xref: /linux/kernel/module/main.c (revision 72782127388d96e971f0186996a5bd44e64a1665)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 /*
69  * Mutex protects:
70  * 1) List of modules (also safely readable within RCU read section),
71  * 2) module_use links,
72  * 3) mod_tree.addr_min/mod_tree.addr_max.
73  * (delete and add uses RCU list operations).
74  */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77 
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82 
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 
87 struct symsearch {
88 	const struct kernel_symbol *start, *stop;
89 	const u32 *crcs;
90 	enum mod_license license;
91 };
92 
93 /*
94  * Bounds of module memory, for speeding up __module_address.
95  * Protected by module_mutex.
96  */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 				unsigned int size, struct mod_tree_root *tree)
99 {
100 	unsigned long min = (unsigned long)base;
101 	unsigned long max = min + size;
102 
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 	if (mod_mem_type_is_core_data(type)) {
105 		if (min < tree->data_addr_min)
106 			tree->data_addr_min = min;
107 		if (max > tree->data_addr_max)
108 			tree->data_addr_max = max;
109 		return;
110 	}
111 #endif
112 	if (min < tree->addr_min)
113 		tree->addr_min = min;
114 	if (max > tree->addr_max)
115 		tree->addr_max = max;
116 }
117 
mod_update_bounds(struct module * mod)118 static void mod_update_bounds(struct module *mod)
119 {
120 	for_each_mod_mem_type(type) {
121 		struct module_memory *mod_mem = &mod->mem[type];
122 
123 		if (mod_mem->size)
124 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 	}
126 }
127 
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131 
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134 
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136 
register_module_notifier(struct notifier_block * nb)137 int register_module_notifier(struct notifier_block *nb)
138 {
139 	return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142 
unregister_module_notifier(struct notifier_block * nb)143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148 
149 /*
150  * We require a truly strong try_module_get(): 0 means success.
151  * Otherwise an error is returned due to ongoing or failed
152  * initialization etc.
153  */
strong_try_module_get(struct module * mod)154 static inline int strong_try_module_get(struct module *mod)
155 {
156 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 	if (mod && mod->state == MODULE_STATE_COMING)
158 		return -EBUSY;
159 	if (try_module_get(mod))
160 		return 0;
161 	else
162 		return -ENOENT;
163 }
164 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 				    enum lockdep_ok lockdep_ok)
167 {
168 	add_taint(flag, lockdep_ok);
169 	set_bit(flag, &mod->taints);
170 }
171 
172 /*
173  * Like strncmp(), except s/-/_/g as per scripts/Makefile.lib:name-fix-token rule.
174  */
mod_strncmp(const char * str_a,const char * str_b,size_t n)175 static int mod_strncmp(const char *str_a, const char *str_b, size_t n)
176 {
177 	for (int i = 0; i < n; i++) {
178 		char a = str_a[i];
179 		char b = str_b[i];
180 		int d;
181 
182 		if (a == '-') a = '_';
183 		if (b == '-') b = '_';
184 
185 		d = a - b;
186 		if (d)
187 			return d;
188 
189 		if (!a)
190 			break;
191 	}
192 
193 	return 0;
194 }
195 
196 /*
197  * A thread that wants to hold a reference to a module only while it
198  * is running can call this to safely exit.
199  */
__module_put_and_kthread_exit(struct module * mod,long code)200 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
201 {
202 	module_put(mod);
203 	kthread_exit(code);
204 }
205 EXPORT_SYMBOL(__module_put_and_kthread_exit);
206 
207 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)208 static unsigned int find_sec(const struct load_info *info, const char *name)
209 {
210 	unsigned int i;
211 
212 	for (i = 1; i < info->hdr->e_shnum; i++) {
213 		Elf_Shdr *shdr = &info->sechdrs[i];
214 		/* Alloc bit cleared means "ignore it." */
215 		if ((shdr->sh_flags & SHF_ALLOC)
216 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
217 			return i;
218 	}
219 	return 0;
220 }
221 
222 /**
223  * find_any_unique_sec() - Find a unique section index by name
224  * @info: Load info for the module to scan
225  * @name: Name of the section we're looking for
226  *
227  * Locates a unique section by name. Ignores SHF_ALLOC.
228  *
229  * Return: Section index if found uniquely, zero if absent, negative count
230  *         of total instances if multiple were found.
231  */
find_any_unique_sec(const struct load_info * info,const char * name)232 static int find_any_unique_sec(const struct load_info *info, const char *name)
233 {
234 	unsigned int idx;
235 	unsigned int count = 0;
236 	int i;
237 
238 	for (i = 1; i < info->hdr->e_shnum; i++) {
239 		if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
240 			   name) == 0) {
241 			count++;
242 			idx = i;
243 		}
244 	}
245 	if (count == 1) {
246 		return idx;
247 	} else if (count == 0) {
248 		return 0;
249 	} else {
250 		return -count;
251 	}
252 }
253 
254 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)255 static void *section_addr(const struct load_info *info, const char *name)
256 {
257 	/* Section 0 has sh_addr 0. */
258 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
259 }
260 
261 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)262 static void *section_objs(const struct load_info *info,
263 			  const char *name,
264 			  size_t object_size,
265 			  unsigned int *num)
266 {
267 	unsigned int sec = find_sec(info, name);
268 
269 	/* Section 0 has sh_addr 0 and sh_size 0. */
270 	*num = info->sechdrs[sec].sh_size / object_size;
271 	return (void *)info->sechdrs[sec].sh_addr;
272 }
273 
274 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)275 static unsigned int find_any_sec(const struct load_info *info, const char *name)
276 {
277 	unsigned int i;
278 
279 	for (i = 1; i < info->hdr->e_shnum; i++) {
280 		Elf_Shdr *shdr = &info->sechdrs[i];
281 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
282 			return i;
283 	}
284 	return 0;
285 }
286 
287 /*
288  * Find a module section, or NULL. Fill in number of "objects" in section.
289  * Ignores SHF_ALLOC flag.
290  */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)291 static __maybe_unused void *any_section_objs(const struct load_info *info,
292 					     const char *name,
293 					     size_t object_size,
294 					     unsigned int *num)
295 {
296 	unsigned int sec = find_any_sec(info, name);
297 
298 	/* Section 0 has sh_addr 0 and sh_size 0. */
299 	*num = info->sechdrs[sec].sh_size / object_size;
300 	return (void *)info->sechdrs[sec].sh_addr;
301 }
302 
303 #ifndef CONFIG_MODVERSIONS
304 #define symversion(base, idx) NULL
305 #else
306 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
307 #endif
308 
kernel_symbol_name(const struct kernel_symbol * sym)309 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
310 {
311 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
312 	return offset_to_ptr(&sym->name_offset);
313 #else
314 	return sym->name;
315 #endif
316 }
317 
kernel_symbol_namespace(const struct kernel_symbol * sym)318 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
319 {
320 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
321 	if (!sym->namespace_offset)
322 		return NULL;
323 	return offset_to_ptr(&sym->namespace_offset);
324 #else
325 	return sym->namespace;
326 #endif
327 }
328 
cmp_name(const void * name,const void * sym)329 int cmp_name(const void *name, const void *sym)
330 {
331 	return strcmp(name, kernel_symbol_name(sym));
332 }
333 
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)334 static bool find_exported_symbol_in_section(const struct symsearch *syms,
335 					    struct module *owner,
336 					    struct find_symbol_arg *fsa)
337 {
338 	struct kernel_symbol *sym;
339 
340 	if (!fsa->gplok && syms->license == GPL_ONLY)
341 		return false;
342 
343 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
344 			sizeof(struct kernel_symbol), cmp_name);
345 	if (!sym)
346 		return false;
347 
348 	fsa->owner = owner;
349 	fsa->crc = symversion(syms->crcs, sym - syms->start);
350 	fsa->sym = sym;
351 	fsa->license = syms->license;
352 
353 	return true;
354 }
355 
356 /*
357  * Find an exported symbol and return it, along with, (optional) crc and
358  * (optional) module which owns it. Needs RCU or module_mutex.
359  */
find_symbol(struct find_symbol_arg * fsa)360 bool find_symbol(struct find_symbol_arg *fsa)
361 {
362 	static const struct symsearch arr[] = {
363 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
364 		  NOT_GPL_ONLY },
365 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
366 		  __start___kcrctab_gpl,
367 		  GPL_ONLY },
368 	};
369 	struct module *mod;
370 	unsigned int i;
371 
372 	for (i = 0; i < ARRAY_SIZE(arr); i++)
373 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
374 			return true;
375 
376 	list_for_each_entry_rcu(mod, &modules, list,
377 				lockdep_is_held(&module_mutex)) {
378 		struct symsearch arr[] = {
379 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
380 			  NOT_GPL_ONLY },
381 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
382 			  mod->gpl_crcs,
383 			  GPL_ONLY },
384 		};
385 
386 		if (mod->state == MODULE_STATE_UNFORMED)
387 			continue;
388 
389 		for (i = 0; i < ARRAY_SIZE(arr); i++)
390 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
391 				return true;
392 	}
393 
394 	pr_debug("Failed to find symbol %s\n", fsa->name);
395 	return false;
396 }
397 
398 /*
399  * Search for module by name: must hold module_mutex (or RCU for read-only
400  * access).
401  */
find_module_all(const char * name,size_t len,bool even_unformed)402 struct module *find_module_all(const char *name, size_t len,
403 			       bool even_unformed)
404 {
405 	struct module *mod;
406 
407 	list_for_each_entry_rcu(mod, &modules, list,
408 				lockdep_is_held(&module_mutex)) {
409 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
410 			continue;
411 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
412 			return mod;
413 	}
414 	return NULL;
415 }
416 
find_module(const char * name)417 struct module *find_module(const char *name)
418 {
419 	return find_module_all(name, strlen(name), false);
420 }
421 
422 #ifdef CONFIG_SMP
423 
mod_percpu(struct module * mod)424 static inline void __percpu *mod_percpu(struct module *mod)
425 {
426 	return mod->percpu;
427 }
428 
percpu_modalloc(struct module * mod,struct load_info * info)429 static int percpu_modalloc(struct module *mod, struct load_info *info)
430 {
431 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
432 	unsigned long align = pcpusec->sh_addralign;
433 
434 	if (!pcpusec->sh_size)
435 		return 0;
436 
437 	if (align > PAGE_SIZE) {
438 		pr_warn("%s: per-cpu alignment %li > %li\n",
439 			mod->name, align, PAGE_SIZE);
440 		align = PAGE_SIZE;
441 	}
442 
443 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
444 	if (!mod->percpu) {
445 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
446 			mod->name, (unsigned long)pcpusec->sh_size);
447 		return -ENOMEM;
448 	}
449 	mod->percpu_size = pcpusec->sh_size;
450 	return 0;
451 }
452 
percpu_modfree(struct module * mod)453 static void percpu_modfree(struct module *mod)
454 {
455 	free_percpu(mod->percpu);
456 }
457 
find_pcpusec(struct load_info * info)458 static unsigned int find_pcpusec(struct load_info *info)
459 {
460 	return find_sec(info, ".data..percpu");
461 }
462 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)463 static void percpu_modcopy(struct module *mod,
464 			   const void *from, unsigned long size)
465 {
466 	int cpu;
467 
468 	for_each_possible_cpu(cpu)
469 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
470 }
471 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)472 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
473 {
474 	struct module *mod;
475 	unsigned int cpu;
476 
477 	guard(rcu)();
478 	list_for_each_entry_rcu(mod, &modules, list) {
479 		if (mod->state == MODULE_STATE_UNFORMED)
480 			continue;
481 		if (!mod->percpu_size)
482 			continue;
483 		for_each_possible_cpu(cpu) {
484 			void *start = per_cpu_ptr(mod->percpu, cpu);
485 			void *va = (void *)addr;
486 
487 			if (va >= start && va < start + mod->percpu_size) {
488 				if (can_addr) {
489 					*can_addr = (unsigned long) (va - start);
490 					*can_addr += (unsigned long)
491 						per_cpu_ptr(mod->percpu,
492 							    get_boot_cpu_id());
493 				}
494 				return true;
495 			}
496 		}
497 	}
498 	return false;
499 }
500 
501 /**
502  * is_module_percpu_address() - test whether address is from module static percpu
503  * @addr: address to test
504  *
505  * Test whether @addr belongs to module static percpu area.
506  *
507  * Return: %true if @addr is from module static percpu area
508  */
is_module_percpu_address(unsigned long addr)509 bool is_module_percpu_address(unsigned long addr)
510 {
511 	return __is_module_percpu_address(addr, NULL);
512 }
513 
514 #else /* ... !CONFIG_SMP */
515 
mod_percpu(struct module * mod)516 static inline void __percpu *mod_percpu(struct module *mod)
517 {
518 	return NULL;
519 }
percpu_modalloc(struct module * mod,struct load_info * info)520 static int percpu_modalloc(struct module *mod, struct load_info *info)
521 {
522 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
523 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
524 		return -ENOMEM;
525 	return 0;
526 }
percpu_modfree(struct module * mod)527 static inline void percpu_modfree(struct module *mod)
528 {
529 }
find_pcpusec(struct load_info * info)530 static unsigned int find_pcpusec(struct load_info *info)
531 {
532 	return 0;
533 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)534 static inline void percpu_modcopy(struct module *mod,
535 				  const void *from, unsigned long size)
536 {
537 	/* pcpusec should be 0, and size of that section should be 0. */
538 	BUG_ON(size != 0);
539 }
is_module_percpu_address(unsigned long addr)540 bool is_module_percpu_address(unsigned long addr)
541 {
542 	return false;
543 }
544 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)545 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
546 {
547 	return false;
548 }
549 
550 #endif /* CONFIG_SMP */
551 
552 #define MODINFO_ATTR(field)	\
553 static void setup_modinfo_##field(struct module *mod, const char *s)  \
554 {                                                                     \
555 	mod->field = kstrdup(s, GFP_KERNEL);                          \
556 }                                                                     \
557 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
558 			struct module_kobject *mk, char *buffer)      \
559 {                                                                     \
560 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
561 }                                                                     \
562 static int modinfo_##field##_exists(struct module *mod)               \
563 {                                                                     \
564 	return mod->field != NULL;                                    \
565 }                                                                     \
566 static void free_modinfo_##field(struct module *mod)                  \
567 {                                                                     \
568 	kfree(mod->field);                                            \
569 	mod->field = NULL;                                            \
570 }                                                                     \
571 static const struct module_attribute modinfo_##field = {              \
572 	.attr = { .name = __stringify(field), .mode = 0444 },         \
573 	.show = show_modinfo_##field,                                 \
574 	.setup = setup_modinfo_##field,                               \
575 	.test = modinfo_##field##_exists,                             \
576 	.free = free_modinfo_##field,                                 \
577 };
578 
579 MODINFO_ATTR(version);
580 MODINFO_ATTR(srcversion);
581 
582 static struct {
583 	char name[MODULE_NAME_LEN + 1];
584 	char taints[MODULE_FLAGS_BUF_SIZE];
585 } last_unloaded_module;
586 
587 #ifdef CONFIG_MODULE_UNLOAD
588 
589 EXPORT_TRACEPOINT_SYMBOL(module_get);
590 
591 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
592 #define MODULE_REF_BASE	1
593 
594 /* Init the unload section of the module. */
module_unload_init(struct module * mod)595 static int module_unload_init(struct module *mod)
596 {
597 	/*
598 	 * Initialize reference counter to MODULE_REF_BASE.
599 	 * refcnt == 0 means module is going.
600 	 */
601 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
602 
603 	INIT_LIST_HEAD(&mod->source_list);
604 	INIT_LIST_HEAD(&mod->target_list);
605 
606 	/* Hold reference count during initialization. */
607 	atomic_inc(&mod->refcnt);
608 
609 	return 0;
610 }
611 
612 /* Does a already use b? */
already_uses(struct module * a,struct module * b)613 static int already_uses(struct module *a, struct module *b)
614 {
615 	struct module_use *use;
616 
617 	list_for_each_entry(use, &b->source_list, source_list) {
618 		if (use->source == a)
619 			return 1;
620 	}
621 	pr_debug("%s does not use %s!\n", a->name, b->name);
622 	return 0;
623 }
624 
625 /*
626  * Module a uses b
627  *  - we add 'a' as a "source", 'b' as a "target" of module use
628  *  - the module_use is added to the list of 'b' sources (so
629  *    'b' can walk the list to see who sourced them), and of 'a'
630  *    targets (so 'a' can see what modules it targets).
631  */
add_module_usage(struct module * a,struct module * b)632 static int add_module_usage(struct module *a, struct module *b)
633 {
634 	struct module_use *use;
635 
636 	pr_debug("Allocating new usage for %s.\n", a->name);
637 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
638 	if (!use)
639 		return -ENOMEM;
640 
641 	use->source = a;
642 	use->target = b;
643 	list_add(&use->source_list, &b->source_list);
644 	list_add(&use->target_list, &a->target_list);
645 	return 0;
646 }
647 
648 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)649 static int ref_module(struct module *a, struct module *b)
650 {
651 	int err;
652 
653 	if (b == NULL || already_uses(a, b))
654 		return 0;
655 
656 	/* If module isn't available, we fail. */
657 	err = strong_try_module_get(b);
658 	if (err)
659 		return err;
660 
661 	err = add_module_usage(a, b);
662 	if (err) {
663 		module_put(b);
664 		return err;
665 	}
666 	return 0;
667 }
668 
669 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)670 static void module_unload_free(struct module *mod)
671 {
672 	struct module_use *use, *tmp;
673 
674 	mutex_lock(&module_mutex);
675 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
676 		struct module *i = use->target;
677 		pr_debug("%s unusing %s\n", mod->name, i->name);
678 		module_put(i);
679 		list_del(&use->source_list);
680 		list_del(&use->target_list);
681 		kfree(use);
682 	}
683 	mutex_unlock(&module_mutex);
684 }
685 
686 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)687 static inline int try_force_unload(unsigned int flags)
688 {
689 	int ret = (flags & O_TRUNC);
690 	if (ret)
691 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
692 	return ret;
693 }
694 #else
try_force_unload(unsigned int flags)695 static inline int try_force_unload(unsigned int flags)
696 {
697 	return 0;
698 }
699 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
700 
701 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)702 static int try_release_module_ref(struct module *mod)
703 {
704 	int ret;
705 
706 	/* Try to decrement refcnt which we set at loading */
707 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
708 	BUG_ON(ret < 0);
709 	if (ret)
710 		/* Someone can put this right now, recover with checking */
711 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
712 
713 	return ret;
714 }
715 
try_stop_module(struct module * mod,int flags,int * forced)716 static int try_stop_module(struct module *mod, int flags, int *forced)
717 {
718 	/* If it's not unused, quit unless we're forcing. */
719 	if (try_release_module_ref(mod) != 0) {
720 		*forced = try_force_unload(flags);
721 		if (!(*forced))
722 			return -EWOULDBLOCK;
723 	}
724 
725 	/* Mark it as dying. */
726 	mod->state = MODULE_STATE_GOING;
727 
728 	return 0;
729 }
730 
731 /**
732  * module_refcount() - return the refcount or -1 if unloading
733  * @mod:	the module we're checking
734  *
735  * Return:
736  *	-1 if the module is in the process of unloading
737  *	otherwise the number of references in the kernel to the module
738  */
module_refcount(struct module * mod)739 int module_refcount(struct module *mod)
740 {
741 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
742 }
743 EXPORT_SYMBOL(module_refcount);
744 
745 /* This exists whether we can unload or not */
746 static void free_module(struct module *mod);
747 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)748 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
749 		unsigned int, flags)
750 {
751 	struct module *mod;
752 	char name[MODULE_NAME_LEN];
753 	char buf[MODULE_FLAGS_BUF_SIZE];
754 	int ret, forced = 0;
755 
756 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
757 		return -EPERM;
758 
759 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
760 		return -EFAULT;
761 	name[MODULE_NAME_LEN-1] = '\0';
762 
763 	audit_log_kern_module(name);
764 
765 	if (mutex_lock_interruptible(&module_mutex) != 0)
766 		return -EINTR;
767 
768 	mod = find_module(name);
769 	if (!mod) {
770 		ret = -ENOENT;
771 		goto out;
772 	}
773 
774 	if (!list_empty(&mod->source_list)) {
775 		/* Other modules depend on us: get rid of them first. */
776 		ret = -EWOULDBLOCK;
777 		goto out;
778 	}
779 
780 	/* Doing init or already dying? */
781 	if (mod->state != MODULE_STATE_LIVE) {
782 		/* FIXME: if (force), slam module count damn the torpedoes */
783 		pr_debug("%s already dying\n", mod->name);
784 		ret = -EBUSY;
785 		goto out;
786 	}
787 
788 	/* If it has an init func, it must have an exit func to unload */
789 	if (mod->init && !mod->exit) {
790 		forced = try_force_unload(flags);
791 		if (!forced) {
792 			/* This module can't be removed */
793 			ret = -EBUSY;
794 			goto out;
795 		}
796 	}
797 
798 	ret = try_stop_module(mod, flags, &forced);
799 	if (ret != 0)
800 		goto out;
801 
802 	mutex_unlock(&module_mutex);
803 	/* Final destruction now no one is using it. */
804 	if (mod->exit != NULL)
805 		mod->exit();
806 	blocking_notifier_call_chain(&module_notify_list,
807 				     MODULE_STATE_GOING, mod);
808 	klp_module_going(mod);
809 	ftrace_release_mod(mod);
810 
811 	async_synchronize_full();
812 
813 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
814 	strscpy(last_unloaded_module.name, mod->name);
815 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false));
816 
817 	free_module(mod);
818 	/* someone could wait for the module in add_unformed_module() */
819 	wake_up_all(&module_wq);
820 	return 0;
821 out:
822 	mutex_unlock(&module_mutex);
823 	return ret;
824 }
825 
__symbol_put(const char * symbol)826 void __symbol_put(const char *symbol)
827 {
828 	struct find_symbol_arg fsa = {
829 		.name	= symbol,
830 		.gplok	= true,
831 	};
832 
833 	guard(rcu)();
834 	BUG_ON(!find_symbol(&fsa));
835 	module_put(fsa.owner);
836 }
837 EXPORT_SYMBOL(__symbol_put);
838 
839 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)840 void symbol_put_addr(void *addr)
841 {
842 	struct module *modaddr;
843 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
844 
845 	if (core_kernel_text(a))
846 		return;
847 
848 	/*
849 	 * Even though we hold a reference on the module; we still need to
850 	 * RCU read section in order to safely traverse the data structure.
851 	 */
852 	guard(rcu)();
853 	modaddr = __module_text_address(a);
854 	BUG_ON(!modaddr);
855 	module_put(modaddr);
856 }
857 EXPORT_SYMBOL_GPL(symbol_put_addr);
858 
show_refcnt(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)859 static ssize_t show_refcnt(const struct module_attribute *mattr,
860 			   struct module_kobject *mk, char *buffer)
861 {
862 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
863 }
864 
865 static const struct module_attribute modinfo_refcnt =
866 	__ATTR(refcnt, 0444, show_refcnt, NULL);
867 
__module_get(struct module * module)868 void __module_get(struct module *module)
869 {
870 	if (module) {
871 		atomic_inc(&module->refcnt);
872 		trace_module_get(module, _RET_IP_);
873 	}
874 }
875 EXPORT_SYMBOL(__module_get);
876 
try_module_get(struct module * module)877 bool try_module_get(struct module *module)
878 {
879 	bool ret = true;
880 
881 	if (module) {
882 		/* Note: here, we can fail to get a reference */
883 		if (likely(module_is_live(module) &&
884 			   atomic_inc_not_zero(&module->refcnt) != 0))
885 			trace_module_get(module, _RET_IP_);
886 		else
887 			ret = false;
888 	}
889 	return ret;
890 }
891 EXPORT_SYMBOL(try_module_get);
892 
module_put(struct module * module)893 void module_put(struct module *module)
894 {
895 	int ret;
896 
897 	if (module) {
898 		ret = atomic_dec_if_positive(&module->refcnt);
899 		WARN_ON(ret < 0);	/* Failed to put refcount */
900 		trace_module_put(module, _RET_IP_);
901 	}
902 }
903 EXPORT_SYMBOL(module_put);
904 
905 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)906 static inline void module_unload_free(struct module *mod)
907 {
908 }
909 
ref_module(struct module * a,struct module * b)910 static int ref_module(struct module *a, struct module *b)
911 {
912 	return strong_try_module_get(b);
913 }
914 
module_unload_init(struct module * mod)915 static inline int module_unload_init(struct module *mod)
916 {
917 	return 0;
918 }
919 #endif /* CONFIG_MODULE_UNLOAD */
920 
module_flags_taint(unsigned long taints,char * buf)921 size_t module_flags_taint(unsigned long taints, char *buf)
922 {
923 	size_t l = 0;
924 	int i;
925 
926 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
927 		if (taint_flags[i].module && test_bit(i, &taints))
928 			buf[l++] = taint_flags[i].c_true;
929 	}
930 
931 	return l;
932 }
933 
show_initstate(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)934 static ssize_t show_initstate(const struct module_attribute *mattr,
935 			      struct module_kobject *mk, char *buffer)
936 {
937 	const char *state = "unknown";
938 
939 	switch (mk->mod->state) {
940 	case MODULE_STATE_LIVE:
941 		state = "live";
942 		break;
943 	case MODULE_STATE_COMING:
944 		state = "coming";
945 		break;
946 	case MODULE_STATE_GOING:
947 		state = "going";
948 		break;
949 	default:
950 		BUG();
951 	}
952 	return sprintf(buffer, "%s\n", state);
953 }
954 
955 static const struct module_attribute modinfo_initstate =
956 	__ATTR(initstate, 0444, show_initstate, NULL);
957 
store_uevent(const struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)958 static ssize_t store_uevent(const struct module_attribute *mattr,
959 			    struct module_kobject *mk,
960 			    const char *buffer, size_t count)
961 {
962 	int rc;
963 
964 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
965 	return rc ? rc : count;
966 }
967 
968 const struct module_attribute module_uevent =
969 	__ATTR(uevent, 0200, NULL, store_uevent);
970 
show_coresize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)971 static ssize_t show_coresize(const struct module_attribute *mattr,
972 			     struct module_kobject *mk, char *buffer)
973 {
974 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
975 
976 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
977 		for_class_mod_mem_type(type, core_data)
978 			size += mk->mod->mem[type].size;
979 	}
980 	return sprintf(buffer, "%u\n", size);
981 }
982 
983 static const struct module_attribute modinfo_coresize =
984 	__ATTR(coresize, 0444, show_coresize, NULL);
985 
986 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)987 static ssize_t show_datasize(const struct module_attribute *mattr,
988 			     struct module_kobject *mk, char *buffer)
989 {
990 	unsigned int size = 0;
991 
992 	for_class_mod_mem_type(type, core_data)
993 		size += mk->mod->mem[type].size;
994 	return sprintf(buffer, "%u\n", size);
995 }
996 
997 static const struct module_attribute modinfo_datasize =
998 	__ATTR(datasize, 0444, show_datasize, NULL);
999 #endif
1000 
show_initsize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1001 static ssize_t show_initsize(const struct module_attribute *mattr,
1002 			     struct module_kobject *mk, char *buffer)
1003 {
1004 	unsigned int size = 0;
1005 
1006 	for_class_mod_mem_type(type, init)
1007 		size += mk->mod->mem[type].size;
1008 	return sprintf(buffer, "%u\n", size);
1009 }
1010 
1011 static const struct module_attribute modinfo_initsize =
1012 	__ATTR(initsize, 0444, show_initsize, NULL);
1013 
show_taint(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1014 static ssize_t show_taint(const struct module_attribute *mattr,
1015 			  struct module_kobject *mk, char *buffer)
1016 {
1017 	size_t l;
1018 
1019 	l = module_flags_taint(mk->mod->taints, buffer);
1020 	buffer[l++] = '\n';
1021 	return l;
1022 }
1023 
1024 static const struct module_attribute modinfo_taint =
1025 	__ATTR(taint, 0444, show_taint, NULL);
1026 
1027 const struct module_attribute *const modinfo_attrs[] = {
1028 	&module_uevent,
1029 	&modinfo_version,
1030 	&modinfo_srcversion,
1031 	&modinfo_initstate,
1032 	&modinfo_coresize,
1033 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1034 	&modinfo_datasize,
1035 #endif
1036 	&modinfo_initsize,
1037 	&modinfo_taint,
1038 #ifdef CONFIG_MODULE_UNLOAD
1039 	&modinfo_refcnt,
1040 #endif
1041 	NULL,
1042 };
1043 
1044 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1045 
1046 static const char vermagic[] = VERMAGIC_STRING;
1047 
try_to_force_load(struct module * mod,const char * reason)1048 int try_to_force_load(struct module *mod, const char *reason)
1049 {
1050 #ifdef CONFIG_MODULE_FORCE_LOAD
1051 	if (!test_taint(TAINT_FORCED_MODULE))
1052 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1053 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1054 	return 0;
1055 #else
1056 	return -ENOEXEC;
1057 #endif
1058 }
1059 
1060 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1061 char *module_next_tag_pair(char *string, unsigned long *secsize)
1062 {
1063 	/* Skip non-zero chars */
1064 	while (string[0]) {
1065 		string++;
1066 		if ((*secsize)-- <= 1)
1067 			return NULL;
1068 	}
1069 
1070 	/* Skip any zero padding. */
1071 	while (!string[0]) {
1072 		string++;
1073 		if ((*secsize)-- <= 1)
1074 			return NULL;
1075 	}
1076 	return string;
1077 }
1078 
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1079 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1080 			      char *prev)
1081 {
1082 	char *p;
1083 	unsigned int taglen = strlen(tag);
1084 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1085 	unsigned long size = infosec->sh_size;
1086 
1087 	/*
1088 	 * get_modinfo() calls made before rewrite_section_headers()
1089 	 * must use sh_offset, as sh_addr isn't set!
1090 	 */
1091 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1092 
1093 	if (prev) {
1094 		size -= prev - modinfo;
1095 		modinfo = module_next_tag_pair(prev, &size);
1096 	}
1097 
1098 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1099 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1100 			return p + taglen + 1;
1101 	}
1102 	return NULL;
1103 }
1104 
get_modinfo(const struct load_info * info,const char * tag)1105 static char *get_modinfo(const struct load_info *info, const char *tag)
1106 {
1107 	return get_next_modinfo(info, tag, NULL);
1108 }
1109 
1110 /**
1111  * verify_module_namespace() - does @modname have access to this symbol's @namespace
1112  * @namespace: export symbol namespace
1113  * @modname: module name
1114  *
1115  * If @namespace is prefixed with "module:" to indicate it is a module namespace
1116  * then test if @modname matches any of the comma separated patterns.
1117  *
1118  * The patterns only support tail-glob.
1119  */
verify_module_namespace(const char * namespace,const char * modname)1120 static bool verify_module_namespace(const char *namespace, const char *modname)
1121 {
1122 	size_t len, modlen = strlen(modname);
1123 	const char *prefix = "module:";
1124 	const char *sep;
1125 	bool glob;
1126 
1127 	if (!strstarts(namespace, prefix))
1128 		return false;
1129 
1130 	for (namespace += strlen(prefix); *namespace; namespace = sep) {
1131 		sep = strchrnul(namespace, ',');
1132 		len = sep - namespace;
1133 
1134 		glob = false;
1135 		if (sep[-1] == '*') {
1136 			len--;
1137 			glob = true;
1138 		}
1139 
1140 		if (*sep)
1141 			sep++;
1142 
1143 		if (mod_strncmp(namespace, modname, len) == 0 && (glob || len == modlen))
1144 			return true;
1145 	}
1146 
1147 	return false;
1148 }
1149 
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1150 static int verify_namespace_is_imported(const struct load_info *info,
1151 					const struct kernel_symbol *sym,
1152 					struct module *mod)
1153 {
1154 	const char *namespace;
1155 	char *imported_namespace;
1156 
1157 	namespace = kernel_symbol_namespace(sym);
1158 	if (namespace && namespace[0]) {
1159 
1160 		if (verify_module_namespace(namespace, mod->name))
1161 			return 0;
1162 
1163 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1164 			if (strcmp(namespace, imported_namespace) == 0)
1165 				return 0;
1166 		}
1167 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1168 		pr_warn(
1169 #else
1170 		pr_err(
1171 #endif
1172 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1173 			mod->name, kernel_symbol_name(sym), namespace);
1174 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1175 		return -EINVAL;
1176 #endif
1177 	}
1178 	return 0;
1179 }
1180 
inherit_taint(struct module * mod,struct module * owner,const char * name)1181 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1182 {
1183 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1184 		return true;
1185 
1186 	if (mod->using_gplonly_symbols) {
1187 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1188 			mod->name, name, owner->name);
1189 		return false;
1190 	}
1191 
1192 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1193 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1194 			mod->name, name, owner->name);
1195 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1196 	}
1197 	return true;
1198 }
1199 
1200 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1201 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1202 						  const struct load_info *info,
1203 						  const char *name,
1204 						  char ownername[])
1205 {
1206 	struct find_symbol_arg fsa = {
1207 		.name	= name,
1208 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1209 		.warn	= true,
1210 	};
1211 	int err;
1212 
1213 	/*
1214 	 * The module_mutex should not be a heavily contended lock;
1215 	 * if we get the occasional sleep here, we'll go an extra iteration
1216 	 * in the wait_event_interruptible(), which is harmless.
1217 	 */
1218 	sched_annotate_sleep();
1219 	mutex_lock(&module_mutex);
1220 	if (!find_symbol(&fsa))
1221 		goto unlock;
1222 
1223 	if (fsa.license == GPL_ONLY)
1224 		mod->using_gplonly_symbols = true;
1225 
1226 	if (!inherit_taint(mod, fsa.owner, name)) {
1227 		fsa.sym = NULL;
1228 		goto getname;
1229 	}
1230 
1231 	if (!check_version(info, name, mod, fsa.crc)) {
1232 		fsa.sym = ERR_PTR(-EINVAL);
1233 		goto getname;
1234 	}
1235 
1236 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1237 	if (err) {
1238 		fsa.sym = ERR_PTR(err);
1239 		goto getname;
1240 	}
1241 
1242 	err = ref_module(mod, fsa.owner);
1243 	if (err) {
1244 		fsa.sym = ERR_PTR(err);
1245 		goto getname;
1246 	}
1247 
1248 getname:
1249 	/* We must make copy under the lock if we failed to get ref. */
1250 	strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1251 unlock:
1252 	mutex_unlock(&module_mutex);
1253 	return fsa.sym;
1254 }
1255 
1256 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1257 resolve_symbol_wait(struct module *mod,
1258 		    const struct load_info *info,
1259 		    const char *name)
1260 {
1261 	const struct kernel_symbol *ksym;
1262 	char owner[MODULE_NAME_LEN];
1263 
1264 	if (wait_event_interruptible_timeout(module_wq,
1265 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1266 			|| PTR_ERR(ksym) != -EBUSY,
1267 					     30 * HZ) <= 0) {
1268 		pr_warn("%s: gave up waiting for init of module %s.\n",
1269 			mod->name, owner);
1270 	}
1271 	return ksym;
1272 }
1273 
module_arch_cleanup(struct module * mod)1274 void __weak module_arch_cleanup(struct module *mod)
1275 {
1276 }
1277 
module_arch_freeing_init(struct module * mod)1278 void __weak module_arch_freeing_init(struct module *mod)
1279 {
1280 }
1281 
module_memory_alloc(struct module * mod,enum mod_mem_type type)1282 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1283 {
1284 	unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1285 	enum execmem_type execmem_type;
1286 	void *ptr;
1287 
1288 	mod->mem[type].size = size;
1289 
1290 	if (mod_mem_type_is_data(type))
1291 		execmem_type = EXECMEM_MODULE_DATA;
1292 	else
1293 		execmem_type = EXECMEM_MODULE_TEXT;
1294 
1295 	ptr = execmem_alloc(execmem_type, size);
1296 	if (!ptr)
1297 		return -ENOMEM;
1298 
1299 	if (execmem_is_rox(execmem_type)) {
1300 		int err = execmem_make_temp_rw(ptr, size);
1301 
1302 		if (err) {
1303 			execmem_free(ptr);
1304 			return -ENOMEM;
1305 		}
1306 
1307 		mod->mem[type].is_rox = true;
1308 	}
1309 
1310 	/*
1311 	 * The pointer to these blocks of memory are stored on the module
1312 	 * structure and we keep that around so long as the module is
1313 	 * around. We only free that memory when we unload the module.
1314 	 * Just mark them as not being a leak then. The .init* ELF
1315 	 * sections *do* get freed after boot so we *could* treat them
1316 	 * slightly differently with kmemleak_ignore() and only grey
1317 	 * them out as they work as typical memory allocations which
1318 	 * *do* eventually get freed, but let's just keep things simple
1319 	 * and avoid *any* false positives.
1320 	 */
1321 	if (!mod->mem[type].is_rox)
1322 		kmemleak_not_leak(ptr);
1323 
1324 	memset(ptr, 0, size);
1325 	mod->mem[type].base = ptr;
1326 
1327 	return 0;
1328 }
1329 
module_memory_restore_rox(struct module * mod)1330 static void module_memory_restore_rox(struct module *mod)
1331 {
1332 	for_class_mod_mem_type(type, text) {
1333 		struct module_memory *mem = &mod->mem[type];
1334 
1335 		if (mem->is_rox)
1336 			execmem_restore_rox(mem->base, mem->size);
1337 	}
1338 }
1339 
module_memory_free(struct module * mod,enum mod_mem_type type)1340 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1341 {
1342 	struct module_memory *mem = &mod->mem[type];
1343 
1344 	execmem_free(mem->base);
1345 }
1346 
free_mod_mem(struct module * mod)1347 static void free_mod_mem(struct module *mod)
1348 {
1349 	for_each_mod_mem_type(type) {
1350 		struct module_memory *mod_mem = &mod->mem[type];
1351 
1352 		if (type == MOD_DATA)
1353 			continue;
1354 
1355 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1356 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1357 		if (mod_mem->size)
1358 			module_memory_free(mod, type);
1359 	}
1360 
1361 	/* MOD_DATA hosts mod, so free it at last */
1362 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1363 	module_memory_free(mod, MOD_DATA);
1364 }
1365 
1366 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1367 static void free_module(struct module *mod)
1368 {
1369 	trace_module_free(mod);
1370 
1371 	codetag_unload_module(mod);
1372 
1373 	mod_sysfs_teardown(mod);
1374 
1375 	/*
1376 	 * We leave it in list to prevent duplicate loads, but make sure
1377 	 * that noone uses it while it's being deconstructed.
1378 	 */
1379 	mutex_lock(&module_mutex);
1380 	mod->state = MODULE_STATE_UNFORMED;
1381 	mutex_unlock(&module_mutex);
1382 
1383 	/* Arch-specific cleanup. */
1384 	module_arch_cleanup(mod);
1385 
1386 	/* Module unload stuff */
1387 	module_unload_free(mod);
1388 
1389 	/* Free any allocated parameters. */
1390 	destroy_params(mod->kp, mod->num_kp);
1391 
1392 	if (is_livepatch_module(mod))
1393 		free_module_elf(mod);
1394 
1395 	/* Now we can delete it from the lists */
1396 	mutex_lock(&module_mutex);
1397 	/* Unlink carefully: kallsyms could be walking list. */
1398 	list_del_rcu(&mod->list);
1399 	mod_tree_remove(mod);
1400 	/* Remove this module from bug list, this uses list_del_rcu */
1401 	module_bug_cleanup(mod);
1402 	/* Wait for RCU synchronizing before releasing mod->list and buglist. */
1403 	synchronize_rcu();
1404 	if (try_add_tainted_module(mod))
1405 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1406 		       mod->name);
1407 	mutex_unlock(&module_mutex);
1408 
1409 	/* This may be empty, but that's OK */
1410 	module_arch_freeing_init(mod);
1411 	kfree(mod->args);
1412 	percpu_modfree(mod);
1413 
1414 	free_mod_mem(mod);
1415 }
1416 
__symbol_get(const char * symbol)1417 void *__symbol_get(const char *symbol)
1418 {
1419 	struct find_symbol_arg fsa = {
1420 		.name	= symbol,
1421 		.gplok	= true,
1422 		.warn	= true,
1423 	};
1424 
1425 	scoped_guard(rcu) {
1426 		if (!find_symbol(&fsa))
1427 			return NULL;
1428 		if (fsa.license != GPL_ONLY) {
1429 			pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1430 				symbol);
1431 			return NULL;
1432 		}
1433 		if (strong_try_module_get(fsa.owner))
1434 			return NULL;
1435 	}
1436 	return (void *)kernel_symbol_value(fsa.sym);
1437 }
1438 EXPORT_SYMBOL_GPL(__symbol_get);
1439 
1440 /*
1441  * Ensure that an exported symbol [global namespace] does not already exist
1442  * in the kernel or in some other module's exported symbol table.
1443  *
1444  * You must hold the module_mutex.
1445  */
verify_exported_symbols(struct module * mod)1446 static int verify_exported_symbols(struct module *mod)
1447 {
1448 	unsigned int i;
1449 	const struct kernel_symbol *s;
1450 	struct {
1451 		const struct kernel_symbol *sym;
1452 		unsigned int num;
1453 	} arr[] = {
1454 		{ mod->syms, mod->num_syms },
1455 		{ mod->gpl_syms, mod->num_gpl_syms },
1456 	};
1457 
1458 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1459 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1460 			struct find_symbol_arg fsa = {
1461 				.name	= kernel_symbol_name(s),
1462 				.gplok	= true,
1463 			};
1464 			if (find_symbol(&fsa)) {
1465 				pr_err("%s: exports duplicate symbol %s"
1466 				       " (owned by %s)\n",
1467 				       mod->name, kernel_symbol_name(s),
1468 				       module_name(fsa.owner));
1469 				return -ENOEXEC;
1470 			}
1471 		}
1472 	}
1473 	return 0;
1474 }
1475 
ignore_undef_symbol(Elf_Half emachine,const char * name)1476 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1477 {
1478 	/*
1479 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1480 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1481 	 * i386 has a similar problem but may not deserve a fix.
1482 	 *
1483 	 * If we ever have to ignore many symbols, consider refactoring the code to
1484 	 * only warn if referenced by a relocation.
1485 	 */
1486 	if (emachine == EM_386 || emachine == EM_X86_64)
1487 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1488 	return false;
1489 }
1490 
1491 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1492 static int simplify_symbols(struct module *mod, const struct load_info *info)
1493 {
1494 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1495 	Elf_Sym *sym = (void *)symsec->sh_addr;
1496 	unsigned long secbase;
1497 	unsigned int i;
1498 	int ret = 0;
1499 	const struct kernel_symbol *ksym;
1500 
1501 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1502 		const char *name = info->strtab + sym[i].st_name;
1503 
1504 		switch (sym[i].st_shndx) {
1505 		case SHN_COMMON:
1506 			/* Ignore common symbols */
1507 			if (!strncmp(name, "__gnu_lto", 9))
1508 				break;
1509 
1510 			/*
1511 			 * We compiled with -fno-common.  These are not
1512 			 * supposed to happen.
1513 			 */
1514 			pr_debug("Common symbol: %s\n", name);
1515 			pr_warn("%s: please compile with -fno-common\n",
1516 			       mod->name);
1517 			ret = -ENOEXEC;
1518 			break;
1519 
1520 		case SHN_ABS:
1521 			/* Don't need to do anything */
1522 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1523 				 (long)sym[i].st_value, name);
1524 			break;
1525 
1526 		case SHN_LIVEPATCH:
1527 			/* Livepatch symbols are resolved by livepatch */
1528 			break;
1529 
1530 		case SHN_UNDEF:
1531 			ksym = resolve_symbol_wait(mod, info, name);
1532 			/* Ok if resolved.  */
1533 			if (ksym && !IS_ERR(ksym)) {
1534 				sym[i].st_value = kernel_symbol_value(ksym);
1535 				break;
1536 			}
1537 
1538 			/* Ok if weak or ignored.  */
1539 			if (!ksym &&
1540 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1541 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1542 				break;
1543 
1544 			ret = PTR_ERR(ksym) ?: -ENOENT;
1545 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1546 				mod->name, name, ret);
1547 			break;
1548 
1549 		default:
1550 			/* Divert to percpu allocation if a percpu var. */
1551 			if (sym[i].st_shndx == info->index.pcpu)
1552 				secbase = (unsigned long)mod_percpu(mod);
1553 			else
1554 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1555 			sym[i].st_value += secbase;
1556 			break;
1557 		}
1558 	}
1559 
1560 	return ret;
1561 }
1562 
apply_relocations(struct module * mod,const struct load_info * info)1563 static int apply_relocations(struct module *mod, const struct load_info *info)
1564 {
1565 	unsigned int i;
1566 	int err = 0;
1567 
1568 	/* Now do relocations. */
1569 	for (i = 1; i < info->hdr->e_shnum; i++) {
1570 		unsigned int infosec = info->sechdrs[i].sh_info;
1571 
1572 		/* Not a valid relocation section? */
1573 		if (infosec >= info->hdr->e_shnum)
1574 			continue;
1575 
1576 		/*
1577 		 * Don't bother with non-allocated sections.
1578 		 * An exception is the percpu section, which has separate allocations
1579 		 * for individual CPUs. We relocate the percpu section in the initial
1580 		 * ELF template and subsequently copy it to the per-CPU destinations.
1581 		 */
1582 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC) &&
1583 		    (!infosec || infosec != info->index.pcpu))
1584 			continue;
1585 
1586 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1587 			err = klp_apply_section_relocs(mod, info->sechdrs,
1588 						       info->secstrings,
1589 						       info->strtab,
1590 						       info->index.sym, i,
1591 						       NULL);
1592 		else if (info->sechdrs[i].sh_type == SHT_REL)
1593 			err = apply_relocate(info->sechdrs, info->strtab,
1594 					     info->index.sym, i, mod);
1595 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1596 			err = apply_relocate_add(info->sechdrs, info->strtab,
1597 						 info->index.sym, i, mod);
1598 		if (err < 0)
1599 			break;
1600 	}
1601 	return err;
1602 }
1603 
1604 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1605 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1606 					     unsigned int section)
1607 {
1608 	/* default implementation just returns zero */
1609 	return 0;
1610 }
1611 
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1612 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1613 				Elf_Shdr *sechdr, unsigned int section)
1614 {
1615 	long offset;
1616 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1617 
1618 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1619 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1620 	mod->mem[type].size = offset + sechdr->sh_size;
1621 
1622 	WARN_ON_ONCE(offset & mask);
1623 	return offset | mask;
1624 }
1625 
module_init_layout_section(const char * sname)1626 bool module_init_layout_section(const char *sname)
1627 {
1628 #ifndef CONFIG_MODULE_UNLOAD
1629 	if (module_exit_section(sname))
1630 		return true;
1631 #endif
1632 	return module_init_section(sname);
1633 }
1634 
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1635 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1636 {
1637 	unsigned int m, i;
1638 
1639 	/*
1640 	 * { Mask of required section header flags,
1641 	 *   Mask of excluded section header flags }
1642 	 */
1643 	static const unsigned long masks[][2] = {
1644 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1645 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1646 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1647 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1648 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1649 	};
1650 	static const int core_m_to_mem_type[] = {
1651 		MOD_TEXT,
1652 		MOD_RODATA,
1653 		MOD_RO_AFTER_INIT,
1654 		MOD_DATA,
1655 		MOD_DATA,
1656 	};
1657 	static const int init_m_to_mem_type[] = {
1658 		MOD_INIT_TEXT,
1659 		MOD_INIT_RODATA,
1660 		MOD_INVALID,
1661 		MOD_INIT_DATA,
1662 		MOD_INIT_DATA,
1663 	};
1664 
1665 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1666 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1667 
1668 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1669 			Elf_Shdr *s = &info->sechdrs[i];
1670 			const char *sname = info->secstrings + s->sh_name;
1671 
1672 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1673 			    || (s->sh_flags & masks[m][1])
1674 			    || s->sh_entsize != ~0UL
1675 			    || is_init != module_init_layout_section(sname))
1676 				continue;
1677 
1678 			if (WARN_ON_ONCE(type == MOD_INVALID))
1679 				continue;
1680 
1681 			/*
1682 			 * Do not allocate codetag memory as we load it into
1683 			 * preallocated contiguous memory.
1684 			 */
1685 			if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1686 				/*
1687 				 * s->sh_entsize won't be used but populate the
1688 				 * type field to avoid confusion.
1689 				 */
1690 				s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1691 						<< SH_ENTSIZE_TYPE_SHIFT;
1692 				continue;
1693 			}
1694 
1695 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1696 			pr_debug("\t%s\n", sname);
1697 		}
1698 	}
1699 }
1700 
1701 /*
1702  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1703  * might -- code, read-only data, read-write data, small data.  Tally
1704  * sizes, and place the offsets into sh_entsize fields: high bit means it
1705  * belongs in init.
1706  */
layout_sections(struct module * mod,struct load_info * info)1707 static void layout_sections(struct module *mod, struct load_info *info)
1708 {
1709 	unsigned int i;
1710 
1711 	for (i = 0; i < info->hdr->e_shnum; i++)
1712 		info->sechdrs[i].sh_entsize = ~0UL;
1713 
1714 	pr_debug("Core section allocation order for %s:\n", mod->name);
1715 	__layout_sections(mod, info, false);
1716 
1717 	pr_debug("Init section allocation order for %s:\n", mod->name);
1718 	__layout_sections(mod, info, true);
1719 }
1720 
module_license_taint_check(struct module * mod,const char * license)1721 static void module_license_taint_check(struct module *mod, const char *license)
1722 {
1723 	if (!license)
1724 		license = "unspecified";
1725 
1726 	if (!license_is_gpl_compatible(license)) {
1727 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1728 			pr_warn("%s: module license '%s' taints kernel.\n",
1729 				mod->name, license);
1730 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1731 				 LOCKDEP_NOW_UNRELIABLE);
1732 	}
1733 }
1734 
setup_modinfo(struct module * mod,struct load_info * info)1735 static int setup_modinfo(struct module *mod, struct load_info *info)
1736 {
1737 	const struct module_attribute *attr;
1738 	char *imported_namespace;
1739 	int i;
1740 
1741 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1742 		if (attr->setup)
1743 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1744 	}
1745 
1746 	for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1747 		/*
1748 		 * 'module:' prefixed namespaces are implicit, disallow
1749 		 * explicit imports.
1750 		 */
1751 		if (strstarts(imported_namespace, "module:")) {
1752 			pr_err("%s: module tries to import module namespace: %s\n",
1753 			       mod->name, imported_namespace);
1754 			return -EPERM;
1755 		}
1756 	}
1757 
1758 	return 0;
1759 }
1760 
free_modinfo(struct module * mod)1761 static void free_modinfo(struct module *mod)
1762 {
1763 	const struct module_attribute *attr;
1764 	int i;
1765 
1766 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1767 		if (attr->free)
1768 			attr->free(mod);
1769 	}
1770 }
1771 
module_init_section(const char * name)1772 bool __weak module_init_section(const char *name)
1773 {
1774 	return strstarts(name, ".init");
1775 }
1776 
module_exit_section(const char * name)1777 bool __weak module_exit_section(const char *name)
1778 {
1779 	return strstarts(name, ".exit");
1780 }
1781 
validate_section_offset(const struct load_info * info,Elf_Shdr * shdr)1782 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1783 {
1784 #if defined(CONFIG_64BIT)
1785 	unsigned long long secend;
1786 #else
1787 	unsigned long secend;
1788 #endif
1789 
1790 	/*
1791 	 * Check for both overflow and offset/size being
1792 	 * too large.
1793 	 */
1794 	secend = shdr->sh_offset + shdr->sh_size;
1795 	if (secend < shdr->sh_offset || secend > info->len)
1796 		return -ENOEXEC;
1797 
1798 	return 0;
1799 }
1800 
1801 /**
1802  * elf_validity_ehdr() - Checks an ELF header for module validity
1803  * @info: Load info containing the ELF header to check
1804  *
1805  * Checks whether an ELF header could belong to a valid module. Checks:
1806  *
1807  * * ELF header is within the data the user provided
1808  * * ELF magic is present
1809  * * It is relocatable (not final linked, not core file, etc.)
1810  * * The header's machine type matches what the architecture expects.
1811  * * Optional arch-specific hook for other properties
1812  *   - module_elf_check_arch() is currently only used by PPC to check
1813  *   ELF ABI version, but may be used by others in the future.
1814  *
1815  * Return: %0 if valid, %-ENOEXEC on failure.
1816  */
elf_validity_ehdr(const struct load_info * info)1817 static int elf_validity_ehdr(const struct load_info *info)
1818 {
1819 	if (info->len < sizeof(*(info->hdr))) {
1820 		pr_err("Invalid ELF header len %lu\n", info->len);
1821 		return -ENOEXEC;
1822 	}
1823 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1824 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1825 		return -ENOEXEC;
1826 	}
1827 	if (info->hdr->e_type != ET_REL) {
1828 		pr_err("Invalid ELF header type: %u != %u\n",
1829 		       info->hdr->e_type, ET_REL);
1830 		return -ENOEXEC;
1831 	}
1832 	if (!elf_check_arch(info->hdr)) {
1833 		pr_err("Invalid architecture in ELF header: %u\n",
1834 		       info->hdr->e_machine);
1835 		return -ENOEXEC;
1836 	}
1837 	if (!module_elf_check_arch(info->hdr)) {
1838 		pr_err("Invalid module architecture in ELF header: %u\n",
1839 		       info->hdr->e_machine);
1840 		return -ENOEXEC;
1841 	}
1842 	return 0;
1843 }
1844 
1845 /**
1846  * elf_validity_cache_sechdrs() - Cache section headers if valid
1847  * @info: Load info to compute section headers from
1848  *
1849  * Checks:
1850  *
1851  * * ELF header is valid (see elf_validity_ehdr())
1852  * * Section headers are the size we expect
1853  * * Section array fits in the user provided data
1854  * * Section index 0 is NULL
1855  * * Section contents are inbounds
1856  *
1857  * Then updates @info with a &load_info->sechdrs pointer if valid.
1858  *
1859  * Return: %0 if valid, negative error code if validation failed.
1860  */
elf_validity_cache_sechdrs(struct load_info * info)1861 static int elf_validity_cache_sechdrs(struct load_info *info)
1862 {
1863 	Elf_Shdr *sechdrs;
1864 	Elf_Shdr *shdr;
1865 	int i;
1866 	int err;
1867 
1868 	err = elf_validity_ehdr(info);
1869 	if (err < 0)
1870 		return err;
1871 
1872 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1873 		pr_err("Invalid ELF section header size\n");
1874 		return -ENOEXEC;
1875 	}
1876 
1877 	/*
1878 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1879 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1880 	 * will not overflow unsigned long on any platform.
1881 	 */
1882 	if (info->hdr->e_shoff >= info->len
1883 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1884 		info->len - info->hdr->e_shoff)) {
1885 		pr_err("Invalid ELF section header overflow\n");
1886 		return -ENOEXEC;
1887 	}
1888 
1889 	sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1890 
1891 	/*
1892 	 * The code assumes that section 0 has a length of zero and
1893 	 * an addr of zero, so check for it.
1894 	 */
1895 	if (sechdrs[0].sh_type != SHT_NULL
1896 	    || sechdrs[0].sh_size != 0
1897 	    || sechdrs[0].sh_addr != 0) {
1898 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1899 		       sechdrs[0].sh_type);
1900 		return -ENOEXEC;
1901 	}
1902 
1903 	/* Validate contents are inbounds */
1904 	for (i = 1; i < info->hdr->e_shnum; i++) {
1905 		shdr = &sechdrs[i];
1906 		switch (shdr->sh_type) {
1907 		case SHT_NULL:
1908 		case SHT_NOBITS:
1909 			/* No contents, offset/size don't mean anything */
1910 			continue;
1911 		default:
1912 			err = validate_section_offset(info, shdr);
1913 			if (err < 0) {
1914 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1915 				       i, shdr->sh_type);
1916 				return err;
1917 			}
1918 		}
1919 	}
1920 
1921 	info->sechdrs = sechdrs;
1922 
1923 	return 0;
1924 }
1925 
1926 /**
1927  * elf_validity_cache_secstrings() - Caches section names if valid
1928  * @info: Load info to cache section names from. Must have valid sechdrs.
1929  *
1930  * Specifically checks:
1931  *
1932  * * Section name table index is inbounds of section headers
1933  * * Section name table is not empty
1934  * * Section name table is NUL terminated
1935  * * All section name offsets are inbounds of the section
1936  *
1937  * Then updates @info with a &load_info->secstrings pointer if valid.
1938  *
1939  * Return: %0 if valid, negative error code if validation failed.
1940  */
elf_validity_cache_secstrings(struct load_info * info)1941 static int elf_validity_cache_secstrings(struct load_info *info)
1942 {
1943 	Elf_Shdr *strhdr, *shdr;
1944 	char *secstrings;
1945 	int i;
1946 
1947 	/*
1948 	 * Verify if the section name table index is valid.
1949 	 */
1950 	if (info->hdr->e_shstrndx == SHN_UNDEF
1951 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1952 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1953 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1954 		       info->hdr->e_shnum);
1955 		return -ENOEXEC;
1956 	}
1957 
1958 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1959 
1960 	/*
1961 	 * The section name table must be NUL-terminated, as required
1962 	 * by the spec. This makes strcmp and pr_* calls that access
1963 	 * strings in the section safe.
1964 	 */
1965 	secstrings = (void *)info->hdr + strhdr->sh_offset;
1966 	if (strhdr->sh_size == 0) {
1967 		pr_err("empty section name table\n");
1968 		return -ENOEXEC;
1969 	}
1970 	if (secstrings[strhdr->sh_size - 1] != '\0') {
1971 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1972 		return -ENOEXEC;
1973 	}
1974 
1975 	for (i = 0; i < info->hdr->e_shnum; i++) {
1976 		shdr = &info->sechdrs[i];
1977 		/* SHT_NULL means sh_name has an undefined value */
1978 		if (shdr->sh_type == SHT_NULL)
1979 			continue;
1980 		if (shdr->sh_name >= strhdr->sh_size) {
1981 			pr_err("Invalid ELF section name in module (section %u type %u)\n",
1982 			       i, shdr->sh_type);
1983 			return -ENOEXEC;
1984 		}
1985 	}
1986 
1987 	info->secstrings = secstrings;
1988 	return 0;
1989 }
1990 
1991 /**
1992  * elf_validity_cache_index_info() - Validate and cache modinfo section
1993  * @info: Load info to populate the modinfo index on.
1994  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1995  *
1996  * Checks that if there is a .modinfo section, it is unique.
1997  * Then, it caches its index in &load_info->index.info.
1998  * Finally, it tries to populate the name to improve error messages.
1999  *
2000  * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
2001  */
elf_validity_cache_index_info(struct load_info * info)2002 static int elf_validity_cache_index_info(struct load_info *info)
2003 {
2004 	int info_idx;
2005 
2006 	info_idx = find_any_unique_sec(info, ".modinfo");
2007 
2008 	if (info_idx == 0)
2009 		/* Early return, no .modinfo */
2010 		return 0;
2011 
2012 	if (info_idx < 0) {
2013 		pr_err("Only one .modinfo section must exist.\n");
2014 		return -ENOEXEC;
2015 	}
2016 
2017 	info->index.info = info_idx;
2018 	/* Try to find a name early so we can log errors with a module name */
2019 	info->name = get_modinfo(info, "name");
2020 
2021 	return 0;
2022 }
2023 
2024 /**
2025  * elf_validity_cache_index_mod() - Validates and caches this_module section
2026  * @info: Load info to cache this_module on.
2027  *        Must have &load_info->sechdrs and &load_info->secstrings populated
2028  *
2029  * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
2030  * uses to refer to __this_module and let's use rely on THIS_MODULE to point
2031  * to &__this_module properly. The kernel's modpost declares it on each
2032  * modules's *.mod.c file. If the struct module of the kernel changes a full
2033  * kernel rebuild is required.
2034  *
2035  * We have a few expectations for this special section, this function
2036  * validates all this for us:
2037  *
2038  * * The section has contents
2039  * * The section is unique
2040  * * We expect the kernel to always have to allocate it: SHF_ALLOC
2041  * * The section size must match the kernel's run time's struct module
2042  *   size
2043  *
2044  * If all checks pass, the index will be cached in &load_info->index.mod
2045  *
2046  * Return: %0 on validation success, %-ENOEXEC on failure
2047  */
elf_validity_cache_index_mod(struct load_info * info)2048 static int elf_validity_cache_index_mod(struct load_info *info)
2049 {
2050 	Elf_Shdr *shdr;
2051 	int mod_idx;
2052 
2053 	mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
2054 	if (mod_idx <= 0) {
2055 		pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
2056 		       info->name ?: "(missing .modinfo section or name field)");
2057 		return -ENOEXEC;
2058 	}
2059 
2060 	shdr = &info->sechdrs[mod_idx];
2061 
2062 	if (shdr->sh_type == SHT_NOBITS) {
2063 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
2064 		       info->name ?: "(missing .modinfo section or name field)");
2065 		return -ENOEXEC;
2066 	}
2067 
2068 	if (!(shdr->sh_flags & SHF_ALLOC)) {
2069 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
2070 		       info->name ?: "(missing .modinfo section or name field)");
2071 		return -ENOEXEC;
2072 	}
2073 
2074 	if (shdr->sh_size != sizeof(struct module)) {
2075 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2076 		       info->name ?: "(missing .modinfo section or name field)");
2077 		return -ENOEXEC;
2078 	}
2079 
2080 	info->index.mod = mod_idx;
2081 
2082 	return 0;
2083 }
2084 
2085 /**
2086  * elf_validity_cache_index_sym() - Validate and cache symtab index
2087  * @info: Load info to cache symtab index in.
2088  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2089  *
2090  * Checks that there is exactly one symbol table, then caches its index in
2091  * &load_info->index.sym.
2092  *
2093  * Return: %0 if valid, %-ENOEXEC on failure.
2094  */
elf_validity_cache_index_sym(struct load_info * info)2095 static int elf_validity_cache_index_sym(struct load_info *info)
2096 {
2097 	unsigned int sym_idx;
2098 	unsigned int num_sym_secs = 0;
2099 	int i;
2100 
2101 	for (i = 1; i < info->hdr->e_shnum; i++) {
2102 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2103 			num_sym_secs++;
2104 			sym_idx = i;
2105 		}
2106 	}
2107 
2108 	if (num_sym_secs != 1) {
2109 		pr_warn("%s: module has no symbols (stripped?)\n",
2110 			info->name ?: "(missing .modinfo section or name field)");
2111 		return -ENOEXEC;
2112 	}
2113 
2114 	info->index.sym = sym_idx;
2115 
2116 	return 0;
2117 }
2118 
2119 /**
2120  * elf_validity_cache_index_str() - Validate and cache strtab index
2121  * @info: Load info to cache strtab index in.
2122  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2123  *        Must have &load_info->index.sym populated.
2124  *
2125  * Looks at the symbol table's associated string table, makes sure it is
2126  * in-bounds, and caches it.
2127  *
2128  * Return: %0 if valid, %-ENOEXEC on failure.
2129  */
elf_validity_cache_index_str(struct load_info * info)2130 static int elf_validity_cache_index_str(struct load_info *info)
2131 {
2132 	unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2133 
2134 	if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2135 		pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2136 		       str_idx, str_idx, info->hdr->e_shnum);
2137 		return -ENOEXEC;
2138 	}
2139 
2140 	info->index.str = str_idx;
2141 	return 0;
2142 }
2143 
2144 /**
2145  * elf_validity_cache_index_versions() - Validate and cache version indices
2146  * @info:  Load info to cache version indices in.
2147  *         Must have &load_info->sechdrs and &load_info->secstrings populated.
2148  * @flags: Load flags, relevant to suppress version loading, see
2149  *         uapi/linux/module.h
2150  *
2151  * If we're ignoring modversions based on @flags, zero all version indices
2152  * and return validity. Othewrise check:
2153  *
2154  * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2155  * * There is a name present for every crc
2156  *
2157  * Then populate:
2158  *
2159  * * &load_info->index.vers
2160  * * &load_info->index.vers_ext_crc
2161  * * &load_info->index.vers_ext_names
2162  *
2163  * if present.
2164  *
2165  * Return: %0 if valid, %-ENOEXEC on failure.
2166  */
elf_validity_cache_index_versions(struct load_info * info,int flags)2167 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2168 {
2169 	unsigned int vers_ext_crc;
2170 	unsigned int vers_ext_name;
2171 	size_t crc_count;
2172 	size_t remaining_len;
2173 	size_t name_size;
2174 	char *name;
2175 
2176 	/* If modversions were suppressed, pretend we didn't find any */
2177 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2178 		info->index.vers = 0;
2179 		info->index.vers_ext_crc = 0;
2180 		info->index.vers_ext_name = 0;
2181 		return 0;
2182 	}
2183 
2184 	vers_ext_crc = find_sec(info, "__version_ext_crcs");
2185 	vers_ext_name = find_sec(info, "__version_ext_names");
2186 
2187 	/* If we have one field, we must have the other */
2188 	if (!!vers_ext_crc != !!vers_ext_name) {
2189 		pr_err("extended version crc+name presence does not match");
2190 		return -ENOEXEC;
2191 	}
2192 
2193 	/*
2194 	 * If we have extended version information, we should have the same
2195 	 * number of entries in every section.
2196 	 */
2197 	if (vers_ext_crc) {
2198 		crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2199 		name = (void *)info->hdr +
2200 			info->sechdrs[vers_ext_name].sh_offset;
2201 		remaining_len = info->sechdrs[vers_ext_name].sh_size;
2202 
2203 		while (crc_count--) {
2204 			name_size = strnlen(name, remaining_len) + 1;
2205 			if (name_size > remaining_len) {
2206 				pr_err("more extended version crcs than names");
2207 				return -ENOEXEC;
2208 			}
2209 			remaining_len -= name_size;
2210 			name += name_size;
2211 		}
2212 	}
2213 
2214 	info->index.vers = find_sec(info, "__versions");
2215 	info->index.vers_ext_crc = vers_ext_crc;
2216 	info->index.vers_ext_name = vers_ext_name;
2217 	return 0;
2218 }
2219 
2220 /**
2221  * elf_validity_cache_index() - Resolve, validate, cache section indices
2222  * @info:  Load info to read from and update.
2223  *         &load_info->sechdrs and &load_info->secstrings must be populated.
2224  * @flags: Load flags, relevant to suppress version loading, see
2225  *         uapi/linux/module.h
2226  *
2227  * Populates &load_info->index, validating as it goes.
2228  * See child functions for per-field validation:
2229  *
2230  * * elf_validity_cache_index_info()
2231  * * elf_validity_cache_index_mod()
2232  * * elf_validity_cache_index_sym()
2233  * * elf_validity_cache_index_str()
2234  * * elf_validity_cache_index_versions()
2235  *
2236  * If CONFIG_SMP is enabled, load the percpu section by name with no
2237  * validation.
2238  *
2239  * Return: 0 on success, negative error code if an index failed validation.
2240  */
elf_validity_cache_index(struct load_info * info,int flags)2241 static int elf_validity_cache_index(struct load_info *info, int flags)
2242 {
2243 	int err;
2244 
2245 	err = elf_validity_cache_index_info(info);
2246 	if (err < 0)
2247 		return err;
2248 	err = elf_validity_cache_index_mod(info);
2249 	if (err < 0)
2250 		return err;
2251 	err = elf_validity_cache_index_sym(info);
2252 	if (err < 0)
2253 		return err;
2254 	err = elf_validity_cache_index_str(info);
2255 	if (err < 0)
2256 		return err;
2257 	err = elf_validity_cache_index_versions(info, flags);
2258 	if (err < 0)
2259 		return err;
2260 
2261 	info->index.pcpu = find_pcpusec(info);
2262 
2263 	return 0;
2264 }
2265 
2266 /**
2267  * elf_validity_cache_strtab() - Validate and cache symbol string table
2268  * @info: Load info to read from and update.
2269  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2270  *        Must have &load_info->index populated.
2271  *
2272  * Checks:
2273  *
2274  * * The string table is not empty.
2275  * * The string table starts and ends with NUL (required by ELF spec).
2276  * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2277  *   string table.
2278  *
2279  * And caches the pointer as &load_info->strtab in @info.
2280  *
2281  * Return: 0 on success, negative error code if a check failed.
2282  */
elf_validity_cache_strtab(struct load_info * info)2283 static int elf_validity_cache_strtab(struct load_info *info)
2284 {
2285 	Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2286 	Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2287 	char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2288 	Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2289 	int i;
2290 
2291 	if (str_shdr->sh_size == 0) {
2292 		pr_err("empty symbol string table\n");
2293 		return -ENOEXEC;
2294 	}
2295 	if (strtab[0] != '\0') {
2296 		pr_err("symbol string table missing leading NUL\n");
2297 		return -ENOEXEC;
2298 	}
2299 	if (strtab[str_shdr->sh_size - 1] != '\0') {
2300 		pr_err("symbol string table isn't NUL terminated\n");
2301 		return -ENOEXEC;
2302 	}
2303 
2304 	/*
2305 	 * Now that we know strtab is correctly structured, check symbol
2306 	 * starts are inbounds before they're used later.
2307 	 */
2308 	for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2309 		if (syms[i].st_name >= str_shdr->sh_size) {
2310 			pr_err("symbol name out of bounds in string table");
2311 			return -ENOEXEC;
2312 		}
2313 	}
2314 
2315 	info->strtab = strtab;
2316 	return 0;
2317 }
2318 
2319 /*
2320  * Check userspace passed ELF module against our expectations, and cache
2321  * useful variables for further processing as we go.
2322  *
2323  * This does basic validity checks against section offsets and sizes, the
2324  * section name string table, and the indices used for it (sh_name).
2325  *
2326  * As a last step, since we're already checking the ELF sections we cache
2327  * useful variables which will be used later for our convenience:
2328  *
2329  * 	o pointers to section headers
2330  * 	o cache the modinfo symbol section
2331  * 	o cache the string symbol section
2332  * 	o cache the module section
2333  *
2334  * As a last step we set info->mod to the temporary copy of the module in
2335  * info->hdr. The final one will be allocated in move_module(). Any
2336  * modifications we make to our copy of the module will be carried over
2337  * to the final minted module.
2338  */
elf_validity_cache_copy(struct load_info * info,int flags)2339 static int elf_validity_cache_copy(struct load_info *info, int flags)
2340 {
2341 	int err;
2342 
2343 	err = elf_validity_cache_sechdrs(info);
2344 	if (err < 0)
2345 		return err;
2346 	err = elf_validity_cache_secstrings(info);
2347 	if (err < 0)
2348 		return err;
2349 	err = elf_validity_cache_index(info, flags);
2350 	if (err < 0)
2351 		return err;
2352 	err = elf_validity_cache_strtab(info);
2353 	if (err < 0)
2354 		return err;
2355 
2356 	/* This is temporary: point mod into copy of data. */
2357 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2358 
2359 	/*
2360 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
2361 	 * on-disk struct mod 'name' field.
2362 	 */
2363 	if (!info->name)
2364 		info->name = info->mod->name;
2365 
2366 	return 0;
2367 }
2368 
2369 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2370 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2371 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2372 {
2373 	do {
2374 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2375 
2376 		if (copy_from_user(dst, usrc, n) != 0)
2377 			return -EFAULT;
2378 		cond_resched();
2379 		dst += n;
2380 		usrc += n;
2381 		len -= n;
2382 	} while (len);
2383 	return 0;
2384 }
2385 
check_modinfo_livepatch(struct module * mod,struct load_info * info)2386 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2387 {
2388 	if (!get_modinfo(info, "livepatch"))
2389 		/* Nothing more to do */
2390 		return 0;
2391 
2392 	if (set_livepatch_module(mod))
2393 		return 0;
2394 
2395 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2396 	       mod->name);
2397 	return -ENOEXEC;
2398 }
2399 
check_modinfo_retpoline(struct module * mod,struct load_info * info)2400 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2401 {
2402 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2403 		return;
2404 
2405 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2406 		mod->name);
2407 }
2408 
2409 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2410 static int copy_module_from_user(const void __user *umod, unsigned long len,
2411 				  struct load_info *info)
2412 {
2413 	int err;
2414 
2415 	info->len = len;
2416 	if (info->len < sizeof(*(info->hdr)))
2417 		return -ENOEXEC;
2418 
2419 	err = security_kernel_load_data(LOADING_MODULE, true);
2420 	if (err)
2421 		return err;
2422 
2423 	/* Suck in entire file: we'll want most of it. */
2424 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2425 	if (!info->hdr)
2426 		return -ENOMEM;
2427 
2428 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2429 		err = -EFAULT;
2430 		goto out;
2431 	}
2432 
2433 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2434 					     LOADING_MODULE, "init_module");
2435 out:
2436 	if (err)
2437 		vfree(info->hdr);
2438 
2439 	return err;
2440 }
2441 
free_copy(struct load_info * info,int flags)2442 static void free_copy(struct load_info *info, int flags)
2443 {
2444 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2445 		module_decompress_cleanup(info);
2446 	else
2447 		vfree(info->hdr);
2448 }
2449 
rewrite_section_headers(struct load_info * info,int flags)2450 static int rewrite_section_headers(struct load_info *info, int flags)
2451 {
2452 	unsigned int i;
2453 
2454 	/* This should always be true, but let's be sure. */
2455 	info->sechdrs[0].sh_addr = 0;
2456 
2457 	for (i = 1; i < info->hdr->e_shnum; i++) {
2458 		Elf_Shdr *shdr = &info->sechdrs[i];
2459 
2460 		/*
2461 		 * Mark all sections sh_addr with their address in the
2462 		 * temporary image.
2463 		 */
2464 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2465 
2466 	}
2467 
2468 	/* Track but don't keep modinfo and version sections. */
2469 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2470 	info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2471 		~(unsigned long)SHF_ALLOC;
2472 	info->sechdrs[info->index.vers_ext_name].sh_flags &=
2473 		~(unsigned long)SHF_ALLOC;
2474 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2475 
2476 	return 0;
2477 }
2478 
2479 static const char *const module_license_offenders[] = {
2480 	/* driverloader was caught wrongly pretending to be under GPL */
2481 	"driverloader",
2482 
2483 	/* lve claims to be GPL but upstream won't provide source */
2484 	"lve",
2485 };
2486 
2487 /*
2488  * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2489 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2490 {
2491 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2492 	size_t i;
2493 
2494 	if (!get_modinfo(info, "intree")) {
2495 		if (!test_taint(TAINT_OOT_MODULE))
2496 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2497 				mod->name);
2498 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2499 	}
2500 
2501 	check_modinfo_retpoline(mod, info);
2502 
2503 	if (get_modinfo(info, "staging")) {
2504 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2505 		pr_warn("%s: module is from the staging directory, the quality "
2506 			"is unknown, you have been warned.\n", mod->name);
2507 	}
2508 
2509 	if (is_livepatch_module(mod)) {
2510 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2511 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2512 				mod->name);
2513 	}
2514 
2515 	module_license_taint_check(mod, get_modinfo(info, "license"));
2516 
2517 	if (get_modinfo(info, "test")) {
2518 		if (!test_taint(TAINT_TEST))
2519 			pr_warn("%s: loading test module taints kernel.\n",
2520 				mod->name);
2521 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2522 	}
2523 #ifdef CONFIG_MODULE_SIG
2524 	mod->sig_ok = info->sig_ok;
2525 	if (!mod->sig_ok) {
2526 		pr_notice_once("%s: module verification failed: signature "
2527 			       "and/or required key missing - tainting "
2528 			       "kernel\n", mod->name);
2529 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2530 	}
2531 #endif
2532 
2533 	/*
2534 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2535 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2536 	 * using GPL-only symbols it needs.
2537 	 */
2538 	if (strcmp(mod->name, "ndiswrapper") == 0)
2539 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2540 
2541 	for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2542 		if (strcmp(mod->name, module_license_offenders[i]) == 0)
2543 			add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2544 					 LOCKDEP_NOW_UNRELIABLE);
2545 	}
2546 
2547 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2548 		pr_warn("%s: module license taints kernel.\n", mod->name);
2549 
2550 }
2551 
check_modinfo(struct module * mod,struct load_info * info,int flags)2552 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2553 {
2554 	const char *modmagic = get_modinfo(info, "vermagic");
2555 	int err;
2556 
2557 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2558 		modmagic = NULL;
2559 
2560 	/* This is allowed: modprobe --force will invalidate it. */
2561 	if (!modmagic) {
2562 		err = try_to_force_load(mod, "bad vermagic");
2563 		if (err)
2564 			return err;
2565 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2566 		pr_err("%s: version magic '%s' should be '%s'\n",
2567 		       info->name, modmagic, vermagic);
2568 		return -ENOEXEC;
2569 	}
2570 
2571 	err = check_modinfo_livepatch(mod, info);
2572 	if (err)
2573 		return err;
2574 
2575 	return 0;
2576 }
2577 
find_module_sections(struct module * mod,struct load_info * info)2578 static int find_module_sections(struct module *mod, struct load_info *info)
2579 {
2580 	mod->kp = section_objs(info, "__param",
2581 			       sizeof(*mod->kp), &mod->num_kp);
2582 	mod->syms = section_objs(info, "__ksymtab",
2583 				 sizeof(*mod->syms), &mod->num_syms);
2584 	mod->crcs = section_addr(info, "__kcrctab");
2585 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2586 				     sizeof(*mod->gpl_syms),
2587 				     &mod->num_gpl_syms);
2588 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2589 
2590 #ifdef CONFIG_CONSTRUCTORS
2591 	mod->ctors = section_objs(info, ".ctors",
2592 				  sizeof(*mod->ctors), &mod->num_ctors);
2593 	if (!mod->ctors)
2594 		mod->ctors = section_objs(info, ".init_array",
2595 				sizeof(*mod->ctors), &mod->num_ctors);
2596 	else if (find_sec(info, ".init_array")) {
2597 		/*
2598 		 * This shouldn't happen with same compiler and binutils
2599 		 * building all parts of the module.
2600 		 */
2601 		pr_warn("%s: has both .ctors and .init_array.\n",
2602 		       mod->name);
2603 		return -EINVAL;
2604 	}
2605 #endif
2606 
2607 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2608 						&mod->noinstr_text_size);
2609 
2610 #ifdef CONFIG_TRACEPOINTS
2611 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2612 					     sizeof(*mod->tracepoints_ptrs),
2613 					     &mod->num_tracepoints);
2614 #endif
2615 #ifdef CONFIG_TREE_SRCU
2616 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2617 					     sizeof(*mod->srcu_struct_ptrs),
2618 					     &mod->num_srcu_structs);
2619 #endif
2620 #ifdef CONFIG_BPF_EVENTS
2621 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2622 					   sizeof(*mod->bpf_raw_events),
2623 					   &mod->num_bpf_raw_events);
2624 #endif
2625 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2626 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2627 	mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2628 					      &mod->btf_base_data_size);
2629 #endif
2630 #ifdef CONFIG_JUMP_LABEL
2631 	mod->jump_entries = section_objs(info, "__jump_table",
2632 					sizeof(*mod->jump_entries),
2633 					&mod->num_jump_entries);
2634 #endif
2635 #ifdef CONFIG_EVENT_TRACING
2636 	mod->trace_events = section_objs(info, "_ftrace_events",
2637 					 sizeof(*mod->trace_events),
2638 					 &mod->num_trace_events);
2639 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2640 					sizeof(*mod->trace_evals),
2641 					&mod->num_trace_evals);
2642 #endif
2643 #ifdef CONFIG_TRACING
2644 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2645 					 sizeof(*mod->trace_bprintk_fmt_start),
2646 					 &mod->num_trace_bprintk_fmt);
2647 #endif
2648 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2649 	/* sechdrs[0].sh_size is always zero */
2650 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2651 					     sizeof(*mod->ftrace_callsites),
2652 					     &mod->num_ftrace_callsites);
2653 #endif
2654 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2655 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2656 					    sizeof(*mod->ei_funcs),
2657 					    &mod->num_ei_funcs);
2658 #endif
2659 #ifdef CONFIG_KPROBES
2660 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2661 						&mod->kprobes_text_size);
2662 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2663 						sizeof(unsigned long),
2664 						&mod->num_kprobe_blacklist);
2665 #endif
2666 #ifdef CONFIG_PRINTK_INDEX
2667 	mod->printk_index_start = section_objs(info, ".printk_index",
2668 					       sizeof(*mod->printk_index_start),
2669 					       &mod->printk_index_size);
2670 #endif
2671 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2672 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2673 					      sizeof(*mod->static_call_sites),
2674 					      &mod->num_static_call_sites);
2675 #endif
2676 #if IS_ENABLED(CONFIG_KUNIT)
2677 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2678 					      sizeof(*mod->kunit_suites),
2679 					      &mod->num_kunit_suites);
2680 	mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2681 					      sizeof(*mod->kunit_init_suites),
2682 					      &mod->num_kunit_init_suites);
2683 #endif
2684 
2685 	mod->extable = section_objs(info, "__ex_table",
2686 				    sizeof(*mod->extable), &mod->num_exentries);
2687 
2688 	if (section_addr(info, "__obsparm"))
2689 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2690 
2691 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2692 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2693 					      sizeof(*mod->dyndbg_info.descs),
2694 					      &mod->dyndbg_info.num_descs);
2695 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2696 						sizeof(*mod->dyndbg_info.classes),
2697 						&mod->dyndbg_info.num_classes);
2698 #endif
2699 
2700 	return 0;
2701 }
2702 
move_module(struct module * mod,struct load_info * info)2703 static int move_module(struct module *mod, struct load_info *info)
2704 {
2705 	int i, ret;
2706 	enum mod_mem_type t = MOD_MEM_NUM_TYPES;
2707 	bool codetag_section_found = false;
2708 
2709 	for_each_mod_mem_type(type) {
2710 		if (!mod->mem[type].size) {
2711 			mod->mem[type].base = NULL;
2712 			continue;
2713 		}
2714 
2715 		ret = module_memory_alloc(mod, type);
2716 		if (ret) {
2717 			t = type;
2718 			goto out_err;
2719 		}
2720 	}
2721 
2722 	/* Transfer each section which specifies SHF_ALLOC */
2723 	pr_debug("Final section addresses for %s:\n", mod->name);
2724 	for (i = 0; i < info->hdr->e_shnum; i++) {
2725 		void *dest;
2726 		Elf_Shdr *shdr = &info->sechdrs[i];
2727 		const char *sname;
2728 
2729 		if (!(shdr->sh_flags & SHF_ALLOC))
2730 			continue;
2731 
2732 		sname = info->secstrings + shdr->sh_name;
2733 		/*
2734 		 * Load codetag sections separately as they might still be used
2735 		 * after module unload.
2736 		 */
2737 		if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2738 			dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2739 					arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2740 			if (WARN_ON(!dest)) {
2741 				ret = -EINVAL;
2742 				goto out_err;
2743 			}
2744 			if (IS_ERR(dest)) {
2745 				ret = PTR_ERR(dest);
2746 				goto out_err;
2747 			}
2748 			codetag_section_found = true;
2749 		} else {
2750 			enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2751 			unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2752 
2753 			dest = mod->mem[type].base + offset;
2754 		}
2755 
2756 		if (shdr->sh_type != SHT_NOBITS) {
2757 			/*
2758 			 * Our ELF checker already validated this, but let's
2759 			 * be pedantic and make the goal clearer. We actually
2760 			 * end up copying over all modifications made to the
2761 			 * userspace copy of the entire struct module.
2762 			 */
2763 			if (i == info->index.mod &&
2764 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2765 				ret = -ENOEXEC;
2766 				goto out_err;
2767 			}
2768 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2769 		}
2770 		/*
2771 		 * Update the userspace copy's ELF section address to point to
2772 		 * our newly allocated memory as a pure convenience so that
2773 		 * users of info can keep taking advantage and using the newly
2774 		 * minted official memory area.
2775 		 */
2776 		shdr->sh_addr = (unsigned long)dest;
2777 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2778 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2779 	}
2780 
2781 	return 0;
2782 out_err:
2783 	module_memory_restore_rox(mod);
2784 	while (t--)
2785 		module_memory_free(mod, t);
2786 	if (codetag_section_found)
2787 		codetag_free_module_sections(mod);
2788 
2789 	return ret;
2790 }
2791 
check_export_symbol_versions(struct module * mod)2792 static int check_export_symbol_versions(struct module *mod)
2793 {
2794 #ifdef CONFIG_MODVERSIONS
2795 	if ((mod->num_syms && !mod->crcs) ||
2796 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2797 		return try_to_force_load(mod,
2798 					 "no versions for exported symbols");
2799 	}
2800 #endif
2801 	return 0;
2802 }
2803 
flush_module_icache(const struct module * mod)2804 static void flush_module_icache(const struct module *mod)
2805 {
2806 	/*
2807 	 * Flush the instruction cache, since we've played with text.
2808 	 * Do it before processing of module parameters, so the module
2809 	 * can provide parameter accessor functions of its own.
2810 	 */
2811 	for_each_mod_mem_type(type) {
2812 		const struct module_memory *mod_mem = &mod->mem[type];
2813 
2814 		if (mod_mem->size) {
2815 			flush_icache_range((unsigned long)mod_mem->base,
2816 					   (unsigned long)mod_mem->base + mod_mem->size);
2817 		}
2818 	}
2819 }
2820 
module_elf_check_arch(Elf_Ehdr * hdr)2821 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2822 {
2823 	return true;
2824 }
2825 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2826 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2827 				     Elf_Shdr *sechdrs,
2828 				     char *secstrings,
2829 				     struct module *mod)
2830 {
2831 	return 0;
2832 }
2833 
2834 /* module_blacklist is a comma-separated list of module names */
2835 static char *module_blacklist;
blacklisted(const char * module_name)2836 static bool blacklisted(const char *module_name)
2837 {
2838 	const char *p;
2839 	size_t len;
2840 
2841 	if (!module_blacklist)
2842 		return false;
2843 
2844 	for (p = module_blacklist; *p; p += len) {
2845 		len = strcspn(p, ",");
2846 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2847 			return true;
2848 		if (p[len] == ',')
2849 			len++;
2850 	}
2851 	return false;
2852 }
2853 core_param(module_blacklist, module_blacklist, charp, 0400);
2854 
layout_and_allocate(struct load_info * info,int flags)2855 static struct module *layout_and_allocate(struct load_info *info, int flags)
2856 {
2857 	struct module *mod;
2858 	int err;
2859 
2860 	/* Allow arches to frob section contents and sizes.  */
2861 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2862 					info->secstrings, info->mod);
2863 	if (err < 0)
2864 		return ERR_PTR(err);
2865 
2866 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2867 					  info->secstrings, info->mod);
2868 	if (err < 0)
2869 		return ERR_PTR(err);
2870 
2871 	/* We will do a special allocation for per-cpu sections later. */
2872 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2873 
2874 	/*
2875 	 * Mark relevant sections as SHF_RO_AFTER_INIT so layout_sections() can
2876 	 * put them in the right place.
2877 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2878 	 */
2879 	module_mark_ro_after_init(info->hdr, info->sechdrs, info->secstrings);
2880 
2881 	/*
2882 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2883 	 * this is done generically; there doesn't appear to be any
2884 	 * special cases for the architectures.
2885 	 */
2886 	layout_sections(info->mod, info);
2887 	layout_symtab(info->mod, info);
2888 
2889 	/* Allocate and move to the final place */
2890 	err = move_module(info->mod, info);
2891 	if (err)
2892 		return ERR_PTR(err);
2893 
2894 	/* Module has been copied to its final place now: return it. */
2895 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2896 	kmemleak_load_module(mod, info);
2897 	codetag_module_replaced(info->mod, mod);
2898 
2899 	return mod;
2900 }
2901 
2902 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2903 static void module_deallocate(struct module *mod, struct load_info *info)
2904 {
2905 	percpu_modfree(mod);
2906 	module_arch_freeing_init(mod);
2907 	codetag_free_module_sections(mod);
2908 
2909 	free_mod_mem(mod);
2910 }
2911 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2912 int __weak module_finalize(const Elf_Ehdr *hdr,
2913 			   const Elf_Shdr *sechdrs,
2914 			   struct module *me)
2915 {
2916 	return 0;
2917 }
2918 
post_relocation(struct module * mod,const struct load_info * info)2919 static int post_relocation(struct module *mod, const struct load_info *info)
2920 {
2921 	/* Sort exception table now relocations are done. */
2922 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2923 
2924 	/* Copy relocated percpu area over. */
2925 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2926 		       info->sechdrs[info->index.pcpu].sh_size);
2927 
2928 	/* Setup kallsyms-specific fields. */
2929 	add_kallsyms(mod, info);
2930 
2931 	/* Arch-specific module finalizing. */
2932 	return module_finalize(info->hdr, info->sechdrs, mod);
2933 }
2934 
2935 /* Call module constructors. */
do_mod_ctors(struct module * mod)2936 static void do_mod_ctors(struct module *mod)
2937 {
2938 #ifdef CONFIG_CONSTRUCTORS
2939 	unsigned long i;
2940 
2941 	for (i = 0; i < mod->num_ctors; i++)
2942 		mod->ctors[i]();
2943 #endif
2944 }
2945 
2946 /* For freeing module_init on success, in case kallsyms traversing */
2947 struct mod_initfree {
2948 	struct llist_node node;
2949 	void *init_text;
2950 	void *init_data;
2951 	void *init_rodata;
2952 };
2953 
do_free_init(struct work_struct * w)2954 static void do_free_init(struct work_struct *w)
2955 {
2956 	struct llist_node *pos, *n, *list;
2957 	struct mod_initfree *initfree;
2958 
2959 	list = llist_del_all(&init_free_list);
2960 
2961 	synchronize_rcu();
2962 
2963 	llist_for_each_safe(pos, n, list) {
2964 		initfree = container_of(pos, struct mod_initfree, node);
2965 		execmem_free(initfree->init_text);
2966 		execmem_free(initfree->init_data);
2967 		execmem_free(initfree->init_rodata);
2968 		kfree(initfree);
2969 	}
2970 }
2971 
flush_module_init_free_work(void)2972 void flush_module_init_free_work(void)
2973 {
2974 	flush_work(&init_free_wq);
2975 }
2976 
2977 #undef MODULE_PARAM_PREFIX
2978 #define MODULE_PARAM_PREFIX "module."
2979 /* Default value for module->async_probe_requested */
2980 static bool async_probe;
2981 module_param(async_probe, bool, 0644);
2982 
2983 /*
2984  * This is where the real work happens.
2985  *
2986  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2987  * helper command 'lx-symbols'.
2988  */
do_init_module(struct module * mod)2989 static noinline int do_init_module(struct module *mod)
2990 {
2991 	int ret = 0;
2992 	struct mod_initfree *freeinit;
2993 #if defined(CONFIG_MODULE_STATS)
2994 	unsigned int text_size = 0, total_size = 0;
2995 
2996 	for_each_mod_mem_type(type) {
2997 		const struct module_memory *mod_mem = &mod->mem[type];
2998 		if (mod_mem->size) {
2999 			total_size += mod_mem->size;
3000 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
3001 				text_size += mod_mem->size;
3002 		}
3003 	}
3004 #endif
3005 
3006 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3007 	if (!freeinit) {
3008 		ret = -ENOMEM;
3009 		goto fail;
3010 	}
3011 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
3012 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
3013 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
3014 
3015 	do_mod_ctors(mod);
3016 	/* Start the module */
3017 	if (mod->init != NULL)
3018 		ret = do_one_initcall(mod->init);
3019 	if (ret < 0) {
3020 		goto fail_free_freeinit;
3021 	}
3022 	if (ret > 0) {
3023 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3024 			"follow 0/-E convention\n"
3025 			"%s: loading module anyway...\n",
3026 			__func__, mod->name, ret, __func__);
3027 		dump_stack();
3028 	}
3029 
3030 	/* Now it's a first class citizen! */
3031 	mod->state = MODULE_STATE_LIVE;
3032 	blocking_notifier_call_chain(&module_notify_list,
3033 				     MODULE_STATE_LIVE, mod);
3034 
3035 	/* Delay uevent until module has finished its init routine */
3036 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3037 
3038 	/*
3039 	 * We need to finish all async code before the module init sequence
3040 	 * is done. This has potential to deadlock if synchronous module
3041 	 * loading is requested from async (which is not allowed!).
3042 	 *
3043 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3044 	 * request_module() from async workers") for more details.
3045 	 */
3046 	if (!mod->async_probe_requested)
3047 		async_synchronize_full();
3048 
3049 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
3050 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3051 	mutex_lock(&module_mutex);
3052 	/* Drop initial reference. */
3053 	module_put(mod);
3054 	trim_init_extable(mod);
3055 #ifdef CONFIG_KALLSYMS
3056 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3057 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3058 #endif
3059 	ret = module_enable_rodata_ro_after_init(mod);
3060 	if (ret)
3061 		pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3062 			"ro_after_init data might still be writable\n",
3063 			mod->name, ret);
3064 
3065 	mod_tree_remove_init(mod);
3066 	module_arch_freeing_init(mod);
3067 	for_class_mod_mem_type(type, init) {
3068 		mod->mem[type].base = NULL;
3069 		mod->mem[type].size = 0;
3070 	}
3071 
3072 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3073 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3074 	mod->btf_data = NULL;
3075 	mod->btf_base_data = NULL;
3076 #endif
3077 	/*
3078 	 * We want to free module_init, but be aware that kallsyms may be
3079 	 * walking this within an RCU read section. In all the failure paths, we
3080 	 * call synchronize_rcu(), but we don't want to slow down the success
3081 	 * path. execmem_free() cannot be called in an interrupt, so do the
3082 	 * work and call synchronize_rcu() in a work queue.
3083 	 *
3084 	 * Note that execmem_alloc() on most architectures creates W+X page
3085 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3086 	 * code such as mark_rodata_ro() which depends on those mappings to
3087 	 * be cleaned up needs to sync with the queued work by invoking
3088 	 * flush_module_init_free_work().
3089 	 */
3090 	if (llist_add(&freeinit->node, &init_free_list))
3091 		schedule_work(&init_free_wq);
3092 
3093 	mutex_unlock(&module_mutex);
3094 	wake_up_all(&module_wq);
3095 
3096 	mod_stat_add_long(text_size, &total_text_size);
3097 	mod_stat_add_long(total_size, &total_mod_size);
3098 
3099 	mod_stat_inc(&modcount);
3100 
3101 	return 0;
3102 
3103 fail_free_freeinit:
3104 	kfree(freeinit);
3105 fail:
3106 	/* Try to protect us from buggy refcounters. */
3107 	mod->state = MODULE_STATE_GOING;
3108 	synchronize_rcu();
3109 	module_put(mod);
3110 	blocking_notifier_call_chain(&module_notify_list,
3111 				     MODULE_STATE_GOING, mod);
3112 	klp_module_going(mod);
3113 	ftrace_release_mod(mod);
3114 	free_module(mod);
3115 	wake_up_all(&module_wq);
3116 
3117 	return ret;
3118 }
3119 
may_init_module(void)3120 static int may_init_module(void)
3121 {
3122 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3123 		return -EPERM;
3124 
3125 	return 0;
3126 }
3127 
3128 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3129 static bool finished_loading(const char *name)
3130 {
3131 	struct module *mod;
3132 	bool ret;
3133 
3134 	/*
3135 	 * The module_mutex should not be a heavily contended lock;
3136 	 * if we get the occasional sleep here, we'll go an extra iteration
3137 	 * in the wait_event_interruptible(), which is harmless.
3138 	 */
3139 	sched_annotate_sleep();
3140 	mutex_lock(&module_mutex);
3141 	mod = find_module_all(name, strlen(name), true);
3142 	ret = !mod || mod->state == MODULE_STATE_LIVE
3143 		|| mod->state == MODULE_STATE_GOING;
3144 	mutex_unlock(&module_mutex);
3145 
3146 	return ret;
3147 }
3148 
3149 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)3150 static int module_patient_check_exists(const char *name,
3151 				       enum fail_dup_mod_reason reason)
3152 {
3153 	struct module *old;
3154 	int err = 0;
3155 
3156 	old = find_module_all(name, strlen(name), true);
3157 	if (old == NULL)
3158 		return 0;
3159 
3160 	if (old->state == MODULE_STATE_COMING ||
3161 	    old->state == MODULE_STATE_UNFORMED) {
3162 		/* Wait in case it fails to load. */
3163 		mutex_unlock(&module_mutex);
3164 		err = wait_event_interruptible(module_wq,
3165 				       finished_loading(name));
3166 		mutex_lock(&module_mutex);
3167 		if (err)
3168 			return err;
3169 
3170 		/* The module might have gone in the meantime. */
3171 		old = find_module_all(name, strlen(name), true);
3172 	}
3173 
3174 	if (try_add_failed_module(name, reason))
3175 		pr_warn("Could not add fail-tracking for module: %s\n", name);
3176 
3177 	/*
3178 	 * We are here only when the same module was being loaded. Do
3179 	 * not try to load it again right now. It prevents long delays
3180 	 * caused by serialized module load failures. It might happen
3181 	 * when more devices of the same type trigger load of
3182 	 * a particular module.
3183 	 */
3184 	if (old && old->state == MODULE_STATE_LIVE)
3185 		return -EEXIST;
3186 	return -EBUSY;
3187 }
3188 
3189 /*
3190  * We try to place it in the list now to make sure it's unique before
3191  * we dedicate too many resources.  In particular, temporary percpu
3192  * memory exhaustion.
3193  */
add_unformed_module(struct module * mod)3194 static int add_unformed_module(struct module *mod)
3195 {
3196 	int err;
3197 
3198 	mod->state = MODULE_STATE_UNFORMED;
3199 
3200 	mutex_lock(&module_mutex);
3201 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3202 	if (err)
3203 		goto out;
3204 
3205 	mod_update_bounds(mod);
3206 	list_add_rcu(&mod->list, &modules);
3207 	mod_tree_insert(mod);
3208 	err = 0;
3209 
3210 out:
3211 	mutex_unlock(&module_mutex);
3212 	return err;
3213 }
3214 
complete_formation(struct module * mod,struct load_info * info)3215 static int complete_formation(struct module *mod, struct load_info *info)
3216 {
3217 	int err;
3218 
3219 	mutex_lock(&module_mutex);
3220 
3221 	/* Find duplicate symbols (must be called under lock). */
3222 	err = verify_exported_symbols(mod);
3223 	if (err < 0)
3224 		goto out;
3225 
3226 	/* These rely on module_mutex for list integrity. */
3227 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3228 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
3229 
3230 	err = module_enable_rodata_ro(mod);
3231 	if (err)
3232 		goto out_strict_rwx;
3233 	err = module_enable_data_nx(mod);
3234 	if (err)
3235 		goto out_strict_rwx;
3236 	err = module_enable_text_rox(mod);
3237 	if (err)
3238 		goto out_strict_rwx;
3239 
3240 	/*
3241 	 * Mark state as coming so strong_try_module_get() ignores us,
3242 	 * but kallsyms etc. can see us.
3243 	 */
3244 	mod->state = MODULE_STATE_COMING;
3245 	mutex_unlock(&module_mutex);
3246 
3247 	return 0;
3248 
3249 out_strict_rwx:
3250 	module_bug_cleanup(mod);
3251 out:
3252 	mutex_unlock(&module_mutex);
3253 	return err;
3254 }
3255 
prepare_coming_module(struct module * mod)3256 static int prepare_coming_module(struct module *mod)
3257 {
3258 	int err;
3259 
3260 	ftrace_module_enable(mod);
3261 	err = klp_module_coming(mod);
3262 	if (err)
3263 		return err;
3264 
3265 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3266 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3267 	err = notifier_to_errno(err);
3268 	if (err)
3269 		klp_module_going(mod);
3270 
3271 	return err;
3272 }
3273 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3274 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3275 				   void *arg)
3276 {
3277 	struct module *mod = arg;
3278 	int ret;
3279 
3280 	if (strcmp(param, "async_probe") == 0) {
3281 		if (kstrtobool(val, &mod->async_probe_requested))
3282 			mod->async_probe_requested = true;
3283 		return 0;
3284 	}
3285 
3286 	/* Check for magic 'dyndbg' arg */
3287 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3288 	if (ret != 0)
3289 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3290 	return 0;
3291 }
3292 
3293 /* Module within temporary copy, this doesn't do any allocation  */
early_mod_check(struct load_info * info,int flags)3294 static int early_mod_check(struct load_info *info, int flags)
3295 {
3296 	int err;
3297 
3298 	/*
3299 	 * Now that we know we have the correct module name, check
3300 	 * if it's blacklisted.
3301 	 */
3302 	if (blacklisted(info->name)) {
3303 		pr_err("Module %s is blacklisted\n", info->name);
3304 		return -EPERM;
3305 	}
3306 
3307 	err = rewrite_section_headers(info, flags);
3308 	if (err)
3309 		return err;
3310 
3311 	/* Check module struct version now, before we try to use module. */
3312 	if (!check_modstruct_version(info, info->mod))
3313 		return -ENOEXEC;
3314 
3315 	err = check_modinfo(info->mod, info, flags);
3316 	if (err)
3317 		return err;
3318 
3319 	mutex_lock(&module_mutex);
3320 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3321 	mutex_unlock(&module_mutex);
3322 
3323 	return err;
3324 }
3325 
3326 /*
3327  * Allocate and load the module: note that size of section 0 is always
3328  * zero, and we rely on this for optional sections.
3329  */
load_module(struct load_info * info,const char __user * uargs,int flags)3330 static int load_module(struct load_info *info, const char __user *uargs,
3331 		       int flags)
3332 {
3333 	struct module *mod;
3334 	bool module_allocated = false;
3335 	long err = 0;
3336 	char *after_dashes;
3337 
3338 	/*
3339 	 * Do the signature check (if any) first. All that
3340 	 * the signature check needs is info->len, it does
3341 	 * not need any of the section info. That can be
3342 	 * set up later. This will minimize the chances
3343 	 * of a corrupt module causing problems before
3344 	 * we even get to the signature check.
3345 	 *
3346 	 * The check will also adjust info->len by stripping
3347 	 * off the sig length at the end of the module, making
3348 	 * checks against info->len more correct.
3349 	 */
3350 	err = module_sig_check(info, flags);
3351 	if (err)
3352 		goto free_copy;
3353 
3354 	/*
3355 	 * Do basic sanity checks against the ELF header and
3356 	 * sections. Cache useful sections and set the
3357 	 * info->mod to the userspace passed struct module.
3358 	 */
3359 	err = elf_validity_cache_copy(info, flags);
3360 	if (err)
3361 		goto free_copy;
3362 
3363 	err = early_mod_check(info, flags);
3364 	if (err)
3365 		goto free_copy;
3366 
3367 	/* Figure out module layout, and allocate all the memory. */
3368 	mod = layout_and_allocate(info, flags);
3369 	if (IS_ERR(mod)) {
3370 		err = PTR_ERR(mod);
3371 		goto free_copy;
3372 	}
3373 
3374 	module_allocated = true;
3375 
3376 	audit_log_kern_module(mod->name);
3377 
3378 	/* Reserve our place in the list. */
3379 	err = add_unformed_module(mod);
3380 	if (err)
3381 		goto free_module;
3382 
3383 	/*
3384 	 * We are tainting your kernel if your module gets into
3385 	 * the modules linked list somehow.
3386 	 */
3387 	module_augment_kernel_taints(mod, info);
3388 
3389 	/* To avoid stressing percpu allocator, do this once we're unique. */
3390 	err = percpu_modalloc(mod, info);
3391 	if (err)
3392 		goto unlink_mod;
3393 
3394 	/* Now module is in final location, initialize linked lists, etc. */
3395 	err = module_unload_init(mod);
3396 	if (err)
3397 		goto unlink_mod;
3398 
3399 	init_param_lock(mod);
3400 
3401 	/*
3402 	 * Now we've got everything in the final locations, we can
3403 	 * find optional sections.
3404 	 */
3405 	err = find_module_sections(mod, info);
3406 	if (err)
3407 		goto free_unload;
3408 
3409 	err = check_export_symbol_versions(mod);
3410 	if (err)
3411 		goto free_unload;
3412 
3413 	/* Set up MODINFO_ATTR fields */
3414 	err = setup_modinfo(mod, info);
3415 	if (err)
3416 		goto free_modinfo;
3417 
3418 	/* Fix up syms, so that st_value is a pointer to location. */
3419 	err = simplify_symbols(mod, info);
3420 	if (err < 0)
3421 		goto free_modinfo;
3422 
3423 	err = apply_relocations(mod, info);
3424 	if (err < 0)
3425 		goto free_modinfo;
3426 
3427 	err = post_relocation(mod, info);
3428 	if (err < 0)
3429 		goto free_modinfo;
3430 
3431 	flush_module_icache(mod);
3432 
3433 	/* Now copy in args */
3434 	mod->args = strndup_user(uargs, ~0UL >> 1);
3435 	if (IS_ERR(mod->args)) {
3436 		err = PTR_ERR(mod->args);
3437 		goto free_arch_cleanup;
3438 	}
3439 
3440 	init_build_id(mod, info);
3441 
3442 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3443 	ftrace_module_init(mod);
3444 
3445 	/* Finally it's fully formed, ready to start executing. */
3446 	err = complete_formation(mod, info);
3447 	if (err)
3448 		goto ddebug_cleanup;
3449 
3450 	err = prepare_coming_module(mod);
3451 	if (err)
3452 		goto bug_cleanup;
3453 
3454 	mod->async_probe_requested = async_probe;
3455 
3456 	/* Module is ready to execute: parsing args may do that. */
3457 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3458 				  -32768, 32767, mod,
3459 				  unknown_module_param_cb);
3460 	if (IS_ERR(after_dashes)) {
3461 		err = PTR_ERR(after_dashes);
3462 		goto coming_cleanup;
3463 	} else if (after_dashes) {
3464 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3465 		       mod->name, after_dashes);
3466 	}
3467 
3468 	/* Link in to sysfs. */
3469 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3470 	if (err < 0)
3471 		goto coming_cleanup;
3472 
3473 	if (is_livepatch_module(mod)) {
3474 		err = copy_module_elf(mod, info);
3475 		if (err < 0)
3476 			goto sysfs_cleanup;
3477 	}
3478 
3479 	if (codetag_load_module(mod))
3480 		goto sysfs_cleanup;
3481 
3482 	/* Get rid of temporary copy. */
3483 	free_copy(info, flags);
3484 
3485 	/* Done! */
3486 	trace_module_load(mod);
3487 
3488 	return do_init_module(mod);
3489 
3490  sysfs_cleanup:
3491 	mod_sysfs_teardown(mod);
3492  coming_cleanup:
3493 	mod->state = MODULE_STATE_GOING;
3494 	destroy_params(mod->kp, mod->num_kp);
3495 	blocking_notifier_call_chain(&module_notify_list,
3496 				     MODULE_STATE_GOING, mod);
3497 	klp_module_going(mod);
3498  bug_cleanup:
3499 	mod->state = MODULE_STATE_GOING;
3500 	/* module_bug_cleanup needs module_mutex protection */
3501 	mutex_lock(&module_mutex);
3502 	module_bug_cleanup(mod);
3503 	mutex_unlock(&module_mutex);
3504 
3505  ddebug_cleanup:
3506 	ftrace_release_mod(mod);
3507 	synchronize_rcu();
3508 	kfree(mod->args);
3509  free_arch_cleanup:
3510 	module_arch_cleanup(mod);
3511  free_modinfo:
3512 	free_modinfo(mod);
3513  free_unload:
3514 	module_unload_free(mod);
3515  unlink_mod:
3516 	mutex_lock(&module_mutex);
3517 	/* Unlink carefully: kallsyms could be walking list. */
3518 	list_del_rcu(&mod->list);
3519 	mod_tree_remove(mod);
3520 	wake_up_all(&module_wq);
3521 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3522 	synchronize_rcu();
3523 	mutex_unlock(&module_mutex);
3524  free_module:
3525 	mod_stat_bump_invalid(info, flags);
3526 	/* Free lock-classes; relies on the preceding sync_rcu() */
3527 	for_class_mod_mem_type(type, core_data) {
3528 		lockdep_free_key_range(mod->mem[type].base,
3529 				       mod->mem[type].size);
3530 	}
3531 
3532 	module_memory_restore_rox(mod);
3533 	module_deallocate(mod, info);
3534  free_copy:
3535 	/*
3536 	 * The info->len is always set. We distinguish between
3537 	 * failures once the proper module was allocated and
3538 	 * before that.
3539 	 */
3540 	if (!module_allocated)
3541 		mod_stat_bump_becoming(info, flags);
3542 	free_copy(info, flags);
3543 	return err;
3544 }
3545 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3546 SYSCALL_DEFINE3(init_module, void __user *, umod,
3547 		unsigned long, len, const char __user *, uargs)
3548 {
3549 	int err;
3550 	struct load_info info = { };
3551 
3552 	err = may_init_module();
3553 	if (err)
3554 		return err;
3555 
3556 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3557 	       umod, len, uargs);
3558 
3559 	err = copy_module_from_user(umod, len, &info);
3560 	if (err) {
3561 		mod_stat_inc(&failed_kreads);
3562 		mod_stat_add_long(len, &invalid_kread_bytes);
3563 		return err;
3564 	}
3565 
3566 	return load_module(&info, uargs, 0);
3567 }
3568 
3569 struct idempotent {
3570 	const void *cookie;
3571 	struct hlist_node entry;
3572 	struct completion complete;
3573 	int ret;
3574 };
3575 
3576 #define IDEM_HASH_BITS 8
3577 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3578 static DEFINE_SPINLOCK(idem_lock);
3579 
idempotent(struct idempotent * u,const void * cookie)3580 static bool idempotent(struct idempotent *u, const void *cookie)
3581 {
3582 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3583 	struct hlist_head *head = idem_hash + hash;
3584 	struct idempotent *existing;
3585 	bool first;
3586 
3587 	u->ret = -EINTR;
3588 	u->cookie = cookie;
3589 	init_completion(&u->complete);
3590 
3591 	spin_lock(&idem_lock);
3592 	first = true;
3593 	hlist_for_each_entry(existing, head, entry) {
3594 		if (existing->cookie != cookie)
3595 			continue;
3596 		first = false;
3597 		break;
3598 	}
3599 	hlist_add_head(&u->entry, idem_hash + hash);
3600 	spin_unlock(&idem_lock);
3601 
3602 	return !first;
3603 }
3604 
3605 /*
3606  * We were the first one with 'cookie' on the list, and we ended
3607  * up completing the operation. We now need to walk the list,
3608  * remove everybody - which includes ourselves - fill in the return
3609  * value, and then complete the operation.
3610  */
idempotent_complete(struct idempotent * u,int ret)3611 static int idempotent_complete(struct idempotent *u, int ret)
3612 {
3613 	const void *cookie = u->cookie;
3614 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3615 	struct hlist_head *head = idem_hash + hash;
3616 	struct hlist_node *next;
3617 	struct idempotent *pos;
3618 
3619 	spin_lock(&idem_lock);
3620 	hlist_for_each_entry_safe(pos, next, head, entry) {
3621 		if (pos->cookie != cookie)
3622 			continue;
3623 		hlist_del_init(&pos->entry);
3624 		pos->ret = ret;
3625 		complete(&pos->complete);
3626 	}
3627 	spin_unlock(&idem_lock);
3628 	return ret;
3629 }
3630 
3631 /*
3632  * Wait for the idempotent worker.
3633  *
3634  * If we get interrupted, we need to remove ourselves from the
3635  * the idempotent list, and the completion may still come in.
3636  *
3637  * The 'idem_lock' protects against the race, and 'idem.ret' was
3638  * initialized to -EINTR and is thus always the right return
3639  * value even if the idempotent work then completes between
3640  * the wait_for_completion and the cleanup.
3641  */
idempotent_wait_for_completion(struct idempotent * u)3642 static int idempotent_wait_for_completion(struct idempotent *u)
3643 {
3644 	if (wait_for_completion_interruptible(&u->complete)) {
3645 		spin_lock(&idem_lock);
3646 		if (!hlist_unhashed(&u->entry))
3647 			hlist_del(&u->entry);
3648 		spin_unlock(&idem_lock);
3649 	}
3650 	return u->ret;
3651 }
3652 
init_module_from_file(struct file * f,const char __user * uargs,int flags)3653 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3654 {
3655 	struct load_info info = { };
3656 	void *buf = NULL;
3657 	int len;
3658 
3659 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3660 	if (len < 0) {
3661 		mod_stat_inc(&failed_kreads);
3662 		return len;
3663 	}
3664 
3665 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3666 		int err = module_decompress(&info, buf, len);
3667 		vfree(buf); /* compressed data is no longer needed */
3668 		if (err) {
3669 			mod_stat_inc(&failed_decompress);
3670 			mod_stat_add_long(len, &invalid_decompress_bytes);
3671 			return err;
3672 		}
3673 	} else {
3674 		info.hdr = buf;
3675 		info.len = len;
3676 	}
3677 
3678 	return load_module(&info, uargs, flags);
3679 }
3680 
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3681 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3682 {
3683 	struct idempotent idem;
3684 
3685 	if (!(f->f_mode & FMODE_READ))
3686 		return -EBADF;
3687 
3688 	/* Are we the winners of the race and get to do this? */
3689 	if (!idempotent(&idem, file_inode(f))) {
3690 		int ret = init_module_from_file(f, uargs, flags);
3691 		return idempotent_complete(&idem, ret);
3692 	}
3693 
3694 	/*
3695 	 * Somebody else won the race and is loading the module.
3696 	 */
3697 	return idempotent_wait_for_completion(&idem);
3698 }
3699 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3700 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3701 {
3702 	int err = may_init_module();
3703 	if (err)
3704 		return err;
3705 
3706 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3707 
3708 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3709 		      |MODULE_INIT_IGNORE_VERMAGIC
3710 		      |MODULE_INIT_COMPRESSED_FILE))
3711 		return -EINVAL;
3712 
3713 	CLASS(fd, f)(fd);
3714 	if (fd_empty(f))
3715 		return -EBADF;
3716 	return idempotent_init_module(fd_file(f), uargs, flags);
3717 }
3718 
3719 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3720 char *module_flags(struct module *mod, char *buf, bool show_state)
3721 {
3722 	int bx = 0;
3723 
3724 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3725 	if (!mod->taints && !show_state)
3726 		goto out;
3727 	if (mod->taints ||
3728 	    mod->state == MODULE_STATE_GOING ||
3729 	    mod->state == MODULE_STATE_COMING) {
3730 		buf[bx++] = '(';
3731 		bx += module_flags_taint(mod->taints, buf + bx);
3732 		/* Show a - for module-is-being-unloaded */
3733 		if (mod->state == MODULE_STATE_GOING && show_state)
3734 			buf[bx++] = '-';
3735 		/* Show a + for module-is-being-loaded */
3736 		if (mod->state == MODULE_STATE_COMING && show_state)
3737 			buf[bx++] = '+';
3738 		buf[bx++] = ')';
3739 	}
3740 out:
3741 	buf[bx] = '\0';
3742 
3743 	return buf;
3744 }
3745 
3746 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3747 const struct exception_table_entry *search_module_extables(unsigned long addr)
3748 {
3749 	struct module *mod;
3750 
3751 	guard(rcu)();
3752 	mod = __module_address(addr);
3753 	if (!mod)
3754 		return NULL;
3755 
3756 	if (!mod->num_exentries)
3757 		return NULL;
3758 	/*
3759 	 * The address passed here belongs to a module that is currently
3760 	 * invoked (we are running inside it). Therefore its module::refcnt
3761 	 * needs already be >0 to ensure that it is not removed at this stage.
3762 	 * All other user need to invoke this function within a RCU read
3763 	 * section.
3764 	 */
3765 	return search_extable(mod->extable, mod->num_exentries, addr);
3766 }
3767 
3768 /**
3769  * is_module_address() - is this address inside a module?
3770  * @addr: the address to check.
3771  *
3772  * See is_module_text_address() if you simply want to see if the address
3773  * is code (not data).
3774  */
is_module_address(unsigned long addr)3775 bool is_module_address(unsigned long addr)
3776 {
3777 	guard(rcu)();
3778 	return __module_address(addr) != NULL;
3779 }
3780 
3781 /**
3782  * __module_address() - get the module which contains an address.
3783  * @addr: the address.
3784  *
3785  * Must be called within RCU read section or module mutex held so that
3786  * module doesn't get freed during this.
3787  */
__module_address(unsigned long addr)3788 struct module *__module_address(unsigned long addr)
3789 {
3790 	struct module *mod;
3791 
3792 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3793 		goto lookup;
3794 
3795 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3796 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3797 		goto lookup;
3798 #endif
3799 
3800 	return NULL;
3801 
3802 lookup:
3803 	mod = mod_find(addr, &mod_tree);
3804 	if (mod) {
3805 		BUG_ON(!within_module(addr, mod));
3806 		if (mod->state == MODULE_STATE_UNFORMED)
3807 			mod = NULL;
3808 	}
3809 	return mod;
3810 }
3811 
3812 /**
3813  * is_module_text_address() - is this address inside module code?
3814  * @addr: the address to check.
3815  *
3816  * See is_module_address() if you simply want to see if the address is
3817  * anywhere in a module.  See kernel_text_address() for testing if an
3818  * address corresponds to kernel or module code.
3819  */
is_module_text_address(unsigned long addr)3820 bool is_module_text_address(unsigned long addr)
3821 {
3822 	guard(rcu)();
3823 	return __module_text_address(addr) != NULL;
3824 }
3825 
module_for_each_mod(int (* func)(struct module * mod,void * data),void * data)3826 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data)
3827 {
3828 	struct module *mod;
3829 
3830 	guard(rcu)();
3831 	list_for_each_entry_rcu(mod, &modules, list) {
3832 		if (mod->state == MODULE_STATE_UNFORMED)
3833 			continue;
3834 		if (func(mod, data))
3835 			break;
3836 	}
3837 }
3838 
3839 /**
3840  * __module_text_address() - get the module whose code contains an address.
3841  * @addr: the address.
3842  *
3843  * Must be called within RCU read section or module mutex held so that
3844  * module doesn't get freed during this.
3845  */
__module_text_address(unsigned long addr)3846 struct module *__module_text_address(unsigned long addr)
3847 {
3848 	struct module *mod = __module_address(addr);
3849 	if (mod) {
3850 		/* Make sure it's within the text section. */
3851 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3852 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3853 			mod = NULL;
3854 	}
3855 	return mod;
3856 }
3857 
3858 /* Don't grab lock, we're oopsing. */
print_modules(void)3859 void print_modules(void)
3860 {
3861 	struct module *mod;
3862 	char buf[MODULE_FLAGS_BUF_SIZE];
3863 
3864 	printk(KERN_DEFAULT "Modules linked in:");
3865 	/* Most callers should already have preempt disabled, but make sure */
3866 	guard(rcu)();
3867 	list_for_each_entry_rcu(mod, &modules, list) {
3868 		if (mod->state == MODULE_STATE_UNFORMED)
3869 			continue;
3870 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3871 	}
3872 
3873 	print_unloaded_tainted_modules();
3874 	if (last_unloaded_module.name[0])
3875 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3876 			last_unloaded_module.taints);
3877 	pr_cont("\n");
3878 }
3879 
3880 #ifdef CONFIG_MODULE_DEBUGFS
3881 struct dentry *mod_debugfs_root;
3882 
module_debugfs_init(void)3883 static int module_debugfs_init(void)
3884 {
3885 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3886 	return 0;
3887 }
3888 module_init(module_debugfs_init);
3889 #endif
3890