1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6 */
7
8 #define INCLUDE_VERMAGIC
9
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67
68 /*
69 * Mutex protects:
70 * 1) List of modules (also safely readable within RCU read section),
71 * 2) module_use links,
72 * 3) mod_tree.addr_min/mod_tree.addr_max.
73 * (delete and add uses RCU list operations).
74 */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 .addr_min = -1UL,
85 };
86
87 struct symsearch {
88 const struct kernel_symbol *start, *stop;
89 const u32 *crcs;
90 enum mod_license license;
91 };
92
93 /*
94 * Bounds of module memory, for speeding up __module_address.
95 * Protected by module_mutex.
96 */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 unsigned int size, struct mod_tree_root *tree)
99 {
100 unsigned long min = (unsigned long)base;
101 unsigned long max = min + size;
102
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 if (mod_mem_type_is_core_data(type)) {
105 if (min < tree->data_addr_min)
106 tree->data_addr_min = min;
107 if (max > tree->data_addr_max)
108 tree->data_addr_max = max;
109 return;
110 }
111 #endif
112 if (min < tree->addr_min)
113 tree->addr_min = min;
114 if (max > tree->addr_max)
115 tree->addr_max = max;
116 }
117
mod_update_bounds(struct module * mod)118 static void mod_update_bounds(struct module *mod)
119 {
120 for_each_mod_mem_type(type) {
121 struct module_memory *mod_mem = &mod->mem[type];
122
123 if (mod_mem->size)
124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 }
126 }
127
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136
register_module_notifier(struct notifier_block * nb)137 int register_module_notifier(struct notifier_block *nb)
138 {
139 return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142
unregister_module_notifier(struct notifier_block * nb)143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148
149 /*
150 * We require a truly strong try_module_get(): 0 means success.
151 * Otherwise an error is returned due to ongoing or failed
152 * initialization etc.
153 */
strong_try_module_get(struct module * mod)154 static inline int strong_try_module_get(struct module *mod)
155 {
156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 if (mod && mod->state == MODULE_STATE_COMING)
158 return -EBUSY;
159 if (try_module_get(mod))
160 return 0;
161 else
162 return -ENOENT;
163 }
164
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 enum lockdep_ok lockdep_ok)
167 {
168 add_taint(flag, lockdep_ok);
169 set_bit(flag, &mod->taints);
170 }
171
172 /*
173 * Like strncmp(), except s/-/_/g as per scripts/Makefile.lib:name-fix-token rule.
174 */
mod_strncmp(const char * str_a,const char * str_b,size_t n)175 static int mod_strncmp(const char *str_a, const char *str_b, size_t n)
176 {
177 for (int i = 0; i < n; i++) {
178 char a = str_a[i];
179 char b = str_b[i];
180 int d;
181
182 if (a == '-') a = '_';
183 if (b == '-') b = '_';
184
185 d = a - b;
186 if (d)
187 return d;
188
189 if (!a)
190 break;
191 }
192
193 return 0;
194 }
195
196 /*
197 * A thread that wants to hold a reference to a module only while it
198 * is running can call this to safely exit.
199 */
__module_put_and_kthread_exit(struct module * mod,long code)200 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
201 {
202 module_put(mod);
203 kthread_exit(code);
204 }
205 EXPORT_SYMBOL(__module_put_and_kthread_exit);
206
207 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)208 static unsigned int find_sec(const struct load_info *info, const char *name)
209 {
210 unsigned int i;
211
212 for (i = 1; i < info->hdr->e_shnum; i++) {
213 Elf_Shdr *shdr = &info->sechdrs[i];
214 /* Alloc bit cleared means "ignore it." */
215 if ((shdr->sh_flags & SHF_ALLOC)
216 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
217 return i;
218 }
219 return 0;
220 }
221
222 /**
223 * find_any_unique_sec() - Find a unique section index by name
224 * @info: Load info for the module to scan
225 * @name: Name of the section we're looking for
226 *
227 * Locates a unique section by name. Ignores SHF_ALLOC.
228 *
229 * Return: Section index if found uniquely, zero if absent, negative count
230 * of total instances if multiple were found.
231 */
find_any_unique_sec(const struct load_info * info,const char * name)232 static int find_any_unique_sec(const struct load_info *info, const char *name)
233 {
234 unsigned int idx;
235 unsigned int count = 0;
236 int i;
237
238 for (i = 1; i < info->hdr->e_shnum; i++) {
239 if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
240 name) == 0) {
241 count++;
242 idx = i;
243 }
244 }
245 if (count == 1) {
246 return idx;
247 } else if (count == 0) {
248 return 0;
249 } else {
250 return -count;
251 }
252 }
253
254 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)255 static void *section_addr(const struct load_info *info, const char *name)
256 {
257 /* Section 0 has sh_addr 0. */
258 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
259 }
260
261 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)262 static void *section_objs(const struct load_info *info,
263 const char *name,
264 size_t object_size,
265 unsigned int *num)
266 {
267 unsigned int sec = find_sec(info, name);
268
269 /* Section 0 has sh_addr 0 and sh_size 0. */
270 *num = info->sechdrs[sec].sh_size / object_size;
271 return (void *)info->sechdrs[sec].sh_addr;
272 }
273
274 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)275 static unsigned int find_any_sec(const struct load_info *info, const char *name)
276 {
277 unsigned int i;
278
279 for (i = 1; i < info->hdr->e_shnum; i++) {
280 Elf_Shdr *shdr = &info->sechdrs[i];
281 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
282 return i;
283 }
284 return 0;
285 }
286
287 /*
288 * Find a module section, or NULL. Fill in number of "objects" in section.
289 * Ignores SHF_ALLOC flag.
290 */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)291 static __maybe_unused void *any_section_objs(const struct load_info *info,
292 const char *name,
293 size_t object_size,
294 unsigned int *num)
295 {
296 unsigned int sec = find_any_sec(info, name);
297
298 /* Section 0 has sh_addr 0 and sh_size 0. */
299 *num = info->sechdrs[sec].sh_size / object_size;
300 return (void *)info->sechdrs[sec].sh_addr;
301 }
302
303 #ifndef CONFIG_MODVERSIONS
304 #define symversion(base, idx) NULL
305 #else
306 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
307 #endif
308
kernel_symbol_name(const struct kernel_symbol * sym)309 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
310 {
311 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
312 return offset_to_ptr(&sym->name_offset);
313 #else
314 return sym->name;
315 #endif
316 }
317
kernel_symbol_namespace(const struct kernel_symbol * sym)318 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
319 {
320 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
321 if (!sym->namespace_offset)
322 return NULL;
323 return offset_to_ptr(&sym->namespace_offset);
324 #else
325 return sym->namespace;
326 #endif
327 }
328
cmp_name(const void * name,const void * sym)329 int cmp_name(const void *name, const void *sym)
330 {
331 return strcmp(name, kernel_symbol_name(sym));
332 }
333
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)334 static bool find_exported_symbol_in_section(const struct symsearch *syms,
335 struct module *owner,
336 struct find_symbol_arg *fsa)
337 {
338 struct kernel_symbol *sym;
339
340 if (!fsa->gplok && syms->license == GPL_ONLY)
341 return false;
342
343 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
344 sizeof(struct kernel_symbol), cmp_name);
345 if (!sym)
346 return false;
347
348 fsa->owner = owner;
349 fsa->crc = symversion(syms->crcs, sym - syms->start);
350 fsa->sym = sym;
351 fsa->license = syms->license;
352
353 return true;
354 }
355
356 /*
357 * Find an exported symbol and return it, along with, (optional) crc and
358 * (optional) module which owns it. Needs RCU or module_mutex.
359 */
find_symbol(struct find_symbol_arg * fsa)360 bool find_symbol(struct find_symbol_arg *fsa)
361 {
362 static const struct symsearch arr[] = {
363 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
364 NOT_GPL_ONLY },
365 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
366 __start___kcrctab_gpl,
367 GPL_ONLY },
368 };
369 struct module *mod;
370 unsigned int i;
371
372 for (i = 0; i < ARRAY_SIZE(arr); i++)
373 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
374 return true;
375
376 list_for_each_entry_rcu(mod, &modules, list,
377 lockdep_is_held(&module_mutex)) {
378 struct symsearch arr[] = {
379 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
380 NOT_GPL_ONLY },
381 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
382 mod->gpl_crcs,
383 GPL_ONLY },
384 };
385
386 if (mod->state == MODULE_STATE_UNFORMED)
387 continue;
388
389 for (i = 0; i < ARRAY_SIZE(arr); i++)
390 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
391 return true;
392 }
393
394 pr_debug("Failed to find symbol %s\n", fsa->name);
395 return false;
396 }
397
398 /*
399 * Search for module by name: must hold module_mutex (or RCU for read-only
400 * access).
401 */
find_module_all(const char * name,size_t len,bool even_unformed)402 struct module *find_module_all(const char *name, size_t len,
403 bool even_unformed)
404 {
405 struct module *mod;
406
407 list_for_each_entry_rcu(mod, &modules, list,
408 lockdep_is_held(&module_mutex)) {
409 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
410 continue;
411 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
412 return mod;
413 }
414 return NULL;
415 }
416
find_module(const char * name)417 struct module *find_module(const char *name)
418 {
419 return find_module_all(name, strlen(name), false);
420 }
421
422 #ifdef CONFIG_SMP
423
mod_percpu(struct module * mod)424 static inline void __percpu *mod_percpu(struct module *mod)
425 {
426 return mod->percpu;
427 }
428
percpu_modalloc(struct module * mod,struct load_info * info)429 static int percpu_modalloc(struct module *mod, struct load_info *info)
430 {
431 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
432 unsigned long align = pcpusec->sh_addralign;
433
434 if (!pcpusec->sh_size)
435 return 0;
436
437 if (align > PAGE_SIZE) {
438 pr_warn("%s: per-cpu alignment %li > %li\n",
439 mod->name, align, PAGE_SIZE);
440 align = PAGE_SIZE;
441 }
442
443 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
444 if (!mod->percpu) {
445 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
446 mod->name, (unsigned long)pcpusec->sh_size);
447 return -ENOMEM;
448 }
449 mod->percpu_size = pcpusec->sh_size;
450 return 0;
451 }
452
percpu_modfree(struct module * mod)453 static void percpu_modfree(struct module *mod)
454 {
455 free_percpu(mod->percpu);
456 }
457
find_pcpusec(struct load_info * info)458 static unsigned int find_pcpusec(struct load_info *info)
459 {
460 return find_sec(info, ".data..percpu");
461 }
462
percpu_modcopy(struct module * mod,const void * from,unsigned long size)463 static void percpu_modcopy(struct module *mod,
464 const void *from, unsigned long size)
465 {
466 int cpu;
467
468 for_each_possible_cpu(cpu)
469 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
470 }
471
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)472 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
473 {
474 struct module *mod;
475 unsigned int cpu;
476
477 guard(rcu)();
478 list_for_each_entry_rcu(mod, &modules, list) {
479 if (mod->state == MODULE_STATE_UNFORMED)
480 continue;
481 if (!mod->percpu_size)
482 continue;
483 for_each_possible_cpu(cpu) {
484 void *start = per_cpu_ptr(mod->percpu, cpu);
485 void *va = (void *)addr;
486
487 if (va >= start && va < start + mod->percpu_size) {
488 if (can_addr) {
489 *can_addr = (unsigned long) (va - start);
490 *can_addr += (unsigned long)
491 per_cpu_ptr(mod->percpu,
492 get_boot_cpu_id());
493 }
494 return true;
495 }
496 }
497 }
498 return false;
499 }
500
501 /**
502 * is_module_percpu_address() - test whether address is from module static percpu
503 * @addr: address to test
504 *
505 * Test whether @addr belongs to module static percpu area.
506 *
507 * Return: %true if @addr is from module static percpu area
508 */
is_module_percpu_address(unsigned long addr)509 bool is_module_percpu_address(unsigned long addr)
510 {
511 return __is_module_percpu_address(addr, NULL);
512 }
513
514 #else /* ... !CONFIG_SMP */
515
mod_percpu(struct module * mod)516 static inline void __percpu *mod_percpu(struct module *mod)
517 {
518 return NULL;
519 }
percpu_modalloc(struct module * mod,struct load_info * info)520 static int percpu_modalloc(struct module *mod, struct load_info *info)
521 {
522 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
523 if (info->sechdrs[info->index.pcpu].sh_size != 0)
524 return -ENOMEM;
525 return 0;
526 }
percpu_modfree(struct module * mod)527 static inline void percpu_modfree(struct module *mod)
528 {
529 }
find_pcpusec(struct load_info * info)530 static unsigned int find_pcpusec(struct load_info *info)
531 {
532 return 0;
533 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)534 static inline void percpu_modcopy(struct module *mod,
535 const void *from, unsigned long size)
536 {
537 /* pcpusec should be 0, and size of that section should be 0. */
538 BUG_ON(size != 0);
539 }
is_module_percpu_address(unsigned long addr)540 bool is_module_percpu_address(unsigned long addr)
541 {
542 return false;
543 }
544
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)545 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
546 {
547 return false;
548 }
549
550 #endif /* CONFIG_SMP */
551
552 #define MODINFO_ATTR(field) \
553 static void setup_modinfo_##field(struct module *mod, const char *s) \
554 { \
555 mod->field = kstrdup(s, GFP_KERNEL); \
556 } \
557 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
558 struct module_kobject *mk, char *buffer) \
559 { \
560 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
561 } \
562 static int modinfo_##field##_exists(struct module *mod) \
563 { \
564 return mod->field != NULL; \
565 } \
566 static void free_modinfo_##field(struct module *mod) \
567 { \
568 kfree(mod->field); \
569 mod->field = NULL; \
570 } \
571 static const struct module_attribute modinfo_##field = { \
572 .attr = { .name = __stringify(field), .mode = 0444 }, \
573 .show = show_modinfo_##field, \
574 .setup = setup_modinfo_##field, \
575 .test = modinfo_##field##_exists, \
576 .free = free_modinfo_##field, \
577 };
578
579 MODINFO_ATTR(version);
580 MODINFO_ATTR(srcversion);
581
582 static struct {
583 char name[MODULE_NAME_LEN + 1];
584 char taints[MODULE_FLAGS_BUF_SIZE];
585 } last_unloaded_module;
586
587 #ifdef CONFIG_MODULE_UNLOAD
588
589 EXPORT_TRACEPOINT_SYMBOL(module_get);
590
591 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
592 #define MODULE_REF_BASE 1
593
594 /* Init the unload section of the module. */
module_unload_init(struct module * mod)595 static int module_unload_init(struct module *mod)
596 {
597 /*
598 * Initialize reference counter to MODULE_REF_BASE.
599 * refcnt == 0 means module is going.
600 */
601 atomic_set(&mod->refcnt, MODULE_REF_BASE);
602
603 INIT_LIST_HEAD(&mod->source_list);
604 INIT_LIST_HEAD(&mod->target_list);
605
606 /* Hold reference count during initialization. */
607 atomic_inc(&mod->refcnt);
608
609 return 0;
610 }
611
612 /* Does a already use b? */
already_uses(struct module * a,struct module * b)613 static int already_uses(struct module *a, struct module *b)
614 {
615 struct module_use *use;
616
617 list_for_each_entry(use, &b->source_list, source_list) {
618 if (use->source == a)
619 return 1;
620 }
621 pr_debug("%s does not use %s!\n", a->name, b->name);
622 return 0;
623 }
624
625 /*
626 * Module a uses b
627 * - we add 'a' as a "source", 'b' as a "target" of module use
628 * - the module_use is added to the list of 'b' sources (so
629 * 'b' can walk the list to see who sourced them), and of 'a'
630 * targets (so 'a' can see what modules it targets).
631 */
add_module_usage(struct module * a,struct module * b)632 static int add_module_usage(struct module *a, struct module *b)
633 {
634 struct module_use *use;
635
636 pr_debug("Allocating new usage for %s.\n", a->name);
637 use = kmalloc(sizeof(*use), GFP_ATOMIC);
638 if (!use)
639 return -ENOMEM;
640
641 use->source = a;
642 use->target = b;
643 list_add(&use->source_list, &b->source_list);
644 list_add(&use->target_list, &a->target_list);
645 return 0;
646 }
647
648 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)649 static int ref_module(struct module *a, struct module *b)
650 {
651 int err;
652
653 if (b == NULL || already_uses(a, b))
654 return 0;
655
656 /* If module isn't available, we fail. */
657 err = strong_try_module_get(b);
658 if (err)
659 return err;
660
661 err = add_module_usage(a, b);
662 if (err) {
663 module_put(b);
664 return err;
665 }
666 return 0;
667 }
668
669 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)670 static void module_unload_free(struct module *mod)
671 {
672 struct module_use *use, *tmp;
673
674 mutex_lock(&module_mutex);
675 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
676 struct module *i = use->target;
677 pr_debug("%s unusing %s\n", mod->name, i->name);
678 module_put(i);
679 list_del(&use->source_list);
680 list_del(&use->target_list);
681 kfree(use);
682 }
683 mutex_unlock(&module_mutex);
684 }
685
686 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)687 static inline int try_force_unload(unsigned int flags)
688 {
689 int ret = (flags & O_TRUNC);
690 if (ret)
691 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
692 return ret;
693 }
694 #else
try_force_unload(unsigned int flags)695 static inline int try_force_unload(unsigned int flags)
696 {
697 return 0;
698 }
699 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
700
701 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)702 static int try_release_module_ref(struct module *mod)
703 {
704 int ret;
705
706 /* Try to decrement refcnt which we set at loading */
707 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
708 BUG_ON(ret < 0);
709 if (ret)
710 /* Someone can put this right now, recover with checking */
711 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
712
713 return ret;
714 }
715
try_stop_module(struct module * mod,int flags,int * forced)716 static int try_stop_module(struct module *mod, int flags, int *forced)
717 {
718 /* If it's not unused, quit unless we're forcing. */
719 if (try_release_module_ref(mod) != 0) {
720 *forced = try_force_unload(flags);
721 if (!(*forced))
722 return -EWOULDBLOCK;
723 }
724
725 /* Mark it as dying. */
726 mod->state = MODULE_STATE_GOING;
727
728 return 0;
729 }
730
731 /**
732 * module_refcount() - return the refcount or -1 if unloading
733 * @mod: the module we're checking
734 *
735 * Return:
736 * -1 if the module is in the process of unloading
737 * otherwise the number of references in the kernel to the module
738 */
module_refcount(struct module * mod)739 int module_refcount(struct module *mod)
740 {
741 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
742 }
743 EXPORT_SYMBOL(module_refcount);
744
745 /* This exists whether we can unload or not */
746 static void free_module(struct module *mod);
747
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)748 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
749 unsigned int, flags)
750 {
751 struct module *mod;
752 char name[MODULE_NAME_LEN];
753 char buf[MODULE_FLAGS_BUF_SIZE];
754 int ret, forced = 0;
755
756 if (!capable(CAP_SYS_MODULE) || modules_disabled)
757 return -EPERM;
758
759 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
760 return -EFAULT;
761 name[MODULE_NAME_LEN-1] = '\0';
762
763 audit_log_kern_module(name);
764
765 if (mutex_lock_interruptible(&module_mutex) != 0)
766 return -EINTR;
767
768 mod = find_module(name);
769 if (!mod) {
770 ret = -ENOENT;
771 goto out;
772 }
773
774 if (!list_empty(&mod->source_list)) {
775 /* Other modules depend on us: get rid of them first. */
776 ret = -EWOULDBLOCK;
777 goto out;
778 }
779
780 /* Doing init or already dying? */
781 if (mod->state != MODULE_STATE_LIVE) {
782 /* FIXME: if (force), slam module count damn the torpedoes */
783 pr_debug("%s already dying\n", mod->name);
784 ret = -EBUSY;
785 goto out;
786 }
787
788 /* If it has an init func, it must have an exit func to unload */
789 if (mod->init && !mod->exit) {
790 forced = try_force_unload(flags);
791 if (!forced) {
792 /* This module can't be removed */
793 ret = -EBUSY;
794 goto out;
795 }
796 }
797
798 ret = try_stop_module(mod, flags, &forced);
799 if (ret != 0)
800 goto out;
801
802 mutex_unlock(&module_mutex);
803 /* Final destruction now no one is using it. */
804 if (mod->exit != NULL)
805 mod->exit();
806 blocking_notifier_call_chain(&module_notify_list,
807 MODULE_STATE_GOING, mod);
808 klp_module_going(mod);
809 ftrace_release_mod(mod);
810
811 async_synchronize_full();
812
813 /* Store the name and taints of the last unloaded module for diagnostic purposes */
814 strscpy(last_unloaded_module.name, mod->name);
815 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false));
816
817 free_module(mod);
818 /* someone could wait for the module in add_unformed_module() */
819 wake_up_all(&module_wq);
820 return 0;
821 out:
822 mutex_unlock(&module_mutex);
823 return ret;
824 }
825
__symbol_put(const char * symbol)826 void __symbol_put(const char *symbol)
827 {
828 struct find_symbol_arg fsa = {
829 .name = symbol,
830 .gplok = true,
831 };
832
833 guard(rcu)();
834 BUG_ON(!find_symbol(&fsa));
835 module_put(fsa.owner);
836 }
837 EXPORT_SYMBOL(__symbol_put);
838
839 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)840 void symbol_put_addr(void *addr)
841 {
842 struct module *modaddr;
843 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
844
845 if (core_kernel_text(a))
846 return;
847
848 /*
849 * Even though we hold a reference on the module; we still need to
850 * RCU read section in order to safely traverse the data structure.
851 */
852 guard(rcu)();
853 modaddr = __module_text_address(a);
854 BUG_ON(!modaddr);
855 module_put(modaddr);
856 }
857 EXPORT_SYMBOL_GPL(symbol_put_addr);
858
show_refcnt(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)859 static ssize_t show_refcnt(const struct module_attribute *mattr,
860 struct module_kobject *mk, char *buffer)
861 {
862 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
863 }
864
865 static const struct module_attribute modinfo_refcnt =
866 __ATTR(refcnt, 0444, show_refcnt, NULL);
867
__module_get(struct module * module)868 void __module_get(struct module *module)
869 {
870 if (module) {
871 atomic_inc(&module->refcnt);
872 trace_module_get(module, _RET_IP_);
873 }
874 }
875 EXPORT_SYMBOL(__module_get);
876
try_module_get(struct module * module)877 bool try_module_get(struct module *module)
878 {
879 bool ret = true;
880
881 if (module) {
882 /* Note: here, we can fail to get a reference */
883 if (likely(module_is_live(module) &&
884 atomic_inc_not_zero(&module->refcnt) != 0))
885 trace_module_get(module, _RET_IP_);
886 else
887 ret = false;
888 }
889 return ret;
890 }
891 EXPORT_SYMBOL(try_module_get);
892
module_put(struct module * module)893 void module_put(struct module *module)
894 {
895 int ret;
896
897 if (module) {
898 ret = atomic_dec_if_positive(&module->refcnt);
899 WARN_ON(ret < 0); /* Failed to put refcount */
900 trace_module_put(module, _RET_IP_);
901 }
902 }
903 EXPORT_SYMBOL(module_put);
904
905 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)906 static inline void module_unload_free(struct module *mod)
907 {
908 }
909
ref_module(struct module * a,struct module * b)910 static int ref_module(struct module *a, struct module *b)
911 {
912 return strong_try_module_get(b);
913 }
914
module_unload_init(struct module * mod)915 static inline int module_unload_init(struct module *mod)
916 {
917 return 0;
918 }
919 #endif /* CONFIG_MODULE_UNLOAD */
920
module_flags_taint(unsigned long taints,char * buf)921 size_t module_flags_taint(unsigned long taints, char *buf)
922 {
923 size_t l = 0;
924 int i;
925
926 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
927 if (taint_flags[i].module && test_bit(i, &taints))
928 buf[l++] = taint_flags[i].c_true;
929 }
930
931 return l;
932 }
933
show_initstate(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)934 static ssize_t show_initstate(const struct module_attribute *mattr,
935 struct module_kobject *mk, char *buffer)
936 {
937 const char *state = "unknown";
938
939 switch (mk->mod->state) {
940 case MODULE_STATE_LIVE:
941 state = "live";
942 break;
943 case MODULE_STATE_COMING:
944 state = "coming";
945 break;
946 case MODULE_STATE_GOING:
947 state = "going";
948 break;
949 default:
950 BUG();
951 }
952 return sprintf(buffer, "%s\n", state);
953 }
954
955 static const struct module_attribute modinfo_initstate =
956 __ATTR(initstate, 0444, show_initstate, NULL);
957
store_uevent(const struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)958 static ssize_t store_uevent(const struct module_attribute *mattr,
959 struct module_kobject *mk,
960 const char *buffer, size_t count)
961 {
962 int rc;
963
964 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
965 return rc ? rc : count;
966 }
967
968 const struct module_attribute module_uevent =
969 __ATTR(uevent, 0200, NULL, store_uevent);
970
show_coresize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)971 static ssize_t show_coresize(const struct module_attribute *mattr,
972 struct module_kobject *mk, char *buffer)
973 {
974 unsigned int size = mk->mod->mem[MOD_TEXT].size;
975
976 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
977 for_class_mod_mem_type(type, core_data)
978 size += mk->mod->mem[type].size;
979 }
980 return sprintf(buffer, "%u\n", size);
981 }
982
983 static const struct module_attribute modinfo_coresize =
984 __ATTR(coresize, 0444, show_coresize, NULL);
985
986 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)987 static ssize_t show_datasize(const struct module_attribute *mattr,
988 struct module_kobject *mk, char *buffer)
989 {
990 unsigned int size = 0;
991
992 for_class_mod_mem_type(type, core_data)
993 size += mk->mod->mem[type].size;
994 return sprintf(buffer, "%u\n", size);
995 }
996
997 static const struct module_attribute modinfo_datasize =
998 __ATTR(datasize, 0444, show_datasize, NULL);
999 #endif
1000
show_initsize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1001 static ssize_t show_initsize(const struct module_attribute *mattr,
1002 struct module_kobject *mk, char *buffer)
1003 {
1004 unsigned int size = 0;
1005
1006 for_class_mod_mem_type(type, init)
1007 size += mk->mod->mem[type].size;
1008 return sprintf(buffer, "%u\n", size);
1009 }
1010
1011 static const struct module_attribute modinfo_initsize =
1012 __ATTR(initsize, 0444, show_initsize, NULL);
1013
show_taint(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1014 static ssize_t show_taint(const struct module_attribute *mattr,
1015 struct module_kobject *mk, char *buffer)
1016 {
1017 size_t l;
1018
1019 l = module_flags_taint(mk->mod->taints, buffer);
1020 buffer[l++] = '\n';
1021 return l;
1022 }
1023
1024 static const struct module_attribute modinfo_taint =
1025 __ATTR(taint, 0444, show_taint, NULL);
1026
1027 const struct module_attribute *const modinfo_attrs[] = {
1028 &module_uevent,
1029 &modinfo_version,
1030 &modinfo_srcversion,
1031 &modinfo_initstate,
1032 &modinfo_coresize,
1033 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1034 &modinfo_datasize,
1035 #endif
1036 &modinfo_initsize,
1037 &modinfo_taint,
1038 #ifdef CONFIG_MODULE_UNLOAD
1039 &modinfo_refcnt,
1040 #endif
1041 NULL,
1042 };
1043
1044 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1045
1046 static const char vermagic[] = VERMAGIC_STRING;
1047
try_to_force_load(struct module * mod,const char * reason)1048 int try_to_force_load(struct module *mod, const char *reason)
1049 {
1050 #ifdef CONFIG_MODULE_FORCE_LOAD
1051 if (!test_taint(TAINT_FORCED_MODULE))
1052 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1053 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1054 return 0;
1055 #else
1056 return -ENOEXEC;
1057 #endif
1058 }
1059
1060 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1061 char *module_next_tag_pair(char *string, unsigned long *secsize)
1062 {
1063 /* Skip non-zero chars */
1064 while (string[0]) {
1065 string++;
1066 if ((*secsize)-- <= 1)
1067 return NULL;
1068 }
1069
1070 /* Skip any zero padding. */
1071 while (!string[0]) {
1072 string++;
1073 if ((*secsize)-- <= 1)
1074 return NULL;
1075 }
1076 return string;
1077 }
1078
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1079 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1080 char *prev)
1081 {
1082 char *p;
1083 unsigned int taglen = strlen(tag);
1084 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1085 unsigned long size = infosec->sh_size;
1086
1087 /*
1088 * get_modinfo() calls made before rewrite_section_headers()
1089 * must use sh_offset, as sh_addr isn't set!
1090 */
1091 char *modinfo = (char *)info->hdr + infosec->sh_offset;
1092
1093 if (prev) {
1094 size -= prev - modinfo;
1095 modinfo = module_next_tag_pair(prev, &size);
1096 }
1097
1098 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1099 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1100 return p + taglen + 1;
1101 }
1102 return NULL;
1103 }
1104
get_modinfo(const struct load_info * info,const char * tag)1105 static char *get_modinfo(const struct load_info *info, const char *tag)
1106 {
1107 return get_next_modinfo(info, tag, NULL);
1108 }
1109
1110 /**
1111 * verify_module_namespace() - does @modname have access to this symbol's @namespace
1112 * @namespace: export symbol namespace
1113 * @modname: module name
1114 *
1115 * If @namespace is prefixed with "module:" to indicate it is a module namespace
1116 * then test if @modname matches any of the comma separated patterns.
1117 *
1118 * The patterns only support tail-glob.
1119 */
verify_module_namespace(const char * namespace,const char * modname)1120 static bool verify_module_namespace(const char *namespace, const char *modname)
1121 {
1122 size_t len, modlen = strlen(modname);
1123 const char *prefix = "module:";
1124 const char *sep;
1125 bool glob;
1126
1127 if (!strstarts(namespace, prefix))
1128 return false;
1129
1130 for (namespace += strlen(prefix); *namespace; namespace = sep) {
1131 sep = strchrnul(namespace, ',');
1132 len = sep - namespace;
1133
1134 glob = false;
1135 if (sep[-1] == '*') {
1136 len--;
1137 glob = true;
1138 }
1139
1140 if (*sep)
1141 sep++;
1142
1143 if (mod_strncmp(namespace, modname, len) == 0 && (glob || len == modlen))
1144 return true;
1145 }
1146
1147 return false;
1148 }
1149
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1150 static int verify_namespace_is_imported(const struct load_info *info,
1151 const struct kernel_symbol *sym,
1152 struct module *mod)
1153 {
1154 const char *namespace;
1155 char *imported_namespace;
1156
1157 namespace = kernel_symbol_namespace(sym);
1158 if (namespace && namespace[0]) {
1159
1160 if (verify_module_namespace(namespace, mod->name))
1161 return 0;
1162
1163 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1164 if (strcmp(namespace, imported_namespace) == 0)
1165 return 0;
1166 }
1167 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1168 pr_warn(
1169 #else
1170 pr_err(
1171 #endif
1172 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1173 mod->name, kernel_symbol_name(sym), namespace);
1174 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1175 return -EINVAL;
1176 #endif
1177 }
1178 return 0;
1179 }
1180
inherit_taint(struct module * mod,struct module * owner,const char * name)1181 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1182 {
1183 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1184 return true;
1185
1186 if (mod->using_gplonly_symbols) {
1187 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1188 mod->name, name, owner->name);
1189 return false;
1190 }
1191
1192 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1193 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1194 mod->name, name, owner->name);
1195 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1196 }
1197 return true;
1198 }
1199
1200 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1201 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1202 const struct load_info *info,
1203 const char *name,
1204 char ownername[])
1205 {
1206 struct find_symbol_arg fsa = {
1207 .name = name,
1208 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1209 .warn = true,
1210 };
1211 int err;
1212
1213 /*
1214 * The module_mutex should not be a heavily contended lock;
1215 * if we get the occasional sleep here, we'll go an extra iteration
1216 * in the wait_event_interruptible(), which is harmless.
1217 */
1218 sched_annotate_sleep();
1219 mutex_lock(&module_mutex);
1220 if (!find_symbol(&fsa))
1221 goto unlock;
1222
1223 if (fsa.license == GPL_ONLY)
1224 mod->using_gplonly_symbols = true;
1225
1226 if (!inherit_taint(mod, fsa.owner, name)) {
1227 fsa.sym = NULL;
1228 goto getname;
1229 }
1230
1231 if (!check_version(info, name, mod, fsa.crc)) {
1232 fsa.sym = ERR_PTR(-EINVAL);
1233 goto getname;
1234 }
1235
1236 err = verify_namespace_is_imported(info, fsa.sym, mod);
1237 if (err) {
1238 fsa.sym = ERR_PTR(err);
1239 goto getname;
1240 }
1241
1242 err = ref_module(mod, fsa.owner);
1243 if (err) {
1244 fsa.sym = ERR_PTR(err);
1245 goto getname;
1246 }
1247
1248 getname:
1249 /* We must make copy under the lock if we failed to get ref. */
1250 strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1251 unlock:
1252 mutex_unlock(&module_mutex);
1253 return fsa.sym;
1254 }
1255
1256 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1257 resolve_symbol_wait(struct module *mod,
1258 const struct load_info *info,
1259 const char *name)
1260 {
1261 const struct kernel_symbol *ksym;
1262 char owner[MODULE_NAME_LEN];
1263
1264 if (wait_event_interruptible_timeout(module_wq,
1265 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1266 || PTR_ERR(ksym) != -EBUSY,
1267 30 * HZ) <= 0) {
1268 pr_warn("%s: gave up waiting for init of module %s.\n",
1269 mod->name, owner);
1270 }
1271 return ksym;
1272 }
1273
module_arch_cleanup(struct module * mod)1274 void __weak module_arch_cleanup(struct module *mod)
1275 {
1276 }
1277
module_arch_freeing_init(struct module * mod)1278 void __weak module_arch_freeing_init(struct module *mod)
1279 {
1280 }
1281
module_memory_alloc(struct module * mod,enum mod_mem_type type)1282 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1283 {
1284 unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1285 enum execmem_type execmem_type;
1286 void *ptr;
1287
1288 mod->mem[type].size = size;
1289
1290 if (mod_mem_type_is_data(type))
1291 execmem_type = EXECMEM_MODULE_DATA;
1292 else
1293 execmem_type = EXECMEM_MODULE_TEXT;
1294
1295 ptr = execmem_alloc(execmem_type, size);
1296 if (!ptr)
1297 return -ENOMEM;
1298
1299 if (execmem_is_rox(execmem_type)) {
1300 int err = execmem_make_temp_rw(ptr, size);
1301
1302 if (err) {
1303 execmem_free(ptr);
1304 return -ENOMEM;
1305 }
1306
1307 mod->mem[type].is_rox = true;
1308 }
1309
1310 /*
1311 * The pointer to these blocks of memory are stored on the module
1312 * structure and we keep that around so long as the module is
1313 * around. We only free that memory when we unload the module.
1314 * Just mark them as not being a leak then. The .init* ELF
1315 * sections *do* get freed after boot so we *could* treat them
1316 * slightly differently with kmemleak_ignore() and only grey
1317 * them out as they work as typical memory allocations which
1318 * *do* eventually get freed, but let's just keep things simple
1319 * and avoid *any* false positives.
1320 */
1321 if (!mod->mem[type].is_rox)
1322 kmemleak_not_leak(ptr);
1323
1324 memset(ptr, 0, size);
1325 mod->mem[type].base = ptr;
1326
1327 return 0;
1328 }
1329
module_memory_restore_rox(struct module * mod)1330 static void module_memory_restore_rox(struct module *mod)
1331 {
1332 for_class_mod_mem_type(type, text) {
1333 struct module_memory *mem = &mod->mem[type];
1334
1335 if (mem->is_rox)
1336 execmem_restore_rox(mem->base, mem->size);
1337 }
1338 }
1339
module_memory_free(struct module * mod,enum mod_mem_type type)1340 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1341 {
1342 struct module_memory *mem = &mod->mem[type];
1343
1344 execmem_free(mem->base);
1345 }
1346
free_mod_mem(struct module * mod)1347 static void free_mod_mem(struct module *mod)
1348 {
1349 for_each_mod_mem_type(type) {
1350 struct module_memory *mod_mem = &mod->mem[type];
1351
1352 if (type == MOD_DATA)
1353 continue;
1354
1355 /* Free lock-classes; relies on the preceding sync_rcu(). */
1356 lockdep_free_key_range(mod_mem->base, mod_mem->size);
1357 if (mod_mem->size)
1358 module_memory_free(mod, type);
1359 }
1360
1361 /* MOD_DATA hosts mod, so free it at last */
1362 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1363 module_memory_free(mod, MOD_DATA);
1364 }
1365
1366 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1367 static void free_module(struct module *mod)
1368 {
1369 trace_module_free(mod);
1370
1371 codetag_unload_module(mod);
1372
1373 mod_sysfs_teardown(mod);
1374
1375 /*
1376 * We leave it in list to prevent duplicate loads, but make sure
1377 * that noone uses it while it's being deconstructed.
1378 */
1379 mutex_lock(&module_mutex);
1380 mod->state = MODULE_STATE_UNFORMED;
1381 mutex_unlock(&module_mutex);
1382
1383 /* Arch-specific cleanup. */
1384 module_arch_cleanup(mod);
1385
1386 /* Module unload stuff */
1387 module_unload_free(mod);
1388
1389 /* Free any allocated parameters. */
1390 destroy_params(mod->kp, mod->num_kp);
1391
1392 if (is_livepatch_module(mod))
1393 free_module_elf(mod);
1394
1395 /* Now we can delete it from the lists */
1396 mutex_lock(&module_mutex);
1397 /* Unlink carefully: kallsyms could be walking list. */
1398 list_del_rcu(&mod->list);
1399 mod_tree_remove(mod);
1400 /* Remove this module from bug list, this uses list_del_rcu */
1401 module_bug_cleanup(mod);
1402 /* Wait for RCU synchronizing before releasing mod->list and buglist. */
1403 synchronize_rcu();
1404 if (try_add_tainted_module(mod))
1405 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1406 mod->name);
1407 mutex_unlock(&module_mutex);
1408
1409 /* This may be empty, but that's OK */
1410 module_arch_freeing_init(mod);
1411 kfree(mod->args);
1412 percpu_modfree(mod);
1413
1414 free_mod_mem(mod);
1415 }
1416
__symbol_get(const char * symbol)1417 void *__symbol_get(const char *symbol)
1418 {
1419 struct find_symbol_arg fsa = {
1420 .name = symbol,
1421 .gplok = true,
1422 .warn = true,
1423 };
1424
1425 scoped_guard(rcu) {
1426 if (!find_symbol(&fsa))
1427 return NULL;
1428 if (fsa.license != GPL_ONLY) {
1429 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1430 symbol);
1431 return NULL;
1432 }
1433 if (strong_try_module_get(fsa.owner))
1434 return NULL;
1435 }
1436 return (void *)kernel_symbol_value(fsa.sym);
1437 }
1438 EXPORT_SYMBOL_GPL(__symbol_get);
1439
1440 /*
1441 * Ensure that an exported symbol [global namespace] does not already exist
1442 * in the kernel or in some other module's exported symbol table.
1443 *
1444 * You must hold the module_mutex.
1445 */
verify_exported_symbols(struct module * mod)1446 static int verify_exported_symbols(struct module *mod)
1447 {
1448 unsigned int i;
1449 const struct kernel_symbol *s;
1450 struct {
1451 const struct kernel_symbol *sym;
1452 unsigned int num;
1453 } arr[] = {
1454 { mod->syms, mod->num_syms },
1455 { mod->gpl_syms, mod->num_gpl_syms },
1456 };
1457
1458 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1459 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1460 struct find_symbol_arg fsa = {
1461 .name = kernel_symbol_name(s),
1462 .gplok = true,
1463 };
1464 if (find_symbol(&fsa)) {
1465 pr_err("%s: exports duplicate symbol %s"
1466 " (owned by %s)\n",
1467 mod->name, kernel_symbol_name(s),
1468 module_name(fsa.owner));
1469 return -ENOEXEC;
1470 }
1471 }
1472 }
1473 return 0;
1474 }
1475
ignore_undef_symbol(Elf_Half emachine,const char * name)1476 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1477 {
1478 /*
1479 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1480 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1481 * i386 has a similar problem but may not deserve a fix.
1482 *
1483 * If we ever have to ignore many symbols, consider refactoring the code to
1484 * only warn if referenced by a relocation.
1485 */
1486 if (emachine == EM_386 || emachine == EM_X86_64)
1487 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1488 return false;
1489 }
1490
1491 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1492 static int simplify_symbols(struct module *mod, const struct load_info *info)
1493 {
1494 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1495 Elf_Sym *sym = (void *)symsec->sh_addr;
1496 unsigned long secbase;
1497 unsigned int i;
1498 int ret = 0;
1499 const struct kernel_symbol *ksym;
1500
1501 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1502 const char *name = info->strtab + sym[i].st_name;
1503
1504 switch (sym[i].st_shndx) {
1505 case SHN_COMMON:
1506 /* Ignore common symbols */
1507 if (!strncmp(name, "__gnu_lto", 9))
1508 break;
1509
1510 /*
1511 * We compiled with -fno-common. These are not
1512 * supposed to happen.
1513 */
1514 pr_debug("Common symbol: %s\n", name);
1515 pr_warn("%s: please compile with -fno-common\n",
1516 mod->name);
1517 ret = -ENOEXEC;
1518 break;
1519
1520 case SHN_ABS:
1521 /* Don't need to do anything */
1522 pr_debug("Absolute symbol: 0x%08lx %s\n",
1523 (long)sym[i].st_value, name);
1524 break;
1525
1526 case SHN_LIVEPATCH:
1527 /* Livepatch symbols are resolved by livepatch */
1528 break;
1529
1530 case SHN_UNDEF:
1531 ksym = resolve_symbol_wait(mod, info, name);
1532 /* Ok if resolved. */
1533 if (ksym && !IS_ERR(ksym)) {
1534 sym[i].st_value = kernel_symbol_value(ksym);
1535 break;
1536 }
1537
1538 /* Ok if weak or ignored. */
1539 if (!ksym &&
1540 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1541 ignore_undef_symbol(info->hdr->e_machine, name)))
1542 break;
1543
1544 ret = PTR_ERR(ksym) ?: -ENOENT;
1545 pr_warn("%s: Unknown symbol %s (err %d)\n",
1546 mod->name, name, ret);
1547 break;
1548
1549 default:
1550 /* Divert to percpu allocation if a percpu var. */
1551 if (sym[i].st_shndx == info->index.pcpu)
1552 secbase = (unsigned long)mod_percpu(mod);
1553 else
1554 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1555 sym[i].st_value += secbase;
1556 break;
1557 }
1558 }
1559
1560 return ret;
1561 }
1562
apply_relocations(struct module * mod,const struct load_info * info)1563 static int apply_relocations(struct module *mod, const struct load_info *info)
1564 {
1565 unsigned int i;
1566 int err = 0;
1567
1568 /* Now do relocations. */
1569 for (i = 1; i < info->hdr->e_shnum; i++) {
1570 unsigned int infosec = info->sechdrs[i].sh_info;
1571
1572 /* Not a valid relocation section? */
1573 if (infosec >= info->hdr->e_shnum)
1574 continue;
1575
1576 /*
1577 * Don't bother with non-allocated sections.
1578 * An exception is the percpu section, which has separate allocations
1579 * for individual CPUs. We relocate the percpu section in the initial
1580 * ELF template and subsequently copy it to the per-CPU destinations.
1581 */
1582 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC) &&
1583 (!infosec || infosec != info->index.pcpu))
1584 continue;
1585
1586 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1587 err = klp_apply_section_relocs(mod, info->sechdrs,
1588 info->secstrings,
1589 info->strtab,
1590 info->index.sym, i,
1591 NULL);
1592 else if (info->sechdrs[i].sh_type == SHT_REL)
1593 err = apply_relocate(info->sechdrs, info->strtab,
1594 info->index.sym, i, mod);
1595 else if (info->sechdrs[i].sh_type == SHT_RELA)
1596 err = apply_relocate_add(info->sechdrs, info->strtab,
1597 info->index.sym, i, mod);
1598 if (err < 0)
1599 break;
1600 }
1601 return err;
1602 }
1603
1604 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1605 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1606 unsigned int section)
1607 {
1608 /* default implementation just returns zero */
1609 return 0;
1610 }
1611
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1612 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1613 Elf_Shdr *sechdr, unsigned int section)
1614 {
1615 long offset;
1616 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1617
1618 mod->mem[type].size += arch_mod_section_prepend(mod, section);
1619 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1620 mod->mem[type].size = offset + sechdr->sh_size;
1621
1622 WARN_ON_ONCE(offset & mask);
1623 return offset | mask;
1624 }
1625
module_init_layout_section(const char * sname)1626 bool module_init_layout_section(const char *sname)
1627 {
1628 #ifndef CONFIG_MODULE_UNLOAD
1629 if (module_exit_section(sname))
1630 return true;
1631 #endif
1632 return module_init_section(sname);
1633 }
1634
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1635 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1636 {
1637 unsigned int m, i;
1638
1639 /*
1640 * { Mask of required section header flags,
1641 * Mask of excluded section header flags }
1642 */
1643 static const unsigned long masks[][2] = {
1644 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1645 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1646 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1647 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1648 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1649 };
1650 static const int core_m_to_mem_type[] = {
1651 MOD_TEXT,
1652 MOD_RODATA,
1653 MOD_RO_AFTER_INIT,
1654 MOD_DATA,
1655 MOD_DATA,
1656 };
1657 static const int init_m_to_mem_type[] = {
1658 MOD_INIT_TEXT,
1659 MOD_INIT_RODATA,
1660 MOD_INVALID,
1661 MOD_INIT_DATA,
1662 MOD_INIT_DATA,
1663 };
1664
1665 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1666 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1667
1668 for (i = 0; i < info->hdr->e_shnum; ++i) {
1669 Elf_Shdr *s = &info->sechdrs[i];
1670 const char *sname = info->secstrings + s->sh_name;
1671
1672 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1673 || (s->sh_flags & masks[m][1])
1674 || s->sh_entsize != ~0UL
1675 || is_init != module_init_layout_section(sname))
1676 continue;
1677
1678 if (WARN_ON_ONCE(type == MOD_INVALID))
1679 continue;
1680
1681 /*
1682 * Do not allocate codetag memory as we load it into
1683 * preallocated contiguous memory.
1684 */
1685 if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1686 /*
1687 * s->sh_entsize won't be used but populate the
1688 * type field to avoid confusion.
1689 */
1690 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1691 << SH_ENTSIZE_TYPE_SHIFT;
1692 continue;
1693 }
1694
1695 s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1696 pr_debug("\t%s\n", sname);
1697 }
1698 }
1699 }
1700
1701 /*
1702 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1703 * might -- code, read-only data, read-write data, small data. Tally
1704 * sizes, and place the offsets into sh_entsize fields: high bit means it
1705 * belongs in init.
1706 */
layout_sections(struct module * mod,struct load_info * info)1707 static void layout_sections(struct module *mod, struct load_info *info)
1708 {
1709 unsigned int i;
1710
1711 for (i = 0; i < info->hdr->e_shnum; i++)
1712 info->sechdrs[i].sh_entsize = ~0UL;
1713
1714 pr_debug("Core section allocation order for %s:\n", mod->name);
1715 __layout_sections(mod, info, false);
1716
1717 pr_debug("Init section allocation order for %s:\n", mod->name);
1718 __layout_sections(mod, info, true);
1719 }
1720
module_license_taint_check(struct module * mod,const char * license)1721 static void module_license_taint_check(struct module *mod, const char *license)
1722 {
1723 if (!license)
1724 license = "unspecified";
1725
1726 if (!license_is_gpl_compatible(license)) {
1727 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1728 pr_warn("%s: module license '%s' taints kernel.\n",
1729 mod->name, license);
1730 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1731 LOCKDEP_NOW_UNRELIABLE);
1732 }
1733 }
1734
setup_modinfo(struct module * mod,struct load_info * info)1735 static int setup_modinfo(struct module *mod, struct load_info *info)
1736 {
1737 const struct module_attribute *attr;
1738 char *imported_namespace;
1739 int i;
1740
1741 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1742 if (attr->setup)
1743 attr->setup(mod, get_modinfo(info, attr->attr.name));
1744 }
1745
1746 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1747 /*
1748 * 'module:' prefixed namespaces are implicit, disallow
1749 * explicit imports.
1750 */
1751 if (strstarts(imported_namespace, "module:")) {
1752 pr_err("%s: module tries to import module namespace: %s\n",
1753 mod->name, imported_namespace);
1754 return -EPERM;
1755 }
1756 }
1757
1758 return 0;
1759 }
1760
free_modinfo(struct module * mod)1761 static void free_modinfo(struct module *mod)
1762 {
1763 const struct module_attribute *attr;
1764 int i;
1765
1766 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1767 if (attr->free)
1768 attr->free(mod);
1769 }
1770 }
1771
module_init_section(const char * name)1772 bool __weak module_init_section(const char *name)
1773 {
1774 return strstarts(name, ".init");
1775 }
1776
module_exit_section(const char * name)1777 bool __weak module_exit_section(const char *name)
1778 {
1779 return strstarts(name, ".exit");
1780 }
1781
validate_section_offset(const struct load_info * info,Elf_Shdr * shdr)1782 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1783 {
1784 #if defined(CONFIG_64BIT)
1785 unsigned long long secend;
1786 #else
1787 unsigned long secend;
1788 #endif
1789
1790 /*
1791 * Check for both overflow and offset/size being
1792 * too large.
1793 */
1794 secend = shdr->sh_offset + shdr->sh_size;
1795 if (secend < shdr->sh_offset || secend > info->len)
1796 return -ENOEXEC;
1797
1798 return 0;
1799 }
1800
1801 /**
1802 * elf_validity_ehdr() - Checks an ELF header for module validity
1803 * @info: Load info containing the ELF header to check
1804 *
1805 * Checks whether an ELF header could belong to a valid module. Checks:
1806 *
1807 * * ELF header is within the data the user provided
1808 * * ELF magic is present
1809 * * It is relocatable (not final linked, not core file, etc.)
1810 * * The header's machine type matches what the architecture expects.
1811 * * Optional arch-specific hook for other properties
1812 * - module_elf_check_arch() is currently only used by PPC to check
1813 * ELF ABI version, but may be used by others in the future.
1814 *
1815 * Return: %0 if valid, %-ENOEXEC on failure.
1816 */
elf_validity_ehdr(const struct load_info * info)1817 static int elf_validity_ehdr(const struct load_info *info)
1818 {
1819 if (info->len < sizeof(*(info->hdr))) {
1820 pr_err("Invalid ELF header len %lu\n", info->len);
1821 return -ENOEXEC;
1822 }
1823 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1824 pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1825 return -ENOEXEC;
1826 }
1827 if (info->hdr->e_type != ET_REL) {
1828 pr_err("Invalid ELF header type: %u != %u\n",
1829 info->hdr->e_type, ET_REL);
1830 return -ENOEXEC;
1831 }
1832 if (!elf_check_arch(info->hdr)) {
1833 pr_err("Invalid architecture in ELF header: %u\n",
1834 info->hdr->e_machine);
1835 return -ENOEXEC;
1836 }
1837 if (!module_elf_check_arch(info->hdr)) {
1838 pr_err("Invalid module architecture in ELF header: %u\n",
1839 info->hdr->e_machine);
1840 return -ENOEXEC;
1841 }
1842 return 0;
1843 }
1844
1845 /**
1846 * elf_validity_cache_sechdrs() - Cache section headers if valid
1847 * @info: Load info to compute section headers from
1848 *
1849 * Checks:
1850 *
1851 * * ELF header is valid (see elf_validity_ehdr())
1852 * * Section headers are the size we expect
1853 * * Section array fits in the user provided data
1854 * * Section index 0 is NULL
1855 * * Section contents are inbounds
1856 *
1857 * Then updates @info with a &load_info->sechdrs pointer if valid.
1858 *
1859 * Return: %0 if valid, negative error code if validation failed.
1860 */
elf_validity_cache_sechdrs(struct load_info * info)1861 static int elf_validity_cache_sechdrs(struct load_info *info)
1862 {
1863 Elf_Shdr *sechdrs;
1864 Elf_Shdr *shdr;
1865 int i;
1866 int err;
1867
1868 err = elf_validity_ehdr(info);
1869 if (err < 0)
1870 return err;
1871
1872 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1873 pr_err("Invalid ELF section header size\n");
1874 return -ENOEXEC;
1875 }
1876
1877 /*
1878 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1879 * known and small. So e_shnum * sizeof(Elf_Shdr)
1880 * will not overflow unsigned long on any platform.
1881 */
1882 if (info->hdr->e_shoff >= info->len
1883 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1884 info->len - info->hdr->e_shoff)) {
1885 pr_err("Invalid ELF section header overflow\n");
1886 return -ENOEXEC;
1887 }
1888
1889 sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1890
1891 /*
1892 * The code assumes that section 0 has a length of zero and
1893 * an addr of zero, so check for it.
1894 */
1895 if (sechdrs[0].sh_type != SHT_NULL
1896 || sechdrs[0].sh_size != 0
1897 || sechdrs[0].sh_addr != 0) {
1898 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1899 sechdrs[0].sh_type);
1900 return -ENOEXEC;
1901 }
1902
1903 /* Validate contents are inbounds */
1904 for (i = 1; i < info->hdr->e_shnum; i++) {
1905 shdr = &sechdrs[i];
1906 switch (shdr->sh_type) {
1907 case SHT_NULL:
1908 case SHT_NOBITS:
1909 /* No contents, offset/size don't mean anything */
1910 continue;
1911 default:
1912 err = validate_section_offset(info, shdr);
1913 if (err < 0) {
1914 pr_err("Invalid ELF section in module (section %u type %u)\n",
1915 i, shdr->sh_type);
1916 return err;
1917 }
1918 }
1919 }
1920
1921 info->sechdrs = sechdrs;
1922
1923 return 0;
1924 }
1925
1926 /**
1927 * elf_validity_cache_secstrings() - Caches section names if valid
1928 * @info: Load info to cache section names from. Must have valid sechdrs.
1929 *
1930 * Specifically checks:
1931 *
1932 * * Section name table index is inbounds of section headers
1933 * * Section name table is not empty
1934 * * Section name table is NUL terminated
1935 * * All section name offsets are inbounds of the section
1936 *
1937 * Then updates @info with a &load_info->secstrings pointer if valid.
1938 *
1939 * Return: %0 if valid, negative error code if validation failed.
1940 */
elf_validity_cache_secstrings(struct load_info * info)1941 static int elf_validity_cache_secstrings(struct load_info *info)
1942 {
1943 Elf_Shdr *strhdr, *shdr;
1944 char *secstrings;
1945 int i;
1946
1947 /*
1948 * Verify if the section name table index is valid.
1949 */
1950 if (info->hdr->e_shstrndx == SHN_UNDEF
1951 || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1952 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1953 info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1954 info->hdr->e_shnum);
1955 return -ENOEXEC;
1956 }
1957
1958 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1959
1960 /*
1961 * The section name table must be NUL-terminated, as required
1962 * by the spec. This makes strcmp and pr_* calls that access
1963 * strings in the section safe.
1964 */
1965 secstrings = (void *)info->hdr + strhdr->sh_offset;
1966 if (strhdr->sh_size == 0) {
1967 pr_err("empty section name table\n");
1968 return -ENOEXEC;
1969 }
1970 if (secstrings[strhdr->sh_size - 1] != '\0') {
1971 pr_err("ELF Spec violation: section name table isn't null terminated\n");
1972 return -ENOEXEC;
1973 }
1974
1975 for (i = 0; i < info->hdr->e_shnum; i++) {
1976 shdr = &info->sechdrs[i];
1977 /* SHT_NULL means sh_name has an undefined value */
1978 if (shdr->sh_type == SHT_NULL)
1979 continue;
1980 if (shdr->sh_name >= strhdr->sh_size) {
1981 pr_err("Invalid ELF section name in module (section %u type %u)\n",
1982 i, shdr->sh_type);
1983 return -ENOEXEC;
1984 }
1985 }
1986
1987 info->secstrings = secstrings;
1988 return 0;
1989 }
1990
1991 /**
1992 * elf_validity_cache_index_info() - Validate and cache modinfo section
1993 * @info: Load info to populate the modinfo index on.
1994 * Must have &load_info->sechdrs and &load_info->secstrings populated
1995 *
1996 * Checks that if there is a .modinfo section, it is unique.
1997 * Then, it caches its index in &load_info->index.info.
1998 * Finally, it tries to populate the name to improve error messages.
1999 *
2000 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
2001 */
elf_validity_cache_index_info(struct load_info * info)2002 static int elf_validity_cache_index_info(struct load_info *info)
2003 {
2004 int info_idx;
2005
2006 info_idx = find_any_unique_sec(info, ".modinfo");
2007
2008 if (info_idx == 0)
2009 /* Early return, no .modinfo */
2010 return 0;
2011
2012 if (info_idx < 0) {
2013 pr_err("Only one .modinfo section must exist.\n");
2014 return -ENOEXEC;
2015 }
2016
2017 info->index.info = info_idx;
2018 /* Try to find a name early so we can log errors with a module name */
2019 info->name = get_modinfo(info, "name");
2020
2021 return 0;
2022 }
2023
2024 /**
2025 * elf_validity_cache_index_mod() - Validates and caches this_module section
2026 * @info: Load info to cache this_module on.
2027 * Must have &load_info->sechdrs and &load_info->secstrings populated
2028 *
2029 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
2030 * uses to refer to __this_module and let's use rely on THIS_MODULE to point
2031 * to &__this_module properly. The kernel's modpost declares it on each
2032 * modules's *.mod.c file. If the struct module of the kernel changes a full
2033 * kernel rebuild is required.
2034 *
2035 * We have a few expectations for this special section, this function
2036 * validates all this for us:
2037 *
2038 * * The section has contents
2039 * * The section is unique
2040 * * We expect the kernel to always have to allocate it: SHF_ALLOC
2041 * * The section size must match the kernel's run time's struct module
2042 * size
2043 *
2044 * If all checks pass, the index will be cached in &load_info->index.mod
2045 *
2046 * Return: %0 on validation success, %-ENOEXEC on failure
2047 */
elf_validity_cache_index_mod(struct load_info * info)2048 static int elf_validity_cache_index_mod(struct load_info *info)
2049 {
2050 Elf_Shdr *shdr;
2051 int mod_idx;
2052
2053 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
2054 if (mod_idx <= 0) {
2055 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
2056 info->name ?: "(missing .modinfo section or name field)");
2057 return -ENOEXEC;
2058 }
2059
2060 shdr = &info->sechdrs[mod_idx];
2061
2062 if (shdr->sh_type == SHT_NOBITS) {
2063 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
2064 info->name ?: "(missing .modinfo section or name field)");
2065 return -ENOEXEC;
2066 }
2067
2068 if (!(shdr->sh_flags & SHF_ALLOC)) {
2069 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
2070 info->name ?: "(missing .modinfo section or name field)");
2071 return -ENOEXEC;
2072 }
2073
2074 if (shdr->sh_size != sizeof(struct module)) {
2075 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2076 info->name ?: "(missing .modinfo section or name field)");
2077 return -ENOEXEC;
2078 }
2079
2080 info->index.mod = mod_idx;
2081
2082 return 0;
2083 }
2084
2085 /**
2086 * elf_validity_cache_index_sym() - Validate and cache symtab index
2087 * @info: Load info to cache symtab index in.
2088 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2089 *
2090 * Checks that there is exactly one symbol table, then caches its index in
2091 * &load_info->index.sym.
2092 *
2093 * Return: %0 if valid, %-ENOEXEC on failure.
2094 */
elf_validity_cache_index_sym(struct load_info * info)2095 static int elf_validity_cache_index_sym(struct load_info *info)
2096 {
2097 unsigned int sym_idx;
2098 unsigned int num_sym_secs = 0;
2099 int i;
2100
2101 for (i = 1; i < info->hdr->e_shnum; i++) {
2102 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2103 num_sym_secs++;
2104 sym_idx = i;
2105 }
2106 }
2107
2108 if (num_sym_secs != 1) {
2109 pr_warn("%s: module has no symbols (stripped?)\n",
2110 info->name ?: "(missing .modinfo section or name field)");
2111 return -ENOEXEC;
2112 }
2113
2114 info->index.sym = sym_idx;
2115
2116 return 0;
2117 }
2118
2119 /**
2120 * elf_validity_cache_index_str() - Validate and cache strtab index
2121 * @info: Load info to cache strtab index in.
2122 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2123 * Must have &load_info->index.sym populated.
2124 *
2125 * Looks at the symbol table's associated string table, makes sure it is
2126 * in-bounds, and caches it.
2127 *
2128 * Return: %0 if valid, %-ENOEXEC on failure.
2129 */
elf_validity_cache_index_str(struct load_info * info)2130 static int elf_validity_cache_index_str(struct load_info *info)
2131 {
2132 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2133
2134 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2135 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2136 str_idx, str_idx, info->hdr->e_shnum);
2137 return -ENOEXEC;
2138 }
2139
2140 info->index.str = str_idx;
2141 return 0;
2142 }
2143
2144 /**
2145 * elf_validity_cache_index_versions() - Validate and cache version indices
2146 * @info: Load info to cache version indices in.
2147 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2148 * @flags: Load flags, relevant to suppress version loading, see
2149 * uapi/linux/module.h
2150 *
2151 * If we're ignoring modversions based on @flags, zero all version indices
2152 * and return validity. Othewrise check:
2153 *
2154 * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2155 * * There is a name present for every crc
2156 *
2157 * Then populate:
2158 *
2159 * * &load_info->index.vers
2160 * * &load_info->index.vers_ext_crc
2161 * * &load_info->index.vers_ext_names
2162 *
2163 * if present.
2164 *
2165 * Return: %0 if valid, %-ENOEXEC on failure.
2166 */
elf_validity_cache_index_versions(struct load_info * info,int flags)2167 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2168 {
2169 unsigned int vers_ext_crc;
2170 unsigned int vers_ext_name;
2171 size_t crc_count;
2172 size_t remaining_len;
2173 size_t name_size;
2174 char *name;
2175
2176 /* If modversions were suppressed, pretend we didn't find any */
2177 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2178 info->index.vers = 0;
2179 info->index.vers_ext_crc = 0;
2180 info->index.vers_ext_name = 0;
2181 return 0;
2182 }
2183
2184 vers_ext_crc = find_sec(info, "__version_ext_crcs");
2185 vers_ext_name = find_sec(info, "__version_ext_names");
2186
2187 /* If we have one field, we must have the other */
2188 if (!!vers_ext_crc != !!vers_ext_name) {
2189 pr_err("extended version crc+name presence does not match");
2190 return -ENOEXEC;
2191 }
2192
2193 /*
2194 * If we have extended version information, we should have the same
2195 * number of entries in every section.
2196 */
2197 if (vers_ext_crc) {
2198 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2199 name = (void *)info->hdr +
2200 info->sechdrs[vers_ext_name].sh_offset;
2201 remaining_len = info->sechdrs[vers_ext_name].sh_size;
2202
2203 while (crc_count--) {
2204 name_size = strnlen(name, remaining_len) + 1;
2205 if (name_size > remaining_len) {
2206 pr_err("more extended version crcs than names");
2207 return -ENOEXEC;
2208 }
2209 remaining_len -= name_size;
2210 name += name_size;
2211 }
2212 }
2213
2214 info->index.vers = find_sec(info, "__versions");
2215 info->index.vers_ext_crc = vers_ext_crc;
2216 info->index.vers_ext_name = vers_ext_name;
2217 return 0;
2218 }
2219
2220 /**
2221 * elf_validity_cache_index() - Resolve, validate, cache section indices
2222 * @info: Load info to read from and update.
2223 * &load_info->sechdrs and &load_info->secstrings must be populated.
2224 * @flags: Load flags, relevant to suppress version loading, see
2225 * uapi/linux/module.h
2226 *
2227 * Populates &load_info->index, validating as it goes.
2228 * See child functions for per-field validation:
2229 *
2230 * * elf_validity_cache_index_info()
2231 * * elf_validity_cache_index_mod()
2232 * * elf_validity_cache_index_sym()
2233 * * elf_validity_cache_index_str()
2234 * * elf_validity_cache_index_versions()
2235 *
2236 * If CONFIG_SMP is enabled, load the percpu section by name with no
2237 * validation.
2238 *
2239 * Return: 0 on success, negative error code if an index failed validation.
2240 */
elf_validity_cache_index(struct load_info * info,int flags)2241 static int elf_validity_cache_index(struct load_info *info, int flags)
2242 {
2243 int err;
2244
2245 err = elf_validity_cache_index_info(info);
2246 if (err < 0)
2247 return err;
2248 err = elf_validity_cache_index_mod(info);
2249 if (err < 0)
2250 return err;
2251 err = elf_validity_cache_index_sym(info);
2252 if (err < 0)
2253 return err;
2254 err = elf_validity_cache_index_str(info);
2255 if (err < 0)
2256 return err;
2257 err = elf_validity_cache_index_versions(info, flags);
2258 if (err < 0)
2259 return err;
2260
2261 info->index.pcpu = find_pcpusec(info);
2262
2263 return 0;
2264 }
2265
2266 /**
2267 * elf_validity_cache_strtab() - Validate and cache symbol string table
2268 * @info: Load info to read from and update.
2269 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2270 * Must have &load_info->index populated.
2271 *
2272 * Checks:
2273 *
2274 * * The string table is not empty.
2275 * * The string table starts and ends with NUL (required by ELF spec).
2276 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2277 * string table.
2278 *
2279 * And caches the pointer as &load_info->strtab in @info.
2280 *
2281 * Return: 0 on success, negative error code if a check failed.
2282 */
elf_validity_cache_strtab(struct load_info * info)2283 static int elf_validity_cache_strtab(struct load_info *info)
2284 {
2285 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2286 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2287 char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2288 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2289 int i;
2290
2291 if (str_shdr->sh_size == 0) {
2292 pr_err("empty symbol string table\n");
2293 return -ENOEXEC;
2294 }
2295 if (strtab[0] != '\0') {
2296 pr_err("symbol string table missing leading NUL\n");
2297 return -ENOEXEC;
2298 }
2299 if (strtab[str_shdr->sh_size - 1] != '\0') {
2300 pr_err("symbol string table isn't NUL terminated\n");
2301 return -ENOEXEC;
2302 }
2303
2304 /*
2305 * Now that we know strtab is correctly structured, check symbol
2306 * starts are inbounds before they're used later.
2307 */
2308 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2309 if (syms[i].st_name >= str_shdr->sh_size) {
2310 pr_err("symbol name out of bounds in string table");
2311 return -ENOEXEC;
2312 }
2313 }
2314
2315 info->strtab = strtab;
2316 return 0;
2317 }
2318
2319 /*
2320 * Check userspace passed ELF module against our expectations, and cache
2321 * useful variables for further processing as we go.
2322 *
2323 * This does basic validity checks against section offsets and sizes, the
2324 * section name string table, and the indices used for it (sh_name).
2325 *
2326 * As a last step, since we're already checking the ELF sections we cache
2327 * useful variables which will be used later for our convenience:
2328 *
2329 * o pointers to section headers
2330 * o cache the modinfo symbol section
2331 * o cache the string symbol section
2332 * o cache the module section
2333 *
2334 * As a last step we set info->mod to the temporary copy of the module in
2335 * info->hdr. The final one will be allocated in move_module(). Any
2336 * modifications we make to our copy of the module will be carried over
2337 * to the final minted module.
2338 */
elf_validity_cache_copy(struct load_info * info,int flags)2339 static int elf_validity_cache_copy(struct load_info *info, int flags)
2340 {
2341 int err;
2342
2343 err = elf_validity_cache_sechdrs(info);
2344 if (err < 0)
2345 return err;
2346 err = elf_validity_cache_secstrings(info);
2347 if (err < 0)
2348 return err;
2349 err = elf_validity_cache_index(info, flags);
2350 if (err < 0)
2351 return err;
2352 err = elf_validity_cache_strtab(info);
2353 if (err < 0)
2354 return err;
2355
2356 /* This is temporary: point mod into copy of data. */
2357 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2358
2359 /*
2360 * If we didn't load the .modinfo 'name' field earlier, fall back to
2361 * on-disk struct mod 'name' field.
2362 */
2363 if (!info->name)
2364 info->name = info->mod->name;
2365
2366 return 0;
2367 }
2368
2369 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2370
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2371 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2372 {
2373 do {
2374 unsigned long n = min(len, COPY_CHUNK_SIZE);
2375
2376 if (copy_from_user(dst, usrc, n) != 0)
2377 return -EFAULT;
2378 cond_resched();
2379 dst += n;
2380 usrc += n;
2381 len -= n;
2382 } while (len);
2383 return 0;
2384 }
2385
check_modinfo_livepatch(struct module * mod,struct load_info * info)2386 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2387 {
2388 if (!get_modinfo(info, "livepatch"))
2389 /* Nothing more to do */
2390 return 0;
2391
2392 if (set_livepatch_module(mod))
2393 return 0;
2394
2395 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2396 mod->name);
2397 return -ENOEXEC;
2398 }
2399
check_modinfo_retpoline(struct module * mod,struct load_info * info)2400 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2401 {
2402 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2403 return;
2404
2405 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2406 mod->name);
2407 }
2408
2409 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2410 static int copy_module_from_user(const void __user *umod, unsigned long len,
2411 struct load_info *info)
2412 {
2413 int err;
2414
2415 info->len = len;
2416 if (info->len < sizeof(*(info->hdr)))
2417 return -ENOEXEC;
2418
2419 err = security_kernel_load_data(LOADING_MODULE, true);
2420 if (err)
2421 return err;
2422
2423 /* Suck in entire file: we'll want most of it. */
2424 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2425 if (!info->hdr)
2426 return -ENOMEM;
2427
2428 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2429 err = -EFAULT;
2430 goto out;
2431 }
2432
2433 err = security_kernel_post_load_data((char *)info->hdr, info->len,
2434 LOADING_MODULE, "init_module");
2435 out:
2436 if (err)
2437 vfree(info->hdr);
2438
2439 return err;
2440 }
2441
free_copy(struct load_info * info,int flags)2442 static void free_copy(struct load_info *info, int flags)
2443 {
2444 if (flags & MODULE_INIT_COMPRESSED_FILE)
2445 module_decompress_cleanup(info);
2446 else
2447 vfree(info->hdr);
2448 }
2449
rewrite_section_headers(struct load_info * info,int flags)2450 static int rewrite_section_headers(struct load_info *info, int flags)
2451 {
2452 unsigned int i;
2453
2454 /* This should always be true, but let's be sure. */
2455 info->sechdrs[0].sh_addr = 0;
2456
2457 for (i = 1; i < info->hdr->e_shnum; i++) {
2458 Elf_Shdr *shdr = &info->sechdrs[i];
2459
2460 /*
2461 * Mark all sections sh_addr with their address in the
2462 * temporary image.
2463 */
2464 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2465
2466 }
2467
2468 /* Track but don't keep modinfo and version sections. */
2469 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2470 info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2471 ~(unsigned long)SHF_ALLOC;
2472 info->sechdrs[info->index.vers_ext_name].sh_flags &=
2473 ~(unsigned long)SHF_ALLOC;
2474 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2475
2476 return 0;
2477 }
2478
2479 static const char *const module_license_offenders[] = {
2480 /* driverloader was caught wrongly pretending to be under GPL */
2481 "driverloader",
2482
2483 /* lve claims to be GPL but upstream won't provide source */
2484 "lve",
2485 };
2486
2487 /*
2488 * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2489 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2490 {
2491 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2492 size_t i;
2493
2494 if (!get_modinfo(info, "intree")) {
2495 if (!test_taint(TAINT_OOT_MODULE))
2496 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2497 mod->name);
2498 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2499 }
2500
2501 check_modinfo_retpoline(mod, info);
2502
2503 if (get_modinfo(info, "staging")) {
2504 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2505 pr_warn("%s: module is from the staging directory, the quality "
2506 "is unknown, you have been warned.\n", mod->name);
2507 }
2508
2509 if (is_livepatch_module(mod)) {
2510 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2511 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2512 mod->name);
2513 }
2514
2515 module_license_taint_check(mod, get_modinfo(info, "license"));
2516
2517 if (get_modinfo(info, "test")) {
2518 if (!test_taint(TAINT_TEST))
2519 pr_warn("%s: loading test module taints kernel.\n",
2520 mod->name);
2521 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2522 }
2523 #ifdef CONFIG_MODULE_SIG
2524 mod->sig_ok = info->sig_ok;
2525 if (!mod->sig_ok) {
2526 pr_notice_once("%s: module verification failed: signature "
2527 "and/or required key missing - tainting "
2528 "kernel\n", mod->name);
2529 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2530 }
2531 #endif
2532
2533 /*
2534 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2535 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2536 * using GPL-only symbols it needs.
2537 */
2538 if (strcmp(mod->name, "ndiswrapper") == 0)
2539 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2540
2541 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2542 if (strcmp(mod->name, module_license_offenders[i]) == 0)
2543 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2544 LOCKDEP_NOW_UNRELIABLE);
2545 }
2546
2547 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2548 pr_warn("%s: module license taints kernel.\n", mod->name);
2549
2550 }
2551
check_modinfo(struct module * mod,struct load_info * info,int flags)2552 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2553 {
2554 const char *modmagic = get_modinfo(info, "vermagic");
2555 int err;
2556
2557 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2558 modmagic = NULL;
2559
2560 /* This is allowed: modprobe --force will invalidate it. */
2561 if (!modmagic) {
2562 err = try_to_force_load(mod, "bad vermagic");
2563 if (err)
2564 return err;
2565 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2566 pr_err("%s: version magic '%s' should be '%s'\n",
2567 info->name, modmagic, vermagic);
2568 return -ENOEXEC;
2569 }
2570
2571 err = check_modinfo_livepatch(mod, info);
2572 if (err)
2573 return err;
2574
2575 return 0;
2576 }
2577
find_module_sections(struct module * mod,struct load_info * info)2578 static int find_module_sections(struct module *mod, struct load_info *info)
2579 {
2580 mod->kp = section_objs(info, "__param",
2581 sizeof(*mod->kp), &mod->num_kp);
2582 mod->syms = section_objs(info, "__ksymtab",
2583 sizeof(*mod->syms), &mod->num_syms);
2584 mod->crcs = section_addr(info, "__kcrctab");
2585 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2586 sizeof(*mod->gpl_syms),
2587 &mod->num_gpl_syms);
2588 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2589
2590 #ifdef CONFIG_CONSTRUCTORS
2591 mod->ctors = section_objs(info, ".ctors",
2592 sizeof(*mod->ctors), &mod->num_ctors);
2593 if (!mod->ctors)
2594 mod->ctors = section_objs(info, ".init_array",
2595 sizeof(*mod->ctors), &mod->num_ctors);
2596 else if (find_sec(info, ".init_array")) {
2597 /*
2598 * This shouldn't happen with same compiler and binutils
2599 * building all parts of the module.
2600 */
2601 pr_warn("%s: has both .ctors and .init_array.\n",
2602 mod->name);
2603 return -EINVAL;
2604 }
2605 #endif
2606
2607 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2608 &mod->noinstr_text_size);
2609
2610 #ifdef CONFIG_TRACEPOINTS
2611 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2612 sizeof(*mod->tracepoints_ptrs),
2613 &mod->num_tracepoints);
2614 #endif
2615 #ifdef CONFIG_TREE_SRCU
2616 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2617 sizeof(*mod->srcu_struct_ptrs),
2618 &mod->num_srcu_structs);
2619 #endif
2620 #ifdef CONFIG_BPF_EVENTS
2621 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2622 sizeof(*mod->bpf_raw_events),
2623 &mod->num_bpf_raw_events);
2624 #endif
2625 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2626 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2627 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2628 &mod->btf_base_data_size);
2629 #endif
2630 #ifdef CONFIG_JUMP_LABEL
2631 mod->jump_entries = section_objs(info, "__jump_table",
2632 sizeof(*mod->jump_entries),
2633 &mod->num_jump_entries);
2634 #endif
2635 #ifdef CONFIG_EVENT_TRACING
2636 mod->trace_events = section_objs(info, "_ftrace_events",
2637 sizeof(*mod->trace_events),
2638 &mod->num_trace_events);
2639 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2640 sizeof(*mod->trace_evals),
2641 &mod->num_trace_evals);
2642 #endif
2643 #ifdef CONFIG_TRACING
2644 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2645 sizeof(*mod->trace_bprintk_fmt_start),
2646 &mod->num_trace_bprintk_fmt);
2647 #endif
2648 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2649 /* sechdrs[0].sh_size is always zero */
2650 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2651 sizeof(*mod->ftrace_callsites),
2652 &mod->num_ftrace_callsites);
2653 #endif
2654 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2655 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2656 sizeof(*mod->ei_funcs),
2657 &mod->num_ei_funcs);
2658 #endif
2659 #ifdef CONFIG_KPROBES
2660 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2661 &mod->kprobes_text_size);
2662 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2663 sizeof(unsigned long),
2664 &mod->num_kprobe_blacklist);
2665 #endif
2666 #ifdef CONFIG_PRINTK_INDEX
2667 mod->printk_index_start = section_objs(info, ".printk_index",
2668 sizeof(*mod->printk_index_start),
2669 &mod->printk_index_size);
2670 #endif
2671 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2672 mod->static_call_sites = section_objs(info, ".static_call_sites",
2673 sizeof(*mod->static_call_sites),
2674 &mod->num_static_call_sites);
2675 #endif
2676 #if IS_ENABLED(CONFIG_KUNIT)
2677 mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2678 sizeof(*mod->kunit_suites),
2679 &mod->num_kunit_suites);
2680 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2681 sizeof(*mod->kunit_init_suites),
2682 &mod->num_kunit_init_suites);
2683 #endif
2684
2685 mod->extable = section_objs(info, "__ex_table",
2686 sizeof(*mod->extable), &mod->num_exentries);
2687
2688 if (section_addr(info, "__obsparm"))
2689 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2690
2691 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2692 mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2693 sizeof(*mod->dyndbg_info.descs),
2694 &mod->dyndbg_info.num_descs);
2695 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2696 sizeof(*mod->dyndbg_info.classes),
2697 &mod->dyndbg_info.num_classes);
2698 #endif
2699
2700 return 0;
2701 }
2702
move_module(struct module * mod,struct load_info * info)2703 static int move_module(struct module *mod, struct load_info *info)
2704 {
2705 int i, ret;
2706 enum mod_mem_type t = MOD_MEM_NUM_TYPES;
2707 bool codetag_section_found = false;
2708
2709 for_each_mod_mem_type(type) {
2710 if (!mod->mem[type].size) {
2711 mod->mem[type].base = NULL;
2712 continue;
2713 }
2714
2715 ret = module_memory_alloc(mod, type);
2716 if (ret) {
2717 t = type;
2718 goto out_err;
2719 }
2720 }
2721
2722 /* Transfer each section which specifies SHF_ALLOC */
2723 pr_debug("Final section addresses for %s:\n", mod->name);
2724 for (i = 0; i < info->hdr->e_shnum; i++) {
2725 void *dest;
2726 Elf_Shdr *shdr = &info->sechdrs[i];
2727 const char *sname;
2728
2729 if (!(shdr->sh_flags & SHF_ALLOC))
2730 continue;
2731
2732 sname = info->secstrings + shdr->sh_name;
2733 /*
2734 * Load codetag sections separately as they might still be used
2735 * after module unload.
2736 */
2737 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2738 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2739 arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2740 if (WARN_ON(!dest)) {
2741 ret = -EINVAL;
2742 goto out_err;
2743 }
2744 if (IS_ERR(dest)) {
2745 ret = PTR_ERR(dest);
2746 goto out_err;
2747 }
2748 codetag_section_found = true;
2749 } else {
2750 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2751 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2752
2753 dest = mod->mem[type].base + offset;
2754 }
2755
2756 if (shdr->sh_type != SHT_NOBITS) {
2757 /*
2758 * Our ELF checker already validated this, but let's
2759 * be pedantic and make the goal clearer. We actually
2760 * end up copying over all modifications made to the
2761 * userspace copy of the entire struct module.
2762 */
2763 if (i == info->index.mod &&
2764 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2765 ret = -ENOEXEC;
2766 goto out_err;
2767 }
2768 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2769 }
2770 /*
2771 * Update the userspace copy's ELF section address to point to
2772 * our newly allocated memory as a pure convenience so that
2773 * users of info can keep taking advantage and using the newly
2774 * minted official memory area.
2775 */
2776 shdr->sh_addr = (unsigned long)dest;
2777 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2778 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2779 }
2780
2781 return 0;
2782 out_err:
2783 module_memory_restore_rox(mod);
2784 while (t--)
2785 module_memory_free(mod, t);
2786 if (codetag_section_found)
2787 codetag_free_module_sections(mod);
2788
2789 return ret;
2790 }
2791
check_export_symbol_versions(struct module * mod)2792 static int check_export_symbol_versions(struct module *mod)
2793 {
2794 #ifdef CONFIG_MODVERSIONS
2795 if ((mod->num_syms && !mod->crcs) ||
2796 (mod->num_gpl_syms && !mod->gpl_crcs)) {
2797 return try_to_force_load(mod,
2798 "no versions for exported symbols");
2799 }
2800 #endif
2801 return 0;
2802 }
2803
flush_module_icache(const struct module * mod)2804 static void flush_module_icache(const struct module *mod)
2805 {
2806 /*
2807 * Flush the instruction cache, since we've played with text.
2808 * Do it before processing of module parameters, so the module
2809 * can provide parameter accessor functions of its own.
2810 */
2811 for_each_mod_mem_type(type) {
2812 const struct module_memory *mod_mem = &mod->mem[type];
2813
2814 if (mod_mem->size) {
2815 flush_icache_range((unsigned long)mod_mem->base,
2816 (unsigned long)mod_mem->base + mod_mem->size);
2817 }
2818 }
2819 }
2820
module_elf_check_arch(Elf_Ehdr * hdr)2821 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2822 {
2823 return true;
2824 }
2825
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2826 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2827 Elf_Shdr *sechdrs,
2828 char *secstrings,
2829 struct module *mod)
2830 {
2831 return 0;
2832 }
2833
2834 /* module_blacklist is a comma-separated list of module names */
2835 static char *module_blacklist;
blacklisted(const char * module_name)2836 static bool blacklisted(const char *module_name)
2837 {
2838 const char *p;
2839 size_t len;
2840
2841 if (!module_blacklist)
2842 return false;
2843
2844 for (p = module_blacklist; *p; p += len) {
2845 len = strcspn(p, ",");
2846 if (strlen(module_name) == len && !memcmp(module_name, p, len))
2847 return true;
2848 if (p[len] == ',')
2849 len++;
2850 }
2851 return false;
2852 }
2853 core_param(module_blacklist, module_blacklist, charp, 0400);
2854
layout_and_allocate(struct load_info * info,int flags)2855 static struct module *layout_and_allocate(struct load_info *info, int flags)
2856 {
2857 struct module *mod;
2858 int err;
2859
2860 /* Allow arches to frob section contents and sizes. */
2861 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2862 info->secstrings, info->mod);
2863 if (err < 0)
2864 return ERR_PTR(err);
2865
2866 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2867 info->secstrings, info->mod);
2868 if (err < 0)
2869 return ERR_PTR(err);
2870
2871 /* We will do a special allocation for per-cpu sections later. */
2872 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2873
2874 /*
2875 * Mark relevant sections as SHF_RO_AFTER_INIT so layout_sections() can
2876 * put them in the right place.
2877 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2878 */
2879 module_mark_ro_after_init(info->hdr, info->sechdrs, info->secstrings);
2880
2881 /*
2882 * Determine total sizes, and put offsets in sh_entsize. For now
2883 * this is done generically; there doesn't appear to be any
2884 * special cases for the architectures.
2885 */
2886 layout_sections(info->mod, info);
2887 layout_symtab(info->mod, info);
2888
2889 /* Allocate and move to the final place */
2890 err = move_module(info->mod, info);
2891 if (err)
2892 return ERR_PTR(err);
2893
2894 /* Module has been copied to its final place now: return it. */
2895 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2896 kmemleak_load_module(mod, info);
2897 codetag_module_replaced(info->mod, mod);
2898
2899 return mod;
2900 }
2901
2902 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2903 static void module_deallocate(struct module *mod, struct load_info *info)
2904 {
2905 percpu_modfree(mod);
2906 module_arch_freeing_init(mod);
2907 codetag_free_module_sections(mod);
2908
2909 free_mod_mem(mod);
2910 }
2911
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2912 int __weak module_finalize(const Elf_Ehdr *hdr,
2913 const Elf_Shdr *sechdrs,
2914 struct module *me)
2915 {
2916 return 0;
2917 }
2918
post_relocation(struct module * mod,const struct load_info * info)2919 static int post_relocation(struct module *mod, const struct load_info *info)
2920 {
2921 /* Sort exception table now relocations are done. */
2922 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2923
2924 /* Copy relocated percpu area over. */
2925 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2926 info->sechdrs[info->index.pcpu].sh_size);
2927
2928 /* Setup kallsyms-specific fields. */
2929 add_kallsyms(mod, info);
2930
2931 /* Arch-specific module finalizing. */
2932 return module_finalize(info->hdr, info->sechdrs, mod);
2933 }
2934
2935 /* Call module constructors. */
do_mod_ctors(struct module * mod)2936 static void do_mod_ctors(struct module *mod)
2937 {
2938 #ifdef CONFIG_CONSTRUCTORS
2939 unsigned long i;
2940
2941 for (i = 0; i < mod->num_ctors; i++)
2942 mod->ctors[i]();
2943 #endif
2944 }
2945
2946 /* For freeing module_init on success, in case kallsyms traversing */
2947 struct mod_initfree {
2948 struct llist_node node;
2949 void *init_text;
2950 void *init_data;
2951 void *init_rodata;
2952 };
2953
do_free_init(struct work_struct * w)2954 static void do_free_init(struct work_struct *w)
2955 {
2956 struct llist_node *pos, *n, *list;
2957 struct mod_initfree *initfree;
2958
2959 list = llist_del_all(&init_free_list);
2960
2961 synchronize_rcu();
2962
2963 llist_for_each_safe(pos, n, list) {
2964 initfree = container_of(pos, struct mod_initfree, node);
2965 execmem_free(initfree->init_text);
2966 execmem_free(initfree->init_data);
2967 execmem_free(initfree->init_rodata);
2968 kfree(initfree);
2969 }
2970 }
2971
flush_module_init_free_work(void)2972 void flush_module_init_free_work(void)
2973 {
2974 flush_work(&init_free_wq);
2975 }
2976
2977 #undef MODULE_PARAM_PREFIX
2978 #define MODULE_PARAM_PREFIX "module."
2979 /* Default value for module->async_probe_requested */
2980 static bool async_probe;
2981 module_param(async_probe, bool, 0644);
2982
2983 /*
2984 * This is where the real work happens.
2985 *
2986 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2987 * helper command 'lx-symbols'.
2988 */
do_init_module(struct module * mod)2989 static noinline int do_init_module(struct module *mod)
2990 {
2991 int ret = 0;
2992 struct mod_initfree *freeinit;
2993 #if defined(CONFIG_MODULE_STATS)
2994 unsigned int text_size = 0, total_size = 0;
2995
2996 for_each_mod_mem_type(type) {
2997 const struct module_memory *mod_mem = &mod->mem[type];
2998 if (mod_mem->size) {
2999 total_size += mod_mem->size;
3000 if (type == MOD_TEXT || type == MOD_INIT_TEXT)
3001 text_size += mod_mem->size;
3002 }
3003 }
3004 #endif
3005
3006 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3007 if (!freeinit) {
3008 ret = -ENOMEM;
3009 goto fail;
3010 }
3011 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
3012 freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
3013 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
3014
3015 do_mod_ctors(mod);
3016 /* Start the module */
3017 if (mod->init != NULL)
3018 ret = do_one_initcall(mod->init);
3019 if (ret < 0) {
3020 goto fail_free_freeinit;
3021 }
3022 if (ret > 0) {
3023 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3024 "follow 0/-E convention\n"
3025 "%s: loading module anyway...\n",
3026 __func__, mod->name, ret, __func__);
3027 dump_stack();
3028 }
3029
3030 /* Now it's a first class citizen! */
3031 mod->state = MODULE_STATE_LIVE;
3032 blocking_notifier_call_chain(&module_notify_list,
3033 MODULE_STATE_LIVE, mod);
3034
3035 /* Delay uevent until module has finished its init routine */
3036 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3037
3038 /*
3039 * We need to finish all async code before the module init sequence
3040 * is done. This has potential to deadlock if synchronous module
3041 * loading is requested from async (which is not allowed!).
3042 *
3043 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3044 * request_module() from async workers") for more details.
3045 */
3046 if (!mod->async_probe_requested)
3047 async_synchronize_full();
3048
3049 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
3050 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3051 mutex_lock(&module_mutex);
3052 /* Drop initial reference. */
3053 module_put(mod);
3054 trim_init_extable(mod);
3055 #ifdef CONFIG_KALLSYMS
3056 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3057 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3058 #endif
3059 ret = module_enable_rodata_ro_after_init(mod);
3060 if (ret)
3061 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3062 "ro_after_init data might still be writable\n",
3063 mod->name, ret);
3064
3065 mod_tree_remove_init(mod);
3066 module_arch_freeing_init(mod);
3067 for_class_mod_mem_type(type, init) {
3068 mod->mem[type].base = NULL;
3069 mod->mem[type].size = 0;
3070 }
3071
3072 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3073 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3074 mod->btf_data = NULL;
3075 mod->btf_base_data = NULL;
3076 #endif
3077 /*
3078 * We want to free module_init, but be aware that kallsyms may be
3079 * walking this within an RCU read section. In all the failure paths, we
3080 * call synchronize_rcu(), but we don't want to slow down the success
3081 * path. execmem_free() cannot be called in an interrupt, so do the
3082 * work and call synchronize_rcu() in a work queue.
3083 *
3084 * Note that execmem_alloc() on most architectures creates W+X page
3085 * mappings which won't be cleaned up until do_free_init() runs. Any
3086 * code such as mark_rodata_ro() which depends on those mappings to
3087 * be cleaned up needs to sync with the queued work by invoking
3088 * flush_module_init_free_work().
3089 */
3090 if (llist_add(&freeinit->node, &init_free_list))
3091 schedule_work(&init_free_wq);
3092
3093 mutex_unlock(&module_mutex);
3094 wake_up_all(&module_wq);
3095
3096 mod_stat_add_long(text_size, &total_text_size);
3097 mod_stat_add_long(total_size, &total_mod_size);
3098
3099 mod_stat_inc(&modcount);
3100
3101 return 0;
3102
3103 fail_free_freeinit:
3104 kfree(freeinit);
3105 fail:
3106 /* Try to protect us from buggy refcounters. */
3107 mod->state = MODULE_STATE_GOING;
3108 synchronize_rcu();
3109 module_put(mod);
3110 blocking_notifier_call_chain(&module_notify_list,
3111 MODULE_STATE_GOING, mod);
3112 klp_module_going(mod);
3113 ftrace_release_mod(mod);
3114 free_module(mod);
3115 wake_up_all(&module_wq);
3116
3117 return ret;
3118 }
3119
may_init_module(void)3120 static int may_init_module(void)
3121 {
3122 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3123 return -EPERM;
3124
3125 return 0;
3126 }
3127
3128 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)3129 static bool finished_loading(const char *name)
3130 {
3131 struct module *mod;
3132 bool ret;
3133
3134 /*
3135 * The module_mutex should not be a heavily contended lock;
3136 * if we get the occasional sleep here, we'll go an extra iteration
3137 * in the wait_event_interruptible(), which is harmless.
3138 */
3139 sched_annotate_sleep();
3140 mutex_lock(&module_mutex);
3141 mod = find_module_all(name, strlen(name), true);
3142 ret = !mod || mod->state == MODULE_STATE_LIVE
3143 || mod->state == MODULE_STATE_GOING;
3144 mutex_unlock(&module_mutex);
3145
3146 return ret;
3147 }
3148
3149 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)3150 static int module_patient_check_exists(const char *name,
3151 enum fail_dup_mod_reason reason)
3152 {
3153 struct module *old;
3154 int err = 0;
3155
3156 old = find_module_all(name, strlen(name), true);
3157 if (old == NULL)
3158 return 0;
3159
3160 if (old->state == MODULE_STATE_COMING ||
3161 old->state == MODULE_STATE_UNFORMED) {
3162 /* Wait in case it fails to load. */
3163 mutex_unlock(&module_mutex);
3164 err = wait_event_interruptible(module_wq,
3165 finished_loading(name));
3166 mutex_lock(&module_mutex);
3167 if (err)
3168 return err;
3169
3170 /* The module might have gone in the meantime. */
3171 old = find_module_all(name, strlen(name), true);
3172 }
3173
3174 if (try_add_failed_module(name, reason))
3175 pr_warn("Could not add fail-tracking for module: %s\n", name);
3176
3177 /*
3178 * We are here only when the same module was being loaded. Do
3179 * not try to load it again right now. It prevents long delays
3180 * caused by serialized module load failures. It might happen
3181 * when more devices of the same type trigger load of
3182 * a particular module.
3183 */
3184 if (old && old->state == MODULE_STATE_LIVE)
3185 return -EEXIST;
3186 return -EBUSY;
3187 }
3188
3189 /*
3190 * We try to place it in the list now to make sure it's unique before
3191 * we dedicate too many resources. In particular, temporary percpu
3192 * memory exhaustion.
3193 */
add_unformed_module(struct module * mod)3194 static int add_unformed_module(struct module *mod)
3195 {
3196 int err;
3197
3198 mod->state = MODULE_STATE_UNFORMED;
3199
3200 mutex_lock(&module_mutex);
3201 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3202 if (err)
3203 goto out;
3204
3205 mod_update_bounds(mod);
3206 list_add_rcu(&mod->list, &modules);
3207 mod_tree_insert(mod);
3208 err = 0;
3209
3210 out:
3211 mutex_unlock(&module_mutex);
3212 return err;
3213 }
3214
complete_formation(struct module * mod,struct load_info * info)3215 static int complete_formation(struct module *mod, struct load_info *info)
3216 {
3217 int err;
3218
3219 mutex_lock(&module_mutex);
3220
3221 /* Find duplicate symbols (must be called under lock). */
3222 err = verify_exported_symbols(mod);
3223 if (err < 0)
3224 goto out;
3225
3226 /* These rely on module_mutex for list integrity. */
3227 module_bug_finalize(info->hdr, info->sechdrs, mod);
3228 module_cfi_finalize(info->hdr, info->sechdrs, mod);
3229
3230 err = module_enable_rodata_ro(mod);
3231 if (err)
3232 goto out_strict_rwx;
3233 err = module_enable_data_nx(mod);
3234 if (err)
3235 goto out_strict_rwx;
3236 err = module_enable_text_rox(mod);
3237 if (err)
3238 goto out_strict_rwx;
3239
3240 /*
3241 * Mark state as coming so strong_try_module_get() ignores us,
3242 * but kallsyms etc. can see us.
3243 */
3244 mod->state = MODULE_STATE_COMING;
3245 mutex_unlock(&module_mutex);
3246
3247 return 0;
3248
3249 out_strict_rwx:
3250 module_bug_cleanup(mod);
3251 out:
3252 mutex_unlock(&module_mutex);
3253 return err;
3254 }
3255
prepare_coming_module(struct module * mod)3256 static int prepare_coming_module(struct module *mod)
3257 {
3258 int err;
3259
3260 ftrace_module_enable(mod);
3261 err = klp_module_coming(mod);
3262 if (err)
3263 return err;
3264
3265 err = blocking_notifier_call_chain_robust(&module_notify_list,
3266 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3267 err = notifier_to_errno(err);
3268 if (err)
3269 klp_module_going(mod);
3270
3271 return err;
3272 }
3273
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3274 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3275 void *arg)
3276 {
3277 struct module *mod = arg;
3278 int ret;
3279
3280 if (strcmp(param, "async_probe") == 0) {
3281 if (kstrtobool(val, &mod->async_probe_requested))
3282 mod->async_probe_requested = true;
3283 return 0;
3284 }
3285
3286 /* Check for magic 'dyndbg' arg */
3287 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3288 if (ret != 0)
3289 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3290 return 0;
3291 }
3292
3293 /* Module within temporary copy, this doesn't do any allocation */
early_mod_check(struct load_info * info,int flags)3294 static int early_mod_check(struct load_info *info, int flags)
3295 {
3296 int err;
3297
3298 /*
3299 * Now that we know we have the correct module name, check
3300 * if it's blacklisted.
3301 */
3302 if (blacklisted(info->name)) {
3303 pr_err("Module %s is blacklisted\n", info->name);
3304 return -EPERM;
3305 }
3306
3307 err = rewrite_section_headers(info, flags);
3308 if (err)
3309 return err;
3310
3311 /* Check module struct version now, before we try to use module. */
3312 if (!check_modstruct_version(info, info->mod))
3313 return -ENOEXEC;
3314
3315 err = check_modinfo(info->mod, info, flags);
3316 if (err)
3317 return err;
3318
3319 mutex_lock(&module_mutex);
3320 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3321 mutex_unlock(&module_mutex);
3322
3323 return err;
3324 }
3325
3326 /*
3327 * Allocate and load the module: note that size of section 0 is always
3328 * zero, and we rely on this for optional sections.
3329 */
load_module(struct load_info * info,const char __user * uargs,int flags)3330 static int load_module(struct load_info *info, const char __user *uargs,
3331 int flags)
3332 {
3333 struct module *mod;
3334 bool module_allocated = false;
3335 long err = 0;
3336 char *after_dashes;
3337
3338 /*
3339 * Do the signature check (if any) first. All that
3340 * the signature check needs is info->len, it does
3341 * not need any of the section info. That can be
3342 * set up later. This will minimize the chances
3343 * of a corrupt module causing problems before
3344 * we even get to the signature check.
3345 *
3346 * The check will also adjust info->len by stripping
3347 * off the sig length at the end of the module, making
3348 * checks against info->len more correct.
3349 */
3350 err = module_sig_check(info, flags);
3351 if (err)
3352 goto free_copy;
3353
3354 /*
3355 * Do basic sanity checks against the ELF header and
3356 * sections. Cache useful sections and set the
3357 * info->mod to the userspace passed struct module.
3358 */
3359 err = elf_validity_cache_copy(info, flags);
3360 if (err)
3361 goto free_copy;
3362
3363 err = early_mod_check(info, flags);
3364 if (err)
3365 goto free_copy;
3366
3367 /* Figure out module layout, and allocate all the memory. */
3368 mod = layout_and_allocate(info, flags);
3369 if (IS_ERR(mod)) {
3370 err = PTR_ERR(mod);
3371 goto free_copy;
3372 }
3373
3374 module_allocated = true;
3375
3376 audit_log_kern_module(mod->name);
3377
3378 /* Reserve our place in the list. */
3379 err = add_unformed_module(mod);
3380 if (err)
3381 goto free_module;
3382
3383 /*
3384 * We are tainting your kernel if your module gets into
3385 * the modules linked list somehow.
3386 */
3387 module_augment_kernel_taints(mod, info);
3388
3389 /* To avoid stressing percpu allocator, do this once we're unique. */
3390 err = percpu_modalloc(mod, info);
3391 if (err)
3392 goto unlink_mod;
3393
3394 /* Now module is in final location, initialize linked lists, etc. */
3395 err = module_unload_init(mod);
3396 if (err)
3397 goto unlink_mod;
3398
3399 init_param_lock(mod);
3400
3401 /*
3402 * Now we've got everything in the final locations, we can
3403 * find optional sections.
3404 */
3405 err = find_module_sections(mod, info);
3406 if (err)
3407 goto free_unload;
3408
3409 err = check_export_symbol_versions(mod);
3410 if (err)
3411 goto free_unload;
3412
3413 /* Set up MODINFO_ATTR fields */
3414 err = setup_modinfo(mod, info);
3415 if (err)
3416 goto free_modinfo;
3417
3418 /* Fix up syms, so that st_value is a pointer to location. */
3419 err = simplify_symbols(mod, info);
3420 if (err < 0)
3421 goto free_modinfo;
3422
3423 err = apply_relocations(mod, info);
3424 if (err < 0)
3425 goto free_modinfo;
3426
3427 err = post_relocation(mod, info);
3428 if (err < 0)
3429 goto free_modinfo;
3430
3431 flush_module_icache(mod);
3432
3433 /* Now copy in args */
3434 mod->args = strndup_user(uargs, ~0UL >> 1);
3435 if (IS_ERR(mod->args)) {
3436 err = PTR_ERR(mod->args);
3437 goto free_arch_cleanup;
3438 }
3439
3440 init_build_id(mod, info);
3441
3442 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3443 ftrace_module_init(mod);
3444
3445 /* Finally it's fully formed, ready to start executing. */
3446 err = complete_formation(mod, info);
3447 if (err)
3448 goto ddebug_cleanup;
3449
3450 err = prepare_coming_module(mod);
3451 if (err)
3452 goto bug_cleanup;
3453
3454 mod->async_probe_requested = async_probe;
3455
3456 /* Module is ready to execute: parsing args may do that. */
3457 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3458 -32768, 32767, mod,
3459 unknown_module_param_cb);
3460 if (IS_ERR(after_dashes)) {
3461 err = PTR_ERR(after_dashes);
3462 goto coming_cleanup;
3463 } else if (after_dashes) {
3464 pr_warn("%s: parameters '%s' after `--' ignored\n",
3465 mod->name, after_dashes);
3466 }
3467
3468 /* Link in to sysfs. */
3469 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3470 if (err < 0)
3471 goto coming_cleanup;
3472
3473 if (is_livepatch_module(mod)) {
3474 err = copy_module_elf(mod, info);
3475 if (err < 0)
3476 goto sysfs_cleanup;
3477 }
3478
3479 if (codetag_load_module(mod))
3480 goto sysfs_cleanup;
3481
3482 /* Get rid of temporary copy. */
3483 free_copy(info, flags);
3484
3485 /* Done! */
3486 trace_module_load(mod);
3487
3488 return do_init_module(mod);
3489
3490 sysfs_cleanup:
3491 mod_sysfs_teardown(mod);
3492 coming_cleanup:
3493 mod->state = MODULE_STATE_GOING;
3494 destroy_params(mod->kp, mod->num_kp);
3495 blocking_notifier_call_chain(&module_notify_list,
3496 MODULE_STATE_GOING, mod);
3497 klp_module_going(mod);
3498 bug_cleanup:
3499 mod->state = MODULE_STATE_GOING;
3500 /* module_bug_cleanup needs module_mutex protection */
3501 mutex_lock(&module_mutex);
3502 module_bug_cleanup(mod);
3503 mutex_unlock(&module_mutex);
3504
3505 ddebug_cleanup:
3506 ftrace_release_mod(mod);
3507 synchronize_rcu();
3508 kfree(mod->args);
3509 free_arch_cleanup:
3510 module_arch_cleanup(mod);
3511 free_modinfo:
3512 free_modinfo(mod);
3513 free_unload:
3514 module_unload_free(mod);
3515 unlink_mod:
3516 mutex_lock(&module_mutex);
3517 /* Unlink carefully: kallsyms could be walking list. */
3518 list_del_rcu(&mod->list);
3519 mod_tree_remove(mod);
3520 wake_up_all(&module_wq);
3521 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3522 synchronize_rcu();
3523 mutex_unlock(&module_mutex);
3524 free_module:
3525 mod_stat_bump_invalid(info, flags);
3526 /* Free lock-classes; relies on the preceding sync_rcu() */
3527 for_class_mod_mem_type(type, core_data) {
3528 lockdep_free_key_range(mod->mem[type].base,
3529 mod->mem[type].size);
3530 }
3531
3532 module_memory_restore_rox(mod);
3533 module_deallocate(mod, info);
3534 free_copy:
3535 /*
3536 * The info->len is always set. We distinguish between
3537 * failures once the proper module was allocated and
3538 * before that.
3539 */
3540 if (!module_allocated)
3541 mod_stat_bump_becoming(info, flags);
3542 free_copy(info, flags);
3543 return err;
3544 }
3545
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3546 SYSCALL_DEFINE3(init_module, void __user *, umod,
3547 unsigned long, len, const char __user *, uargs)
3548 {
3549 int err;
3550 struct load_info info = { };
3551
3552 err = may_init_module();
3553 if (err)
3554 return err;
3555
3556 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3557 umod, len, uargs);
3558
3559 err = copy_module_from_user(umod, len, &info);
3560 if (err) {
3561 mod_stat_inc(&failed_kreads);
3562 mod_stat_add_long(len, &invalid_kread_bytes);
3563 return err;
3564 }
3565
3566 return load_module(&info, uargs, 0);
3567 }
3568
3569 struct idempotent {
3570 const void *cookie;
3571 struct hlist_node entry;
3572 struct completion complete;
3573 int ret;
3574 };
3575
3576 #define IDEM_HASH_BITS 8
3577 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3578 static DEFINE_SPINLOCK(idem_lock);
3579
idempotent(struct idempotent * u,const void * cookie)3580 static bool idempotent(struct idempotent *u, const void *cookie)
3581 {
3582 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3583 struct hlist_head *head = idem_hash + hash;
3584 struct idempotent *existing;
3585 bool first;
3586
3587 u->ret = -EINTR;
3588 u->cookie = cookie;
3589 init_completion(&u->complete);
3590
3591 spin_lock(&idem_lock);
3592 first = true;
3593 hlist_for_each_entry(existing, head, entry) {
3594 if (existing->cookie != cookie)
3595 continue;
3596 first = false;
3597 break;
3598 }
3599 hlist_add_head(&u->entry, idem_hash + hash);
3600 spin_unlock(&idem_lock);
3601
3602 return !first;
3603 }
3604
3605 /*
3606 * We were the first one with 'cookie' on the list, and we ended
3607 * up completing the operation. We now need to walk the list,
3608 * remove everybody - which includes ourselves - fill in the return
3609 * value, and then complete the operation.
3610 */
idempotent_complete(struct idempotent * u,int ret)3611 static int idempotent_complete(struct idempotent *u, int ret)
3612 {
3613 const void *cookie = u->cookie;
3614 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3615 struct hlist_head *head = idem_hash + hash;
3616 struct hlist_node *next;
3617 struct idempotent *pos;
3618
3619 spin_lock(&idem_lock);
3620 hlist_for_each_entry_safe(pos, next, head, entry) {
3621 if (pos->cookie != cookie)
3622 continue;
3623 hlist_del_init(&pos->entry);
3624 pos->ret = ret;
3625 complete(&pos->complete);
3626 }
3627 spin_unlock(&idem_lock);
3628 return ret;
3629 }
3630
3631 /*
3632 * Wait for the idempotent worker.
3633 *
3634 * If we get interrupted, we need to remove ourselves from the
3635 * the idempotent list, and the completion may still come in.
3636 *
3637 * The 'idem_lock' protects against the race, and 'idem.ret' was
3638 * initialized to -EINTR and is thus always the right return
3639 * value even if the idempotent work then completes between
3640 * the wait_for_completion and the cleanup.
3641 */
idempotent_wait_for_completion(struct idempotent * u)3642 static int idempotent_wait_for_completion(struct idempotent *u)
3643 {
3644 if (wait_for_completion_interruptible(&u->complete)) {
3645 spin_lock(&idem_lock);
3646 if (!hlist_unhashed(&u->entry))
3647 hlist_del(&u->entry);
3648 spin_unlock(&idem_lock);
3649 }
3650 return u->ret;
3651 }
3652
init_module_from_file(struct file * f,const char __user * uargs,int flags)3653 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3654 {
3655 struct load_info info = { };
3656 void *buf = NULL;
3657 int len;
3658
3659 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3660 if (len < 0) {
3661 mod_stat_inc(&failed_kreads);
3662 return len;
3663 }
3664
3665 if (flags & MODULE_INIT_COMPRESSED_FILE) {
3666 int err = module_decompress(&info, buf, len);
3667 vfree(buf); /* compressed data is no longer needed */
3668 if (err) {
3669 mod_stat_inc(&failed_decompress);
3670 mod_stat_add_long(len, &invalid_decompress_bytes);
3671 return err;
3672 }
3673 } else {
3674 info.hdr = buf;
3675 info.len = len;
3676 }
3677
3678 return load_module(&info, uargs, flags);
3679 }
3680
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3681 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3682 {
3683 struct idempotent idem;
3684
3685 if (!(f->f_mode & FMODE_READ))
3686 return -EBADF;
3687
3688 /* Are we the winners of the race and get to do this? */
3689 if (!idempotent(&idem, file_inode(f))) {
3690 int ret = init_module_from_file(f, uargs, flags);
3691 return idempotent_complete(&idem, ret);
3692 }
3693
3694 /*
3695 * Somebody else won the race and is loading the module.
3696 */
3697 return idempotent_wait_for_completion(&idem);
3698 }
3699
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3700 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3701 {
3702 int err = may_init_module();
3703 if (err)
3704 return err;
3705
3706 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3707
3708 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3709 |MODULE_INIT_IGNORE_VERMAGIC
3710 |MODULE_INIT_COMPRESSED_FILE))
3711 return -EINVAL;
3712
3713 CLASS(fd, f)(fd);
3714 if (fd_empty(f))
3715 return -EBADF;
3716 return idempotent_init_module(fd_file(f), uargs, flags);
3717 }
3718
3719 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3720 char *module_flags(struct module *mod, char *buf, bool show_state)
3721 {
3722 int bx = 0;
3723
3724 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3725 if (!mod->taints && !show_state)
3726 goto out;
3727 if (mod->taints ||
3728 mod->state == MODULE_STATE_GOING ||
3729 mod->state == MODULE_STATE_COMING) {
3730 buf[bx++] = '(';
3731 bx += module_flags_taint(mod->taints, buf + bx);
3732 /* Show a - for module-is-being-unloaded */
3733 if (mod->state == MODULE_STATE_GOING && show_state)
3734 buf[bx++] = '-';
3735 /* Show a + for module-is-being-loaded */
3736 if (mod->state == MODULE_STATE_COMING && show_state)
3737 buf[bx++] = '+';
3738 buf[bx++] = ')';
3739 }
3740 out:
3741 buf[bx] = '\0';
3742
3743 return buf;
3744 }
3745
3746 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3747 const struct exception_table_entry *search_module_extables(unsigned long addr)
3748 {
3749 struct module *mod;
3750
3751 guard(rcu)();
3752 mod = __module_address(addr);
3753 if (!mod)
3754 return NULL;
3755
3756 if (!mod->num_exentries)
3757 return NULL;
3758 /*
3759 * The address passed here belongs to a module that is currently
3760 * invoked (we are running inside it). Therefore its module::refcnt
3761 * needs already be >0 to ensure that it is not removed at this stage.
3762 * All other user need to invoke this function within a RCU read
3763 * section.
3764 */
3765 return search_extable(mod->extable, mod->num_exentries, addr);
3766 }
3767
3768 /**
3769 * is_module_address() - is this address inside a module?
3770 * @addr: the address to check.
3771 *
3772 * See is_module_text_address() if you simply want to see if the address
3773 * is code (not data).
3774 */
is_module_address(unsigned long addr)3775 bool is_module_address(unsigned long addr)
3776 {
3777 guard(rcu)();
3778 return __module_address(addr) != NULL;
3779 }
3780
3781 /**
3782 * __module_address() - get the module which contains an address.
3783 * @addr: the address.
3784 *
3785 * Must be called within RCU read section or module mutex held so that
3786 * module doesn't get freed during this.
3787 */
__module_address(unsigned long addr)3788 struct module *__module_address(unsigned long addr)
3789 {
3790 struct module *mod;
3791
3792 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3793 goto lookup;
3794
3795 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3796 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3797 goto lookup;
3798 #endif
3799
3800 return NULL;
3801
3802 lookup:
3803 mod = mod_find(addr, &mod_tree);
3804 if (mod) {
3805 BUG_ON(!within_module(addr, mod));
3806 if (mod->state == MODULE_STATE_UNFORMED)
3807 mod = NULL;
3808 }
3809 return mod;
3810 }
3811
3812 /**
3813 * is_module_text_address() - is this address inside module code?
3814 * @addr: the address to check.
3815 *
3816 * See is_module_address() if you simply want to see if the address is
3817 * anywhere in a module. See kernel_text_address() for testing if an
3818 * address corresponds to kernel or module code.
3819 */
is_module_text_address(unsigned long addr)3820 bool is_module_text_address(unsigned long addr)
3821 {
3822 guard(rcu)();
3823 return __module_text_address(addr) != NULL;
3824 }
3825
module_for_each_mod(int (* func)(struct module * mod,void * data),void * data)3826 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data)
3827 {
3828 struct module *mod;
3829
3830 guard(rcu)();
3831 list_for_each_entry_rcu(mod, &modules, list) {
3832 if (mod->state == MODULE_STATE_UNFORMED)
3833 continue;
3834 if (func(mod, data))
3835 break;
3836 }
3837 }
3838
3839 /**
3840 * __module_text_address() - get the module whose code contains an address.
3841 * @addr: the address.
3842 *
3843 * Must be called within RCU read section or module mutex held so that
3844 * module doesn't get freed during this.
3845 */
__module_text_address(unsigned long addr)3846 struct module *__module_text_address(unsigned long addr)
3847 {
3848 struct module *mod = __module_address(addr);
3849 if (mod) {
3850 /* Make sure it's within the text section. */
3851 if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3852 !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3853 mod = NULL;
3854 }
3855 return mod;
3856 }
3857
3858 /* Don't grab lock, we're oopsing. */
print_modules(void)3859 void print_modules(void)
3860 {
3861 struct module *mod;
3862 char buf[MODULE_FLAGS_BUF_SIZE];
3863
3864 printk(KERN_DEFAULT "Modules linked in:");
3865 /* Most callers should already have preempt disabled, but make sure */
3866 guard(rcu)();
3867 list_for_each_entry_rcu(mod, &modules, list) {
3868 if (mod->state == MODULE_STATE_UNFORMED)
3869 continue;
3870 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3871 }
3872
3873 print_unloaded_tainted_modules();
3874 if (last_unloaded_module.name[0])
3875 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3876 last_unloaded_module.taints);
3877 pr_cont("\n");
3878 }
3879
3880 #ifdef CONFIG_MODULE_DEBUGFS
3881 struct dentry *mod_debugfs_root;
3882
module_debugfs_init(void)3883 static int module_debugfs_init(void)
3884 {
3885 mod_debugfs_root = debugfs_create_dir("modules", NULL);
3886 return 0;
3887 }
3888 module_init(module_debugfs_init);
3889 #endif
3890