL:
2706 case VIRTCHNL2_PROTO_HDR_LLDP:
2707 case VIRTCHNL2_PROTO_HDR_ARP:
2708 case VIRTCHNL2_PROTO_HDR_ECP:
2709 case VIRTCHNL2_PROTO_HDR_EAPOL:
2710 case VIRTCHNL2_PROTO_HDR_PPPOD:
2711 case VIRTCHNL2_PROTO_HDR_PPPOE:
2712 case VIRTCHNL2_PROTO_HDR_IGMP:
2713 case VIRTCHNL2_PROTO_HDR_AH:
2714 case VIRTCHNL2_PROTO_HDR_ESP:
2715 case VIRTCHNL2_PROTO_HDR_IKE:
2716 case VIRTCHNL2_PROTO_HDR_NATT_KEEP:
2717 case VIRTCHNL2_PROTO_HDR_L2TPV2:
2718 case VIRTCHNL2_PROTO_HDR_L2TPV2_CONTROL:
2719 case VIRTCHNL2_PROTO_HDR_L2TPV3:
2720 case VIRTCHNL2_PROTO_HDR_GTP:
2721 case VIRTCHNL2_PROTO_HDR_GTP_EH:
2722 case VIRTCHNL2_PROTO_HDR_GTPCV2:
2723 case VIRTCHNL2_PROTO_HDR_GTPC_TEID:
2724 case VIRTCHNL2_PROTO_HDR_GTPU:
2725 case VIRTCHNL2_PROTO_HDR_GTPU_UL:
2726 case VIRTCHNL2_PROTO_HDR_GTPU_DL:
2727 case VIRTCHNL2_PROTO_HDR_ECPRI:
2728 case VIRTCHNL2_PROTO_HDR_VRRP:
2729 case VIRTCHNL2_PROTO_HDR_OSPF:
2730 case VIRTCHNL2_PROTO_HDR_TUN:
2731 case VIRTCHNL2_PROTO_HDR_NVGRE:
2732 case VIRTCHNL2_PROTO_HDR_VXLAN:
2733 case VIRTCHNL2_PROTO_HDR_VXLAN_GPE:
2734 case VIRTCHNL2_PROTO_HDR_GENEVE:
2735 case VIRTCHNL2_PROTO_HDR_NSH:
2736 case VIRTCHNL2_PROTO_HDR_QUIC:
2737 case VIRTCHNL2_PROTO_HDR_PFCP:
2738 case VIRTCHNL2_PROTO_HDR_PFCP_NODE:
2739 case VIRTCHNL2_PROTO_HDR_PFCP_SESSION:
2740 case VIRTCHNL2_PROTO_HDR_RTP:
2741 case VIRTCHNL2_PROTO_HDR_NO_PROTO:
2742 break;
2743 default:
2744 break;
2745 }
2746 }
2747
2748 idpf_finalize_ptype_lookup(&ptype_lkup[k]);
2749 }
2750 }
2751
2752 out:
2753 vport->rx_ptype_lkup = no_free_ptr(ptype_lkup);
2754
2755 return 0;
2756 }
2757
2758 /**
2759 * idpf_send_ena_dis_loopback_msg - Send virtchnl enable/disable loopback
2760 * message
2761 * @vport: virtual port data structure
2762 *
2763 * Returns 0 on success, negative on failure.
2764 */
idpf_send_ena_dis_loopback_msg(struct idpf_vport * vport)2765 int idpf_send_ena_dis_loopback_msg(struct idpf_vport *vport)
2766 {
2767 struct idpf_vc_xn_params xn_params = {};
2768 struct virtchnl2_loopback loopback;
2769 ssize_t reply_sz;
2770
2771 loopback.vport_id = cpu_to_le32(vport->vport_id);
2772 loopback.enable = idpf_is_feature_ena(vport, NETIF_F_LOOPBACK);
2773
2774 xn_params.vc_op = VIRTCHNL2_OP_LOOPBACK;
2775 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2776 xn_params.send_buf.iov_base = &loopback;
2777 xn_params.send_buf.iov_len = sizeof(loopback);
2778 reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2779
2780 return reply_sz < 0 ? reply_sz : 0;
2781 }
2782
2783 /**
2784 * idpf_find_ctlq - Given a type and id, find ctlq info
2785 * @hw: hardware struct
2786 * @type: type of ctrlq to find
2787 * @id: ctlq id to find
2788 *
2789 * Returns pointer to found ctlq info struct, NULL otherwise.
2790 */
idpf_find_ctlq(struct idpf_hw * hw,enum idpf_ctlq_type type,int id)2791 static struct idpf_ctlq_info *idpf_find_ctlq(struct idpf_hw *hw,
2792 enum idpf_ctlq_type type, int id)
2793 {
2794 struct idpf_ctlq_info *cq, *tmp;
2795
2796 list_for_each_entry_safe(cq, tmp, &hw->cq_list_head, cq_list)
2797 if (cq->q_id == id && cq->cq_type == type)
2798 return cq;
2799
2800 return NULL;
2801 }
2802
2803 /**
2804 * idpf_init_dflt_mbx - Setup default mailbox parameters and make request
2805 * @adapter: adapter info struct
2806 *
2807 * Returns 0 on success, negative otherwise
2808 */
idpf_init_dflt_mbx(struct idpf_adapter * adapter)2809 int idpf_init_dflt_mbx(struct idpf_adapter *adapter)
2810 {
2811 struct idpf_ctlq_create_info ctlq_info[] = {
2812 {
2813 .type = IDPF_CTLQ_TYPE_MAILBOX_TX,
2814 .id = IDPF_DFLT_MBX_ID,
2815 .len = IDPF_DFLT_MBX_Q_LEN,
2816 .buf_size = IDPF_CTLQ_MAX_BUF_LEN
2817 },
2818 {
2819 .type = IDPF_CTLQ_TYPE_MAILBOX_RX,
2820 .id = IDPF_DFLT_MBX_ID,
2821 .len = IDPF_DFLT_MBX_Q_LEN,
2822 .buf_size = IDPF_CTLQ_MAX_BUF_LEN
2823 }
2824 };
2825 struct idpf_hw *hw = &adapter->hw;
2826 int err;
2827
2828 adapter->dev_ops.reg_ops.ctlq_reg_init(ctlq_info);
2829
2830 err = idpf_ctlq_init(hw, IDPF_NUM_DFLT_MBX_Q, ctlq_info);
2831 if (err)
2832 return err;
2833
2834 hw->asq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_TX,
2835 IDPF_DFLT_MBX_ID);
2836 hw->arq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_RX,
2837 IDPF_DFLT_MBX_ID);
2838
2839 if (!hw->asq || !hw->arq) {
2840 idpf_ctlq_deinit(hw);
2841
2842 return -ENOENT;
2843 }
2844
2845 adapter->state = __IDPF_VER_CHECK;
2846
2847 return 0;
2848 }
2849
2850 /**
2851 * idpf_deinit_dflt_mbx - Free up ctlqs setup
2852 * @adapter: Driver specific private data structure
2853 */
idpf_deinit_dflt_mbx(struct idpf_adapter * adapter)2854 void idpf_deinit_dflt_mbx(struct idpf_adapter *adapter)
2855 {
2856 if (adapter->hw.arq && adapter->hw.asq) {
2857 idpf_mb_clean(adapter);
2858 idpf_ctlq_deinit(&adapter->hw);
2859 }
2860 adapter->hw.arq = NULL;
2861 adapter->hw.asq = NULL;
2862 }
2863
2864 /**
2865 * idpf_vport_params_buf_rel - Release memory for MailBox resources
2866 * @adapter: Driver specific private data structure
2867 *
2868 * Will release memory to hold the vport parameters received on MailBox
2869 */
idpf_vport_params_buf_rel(struct idpf_adapter * adapter)2870 static void idpf_vport_params_buf_rel(struct idpf_adapter *adapter)
2871 {
2872 kfree(adapter->vport_params_recvd);
2873 adapter->vport_params_recvd = NULL;
2874 kfree(adapter->vport_params_reqd);
2875 adapter->vport_params_reqd = NULL;
2876 kfree(adapter->vport_ids);
2877 adapter->vport_ids = NULL;
2878 }
2879
2880 /**
2881 * idpf_vport_params_buf_alloc - Allocate memory for MailBox resources
2882 * @adapter: Driver specific private data structure
2883 *
2884 * Will alloc memory to hold the vport parameters received on MailBox
2885 */
idpf_vport_params_buf_alloc(struct idpf_adapter * adapter)2886 static int idpf_vport_params_buf_alloc(struct idpf_adapter *adapter)
2887 {
2888 u16 num_max_vports = idpf_get_max_vports(adapter);
2889
2890 adapter->vport_params_reqd = kcalloc(num_max_vports,
2891 sizeof(*adapter->vport_params_reqd),
2892 GFP_KERNEL);
2893 if (!adapter->vport_params_reqd)
2894 return -ENOMEM;
2895
2896 adapter->vport_params_recvd = kcalloc(num_max_vports,
2897 sizeof(*adapter->vport_params_recvd),
2898 GFP_KERNEL);
2899 if (!adapter->vport_params_recvd)
2900 goto err_mem;
2901
2902 adapter->vport_ids = kcalloc(num_max_vports, sizeof(u32), GFP_KERNEL);
2903 if (!adapter->vport_ids)
2904 goto err_mem;
2905
2906 if (adapter->vport_config)
2907 return 0;
2908
2909 adapter->vport_config = kcalloc(num_max_vports,
2910 sizeof(*adapter->vport_config),
2911 GFP_KERNEL);
2912 if (!adapter->vport_config)
2913 goto err_mem;
2914
2915 return 0;
2916
2917 err_mem:
2918 idpf_vport_params_buf_rel(adapter);
2919
2920 return -ENOMEM;
2921 }
2922
2923 /**
2924 * idpf_vc_core_init - Initialize state machine and get driver specific
2925 * resources
2926 * @adapter: Driver specific private structure
2927 *
2928 * This function will initialize the state machine and request all necessary
2929 * resources required by the device driver. Once the state machine is
2930 * initialized, allocate memory to store vport specific information and also
2931 * requests required interrupts.
2932 *
2933 * Returns 0 on success, -EAGAIN function will get called again,
2934 * otherwise negative on failure.
2935 */
idpf_vc_core_init(struct idpf_adapter * adapter)2936 int idpf_vc_core_init(struct idpf_adapter *adapter)
2937 {
2938 int task_delay = 30;
2939 u16 num_max_vports;
2940 int err = 0;
2941
2942 if (!adapter->vcxn_mngr) {
2943 adapter->vcxn_mngr = kzalloc(sizeof(*adapter->vcxn_mngr), GFP_KERNEL);
2944 if (!adapter->vcxn_mngr) {
2945 err = -ENOMEM;
2946 goto init_failed;
2947 }
2948 }
2949 idpf_vc_xn_init(adapter->vcxn_mngr);
2950
2951 while (adapter->state != __IDPF_INIT_SW) {
2952 switch (adapter->state) {
2953 case __IDPF_VER_CHECK:
2954 err = idpf_send_ver_msg(adapter);
2955 switch (err) {
2956 case 0:
2957 /* success, move state machine forward */
2958 adapter->state = __IDPF_GET_CAPS;
2959 fallthrough;
2960 case -EAGAIN:
2961 goto restart;
2962 default:
2963 /* Something bad happened, try again but only a
2964 * few times.
2965 */
2966 goto init_failed;
2967 }
2968 case __IDPF_GET_CAPS:
2969 err = idpf_send_get_caps_msg(adapter);
2970 if (err)
2971 goto init_failed;
2972 adapter->state = __IDPF_INIT_SW;
2973 break;
2974 default:
2975 dev_err(&adapter->pdev->dev, "Device is in bad state: %d\n",
2976 adapter->state);
2977 err = -EINVAL;
2978 goto init_failed;
2979 }
2980 break;
2981 restart:
2982 /* Give enough time before proceeding further with
2983 * state machine
2984 */
2985 msleep(task_delay);
2986 }
2987
2988 pci_sriov_set_totalvfs(adapter->pdev, idpf_get_max_vfs(adapter));
2989 num_max_vports = idpf_get_max_vports(adapter);
2990 adapter->max_vports = num_max_vports;
2991 adapter->vports = kcalloc(num_max_vports, sizeof(*adapter->vports),
2992 GFP_KERNEL);
2993 if (!adapter->vports)
2994 return -ENOMEM;
2995
2996 if (!adapter->netdevs) {
2997 adapter->netdevs = kcalloc(num_max_vports,
2998 sizeof(struct net_device *),
2999 GFP_KERNEL);
3000 if (!adapter->netdevs) {
3001 err = -ENOMEM;
3002 goto err_netdev_alloc;
3003 }
3004 }
3005
3006 err = idpf_vport_params_buf_alloc(adapter);
3007 if (err) {
3008 dev_err(&adapter->pdev->dev, "Failed to alloc vport params buffer: %d\n",
3009 err);
3010 goto err_netdev_alloc;
3011 }
3012
3013 /* Start the mailbox task before requesting vectors. This will ensure
3014 * vector information response from mailbox is handled
3015 */
3016 queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
3017
3018 queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
3019 msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
3020
3021 err = idpf_intr_req(adapter);
3022 if (err) {
3023 dev_err(&adapter->pdev->dev, "failed to enable interrupt vectors: %d\n",
3024 err);
3025 goto err_intr_req;
3026 }
3027
3028 idpf_init_avail_queues(adapter);
3029
3030 /* Skew the delay for init tasks for each function based on fn number
3031 * to prevent every function from making the same call simultaneously.
3032 */
3033 queue_delayed_work(adapter->init_wq, &adapter->init_task,
3034 msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
3035
3036 set_bit(IDPF_VC_CORE_INIT, adapter->flags);
3037
3038 return 0;
3039
3040 err_intr_req:
3041 cancel_delayed_work_sync(&adapter->serv_task);
3042 cancel_delayed_work_sync(&adapter->mbx_task);
3043 idpf_vport_params_buf_rel(adapter);
3044 err_netdev_alloc:
3045 kfree(adapter->vports);
3046 adapter->vports = NULL;
3047 return err;
3048
3049 init_failed:
3050 /* Don't retry if we're trying to go down, just bail. */
3051 if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
3052 return err;
3053
3054 if (++adapter->mb_wait_count > IDPF_MB_MAX_ERR) {
3055 dev_err(&adapter->pdev->dev, "Failed to establish mailbox communications with hardware\n");
3056
3057 return -EFAULT;
3058 }
3059 /* If it reached here, it is possible that mailbox queue initialization
3060 * register writes might not have taken effect. Retry to initialize
3061 * the mailbox again
3062 */
3063 adapter->state = __IDPF_VER_CHECK;
3064 if (adapter->vcxn_mngr)
3065 idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3066 set_bit(IDPF_HR_DRV_LOAD, adapter->flags);
3067 queue_delayed_work(adapter->vc_event_wq, &adapter->vc_event_task,
3068 msecs_to_jiffies(task_delay));
3069
3070 return -EAGAIN;
3071 }
3072
3073 /**
3074 * idpf_vc_core_deinit - Device deinit routine
3075 * @adapter: Driver specific private structure
3076 *
3077 */
idpf_vc_core_deinit(struct idpf_adapter * adapter)3078 void idpf_vc_core_deinit(struct idpf_adapter *adapter)
3079 {
3080 if (!test_bit(IDPF_VC_CORE_INIT, adapter->flags))
3081 return;
3082
3083 idpf_deinit_task(adapter);
3084 idpf_intr_rel(adapter);
3085 idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3086
3087 cancel_delayed_work_sync(&adapter->serv_task);
3088 cancel_delayed_work_sync(&adapter->mbx_task);
3089
3090 idpf_vport_params_buf_rel(adapter);
3091
3092 kfree(adapter->vports);
3093 adapter->vports = NULL;
3094
3095 clear_bit(IDPF_VC_CORE_INIT, adapter->flags);
3096 }
3097
3098 /**
3099 * idpf_vport_alloc_vec_indexes - Get relative vector indexes
3100 * @vport: virtual port data struct
3101 *
3102 * This function requests the vector information required for the vport and
3103 * stores the vector indexes received from the 'global vector distribution'
3104 * in the vport's queue vectors array.
3105 *
3106 * Return 0 on success, error on failure
3107 */
idpf_vport_alloc_vec_indexes(struct idpf_vport * vport)3108 int idpf_vport_alloc_vec_indexes(struct idpf_vport *vport)
3109 {
3110 struct idpf_vector_info vec_info;
3111 int num_alloc_vecs;
3112
3113 vec_info.num_curr_vecs = vport->num_q_vectors;
3114 vec_info.num_req_vecs = max(vport->num_txq, vport->num_rxq);
3115 vec_info.default_vport = vport->default_vport;
3116 vec_info.index = vport->idx;
3117
3118 num_alloc_vecs = idpf_req_rel_vector_indexes(vport->adapter,
3119 vport->q_vector_idxs,
3120 &vec_info);
3121 if (num_alloc_vecs <= 0) {
3122 dev_err(&vport->adapter->pdev->dev, "Vector distribution failed: %d\n",
3123 num_alloc_vecs);
3124 return -EINVAL;
3125 }
3126
3127 vport->num_q_vectors = num_alloc_vecs;
3128
3129 return 0;
3130 }
3131
3132 /**
3133 * idpf_vport_init - Initialize virtual port
3134 * @vport: virtual port to be initialized
3135 * @max_q: vport max queue info
3136 *
3137 * Will initialize vport with the info received through MB earlier
3138 */
idpf_vport_init(struct idpf_vport * vport,struct idpf_vport_max_q * max_q)3139 void idpf_vport_init(struct idpf_vport *vport, struct idpf_vport_max_q *max_q)
3140 {
3141 struct idpf_adapter *adapter = vport->adapter;
3142 struct virtchnl2_create_vport *vport_msg;
3143 struct idpf_vport_config *vport_config;
3144 u16 tx_itr[] = {2, 8, 64, 128, 256};
3145 u16 rx_itr[] = {2, 8, 32, 96, 128};
3146 struct idpf_rss_data *rss_data;
3147 u16 idx = vport->idx;
3148
3149 vport_config = adapter->vport_config[idx];
3150 rss_data = &vport_config->user_config.rss_data;
3151 vport_msg = adapter->vport_params_recvd[idx];
3152
3153 vport_config->max_q.max_txq = max_q->max_txq;
3154 vport_config->max_q.max_rxq = max_q->max_rxq;
3155 vport_config->max_q.max_complq = max_q->max_complq;
3156 vport_config->max_q.max_bufq = max_q->max_bufq;
3157
3158 vport->txq_model = le16_to_cpu(vport_msg->txq_model);
3159 vport->rxq_model = le16_to_cpu(vport_msg->rxq_model);
3160 vport->vport_type = le16_to_cpu(vport_msg->vport_type);
3161 vport->vport_id = le32_to_cpu(vport_msg->vport_id);
3162
3163 rss_data->rss_key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
3164 le16_to_cpu(vport_msg->rss_key_size));
3165 rss_data->rss_lut_size = le16_to_cpu(vport_msg->rss_lut_size);
3166
3167 ether_addr_copy(vport->default_mac_addr, vport_msg->default_mac_addr);
3168 vport->max_mtu = le16_to_cpu(vport_msg->max_mtu) - LIBETH_RX_LL_LEN;
3169
3170 /* Initialize Tx and Rx profiles for Dynamic Interrupt Moderation */
3171 memcpy(vport->rx_itr_profile, rx_itr, IDPF_DIM_PROFILE_SLOTS);
3172 memcpy(vport->tx_itr_profile, tx_itr, IDPF_DIM_PROFILE_SLOTS);
3173
3174 idpf_vport_set_hsplit(vport, ETHTOOL_TCP_DATA_SPLIT_ENABLED);
3175
3176 idpf_vport_init_num_qs(vport, vport_msg);
3177 idpf_vport_calc_num_q_desc(vport);
3178 idpf_vport_calc_num_q_groups(vport);
3179 idpf_vport_alloc_vec_indexes(vport);
3180
3181 vport->crc_enable = adapter->crc_enable;
3182 }
3183
3184 /**
3185 * idpf_get_vec_ids - Initialize vector id from Mailbox parameters
3186 * @adapter: adapter structure to get the mailbox vector id
3187 * @vecids: Array of vector ids
3188 * @num_vecids: number of vector ids
3189 * @chunks: vector ids received over mailbox
3190 *
3191 * Will initialize the mailbox vector id which is received from the
3192 * get capabilities and data queue vector ids with ids received as
3193 * mailbox parameters.
3194 * Returns number of ids filled
3195 */
idpf_get_vec_ids(struct idpf_adapter * adapter,u16 * vecids,int num_vecids,struct virtchnl2_vector_chunks * chunks)3196 int idpf_get_vec_ids(struct idpf_adapter *adapter,
3197 u16 *vecids, int num_vecids,
3198 struct virtchnl2_vector_chunks *chunks)
3199 {
3200 u16 num_chunks = le16_to_cpu(chunks->num_vchunks);
3201 int num_vecid_filled = 0;
3202 int i, j;
3203
3204 vecids[num_vecid_filled] = adapter->mb_vector.v_idx;
3205 num_vecid_filled++;
3206
3207 for (j = 0; j < num_chunks; j++) {
3208 struct virtchnl2_vector_chunk *chunk;
3209 u16 start_vecid, num_vec;
3210
3211 chunk = &chunks->vchunks[j];
3212 num_vec = le16_to_cpu(chunk->num_vectors);
3213 start_vecid = le16_to_cpu(chunk->start_vector_id);
3214
3215 for (i = 0; i < num_vec; i++) {
3216 if ((num_vecid_filled + i) < num_vecids) {
3217 vecids[num_vecid_filled + i] = start_vecid;
3218 start_vecid++;
3219 } else {
3220 break;
3221 }
3222 }
3223 num_vecid_filled = num_vecid_filled + i;
3224 }
3225
3226 return num_vecid_filled;
3227 }
3228
3229 /**
3230 * idpf_vport_get_queue_ids - Initialize queue id from Mailbox parameters
3231 * @qids: Array of queue ids
3232 * @num_qids: number of queue ids
3233 * @q_type: queue model
3234 * @chunks: queue ids received over mailbox
3235 *
3236 * Will initialize all queue ids with ids received as mailbox parameters
3237 * Returns number of ids filled
3238 */
idpf_vport_get_queue_ids(u32 * qids,int num_qids,u16 q_type,struct virtchnl2_queue_reg_chunks * chunks)3239 static int idpf_vport_get_queue_ids(u32 *qids, int num_qids, u16 q_type,
3240 struct virtchnl2_queue_reg_chunks *chunks)
3241 {
3242 u16 num_chunks = le16_to_cpu(chunks->num_chunks);
3243 u32 num_q_id_filled = 0, i;
3244 u32 start_q_id, num_q;
3245
3246 while (num_chunks--) {
3247 struct virtchnl2_queue_reg_chunk *chunk;
3248
3249 chunk = &chunks->chunks[num_chunks];
3250 if (le32_to_cpu(chunk->type) != q_type)
3251 continue;
3252
3253 num_q = le32_to_cpu(chunk->num_queues);
3254 start_q_id = le32_to_cpu(chunk->start_queue_id);
3255
3256 for (i = 0; i < num_q; i++) {
3257 if ((num_q_id_filled + i) < num_qids) {
3258 qids[num_q_id_filled + i] = start_q_id;
3259 start_q_id++;
3260 } else {
3261 break;
3262 }
3263 }
3264 num_q_id_filled = num_q_id_filled + i;
3265 }
3266
3267 return num_q_id_filled;
3268 }
3269
3270 /**
3271 * __idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
3272 * @vport: virtual port for which the queues ids are initialized
3273 * @qids: queue ids
3274 * @num_qids: number of queue ids
3275 * @q_type: type of queue
3276 *
3277 * Will initialize all queue ids with ids received as mailbox
3278 * parameters. Returns number of queue ids initialized.
3279 */
__idpf_vport_queue_ids_init(struct idpf_vport * vport,const u32 * qids,int num_qids,u32 q_type)3280 static int __idpf_vport_queue_ids_init(struct idpf_vport *vport,
3281 const u32 *qids,
3282 int num_qids,
3283 u32 q_type)
3284 {
3285 int i, j, k = 0;
3286
3287 switch (q_type) {
3288 case VIRTCHNL2_QUEUE_TYPE_TX:
3289 for (i = 0; i < vport->num_txq_grp; i++) {
3290 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
3291
3292 for (j = 0; j < tx_qgrp->num_txq && k < num_qids; j++, k++)
3293 tx_qgrp->txqs[j]->q_id = qids[k];
3294 }
3295 break;
3296 case VIRTCHNL2_QUEUE_TYPE_RX:
3297 for (i = 0; i < vport->num_rxq_grp; i++) {
3298 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
3299 u16 num_rxq;
3300
3301 if (idpf_is_queue_model_split(vport->rxq_model))
3302 num_rxq = rx_qgrp->splitq.num_rxq_sets;
3303 else
3304 num_rxq = rx_qgrp->singleq.num_rxq;
3305
3306 for (j = 0; j < num_rxq && k < num_qids; j++, k++) {
3307 struct idpf_rx_queue *q;
3308
3309 if (idpf_is_queue_model_split(vport->rxq_model))
3310 q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
3311 else
3312 q = rx_qgrp->singleq.rxqs[j];
3313 q->q_id = qids[k];
3314 }
3315 }
3316 break;
3317 case VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION:
3318 for (i = 0; i < vport->num_txq_grp && k < num_qids; i++, k++) {
3319 struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
3320
3321 tx_qgrp->complq->q_id = qids[k];
3322 }
3323 break;
3324 case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
3325 for (i = 0; i < vport->num_rxq_grp; i++) {
3326 struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
3327 u8 num_bufqs = vport->num_bufqs_per_qgrp;
3328
3329 for (j = 0; j < num_bufqs && k < num_qids; j++, k++) {
3330 struct idpf_buf_queue *q;
3331
3332 q = &rx_qgrp->splitq.bufq_sets[j].bufq;
3333 q->q_id = qids[k];
3334 }
3335 }
3336 break;
3337 default:
3338 break;
3339 }
3340
3341 return k;
3342 }
3343
3344 /**
3345 * idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
3346 * @vport: virtual port for which the queues ids are initialized
3347 *
3348 * Will initialize all queue ids with ids received as mailbox parameters.
3349 * Returns 0 on success, negative if all the queues are not initialized.
3350 */
idpf_vport_queue_ids_init(struct idpf_vport * vport)3351 int idpf_vport_queue_ids_init(struct idpf_vport *vport)
3352 {
3353 struct virtchnl2_create_vport *vport_params;
3354 struct virtchnl2_queue_reg_chunks *chunks;
3355 struct idpf_vport_config *vport_config;
3356 u16 vport_idx = vport->idx;
3357 int num_ids, err = 0;
3358 u16 q_type;
3359 u32 *qids;
3360
3361 vport_config = vport->adapter->vport_config[vport_idx];
3362 if (vport_config->req_qs_chunks) {
3363 struct virtchnl2_add_queues *vc_aq =
3364 (struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
3365 chunks = &vc_aq->chunks;
3366 } else {
3367 vport_params = vport->adapter->vport_params_recvd[vport_idx];
3368 chunks = &vport_params->chunks;
3369 }
3370
3371 qids = kcalloc(IDPF_MAX_QIDS, sizeof(u32), GFP_KERNEL);
3372 if (!qids)
3373 return -ENOMEM;
3374
3375 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
3376 VIRTCHNL2_QUEUE_TYPE_TX,
3377 chunks);
3378 if (num_ids < vport->num_txq) {
3379 err = -EINVAL;
3380 goto mem_rel;
3381 }
3382 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
3383 VIRTCHNL2_QUEUE_TYPE_TX);
3384 if (num_ids < vport->num_txq) {
3385 err = -EINVAL;
3386 goto mem_rel;
3387 }
3388
3389 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
3390 VIRTCHNL2_QUEUE_TYPE_RX,
3391 chunks);
3392 if (num_ids < vport->num_rxq) {
3393 err = -EINVAL;
3394 goto mem_rel;
3395 }
3396 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
3397 VIRTCHNL2_QUEUE_TYPE_RX);
3398 if (num_ids < vport->num_rxq) {
3399 err = -EINVAL;
3400 goto mem_rel;
3401 }
3402
3403 if (!idpf_is_queue_model_split(vport->txq_model))
3404 goto check_rxq;
3405
3406 q_type = VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION;
3407 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
3408 if (num_ids < vport->num_complq) {
3409 err = -EINVAL;
3410 goto mem_rel;
3411 }
3412 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
3413 if (num_ids < vport->num_complq) {
3414 err = -EINVAL;
3415 goto mem_rel;
3416 }
3417
3418 check_rxq:
3419 if (!idpf_is_queue_model_split(vport->rxq_model))
3420 goto mem_rel;
3421
3422 q_type = VIRTCHNL2_QUEUE_TYPE_RX_BUFFER;
3423 num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
3424 if (num_ids < vport->num_bufq) {
3425 err = -EINVAL;
3426 goto mem_rel;
3427 }
3428 num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
3429 if (num_ids < vport->num_bufq)
3430 err = -EINVAL;
3431
3432 mem_rel:
3433 kfree(qids);
3434
3435 return err;
3436 }
3437
3438 /**
3439 * idpf_vport_adjust_qs - Adjust to new requested queues
3440 * @vport: virtual port data struct
3441 *
3442 * Renegotiate queues. Returns 0 on success, negative on failure.
3443 */
idpf_vport_adjust_qs(struct idpf_vport * vport)3444 int idpf_vport_adjust_qs(struct idpf_vport *vport)
3445 {
3446 struct virtchnl2_create_vport vport_msg;
3447 int err;
3448
3449 vport_msg.txq_model = cpu_to_le16(vport->txq_model);
3450 vport_msg.rxq_model = cpu_to_le16(vport->rxq_model);
3451 err = idpf_vport_calc_total_qs(vport->adapter, vport->idx, &vport_msg,
3452 NULL);
3453 if (err)
3454 return err;
3455
3456 idpf_vport_init_num_qs(vport, &vport_msg);
3457 idpf_vport_calc_num_q_groups(vport);
3458
3459 return 0;
3460 }
3461
3462 /**
3463 * idpf_is_capability_ena - Default implementation of capability checking
3464 * @adapter: Private data struct
3465 * @all: all or one flag
3466 * @field: caps field to check for flags
3467 * @flag: flag to check
3468 *
3469 * Return true if all capabilities are supported, false otherwise
3470 */
idpf_is_capability_ena(struct idpf_adapter * adapter,bool all,enum idpf_cap_field field,u64 flag)3471 bool idpf_is_capability_ena(struct idpf_adapter *adapter, bool all,
3472 enum idpf_cap_field field, u64 flag)
3473 {
3474 u8 *caps = (u8 *)&adapter->caps;
3475 u32 *cap_field;
3476
3477 if (!caps)
3478 return false;
3479
3480 if (field == IDPF_BASE_CAPS)
3481 return false;
3482
3483 cap_field = (u32 *)(caps + field);
3484
3485 if (all)
3486 return (*cap_field & flag) == flag;
3487 else
3488 return !!(*cap_field & flag);
3489 }
3490
3491 /**
3492 * idpf_get_vport_id: Get vport id
3493 * @vport: virtual port structure
3494 *
3495 * Return vport id from the adapter persistent data
3496 */
idpf_get_vport_id(struct idpf_vport * vport)3497 u32 idpf_get_vport_id(struct idpf_vport *vport)
3498 {
3499 struct virtchnl2_create_vport *vport_msg;
3500
3501 vport_msg = vport->adapter->vport_params_recvd[vport->idx];
3502
3503 return le32_to_cpu(vport_msg->vport_id);
3504 }
3505
3506 /**
3507 * idpf_mac_filter_async_handler - Async callback for mac filters
3508 * @adapter: private data struct
3509 * @xn: transaction for message
3510 * @ctlq_msg: received message
3511 *
3512 * In some scenarios driver can't sleep and wait for a reply (e.g.: stack is
3513 * holding rtnl_lock) when adding a new mac filter. It puts us in a difficult
3514 * situation to deal with errors returned on the reply. The best we can
3515 * ultimately do is remove it from our list of mac filters and report the
3516 * error.
3517 */
idpf_mac_filter_async_handler(struct idpf_adapter * adapter,struct idpf_vc_xn * xn,const struct idpf_ctlq_msg * ctlq_msg)3518 static int idpf_mac_filter_async_handler(struct idpf_adapter *adapter,
3519 struct idpf_vc_xn *xn,
3520 const struct idpf_ctlq_msg *ctlq_msg)
3521 {
3522 struct virtchnl2_mac_addr_list *ma_list;
3523 struct idpf_vport_config *vport_config;
3524 struct virtchnl2_mac_addr *mac_addr;
3525 struct idpf_mac_filter *f, *tmp;
3526 struct list_head *ma_list_head;
3527 struct idpf_vport *vport;
3528 u16 num_entries;
3529 int i;
3530
3531 /* if success we're done, we're only here if something bad happened */
3532 if (!ctlq_msg->cookie.mbx.chnl_retval)
3533 return 0;
3534
3535 /* make sure at least struct is there */
3536 if (xn->reply_sz < sizeof(*ma_list))
3537 goto invalid_payload;
3538
3539 ma_list = ctlq_msg->ctx.indirect.payload->va;
3540 mac_addr = ma_list->mac_addr_list;
3541 num_entries = le16_to_cpu(ma_list->num_mac_addr);
3542 /* we should have received a buffer at least this big */
3543 if (xn->reply_sz < struct_size(ma_list, mac_addr_list, num_entries))
3544 goto invalid_payload;
3545
3546 vport = idpf_vid_to_vport(adapter, le32_to_cpu(ma_list->vport_id));
3547 if (!vport)
3548 goto invalid_payload;
3549
3550 vport_config = adapter->vport_config[le32_to_cpu(ma_list->vport_id)];
3551 ma_list_head = &vport_config->user_config.mac_filter_list;
3552
3553 /* We can't do much to reconcile bad filters at this point, however we
3554 * should at least remove them from our list one way or the other so we
3555 * have some idea what good filters we have.
3556 */
3557 spin_lock_bh(&vport_config->mac_filter_list_lock);
3558 list_for_each_entry_safe(f, tmp, ma_list_head, list)
3559 for (i = 0; i < num_entries; i++)
3560 if (ether_addr_equal(mac_addr[i].addr, f->macaddr))
3561 list_del(&f->list);
3562 spin_unlock_bh(&vport_config->mac_filter_list_lock);
3563 dev_err_ratelimited(&adapter->pdev->dev, "Received error sending MAC filter request (op %d)\n",
3564 xn->vc_op);
3565
3566 return 0;
3567
3568 invalid_payload:
3569 dev_err_ratelimited(&adapter->pdev->dev, "Received invalid MAC filter payload (op %d) (len %zd)\n",
3570 xn->vc_op, xn->reply_sz);
3571
3572 return -EINVAL;
3573 }
3574
3575 /**
3576 * idpf_add_del_mac_filters - Add/del mac filters
3577 * @vport: Virtual port data structure
3578 * @np: Netdev private structure
3579 * @add: Add or delete flag
3580 * @async: Don't wait for return message
3581 *
3582 * Returns 0 on success, error on failure.
3583 **/
idpf_add_del_mac_filters(struct idpf_vport * vport,struct idpf_netdev_priv * np,bool add,bool async)3584 int idpf_add_del_mac_filters(struct idpf_vport *vport,
3585 struct idpf_netdev_priv *np,
3586 bool add, bool async)
3587 {
3588 struct virtchnl2_mac_addr_list *ma_list __free(kfree) = NULL;
3589 struct virtchnl2_mac_addr *mac_addr __free(kfree) = NULL;
3590 struct idpf_adapter *adapter = np->adapter;
3591 struct idpf_vc_xn_params xn_params = {};
3592 struct idpf_vport_config *vport_config;
3593 u32 num_msgs, total_filters = 0;
3594 struct idpf_mac_filter *f;
3595 ssize_t reply_sz;
3596 int i = 0, k;
3597
3598 xn_params.vc_op = add ? VIRTCHNL2_OP_ADD_MAC_ADDR :
3599 VIRTCHNL2_OP_DEL_MAC_ADDR;
3600 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
3601 xn_params.async = async;
3602 xn_params.async_handler = idpf_mac_filter_async_handler;
3603
3604 vport_config = adapter->vport_config[np->vport_idx];
3605 spin_lock_bh(&vport_config->mac_filter_list_lock);
3606
3607 /* Find the number of newly added filters */
3608 list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
3609 list) {
3610 if (add && f->add)
3611 total_filters++;
3612 else if (!add && f->remove)
3613 total_filters++;
3614 }
3615
3616 if (!total_filters) {
3617 spin_unlock_bh(&vport_config->mac_filter_list_lock);
3618
3619 return 0;
3620 }
3621
3622 /* Fill all the new filters into virtchannel message */
3623 mac_addr = kcalloc(total_filters, sizeof(struct virtchnl2_mac_addr),
3624 GFP_ATOMIC);
3625 if (!mac_addr) {
3626 spin_unlock_bh(&vport_config->mac_filter_list_lock);
3627
3628 return -ENOMEM;
3629 }
3630
3631 list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
3632 list) {
3633 if (add && f->add) {
3634 ether_addr_copy(mac_addr[i].addr, f->macaddr);
3635 i++;
3636 f->add = false;
3637 if (i == total_filters)
3638 break;
3639 }
3640 if (!add && f->remove) {
3641 ether_addr_copy(mac_addr[i].addr, f->macaddr);
3642 i++;
3643 f->remove = false;
3644 if (i == total_filters)
3645 break;
3646 }
3647 }
3648
3649 spin_unlock_bh(&vport_config->mac_filter_list_lock);
3650
3651 /* Chunk up the filters into multiple messages to avoid
3652 * sending a control queue message buffer that is too large
3653 */
3654 num_msgs = DIV_ROUND_UP(total_filters, IDPF_NUM_FILTERS_PER_MSG);
3655
3656 for (i = 0, k = 0; i < num_msgs; i++) {
3657 u32 entries_size, buf_size, num_entries;
3658
3659 num_entries = min_t(u32, total_filters,
3660 IDPF_NUM_FILTERS_PER_MSG);
3661 entries_size = sizeof(struct virtchnl2_mac_addr) * num_entries;
3662 buf_size = struct_size(ma_list, mac_addr_list, num_entries);
3663
3664 if (!ma_list || num_entries != IDPF_NUM_FILTERS_PER_MSG) {
3665 kfree(ma_list);
3666 ma_list = kzalloc(buf_size, GFP_ATOMIC);
3667 if (!ma_list)
3668 return -ENOMEM;
3669 } else {
3670 memset(ma_list, 0, buf_size);
3671 }
3672
3673 ma_list->vport_id = cpu_to_le32(np->vport_id);
3674 ma_list->num_mac_addr = cpu_to_le16(num_entries);
3675 memcpy(ma_list->mac_addr_list, &mac_addr[k], entries_size);
3676
3677 xn_params.send_buf.iov_base = ma_list;
3678 xn_params.send_buf.iov_len = buf_size;
3679 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
3680 if (reply_sz < 0)
3681 return reply_sz;
3682
3683 k += num_entries;
3684 total_filters -= num_entries;
3685 }
3686
3687 return 0;
3688 }
3689
3690 /**
3691 * idpf_set_promiscuous - set promiscuous and send message to mailbox
3692 * @adapter: Driver specific private structure
3693 * @config_data: Vport specific config data
3694 * @vport_id: Vport identifier
3695 *
3696 * Request to enable promiscuous mode for the vport. Message is sent
3697 * asynchronously and won't wait for response. Returns 0 on success, negative
3698 * on failure;
3699 */
idpf_set_promiscuous(struct idpf_adapter * adapter,struct idpf_vport_user_config_data * config_data,u32 vport_id)3700 int idpf_set_promiscuous(struct idpf_adapter *adapter,
3701 struct idpf_vport_user_config_data *config_data,
3702 u32 vport_id)
3703 {
3704 struct idpf_vc_xn_params xn_params = {};
3705 struct virtchnl2_promisc_info vpi;
3706 ssize_t reply_sz;
3707 u16 flags = 0;
3708
3709 if (test_bit(__IDPF_PROMISC_UC, config_data->user_flags))
3710 flags |= VIRTCHNL2_UNICAST_PROMISC;
3711 if (test_bit(__IDPF_PROMISC_MC, config_data->user_flags))
3712 flags |= VIRTCHNL2_MULTICAST_PROMISC;
3713
3714 vpi.vport_id = cpu_to_le32(vport_id);
3715 vpi.flags = cpu_to_le16(flags);
3716
3717 xn_params.vc_op = VIRTCHNL2_OP_CONFIG_PROMISCUOUS_MODE;
3718 xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
3719 xn_params.send_buf.iov_base = &vpi;
3720 xn_params.send_buf.iov_len = sizeof(vpi);
3721 /* setting promiscuous is only ever done asynchronously */
3722 xn_params.async = true;
3723 reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
3724
3725 return reply_sz < 0 ? reply_sz : 0;
3726 }
3727