xref: /linux/lib/idr.c (revision 0b34fd0feac6202602591dc15c58e25ffde41bd5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/bitmap.h>
3 #include <linux/bug.h>
4 #include <linux/export.h>
5 #include <linux/idr.h>
6 #include <linux/slab.h>
7 #include <linux/spinlock.h>
8 #include <linux/xarray.h>
9 
10 /**
11  * idr_alloc_u32() - Allocate an ID.
12  * @idr: IDR handle.
13  * @ptr: Pointer to be associated with the new ID.
14  * @nextid: Pointer to an ID.
15  * @max: The maximum ID to allocate (inclusive).
16  * @gfp: Memory allocation flags.
17  *
18  * Allocates an unused ID in the range specified by @nextid and @max.
19  * Note that @max is inclusive whereas the @end parameter to idr_alloc()
20  * is exclusive.  The new ID is assigned to @nextid before the pointer
21  * is inserted into the IDR, so if @nextid points into the object pointed
22  * to by @ptr, a concurrent lookup will not find an uninitialised ID.
23  *
24  * The caller should provide their own locking to ensure that two
25  * concurrent modifications to the IDR are not possible.  Read-only
26  * accesses to the IDR may be done under the RCU read lock or may
27  * exclude simultaneous writers.
28  *
29  * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
30  * or -ENOSPC if no free IDs could be found.  If an error occurred,
31  * @nextid is unchanged.
32  */
idr_alloc_u32(struct idr * idr,void * ptr,u32 * nextid,unsigned long max,gfp_t gfp)33 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
34 			unsigned long max, gfp_t gfp)
35 {
36 	struct radix_tree_iter iter;
37 	void __rcu **slot;
38 	unsigned int base = idr->idr_base;
39 	unsigned int id = *nextid;
40 
41 	if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR)))
42 		idr->idr_rt.xa_flags |= IDR_RT_MARKER;
43 	if (max < base)
44 		return -ENOSPC;
45 
46 	id = (id < base) ? 0 : id - base;
47 	radix_tree_iter_init(&iter, id);
48 	slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
49 	if (IS_ERR(slot))
50 		return PTR_ERR(slot);
51 
52 	*nextid = iter.index + base;
53 	/* there is a memory barrier inside radix_tree_iter_replace() */
54 	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
55 	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
56 
57 	return 0;
58 }
59 EXPORT_SYMBOL_GPL(idr_alloc_u32);
60 
61 /**
62  * idr_alloc() - Allocate an ID.
63  * @idr: IDR handle.
64  * @ptr: Pointer to be associated with the new ID.
65  * @start: The minimum ID (inclusive).
66  * @end: The maximum ID (exclusive).
67  * @gfp: Memory allocation flags.
68  *
69  * Allocates an unused ID in the range specified by @start and @end.  If
70  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
71  * callers to use @start + N as @end as long as N is within integer range.
72  *
73  * The caller should provide their own locking to ensure that two
74  * concurrent modifications to the IDR are not possible.  Read-only
75  * accesses to the IDR may be done under the RCU read lock or may
76  * exclude simultaneous writers.
77  *
78  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
79  * or -ENOSPC if no free IDs could be found.
80  */
idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp)81 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
82 {
83 	u32 id = start;
84 	int ret;
85 
86 	if (WARN_ON_ONCE(start < 0))
87 		return -EINVAL;
88 
89 	ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
90 	if (ret)
91 		return ret;
92 
93 	return id;
94 }
95 EXPORT_SYMBOL_GPL(idr_alloc);
96 
97 /**
98  * idr_alloc_cyclic() - Allocate an ID cyclically.
99  * @idr: IDR handle.
100  * @ptr: Pointer to be associated with the new ID.
101  * @start: The minimum ID (inclusive).
102  * @end: The maximum ID (exclusive).
103  * @gfp: Memory allocation flags.
104  *
105  * Allocates an unused ID in the range specified by @start and @end.  If
106  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
107  * callers to use @start + N as @end as long as N is within integer range.
108  * The search for an unused ID will start at the last ID allocated and will
109  * wrap around to @start if no free IDs are found before reaching @end.
110  *
111  * The caller should provide their own locking to ensure that two
112  * concurrent modifications to the IDR are not possible.  Read-only
113  * accesses to the IDR may be done under the RCU read lock or may
114  * exclude simultaneous writers.
115  *
116  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
117  * or -ENOSPC if no free IDs could be found.
118  */
idr_alloc_cyclic(struct idr * idr,void * ptr,int start,int end,gfp_t gfp)119 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
120 {
121 	u32 id = idr->idr_next;
122 	int err, max = end > 0 ? end - 1 : INT_MAX;
123 
124 	if ((int)id < start)
125 		id = start;
126 
127 	err = idr_alloc_u32(idr, ptr, &id, max, gfp);
128 	if ((err == -ENOSPC) && (id > start)) {
129 		id = start;
130 		err = idr_alloc_u32(idr, ptr, &id, max, gfp);
131 	}
132 	if (err)
133 		return err;
134 
135 	idr->idr_next = id + 1;
136 	return id;
137 }
138 EXPORT_SYMBOL(idr_alloc_cyclic);
139 
140 /**
141  * idr_remove() - Remove an ID from the IDR.
142  * @idr: IDR handle.
143  * @id: Pointer ID.
144  *
145  * Removes this ID from the IDR.  If the ID was not previously in the IDR,
146  * this function returns %NULL.
147  *
148  * Since this function modifies the IDR, the caller should provide their
149  * own locking to ensure that concurrent modification of the same IDR is
150  * not possible.
151  *
152  * Return: The pointer formerly associated with this ID.
153  */
idr_remove(struct idr * idr,unsigned long id)154 void *idr_remove(struct idr *idr, unsigned long id)
155 {
156 	return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
157 }
158 EXPORT_SYMBOL_GPL(idr_remove);
159 
160 /**
161  * idr_find() - Return pointer for given ID.
162  * @idr: IDR handle.
163  * @id: Pointer ID.
164  *
165  * Looks up the pointer associated with this ID.  A %NULL pointer may
166  * indicate that @id is not allocated or that the %NULL pointer was
167  * associated with this ID.
168  *
169  * This function can be called under rcu_read_lock(), given that the leaf
170  * pointers lifetimes are correctly managed.
171  *
172  * Return: The pointer associated with this ID.
173  */
idr_find(const struct idr * idr,unsigned long id)174 void *idr_find(const struct idr *idr, unsigned long id)
175 {
176 	return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
177 }
178 EXPORT_SYMBOL_GPL(idr_find);
179 
180 /**
181  * idr_for_each() - Iterate through all stored pointers.
182  * @idr: IDR handle.
183  * @fn: Function to be called for each pointer.
184  * @data: Data passed to callback function.
185  *
186  * The callback function will be called for each entry in @idr, passing
187  * the ID, the entry and @data.
188  *
189  * If @fn returns anything other than %0, the iteration stops and that
190  * value is returned from this function.
191  *
192  * idr_for_each() can be called concurrently with idr_alloc() and
193  * idr_remove() if protected by RCU.  Newly added entries may not be
194  * seen and deleted entries may be seen, but adding and removing entries
195  * will not cause other entries to be skipped, nor spurious ones to be seen.
196  */
idr_for_each(const struct idr * idr,int (* fn)(int id,void * p,void * data),void * data)197 int idr_for_each(const struct idr *idr,
198 		int (*fn)(int id, void *p, void *data), void *data)
199 {
200 	struct radix_tree_iter iter;
201 	void __rcu **slot;
202 	int base = idr->idr_base;
203 
204 	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
205 		int ret;
206 		unsigned long id = iter.index + base;
207 
208 		if (WARN_ON_ONCE(id > INT_MAX))
209 			break;
210 		ret = fn(id, rcu_dereference_raw(*slot), data);
211 		if (ret)
212 			return ret;
213 	}
214 
215 	return 0;
216 }
217 EXPORT_SYMBOL(idr_for_each);
218 
219 /**
220  * idr_get_next_ul() - Find next populated entry.
221  * @idr: IDR handle.
222  * @nextid: Pointer to an ID.
223  *
224  * Returns the next populated entry in the tree with an ID greater than
225  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
226  * to the ID of the found value.  To use in a loop, the value pointed to by
227  * nextid must be incremented by the user.
228  */
idr_get_next_ul(struct idr * idr,unsigned long * nextid)229 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
230 {
231 	struct radix_tree_iter iter;
232 	void __rcu **slot;
233 	void *entry = NULL;
234 	unsigned long base = idr->idr_base;
235 	unsigned long id = *nextid;
236 
237 	id = (id < base) ? 0 : id - base;
238 	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) {
239 		entry = rcu_dereference_raw(*slot);
240 		if (!entry)
241 			continue;
242 		if (!xa_is_internal(entry))
243 			break;
244 		if (slot != &idr->idr_rt.xa_head && !xa_is_retry(entry))
245 			break;
246 		slot = radix_tree_iter_retry(&iter);
247 	}
248 	if (!slot)
249 		return NULL;
250 
251 	*nextid = iter.index + base;
252 	return entry;
253 }
254 EXPORT_SYMBOL(idr_get_next_ul);
255 
256 /**
257  * idr_get_next() - Find next populated entry.
258  * @idr: IDR handle.
259  * @nextid: Pointer to an ID.
260  *
261  * Returns the next populated entry in the tree with an ID greater than
262  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
263  * to the ID of the found value.  To use in a loop, the value pointed to by
264  * nextid must be incremented by the user.
265  */
idr_get_next(struct idr * idr,int * nextid)266 void *idr_get_next(struct idr *idr, int *nextid)
267 {
268 	unsigned long id = *nextid;
269 	void *entry = idr_get_next_ul(idr, &id);
270 
271 	if (WARN_ON_ONCE(id > INT_MAX))
272 		return NULL;
273 	*nextid = id;
274 	return entry;
275 }
276 EXPORT_SYMBOL(idr_get_next);
277 
278 /**
279  * idr_replace() - replace pointer for given ID.
280  * @idr: IDR handle.
281  * @ptr: New pointer to associate with the ID.
282  * @id: ID to change.
283  *
284  * Replace the pointer registered with an ID and return the old value.
285  * This function can be called under the RCU read lock concurrently with
286  * idr_alloc() and idr_remove() (as long as the ID being removed is not
287  * the one being replaced!).
288  *
289  * Returns: the old value on success.  %-ENOENT indicates that @id was not
290  * found.  %-EINVAL indicates that @ptr was not valid.
291  */
idr_replace(struct idr * idr,void * ptr,unsigned long id)292 void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
293 {
294 	struct radix_tree_node *node;
295 	void __rcu **slot = NULL;
296 	void *entry;
297 
298 	id -= idr->idr_base;
299 
300 	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
301 	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
302 		return ERR_PTR(-ENOENT);
303 
304 	__radix_tree_replace(&idr->idr_rt, node, slot, ptr);
305 
306 	return entry;
307 }
308 EXPORT_SYMBOL(idr_replace);
309 
310 /**
311  * DOC: IDA description
312  *
313  * The IDA is an ID allocator which does not provide the ability to
314  * associate an ID with a pointer.  As such, it only needs to store one
315  * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
316  * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
317  * then initialise it using ida_init()).  To allocate a new ID, call
318  * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
319  * To free an ID, call ida_free().
320  *
321  * ida_destroy() can be used to dispose of an IDA without needing to
322  * free the individual IDs in it.  You can use ida_is_empty() to find
323  * out whether the IDA has any IDs currently allocated.
324  *
325  * The IDA handles its own locking.  It is safe to call any of the IDA
326  * functions without synchronisation in your code.
327  *
328  * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
329  * limitation, it should be quite straightforward to raise the maximum.
330  */
331 
332 /*
333  * Developer's notes:
334  *
335  * The IDA uses the functionality provided by the XArray to store bitmaps in
336  * each entry.  The XA_FREE_MARK is only cleared when all bits in the bitmap
337  * have been set.
338  *
339  * I considered telling the XArray that each slot is an order-10 node
340  * and indexing by bit number, but the XArray can't allow a single multi-index
341  * entry in the head, which would significantly increase memory consumption
342  * for the IDA.  So instead we divide the index by the number of bits in the
343  * leaf bitmap before doing a radix tree lookup.
344  *
345  * As an optimisation, if there are only a few low bits set in any given
346  * leaf, instead of allocating a 128-byte bitmap, we store the bits
347  * as a value entry.  Value entries never have the XA_FREE_MARK cleared
348  * because we can always convert them into a bitmap entry.
349  *
350  * It would be possible to optimise further; once we've run out of a
351  * single 128-byte bitmap, we currently switch to a 576-byte node, put
352  * the 128-byte bitmap in the first entry and then start allocating extra
353  * 128-byte entries.  We could instead use the 512 bytes of the node's
354  * data as a bitmap before moving to that scheme.  I do not believe this
355  * is a worthwhile optimisation; Rasmus Villemoes surveyed the current
356  * users of the IDA and almost none of them use more than 1024 entries.
357  * Those that do use more than the 8192 IDs that the 512 bytes would
358  * provide.
359  *
360  * The IDA always uses a lock to alloc/free.  If we add a 'test_bit'
361  * equivalent, it will still need locking.  Going to RCU lookup would require
362  * using RCU to free bitmaps, and that's not trivial without embedding an
363  * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
364  * bitmap, which is excessive.
365  */
366 
367 /**
368  * ida_alloc_range() - Allocate an unused ID.
369  * @ida: IDA handle.
370  * @min: Lowest ID to allocate.
371  * @max: Highest ID to allocate.
372  * @gfp: Memory allocation flags.
373  *
374  * Allocate an ID between @min and @max, inclusive.  The allocated ID will
375  * not exceed %INT_MAX, even if @max is larger.
376  *
377  * Context: Any context. It is safe to call this function without
378  * locking in your code.
379  * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
380  * or %-ENOSPC if there are no free IDs.
381  */
ida_alloc_range(struct ida * ida,unsigned int min,unsigned int max,gfp_t gfp)382 int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
383 			gfp_t gfp)
384 {
385 	XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS);
386 	unsigned bit = min % IDA_BITMAP_BITS;
387 	unsigned long flags;
388 	struct ida_bitmap *bitmap, *alloc = NULL;
389 
390 	if ((int)min < 0)
391 		return -ENOSPC;
392 
393 	if ((int)max < 0)
394 		max = INT_MAX;
395 
396 retry:
397 	xas_lock_irqsave(&xas, flags);
398 next:
399 	bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK);
400 	if (xas.xa_index > min / IDA_BITMAP_BITS)
401 		bit = 0;
402 	if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
403 		goto nospc;
404 
405 	if (xa_is_value(bitmap)) {
406 		unsigned long tmp = xa_to_value(bitmap);
407 
408 		if (bit < BITS_PER_XA_VALUE) {
409 			bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit);
410 			if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
411 				goto nospc;
412 			if (bit < BITS_PER_XA_VALUE) {
413 				tmp |= 1UL << bit;
414 				xas_store(&xas, xa_mk_value(tmp));
415 				goto out;
416 			}
417 		}
418 		bitmap = alloc;
419 		if (!bitmap)
420 			bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
421 		if (!bitmap)
422 			goto alloc;
423 		bitmap->bitmap[0] = tmp;
424 		xas_store(&xas, bitmap);
425 		if (xas_error(&xas)) {
426 			bitmap->bitmap[0] = 0;
427 			goto out;
428 		}
429 	}
430 
431 	if (bitmap) {
432 		bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit);
433 		if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
434 			goto nospc;
435 		if (bit == IDA_BITMAP_BITS)
436 			goto next;
437 
438 		__set_bit(bit, bitmap->bitmap);
439 		if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
440 			xas_clear_mark(&xas, XA_FREE_MARK);
441 	} else {
442 		if (bit < BITS_PER_XA_VALUE) {
443 			bitmap = xa_mk_value(1UL << bit);
444 		} else {
445 			bitmap = alloc;
446 			if (!bitmap)
447 				bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
448 			if (!bitmap)
449 				goto alloc;
450 			__set_bit(bit, bitmap->bitmap);
451 		}
452 		xas_store(&xas, bitmap);
453 	}
454 out:
455 	xas_unlock_irqrestore(&xas, flags);
456 	if (xas_nomem(&xas, gfp)) {
457 		xas.xa_index = min / IDA_BITMAP_BITS;
458 		bit = min % IDA_BITMAP_BITS;
459 		goto retry;
460 	}
461 	if (bitmap != alloc)
462 		kfree(alloc);
463 	if (xas_error(&xas))
464 		return xas_error(&xas);
465 	return xas.xa_index * IDA_BITMAP_BITS + bit;
466 alloc:
467 	xas_unlock_irqrestore(&xas, flags);
468 	alloc = kzalloc(sizeof(*bitmap), gfp);
469 	if (!alloc)
470 		return -ENOMEM;
471 	xas_set(&xas, min / IDA_BITMAP_BITS);
472 	bit = min % IDA_BITMAP_BITS;
473 	goto retry;
474 nospc:
475 	xas_unlock_irqrestore(&xas, flags);
476 	kfree(alloc);
477 	return -ENOSPC;
478 }
479 EXPORT_SYMBOL(ida_alloc_range);
480 
481 /**
482  * ida_find_first_range - Get the lowest used ID.
483  * @ida: IDA handle.
484  * @min: Lowest ID to get.
485  * @max: Highest ID to get.
486  *
487  * Get the lowest used ID between @min and @max, inclusive.  The returned
488  * ID will not exceed %INT_MAX, even if @max is larger.
489  *
490  * Context: Any context. Takes and releases the xa_lock.
491  * Return: The lowest used ID, or errno if no used ID is found.
492  */
ida_find_first_range(struct ida * ida,unsigned int min,unsigned int max)493 int ida_find_first_range(struct ida *ida, unsigned int min, unsigned int max)
494 {
495 	unsigned long index = min / IDA_BITMAP_BITS;
496 	unsigned int offset = min % IDA_BITMAP_BITS;
497 	unsigned long *addr, size, bit;
498 	unsigned long tmp = 0;
499 	unsigned long flags;
500 	void *entry;
501 	int ret;
502 
503 	if ((int)min < 0)
504 		return -EINVAL;
505 	if ((int)max < 0)
506 		max = INT_MAX;
507 
508 	xa_lock_irqsave(&ida->xa, flags);
509 
510 	entry = xa_find(&ida->xa, &index, max / IDA_BITMAP_BITS, XA_PRESENT);
511 	if (!entry) {
512 		ret = -ENOENT;
513 		goto err_unlock;
514 	}
515 
516 	if (index > min / IDA_BITMAP_BITS)
517 		offset = 0;
518 	if (index * IDA_BITMAP_BITS + offset > max) {
519 		ret = -ENOENT;
520 		goto err_unlock;
521 	}
522 
523 	if (xa_is_value(entry)) {
524 		tmp = xa_to_value(entry);
525 		addr = &tmp;
526 		size = BITS_PER_XA_VALUE;
527 	} else {
528 		addr = ((struct ida_bitmap *)entry)->bitmap;
529 		size = IDA_BITMAP_BITS;
530 	}
531 
532 	bit = find_next_bit(addr, size, offset);
533 
534 	xa_unlock_irqrestore(&ida->xa, flags);
535 
536 	if (bit == size ||
537 	    index * IDA_BITMAP_BITS + bit > max)
538 		return -ENOENT;
539 
540 	return index * IDA_BITMAP_BITS + bit;
541 
542 err_unlock:
543 	xa_unlock_irqrestore(&ida->xa, flags);
544 	return ret;
545 }
546 EXPORT_SYMBOL(ida_find_first_range);
547 
548 /**
549  * ida_free() - Release an allocated ID.
550  * @ida: IDA handle.
551  * @id: Previously allocated ID.
552  *
553  * Context: Any context. It is safe to call this function without
554  * locking in your code.
555  */
ida_free(struct ida * ida,unsigned int id)556 void ida_free(struct ida *ida, unsigned int id)
557 {
558 	XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS);
559 	unsigned bit = id % IDA_BITMAP_BITS;
560 	struct ida_bitmap *bitmap;
561 	unsigned long flags;
562 
563 	if ((int)id < 0)
564 		return;
565 
566 	xas_lock_irqsave(&xas, flags);
567 	bitmap = xas_load(&xas);
568 
569 	if (xa_is_value(bitmap)) {
570 		unsigned long v = xa_to_value(bitmap);
571 		if (bit >= BITS_PER_XA_VALUE)
572 			goto err;
573 		if (!(v & (1UL << bit)))
574 			goto err;
575 		v &= ~(1UL << bit);
576 		if (!v)
577 			goto delete;
578 		xas_store(&xas, xa_mk_value(v));
579 	} else {
580 		if (!bitmap || !test_bit(bit, bitmap->bitmap))
581 			goto err;
582 		__clear_bit(bit, bitmap->bitmap);
583 		xas_set_mark(&xas, XA_FREE_MARK);
584 		if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) {
585 			kfree(bitmap);
586 delete:
587 			xas_store(&xas, NULL);
588 		}
589 	}
590 	xas_unlock_irqrestore(&xas, flags);
591 	return;
592  err:
593 	xas_unlock_irqrestore(&xas, flags);
594 	WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
595 }
596 EXPORT_SYMBOL(ida_free);
597 
598 /**
599  * ida_destroy() - Free all IDs.
600  * @ida: IDA handle.
601  *
602  * Calling this function frees all IDs and releases all resources used
603  * by an IDA.  When this call returns, the IDA is empty and can be reused
604  * or freed.  If the IDA is already empty, there is no need to call this
605  * function.
606  *
607  * Context: Any context. It is safe to call this function without
608  * locking in your code.
609  */
ida_destroy(struct ida * ida)610 void ida_destroy(struct ida *ida)
611 {
612 	XA_STATE(xas, &ida->xa, 0);
613 	struct ida_bitmap *bitmap;
614 	unsigned long flags;
615 
616 	xas_lock_irqsave(&xas, flags);
617 	xas_for_each(&xas, bitmap, ULONG_MAX) {
618 		if (!xa_is_value(bitmap))
619 			kfree(bitmap);
620 		xas_store(&xas, NULL);
621 	}
622 	xas_unlock_irqrestore(&xas, flags);
623 }
624 EXPORT_SYMBOL(ida_destroy);
625 
626 #ifndef __KERNEL__
627 extern void xa_dump_index(unsigned long index, unsigned int shift);
628 #define IDA_CHUNK_SHIFT		ilog2(IDA_BITMAP_BITS)
629 
ida_dump_entry(void * entry,unsigned long index)630 static void ida_dump_entry(void *entry, unsigned long index)
631 {
632 	unsigned long i;
633 
634 	if (!entry)
635 		return;
636 
637 	if (xa_is_node(entry)) {
638 		struct xa_node *node = xa_to_node(entry);
639 		unsigned int shift = node->shift + IDA_CHUNK_SHIFT +
640 			XA_CHUNK_SHIFT;
641 
642 		xa_dump_index(index * IDA_BITMAP_BITS, shift);
643 		xa_dump_node(node);
644 		for (i = 0; i < XA_CHUNK_SIZE; i++)
645 			ida_dump_entry(node->slots[i],
646 					index | (i << node->shift));
647 	} else if (xa_is_value(entry)) {
648 		xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG));
649 		pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry);
650 	} else {
651 		struct ida_bitmap *bitmap = entry;
652 
653 		xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT);
654 		pr_cont("bitmap: %p data", bitmap);
655 		for (i = 0; i < IDA_BITMAP_LONGS; i++)
656 			pr_cont(" %lx", bitmap->bitmap[i]);
657 		pr_cont("\n");
658 	}
659 }
660 
ida_dump(struct ida * ida)661 static void ida_dump(struct ida *ida)
662 {
663 	struct xarray *xa = &ida->xa;
664 	pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head,
665 				xa->xa_flags >> ROOT_TAG_SHIFT);
666 	ida_dump_entry(xa->xa_head, 0);
667 }
668 #endif
669