1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <stdio.h>
6 #include <string.h>
7 #include <linux/capability.h>
8 #include <linux/kernel.h>
9 #include <linux/mman.h>
10 #include <linux/string.h>
11 #include <linux/time64.h>
12 #include <sys/types.h>
13 #include <sys/stat.h>
14 #include <sys/param.h>
15 #include <fcntl.h>
16 #include <unistd.h>
17 #include <inttypes.h>
18 #include "annotate.h"
19 #include "build-id.h"
20 #include "cap.h"
21 #include "cpumap.h"
22 #include "debug.h"
23 #include "demangle-cxx.h"
24 #include "demangle-java.h"
25 #include "demangle-ocaml.h"
26 #include "demangle-rust-v0.h"
27 #include "dso.h"
28 #include "util.h" // lsdir()
29 #include "debug.h"
30 #include "event.h"
31 #include "machine.h"
32 #include "map.h"
33 #include "symbol.h"
34 #include "map_symbol.h"
35 #include "mem-events.h"
36 #include "mem-info.h"
37 #include "symsrc.h"
38 #include "strlist.h"
39 #include "intlist.h"
40 #include "namespaces.h"
41 #include "header.h"
42 #include "path.h"
43 #include <linux/ctype.h>
44 #include <linux/log2.h>
45 #include <linux/zalloc.h>
46
47 #include <elf.h>
48 #include <limits.h>
49 #include <symbol/kallsyms.h>
50 #include <sys/utsname.h>
51
52 static int dso__load_kernel_sym(struct dso *dso, struct map *map);
53 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map);
54 static bool symbol__is_idle(const char *name);
55
56 int vmlinux_path__nr_entries;
57 char **vmlinux_path;
58
59 struct symbol_conf symbol_conf = {
60 .nanosecs = false,
61 .use_modules = true,
62 .try_vmlinux_path = true,
63 .demangle = true,
64 .demangle_kernel = false,
65 .cumulate_callchain = true,
66 .time_quantum = 100 * NSEC_PER_MSEC, /* 100ms */
67 .show_hist_headers = true,
68 .symfs = "",
69 .event_group = true,
70 .inline_name = true,
71 .res_sample = 0,
72 };
73
74 struct map_list_node {
75 struct list_head node;
76 struct map *map;
77 };
78
map_list_node__new(void)79 static struct map_list_node *map_list_node__new(void)
80 {
81 return malloc(sizeof(struct map_list_node));
82 }
83
84 static enum dso_binary_type binary_type_symtab[] = {
85 DSO_BINARY_TYPE__KALLSYMS,
86 DSO_BINARY_TYPE__GUEST_KALLSYMS,
87 DSO_BINARY_TYPE__JAVA_JIT,
88 DSO_BINARY_TYPE__DEBUGLINK,
89 DSO_BINARY_TYPE__BUILD_ID_CACHE,
90 DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO,
91 DSO_BINARY_TYPE__FEDORA_DEBUGINFO,
92 DSO_BINARY_TYPE__UBUNTU_DEBUGINFO,
93 DSO_BINARY_TYPE__BUILDID_DEBUGINFO,
94 DSO_BINARY_TYPE__GNU_DEBUGDATA,
95 DSO_BINARY_TYPE__SYSTEM_PATH_DSO,
96 DSO_BINARY_TYPE__GUEST_KMODULE,
97 DSO_BINARY_TYPE__GUEST_KMODULE_COMP,
98 DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE,
99 DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP,
100 DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO,
101 DSO_BINARY_TYPE__MIXEDUP_UBUNTU_DEBUGINFO,
102 DSO_BINARY_TYPE__NOT_FOUND,
103 };
104
105 #define DSO_BINARY_TYPE__SYMTAB_CNT ARRAY_SIZE(binary_type_symtab)
106
symbol_type__filter(char __symbol_type)107 static bool symbol_type__filter(char __symbol_type)
108 {
109 // Since 'U' == undefined and 'u' == unique global symbol, we can't use toupper there
110 // 'N' is for debugging symbols, 'n' is a non-data, non-code, non-debug read-only section.
111 // According to 'man nm'.
112 // 'N' first seen in:
113 // ffffffff9b35d130 N __pfx__RNCINvNtNtNtCsbDUBuN8AbD4_4core4iter8adapters3map12map_try_foldjNtCs6vVzKs5jPr6_12drm_panic_qr7VersionuINtNtNtBa_3ops12control_flow11ControlFlowB10_ENcB10_0NCINvNvNtNtNtB8_6traits8iterator8Iterator4find5checkB10_NCNvMB12_B10_13from_segments0E0E0B12_
114 // a seemingly Rust mangled name
115 char symbol_type = toupper(__symbol_type);
116 return symbol_type == 'T' || symbol_type == 'W' || symbol_type == 'D' || symbol_type == 'B' ||
117 __symbol_type == 'u' || __symbol_type == 'l' || __symbol_type == 'N';
118 }
119
prefix_underscores_count(const char * str)120 static int prefix_underscores_count(const char *str)
121 {
122 const char *tail = str;
123
124 while (*tail == '_')
125 tail++;
126
127 return tail - str;
128 }
129
arch__normalize_symbol_name(const char * name)130 const char * __weak arch__normalize_symbol_name(const char *name)
131 {
132 return name;
133 }
134
arch__compare_symbol_names(const char * namea,const char * nameb)135 int __weak arch__compare_symbol_names(const char *namea, const char *nameb)
136 {
137 return strcmp(namea, nameb);
138 }
139
arch__compare_symbol_names_n(const char * namea,const char * nameb,unsigned int n)140 int __weak arch__compare_symbol_names_n(const char *namea, const char *nameb,
141 unsigned int n)
142 {
143 return strncmp(namea, nameb, n);
144 }
145
arch__choose_best_symbol(struct symbol * syma,struct symbol * symb __maybe_unused)146 int __weak arch__choose_best_symbol(struct symbol *syma,
147 struct symbol *symb __maybe_unused)
148 {
149 /* Avoid "SyS" kernel syscall aliases */
150 if (strlen(syma->name) >= 3 && !strncmp(syma->name, "SyS", 3))
151 return SYMBOL_B;
152 if (strlen(syma->name) >= 10 && !strncmp(syma->name, "compat_SyS", 10))
153 return SYMBOL_B;
154
155 return SYMBOL_A;
156 }
157
choose_best_symbol(struct symbol * syma,struct symbol * symb)158 static int choose_best_symbol(struct symbol *syma, struct symbol *symb)
159 {
160 s64 a;
161 s64 b;
162 size_t na, nb;
163
164 /* Prefer a symbol with non zero length */
165 a = syma->end - syma->start;
166 b = symb->end - symb->start;
167 if ((b == 0) && (a > 0))
168 return SYMBOL_A;
169 else if ((a == 0) && (b > 0))
170 return SYMBOL_B;
171
172 if (syma->type != symb->type) {
173 if (syma->type == STT_NOTYPE)
174 return SYMBOL_B;
175 if (symb->type == STT_NOTYPE)
176 return SYMBOL_A;
177 }
178
179 /* Prefer a non weak symbol over a weak one */
180 a = syma->binding == STB_WEAK;
181 b = symb->binding == STB_WEAK;
182 if (b && !a)
183 return SYMBOL_A;
184 if (a && !b)
185 return SYMBOL_B;
186
187 /* Prefer a global symbol over a non global one */
188 a = syma->binding == STB_GLOBAL;
189 b = symb->binding == STB_GLOBAL;
190 if (a && !b)
191 return SYMBOL_A;
192 if (b && !a)
193 return SYMBOL_B;
194
195 /* Prefer a symbol with less underscores */
196 a = prefix_underscores_count(syma->name);
197 b = prefix_underscores_count(symb->name);
198 if (b > a)
199 return SYMBOL_A;
200 else if (a > b)
201 return SYMBOL_B;
202
203 /* Choose the symbol with the longest name */
204 na = strlen(syma->name);
205 nb = strlen(symb->name);
206 if (na > nb)
207 return SYMBOL_A;
208 else if (na < nb)
209 return SYMBOL_B;
210
211 return arch__choose_best_symbol(syma, symb);
212 }
213
symbols__fixup_duplicate(struct rb_root_cached * symbols)214 void symbols__fixup_duplicate(struct rb_root_cached *symbols)
215 {
216 struct rb_node *nd;
217 struct symbol *curr, *next;
218
219 if (symbol_conf.allow_aliases)
220 return;
221
222 nd = rb_first_cached(symbols);
223
224 while (nd) {
225 curr = rb_entry(nd, struct symbol, rb_node);
226 again:
227 nd = rb_next(&curr->rb_node);
228 if (!nd)
229 break;
230
231 next = rb_entry(nd, struct symbol, rb_node);
232 if (curr->start != next->start)
233 continue;
234
235 if (choose_best_symbol(curr, next) == SYMBOL_A) {
236 if (next->type == STT_GNU_IFUNC)
237 curr->ifunc_alias = true;
238 rb_erase_cached(&next->rb_node, symbols);
239 symbol__delete(next);
240 goto again;
241 } else {
242 if (curr->type == STT_GNU_IFUNC)
243 next->ifunc_alias = true;
244 nd = rb_next(&curr->rb_node);
245 rb_erase_cached(&curr->rb_node, symbols);
246 symbol__delete(curr);
247 }
248 }
249 }
250
251 /* Update zero-sized symbols using the address of the next symbol */
symbols__fixup_end(struct rb_root_cached * symbols,bool is_kallsyms)252 void symbols__fixup_end(struct rb_root_cached *symbols, bool is_kallsyms)
253 {
254 struct rb_node *nd, *prevnd = rb_first_cached(symbols);
255 struct symbol *curr, *prev;
256
257 if (prevnd == NULL)
258 return;
259
260 curr = rb_entry(prevnd, struct symbol, rb_node);
261
262 for (nd = rb_next(prevnd); nd; nd = rb_next(nd)) {
263 prev = curr;
264 curr = rb_entry(nd, struct symbol, rb_node);
265
266 /*
267 * On some architecture kernel text segment start is located at
268 * some low memory address, while modules are located at high
269 * memory addresses (or vice versa). The gap between end of
270 * kernel text segment and beginning of first module's text
271 * segment is very big. Therefore do not fill this gap and do
272 * not assign it to the kernel dso map (kallsyms).
273 *
274 * Also BPF code can be allocated separately from text segments
275 * and modules. So the last entry in a module should not fill
276 * the gap too.
277 *
278 * In kallsyms, it determines module symbols using '[' character
279 * like in:
280 * ffffffffc1937000 T hdmi_driver_init [snd_hda_codec_hdmi]
281 */
282 if (prev->end == prev->start) {
283 const char *prev_mod;
284 const char *curr_mod;
285
286 if (!is_kallsyms) {
287 prev->end = curr->start;
288 continue;
289 }
290
291 prev_mod = strchr(prev->name, '[');
292 curr_mod = strchr(curr->name, '[');
293
294 /* Last kernel/module symbol mapped to end of page */
295 if (!prev_mod != !curr_mod)
296 prev->end = roundup(prev->end + 4096, 4096);
297 /* Last symbol in the previous module */
298 else if (prev_mod && strcmp(prev_mod, curr_mod))
299 prev->end = roundup(prev->end + 4096, 4096);
300 else
301 prev->end = curr->start;
302
303 pr_debug4("%s sym:%s end:%#" PRIx64 "\n",
304 __func__, prev->name, prev->end);
305 }
306 }
307
308 /* Last entry */
309 if (curr->end == curr->start)
310 curr->end = roundup(curr->start, 4096) + 4096;
311 }
312
symbol__new(u64 start,u64 len,u8 binding,u8 type,const char * name)313 struct symbol *symbol__new(u64 start, u64 len, u8 binding, u8 type, const char *name)
314 {
315 size_t namelen = strlen(name) + 1;
316 struct symbol *sym = calloc(1, (symbol_conf.priv_size +
317 sizeof(*sym) + namelen));
318 if (sym == NULL)
319 return NULL;
320
321 if (symbol_conf.priv_size) {
322 if (symbol_conf.init_annotation) {
323 struct annotation *notes = (void *)sym;
324 annotation__init(notes);
325 }
326 sym = ((void *)sym) + symbol_conf.priv_size;
327 }
328
329 sym->start = start;
330 sym->end = len ? start + len : start;
331 sym->type = type;
332 sym->binding = binding;
333 sym->namelen = namelen - 1;
334
335 pr_debug4("%s: %s %#" PRIx64 "-%#" PRIx64 "\n",
336 __func__, name, start, sym->end);
337 memcpy(sym->name, name, namelen);
338
339 return sym;
340 }
341
symbol__delete(struct symbol * sym)342 void symbol__delete(struct symbol *sym)
343 {
344 if (symbol_conf.priv_size) {
345 if (symbol_conf.init_annotation) {
346 struct annotation *notes = symbol__annotation(sym);
347
348 annotation__exit(notes);
349 }
350 }
351 free(((void *)sym) - symbol_conf.priv_size);
352 }
353
symbols__delete(struct rb_root_cached * symbols)354 void symbols__delete(struct rb_root_cached *symbols)
355 {
356 struct symbol *pos;
357 struct rb_node *next = rb_first_cached(symbols);
358
359 while (next) {
360 pos = rb_entry(next, struct symbol, rb_node);
361 next = rb_next(&pos->rb_node);
362 rb_erase_cached(&pos->rb_node, symbols);
363 symbol__delete(pos);
364 }
365 }
366
__symbols__insert(struct rb_root_cached * symbols,struct symbol * sym,bool kernel)367 void __symbols__insert(struct rb_root_cached *symbols,
368 struct symbol *sym, bool kernel)
369 {
370 struct rb_node **p = &symbols->rb_root.rb_node;
371 struct rb_node *parent = NULL;
372 const u64 ip = sym->start;
373 struct symbol *s;
374 bool leftmost = true;
375
376 if (kernel) {
377 const char *name = sym->name;
378 /*
379 * ppc64 uses function descriptors and appends a '.' to the
380 * start of every instruction address. Remove it.
381 */
382 if (name[0] == '.')
383 name++;
384 sym->idle = symbol__is_idle(name);
385 }
386
387 while (*p != NULL) {
388 parent = *p;
389 s = rb_entry(parent, struct symbol, rb_node);
390 if (ip < s->start)
391 p = &(*p)->rb_left;
392 else {
393 p = &(*p)->rb_right;
394 leftmost = false;
395 }
396 }
397 rb_link_node(&sym->rb_node, parent, p);
398 rb_insert_color_cached(&sym->rb_node, symbols, leftmost);
399 }
400
symbols__insert(struct rb_root_cached * symbols,struct symbol * sym)401 void symbols__insert(struct rb_root_cached *symbols, struct symbol *sym)
402 {
403 __symbols__insert(symbols, sym, false);
404 }
405
symbols__find(struct rb_root_cached * symbols,u64 ip)406 static struct symbol *symbols__find(struct rb_root_cached *symbols, u64 ip)
407 {
408 struct rb_node *n;
409
410 if (symbols == NULL)
411 return NULL;
412
413 n = symbols->rb_root.rb_node;
414
415 while (n) {
416 struct symbol *s = rb_entry(n, struct symbol, rb_node);
417
418 if (ip < s->start)
419 n = n->rb_left;
420 else if (ip > s->end || (ip == s->end && ip != s->start))
421 n = n->rb_right;
422 else
423 return s;
424 }
425
426 return NULL;
427 }
428
symbols__first(struct rb_root_cached * symbols)429 static struct symbol *symbols__first(struct rb_root_cached *symbols)
430 {
431 struct rb_node *n = rb_first_cached(symbols);
432
433 if (n)
434 return rb_entry(n, struct symbol, rb_node);
435
436 return NULL;
437 }
438
symbols__last(struct rb_root_cached * symbols)439 static struct symbol *symbols__last(struct rb_root_cached *symbols)
440 {
441 struct rb_node *n = rb_last(&symbols->rb_root);
442
443 if (n)
444 return rb_entry(n, struct symbol, rb_node);
445
446 return NULL;
447 }
448
symbols__next(struct symbol * sym)449 static struct symbol *symbols__next(struct symbol *sym)
450 {
451 struct rb_node *n = rb_next(&sym->rb_node);
452
453 if (n)
454 return rb_entry(n, struct symbol, rb_node);
455
456 return NULL;
457 }
458
symbols__sort_name_cmp(const void * vlhs,const void * vrhs)459 static int symbols__sort_name_cmp(const void *vlhs, const void *vrhs)
460 {
461 const struct symbol *lhs = *((const struct symbol **)vlhs);
462 const struct symbol *rhs = *((const struct symbol **)vrhs);
463
464 return strcmp(lhs->name, rhs->name);
465 }
466
symbols__sort_by_name(struct rb_root_cached * source,size_t * len)467 static struct symbol **symbols__sort_by_name(struct rb_root_cached *source, size_t *len)
468 {
469 struct rb_node *nd;
470 struct symbol **result;
471 size_t i = 0, size = 0;
472
473 for (nd = rb_first_cached(source); nd; nd = rb_next(nd))
474 size++;
475
476 result = malloc(sizeof(*result) * size);
477 if (!result)
478 return NULL;
479
480 for (nd = rb_first_cached(source); nd; nd = rb_next(nd)) {
481 struct symbol *pos = rb_entry(nd, struct symbol, rb_node);
482
483 result[i++] = pos;
484 }
485 qsort(result, size, sizeof(*result), symbols__sort_name_cmp);
486 *len = size;
487 return result;
488 }
489
symbol__match_symbol_name(const char * name,const char * str,enum symbol_tag_include includes)490 int symbol__match_symbol_name(const char *name, const char *str,
491 enum symbol_tag_include includes)
492 {
493 const char *versioning;
494
495 if (includes == SYMBOL_TAG_INCLUDE__DEFAULT_ONLY &&
496 (versioning = strstr(name, "@@"))) {
497 int len = strlen(str);
498
499 if (len < versioning - name)
500 len = versioning - name;
501
502 return arch__compare_symbol_names_n(name, str, len);
503 } else
504 return arch__compare_symbol_names(name, str);
505 }
506
symbols__find_by_name(struct symbol * symbols[],size_t symbols_len,const char * name,enum symbol_tag_include includes,size_t * found_idx)507 static struct symbol *symbols__find_by_name(struct symbol *symbols[],
508 size_t symbols_len,
509 const char *name,
510 enum symbol_tag_include includes,
511 size_t *found_idx)
512 {
513 size_t i, lower = 0, upper = symbols_len;
514 struct symbol *s = NULL;
515
516 if (found_idx)
517 *found_idx = SIZE_MAX;
518
519 if (!symbols_len)
520 return NULL;
521
522 while (lower < upper) {
523 int cmp;
524
525 i = (lower + upper) / 2;
526 cmp = symbol__match_symbol_name(symbols[i]->name, name, includes);
527
528 if (cmp > 0)
529 upper = i;
530 else if (cmp < 0)
531 lower = i + 1;
532 else {
533 if (found_idx)
534 *found_idx = i;
535 s = symbols[i];
536 break;
537 }
538 }
539 if (s && includes != SYMBOL_TAG_INCLUDE__DEFAULT_ONLY) {
540 /* return first symbol that has same name (if any) */
541 for (; i > 0; i--) {
542 struct symbol *tmp = symbols[i - 1];
543
544 if (!arch__compare_symbol_names(tmp->name, s->name)) {
545 if (found_idx)
546 *found_idx = i - 1;
547 s = tmp;
548 } else
549 break;
550 }
551 }
552 assert(!found_idx || !s || s == symbols[*found_idx]);
553 return s;
554 }
555
dso__reset_find_symbol_cache(struct dso * dso)556 void dso__reset_find_symbol_cache(struct dso *dso)
557 {
558 dso__set_last_find_result_addr(dso, 0);
559 dso__set_last_find_result_symbol(dso, NULL);
560 }
561
dso__insert_symbol(struct dso * dso,struct symbol * sym)562 void dso__insert_symbol(struct dso *dso, struct symbol *sym)
563 {
564 __symbols__insert(dso__symbols(dso), sym, dso__kernel(dso));
565
566 /* update the symbol cache if necessary */
567 if (dso__last_find_result_addr(dso) >= sym->start &&
568 (dso__last_find_result_addr(dso) < sym->end ||
569 sym->start == sym->end)) {
570 dso__set_last_find_result_symbol(dso, sym);
571 }
572 }
573
dso__delete_symbol(struct dso * dso,struct symbol * sym)574 void dso__delete_symbol(struct dso *dso, struct symbol *sym)
575 {
576 rb_erase_cached(&sym->rb_node, dso__symbols(dso));
577 symbol__delete(sym);
578 dso__reset_find_symbol_cache(dso);
579 }
580
dso__find_symbol(struct dso * dso,u64 addr)581 struct symbol *dso__find_symbol(struct dso *dso, u64 addr)
582 {
583 if (dso__last_find_result_addr(dso) != addr || dso__last_find_result_symbol(dso) == NULL) {
584 dso__set_last_find_result_addr(dso, addr);
585 dso__set_last_find_result_symbol(dso, symbols__find(dso__symbols(dso), addr));
586 }
587
588 return dso__last_find_result_symbol(dso);
589 }
590
dso__find_symbol_nocache(struct dso * dso,u64 addr)591 struct symbol *dso__find_symbol_nocache(struct dso *dso, u64 addr)
592 {
593 return symbols__find(dso__symbols(dso), addr);
594 }
595
dso__first_symbol(struct dso * dso)596 struct symbol *dso__first_symbol(struct dso *dso)
597 {
598 return symbols__first(dso__symbols(dso));
599 }
600
dso__last_symbol(struct dso * dso)601 struct symbol *dso__last_symbol(struct dso *dso)
602 {
603 return symbols__last(dso__symbols(dso));
604 }
605
dso__next_symbol(struct symbol * sym)606 struct symbol *dso__next_symbol(struct symbol *sym)
607 {
608 return symbols__next(sym);
609 }
610
dso__next_symbol_by_name(struct dso * dso,size_t * idx)611 struct symbol *dso__next_symbol_by_name(struct dso *dso, size_t *idx)
612 {
613 if (*idx + 1 >= dso__symbol_names_len(dso))
614 return NULL;
615
616 ++*idx;
617 return dso__symbol_names(dso)[*idx];
618 }
619
620 /*
621 * Returns first symbol that matched with @name.
622 */
dso__find_symbol_by_name(struct dso * dso,const char * name,size_t * idx)623 struct symbol *dso__find_symbol_by_name(struct dso *dso, const char *name, size_t *idx)
624 {
625 struct symbol *s = symbols__find_by_name(dso__symbol_names(dso),
626 dso__symbol_names_len(dso),
627 name, SYMBOL_TAG_INCLUDE__NONE, idx);
628 if (!s) {
629 s = symbols__find_by_name(dso__symbol_names(dso), dso__symbol_names_len(dso),
630 name, SYMBOL_TAG_INCLUDE__DEFAULT_ONLY, idx);
631 }
632 return s;
633 }
634
dso__sort_by_name(struct dso * dso)635 void dso__sort_by_name(struct dso *dso)
636 {
637 mutex_lock(dso__lock(dso));
638 if (!dso__sorted_by_name(dso)) {
639 size_t len = 0;
640
641 dso__set_symbol_names(dso, symbols__sort_by_name(dso__symbols(dso), &len));
642 if (dso__symbol_names(dso)) {
643 dso__set_symbol_names_len(dso, len);
644 dso__set_sorted_by_name(dso);
645 }
646 }
647 mutex_unlock(dso__lock(dso));
648 }
649
650 /*
651 * While we find nice hex chars, build a long_val.
652 * Return number of chars processed.
653 */
hex2u64(const char * ptr,u64 * long_val)654 static int hex2u64(const char *ptr, u64 *long_val)
655 {
656 char *p;
657
658 *long_val = strtoull(ptr, &p, 16);
659
660 return p - ptr;
661 }
662
663
modules__parse(const char * filename,void * arg,int (* process_module)(void * arg,const char * name,u64 start,u64 size))664 int modules__parse(const char *filename, void *arg,
665 int (*process_module)(void *arg, const char *name,
666 u64 start, u64 size))
667 {
668 char *line = NULL;
669 size_t n;
670 FILE *file;
671 int err = 0;
672
673 file = fopen(filename, "r");
674 if (file == NULL)
675 return -1;
676
677 while (1) {
678 char name[PATH_MAX];
679 u64 start, size;
680 char *sep, *endptr;
681 ssize_t line_len;
682
683 line_len = getline(&line, &n, file);
684 if (line_len < 0) {
685 if (feof(file))
686 break;
687 err = -1;
688 goto out;
689 }
690
691 if (!line) {
692 err = -1;
693 goto out;
694 }
695
696 line[--line_len] = '\0'; /* \n */
697
698 sep = strrchr(line, 'x');
699 if (sep == NULL)
700 continue;
701
702 hex2u64(sep + 1, &start);
703
704 sep = strchr(line, ' ');
705 if (sep == NULL)
706 continue;
707
708 *sep = '\0';
709
710 scnprintf(name, sizeof(name), "[%s]", line);
711
712 size = strtoul(sep + 1, &endptr, 0);
713 if (*endptr != ' ' && *endptr != '\t')
714 continue;
715
716 err = process_module(arg, name, start, size);
717 if (err)
718 break;
719 }
720 out:
721 free(line);
722 fclose(file);
723 return err;
724 }
725
726 /*
727 * These are symbols in the kernel image, so make sure that
728 * sym is from a kernel DSO.
729 */
symbol__is_idle(const char * name)730 static bool symbol__is_idle(const char *name)
731 {
732 const char * const idle_symbols[] = {
733 "acpi_idle_do_entry",
734 "acpi_processor_ffh_cstate_enter",
735 "arch_cpu_idle",
736 "cpu_idle",
737 "cpu_startup_entry",
738 "idle_cpu",
739 "intel_idle",
740 "intel_idle_ibrs",
741 "default_idle",
742 "native_safe_halt",
743 "enter_idle",
744 "exit_idle",
745 "mwait_idle",
746 "mwait_idle_with_hints",
747 "mwait_idle_with_hints.constprop.0",
748 "poll_idle",
749 "ppc64_runlatch_off",
750 "pseries_dedicated_idle_sleep",
751 "psw_idle",
752 "psw_idle_exit",
753 NULL
754 };
755 int i;
756 static struct strlist *idle_symbols_list;
757
758 if (idle_symbols_list)
759 return strlist__has_entry(idle_symbols_list, name);
760
761 idle_symbols_list = strlist__new(NULL, NULL);
762
763 for (i = 0; idle_symbols[i]; i++)
764 strlist__add(idle_symbols_list, idle_symbols[i]);
765
766 return strlist__has_entry(idle_symbols_list, name);
767 }
768
map__process_kallsym_symbol(void * arg,const char * name,char type,u64 start)769 static int map__process_kallsym_symbol(void *arg, const char *name,
770 char type, u64 start)
771 {
772 struct symbol *sym;
773 struct dso *dso = arg;
774 struct rb_root_cached *root = dso__symbols(dso);
775
776 if (!symbol_type__filter(type))
777 return 0;
778
779 /* Ignore local symbols for ARM modules */
780 if (name[0] == '$')
781 return 0;
782
783 /*
784 * module symbols are not sorted so we add all
785 * symbols, setting length to 0, and rely on
786 * symbols__fixup_end() to fix it up.
787 */
788 sym = symbol__new(start, 0, kallsyms2elf_binding(type), kallsyms2elf_type(type), name);
789 if (sym == NULL)
790 return -ENOMEM;
791 /*
792 * We will pass the symbols to the filter later, in
793 * map__split_kallsyms, when we have split the maps per module
794 */
795 __symbols__insert(root, sym, !strchr(name, '['));
796
797 return 0;
798 }
799
800 /*
801 * Loads the function entries in /proc/kallsyms into kernel_map->dso,
802 * so that we can in the next step set the symbol ->end address and then
803 * call kernel_maps__split_kallsyms.
804 */
dso__load_all_kallsyms(struct dso * dso,const char * filename)805 static int dso__load_all_kallsyms(struct dso *dso, const char *filename)
806 {
807 return kallsyms__parse(filename, dso, map__process_kallsym_symbol);
808 }
809
maps__split_kallsyms_for_kcore(struct maps * kmaps,struct dso * dso)810 static int maps__split_kallsyms_for_kcore(struct maps *kmaps, struct dso *dso)
811 {
812 struct symbol *pos;
813 int count = 0;
814 struct rb_root_cached *root = dso__symbols(dso);
815 struct rb_root_cached old_root = *root;
816 struct rb_node *next = rb_first_cached(root);
817
818 if (!kmaps)
819 return -1;
820
821 *root = RB_ROOT_CACHED;
822
823 while (next) {
824 struct map *curr_map;
825 struct dso *curr_map_dso;
826 char *module;
827
828 pos = rb_entry(next, struct symbol, rb_node);
829 next = rb_next(&pos->rb_node);
830
831 rb_erase_cached(&pos->rb_node, &old_root);
832 RB_CLEAR_NODE(&pos->rb_node);
833 module = strchr(pos->name, '\t');
834 if (module)
835 *module = '\0';
836
837 curr_map = maps__find(kmaps, pos->start);
838
839 if (!curr_map) {
840 symbol__delete(pos);
841 continue;
842 }
843 curr_map_dso = map__dso(curr_map);
844 pos->start -= map__start(curr_map) - map__pgoff(curr_map);
845 if (pos->end > map__end(curr_map))
846 pos->end = map__end(curr_map);
847 if (pos->end)
848 pos->end -= map__start(curr_map) - map__pgoff(curr_map);
849 symbols__insert(dso__symbols(curr_map_dso), pos);
850 ++count;
851 map__put(curr_map);
852 }
853
854 /* Symbols have been adjusted */
855 dso__set_adjust_symbols(dso, true);
856
857 return count;
858 }
859
860 /*
861 * Split the symbols into maps, making sure there are no overlaps, i.e. the
862 * kernel range is broken in several maps, named [kernel].N, as we don't have
863 * the original ELF section names vmlinux have.
864 */
maps__split_kallsyms(struct maps * kmaps,struct dso * dso,u64 delta,struct map * initial_map)865 static int maps__split_kallsyms(struct maps *kmaps, struct dso *dso, u64 delta,
866 struct map *initial_map)
867 {
868 struct machine *machine;
869 struct map *curr_map = map__get(initial_map);
870 struct symbol *pos;
871 int count = 0, moved = 0;
872 struct rb_root_cached *root = dso__symbols(dso);
873 struct rb_node *next = rb_first_cached(root);
874 int kernel_range = 0;
875 bool x86_64;
876
877 if (!kmaps)
878 return -1;
879
880 machine = maps__machine(kmaps);
881
882 x86_64 = machine__is(machine, "x86_64");
883
884 while (next) {
885 char *module;
886
887 pos = rb_entry(next, struct symbol, rb_node);
888 next = rb_next(&pos->rb_node);
889
890 module = strchr(pos->name, '\t');
891 if (module) {
892 struct dso *curr_map_dso;
893
894 if (!symbol_conf.use_modules)
895 goto discard_symbol;
896
897 *module++ = '\0';
898 curr_map_dso = map__dso(curr_map);
899 if (strcmp(dso__short_name(curr_map_dso), module)) {
900 if (!RC_CHK_EQUAL(curr_map, initial_map) &&
901 dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST &&
902 machine__is_default_guest(machine)) {
903 /*
904 * We assume all symbols of a module are
905 * continuous in * kallsyms, so curr_map
906 * points to a module and all its
907 * symbols are in its kmap. Mark it as
908 * loaded.
909 */
910 dso__set_loaded(curr_map_dso);
911 }
912
913 map__zput(curr_map);
914 curr_map = maps__find_by_name(kmaps, module);
915 if (curr_map == NULL) {
916 pr_debug("%s/proc/{kallsyms,modules} "
917 "inconsistency while looking "
918 "for \"%s\" module!\n",
919 machine->root_dir, module);
920 curr_map = map__get(initial_map);
921 goto discard_symbol;
922 }
923 curr_map_dso = map__dso(curr_map);
924 if (dso__loaded(curr_map_dso) &&
925 !machine__is_default_guest(machine))
926 goto discard_symbol;
927 }
928 /*
929 * So that we look just like we get from .ko files,
930 * i.e. not prelinked, relative to initial_map->start.
931 */
932 pos->start = map__map_ip(curr_map, pos->start);
933 pos->end = map__map_ip(curr_map, pos->end);
934 } else if (x86_64 && is_entry_trampoline(pos->name)) {
935 /*
936 * These symbols are not needed anymore since the
937 * trampoline maps refer to the text section and it's
938 * symbols instead. Avoid having to deal with
939 * relocations, and the assumption that the first symbol
940 * is the start of kernel text, by simply removing the
941 * symbols at this point.
942 */
943 goto discard_symbol;
944 } else if (!RC_CHK_EQUAL(curr_map, initial_map)) {
945 char dso_name[PATH_MAX];
946 struct dso *ndso;
947
948 if (delta) {
949 /* Kernel was relocated at boot time */
950 pos->start -= delta;
951 pos->end -= delta;
952 }
953
954 if (count == 0) {
955 map__zput(curr_map);
956 curr_map = map__get(initial_map);
957 goto add_symbol;
958 }
959
960 if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST)
961 snprintf(dso_name, sizeof(dso_name),
962 "[guest.kernel].%d",
963 kernel_range++);
964 else
965 snprintf(dso_name, sizeof(dso_name),
966 "[kernel].%d",
967 kernel_range++);
968
969 ndso = dso__new(dso_name);
970 map__zput(curr_map);
971 if (ndso == NULL)
972 return -1;
973
974 dso__set_kernel(ndso, dso__kernel(dso));
975
976 curr_map = map__new2(pos->start, ndso);
977 if (curr_map == NULL) {
978 dso__put(ndso);
979 return -1;
980 }
981
982 map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY);
983 if (maps__insert(kmaps, curr_map)) {
984 map__zput(curr_map);
985 dso__put(ndso);
986 return -1;
987 }
988 ++kernel_range;
989 } else if (delta) {
990 /* Kernel was relocated at boot time */
991 pos->start -= delta;
992 pos->end -= delta;
993 }
994 add_symbol:
995 if (!RC_CHK_EQUAL(curr_map, initial_map)) {
996 struct dso *curr_map_dso = map__dso(curr_map);
997
998 rb_erase_cached(&pos->rb_node, root);
999 symbols__insert(dso__symbols(curr_map_dso), pos);
1000 ++moved;
1001 } else
1002 ++count;
1003
1004 continue;
1005 discard_symbol:
1006 rb_erase_cached(&pos->rb_node, root);
1007 symbol__delete(pos);
1008 }
1009
1010 if (!RC_CHK_EQUAL(curr_map, initial_map) &&
1011 dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST &&
1012 machine__is_default_guest(maps__machine(kmaps))) {
1013 dso__set_loaded(map__dso(curr_map));
1014 }
1015 map__put(curr_map);
1016 return count + moved;
1017 }
1018
symbol__restricted_filename(const char * filename,const char * restricted_filename)1019 bool symbol__restricted_filename(const char *filename,
1020 const char *restricted_filename)
1021 {
1022 bool restricted = false;
1023
1024 if (symbol_conf.kptr_restrict) {
1025 char *r = realpath(filename, NULL);
1026
1027 if (r != NULL) {
1028 restricted = strcmp(r, restricted_filename) == 0;
1029 free(r);
1030 return restricted;
1031 }
1032 }
1033
1034 return restricted;
1035 }
1036
1037 struct module_info {
1038 struct rb_node rb_node;
1039 char *name;
1040 u64 start;
1041 };
1042
add_module(struct module_info * mi,struct rb_root * modules)1043 static void add_module(struct module_info *mi, struct rb_root *modules)
1044 {
1045 struct rb_node **p = &modules->rb_node;
1046 struct rb_node *parent = NULL;
1047 struct module_info *m;
1048
1049 while (*p != NULL) {
1050 parent = *p;
1051 m = rb_entry(parent, struct module_info, rb_node);
1052 if (strcmp(mi->name, m->name) < 0)
1053 p = &(*p)->rb_left;
1054 else
1055 p = &(*p)->rb_right;
1056 }
1057 rb_link_node(&mi->rb_node, parent, p);
1058 rb_insert_color(&mi->rb_node, modules);
1059 }
1060
delete_modules(struct rb_root * modules)1061 static void delete_modules(struct rb_root *modules)
1062 {
1063 struct module_info *mi;
1064 struct rb_node *next = rb_first(modules);
1065
1066 while (next) {
1067 mi = rb_entry(next, struct module_info, rb_node);
1068 next = rb_next(&mi->rb_node);
1069 rb_erase(&mi->rb_node, modules);
1070 zfree(&mi->name);
1071 free(mi);
1072 }
1073 }
1074
find_module(const char * name,struct rb_root * modules)1075 static struct module_info *find_module(const char *name,
1076 struct rb_root *modules)
1077 {
1078 struct rb_node *n = modules->rb_node;
1079
1080 while (n) {
1081 struct module_info *m;
1082 int cmp;
1083
1084 m = rb_entry(n, struct module_info, rb_node);
1085 cmp = strcmp(name, m->name);
1086 if (cmp < 0)
1087 n = n->rb_left;
1088 else if (cmp > 0)
1089 n = n->rb_right;
1090 else
1091 return m;
1092 }
1093
1094 return NULL;
1095 }
1096
__read_proc_modules(void * arg,const char * name,u64 start,u64 size __maybe_unused)1097 static int __read_proc_modules(void *arg, const char *name, u64 start,
1098 u64 size __maybe_unused)
1099 {
1100 struct rb_root *modules = arg;
1101 struct module_info *mi;
1102
1103 mi = zalloc(sizeof(struct module_info));
1104 if (!mi)
1105 return -ENOMEM;
1106
1107 mi->name = strdup(name);
1108 mi->start = start;
1109
1110 if (!mi->name) {
1111 free(mi);
1112 return -ENOMEM;
1113 }
1114
1115 add_module(mi, modules);
1116
1117 return 0;
1118 }
1119
read_proc_modules(const char * filename,struct rb_root * modules)1120 static int read_proc_modules(const char *filename, struct rb_root *modules)
1121 {
1122 if (symbol__restricted_filename(filename, "/proc/modules"))
1123 return -1;
1124
1125 if (modules__parse(filename, modules, __read_proc_modules)) {
1126 delete_modules(modules);
1127 return -1;
1128 }
1129
1130 return 0;
1131 }
1132
compare_proc_modules(const char * from,const char * to)1133 int compare_proc_modules(const char *from, const char *to)
1134 {
1135 struct rb_root from_modules = RB_ROOT;
1136 struct rb_root to_modules = RB_ROOT;
1137 struct rb_node *from_node, *to_node;
1138 struct module_info *from_m, *to_m;
1139 int ret = -1;
1140
1141 if (read_proc_modules(from, &from_modules))
1142 return -1;
1143
1144 if (read_proc_modules(to, &to_modules))
1145 goto out_delete_from;
1146
1147 from_node = rb_first(&from_modules);
1148 to_node = rb_first(&to_modules);
1149 while (from_node) {
1150 if (!to_node)
1151 break;
1152
1153 from_m = rb_entry(from_node, struct module_info, rb_node);
1154 to_m = rb_entry(to_node, struct module_info, rb_node);
1155
1156 if (from_m->start != to_m->start ||
1157 strcmp(from_m->name, to_m->name))
1158 break;
1159
1160 from_node = rb_next(from_node);
1161 to_node = rb_next(to_node);
1162 }
1163
1164 if (!from_node && !to_node)
1165 ret = 0;
1166
1167 delete_modules(&to_modules);
1168 out_delete_from:
1169 delete_modules(&from_modules);
1170
1171 return ret;
1172 }
1173
do_validate_kcore_modules_cb(struct map * old_map,void * data)1174 static int do_validate_kcore_modules_cb(struct map *old_map, void *data)
1175 {
1176 struct rb_root *modules = data;
1177 struct module_info *mi;
1178 struct dso *dso;
1179
1180 if (!__map__is_kmodule(old_map))
1181 return 0;
1182
1183 dso = map__dso(old_map);
1184 /* Module must be in memory at the same address */
1185 mi = find_module(dso__short_name(dso), modules);
1186 if (!mi || mi->start != map__start(old_map))
1187 return -EINVAL;
1188
1189 return 0;
1190 }
1191
do_validate_kcore_modules(const char * filename,struct maps * kmaps)1192 static int do_validate_kcore_modules(const char *filename, struct maps *kmaps)
1193 {
1194 struct rb_root modules = RB_ROOT;
1195 int err;
1196
1197 err = read_proc_modules(filename, &modules);
1198 if (err)
1199 return err;
1200
1201 err = maps__for_each_map(kmaps, do_validate_kcore_modules_cb, &modules);
1202
1203 delete_modules(&modules);
1204 return err;
1205 }
1206
1207 /*
1208 * If kallsyms is referenced by name then we look for filename in the same
1209 * directory.
1210 */
filename_from_kallsyms_filename(char * filename,const char * base_name,const char * kallsyms_filename)1211 static bool filename_from_kallsyms_filename(char *filename,
1212 const char *base_name,
1213 const char *kallsyms_filename)
1214 {
1215 char *name;
1216
1217 strcpy(filename, kallsyms_filename);
1218 name = strrchr(filename, '/');
1219 if (!name)
1220 return false;
1221
1222 name += 1;
1223
1224 if (!strcmp(name, "kallsyms")) {
1225 strcpy(name, base_name);
1226 return true;
1227 }
1228
1229 return false;
1230 }
1231
validate_kcore_modules(const char * kallsyms_filename,struct map * map)1232 static int validate_kcore_modules(const char *kallsyms_filename,
1233 struct map *map)
1234 {
1235 struct maps *kmaps = map__kmaps(map);
1236 char modules_filename[PATH_MAX];
1237
1238 if (!kmaps)
1239 return -EINVAL;
1240
1241 if (!filename_from_kallsyms_filename(modules_filename, "modules",
1242 kallsyms_filename))
1243 return -EINVAL;
1244
1245 if (do_validate_kcore_modules(modules_filename, kmaps))
1246 return -EINVAL;
1247
1248 return 0;
1249 }
1250
validate_kcore_addresses(const char * kallsyms_filename,struct map * map)1251 static int validate_kcore_addresses(const char *kallsyms_filename,
1252 struct map *map)
1253 {
1254 struct kmap *kmap = map__kmap(map);
1255
1256 if (!kmap)
1257 return -EINVAL;
1258
1259 if (kmap->ref_reloc_sym && kmap->ref_reloc_sym->name) {
1260 u64 start;
1261
1262 if (kallsyms__get_function_start(kallsyms_filename,
1263 kmap->ref_reloc_sym->name, &start))
1264 return -ENOENT;
1265 if (start != kmap->ref_reloc_sym->addr)
1266 return -EINVAL;
1267 }
1268
1269 return validate_kcore_modules(kallsyms_filename, map);
1270 }
1271
1272 struct kcore_mapfn_data {
1273 struct dso *dso;
1274 struct list_head maps;
1275 };
1276
kcore_mapfn(u64 start,u64 len,u64 pgoff,void * data)1277 static int kcore_mapfn(u64 start, u64 len, u64 pgoff, void *data)
1278 {
1279 struct kcore_mapfn_data *md = data;
1280 struct map_list_node *list_node = map_list_node__new();
1281
1282 if (!list_node)
1283 return -ENOMEM;
1284
1285 list_node->map = map__new2(start, md->dso);
1286 if (!list_node->map) {
1287 free(list_node);
1288 return -ENOMEM;
1289 }
1290
1291 map__set_end(list_node->map, map__start(list_node->map) + len);
1292 map__set_pgoff(list_node->map, pgoff);
1293
1294 list_add(&list_node->node, &md->maps);
1295
1296 return 0;
1297 }
1298
remove_old_maps(struct map * map,void * data)1299 static bool remove_old_maps(struct map *map, void *data)
1300 {
1301 const struct map *map_to_save = data;
1302
1303 /*
1304 * We need to preserve eBPF maps even if they are covered by kcore,
1305 * because we need to access eBPF dso for source data.
1306 */
1307 return !RC_CHK_EQUAL(map, map_to_save) && !__map__is_bpf_prog(map);
1308 }
1309
dso__load_kcore(struct dso * dso,struct map * map,const char * kallsyms_filename)1310 static int dso__load_kcore(struct dso *dso, struct map *map,
1311 const char *kallsyms_filename)
1312 {
1313 struct maps *kmaps = map__kmaps(map);
1314 struct kcore_mapfn_data md;
1315 struct map *map_ref, *replacement_map = NULL;
1316 struct machine *machine;
1317 bool is_64_bit;
1318 int err, fd;
1319 char kcore_filename[PATH_MAX];
1320 u64 stext;
1321
1322 if (!kmaps)
1323 return -EINVAL;
1324
1325 machine = maps__machine(kmaps);
1326
1327 /* This function requires that the map is the kernel map */
1328 if (!__map__is_kernel(map))
1329 return -EINVAL;
1330
1331 if (!filename_from_kallsyms_filename(kcore_filename, "kcore",
1332 kallsyms_filename))
1333 return -EINVAL;
1334
1335 /* Modules and kernel must be present at their original addresses */
1336 if (validate_kcore_addresses(kallsyms_filename, map))
1337 return -EINVAL;
1338
1339 md.dso = dso;
1340 INIT_LIST_HEAD(&md.maps);
1341
1342 fd = open(kcore_filename, O_RDONLY);
1343 if (fd < 0) {
1344 pr_debug("Failed to open %s. Note /proc/kcore requires CAP_SYS_RAWIO capability to access.\n",
1345 kcore_filename);
1346 return -EINVAL;
1347 }
1348
1349 /* Read new maps into temporary lists */
1350 err = file__read_maps(fd, map__prot(map) & PROT_EXEC, kcore_mapfn, &md,
1351 &is_64_bit);
1352 if (err)
1353 goto out_err;
1354 dso__set_is_64_bit(dso, is_64_bit);
1355
1356 if (list_empty(&md.maps)) {
1357 err = -EINVAL;
1358 goto out_err;
1359 }
1360
1361 /* Remove old maps */
1362 maps__remove_maps(kmaps, remove_old_maps, map);
1363 machine->trampolines_mapped = false;
1364
1365 /* Find the kernel map using the '_stext' symbol */
1366 if (!kallsyms__get_function_start(kallsyms_filename, "_stext", &stext)) {
1367 u64 replacement_size = 0;
1368 struct map_list_node *new_node;
1369
1370 list_for_each_entry(new_node, &md.maps, node) {
1371 struct map *new_map = new_node->map;
1372 u64 new_size = map__size(new_map);
1373
1374 if (!(stext >= map__start(new_map) && stext < map__end(new_map)))
1375 continue;
1376
1377 /*
1378 * On some architectures, ARM64 for example, the kernel
1379 * text can get allocated inside of the vmalloc segment.
1380 * Select the smallest matching segment, in case stext
1381 * falls within more than one in the list.
1382 */
1383 if (!replacement_map || new_size < replacement_size) {
1384 replacement_map = new_map;
1385 replacement_size = new_size;
1386 }
1387 }
1388 }
1389
1390 if (!replacement_map)
1391 replacement_map = list_entry(md.maps.next, struct map_list_node, node)->map;
1392
1393 /*
1394 * Update addresses of vmlinux map. Re-insert it to ensure maps are
1395 * correctly ordered. Do this before using maps__merge_in() for the
1396 * remaining maps so vmlinux gets split if necessary.
1397 */
1398 map_ref = map__get(map);
1399 maps__remove(kmaps, map_ref);
1400
1401 map__set_start(map_ref, map__start(replacement_map));
1402 map__set_end(map_ref, map__end(replacement_map));
1403 map__set_pgoff(map_ref, map__pgoff(replacement_map));
1404 map__set_mapping_type(map_ref, map__mapping_type(replacement_map));
1405
1406 err = maps__insert(kmaps, map_ref);
1407 map__put(map_ref);
1408 if (err)
1409 goto out_err;
1410
1411 /* Add new maps */
1412 while (!list_empty(&md.maps)) {
1413 struct map_list_node *new_node = list_entry(md.maps.next, struct map_list_node, node);
1414 struct map *new_map = new_node->map;
1415
1416 list_del_init(&new_node->node);
1417
1418 /* skip if replacement_map, already inserted above */
1419 if (!RC_CHK_EQUAL(new_map, replacement_map)) {
1420 /*
1421 * Merge kcore map into existing maps,
1422 * and ensure that current maps (eBPF)
1423 * stay intact.
1424 */
1425 if (maps__merge_in(kmaps, new_map)) {
1426 err = -EINVAL;
1427 goto out_err;
1428 }
1429 }
1430 map__zput(new_node->map);
1431 free(new_node);
1432 }
1433
1434 if (machine__is(machine, "x86_64")) {
1435 u64 addr;
1436
1437 /*
1438 * If one of the corresponding symbols is there, assume the
1439 * entry trampoline maps are too.
1440 */
1441 if (!kallsyms__get_function_start(kallsyms_filename,
1442 ENTRY_TRAMPOLINE_NAME,
1443 &addr))
1444 machine->trampolines_mapped = true;
1445 }
1446
1447 /*
1448 * Set the data type and long name so that kcore can be read via
1449 * dso__data_read_addr().
1450 */
1451 if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST)
1452 dso__set_binary_type(dso, DSO_BINARY_TYPE__GUEST_KCORE);
1453 else
1454 dso__set_binary_type(dso, DSO_BINARY_TYPE__KCORE);
1455 dso__set_long_name(dso, strdup(kcore_filename), true);
1456
1457 close(fd);
1458
1459 if (map__prot(map) & PROT_EXEC)
1460 pr_debug("Using %s for kernel object code\n", kcore_filename);
1461 else
1462 pr_debug("Using %s for kernel data\n", kcore_filename);
1463
1464 return 0;
1465
1466 out_err:
1467 while (!list_empty(&md.maps)) {
1468 struct map_list_node *list_node;
1469
1470 list_node = list_entry(md.maps.next, struct map_list_node, node);
1471 list_del_init(&list_node->node);
1472 map__zput(list_node->map);
1473 free(list_node);
1474 }
1475 close(fd);
1476 return err;
1477 }
1478
1479 /*
1480 * If the kernel is relocated at boot time, kallsyms won't match. Compute the
1481 * delta based on the relocation reference symbol.
1482 */
kallsyms__delta(struct kmap * kmap,const char * filename,u64 * delta)1483 static int kallsyms__delta(struct kmap *kmap, const char *filename, u64 *delta)
1484 {
1485 u64 addr;
1486
1487 if (!kmap->ref_reloc_sym || !kmap->ref_reloc_sym->name)
1488 return 0;
1489
1490 if (kallsyms__get_function_start(filename, kmap->ref_reloc_sym->name, &addr))
1491 return -1;
1492
1493 *delta = addr - kmap->ref_reloc_sym->addr;
1494 return 0;
1495 }
1496
__dso__load_kallsyms(struct dso * dso,const char * filename,struct map * map,bool no_kcore)1497 int __dso__load_kallsyms(struct dso *dso, const char *filename,
1498 struct map *map, bool no_kcore)
1499 {
1500 struct kmap *kmap = map__kmap(map);
1501 u64 delta = 0;
1502
1503 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1504 return -1;
1505
1506 if (!kmap || !kmap->kmaps)
1507 return -1;
1508
1509 if (dso__load_all_kallsyms(dso, filename) < 0)
1510 return -1;
1511
1512 if (kallsyms__delta(kmap, filename, &delta))
1513 return -1;
1514
1515 symbols__fixup_end(dso__symbols(dso), true);
1516 symbols__fixup_duplicate(dso__symbols(dso));
1517
1518 if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST)
1519 dso__set_symtab_type(dso, DSO_BINARY_TYPE__GUEST_KALLSYMS);
1520 else
1521 dso__set_symtab_type(dso, DSO_BINARY_TYPE__KALLSYMS);
1522
1523 if (!no_kcore && !dso__load_kcore(dso, map, filename))
1524 return maps__split_kallsyms_for_kcore(kmap->kmaps, dso);
1525 else
1526 return maps__split_kallsyms(kmap->kmaps, dso, delta, map);
1527 }
1528
dso__load_kallsyms(struct dso * dso,const char * filename,struct map * map)1529 int dso__load_kallsyms(struct dso *dso, const char *filename,
1530 struct map *map)
1531 {
1532 return __dso__load_kallsyms(dso, filename, map, false);
1533 }
1534
dso__load_perf_map(const char * map_path,struct dso * dso)1535 static int dso__load_perf_map(const char *map_path, struct dso *dso)
1536 {
1537 char *line = NULL;
1538 size_t n;
1539 FILE *file;
1540 int nr_syms = 0;
1541
1542 file = fopen(map_path, "r");
1543 if (file == NULL)
1544 goto out_failure;
1545
1546 while (!feof(file)) {
1547 u64 start, size;
1548 struct symbol *sym;
1549 int line_len, len;
1550
1551 line_len = getline(&line, &n, file);
1552 if (line_len < 0)
1553 break;
1554
1555 if (!line)
1556 goto out_failure;
1557
1558 line[--line_len] = '\0'; /* \n */
1559
1560 len = hex2u64(line, &start);
1561
1562 len++;
1563 if (len + 2 >= line_len)
1564 continue;
1565
1566 len += hex2u64(line + len, &size);
1567
1568 len++;
1569 if (len + 2 >= line_len)
1570 continue;
1571
1572 sym = symbol__new(start, size, STB_GLOBAL, STT_FUNC, line + len);
1573
1574 if (sym == NULL)
1575 goto out_delete_line;
1576
1577 symbols__insert(dso__symbols(dso), sym);
1578 nr_syms++;
1579 }
1580
1581 free(line);
1582 fclose(file);
1583
1584 return nr_syms;
1585
1586 out_delete_line:
1587 free(line);
1588 out_failure:
1589 return -1;
1590 }
1591
dso__is_compatible_symtab_type(struct dso * dso,bool kmod,enum dso_binary_type type)1592 static bool dso__is_compatible_symtab_type(struct dso *dso, bool kmod,
1593 enum dso_binary_type type)
1594 {
1595 switch (type) {
1596 case DSO_BINARY_TYPE__JAVA_JIT:
1597 case DSO_BINARY_TYPE__DEBUGLINK:
1598 case DSO_BINARY_TYPE__SYSTEM_PATH_DSO:
1599 case DSO_BINARY_TYPE__FEDORA_DEBUGINFO:
1600 case DSO_BINARY_TYPE__UBUNTU_DEBUGINFO:
1601 case DSO_BINARY_TYPE__MIXEDUP_UBUNTU_DEBUGINFO:
1602 case DSO_BINARY_TYPE__BUILDID_DEBUGINFO:
1603 case DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO:
1604 case DSO_BINARY_TYPE__GNU_DEBUGDATA:
1605 return !kmod && dso__kernel(dso) == DSO_SPACE__USER;
1606
1607 case DSO_BINARY_TYPE__KALLSYMS:
1608 case DSO_BINARY_TYPE__VMLINUX:
1609 case DSO_BINARY_TYPE__KCORE:
1610 return dso__kernel(dso) == DSO_SPACE__KERNEL;
1611
1612 case DSO_BINARY_TYPE__GUEST_KALLSYMS:
1613 case DSO_BINARY_TYPE__GUEST_VMLINUX:
1614 case DSO_BINARY_TYPE__GUEST_KCORE:
1615 return dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST;
1616
1617 case DSO_BINARY_TYPE__GUEST_KMODULE:
1618 case DSO_BINARY_TYPE__GUEST_KMODULE_COMP:
1619 case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE:
1620 case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP:
1621 /*
1622 * kernel modules know their symtab type - it's set when
1623 * creating a module dso in machine__addnew_module_map().
1624 */
1625 return kmod && dso__symtab_type(dso) == type;
1626
1627 case DSO_BINARY_TYPE__BUILD_ID_CACHE:
1628 case DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO:
1629 return true;
1630
1631 case DSO_BINARY_TYPE__BPF_PROG_INFO:
1632 case DSO_BINARY_TYPE__BPF_IMAGE:
1633 case DSO_BINARY_TYPE__OOL:
1634 case DSO_BINARY_TYPE__NOT_FOUND:
1635 default:
1636 return false;
1637 }
1638 }
1639
1640 /* Checks for the existence of the perf-<pid>.map file in two different
1641 * locations. First, if the process is a separate mount namespace, check in
1642 * that namespace using the pid of the innermost pid namespace. If's not in a
1643 * namespace, or the file can't be found there, try in the mount namespace of
1644 * the tracing process using our view of its pid.
1645 */
dso__find_perf_map(char * filebuf,size_t bufsz,struct nsinfo ** nsip)1646 static int dso__find_perf_map(char *filebuf, size_t bufsz,
1647 struct nsinfo **nsip)
1648 {
1649 struct nscookie nsc;
1650 struct nsinfo *nsi;
1651 struct nsinfo *nnsi;
1652 int rc = -1;
1653
1654 nsi = *nsip;
1655
1656 if (nsinfo__need_setns(nsi)) {
1657 snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsinfo__nstgid(nsi));
1658 nsinfo__mountns_enter(nsi, &nsc);
1659 rc = access(filebuf, R_OK);
1660 nsinfo__mountns_exit(&nsc);
1661 if (rc == 0)
1662 return rc;
1663 }
1664
1665 nnsi = nsinfo__copy(nsi);
1666 if (nnsi) {
1667 nsinfo__put(nsi);
1668
1669 nsinfo__clear_need_setns(nnsi);
1670 snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsinfo__tgid(nnsi));
1671 *nsip = nnsi;
1672 rc = 0;
1673 }
1674
1675 return rc;
1676 }
1677
dso__load(struct dso * dso,struct map * map)1678 int dso__load(struct dso *dso, struct map *map)
1679 {
1680 char *name;
1681 int ret = -1;
1682 u_int i;
1683 struct machine *machine = NULL;
1684 char *root_dir = (char *) "";
1685 int ss_pos = 0;
1686 struct symsrc ss_[2];
1687 struct symsrc *syms_ss = NULL, *runtime_ss = NULL;
1688 bool kmod;
1689 bool perfmap;
1690 struct nscookie nsc;
1691 char newmapname[PATH_MAX];
1692 const char *map_path = dso__long_name(dso);
1693
1694 mutex_lock(dso__lock(dso));
1695 perfmap = is_perf_pid_map_name(map_path);
1696
1697 if (perfmap) {
1698 if (dso__nsinfo(dso) &&
1699 (dso__find_perf_map(newmapname, sizeof(newmapname),
1700 dso__nsinfo_ptr(dso)) == 0)) {
1701 map_path = newmapname;
1702 }
1703 }
1704
1705 nsinfo__mountns_enter(dso__nsinfo(dso), &nsc);
1706
1707 /* check again under the dso->lock */
1708 if (dso__loaded(dso)) {
1709 ret = 1;
1710 goto out;
1711 }
1712
1713 kmod = dso__is_kmod(dso);
1714
1715 if (dso__kernel(dso) && !kmod) {
1716 if (dso__kernel(dso) == DSO_SPACE__KERNEL)
1717 ret = dso__load_kernel_sym(dso, map);
1718 else if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST)
1719 ret = dso__load_guest_kernel_sym(dso, map);
1720
1721 machine = maps__machine(map__kmaps(map));
1722 if (machine__is(machine, "x86_64"))
1723 machine__map_x86_64_entry_trampolines(machine, dso);
1724 goto out;
1725 }
1726
1727 dso__set_adjust_symbols(dso, false);
1728
1729 if (perfmap) {
1730 ret = dso__load_perf_map(map_path, dso);
1731 dso__set_symtab_type(dso, ret > 0
1732 ? DSO_BINARY_TYPE__JAVA_JIT
1733 : DSO_BINARY_TYPE__NOT_FOUND);
1734 goto out;
1735 }
1736
1737 if (machine)
1738 root_dir = machine->root_dir;
1739
1740 name = malloc(PATH_MAX);
1741 if (!name)
1742 goto out;
1743
1744 /*
1745 * Read the build id if possible. This is required for
1746 * DSO_BINARY_TYPE__BUILDID_DEBUGINFO to work. Don't block in case path
1747 * isn't for a regular file.
1748 */
1749 if (!dso__has_build_id(dso)) {
1750 struct build_id bid = { .size = 0, };
1751
1752 __symbol__join_symfs(name, PATH_MAX, dso__long_name(dso));
1753 if (filename__read_build_id(name, &bid, /*block=*/false) > 0)
1754 dso__set_build_id(dso, &bid);
1755 }
1756
1757 /*
1758 * Iterate over candidate debug images.
1759 * Keep track of "interesting" ones (those which have a symtab, dynsym,
1760 * and/or opd section) for processing.
1761 */
1762 for (i = 0; i < DSO_BINARY_TYPE__SYMTAB_CNT; i++) {
1763 struct symsrc *ss = &ss_[ss_pos];
1764 bool next_slot = false;
1765 bool is_reg;
1766 bool nsexit;
1767 int bfdrc = -1;
1768 int sirc = -1;
1769
1770 enum dso_binary_type symtab_type = binary_type_symtab[i];
1771
1772 nsexit = (symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE ||
1773 symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO);
1774
1775 if (!dso__is_compatible_symtab_type(dso, kmod, symtab_type))
1776 continue;
1777
1778 if (dso__read_binary_type_filename(dso, symtab_type,
1779 root_dir, name, PATH_MAX))
1780 continue;
1781
1782 if (nsexit)
1783 nsinfo__mountns_exit(&nsc);
1784
1785 is_reg = is_regular_file(name);
1786 if (!is_reg && errno == ENOENT && dso__nsinfo(dso)) {
1787 char *new_name = dso__filename_with_chroot(dso, name);
1788 if (new_name) {
1789 is_reg = is_regular_file(new_name);
1790 strlcpy(name, new_name, PATH_MAX);
1791 free(new_name);
1792 }
1793 }
1794
1795 #ifdef HAVE_LIBBFD_SUPPORT
1796 if (is_reg)
1797 bfdrc = dso__load_bfd_symbols(dso, name);
1798 #endif
1799 if (is_reg && bfdrc < 0)
1800 sirc = symsrc__init(ss, dso, name, symtab_type);
1801
1802 if (nsexit)
1803 nsinfo__mountns_enter(dso__nsinfo(dso), &nsc);
1804
1805 if (bfdrc == 0) {
1806 ret = 0;
1807 break;
1808 }
1809
1810 if (!is_reg || sirc < 0)
1811 continue;
1812
1813 if (!syms_ss && symsrc__has_symtab(ss)) {
1814 syms_ss = ss;
1815 next_slot = true;
1816 if (!dso__symsrc_filename(dso))
1817 dso__set_symsrc_filename(dso, strdup(name));
1818 }
1819
1820 if (!runtime_ss && symsrc__possibly_runtime(ss)) {
1821 runtime_ss = ss;
1822 next_slot = true;
1823 }
1824
1825 if (next_slot) {
1826 ss_pos++;
1827
1828 if (dso__binary_type(dso) == DSO_BINARY_TYPE__NOT_FOUND)
1829 dso__set_binary_type(dso, symtab_type);
1830
1831 if (syms_ss && runtime_ss)
1832 break;
1833 } else {
1834 symsrc__destroy(ss);
1835 }
1836
1837 }
1838
1839 if (!runtime_ss && !syms_ss)
1840 goto out_free;
1841
1842 if (runtime_ss && !syms_ss) {
1843 syms_ss = runtime_ss;
1844 }
1845
1846 /* We'll have to hope for the best */
1847 if (!runtime_ss && syms_ss)
1848 runtime_ss = syms_ss;
1849
1850 if (syms_ss)
1851 ret = dso__load_sym(dso, map, syms_ss, runtime_ss, kmod);
1852 else
1853 ret = -1;
1854
1855 if (ret > 0) {
1856 int nr_plt;
1857
1858 nr_plt = dso__synthesize_plt_symbols(dso, runtime_ss);
1859 if (nr_plt > 0)
1860 ret += nr_plt;
1861 }
1862
1863 for (; ss_pos > 0; ss_pos--)
1864 symsrc__destroy(&ss_[ss_pos - 1]);
1865 out_free:
1866 free(name);
1867 if (ret < 0 && strstr(dso__name(dso), " (deleted)") != NULL)
1868 ret = 0;
1869 out:
1870 dso__set_loaded(dso);
1871 mutex_unlock(dso__lock(dso));
1872 nsinfo__mountns_exit(&nsc);
1873
1874 return ret;
1875 }
1876
1877 /*
1878 * Always takes ownership of vmlinux when vmlinux_allocated == true, even if
1879 * it returns an error.
1880 */
dso__load_vmlinux(struct dso * dso,struct map * map,const char * vmlinux,bool vmlinux_allocated)1881 int dso__load_vmlinux(struct dso *dso, struct map *map,
1882 const char *vmlinux, bool vmlinux_allocated)
1883 {
1884 int err = -1;
1885 struct symsrc ss;
1886 char symfs_vmlinux[PATH_MAX];
1887 enum dso_binary_type symtab_type;
1888
1889 if (vmlinux[0] == '/')
1890 snprintf(symfs_vmlinux, sizeof(symfs_vmlinux), "%s", vmlinux);
1891 else
1892 symbol__join_symfs(symfs_vmlinux, vmlinux);
1893
1894 if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST)
1895 symtab_type = DSO_BINARY_TYPE__GUEST_VMLINUX;
1896 else
1897 symtab_type = DSO_BINARY_TYPE__VMLINUX;
1898
1899 if (symsrc__init(&ss, dso, symfs_vmlinux, symtab_type)) {
1900 if (vmlinux_allocated)
1901 free((char *) vmlinux);
1902 return -1;
1903 }
1904
1905 /*
1906 * dso__load_sym() may copy 'dso' which will result in the copies having
1907 * an incorrect long name unless we set it here first.
1908 */
1909 dso__set_long_name(dso, vmlinux, vmlinux_allocated);
1910 if (dso__kernel(dso) == DSO_SPACE__KERNEL_GUEST)
1911 dso__set_binary_type(dso, DSO_BINARY_TYPE__GUEST_VMLINUX);
1912 else
1913 dso__set_binary_type(dso, DSO_BINARY_TYPE__VMLINUX);
1914
1915 err = dso__load_sym(dso, map, &ss, &ss, 0);
1916 symsrc__destroy(&ss);
1917
1918 if (err > 0) {
1919 dso__set_loaded(dso);
1920 pr_debug("Using %s for symbols\n", symfs_vmlinux);
1921 }
1922
1923 return err;
1924 }
1925
dso__load_vmlinux_path(struct dso * dso,struct map * map)1926 int dso__load_vmlinux_path(struct dso *dso, struct map *map)
1927 {
1928 int i, err = 0;
1929 char *filename = NULL;
1930
1931 pr_debug("Looking at the vmlinux_path (%d entries long)\n",
1932 vmlinux_path__nr_entries + 1);
1933
1934 for (i = 0; i < vmlinux_path__nr_entries; ++i) {
1935 err = dso__load_vmlinux(dso, map, vmlinux_path[i], false);
1936 if (err > 0)
1937 goto out;
1938 }
1939
1940 if (!symbol_conf.ignore_vmlinux_buildid)
1941 filename = dso__build_id_filename(dso, NULL, 0, false);
1942 if (filename != NULL) {
1943 err = dso__load_vmlinux(dso, map, filename, true);
1944 if (err > 0)
1945 goto out;
1946 }
1947 out:
1948 return err;
1949 }
1950
visible_dir_filter(const char * name,struct dirent * d)1951 static bool visible_dir_filter(const char *name, struct dirent *d)
1952 {
1953 if (d->d_type != DT_DIR)
1954 return false;
1955 return lsdir_no_dot_filter(name, d);
1956 }
1957
find_matching_kcore(struct map * map,char * dir,size_t dir_sz)1958 static int find_matching_kcore(struct map *map, char *dir, size_t dir_sz)
1959 {
1960 char kallsyms_filename[PATH_MAX];
1961 int ret = -1;
1962 struct strlist *dirs;
1963 struct str_node *nd;
1964
1965 dirs = lsdir(dir, visible_dir_filter);
1966 if (!dirs)
1967 return -1;
1968
1969 strlist__for_each_entry(nd, dirs) {
1970 scnprintf(kallsyms_filename, sizeof(kallsyms_filename),
1971 "%s/%s/kallsyms", dir, nd->s);
1972 if (!validate_kcore_addresses(kallsyms_filename, map)) {
1973 strlcpy(dir, kallsyms_filename, dir_sz);
1974 ret = 0;
1975 break;
1976 }
1977 }
1978
1979 strlist__delete(dirs);
1980
1981 return ret;
1982 }
1983
1984 /*
1985 * Use open(O_RDONLY) to check readability directly instead of access(R_OK)
1986 * since access(R_OK) only checks with real UID/GID but open() use effective
1987 * UID/GID and actual capabilities (e.g. /proc/kcore requires CAP_SYS_RAWIO).
1988 */
filename__readable(const char * file)1989 static bool filename__readable(const char *file)
1990 {
1991 int fd = open(file, O_RDONLY);
1992 if (fd < 0)
1993 return false;
1994 close(fd);
1995 return true;
1996 }
1997
dso__find_kallsyms(struct dso * dso,struct map * map)1998 static char *dso__find_kallsyms(struct dso *dso, struct map *map)
1999 {
2000 struct build_id bid = { .size = 0, };
2001 char sbuild_id[SBUILD_ID_SIZE];
2002 bool is_host = false;
2003 char path[PATH_MAX];
2004
2005 if (!dso__has_build_id(dso)) {
2006 /*
2007 * Last resort, if we don't have a build-id and couldn't find
2008 * any vmlinux file, try the running kernel kallsyms table.
2009 */
2010 goto proc_kallsyms;
2011 }
2012
2013 if (sysfs__read_build_id("/sys/kernel/notes", &bid) == 0)
2014 is_host = dso__build_id_equal(dso, &bid);
2015
2016 /* Try a fast path for /proc/kallsyms if possible */
2017 if (is_host) {
2018 /*
2019 * Do not check the build-id cache, unless we know we cannot use
2020 * /proc/kcore or module maps don't match to /proc/kallsyms.
2021 * To check readability of /proc/kcore, do not use access(R_OK)
2022 * since /proc/kcore requires CAP_SYS_RAWIO to read and access
2023 * can't check it.
2024 */
2025 if (filename__readable("/proc/kcore") &&
2026 !validate_kcore_addresses("/proc/kallsyms", map))
2027 goto proc_kallsyms;
2028 }
2029
2030 build_id__snprintf(dso__bid(dso), sbuild_id, sizeof(sbuild_id));
2031
2032 /* Find kallsyms in build-id cache with kcore */
2033 scnprintf(path, sizeof(path), "%s/%s/%s",
2034 buildid_dir, DSO__NAME_KCORE, sbuild_id);
2035
2036 if (!find_matching_kcore(map, path, sizeof(path)))
2037 return strdup(path);
2038
2039 /* Use current /proc/kallsyms if possible */
2040 if (is_host) {
2041 proc_kallsyms:
2042 return strdup("/proc/kallsyms");
2043 }
2044
2045 /* Finally, find a cache of kallsyms */
2046 if (!build_id_cache__kallsyms_path(sbuild_id, path, sizeof(path))) {
2047 pr_err("No kallsyms or vmlinux with build-id %s was found\n",
2048 sbuild_id);
2049 return NULL;
2050 }
2051
2052 return strdup(path);
2053 }
2054
dso__load_kernel_sym(struct dso * dso,struct map * map)2055 static int dso__load_kernel_sym(struct dso *dso, struct map *map)
2056 {
2057 int err;
2058 const char *kallsyms_filename = NULL;
2059 char *kallsyms_allocated_filename = NULL;
2060 char *filename = NULL;
2061
2062 /*
2063 * Step 1: if the user specified a kallsyms or vmlinux filename, use
2064 * it and only it, reporting errors to the user if it cannot be used.
2065 *
2066 * For instance, try to analyse an ARM perf.data file _without_ a
2067 * build-id, or if the user specifies the wrong path to the right
2068 * vmlinux file, obviously we can't fallback to another vmlinux (a
2069 * x86_86 one, on the machine where analysis is being performed, say),
2070 * or worse, /proc/kallsyms.
2071 *
2072 * If the specified file _has_ a build-id and there is a build-id
2073 * section in the perf.data file, we will still do the expected
2074 * validation in dso__load_vmlinux and will bail out if they don't
2075 * match.
2076 */
2077 if (symbol_conf.kallsyms_name != NULL) {
2078 kallsyms_filename = symbol_conf.kallsyms_name;
2079 goto do_kallsyms;
2080 }
2081
2082 if (!symbol_conf.ignore_vmlinux && symbol_conf.vmlinux_name != NULL) {
2083 return dso__load_vmlinux(dso, map, symbol_conf.vmlinux_name, false);
2084 }
2085
2086 /*
2087 * Before checking on common vmlinux locations, check if it's
2088 * stored as standard build id binary (not kallsyms) under
2089 * .debug cache.
2090 */
2091 if (!symbol_conf.ignore_vmlinux_buildid)
2092 filename = __dso__build_id_filename(dso, NULL, 0, false, false);
2093 if (filename != NULL) {
2094 err = dso__load_vmlinux(dso, map, filename, true);
2095 if (err > 0)
2096 return err;
2097 }
2098
2099 if (!symbol_conf.ignore_vmlinux && vmlinux_path != NULL) {
2100 err = dso__load_vmlinux_path(dso, map);
2101 if (err > 0)
2102 return err;
2103 }
2104
2105 /* do not try local files if a symfs was given */
2106 if (symbol_conf.symfs[0] != 0)
2107 return -1;
2108
2109 kallsyms_allocated_filename = dso__find_kallsyms(dso, map);
2110 if (!kallsyms_allocated_filename)
2111 return -1;
2112
2113 kallsyms_filename = kallsyms_allocated_filename;
2114
2115 do_kallsyms:
2116 err = dso__load_kallsyms(dso, kallsyms_filename, map);
2117 if (err > 0)
2118 pr_debug("Using %s for symbols\n", kallsyms_filename);
2119 free(kallsyms_allocated_filename);
2120
2121 if (err > 0 && !dso__is_kcore(dso)) {
2122 dso__set_binary_type(dso, DSO_BINARY_TYPE__KALLSYMS);
2123 dso__set_long_name(dso, DSO__NAME_KALLSYMS, false);
2124 map__fixup_start(map);
2125 map__fixup_end(map);
2126 }
2127
2128 return err;
2129 }
2130
dso__load_guest_kernel_sym(struct dso * dso,struct map * map)2131 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map)
2132 {
2133 int err;
2134 const char *kallsyms_filename;
2135 struct machine *machine = maps__machine(map__kmaps(map));
2136 char path[PATH_MAX];
2137
2138 if (machine->kallsyms_filename) {
2139 kallsyms_filename = machine->kallsyms_filename;
2140 } else if (machine__is_default_guest(machine)) {
2141 /*
2142 * if the user specified a vmlinux filename, use it and only
2143 * it, reporting errors to the user if it cannot be used.
2144 * Or use file guest_kallsyms inputted by user on commandline
2145 */
2146 if (symbol_conf.default_guest_vmlinux_name != NULL) {
2147 err = dso__load_vmlinux(dso, map,
2148 symbol_conf.default_guest_vmlinux_name,
2149 false);
2150 return err;
2151 }
2152
2153 kallsyms_filename = symbol_conf.default_guest_kallsyms;
2154 if (!kallsyms_filename)
2155 return -1;
2156 } else {
2157 sprintf(path, "%s/proc/kallsyms", machine->root_dir);
2158 kallsyms_filename = path;
2159 }
2160
2161 err = dso__load_kallsyms(dso, kallsyms_filename, map);
2162 if (err > 0)
2163 pr_debug("Using %s for symbols\n", kallsyms_filename);
2164 if (err > 0 && !dso__is_kcore(dso)) {
2165 dso__set_binary_type(dso, DSO_BINARY_TYPE__GUEST_KALLSYMS);
2166 dso__set_long_name(dso, machine->mmap_name, false);
2167 map__fixup_start(map);
2168 map__fixup_end(map);
2169 }
2170
2171 return err;
2172 }
2173
vmlinux_path__exit(void)2174 static void vmlinux_path__exit(void)
2175 {
2176 while (--vmlinux_path__nr_entries >= 0)
2177 zfree(&vmlinux_path[vmlinux_path__nr_entries]);
2178 vmlinux_path__nr_entries = 0;
2179
2180 zfree(&vmlinux_path);
2181 }
2182
2183 static const char * const vmlinux_paths[] = {
2184 "vmlinux",
2185 "/boot/vmlinux"
2186 };
2187
2188 static const char * const vmlinux_paths_upd[] = {
2189 "/boot/vmlinux-%s",
2190 "/usr/lib/debug/boot/vmlinux-%s",
2191 "/lib/modules/%s/build/vmlinux",
2192 "/usr/lib/debug/lib/modules/%s/vmlinux",
2193 "/usr/lib/debug/boot/vmlinux-%s.debug"
2194 };
2195
vmlinux_path__add(const char * new_entry)2196 static int vmlinux_path__add(const char *new_entry)
2197 {
2198 vmlinux_path[vmlinux_path__nr_entries] = strdup(new_entry);
2199 if (vmlinux_path[vmlinux_path__nr_entries] == NULL)
2200 return -1;
2201 ++vmlinux_path__nr_entries;
2202
2203 return 0;
2204 }
2205
vmlinux_path__init(struct perf_env * env)2206 static int vmlinux_path__init(struct perf_env *env)
2207 {
2208 struct utsname uts;
2209 char bf[PATH_MAX];
2210 char *kernel_version;
2211 unsigned int i;
2212
2213 vmlinux_path = malloc(sizeof(char *) * (ARRAY_SIZE(vmlinux_paths) +
2214 ARRAY_SIZE(vmlinux_paths_upd)));
2215 if (vmlinux_path == NULL)
2216 return -1;
2217
2218 for (i = 0; i < ARRAY_SIZE(vmlinux_paths); i++)
2219 if (vmlinux_path__add(vmlinux_paths[i]) < 0)
2220 goto out_fail;
2221
2222 /* only try kernel version if no symfs was given */
2223 if (symbol_conf.symfs[0] != 0)
2224 return 0;
2225
2226 if (env) {
2227 kernel_version = env->os_release;
2228 } else {
2229 if (uname(&uts) < 0)
2230 goto out_fail;
2231
2232 kernel_version = uts.release;
2233 }
2234
2235 for (i = 0; i < ARRAY_SIZE(vmlinux_paths_upd); i++) {
2236 snprintf(bf, sizeof(bf), vmlinux_paths_upd[i], kernel_version);
2237 if (vmlinux_path__add(bf) < 0)
2238 goto out_fail;
2239 }
2240
2241 return 0;
2242
2243 out_fail:
2244 vmlinux_path__exit();
2245 return -1;
2246 }
2247
setup_list(struct strlist ** list,const char * list_str,const char * list_name)2248 int setup_list(struct strlist **list, const char *list_str,
2249 const char *list_name)
2250 {
2251 if (list_str == NULL)
2252 return 0;
2253
2254 *list = strlist__new(list_str, NULL);
2255 if (!*list) {
2256 pr_err("problems parsing %s list\n", list_name);
2257 return -1;
2258 }
2259
2260 symbol_conf.has_filter = true;
2261 return 0;
2262 }
2263
setup_intlist(struct intlist ** list,const char * list_str,const char * list_name)2264 int setup_intlist(struct intlist **list, const char *list_str,
2265 const char *list_name)
2266 {
2267 if (list_str == NULL)
2268 return 0;
2269
2270 *list = intlist__new(list_str);
2271 if (!*list) {
2272 pr_err("problems parsing %s list\n", list_name);
2273 return -1;
2274 }
2275 return 0;
2276 }
2277
setup_addrlist(struct intlist ** addr_list,struct strlist * sym_list)2278 static int setup_addrlist(struct intlist **addr_list, struct strlist *sym_list)
2279 {
2280 struct str_node *pos, *tmp;
2281 unsigned long val;
2282 char *sep;
2283 const char *end;
2284 int i = 0, err;
2285
2286 *addr_list = intlist__new(NULL);
2287 if (!*addr_list)
2288 return -1;
2289
2290 strlist__for_each_entry_safe(pos, tmp, sym_list) {
2291 errno = 0;
2292 val = strtoul(pos->s, &sep, 16);
2293 if (errno || (sep == pos->s))
2294 continue;
2295
2296 if (*sep != '\0') {
2297 end = pos->s + strlen(pos->s) - 1;
2298 while (end >= sep && isspace(*end))
2299 end--;
2300
2301 if (end >= sep)
2302 continue;
2303 }
2304
2305 err = intlist__add(*addr_list, val);
2306 if (err)
2307 break;
2308
2309 strlist__remove(sym_list, pos);
2310 i++;
2311 }
2312
2313 if (i == 0) {
2314 intlist__delete(*addr_list);
2315 *addr_list = NULL;
2316 }
2317
2318 return 0;
2319 }
2320
symbol__read_kptr_restrict(void)2321 static bool symbol__read_kptr_restrict(void)
2322 {
2323 bool value = false;
2324 FILE *fp = fopen("/proc/sys/kernel/kptr_restrict", "r");
2325 bool used_root;
2326 bool cap_syslog = perf_cap__capable(CAP_SYSLOG, &used_root);
2327
2328 if (fp != NULL) {
2329 char line[8];
2330
2331 if (fgets(line, sizeof(line), fp) != NULL)
2332 value = cap_syslog ? (atoi(line) >= 2) : (atoi(line) != 0);
2333
2334 fclose(fp);
2335 }
2336
2337 /* Per kernel/kallsyms.c:
2338 * we also restrict when perf_event_paranoid > 1 w/o CAP_SYSLOG
2339 */
2340 if (perf_event_paranoid() > 1 && !cap_syslog)
2341 value = true;
2342
2343 return value;
2344 }
2345
symbol__annotation_init(void)2346 int symbol__annotation_init(void)
2347 {
2348 if (symbol_conf.init_annotation)
2349 return 0;
2350
2351 if (symbol_conf.initialized) {
2352 pr_err("Annotation needs to be init before symbol__init()\n");
2353 return -1;
2354 }
2355
2356 symbol_conf.priv_size += sizeof(struct annotation);
2357 symbol_conf.init_annotation = true;
2358 return 0;
2359 }
2360
setup_parallelism_bitmap(void)2361 static int setup_parallelism_bitmap(void)
2362 {
2363 struct perf_cpu_map *map;
2364 struct perf_cpu cpu;
2365 int i, err = -1;
2366
2367 if (symbol_conf.parallelism_list_str == NULL)
2368 return 0;
2369
2370 map = perf_cpu_map__new(symbol_conf.parallelism_list_str);
2371 if (map == NULL) {
2372 pr_err("failed to parse parallelism filter list\n");
2373 return -1;
2374 }
2375
2376 bitmap_fill(symbol_conf.parallelism_filter, MAX_NR_CPUS + 1);
2377 perf_cpu_map__for_each_cpu(cpu, i, map) {
2378 if (cpu.cpu <= 0 || cpu.cpu > MAX_NR_CPUS) {
2379 pr_err("Requested parallelism level %d is invalid.\n", cpu.cpu);
2380 goto out_delete_map;
2381 }
2382 __clear_bit(cpu.cpu, symbol_conf.parallelism_filter);
2383 }
2384
2385 err = 0;
2386 out_delete_map:
2387 perf_cpu_map__put(map);
2388 return err;
2389 }
2390
symbol__init(struct perf_env * env)2391 int symbol__init(struct perf_env *env)
2392 {
2393 const char *symfs;
2394
2395 if (symbol_conf.initialized)
2396 return 0;
2397
2398 symbol_conf.priv_size = PERF_ALIGN(symbol_conf.priv_size, sizeof(u64));
2399
2400 symbol__elf_init();
2401
2402 if (symbol_conf.try_vmlinux_path && vmlinux_path__init(env) < 0)
2403 return -1;
2404
2405 if (symbol_conf.field_sep && *symbol_conf.field_sep == '.') {
2406 pr_err("'.' is the only non valid --field-separator argument\n");
2407 return -1;
2408 }
2409
2410 if (setup_parallelism_bitmap())
2411 return -1;
2412
2413 if (setup_list(&symbol_conf.dso_list,
2414 symbol_conf.dso_list_str, "dso") < 0)
2415 return -1;
2416
2417 if (setup_list(&symbol_conf.comm_list,
2418 symbol_conf.comm_list_str, "comm") < 0)
2419 goto out_free_dso_list;
2420
2421 if (setup_intlist(&symbol_conf.pid_list,
2422 symbol_conf.pid_list_str, "pid") < 0)
2423 goto out_free_comm_list;
2424
2425 if (setup_intlist(&symbol_conf.tid_list,
2426 symbol_conf.tid_list_str, "tid") < 0)
2427 goto out_free_pid_list;
2428
2429 if (setup_list(&symbol_conf.sym_list,
2430 symbol_conf.sym_list_str, "symbol") < 0)
2431 goto out_free_tid_list;
2432
2433 if (symbol_conf.sym_list &&
2434 setup_addrlist(&symbol_conf.addr_list, symbol_conf.sym_list) < 0)
2435 goto out_free_sym_list;
2436
2437 if (setup_list(&symbol_conf.bt_stop_list,
2438 symbol_conf.bt_stop_list_str, "symbol") < 0)
2439 goto out_free_sym_list;
2440
2441 /*
2442 * A path to symbols of "/" is identical to ""
2443 * reset here for simplicity.
2444 */
2445 symfs = realpath(symbol_conf.symfs, NULL);
2446 if (symfs == NULL)
2447 symfs = symbol_conf.symfs;
2448 if (strcmp(symfs, "/") == 0)
2449 symbol_conf.symfs = "";
2450 if (symfs != symbol_conf.symfs)
2451 free((void *)symfs);
2452
2453 symbol_conf.kptr_restrict = symbol__read_kptr_restrict();
2454
2455 symbol_conf.initialized = true;
2456 return 0;
2457
2458 out_free_sym_list:
2459 strlist__delete(symbol_conf.sym_list);
2460 intlist__delete(symbol_conf.addr_list);
2461 out_free_tid_list:
2462 intlist__delete(symbol_conf.tid_list);
2463 out_free_pid_list:
2464 intlist__delete(symbol_conf.pid_list);
2465 out_free_comm_list:
2466 strlist__delete(symbol_conf.comm_list);
2467 out_free_dso_list:
2468 strlist__delete(symbol_conf.dso_list);
2469 return -1;
2470 }
2471
symbol__exit(void)2472 void symbol__exit(void)
2473 {
2474 if (!symbol_conf.initialized)
2475 return;
2476 strlist__delete(symbol_conf.bt_stop_list);
2477 strlist__delete(symbol_conf.sym_list);
2478 strlist__delete(symbol_conf.dso_list);
2479 strlist__delete(symbol_conf.comm_list);
2480 intlist__delete(symbol_conf.tid_list);
2481 intlist__delete(symbol_conf.pid_list);
2482 intlist__delete(symbol_conf.addr_list);
2483 vmlinux_path__exit();
2484 symbol_conf.sym_list = symbol_conf.dso_list = symbol_conf.comm_list = NULL;
2485 symbol_conf.bt_stop_list = NULL;
2486 symbol_conf.initialized = false;
2487 }
2488
symbol__config_symfs(const struct option * opt __maybe_unused,const char * dir,int unset __maybe_unused)2489 int symbol__config_symfs(const struct option *opt __maybe_unused,
2490 const char *dir, int unset __maybe_unused)
2491 {
2492 char *bf = NULL;
2493 int ret;
2494
2495 symbol_conf.symfs = strdup(dir);
2496 if (symbol_conf.symfs == NULL)
2497 return -ENOMEM;
2498
2499 /* skip the locally configured cache if a symfs is given, and
2500 * config buildid dir to symfs/.debug
2501 */
2502 ret = asprintf(&bf, "%s/%s", dir, ".debug");
2503 if (ret < 0)
2504 return -ENOMEM;
2505
2506 set_buildid_dir(bf);
2507
2508 free(bf);
2509 return 0;
2510 }
2511
2512 /*
2513 * Checks that user supplied symbol kernel files are accessible because
2514 * the default mechanism for accessing elf files fails silently. i.e. if
2515 * debug syms for a build ID aren't found perf carries on normally. When
2516 * they are user supplied we should assume that the user doesn't want to
2517 * silently fail.
2518 */
symbol__validate_sym_arguments(void)2519 int symbol__validate_sym_arguments(void)
2520 {
2521 if (symbol_conf.vmlinux_name &&
2522 access(symbol_conf.vmlinux_name, R_OK)) {
2523 pr_err("Invalid file: %s\n", symbol_conf.vmlinux_name);
2524 return -EINVAL;
2525 }
2526 if (symbol_conf.kallsyms_name &&
2527 access(symbol_conf.kallsyms_name, R_OK)) {
2528 pr_err("Invalid file: %s\n", symbol_conf.kallsyms_name);
2529 return -EINVAL;
2530 }
2531 return 0;
2532 }
2533
want_demangle(bool is_kernel_sym)2534 static bool want_demangle(bool is_kernel_sym)
2535 {
2536 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
2537 }
2538
2539 /*
2540 * Demangle C++ function signature, typically replaced by demangle-cxx.cpp
2541 * version.
2542 */
2543 #ifndef HAVE_CXA_DEMANGLE_SUPPORT
cxx_demangle_sym(const char * str __maybe_unused,bool params __maybe_unused,bool modifiers __maybe_unused)2544 char *cxx_demangle_sym(const char *str __maybe_unused, bool params __maybe_unused,
2545 bool modifiers __maybe_unused)
2546 {
2547 #ifdef HAVE_LIBBFD_SUPPORT
2548 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0);
2549
2550 return bfd_demangle(NULL, str, flags);
2551 #elif defined(HAVE_CPLUS_DEMANGLE_SUPPORT)
2552 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0);
2553
2554 return cplus_demangle(str, flags);
2555 #else
2556 return NULL;
2557 #endif
2558 }
2559 #endif /* !HAVE_CXA_DEMANGLE_SUPPORT */
2560
dso__demangle_sym(struct dso * dso,int kmodule,const char * elf_name)2561 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
2562 {
2563 struct demangle rust_demangle = {
2564 .style = DemangleStyleUnknown,
2565 };
2566 char *demangled = NULL;
2567
2568 /*
2569 * We need to figure out if the object was created from C++ sources
2570 * DWARF DW_compile_unit has this, but we don't always have access
2571 * to it...
2572 */
2573 if (!want_demangle((dso && dso__kernel(dso)) || kmodule))
2574 return demangled;
2575
2576 rust_demangle_demangle(elf_name, &rust_demangle);
2577 if (rust_demangle_is_known(&rust_demangle)) {
2578 /* A rust mangled name. */
2579 if (rust_demangle.mangled_len == 0)
2580 return demangled;
2581
2582 for (size_t buf_len = roundup_pow_of_two(rust_demangle.mangled_len * 2);
2583 buf_len < 1024 * 1024; buf_len += 32) {
2584 char *tmp = realloc(demangled, buf_len);
2585
2586 if (!tmp) {
2587 /* Failure to grow output buffer, return what is there. */
2588 return demangled;
2589 }
2590 demangled = tmp;
2591 if (rust_demangle_display_demangle(&rust_demangle, demangled, buf_len,
2592 /*alternate=*/true) == OverflowOk)
2593 return demangled;
2594 }
2595 /* Buffer exceeded sensible bounds, return what is there. */
2596 return demangled;
2597 }
2598
2599 demangled = cxx_demangle_sym(elf_name, verbose > 0, verbose > 0);
2600 if (demangled)
2601 return demangled;
2602
2603 demangled = ocaml_demangle_sym(elf_name);
2604 if (demangled)
2605 return demangled;
2606
2607 return java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
2608 }
2609