1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 #include <linux/string_choices.h> 32 #include <linux/mutex.h> 33 34 #include <asm/apic.h> 35 #include <asm/msr.h> 36 #include <asm/perf_event.h> 37 #include <asm/tlbflush.h> 38 #include <asm/desc.h> 39 #include <asm/debugreg.h> 40 #include <asm/kvm_para.h> 41 #include <asm/irq_remapping.h> 42 #include <asm/spec-ctrl.h> 43 #include <asm/cpu_device_id.h> 44 #include <asm/traps.h> 45 #include <asm/reboot.h> 46 #include <asm/fpu/api.h> 47 48 #include <trace/events/ipi.h> 49 50 #include "trace.h" 51 52 #include "svm.h" 53 #include "svm_ops.h" 54 55 #include "kvm_onhyperv.h" 56 #include "svm_onhyperv.h" 57 58 MODULE_AUTHOR("Qumranet"); 59 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions"); 60 MODULE_LICENSE("GPL"); 61 62 #ifdef MODULE 63 static const struct x86_cpu_id svm_cpu_id[] = { 64 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 65 {} 66 }; 67 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 68 #endif 69 70 #define SEG_TYPE_LDT 2 71 #define SEG_TYPE_BUSY_TSS16 3 72 73 static bool erratum_383_found __read_mostly; 74 75 /* 76 * Set osvw_len to higher value when updated Revision Guides 77 * are published and we know what the new status bits are 78 */ 79 static uint64_t osvw_len = 4, osvw_status; 80 81 static DEFINE_PER_CPU(u64, current_tsc_ratio); 82 83 /* 84 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 85 * pause_filter_count: On processors that support Pause filtering(indicated 86 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 87 * count value. On VMRUN this value is loaded into an internal counter. 88 * Each time a pause instruction is executed, this counter is decremented 89 * until it reaches zero at which time a #VMEXIT is generated if pause 90 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 91 * Intercept Filtering for more details. 92 * This also indicate if ple logic enabled. 93 * 94 * pause_filter_thresh: In addition, some processor families support advanced 95 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 96 * the amount of time a guest is allowed to execute in a pause loop. 97 * In this mode, a 16-bit pause filter threshold field is added in the 98 * VMCB. The threshold value is a cycle count that is used to reset the 99 * pause counter. As with simple pause filtering, VMRUN loads the pause 100 * count value from VMCB into an internal counter. Then, on each pause 101 * instruction the hardware checks the elapsed number of cycles since 102 * the most recent pause instruction against the pause filter threshold. 103 * If the elapsed cycle count is greater than the pause filter threshold, 104 * then the internal pause count is reloaded from the VMCB and execution 105 * continues. If the elapsed cycle count is less than the pause filter 106 * threshold, then the internal pause count is decremented. If the count 107 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 108 * triggered. If advanced pause filtering is supported and pause filter 109 * threshold field is set to zero, the filter will operate in the simpler, 110 * count only mode. 111 */ 112 113 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 114 module_param(pause_filter_thresh, ushort, 0444); 115 116 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 117 module_param(pause_filter_count, ushort, 0444); 118 119 /* Default doubles per-vcpu window every exit. */ 120 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 121 module_param(pause_filter_count_grow, ushort, 0444); 122 123 /* Default resets per-vcpu window every exit to pause_filter_count. */ 124 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 125 module_param(pause_filter_count_shrink, ushort, 0444); 126 127 /* Default is to compute the maximum so we can never overflow. */ 128 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 129 module_param(pause_filter_count_max, ushort, 0444); 130 131 /* 132 * Use nested page tables by default. Note, NPT may get forced off by 133 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 134 */ 135 bool npt_enabled = true; 136 module_param_named(npt, npt_enabled, bool, 0444); 137 138 /* allow nested virtualization in KVM/SVM */ 139 static int nested = true; 140 module_param(nested, int, 0444); 141 142 /* enable/disable Next RIP Save */ 143 int nrips = true; 144 module_param(nrips, int, 0444); 145 146 /* enable/disable Virtual VMLOAD VMSAVE */ 147 static int vls = true; 148 module_param(vls, int, 0444); 149 150 /* enable/disable Virtual GIF */ 151 int vgif = true; 152 module_param(vgif, int, 0444); 153 154 /* enable/disable LBR virtualization */ 155 int lbrv = true; 156 module_param(lbrv, int, 0444); 157 158 static int tsc_scaling = true; 159 module_param(tsc_scaling, int, 0444); 160 161 module_param(enable_device_posted_irqs, bool, 0444); 162 163 bool __read_mostly dump_invalid_vmcb; 164 module_param(dump_invalid_vmcb, bool, 0644); 165 166 167 bool intercept_smi = true; 168 module_param(intercept_smi, bool, 0444); 169 170 bool vnmi = true; 171 module_param(vnmi, bool, 0444); 172 173 module_param(enable_mediated_pmu, bool, 0444); 174 175 static bool svm_gp_erratum_intercept = true; 176 177 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 178 179 static unsigned long iopm_base; 180 181 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 182 183 static DEFINE_MUTEX(vmcb_dump_mutex); 184 185 /* 186 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 187 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 188 * 189 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 190 * defer the restoration of TSC_AUX until the CPU returns to userspace. 191 */ 192 int tsc_aux_uret_slot __ro_after_init = -1; 193 194 static int get_npt_level(void) 195 { 196 #ifdef CONFIG_X86_64 197 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 198 #else 199 return PT32E_ROOT_LEVEL; 200 #endif 201 } 202 203 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 204 { 205 struct vcpu_svm *svm = to_svm(vcpu); 206 u64 old_efer = vcpu->arch.efer; 207 vcpu->arch.efer = efer; 208 209 if (!npt_enabled) { 210 /* Shadow paging assumes NX to be available. */ 211 efer |= EFER_NX; 212 213 if (!(efer & EFER_LMA)) 214 efer &= ~EFER_LME; 215 } 216 217 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 218 if (!(efer & EFER_SVME)) { 219 svm_leave_nested(vcpu); 220 /* #GP intercept is still needed for vmware backdoor */ 221 if (!enable_vmware_backdoor) 222 clr_exception_intercept(svm, GP_VECTOR); 223 224 /* 225 * Free the nested guest state, unless we are in SMM. 226 * In this case we will return to the nested guest 227 * as soon as we leave SMM. 228 */ 229 if (!is_smm(vcpu)) 230 svm_free_nested(svm); 231 232 } else { 233 int ret = svm_allocate_nested(svm); 234 235 if (ret) { 236 vcpu->arch.efer = old_efer; 237 return ret; 238 } 239 240 /* 241 * Never intercept #GP for SEV guests, KVM can't 242 * decrypt guest memory to workaround the erratum. 243 */ 244 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 245 set_exception_intercept(svm, GP_VECTOR); 246 } 247 } 248 249 svm->vmcb->save.efer = efer | EFER_SVME; 250 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 251 return 0; 252 } 253 254 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 255 { 256 struct vcpu_svm *svm = to_svm(vcpu); 257 u32 ret = 0; 258 259 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 260 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 261 return ret; 262 } 263 264 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 265 { 266 struct vcpu_svm *svm = to_svm(vcpu); 267 268 if (mask == 0) 269 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 270 else 271 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 272 273 } 274 275 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 276 int emul_type, 277 bool commit_side_effects) 278 { 279 struct vcpu_svm *svm = to_svm(vcpu); 280 unsigned long old_rflags; 281 282 /* 283 * SEV-ES does not expose the next RIP. The RIP update is controlled by 284 * the type of exit and the #VC handler in the guest. 285 */ 286 if (sev_es_guest(vcpu->kvm)) 287 goto done; 288 289 if (nrips && svm->vmcb->control.next_rip != 0) { 290 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 291 svm->next_rip = svm->vmcb->control.next_rip; 292 } 293 294 if (!svm->next_rip) { 295 if (unlikely(!commit_side_effects)) 296 old_rflags = svm->vmcb->save.rflags; 297 298 if (!kvm_emulate_instruction(vcpu, emul_type)) 299 return 0; 300 301 if (unlikely(!commit_side_effects)) 302 svm->vmcb->save.rflags = old_rflags; 303 } else { 304 kvm_rip_write(vcpu, svm->next_rip); 305 } 306 307 done: 308 if (likely(commit_side_effects)) 309 svm_set_interrupt_shadow(vcpu, 0); 310 311 return 1; 312 } 313 314 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 315 { 316 return __svm_skip_emulated_instruction(vcpu, EMULTYPE_SKIP, true); 317 } 318 319 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu, u8 vector) 320 { 321 const int emul_type = EMULTYPE_SKIP | EMULTYPE_SKIP_SOFT_INT | 322 EMULTYPE_SET_SOFT_INT_VECTOR(vector); 323 unsigned long rip, old_rip = kvm_rip_read(vcpu); 324 struct vcpu_svm *svm = to_svm(vcpu); 325 326 /* 327 * Due to architectural shortcomings, the CPU doesn't always provide 328 * NextRIP, e.g. if KVM intercepted an exception that occurred while 329 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 330 * the instruction even if NextRIP is supported to acquire the next 331 * RIP so that it can be shoved into the NextRIP field, otherwise 332 * hardware will fail to advance guest RIP during event injection. 333 * Drop the exception/interrupt if emulation fails and effectively 334 * retry the instruction, it's the least awful option. If NRIPS is 335 * in use, the skip must not commit any side effects such as clearing 336 * the interrupt shadow or RFLAGS.RF. 337 */ 338 if (!__svm_skip_emulated_instruction(vcpu, emul_type, !nrips)) 339 return -EIO; 340 341 rip = kvm_rip_read(vcpu); 342 343 /* 344 * Save the injection information, even when using next_rip, as the 345 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 346 * doesn't complete due to a VM-Exit occurring while the CPU is 347 * vectoring the event. Decoding the instruction isn't guaranteed to 348 * work as there may be no backing instruction, e.g. if the event is 349 * being injected by L1 for L2, or if the guest is patching INT3 into 350 * a different instruction. 351 */ 352 svm->soft_int_injected = true; 353 svm->soft_int_csbase = svm->vmcb->save.cs.base; 354 svm->soft_int_old_rip = old_rip; 355 svm->soft_int_next_rip = rip; 356 357 if (nrips) 358 kvm_rip_write(vcpu, old_rip); 359 360 if (static_cpu_has(X86_FEATURE_NRIPS)) 361 svm->vmcb->control.next_rip = rip; 362 363 return 0; 364 } 365 366 static void svm_inject_exception(struct kvm_vcpu *vcpu) 367 { 368 struct kvm_queued_exception *ex = &vcpu->arch.exception; 369 struct vcpu_svm *svm = to_svm(vcpu); 370 371 kvm_deliver_exception_payload(vcpu, ex); 372 373 if (kvm_exception_is_soft(ex->vector) && 374 svm_update_soft_interrupt_rip(vcpu, ex->vector)) 375 return; 376 377 svm->vmcb->control.event_inj = ex->vector 378 | SVM_EVTINJ_VALID 379 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 380 | SVM_EVTINJ_TYPE_EXEPT; 381 svm->vmcb->control.event_inj_err = ex->error_code; 382 } 383 384 static void svm_init_erratum_383(void) 385 { 386 u64 val; 387 388 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 389 return; 390 391 /* Use _safe variants to not break nested virtualization */ 392 if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val)) 393 return; 394 395 val |= (1ULL << 47); 396 397 native_write_msr_safe(MSR_AMD64_DC_CFG, val); 398 399 erratum_383_found = true; 400 } 401 402 static void svm_init_osvw(struct kvm_vcpu *vcpu) 403 { 404 /* 405 * Guests should see errata 400 and 415 as fixed (assuming that 406 * HLT and IO instructions are intercepted). 407 */ 408 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 409 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 410 411 /* 412 * By increasing VCPU's osvw.length to 3 we are telling the guest that 413 * all osvw.status bits inside that length, including bit 0 (which is 414 * reserved for erratum 298), are valid. However, if host processor's 415 * osvw_len is 0 then osvw_status[0] carries no information. We need to 416 * be conservative here and therefore we tell the guest that erratum 298 417 * is present (because we really don't know). 418 */ 419 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 420 vcpu->arch.osvw.status |= 1; 421 } 422 423 static bool __kvm_is_svm_supported(void) 424 { 425 int cpu = smp_processor_id(); 426 struct cpuinfo_x86 *c = &cpu_data(cpu); 427 428 if (c->x86_vendor != X86_VENDOR_AMD && 429 c->x86_vendor != X86_VENDOR_HYGON) { 430 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 431 return false; 432 } 433 434 if (!cpu_has(c, X86_FEATURE_SVM)) { 435 pr_err("SVM not supported by CPU %d\n", cpu); 436 return false; 437 } 438 439 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 440 pr_info("KVM is unsupported when running as an SEV guest\n"); 441 return false; 442 } 443 444 return true; 445 } 446 447 static bool kvm_is_svm_supported(void) 448 { 449 bool supported; 450 451 migrate_disable(); 452 supported = __kvm_is_svm_supported(); 453 migrate_enable(); 454 455 return supported; 456 } 457 458 static int svm_check_processor_compat(void) 459 { 460 if (!__kvm_is_svm_supported()) 461 return -EIO; 462 463 return 0; 464 } 465 466 static void __svm_write_tsc_multiplier(u64 multiplier) 467 { 468 if (multiplier == __this_cpu_read(current_tsc_ratio)) 469 return; 470 471 wrmsrq(MSR_AMD64_TSC_RATIO, multiplier); 472 __this_cpu_write(current_tsc_ratio, multiplier); 473 } 474 475 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd) 476 { 477 return &sd->save_area->host_sev_es_save; 478 } 479 480 static inline void kvm_cpu_svm_disable(void) 481 { 482 uint64_t efer; 483 484 wrmsrq(MSR_VM_HSAVE_PA, 0); 485 rdmsrq(MSR_EFER, efer); 486 if (efer & EFER_SVME) { 487 /* 488 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 489 * NMI aren't blocked. 490 */ 491 stgi(); 492 wrmsrq(MSR_EFER, efer & ~EFER_SVME); 493 } 494 } 495 496 static void svm_emergency_disable_virtualization_cpu(void) 497 { 498 kvm_rebooting = true; 499 500 kvm_cpu_svm_disable(); 501 } 502 503 static void svm_disable_virtualization_cpu(void) 504 { 505 /* Make sure we clean up behind us */ 506 if (tsc_scaling) 507 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 508 509 kvm_cpu_svm_disable(); 510 511 amd_pmu_disable_virt(); 512 } 513 514 static int svm_enable_virtualization_cpu(void) 515 { 516 517 struct svm_cpu_data *sd; 518 uint64_t efer; 519 int me = raw_smp_processor_id(); 520 521 rdmsrq(MSR_EFER, efer); 522 if (efer & EFER_SVME) 523 return -EBUSY; 524 525 sd = per_cpu_ptr(&svm_data, me); 526 sd->asid_generation = 1; 527 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 528 sd->next_asid = sd->max_asid + 1; 529 sd->min_asid = max_sev_asid + 1; 530 531 wrmsrq(MSR_EFER, efer | EFER_SVME); 532 533 wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa); 534 535 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 536 /* 537 * Set the default value, even if we don't use TSC scaling 538 * to avoid having stale value in the msr 539 */ 540 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 541 } 542 543 544 /* 545 * Get OSVW bits. 546 * 547 * Note that it is possible to have a system with mixed processor 548 * revisions and therefore different OSVW bits. If bits are not the same 549 * on different processors then choose the worst case (i.e. if erratum 550 * is present on one processor and not on another then assume that the 551 * erratum is present everywhere). 552 */ 553 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 554 u64 len, status = 0; 555 int err; 556 557 err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len); 558 if (!err) 559 err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status); 560 561 if (err) 562 osvw_status = osvw_len = 0; 563 else { 564 if (len < osvw_len) 565 osvw_len = len; 566 osvw_status |= status; 567 osvw_status &= (1ULL << osvw_len) - 1; 568 } 569 } else 570 osvw_status = osvw_len = 0; 571 572 svm_init_erratum_383(); 573 574 amd_pmu_enable_virt(); 575 576 return 0; 577 } 578 579 static void svm_cpu_uninit(int cpu) 580 { 581 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 582 583 if (!sd->save_area) 584 return; 585 586 kfree(sd->sev_vmcbs); 587 __free_page(__sme_pa_to_page(sd->save_area_pa)); 588 sd->save_area_pa = 0; 589 sd->save_area = NULL; 590 } 591 592 static int svm_cpu_init(int cpu) 593 { 594 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 595 struct page *save_area_page; 596 int ret = -ENOMEM; 597 598 memset(sd, 0, sizeof(struct svm_cpu_data)); 599 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL); 600 if (!save_area_page) 601 return ret; 602 603 ret = sev_cpu_init(sd); 604 if (ret) 605 goto free_save_area; 606 607 sd->save_area = page_address(save_area_page); 608 sd->save_area_pa = __sme_page_pa(save_area_page); 609 return 0; 610 611 free_save_area: 612 __free_page(save_area_page); 613 return ret; 614 615 } 616 617 static void set_dr_intercepts(struct vcpu_svm *svm) 618 { 619 struct vmcb *vmcb = svm->vmcb01.ptr; 620 621 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 622 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 623 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 624 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 625 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 626 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 627 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 628 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 629 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 630 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 631 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 632 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 633 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 634 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 635 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 636 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 637 638 recalc_intercepts(svm); 639 } 640 641 static void clr_dr_intercepts(struct vcpu_svm *svm) 642 { 643 struct vmcb *vmcb = svm->vmcb01.ptr; 644 645 vmcb->control.intercepts[INTERCEPT_DR] = 0; 646 647 recalc_intercepts(svm); 648 } 649 650 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 651 { 652 /* 653 * For non-nested case: 654 * If the L01 MSR bitmap does not intercept the MSR, then we need to 655 * save it. 656 * 657 * For nested case: 658 * If the L02 MSR bitmap does not intercept the MSR, then we need to 659 * save it. 660 */ 661 void *msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm : 662 to_svm(vcpu)->msrpm; 663 664 return svm_test_msr_bitmap_write(msrpm, msr); 665 } 666 667 void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set) 668 { 669 struct vcpu_svm *svm = to_svm(vcpu); 670 void *msrpm = svm->msrpm; 671 672 /* Don't disable interception for MSRs userspace wants to handle. */ 673 if (type & MSR_TYPE_R) { 674 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 675 svm_clear_msr_bitmap_read(msrpm, msr); 676 else 677 svm_set_msr_bitmap_read(msrpm, msr); 678 } 679 680 if (type & MSR_TYPE_W) { 681 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 682 svm_clear_msr_bitmap_write(msrpm, msr); 683 else 684 svm_set_msr_bitmap_write(msrpm, msr); 685 } 686 687 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 688 svm->nested.force_msr_bitmap_recalc = true; 689 } 690 691 void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask) 692 { 693 unsigned int order = get_order(size); 694 struct page *pages = alloc_pages(gfp_mask, order); 695 void *pm; 696 697 if (!pages) 698 return NULL; 699 700 /* 701 * Set all bits in the permissions map so that all MSR and I/O accesses 702 * are intercepted by default. 703 */ 704 pm = page_address(pages); 705 memset(pm, 0xff, PAGE_SIZE * (1 << order)); 706 707 return pm; 708 } 709 710 static void svm_recalc_lbr_msr_intercepts(struct kvm_vcpu *vcpu) 711 { 712 struct vcpu_svm *svm = to_svm(vcpu); 713 bool intercept = !(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK); 714 715 if (intercept == svm->lbr_msrs_intercepted) 716 return; 717 718 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHFROMIP, MSR_TYPE_RW, intercept); 719 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHTOIP, MSR_TYPE_RW, intercept); 720 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTFROMIP, MSR_TYPE_RW, intercept); 721 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTTOIP, MSR_TYPE_RW, intercept); 722 723 if (sev_es_guest(vcpu->kvm)) 724 svm_set_intercept_for_msr(vcpu, MSR_IA32_DEBUGCTLMSR, MSR_TYPE_RW, intercept); 725 726 svm->lbr_msrs_intercepted = intercept; 727 } 728 729 void svm_vcpu_free_msrpm(void *msrpm) 730 { 731 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 732 } 733 734 static void svm_recalc_pmu_msr_intercepts(struct kvm_vcpu *vcpu) 735 { 736 bool intercept = !kvm_vcpu_has_mediated_pmu(vcpu); 737 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 738 int i; 739 740 if (!enable_mediated_pmu) 741 return; 742 743 /* Legacy counters are always available for AMD CPUs with a PMU. */ 744 for (i = 0; i < min(pmu->nr_arch_gp_counters, AMD64_NUM_COUNTERS); i++) 745 svm_set_intercept_for_msr(vcpu, MSR_K7_PERFCTR0 + i, 746 MSR_TYPE_RW, intercept); 747 748 intercept |= !guest_cpu_cap_has(vcpu, X86_FEATURE_PERFCTR_CORE); 749 for (i = 0; i < pmu->nr_arch_gp_counters; i++) 750 svm_set_intercept_for_msr(vcpu, MSR_F15H_PERF_CTR + 2 * i, 751 MSR_TYPE_RW, intercept); 752 753 for ( ; i < kvm_pmu_cap.num_counters_gp; i++) 754 svm_enable_intercept_for_msr(vcpu, MSR_F15H_PERF_CTR + 2 * i, 755 MSR_TYPE_RW); 756 757 intercept = kvm_need_perf_global_ctrl_intercept(vcpu); 758 svm_set_intercept_for_msr(vcpu, MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 759 MSR_TYPE_RW, intercept); 760 svm_set_intercept_for_msr(vcpu, MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 761 MSR_TYPE_RW, intercept); 762 svm_set_intercept_for_msr(vcpu, MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 763 MSR_TYPE_RW, intercept); 764 svm_set_intercept_for_msr(vcpu, MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET, 765 MSR_TYPE_RW, intercept); 766 } 767 768 static void svm_recalc_msr_intercepts(struct kvm_vcpu *vcpu) 769 { 770 struct vcpu_svm *svm = to_svm(vcpu); 771 772 svm_disable_intercept_for_msr(vcpu, MSR_STAR, MSR_TYPE_RW); 773 svm_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 774 775 #ifdef CONFIG_X86_64 776 svm_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 777 svm_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 778 svm_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 779 svm_disable_intercept_for_msr(vcpu, MSR_LSTAR, MSR_TYPE_RW); 780 svm_disable_intercept_for_msr(vcpu, MSR_CSTAR, MSR_TYPE_RW); 781 svm_disable_intercept_for_msr(vcpu, MSR_SYSCALL_MASK, MSR_TYPE_RW); 782 #endif 783 784 if (lbrv) 785 svm_recalc_lbr_msr_intercepts(vcpu); 786 787 if (cpu_feature_enabled(X86_FEATURE_IBPB)) 788 svm_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 789 !guest_has_pred_cmd_msr(vcpu)); 790 791 if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D)) 792 svm_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 793 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)); 794 795 /* 796 * Disable interception of SPEC_CTRL if KVM doesn't need to manually 797 * context switch the MSR (SPEC_CTRL is virtualized by the CPU), or if 798 * the guest has a non-zero SPEC_CTRL value, i.e. is likely actively 799 * using SPEC_CTRL. 800 */ 801 if (cpu_feature_enabled(X86_FEATURE_V_SPEC_CTRL)) 802 svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW, 803 !guest_has_spec_ctrl_msr(vcpu)); 804 else 805 svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW, 806 !svm->spec_ctrl); 807 808 /* 809 * Intercept SYSENTER_EIP and SYSENTER_ESP when emulating an Intel CPU, 810 * as AMD hardware only store 32 bits, whereas Intel CPUs track 64 bits. 811 */ 812 svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW, 813 guest_cpuid_is_intel_compatible(vcpu)); 814 svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW, 815 guest_cpuid_is_intel_compatible(vcpu)); 816 817 if (kvm_aperfmperf_in_guest(vcpu->kvm)) { 818 svm_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R); 819 svm_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R); 820 } 821 822 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) { 823 bool shstk_enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK); 824 825 svm_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, !shstk_enabled); 826 svm_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, !shstk_enabled); 827 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, !shstk_enabled); 828 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, !shstk_enabled); 829 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, !shstk_enabled); 830 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, !shstk_enabled); 831 } 832 833 if (sev_es_guest(vcpu->kvm)) 834 sev_es_recalc_msr_intercepts(vcpu); 835 836 svm_recalc_pmu_msr_intercepts(vcpu); 837 838 /* 839 * x2APIC intercepts are modified on-demand and cannot be filtered by 840 * userspace. 841 */ 842 } 843 844 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 845 { 846 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 847 to_vmcb->save.br_from = from_vmcb->save.br_from; 848 to_vmcb->save.br_to = from_vmcb->save.br_to; 849 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 850 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 851 852 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 853 } 854 855 static void __svm_enable_lbrv(struct kvm_vcpu *vcpu) 856 { 857 to_svm(vcpu)->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 858 } 859 860 void svm_enable_lbrv(struct kvm_vcpu *vcpu) 861 { 862 __svm_enable_lbrv(vcpu); 863 svm_recalc_lbr_msr_intercepts(vcpu); 864 } 865 866 static void __svm_disable_lbrv(struct kvm_vcpu *vcpu) 867 { 868 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm); 869 to_svm(vcpu)->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 870 } 871 872 void svm_update_lbrv(struct kvm_vcpu *vcpu) 873 { 874 struct vcpu_svm *svm = to_svm(vcpu); 875 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 876 bool enable_lbrv = (svm->vmcb->save.dbgctl & DEBUGCTLMSR_LBR) || 877 (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) && 878 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 879 880 if (enable_lbrv && !current_enable_lbrv) 881 __svm_enable_lbrv(vcpu); 882 else if (!enable_lbrv && current_enable_lbrv) 883 __svm_disable_lbrv(vcpu); 884 885 /* 886 * During nested transitions, it is possible that the current VMCB has 887 * LBR_CTL set, but the previous LBR_CTL had it cleared (or vice versa). 888 * In this case, even though LBR_CTL does not need an update, intercepts 889 * do, so always recalculate the intercepts here. 890 */ 891 svm_recalc_lbr_msr_intercepts(vcpu); 892 } 893 894 void disable_nmi_singlestep(struct vcpu_svm *svm) 895 { 896 svm->nmi_singlestep = false; 897 898 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 899 /* Clear our flags if they were not set by the guest */ 900 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 901 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 902 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 903 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 904 } 905 } 906 907 static void grow_ple_window(struct kvm_vcpu *vcpu) 908 { 909 struct vcpu_svm *svm = to_svm(vcpu); 910 struct vmcb_control_area *control = &svm->vmcb->control; 911 int old = control->pause_filter_count; 912 913 if (kvm_pause_in_guest(vcpu->kvm)) 914 return; 915 916 control->pause_filter_count = __grow_ple_window(old, 917 pause_filter_count, 918 pause_filter_count_grow, 919 pause_filter_count_max); 920 921 if (control->pause_filter_count != old) { 922 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 923 trace_kvm_ple_window_update(vcpu->vcpu_id, 924 control->pause_filter_count, old); 925 } 926 } 927 928 static void shrink_ple_window(struct kvm_vcpu *vcpu) 929 { 930 struct vcpu_svm *svm = to_svm(vcpu); 931 struct vmcb_control_area *control = &svm->vmcb->control; 932 int old = control->pause_filter_count; 933 934 if (kvm_pause_in_guest(vcpu->kvm)) 935 return; 936 937 control->pause_filter_count = 938 __shrink_ple_window(old, 939 pause_filter_count, 940 pause_filter_count_shrink, 941 pause_filter_count); 942 if (control->pause_filter_count != old) { 943 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 944 trace_kvm_ple_window_update(vcpu->vcpu_id, 945 control->pause_filter_count, old); 946 } 947 } 948 949 static void svm_hardware_unsetup(void) 950 { 951 int cpu; 952 953 avic_hardware_unsetup(); 954 955 sev_hardware_unsetup(); 956 957 for_each_possible_cpu(cpu) 958 svm_cpu_uninit(cpu); 959 960 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE)); 961 iopm_base = 0; 962 } 963 964 static void init_seg(struct vmcb_seg *seg) 965 { 966 seg->selector = 0; 967 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 968 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 969 seg->limit = 0xffff; 970 seg->base = 0; 971 } 972 973 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 974 { 975 seg->selector = 0; 976 seg->attrib = SVM_SELECTOR_P_MASK | type; 977 seg->limit = 0xffff; 978 seg->base = 0; 979 } 980 981 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 982 { 983 struct vcpu_svm *svm = to_svm(vcpu); 984 985 return svm->nested.ctl.tsc_offset; 986 } 987 988 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 989 { 990 struct vcpu_svm *svm = to_svm(vcpu); 991 992 return svm->tsc_ratio_msr; 993 } 994 995 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 996 { 997 struct vcpu_svm *svm = to_svm(vcpu); 998 999 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1000 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1001 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1002 } 1003 1004 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1005 { 1006 preempt_disable(); 1007 if (to_svm(vcpu)->guest_state_loaded) 1008 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1009 preempt_enable(); 1010 } 1011 1012 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1013 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu) 1014 { 1015 struct vcpu_svm *svm = to_svm(vcpu); 1016 1017 /* 1018 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1019 * roots, or if INVPCID is disabled in the guest to inject #UD. 1020 */ 1021 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1022 if (!npt_enabled || 1023 !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1024 svm_set_intercept(svm, INTERCEPT_INVPCID); 1025 else 1026 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1027 } 1028 1029 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1030 if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP)) 1031 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1032 else 1033 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1034 } 1035 1036 /* 1037 * No need to toggle VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK here, it is 1038 * always set if vls is enabled. If the intercepts are set, the bit is 1039 * meaningless anyway. 1040 */ 1041 if (guest_cpuid_is_intel_compatible(vcpu)) { 1042 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1043 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1044 } else { 1045 /* 1046 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1047 * in VMCB and clear intercepts to avoid #VMEXIT. 1048 */ 1049 if (vls) { 1050 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1051 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1052 } 1053 } 1054 1055 if (kvm_need_rdpmc_intercept(vcpu)) 1056 svm_set_intercept(svm, INTERCEPT_RDPMC); 1057 else 1058 svm_clr_intercept(svm, INTERCEPT_RDPMC); 1059 } 1060 1061 static void svm_recalc_intercepts(struct kvm_vcpu *vcpu) 1062 { 1063 svm_recalc_instruction_intercepts(vcpu); 1064 svm_recalc_msr_intercepts(vcpu); 1065 } 1066 1067 static void init_vmcb(struct kvm_vcpu *vcpu, bool init_event) 1068 { 1069 struct vcpu_svm *svm = to_svm(vcpu); 1070 struct vmcb *vmcb = svm->vmcb01.ptr; 1071 struct vmcb_control_area *control = &vmcb->control; 1072 struct vmcb_save_area *save = &vmcb->save; 1073 1074 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1075 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1076 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1077 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1078 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1079 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1080 if (!kvm_vcpu_apicv_active(vcpu)) 1081 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1082 1083 set_dr_intercepts(svm); 1084 1085 set_exception_intercept(svm, PF_VECTOR); 1086 set_exception_intercept(svm, UD_VECTOR); 1087 set_exception_intercept(svm, MC_VECTOR); 1088 set_exception_intercept(svm, AC_VECTOR); 1089 set_exception_intercept(svm, DB_VECTOR); 1090 /* 1091 * Guest access to VMware backdoor ports could legitimately 1092 * trigger #GP because of TSS I/O permission bitmap. 1093 * We intercept those #GP and allow access to them anyway 1094 * as VMware does. 1095 */ 1096 if (enable_vmware_backdoor) 1097 set_exception_intercept(svm, GP_VECTOR); 1098 1099 svm_set_intercept(svm, INTERCEPT_INTR); 1100 svm_set_intercept(svm, INTERCEPT_NMI); 1101 1102 if (intercept_smi) 1103 svm_set_intercept(svm, INTERCEPT_SMI); 1104 1105 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1106 svm_set_intercept(svm, INTERCEPT_RDPMC); 1107 svm_set_intercept(svm, INTERCEPT_CPUID); 1108 svm_set_intercept(svm, INTERCEPT_INVD); 1109 svm_set_intercept(svm, INTERCEPT_INVLPG); 1110 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1111 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1112 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1113 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1114 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1115 svm_set_intercept(svm, INTERCEPT_VMRUN); 1116 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1117 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1118 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1119 svm_set_intercept(svm, INTERCEPT_STGI); 1120 svm_set_intercept(svm, INTERCEPT_CLGI); 1121 svm_set_intercept(svm, INTERCEPT_SKINIT); 1122 svm_set_intercept(svm, INTERCEPT_WBINVD); 1123 svm_set_intercept(svm, INTERCEPT_XSETBV); 1124 svm_set_intercept(svm, INTERCEPT_RDPRU); 1125 svm_set_intercept(svm, INTERCEPT_RSM); 1126 1127 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1128 svm_set_intercept(svm, INTERCEPT_MONITOR); 1129 svm_set_intercept(svm, INTERCEPT_MWAIT); 1130 } 1131 1132 if (!kvm_hlt_in_guest(vcpu->kvm)) { 1133 if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT)) 1134 svm_set_intercept(svm, INTERCEPT_IDLE_HLT); 1135 else 1136 svm_set_intercept(svm, INTERCEPT_HLT); 1137 } 1138 1139 control->iopm_base_pa = iopm_base; 1140 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1141 control->int_ctl = V_INTR_MASKING_MASK; 1142 1143 init_seg(&save->es); 1144 init_seg(&save->ss); 1145 init_seg(&save->ds); 1146 init_seg(&save->fs); 1147 init_seg(&save->gs); 1148 1149 save->cs.selector = 0xf000; 1150 save->cs.base = 0xffff0000; 1151 /* Executable/Readable Code Segment */ 1152 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1153 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1154 save->cs.limit = 0xffff; 1155 1156 save->gdtr.base = 0; 1157 save->gdtr.limit = 0xffff; 1158 save->idtr.base = 0; 1159 save->idtr.limit = 0xffff; 1160 1161 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1162 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1163 1164 if (npt_enabled) { 1165 /* Setup VMCB for Nested Paging */ 1166 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1167 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1168 clr_exception_intercept(svm, PF_VECTOR); 1169 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1170 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1171 save->g_pat = vcpu->arch.pat; 1172 save->cr3 = 0; 1173 } 1174 svm->current_vmcb->asid_generation = 0; 1175 svm->asid = 0; 1176 1177 svm->nested.vmcb12_gpa = INVALID_GPA; 1178 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1179 1180 if (!kvm_pause_in_guest(vcpu->kvm)) { 1181 control->pause_filter_count = pause_filter_count; 1182 if (pause_filter_thresh) 1183 control->pause_filter_thresh = pause_filter_thresh; 1184 svm_set_intercept(svm, INTERCEPT_PAUSE); 1185 } else { 1186 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1187 } 1188 1189 if (guest_cpu_cap_has(vcpu, X86_FEATURE_ERAPS)) 1190 svm->vmcb->control.erap_ctl |= ERAP_CONTROL_ALLOW_LARGER_RAP; 1191 1192 if (kvm_vcpu_apicv_active(vcpu)) 1193 avic_init_vmcb(svm, vmcb); 1194 1195 if (vnmi) 1196 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1197 1198 if (vgif) { 1199 svm_clr_intercept(svm, INTERCEPT_STGI); 1200 svm_clr_intercept(svm, INTERCEPT_CLGI); 1201 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1202 } 1203 1204 if (vls) 1205 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1206 1207 if (vcpu->kvm->arch.bus_lock_detection_enabled) 1208 svm_set_intercept(svm, INTERCEPT_BUSLOCK); 1209 1210 if (sev_guest(vcpu->kvm)) 1211 sev_init_vmcb(svm, init_event); 1212 1213 svm_hv_init_vmcb(vmcb); 1214 1215 kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu); 1216 1217 vmcb_mark_all_dirty(vmcb); 1218 1219 enable_gif(svm); 1220 } 1221 1222 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1223 { 1224 struct vcpu_svm *svm = to_svm(vcpu); 1225 1226 svm_init_osvw(vcpu); 1227 1228 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) 1229 vcpu->arch.microcode_version = 0x01000065; 1230 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1231 1232 svm->nmi_masked = false; 1233 svm->awaiting_iret_completion = false; 1234 } 1235 1236 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1237 { 1238 struct vcpu_svm *svm = to_svm(vcpu); 1239 1240 svm->spec_ctrl = 0; 1241 svm->virt_spec_ctrl = 0; 1242 1243 init_vmcb(vcpu, init_event); 1244 1245 if (!init_event) 1246 __svm_vcpu_reset(vcpu); 1247 } 1248 1249 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1250 { 1251 svm->current_vmcb = target_vmcb; 1252 svm->vmcb = target_vmcb->ptr; 1253 } 1254 1255 static int svm_vcpu_precreate(struct kvm *kvm) 1256 { 1257 return avic_alloc_physical_id_table(kvm); 1258 } 1259 1260 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1261 { 1262 struct vcpu_svm *svm; 1263 struct page *vmcb01_page; 1264 int err; 1265 1266 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1267 svm = to_svm(vcpu); 1268 1269 err = -ENOMEM; 1270 vmcb01_page = snp_safe_alloc_page(); 1271 if (!vmcb01_page) 1272 goto out; 1273 1274 err = sev_vcpu_create(vcpu); 1275 if (err) 1276 goto error_free_vmcb_page; 1277 1278 err = avic_init_vcpu(svm); 1279 if (err) 1280 goto error_free_sev; 1281 1282 svm->msrpm = svm_vcpu_alloc_msrpm(); 1283 if (!svm->msrpm) { 1284 err = -ENOMEM; 1285 goto error_free_sev; 1286 } 1287 1288 svm->x2avic_msrs_intercepted = true; 1289 svm->lbr_msrs_intercepted = true; 1290 1291 svm->vmcb01.ptr = page_address(vmcb01_page); 1292 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1293 svm_switch_vmcb(svm, &svm->vmcb01); 1294 1295 svm->guest_state_loaded = false; 1296 1297 return 0; 1298 1299 error_free_sev: 1300 sev_free_vcpu(vcpu); 1301 error_free_vmcb_page: 1302 __free_page(vmcb01_page); 1303 out: 1304 return err; 1305 } 1306 1307 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1308 { 1309 struct vcpu_svm *svm = to_svm(vcpu); 1310 1311 WARN_ON_ONCE(!list_empty(&svm->ir_list)); 1312 1313 svm_leave_nested(vcpu); 1314 svm_free_nested(svm); 1315 1316 sev_free_vcpu(vcpu); 1317 1318 __free_page(__sme_pa_to_page(svm->vmcb01.pa)); 1319 svm_vcpu_free_msrpm(svm->msrpm); 1320 } 1321 1322 #ifdef CONFIG_CPU_MITIGATIONS 1323 static DEFINE_SPINLOCK(srso_lock); 1324 static atomic_t srso_nr_vms; 1325 1326 static void svm_srso_clear_bp_spec_reduce(void *ign) 1327 { 1328 struct svm_cpu_data *sd = this_cpu_ptr(&svm_data); 1329 1330 if (!sd->bp_spec_reduce_set) 1331 return; 1332 1333 msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT); 1334 sd->bp_spec_reduce_set = false; 1335 } 1336 1337 static void svm_srso_vm_destroy(void) 1338 { 1339 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) 1340 return; 1341 1342 if (atomic_dec_return(&srso_nr_vms)) 1343 return; 1344 1345 guard(spinlock)(&srso_lock); 1346 1347 /* 1348 * Verify a new VM didn't come along, acquire the lock, and increment 1349 * the count before this task acquired the lock. 1350 */ 1351 if (atomic_read(&srso_nr_vms)) 1352 return; 1353 1354 on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1); 1355 } 1356 1357 static void svm_srso_vm_init(void) 1358 { 1359 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) 1360 return; 1361 1362 /* 1363 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0 1364 * transition, i.e. destroying the last VM, is fully complete, e.g. so 1365 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs. 1366 */ 1367 if (atomic_inc_not_zero(&srso_nr_vms)) 1368 return; 1369 1370 guard(spinlock)(&srso_lock); 1371 1372 atomic_inc(&srso_nr_vms); 1373 } 1374 #else 1375 static void svm_srso_vm_init(void) { } 1376 static void svm_srso_vm_destroy(void) { } 1377 #endif 1378 1379 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1380 { 1381 struct vcpu_svm *svm = to_svm(vcpu); 1382 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1383 1384 if (sev_es_guest(vcpu->kvm)) 1385 sev_es_unmap_ghcb(svm); 1386 1387 if (svm->guest_state_loaded) 1388 return; 1389 1390 /* 1391 * Save additional host state that will be restored on VMEXIT (sev-es) 1392 * or subsequent vmload of host save area. 1393 */ 1394 vmsave(sd->save_area_pa); 1395 if (sev_es_guest(vcpu->kvm)) 1396 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd)); 1397 1398 if (tsc_scaling) 1399 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1400 1401 /* 1402 * TSC_AUX is always virtualized (context switched by hardware) for 1403 * SEV-ES guests when the feature is available. For non-SEV-ES guests, 1404 * context switch TSC_AUX via the user_return MSR infrastructure (not 1405 * all CPUs support TSC_AUX virtualization). 1406 */ 1407 if (likely(tsc_aux_uret_slot >= 0) && 1408 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1409 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1410 1411 if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) && 1412 !sd->bp_spec_reduce_set) { 1413 sd->bp_spec_reduce_set = true; 1414 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT); 1415 } 1416 svm->guest_state_loaded = true; 1417 } 1418 1419 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1420 { 1421 to_svm(vcpu)->guest_state_loaded = false; 1422 } 1423 1424 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1425 { 1426 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) 1427 shrink_ple_window(vcpu); 1428 1429 if (kvm_vcpu_apicv_active(vcpu)) 1430 avic_vcpu_load(vcpu, cpu); 1431 } 1432 1433 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1434 { 1435 if (kvm_vcpu_apicv_active(vcpu)) 1436 avic_vcpu_put(vcpu); 1437 1438 svm_prepare_host_switch(vcpu); 1439 1440 ++vcpu->stat.host_state_reload; 1441 } 1442 1443 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1444 { 1445 struct vcpu_svm *svm = to_svm(vcpu); 1446 unsigned long rflags = svm->vmcb->save.rflags; 1447 1448 if (svm->nmi_singlestep) { 1449 /* Hide our flags if they were not set by the guest */ 1450 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1451 rflags &= ~X86_EFLAGS_TF; 1452 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1453 rflags &= ~X86_EFLAGS_RF; 1454 } 1455 return rflags; 1456 } 1457 1458 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1459 { 1460 if (to_svm(vcpu)->nmi_singlestep) 1461 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1462 1463 /* 1464 * Any change of EFLAGS.VM is accompanied by a reload of SS 1465 * (caused by either a task switch or an inter-privilege IRET), 1466 * so we do not need to update the CPL here. 1467 */ 1468 to_svm(vcpu)->vmcb->save.rflags = rflags; 1469 } 1470 1471 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1472 { 1473 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1474 1475 return sev_es_guest(vcpu->kvm) 1476 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1477 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1478 } 1479 1480 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1481 { 1482 kvm_register_mark_available(vcpu, reg); 1483 1484 switch (reg) { 1485 case VCPU_EXREG_PDPTR: 1486 /* 1487 * When !npt_enabled, mmu->pdptrs[] is already available since 1488 * it is always updated per SDM when moving to CRs. 1489 */ 1490 if (npt_enabled) 1491 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1492 break; 1493 default: 1494 KVM_BUG_ON(1, vcpu->kvm); 1495 } 1496 } 1497 1498 static void svm_set_vintr(struct vcpu_svm *svm) 1499 { 1500 struct vmcb_control_area *control; 1501 1502 /* 1503 * The following fields are ignored when AVIC is enabled 1504 */ 1505 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1506 1507 svm_set_intercept(svm, INTERCEPT_VINTR); 1508 1509 /* 1510 * Recalculating intercepts may have cleared the VINTR intercept. If 1511 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1512 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1513 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1514 * interrupts will never be unblocked while L2 is running. 1515 */ 1516 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1517 return; 1518 1519 /* 1520 * This is just a dummy VINTR to actually cause a vmexit to happen. 1521 * Actual injection of virtual interrupts happens through EVENTINJ. 1522 */ 1523 control = &svm->vmcb->control; 1524 control->int_vector = 0x0; 1525 control->int_ctl &= ~V_INTR_PRIO_MASK; 1526 control->int_ctl |= V_IRQ_MASK | 1527 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1528 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1529 } 1530 1531 static void svm_clear_vintr(struct vcpu_svm *svm) 1532 { 1533 svm_clr_intercept(svm, INTERCEPT_VINTR); 1534 1535 /* Drop int_ctl fields related to VINTR injection. */ 1536 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1537 if (is_guest_mode(&svm->vcpu)) { 1538 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1539 1540 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1541 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1542 1543 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1544 V_IRQ_INJECTION_BITS_MASK; 1545 1546 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1547 } 1548 1549 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1550 } 1551 1552 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1553 { 1554 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1555 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1556 1557 switch (seg) { 1558 case VCPU_SREG_CS: return &save->cs; 1559 case VCPU_SREG_DS: return &save->ds; 1560 case VCPU_SREG_ES: return &save->es; 1561 case VCPU_SREG_FS: return &save01->fs; 1562 case VCPU_SREG_GS: return &save01->gs; 1563 case VCPU_SREG_SS: return &save->ss; 1564 case VCPU_SREG_TR: return &save01->tr; 1565 case VCPU_SREG_LDTR: return &save01->ldtr; 1566 } 1567 BUG(); 1568 return NULL; 1569 } 1570 1571 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1572 { 1573 struct vmcb_seg *s = svm_seg(vcpu, seg); 1574 1575 return s->base; 1576 } 1577 1578 static void svm_get_segment(struct kvm_vcpu *vcpu, 1579 struct kvm_segment *var, int seg) 1580 { 1581 struct vmcb_seg *s = svm_seg(vcpu, seg); 1582 1583 var->base = s->base; 1584 var->limit = s->limit; 1585 var->selector = s->selector; 1586 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1587 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1588 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1589 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1590 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1591 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1592 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1593 1594 /* 1595 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1596 * However, the SVM spec states that the G bit is not observed by the 1597 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1598 * So let's synthesize a legal G bit for all segments, this helps 1599 * running KVM nested. It also helps cross-vendor migration, because 1600 * Intel's vmentry has a check on the 'G' bit. 1601 */ 1602 var->g = s->limit > 0xfffff; 1603 1604 /* 1605 * AMD's VMCB does not have an explicit unusable field, so emulate it 1606 * for cross vendor migration purposes by "not present" 1607 */ 1608 var->unusable = !var->present; 1609 1610 switch (seg) { 1611 case VCPU_SREG_TR: 1612 /* 1613 * Work around a bug where the busy flag in the tr selector 1614 * isn't exposed 1615 */ 1616 var->type |= 0x2; 1617 break; 1618 case VCPU_SREG_DS: 1619 case VCPU_SREG_ES: 1620 case VCPU_SREG_FS: 1621 case VCPU_SREG_GS: 1622 /* 1623 * The accessed bit must always be set in the segment 1624 * descriptor cache, although it can be cleared in the 1625 * descriptor, the cached bit always remains at 1. Since 1626 * Intel has a check on this, set it here to support 1627 * cross-vendor migration. 1628 */ 1629 if (!var->unusable) 1630 var->type |= 0x1; 1631 break; 1632 case VCPU_SREG_SS: 1633 /* 1634 * On AMD CPUs sometimes the DB bit in the segment 1635 * descriptor is left as 1, although the whole segment has 1636 * been made unusable. Clear it here to pass an Intel VMX 1637 * entry check when cross vendor migrating. 1638 */ 1639 if (var->unusable) 1640 var->db = 0; 1641 /* This is symmetric with svm_set_segment() */ 1642 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1643 break; 1644 } 1645 } 1646 1647 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1648 { 1649 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1650 1651 return save->cpl; 1652 } 1653 1654 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1655 { 1656 struct kvm_segment cs; 1657 1658 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1659 *db = cs.db; 1660 *l = cs.l; 1661 } 1662 1663 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1664 { 1665 struct vcpu_svm *svm = to_svm(vcpu); 1666 1667 dt->size = svm->vmcb->save.idtr.limit; 1668 dt->address = svm->vmcb->save.idtr.base; 1669 } 1670 1671 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1672 { 1673 struct vcpu_svm *svm = to_svm(vcpu); 1674 1675 svm->vmcb->save.idtr.limit = dt->size; 1676 svm->vmcb->save.idtr.base = dt->address ; 1677 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1678 } 1679 1680 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1681 { 1682 struct vcpu_svm *svm = to_svm(vcpu); 1683 1684 dt->size = svm->vmcb->save.gdtr.limit; 1685 dt->address = svm->vmcb->save.gdtr.base; 1686 } 1687 1688 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1689 { 1690 struct vcpu_svm *svm = to_svm(vcpu); 1691 1692 svm->vmcb->save.gdtr.limit = dt->size; 1693 svm->vmcb->save.gdtr.base = dt->address ; 1694 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1695 } 1696 1697 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1698 { 1699 struct vcpu_svm *svm = to_svm(vcpu); 1700 1701 /* 1702 * For guests that don't set guest_state_protected, the cr3 update is 1703 * handled via kvm_mmu_load() while entering the guest. For guests 1704 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1705 * VMCB save area now, since the save area will become the initial 1706 * contents of the VMSA, and future VMCB save area updates won't be 1707 * seen. 1708 */ 1709 if (sev_es_guest(vcpu->kvm)) { 1710 svm->vmcb->save.cr3 = cr3; 1711 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1712 } 1713 } 1714 1715 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1716 { 1717 return true; 1718 } 1719 1720 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1721 { 1722 struct vcpu_svm *svm = to_svm(vcpu); 1723 u64 hcr0 = cr0; 1724 bool old_paging = is_paging(vcpu); 1725 1726 #ifdef CONFIG_X86_64 1727 if (vcpu->arch.efer & EFER_LME) { 1728 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1729 vcpu->arch.efer |= EFER_LMA; 1730 if (!vcpu->arch.guest_state_protected) 1731 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1732 } 1733 1734 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1735 vcpu->arch.efer &= ~EFER_LMA; 1736 if (!vcpu->arch.guest_state_protected) 1737 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1738 } 1739 } 1740 #endif 1741 vcpu->arch.cr0 = cr0; 1742 1743 if (!npt_enabled) { 1744 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1745 if (old_paging != is_paging(vcpu)) 1746 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1747 } 1748 1749 /* 1750 * re-enable caching here because the QEMU bios 1751 * does not do it - this results in some delay at 1752 * reboot 1753 */ 1754 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1755 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1756 1757 svm->vmcb->save.cr0 = hcr0; 1758 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1759 1760 /* 1761 * SEV-ES guests must always keep the CR intercepts cleared. CR 1762 * tracking is done using the CR write traps. 1763 */ 1764 if (sev_es_guest(vcpu->kvm)) 1765 return; 1766 1767 if (hcr0 == cr0) { 1768 /* Selective CR0 write remains on. */ 1769 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1770 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1771 } else { 1772 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1773 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1774 } 1775 } 1776 1777 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1778 { 1779 return true; 1780 } 1781 1782 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1783 { 1784 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1785 unsigned long old_cr4 = vcpu->arch.cr4; 1786 1787 vcpu->arch.cr4 = cr4; 1788 if (!npt_enabled) { 1789 cr4 |= X86_CR4_PAE; 1790 1791 if (!is_paging(vcpu)) 1792 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1793 } 1794 cr4 |= host_cr4_mce; 1795 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1796 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1797 1798 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1799 vcpu->arch.cpuid_dynamic_bits_dirty = true; 1800 } 1801 1802 static void svm_set_segment(struct kvm_vcpu *vcpu, 1803 struct kvm_segment *var, int seg) 1804 { 1805 struct vcpu_svm *svm = to_svm(vcpu); 1806 struct vmcb_seg *s = svm_seg(vcpu, seg); 1807 1808 s->base = var->base; 1809 s->limit = var->limit; 1810 s->selector = var->selector; 1811 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1812 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1813 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1814 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1815 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1816 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1817 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1818 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1819 1820 /* 1821 * This is always accurate, except if SYSRET returned to a segment 1822 * with SS.DPL != 3. Intel does not have this quirk, and always 1823 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1824 * would entail passing the CPL to userspace and back. 1825 */ 1826 if (seg == VCPU_SREG_SS) 1827 /* This is symmetric with svm_get_segment() */ 1828 svm->vmcb->save.cpl = (var->dpl & 3); 1829 1830 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1831 } 1832 1833 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1834 { 1835 struct vcpu_svm *svm = to_svm(vcpu); 1836 1837 clr_exception_intercept(svm, BP_VECTOR); 1838 1839 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1840 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1841 set_exception_intercept(svm, BP_VECTOR); 1842 } 1843 } 1844 1845 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1846 { 1847 if (sd->next_asid > sd->max_asid) { 1848 ++sd->asid_generation; 1849 sd->next_asid = sd->min_asid; 1850 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1851 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1852 } 1853 1854 svm->current_vmcb->asid_generation = sd->asid_generation; 1855 svm->asid = sd->next_asid++; 1856 } 1857 1858 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value) 1859 { 1860 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1861 1862 if (vcpu->arch.guest_state_protected) 1863 return; 1864 1865 if (unlikely(value != vmcb->save.dr6)) { 1866 vmcb->save.dr6 = value; 1867 vmcb_mark_dirty(vmcb, VMCB_DR); 1868 } 1869 } 1870 1871 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1872 { 1873 struct vcpu_svm *svm = to_svm(vcpu); 1874 1875 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 1876 return; 1877 1878 get_debugreg(vcpu->arch.db[0], 0); 1879 get_debugreg(vcpu->arch.db[1], 1); 1880 get_debugreg(vcpu->arch.db[2], 2); 1881 get_debugreg(vcpu->arch.db[3], 3); 1882 /* 1883 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1884 * because db_interception might need it. We can do it before vmentry. 1885 */ 1886 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1887 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1888 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1889 set_dr_intercepts(svm); 1890 } 1891 1892 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1893 { 1894 struct vcpu_svm *svm = to_svm(vcpu); 1895 1896 if (vcpu->arch.guest_state_protected) 1897 return; 1898 1899 svm->vmcb->save.dr7 = value; 1900 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1901 } 1902 1903 static int pf_interception(struct kvm_vcpu *vcpu) 1904 { 1905 struct vcpu_svm *svm = to_svm(vcpu); 1906 1907 u64 fault_address = svm->vmcb->control.exit_info_2; 1908 u64 error_code = svm->vmcb->control.exit_info_1; 1909 1910 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1911 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1912 svm->vmcb->control.insn_bytes : NULL, 1913 svm->vmcb->control.insn_len); 1914 } 1915 1916 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1917 void *insn, int insn_len); 1918 1919 static int npf_interception(struct kvm_vcpu *vcpu) 1920 { 1921 struct vcpu_svm *svm = to_svm(vcpu); 1922 int rc; 1923 1924 u64 error_code = svm->vmcb->control.exit_info_1; 1925 gpa_t gpa = svm->vmcb->control.exit_info_2; 1926 1927 /* 1928 * WARN if hardware generates a fault with an error code that collides 1929 * with KVM-defined sythentic flags. Clear the flags and continue on, 1930 * i.e. don't terminate the VM, as KVM can't possibly be relying on a 1931 * flag that KVM doesn't know about. 1932 */ 1933 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK)) 1934 error_code &= ~PFERR_SYNTHETIC_MASK; 1935 1936 /* 1937 * Expedite fast MMIO kicks if the next RIP is known and KVM is allowed 1938 * emulate a page fault, e.g. skipping the current instruction is wrong 1939 * if the #NPF occurred while vectoring an event. 1940 */ 1941 if ((error_code & PFERR_RSVD_MASK) && !is_guest_mode(vcpu)) { 1942 const int emul_type = EMULTYPE_PF | EMULTYPE_NO_DECODE; 1943 1944 if (svm_check_emulate_instruction(vcpu, emul_type, NULL, 0)) 1945 return 1; 1946 1947 if (nrips && svm->vmcb->control.next_rip && 1948 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 1949 trace_kvm_fast_mmio(gpa); 1950 return kvm_skip_emulated_instruction(vcpu); 1951 } 1952 } 1953 1954 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK)) 1955 error_code |= PFERR_PRIVATE_ACCESS; 1956 1957 trace_kvm_page_fault(vcpu, gpa, error_code); 1958 rc = kvm_mmu_page_fault(vcpu, gpa, error_code, 1959 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1960 svm->vmcb->control.insn_bytes : NULL, 1961 svm->vmcb->control.insn_len); 1962 1963 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK) 1964 sev_handle_rmp_fault(vcpu, gpa, error_code); 1965 1966 return rc; 1967 } 1968 1969 static int db_interception(struct kvm_vcpu *vcpu) 1970 { 1971 struct kvm_run *kvm_run = vcpu->run; 1972 struct vcpu_svm *svm = to_svm(vcpu); 1973 1974 if (!(vcpu->guest_debug & 1975 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1976 !svm->nmi_singlestep) { 1977 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1978 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 1979 return 1; 1980 } 1981 1982 if (svm->nmi_singlestep) { 1983 disable_nmi_singlestep(svm); 1984 /* Make sure we check for pending NMIs upon entry */ 1985 kvm_make_request(KVM_REQ_EVENT, vcpu); 1986 } 1987 1988 if (vcpu->guest_debug & 1989 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1990 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1991 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1992 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1993 kvm_run->debug.arch.pc = 1994 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1995 kvm_run->debug.arch.exception = DB_VECTOR; 1996 return 0; 1997 } 1998 1999 return 1; 2000 } 2001 2002 static int bp_interception(struct kvm_vcpu *vcpu) 2003 { 2004 struct vcpu_svm *svm = to_svm(vcpu); 2005 struct kvm_run *kvm_run = vcpu->run; 2006 2007 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2008 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2009 kvm_run->debug.arch.exception = BP_VECTOR; 2010 return 0; 2011 } 2012 2013 static int ud_interception(struct kvm_vcpu *vcpu) 2014 { 2015 return handle_ud(vcpu); 2016 } 2017 2018 static int ac_interception(struct kvm_vcpu *vcpu) 2019 { 2020 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2021 return 1; 2022 } 2023 2024 static bool is_erratum_383(void) 2025 { 2026 int i; 2027 u64 value; 2028 2029 if (!erratum_383_found) 2030 return false; 2031 2032 if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value)) 2033 return false; 2034 2035 /* Bit 62 may or may not be set for this mce */ 2036 value &= ~(1ULL << 62); 2037 2038 if (value != 0xb600000000010015ULL) 2039 return false; 2040 2041 /* Clear MCi_STATUS registers */ 2042 for (i = 0; i < 6; ++i) 2043 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0); 2044 2045 if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) { 2046 value &= ~(1ULL << 2); 2047 native_write_msr_safe(MSR_IA32_MCG_STATUS, value); 2048 } 2049 2050 /* Flush tlb to evict multi-match entries */ 2051 __flush_tlb_all(); 2052 2053 return true; 2054 } 2055 2056 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2057 { 2058 if (is_erratum_383()) { 2059 /* 2060 * Erratum 383 triggered. Guest state is corrupt so kill the 2061 * guest. 2062 */ 2063 pr_err("Guest triggered AMD Erratum 383\n"); 2064 2065 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2066 2067 return; 2068 } 2069 2070 /* 2071 * On an #MC intercept the MCE handler is not called automatically in 2072 * the host. So do it by hand here. 2073 */ 2074 kvm_machine_check(); 2075 } 2076 2077 static int mc_interception(struct kvm_vcpu *vcpu) 2078 { 2079 return 1; 2080 } 2081 2082 static int shutdown_interception(struct kvm_vcpu *vcpu) 2083 { 2084 struct kvm_run *kvm_run = vcpu->run; 2085 struct vcpu_svm *svm = to_svm(vcpu); 2086 2087 2088 /* 2089 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2090 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2091 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2092 * userspace. At a platform view, INIT is acceptable behavior as 2093 * there exist bare metal platforms that automatically INIT the CPU 2094 * in response to shutdown. 2095 * 2096 * The VM save area for SEV-ES guests has already been encrypted so it 2097 * cannot be reinitialized, i.e. synthesizing INIT is futile. 2098 */ 2099 if (!sev_es_guest(vcpu->kvm)) { 2100 clear_page(svm->vmcb); 2101 #ifdef CONFIG_KVM_SMM 2102 if (is_smm(vcpu)) 2103 kvm_smm_changed(vcpu, false); 2104 #endif 2105 kvm_vcpu_reset(vcpu, true); 2106 } 2107 2108 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2109 return 0; 2110 } 2111 2112 static int io_interception(struct kvm_vcpu *vcpu) 2113 { 2114 struct vcpu_svm *svm = to_svm(vcpu); 2115 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2116 int size, in, string; 2117 unsigned port; 2118 2119 ++vcpu->stat.io_exits; 2120 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2121 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2122 port = io_info >> 16; 2123 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2124 2125 if (string) { 2126 if (sev_es_guest(vcpu->kvm)) 2127 return sev_es_string_io(svm, size, port, in); 2128 else 2129 return kvm_emulate_instruction(vcpu, 0); 2130 } 2131 2132 svm->next_rip = svm->vmcb->control.exit_info_2; 2133 2134 return kvm_fast_pio(vcpu, size, port, in); 2135 } 2136 2137 static int nmi_interception(struct kvm_vcpu *vcpu) 2138 { 2139 return 1; 2140 } 2141 2142 static int smi_interception(struct kvm_vcpu *vcpu) 2143 { 2144 return 1; 2145 } 2146 2147 static int intr_interception(struct kvm_vcpu *vcpu) 2148 { 2149 ++vcpu->stat.irq_exits; 2150 return 1; 2151 } 2152 2153 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2154 { 2155 struct vcpu_svm *svm = to_svm(vcpu); 2156 struct vmcb *vmcb12; 2157 struct kvm_host_map map; 2158 int ret; 2159 2160 if (nested_svm_check_permissions(vcpu)) 2161 return 1; 2162 2163 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2164 if (ret) { 2165 if (ret == -EINVAL) 2166 kvm_inject_gp(vcpu, 0); 2167 return 1; 2168 } 2169 2170 vmcb12 = map.hva; 2171 2172 ret = kvm_skip_emulated_instruction(vcpu); 2173 2174 /* KVM always performs VMLOAD/VMSAVE on VMCB01 (see __svm_vcpu_run()) */ 2175 if (vmload) { 2176 svm_copy_vmloadsave_state(svm->vmcb01.ptr, vmcb12); 2177 svm->sysenter_eip_hi = 0; 2178 svm->sysenter_esp_hi = 0; 2179 } else { 2180 svm_copy_vmloadsave_state(vmcb12, svm->vmcb01.ptr); 2181 } 2182 2183 kvm_vcpu_unmap(vcpu, &map); 2184 2185 return ret; 2186 } 2187 2188 static int vmload_interception(struct kvm_vcpu *vcpu) 2189 { 2190 return vmload_vmsave_interception(vcpu, true); 2191 } 2192 2193 static int vmsave_interception(struct kvm_vcpu *vcpu) 2194 { 2195 return vmload_vmsave_interception(vcpu, false); 2196 } 2197 2198 static int vmrun_interception(struct kvm_vcpu *vcpu) 2199 { 2200 if (nested_svm_check_permissions(vcpu)) 2201 return 1; 2202 2203 return nested_svm_vmrun(vcpu); 2204 } 2205 2206 enum { 2207 NONE_SVM_INSTR, 2208 SVM_INSTR_VMRUN, 2209 SVM_INSTR_VMLOAD, 2210 SVM_INSTR_VMSAVE, 2211 }; 2212 2213 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2214 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2215 { 2216 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2217 2218 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2219 return NONE_SVM_INSTR; 2220 2221 switch (ctxt->modrm) { 2222 case 0xd8: /* VMRUN */ 2223 return SVM_INSTR_VMRUN; 2224 case 0xda: /* VMLOAD */ 2225 return SVM_INSTR_VMLOAD; 2226 case 0xdb: /* VMSAVE */ 2227 return SVM_INSTR_VMSAVE; 2228 default: 2229 break; 2230 } 2231 2232 return NONE_SVM_INSTR; 2233 } 2234 2235 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2236 { 2237 const int guest_mode_exit_codes[] = { 2238 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2239 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2240 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2241 }; 2242 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2243 [SVM_INSTR_VMRUN] = vmrun_interception, 2244 [SVM_INSTR_VMLOAD] = vmload_interception, 2245 [SVM_INSTR_VMSAVE] = vmsave_interception, 2246 }; 2247 struct vcpu_svm *svm = to_svm(vcpu); 2248 int ret; 2249 2250 if (is_guest_mode(vcpu)) { 2251 /* Returns '1' or -errno on failure, '0' on success. */ 2252 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2253 if (ret) 2254 return ret; 2255 return 1; 2256 } 2257 return svm_instr_handlers[opcode](vcpu); 2258 } 2259 2260 /* 2261 * #GP handling code. Note that #GP can be triggered under the following two 2262 * cases: 2263 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2264 * some AMD CPUs when EAX of these instructions are in the reserved memory 2265 * regions (e.g. SMM memory on host). 2266 * 2) VMware backdoor 2267 */ 2268 static int gp_interception(struct kvm_vcpu *vcpu) 2269 { 2270 struct vcpu_svm *svm = to_svm(vcpu); 2271 u32 error_code = svm->vmcb->control.exit_info_1; 2272 int opcode; 2273 2274 /* Both #GP cases have zero error_code */ 2275 if (error_code) 2276 goto reinject; 2277 2278 /* Decode the instruction for usage later */ 2279 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2280 goto reinject; 2281 2282 opcode = svm_instr_opcode(vcpu); 2283 2284 if (opcode == NONE_SVM_INSTR) { 2285 if (!enable_vmware_backdoor) 2286 goto reinject; 2287 2288 /* 2289 * VMware backdoor emulation on #GP interception only handles 2290 * IN{S}, OUT{S}, and RDPMC. 2291 */ 2292 if (!is_guest_mode(vcpu)) 2293 return kvm_emulate_instruction(vcpu, 2294 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2295 } else { 2296 /* All SVM instructions expect page aligned RAX */ 2297 if (svm->vmcb->save.rax & ~PAGE_MASK) 2298 goto reinject; 2299 2300 return emulate_svm_instr(vcpu, opcode); 2301 } 2302 2303 reinject: 2304 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2305 return 1; 2306 } 2307 2308 void svm_set_gif(struct vcpu_svm *svm, bool value) 2309 { 2310 if (value) { 2311 /* 2312 * If VGIF is enabled, the STGI intercept is only added to 2313 * detect the opening of the SMI/NMI window; remove it now. 2314 * Likewise, clear the VINTR intercept, we will set it 2315 * again while processing KVM_REQ_EVENT if needed. 2316 */ 2317 if (vgif) 2318 svm_clr_intercept(svm, INTERCEPT_STGI); 2319 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2320 svm_clear_vintr(svm); 2321 2322 enable_gif(svm); 2323 if (svm->vcpu.arch.smi_pending || 2324 svm->vcpu.arch.nmi_pending || 2325 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2326 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2327 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2328 } else { 2329 disable_gif(svm); 2330 2331 /* 2332 * After a CLGI no interrupts should come. But if vGIF is 2333 * in use, we still rely on the VINTR intercept (rather than 2334 * STGI) to detect an open interrupt window. 2335 */ 2336 if (!vgif) 2337 svm_clear_vintr(svm); 2338 } 2339 } 2340 2341 static int stgi_interception(struct kvm_vcpu *vcpu) 2342 { 2343 int ret; 2344 2345 if (nested_svm_check_permissions(vcpu)) 2346 return 1; 2347 2348 ret = kvm_skip_emulated_instruction(vcpu); 2349 svm_set_gif(to_svm(vcpu), true); 2350 return ret; 2351 } 2352 2353 static int clgi_interception(struct kvm_vcpu *vcpu) 2354 { 2355 int ret; 2356 2357 if (nested_svm_check_permissions(vcpu)) 2358 return 1; 2359 2360 ret = kvm_skip_emulated_instruction(vcpu); 2361 svm_set_gif(to_svm(vcpu), false); 2362 return ret; 2363 } 2364 2365 static int invlpga_interception(struct kvm_vcpu *vcpu) 2366 { 2367 gva_t gva = kvm_rax_read(vcpu); 2368 u32 asid = kvm_rcx_read(vcpu); 2369 2370 /* FIXME: Handle an address size prefix. */ 2371 if (!is_long_mode(vcpu)) 2372 gva = (u32)gva; 2373 2374 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2375 2376 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2377 kvm_mmu_invlpg(vcpu, gva); 2378 2379 return kvm_skip_emulated_instruction(vcpu); 2380 } 2381 2382 static int skinit_interception(struct kvm_vcpu *vcpu) 2383 { 2384 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2385 2386 kvm_queue_exception(vcpu, UD_VECTOR); 2387 return 1; 2388 } 2389 2390 static int task_switch_interception(struct kvm_vcpu *vcpu) 2391 { 2392 struct vcpu_svm *svm = to_svm(vcpu); 2393 u16 tss_selector; 2394 int reason; 2395 int int_type = svm->vmcb->control.exit_int_info & 2396 SVM_EXITINTINFO_TYPE_MASK; 2397 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2398 uint32_t type = 2399 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2400 uint32_t idt_v = 2401 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2402 bool has_error_code = false; 2403 u32 error_code = 0; 2404 2405 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2406 2407 if (svm->vmcb->control.exit_info_2 & 2408 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2409 reason = TASK_SWITCH_IRET; 2410 else if (svm->vmcb->control.exit_info_2 & 2411 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2412 reason = TASK_SWITCH_JMP; 2413 else if (idt_v) 2414 reason = TASK_SWITCH_GATE; 2415 else 2416 reason = TASK_SWITCH_CALL; 2417 2418 if (reason == TASK_SWITCH_GATE) { 2419 switch (type) { 2420 case SVM_EXITINTINFO_TYPE_NMI: 2421 vcpu->arch.nmi_injected = false; 2422 break; 2423 case SVM_EXITINTINFO_TYPE_EXEPT: 2424 if (svm->vmcb->control.exit_info_2 & 2425 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2426 has_error_code = true; 2427 error_code = 2428 (u32)svm->vmcb->control.exit_info_2; 2429 } 2430 kvm_clear_exception_queue(vcpu); 2431 break; 2432 case SVM_EXITINTINFO_TYPE_INTR: 2433 case SVM_EXITINTINFO_TYPE_SOFT: 2434 kvm_clear_interrupt_queue(vcpu); 2435 break; 2436 default: 2437 break; 2438 } 2439 } 2440 2441 if (reason != TASK_SWITCH_GATE || 2442 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2443 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2444 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2445 if (!svm_skip_emulated_instruction(vcpu)) 2446 return 0; 2447 } 2448 2449 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2450 int_vec = -1; 2451 2452 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2453 has_error_code, error_code); 2454 } 2455 2456 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2457 { 2458 if (!sev_es_guest(svm->vcpu.kvm)) 2459 svm_clr_intercept(svm, INTERCEPT_IRET); 2460 } 2461 2462 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2463 { 2464 if (!sev_es_guest(svm->vcpu.kvm)) 2465 svm_set_intercept(svm, INTERCEPT_IRET); 2466 } 2467 2468 static int iret_interception(struct kvm_vcpu *vcpu) 2469 { 2470 struct vcpu_svm *svm = to_svm(vcpu); 2471 2472 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2473 2474 ++vcpu->stat.nmi_window_exits; 2475 svm->awaiting_iret_completion = true; 2476 2477 svm_clr_iret_intercept(svm); 2478 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2479 2480 kvm_make_request(KVM_REQ_EVENT, vcpu); 2481 return 1; 2482 } 2483 2484 static int invlpg_interception(struct kvm_vcpu *vcpu) 2485 { 2486 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2487 return kvm_emulate_instruction(vcpu, 0); 2488 2489 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2490 return kvm_skip_emulated_instruction(vcpu); 2491 } 2492 2493 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2494 { 2495 return kvm_emulate_instruction(vcpu, 0); 2496 } 2497 2498 static int rsm_interception(struct kvm_vcpu *vcpu) 2499 { 2500 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2501 } 2502 2503 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2504 unsigned long val) 2505 { 2506 struct vcpu_svm *svm = to_svm(vcpu); 2507 unsigned long cr0 = vcpu->arch.cr0; 2508 bool ret = false; 2509 2510 if (!is_guest_mode(vcpu) || 2511 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2512 return false; 2513 2514 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2515 val &= ~SVM_CR0_SELECTIVE_MASK; 2516 2517 if (cr0 ^ val) { 2518 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2519 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2520 } 2521 2522 return ret; 2523 } 2524 2525 #define CR_VALID (1ULL << 63) 2526 2527 static int cr_interception(struct kvm_vcpu *vcpu) 2528 { 2529 struct vcpu_svm *svm = to_svm(vcpu); 2530 int reg, cr; 2531 unsigned long val; 2532 int err; 2533 2534 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2535 return emulate_on_interception(vcpu); 2536 2537 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2538 return emulate_on_interception(vcpu); 2539 2540 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2541 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2542 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2543 else 2544 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2545 2546 err = 0; 2547 if (cr >= 16) { /* mov to cr */ 2548 cr -= 16; 2549 val = kvm_register_read(vcpu, reg); 2550 trace_kvm_cr_write(cr, val); 2551 switch (cr) { 2552 case 0: 2553 if (!check_selective_cr0_intercepted(vcpu, val)) 2554 err = kvm_set_cr0(vcpu, val); 2555 else 2556 return 1; 2557 2558 break; 2559 case 3: 2560 err = kvm_set_cr3(vcpu, val); 2561 break; 2562 case 4: 2563 err = kvm_set_cr4(vcpu, val); 2564 break; 2565 case 8: 2566 err = kvm_set_cr8(vcpu, val); 2567 break; 2568 default: 2569 WARN(1, "unhandled write to CR%d", cr); 2570 kvm_queue_exception(vcpu, UD_VECTOR); 2571 return 1; 2572 } 2573 } else { /* mov from cr */ 2574 switch (cr) { 2575 case 0: 2576 val = kvm_read_cr0(vcpu); 2577 break; 2578 case 2: 2579 val = vcpu->arch.cr2; 2580 break; 2581 case 3: 2582 val = kvm_read_cr3(vcpu); 2583 break; 2584 case 4: 2585 val = kvm_read_cr4(vcpu); 2586 break; 2587 case 8: 2588 val = kvm_get_cr8(vcpu); 2589 break; 2590 default: 2591 WARN(1, "unhandled read from CR%d", cr); 2592 kvm_queue_exception(vcpu, UD_VECTOR); 2593 return 1; 2594 } 2595 kvm_register_write(vcpu, reg, val); 2596 trace_kvm_cr_read(cr, val); 2597 } 2598 return kvm_complete_insn_gp(vcpu, err); 2599 } 2600 2601 static int cr_trap(struct kvm_vcpu *vcpu) 2602 { 2603 struct vcpu_svm *svm = to_svm(vcpu); 2604 unsigned long old_value, new_value; 2605 unsigned int cr; 2606 int ret = 0; 2607 2608 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2609 2610 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2611 switch (cr) { 2612 case 0: 2613 old_value = kvm_read_cr0(vcpu); 2614 svm_set_cr0(vcpu, new_value); 2615 2616 kvm_post_set_cr0(vcpu, old_value, new_value); 2617 break; 2618 case 4: 2619 old_value = kvm_read_cr4(vcpu); 2620 svm_set_cr4(vcpu, new_value); 2621 2622 kvm_post_set_cr4(vcpu, old_value, new_value); 2623 break; 2624 case 8: 2625 ret = kvm_set_cr8(vcpu, new_value); 2626 break; 2627 default: 2628 WARN(1, "unhandled CR%d write trap", cr); 2629 kvm_queue_exception(vcpu, UD_VECTOR); 2630 return 1; 2631 } 2632 2633 return kvm_complete_insn_gp(vcpu, ret); 2634 } 2635 2636 static int dr_interception(struct kvm_vcpu *vcpu) 2637 { 2638 struct vcpu_svm *svm = to_svm(vcpu); 2639 int reg, dr; 2640 int err = 0; 2641 2642 /* 2643 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2644 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2645 */ 2646 if (sev_es_guest(vcpu->kvm)) 2647 return 1; 2648 2649 if (vcpu->guest_debug == 0) { 2650 /* 2651 * No more DR vmexits; force a reload of the debug registers 2652 * and reenter on this instruction. The next vmexit will 2653 * retrieve the full state of the debug registers. 2654 */ 2655 clr_dr_intercepts(svm); 2656 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2657 return 1; 2658 } 2659 2660 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2661 return emulate_on_interception(vcpu); 2662 2663 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2664 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2665 if (dr >= 16) { /* mov to DRn */ 2666 dr -= 16; 2667 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 2668 } else { 2669 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 2670 } 2671 2672 return kvm_complete_insn_gp(vcpu, err); 2673 } 2674 2675 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2676 { 2677 int r; 2678 2679 u8 cr8_prev = kvm_get_cr8(vcpu); 2680 /* instruction emulation calls kvm_set_cr8() */ 2681 r = cr_interception(vcpu); 2682 if (lapic_in_kernel(vcpu)) 2683 return r; 2684 if (cr8_prev <= kvm_get_cr8(vcpu)) 2685 return r; 2686 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2687 return 0; 2688 } 2689 2690 static int efer_trap(struct kvm_vcpu *vcpu) 2691 { 2692 struct msr_data msr_info; 2693 int ret; 2694 2695 /* 2696 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2697 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2698 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2699 * the guest doesn't have X86_FEATURE_SVM. 2700 */ 2701 msr_info.host_initiated = false; 2702 msr_info.index = MSR_EFER; 2703 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2704 ret = kvm_set_msr_common(vcpu, &msr_info); 2705 2706 return kvm_complete_insn_gp(vcpu, ret); 2707 } 2708 2709 static int svm_get_feature_msr(u32 msr, u64 *data) 2710 { 2711 *data = 0; 2712 2713 switch (msr) { 2714 case MSR_AMD64_DE_CFG: 2715 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2716 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2717 break; 2718 default: 2719 return KVM_MSR_RET_UNSUPPORTED; 2720 } 2721 2722 return 0; 2723 } 2724 2725 static bool sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, 2726 struct msr_data *msr_info) 2727 { 2728 return sev_es_guest(vcpu->kvm) && vcpu->arch.guest_state_protected && 2729 msr_info->index != MSR_IA32_XSS && 2730 !msr_write_intercepted(vcpu, msr_info->index); 2731 } 2732 2733 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2734 { 2735 struct vcpu_svm *svm = to_svm(vcpu); 2736 2737 if (sev_es_prevent_msr_access(vcpu, msr_info)) { 2738 msr_info->data = 0; 2739 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 2740 } 2741 2742 switch (msr_info->index) { 2743 case MSR_AMD64_TSC_RATIO: 2744 if (!msr_info->host_initiated && 2745 !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) 2746 return 1; 2747 msr_info->data = svm->tsc_ratio_msr; 2748 break; 2749 case MSR_STAR: 2750 msr_info->data = svm->vmcb01.ptr->save.star; 2751 break; 2752 #ifdef CONFIG_X86_64 2753 case MSR_LSTAR: 2754 msr_info->data = svm->vmcb01.ptr->save.lstar; 2755 break; 2756 case MSR_CSTAR: 2757 msr_info->data = svm->vmcb01.ptr->save.cstar; 2758 break; 2759 case MSR_GS_BASE: 2760 msr_info->data = svm->vmcb01.ptr->save.gs.base; 2761 break; 2762 case MSR_FS_BASE: 2763 msr_info->data = svm->vmcb01.ptr->save.fs.base; 2764 break; 2765 case MSR_KERNEL_GS_BASE: 2766 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2767 break; 2768 case MSR_SYSCALL_MASK: 2769 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2770 break; 2771 #endif 2772 case MSR_IA32_SYSENTER_CS: 2773 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2774 break; 2775 case MSR_IA32_SYSENTER_EIP: 2776 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2777 if (guest_cpuid_is_intel_compatible(vcpu)) 2778 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2779 break; 2780 case MSR_IA32_SYSENTER_ESP: 2781 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2782 if (guest_cpuid_is_intel_compatible(vcpu)) 2783 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2784 break; 2785 case MSR_IA32_S_CET: 2786 msr_info->data = svm->vmcb->save.s_cet; 2787 break; 2788 case MSR_IA32_INT_SSP_TAB: 2789 msr_info->data = svm->vmcb->save.isst_addr; 2790 break; 2791 case MSR_KVM_INTERNAL_GUEST_SSP: 2792 msr_info->data = svm->vmcb->save.ssp; 2793 break; 2794 case MSR_TSC_AUX: 2795 msr_info->data = svm->tsc_aux; 2796 break; 2797 case MSR_IA32_DEBUGCTLMSR: 2798 msr_info->data = svm->vmcb->save.dbgctl; 2799 break; 2800 case MSR_IA32_LASTBRANCHFROMIP: 2801 msr_info->data = svm->vmcb->save.br_from; 2802 break; 2803 case MSR_IA32_LASTBRANCHTOIP: 2804 msr_info->data = svm->vmcb->save.br_to; 2805 break; 2806 case MSR_IA32_LASTINTFROMIP: 2807 msr_info->data = svm->vmcb->save.last_excp_from; 2808 break; 2809 case MSR_IA32_LASTINTTOIP: 2810 msr_info->data = svm->vmcb->save.last_excp_to; 2811 break; 2812 case MSR_VM_HSAVE_PA: 2813 msr_info->data = svm->nested.hsave_msr; 2814 break; 2815 case MSR_VM_CR: 2816 msr_info->data = svm->nested.vm_cr_msr; 2817 break; 2818 case MSR_IA32_SPEC_CTRL: 2819 if (!msr_info->host_initiated && 2820 !guest_has_spec_ctrl_msr(vcpu)) 2821 return 1; 2822 2823 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2824 msr_info->data = svm->vmcb->save.spec_ctrl; 2825 else 2826 msr_info->data = svm->spec_ctrl; 2827 break; 2828 case MSR_AMD64_VIRT_SPEC_CTRL: 2829 if (!msr_info->host_initiated && 2830 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2831 return 1; 2832 2833 msr_info->data = svm->virt_spec_ctrl; 2834 break; 2835 case MSR_F15H_IC_CFG: { 2836 2837 int family, model; 2838 2839 family = guest_cpuid_family(vcpu); 2840 model = guest_cpuid_model(vcpu); 2841 2842 if (family < 0 || model < 0) 2843 return kvm_get_msr_common(vcpu, msr_info); 2844 2845 msr_info->data = 0; 2846 2847 if (family == 0x15 && 2848 (model >= 0x2 && model < 0x20)) 2849 msr_info->data = 0x1E; 2850 } 2851 break; 2852 case MSR_AMD64_DE_CFG: 2853 msr_info->data = svm->msr_decfg; 2854 break; 2855 default: 2856 return kvm_get_msr_common(vcpu, msr_info); 2857 } 2858 return 0; 2859 } 2860 2861 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2862 { 2863 struct vcpu_svm *svm = to_svm(vcpu); 2864 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2865 return kvm_complete_insn_gp(vcpu, err); 2866 2867 svm_vmgexit_inject_exception(svm, X86_TRAP_GP); 2868 return 1; 2869 } 2870 2871 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2872 { 2873 struct vcpu_svm *svm = to_svm(vcpu); 2874 int svm_dis, chg_mask; 2875 2876 if (data & ~SVM_VM_CR_VALID_MASK) 2877 return 1; 2878 2879 chg_mask = SVM_VM_CR_VALID_MASK; 2880 2881 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2882 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2883 2884 svm->nested.vm_cr_msr &= ~chg_mask; 2885 svm->nested.vm_cr_msr |= (data & chg_mask); 2886 2887 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2888 2889 /* check for svm_disable while efer.svme is set */ 2890 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2891 return 1; 2892 2893 return 0; 2894 } 2895 2896 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2897 { 2898 struct vcpu_svm *svm = to_svm(vcpu); 2899 int ret = 0; 2900 2901 u32 ecx = msr->index; 2902 u64 data = msr->data; 2903 2904 if (sev_es_prevent_msr_access(vcpu, msr)) 2905 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 2906 2907 switch (ecx) { 2908 case MSR_AMD64_TSC_RATIO: 2909 2910 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) { 2911 2912 if (!msr->host_initiated) 2913 return 1; 2914 /* 2915 * In case TSC scaling is not enabled, always 2916 * leave this MSR at the default value. 2917 * 2918 * Due to bug in qemu 6.2.0, it would try to set 2919 * this msr to 0 if tsc scaling is not enabled. 2920 * Ignore this value as well. 2921 */ 2922 if (data != 0 && data != svm->tsc_ratio_msr) 2923 return 1; 2924 break; 2925 } 2926 2927 if (data & SVM_TSC_RATIO_RSVD) 2928 return 1; 2929 2930 svm->tsc_ratio_msr = data; 2931 2932 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) && 2933 is_guest_mode(vcpu)) 2934 nested_svm_update_tsc_ratio_msr(vcpu); 2935 2936 break; 2937 case MSR_IA32_CR_PAT: 2938 ret = kvm_set_msr_common(vcpu, msr); 2939 if (ret) 2940 break; 2941 2942 svm->vmcb01.ptr->save.g_pat = data; 2943 if (is_guest_mode(vcpu)) 2944 nested_vmcb02_compute_g_pat(svm); 2945 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2946 break; 2947 case MSR_IA32_SPEC_CTRL: 2948 if (!msr->host_initiated && 2949 !guest_has_spec_ctrl_msr(vcpu)) 2950 return 1; 2951 2952 if (kvm_spec_ctrl_test_value(data)) 2953 return 1; 2954 2955 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2956 svm->vmcb->save.spec_ctrl = data; 2957 else 2958 svm->spec_ctrl = data; 2959 if (!data) 2960 break; 2961 2962 /* 2963 * For non-nested: 2964 * When it's written (to non-zero) for the first time, pass 2965 * it through. 2966 * 2967 * For nested: 2968 * The handling of the MSR bitmap for L2 guests is done in 2969 * nested_svm_merge_msrpm(). 2970 * We update the L1 MSR bit as well since it will end up 2971 * touching the MSR anyway now. 2972 */ 2973 svm_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW); 2974 break; 2975 case MSR_AMD64_VIRT_SPEC_CTRL: 2976 if (!msr->host_initiated && 2977 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2978 return 1; 2979 2980 if (data & ~SPEC_CTRL_SSBD) 2981 return 1; 2982 2983 svm->virt_spec_ctrl = data; 2984 break; 2985 case MSR_STAR: 2986 svm->vmcb01.ptr->save.star = data; 2987 break; 2988 #ifdef CONFIG_X86_64 2989 case MSR_LSTAR: 2990 svm->vmcb01.ptr->save.lstar = data; 2991 break; 2992 case MSR_CSTAR: 2993 svm->vmcb01.ptr->save.cstar = data; 2994 break; 2995 case MSR_GS_BASE: 2996 svm->vmcb01.ptr->save.gs.base = data; 2997 break; 2998 case MSR_FS_BASE: 2999 svm->vmcb01.ptr->save.fs.base = data; 3000 break; 3001 case MSR_KERNEL_GS_BASE: 3002 svm->vmcb01.ptr->save.kernel_gs_base = data; 3003 break; 3004 case MSR_SYSCALL_MASK: 3005 svm->vmcb01.ptr->save.sfmask = data; 3006 break; 3007 #endif 3008 case MSR_IA32_SYSENTER_CS: 3009 svm->vmcb01.ptr->save.sysenter_cs = data; 3010 break; 3011 case MSR_IA32_SYSENTER_EIP: 3012 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3013 /* 3014 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3015 * when we spoof an Intel vendor ID (for cross vendor migration). 3016 * In this case we use this intercept to track the high 3017 * 32 bit part of these msrs to support Intel's 3018 * implementation of SYSENTER/SYSEXIT. 3019 */ 3020 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 3021 break; 3022 case MSR_IA32_SYSENTER_ESP: 3023 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3024 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 3025 break; 3026 case MSR_IA32_S_CET: 3027 svm->vmcb->save.s_cet = data; 3028 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET); 3029 break; 3030 case MSR_IA32_INT_SSP_TAB: 3031 svm->vmcb->save.isst_addr = data; 3032 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET); 3033 break; 3034 case MSR_KVM_INTERNAL_GUEST_SSP: 3035 svm->vmcb->save.ssp = data; 3036 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET); 3037 break; 3038 case MSR_TSC_AUX: 3039 /* 3040 * TSC_AUX is always virtualized for SEV-ES guests when the 3041 * feature is available. The user return MSR support is not 3042 * required in this case because TSC_AUX is restored on #VMEXIT 3043 * from the host save area. 3044 */ 3045 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 3046 break; 3047 3048 /* 3049 * TSC_AUX is usually changed only during boot and never read 3050 * directly. Intercept TSC_AUX and switch it via user return. 3051 */ 3052 preempt_disable(); 3053 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3054 preempt_enable(); 3055 if (ret) 3056 break; 3057 3058 svm->tsc_aux = data; 3059 break; 3060 case MSR_IA32_DEBUGCTLMSR: 3061 if (!lbrv) { 3062 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3063 break; 3064 } 3065 3066 /* 3067 * Suppress BTF as KVM doesn't virtualize BTF, but there's no 3068 * way to communicate lack of support to the guest. 3069 */ 3070 if (data & DEBUGCTLMSR_BTF) { 3071 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data); 3072 data &= ~DEBUGCTLMSR_BTF; 3073 } 3074 3075 if (data & DEBUGCTL_RESERVED_BITS) 3076 return 1; 3077 3078 if (svm->vmcb->save.dbgctl == data) 3079 break; 3080 3081 svm->vmcb->save.dbgctl = data; 3082 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 3083 svm_update_lbrv(vcpu); 3084 break; 3085 case MSR_VM_HSAVE_PA: 3086 /* 3087 * Old kernels did not validate the value written to 3088 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3089 * value to allow live migrating buggy or malicious guests 3090 * originating from those kernels. 3091 */ 3092 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3093 return 1; 3094 3095 svm->nested.hsave_msr = data & PAGE_MASK; 3096 break; 3097 case MSR_VM_CR: 3098 return svm_set_vm_cr(vcpu, data); 3099 case MSR_VM_IGNNE: 3100 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3101 break; 3102 case MSR_AMD64_DE_CFG: { 3103 u64 supported_de_cfg; 3104 3105 if (svm_get_feature_msr(ecx, &supported_de_cfg)) 3106 return 1; 3107 3108 if (data & ~supported_de_cfg) 3109 return 1; 3110 3111 svm->msr_decfg = data; 3112 break; 3113 } 3114 default: 3115 return kvm_set_msr_common(vcpu, msr); 3116 } 3117 return ret; 3118 } 3119 3120 static int msr_interception(struct kvm_vcpu *vcpu) 3121 { 3122 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3123 return kvm_emulate_wrmsr(vcpu); 3124 else 3125 return kvm_emulate_rdmsr(vcpu); 3126 } 3127 3128 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3129 { 3130 kvm_make_request(KVM_REQ_EVENT, vcpu); 3131 svm_clear_vintr(to_svm(vcpu)); 3132 3133 /* 3134 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3135 * In this case AVIC was temporarily disabled for 3136 * requesting the IRQ window and we have to re-enable it. 3137 * 3138 * If running nested, still remove the VM wide AVIC inhibit to 3139 * support case in which the interrupt window was requested when the 3140 * vCPU was not running nested. 3141 3142 * All vCPUs which run still run nested, will remain to have their 3143 * AVIC still inhibited due to per-cpu AVIC inhibition. 3144 */ 3145 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3146 3147 ++vcpu->stat.irq_window_exits; 3148 return 1; 3149 } 3150 3151 static int pause_interception(struct kvm_vcpu *vcpu) 3152 { 3153 bool in_kernel; 3154 /* 3155 * CPL is not made available for an SEV-ES guest, therefore 3156 * vcpu->arch.preempted_in_kernel can never be true. Just 3157 * set in_kernel to false as well. 3158 */ 3159 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3160 3161 grow_ple_window(vcpu); 3162 3163 kvm_vcpu_on_spin(vcpu, in_kernel); 3164 return kvm_skip_emulated_instruction(vcpu); 3165 } 3166 3167 static int invpcid_interception(struct kvm_vcpu *vcpu) 3168 { 3169 struct vcpu_svm *svm = to_svm(vcpu); 3170 unsigned long type; 3171 gva_t gva; 3172 3173 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) { 3174 kvm_queue_exception(vcpu, UD_VECTOR); 3175 return 1; 3176 } 3177 3178 /* 3179 * For an INVPCID intercept: 3180 * EXITINFO1 provides the linear address of the memory operand. 3181 * EXITINFO2 provides the contents of the register operand. 3182 */ 3183 type = svm->vmcb->control.exit_info_2; 3184 gva = svm->vmcb->control.exit_info_1; 3185 3186 /* 3187 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the 3188 * stack segment is used. The intercept takes priority over all 3189 * #GP checks except CPL>0, but somehow still generates a linear 3190 * address? The APM is sorely lacking. 3191 */ 3192 if (is_noncanonical_address(gva, vcpu, 0)) { 3193 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 3194 return 1; 3195 } 3196 3197 return kvm_handle_invpcid(vcpu, type, gva); 3198 } 3199 3200 static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu) 3201 { 3202 struct vcpu_svm *svm = to_svm(vcpu); 3203 3204 /* 3205 * If userspace has NOT changed RIP, then KVM's ABI is to let the guest 3206 * execute the bus-locking instruction. Set the bus lock counter to '1' 3207 * to effectively step past the bus lock. 3208 */ 3209 if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip)) 3210 svm->vmcb->control.bus_lock_counter = 1; 3211 3212 return 1; 3213 } 3214 3215 static int bus_lock_exit(struct kvm_vcpu *vcpu) 3216 { 3217 struct vcpu_svm *svm = to_svm(vcpu); 3218 3219 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 3220 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 3221 3222 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); 3223 vcpu->arch.complete_userspace_io = complete_userspace_buslock; 3224 3225 if (is_guest_mode(vcpu)) 3226 svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip; 3227 3228 return 0; 3229 } 3230 3231 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3232 [SVM_EXIT_READ_CR0] = cr_interception, 3233 [SVM_EXIT_READ_CR3] = cr_interception, 3234 [SVM_EXIT_READ_CR4] = cr_interception, 3235 [SVM_EXIT_READ_CR8] = cr_interception, 3236 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3237 [SVM_EXIT_WRITE_CR0] = cr_interception, 3238 [SVM_EXIT_WRITE_CR3] = cr_interception, 3239 [SVM_EXIT_WRITE_CR4] = cr_interception, 3240 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3241 [SVM_EXIT_READ_DR0] = dr_interception, 3242 [SVM_EXIT_READ_DR1] = dr_interception, 3243 [SVM_EXIT_READ_DR2] = dr_interception, 3244 [SVM_EXIT_READ_DR3] = dr_interception, 3245 [SVM_EXIT_READ_DR4] = dr_interception, 3246 [SVM_EXIT_READ_DR5] = dr_interception, 3247 [SVM_EXIT_READ_DR6] = dr_interception, 3248 [SVM_EXIT_READ_DR7] = dr_interception, 3249 [SVM_EXIT_WRITE_DR0] = dr_interception, 3250 [SVM_EXIT_WRITE_DR1] = dr_interception, 3251 [SVM_EXIT_WRITE_DR2] = dr_interception, 3252 [SVM_EXIT_WRITE_DR3] = dr_interception, 3253 [SVM_EXIT_WRITE_DR4] = dr_interception, 3254 [SVM_EXIT_WRITE_DR5] = dr_interception, 3255 [SVM_EXIT_WRITE_DR6] = dr_interception, 3256 [SVM_EXIT_WRITE_DR7] = dr_interception, 3257 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3258 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3259 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3260 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3261 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3262 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3263 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3264 [SVM_EXIT_INTR] = intr_interception, 3265 [SVM_EXIT_NMI] = nmi_interception, 3266 [SVM_EXIT_SMI] = smi_interception, 3267 [SVM_EXIT_VINTR] = interrupt_window_interception, 3268 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3269 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3270 [SVM_EXIT_IRET] = iret_interception, 3271 [SVM_EXIT_INVD] = kvm_emulate_invd, 3272 [SVM_EXIT_PAUSE] = pause_interception, 3273 [SVM_EXIT_HLT] = kvm_emulate_halt, 3274 [SVM_EXIT_INVLPG] = invlpg_interception, 3275 [SVM_EXIT_INVLPGA] = invlpga_interception, 3276 [SVM_EXIT_IOIO] = io_interception, 3277 [SVM_EXIT_MSR] = msr_interception, 3278 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3279 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3280 [SVM_EXIT_VMRUN] = vmrun_interception, 3281 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3282 [SVM_EXIT_VMLOAD] = vmload_interception, 3283 [SVM_EXIT_VMSAVE] = vmsave_interception, 3284 [SVM_EXIT_STGI] = stgi_interception, 3285 [SVM_EXIT_CLGI] = clgi_interception, 3286 [SVM_EXIT_SKINIT] = skinit_interception, 3287 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3288 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3289 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3290 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3291 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3292 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3293 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3294 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3295 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3296 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3297 [SVM_EXIT_INVPCID] = invpcid_interception, 3298 [SVM_EXIT_IDLE_HLT] = kvm_emulate_halt, 3299 [SVM_EXIT_NPF] = npf_interception, 3300 [SVM_EXIT_BUS_LOCK] = bus_lock_exit, 3301 [SVM_EXIT_RSM] = rsm_interception, 3302 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3303 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3304 #ifdef CONFIG_KVM_AMD_SEV 3305 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3306 #endif 3307 }; 3308 3309 static void dump_vmcb(struct kvm_vcpu *vcpu) 3310 { 3311 struct vcpu_svm *svm = to_svm(vcpu); 3312 struct vmcb_control_area *control = &svm->vmcb->control; 3313 struct vmcb_save_area *save = &svm->vmcb->save; 3314 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3315 char *vm_type; 3316 3317 if (!dump_invalid_vmcb) { 3318 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3319 return; 3320 } 3321 3322 guard(mutex)(&vmcb_dump_mutex); 3323 3324 vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" : 3325 sev_es_guest(vcpu->kvm) ? "SEV-ES" : 3326 sev_guest(vcpu->kvm) ? "SEV" : "SVM"; 3327 3328 pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n", 3329 vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3330 pr_err("VMCB Control Area:\n"); 3331 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3332 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3333 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3334 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3335 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3336 pr_err("%-20s%08x %08x\n", "intercepts:", 3337 control->intercepts[INTERCEPT_WORD3], 3338 control->intercepts[INTERCEPT_WORD4]); 3339 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3340 pr_err("%-20s%d\n", "pause filter threshold:", 3341 control->pause_filter_thresh); 3342 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3343 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3344 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3345 pr_err("%-20s%d\n", "asid:", control->asid); 3346 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3347 pr_err("%-20s%d\n", "erap_ctl:", control->erap_ctl); 3348 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3349 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3350 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3351 pr_err("%-20s%016llx\n", "exit_code:", control->exit_code); 3352 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3353 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3354 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3355 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3356 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3357 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3358 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3359 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3360 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3361 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3362 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3363 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3364 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3365 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3366 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3367 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3368 pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features); 3369 pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features); 3370 3371 if (sev_es_guest(vcpu->kvm)) { 3372 save = sev_decrypt_vmsa(vcpu); 3373 if (!save) 3374 goto no_vmsa; 3375 3376 save01 = save; 3377 } 3378 3379 pr_err("VMCB State Save Area:\n"); 3380 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3381 "es:", 3382 save->es.selector, save->es.attrib, 3383 save->es.limit, save->es.base); 3384 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3385 "cs:", 3386 save->cs.selector, save->cs.attrib, 3387 save->cs.limit, save->cs.base); 3388 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3389 "ss:", 3390 save->ss.selector, save->ss.attrib, 3391 save->ss.limit, save->ss.base); 3392 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3393 "ds:", 3394 save->ds.selector, save->ds.attrib, 3395 save->ds.limit, save->ds.base); 3396 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3397 "fs:", 3398 save01->fs.selector, save01->fs.attrib, 3399 save01->fs.limit, save01->fs.base); 3400 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3401 "gs:", 3402 save01->gs.selector, save01->gs.attrib, 3403 save01->gs.limit, save01->gs.base); 3404 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3405 "gdtr:", 3406 save->gdtr.selector, save->gdtr.attrib, 3407 save->gdtr.limit, save->gdtr.base); 3408 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3409 "ldtr:", 3410 save01->ldtr.selector, save01->ldtr.attrib, 3411 save01->ldtr.limit, save01->ldtr.base); 3412 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3413 "idtr:", 3414 save->idtr.selector, save->idtr.attrib, 3415 save->idtr.limit, save->idtr.base); 3416 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3417 "tr:", 3418 save01->tr.selector, save01->tr.attrib, 3419 save01->tr.limit, save01->tr.base); 3420 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3421 save->vmpl, save->cpl, save->efer); 3422 pr_err("%-15s %016llx %-13s %016llx\n", 3423 "cr0:", save->cr0, "cr2:", save->cr2); 3424 pr_err("%-15s %016llx %-13s %016llx\n", 3425 "cr3:", save->cr3, "cr4:", save->cr4); 3426 pr_err("%-15s %016llx %-13s %016llx\n", 3427 "dr6:", save->dr6, "dr7:", save->dr7); 3428 pr_err("%-15s %016llx %-13s %016llx\n", 3429 "rip:", save->rip, "rflags:", save->rflags); 3430 pr_err("%-15s %016llx %-13s %016llx\n", 3431 "rsp:", save->rsp, "rax:", save->rax); 3432 pr_err("%-15s %016llx %-13s %016llx\n", 3433 "s_cet:", save->s_cet, "ssp:", save->ssp); 3434 pr_err("%-15s %016llx\n", 3435 "isst_addr:", save->isst_addr); 3436 pr_err("%-15s %016llx %-13s %016llx\n", 3437 "star:", save01->star, "lstar:", save01->lstar); 3438 pr_err("%-15s %016llx %-13s %016llx\n", 3439 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3440 pr_err("%-15s %016llx %-13s %016llx\n", 3441 "kernel_gs_base:", save01->kernel_gs_base, 3442 "sysenter_cs:", save01->sysenter_cs); 3443 pr_err("%-15s %016llx %-13s %016llx\n", 3444 "sysenter_esp:", save01->sysenter_esp, 3445 "sysenter_eip:", save01->sysenter_eip); 3446 pr_err("%-15s %016llx %-13s %016llx\n", 3447 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3448 pr_err("%-15s %016llx %-13s %016llx\n", 3449 "br_from:", save->br_from, "br_to:", save->br_to); 3450 pr_err("%-15s %016llx %-13s %016llx\n", 3451 "excp_from:", save->last_excp_from, 3452 "excp_to:", save->last_excp_to); 3453 3454 if (sev_es_guest(vcpu->kvm)) { 3455 struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save; 3456 3457 pr_err("%-15s %016llx\n", 3458 "sev_features", vmsa->sev_features); 3459 3460 pr_err("%-15s %016llx %-13s %016llx\n", 3461 "pl0_ssp:", vmsa->pl0_ssp, "pl1_ssp:", vmsa->pl1_ssp); 3462 pr_err("%-15s %016llx %-13s %016llx\n", 3463 "pl2_ssp:", vmsa->pl2_ssp, "pl3_ssp:", vmsa->pl3_ssp); 3464 pr_err("%-15s %016llx\n", 3465 "u_cet:", vmsa->u_cet); 3466 3467 pr_err("%-15s %016llx %-13s %016llx\n", 3468 "rax:", vmsa->rax, "rbx:", vmsa->rbx); 3469 pr_err("%-15s %016llx %-13s %016llx\n", 3470 "rcx:", vmsa->rcx, "rdx:", vmsa->rdx); 3471 pr_err("%-15s %016llx %-13s %016llx\n", 3472 "rsi:", vmsa->rsi, "rdi:", vmsa->rdi); 3473 pr_err("%-15s %016llx %-13s %016llx\n", 3474 "rbp:", vmsa->rbp, "rsp:", vmsa->rsp); 3475 pr_err("%-15s %016llx %-13s %016llx\n", 3476 "r8:", vmsa->r8, "r9:", vmsa->r9); 3477 pr_err("%-15s %016llx %-13s %016llx\n", 3478 "r10:", vmsa->r10, "r11:", vmsa->r11); 3479 pr_err("%-15s %016llx %-13s %016llx\n", 3480 "r12:", vmsa->r12, "r13:", vmsa->r13); 3481 pr_err("%-15s %016llx %-13s %016llx\n", 3482 "r14:", vmsa->r14, "r15:", vmsa->r15); 3483 pr_err("%-15s %016llx %-13s %016llx\n", 3484 "xcr0:", vmsa->xcr0, "xss:", vmsa->xss); 3485 } else { 3486 pr_err("%-15s %016llx %-13s %016lx\n", 3487 "rax:", save->rax, "rbx:", 3488 vcpu->arch.regs[VCPU_REGS_RBX]); 3489 pr_err("%-15s %016lx %-13s %016lx\n", 3490 "rcx:", vcpu->arch.regs[VCPU_REGS_RCX], 3491 "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]); 3492 pr_err("%-15s %016lx %-13s %016lx\n", 3493 "rsi:", vcpu->arch.regs[VCPU_REGS_RSI], 3494 "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]); 3495 pr_err("%-15s %016lx %-13s %016llx\n", 3496 "rbp:", vcpu->arch.regs[VCPU_REGS_RBP], 3497 "rsp:", save->rsp); 3498 #ifdef CONFIG_X86_64 3499 pr_err("%-15s %016lx %-13s %016lx\n", 3500 "r8:", vcpu->arch.regs[VCPU_REGS_R8], 3501 "r9:", vcpu->arch.regs[VCPU_REGS_R9]); 3502 pr_err("%-15s %016lx %-13s %016lx\n", 3503 "r10:", vcpu->arch.regs[VCPU_REGS_R10], 3504 "r11:", vcpu->arch.regs[VCPU_REGS_R11]); 3505 pr_err("%-15s %016lx %-13s %016lx\n", 3506 "r12:", vcpu->arch.regs[VCPU_REGS_R12], 3507 "r13:", vcpu->arch.regs[VCPU_REGS_R13]); 3508 pr_err("%-15s %016lx %-13s %016lx\n", 3509 "r14:", vcpu->arch.regs[VCPU_REGS_R14], 3510 "r15:", vcpu->arch.regs[VCPU_REGS_R15]); 3511 #endif 3512 } 3513 3514 no_vmsa: 3515 if (sev_es_guest(vcpu->kvm)) 3516 sev_free_decrypted_vmsa(vcpu, save); 3517 } 3518 3519 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 __exit_code) 3520 { 3521 u32 exit_code = __exit_code; 3522 3523 /* 3524 * SVM uses negative values, i.e. 64-bit values, to indicate that VMRUN 3525 * failed. Report all such errors to userspace (note, VMEXIT_INVALID, 3526 * a.k.a. SVM_EXIT_ERR, is special cased by svm_handle_exit()). Skip 3527 * the check when running as a VM, as KVM has historically left garbage 3528 * in bits 63:32, i.e. running KVM-on-KVM would hit false positives if 3529 * the underlying kernel is buggy. 3530 */ 3531 if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR) && 3532 (u64)exit_code != __exit_code) 3533 goto unexpected_vmexit; 3534 3535 #ifdef CONFIG_MITIGATION_RETPOLINE 3536 if (exit_code == SVM_EXIT_MSR) 3537 return msr_interception(vcpu); 3538 else if (exit_code == SVM_EXIT_VINTR) 3539 return interrupt_window_interception(vcpu); 3540 else if (exit_code == SVM_EXIT_INTR) 3541 return intr_interception(vcpu); 3542 else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT) 3543 return kvm_emulate_halt(vcpu); 3544 else if (exit_code == SVM_EXIT_NPF) 3545 return npf_interception(vcpu); 3546 #ifdef CONFIG_KVM_AMD_SEV 3547 else if (exit_code == SVM_EXIT_VMGEXIT) 3548 return sev_handle_vmgexit(vcpu); 3549 #endif 3550 #endif 3551 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)) 3552 goto unexpected_vmexit; 3553 3554 exit_code = array_index_nospec(exit_code, ARRAY_SIZE(svm_exit_handlers)); 3555 if (!svm_exit_handlers[exit_code]) 3556 goto unexpected_vmexit; 3557 3558 return svm_exit_handlers[exit_code](vcpu); 3559 3560 unexpected_vmexit: 3561 dump_vmcb(vcpu); 3562 kvm_prepare_unexpected_reason_exit(vcpu, __exit_code); 3563 return 0; 3564 } 3565 3566 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3567 u64 *info1, u64 *info2, 3568 u32 *intr_info, u32 *error_code) 3569 { 3570 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3571 3572 *reason = control->exit_code; 3573 *info1 = control->exit_info_1; 3574 *info2 = control->exit_info_2; 3575 *intr_info = control->exit_int_info; 3576 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3577 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3578 *error_code = control->exit_int_info_err; 3579 else 3580 *error_code = 0; 3581 } 3582 3583 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, 3584 u32 *error_code) 3585 { 3586 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3587 3588 *intr_info = control->event_inj; 3589 3590 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3591 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3592 *error_code = control->event_inj_err; 3593 else 3594 *error_code = 0; 3595 3596 } 3597 3598 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3599 { 3600 struct vcpu_svm *svm = to_svm(vcpu); 3601 struct kvm_run *kvm_run = vcpu->run; 3602 3603 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3604 if (!sev_es_guest(vcpu->kvm)) { 3605 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3606 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3607 if (npt_enabled) 3608 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3609 } 3610 3611 if (is_guest_mode(vcpu)) { 3612 int vmexit; 3613 3614 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3615 3616 vmexit = nested_svm_exit_special(svm); 3617 3618 if (vmexit == NESTED_EXIT_CONTINUE) 3619 vmexit = nested_svm_exit_handled(svm); 3620 3621 if (vmexit == NESTED_EXIT_DONE) 3622 return 1; 3623 } 3624 3625 if (svm_is_vmrun_failure(svm->vmcb->control.exit_code)) { 3626 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3627 kvm_run->fail_entry.hardware_entry_failure_reason 3628 = svm->vmcb->control.exit_code; 3629 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3630 dump_vmcb(vcpu); 3631 return 0; 3632 } 3633 3634 if (exit_fastpath != EXIT_FASTPATH_NONE) 3635 return 1; 3636 3637 return svm_invoke_exit_handler(vcpu, svm->vmcb->control.exit_code); 3638 } 3639 3640 static int pre_svm_run(struct kvm_vcpu *vcpu) 3641 { 3642 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3643 struct vcpu_svm *svm = to_svm(vcpu); 3644 3645 /* 3646 * If the previous vmrun of the vmcb occurred on a different physical 3647 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3648 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3649 */ 3650 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3651 svm->current_vmcb->asid_generation = 0; 3652 vmcb_mark_all_dirty(svm->vmcb); 3653 svm->current_vmcb->cpu = vcpu->cpu; 3654 } 3655 3656 if (sev_guest(vcpu->kvm)) 3657 return pre_sev_run(svm, vcpu->cpu); 3658 3659 /* FIXME: handle wraparound of asid_generation */ 3660 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3661 new_asid(svm, sd); 3662 3663 return 0; 3664 } 3665 3666 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3667 { 3668 struct vcpu_svm *svm = to_svm(vcpu); 3669 3670 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3671 3672 if (svm->nmi_l1_to_l2) 3673 return; 3674 3675 /* 3676 * No need to manually track NMI masking when vNMI is enabled, hardware 3677 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the 3678 * case where software directly injects an NMI. 3679 */ 3680 if (!is_vnmi_enabled(svm)) { 3681 svm->nmi_masked = true; 3682 svm_set_iret_intercept(svm); 3683 } 3684 ++vcpu->stat.nmi_injections; 3685 } 3686 3687 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3688 { 3689 struct vcpu_svm *svm = to_svm(vcpu); 3690 3691 if (!is_vnmi_enabled(svm)) 3692 return false; 3693 3694 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3695 } 3696 3697 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3698 { 3699 struct vcpu_svm *svm = to_svm(vcpu); 3700 3701 if (!is_vnmi_enabled(svm)) 3702 return false; 3703 3704 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3705 return false; 3706 3707 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3708 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3709 3710 /* 3711 * Because the pending NMI is serviced by hardware, KVM can't know when 3712 * the NMI is "injected", but for all intents and purposes, passing the 3713 * NMI off to hardware counts as injection. 3714 */ 3715 ++vcpu->stat.nmi_injections; 3716 3717 return true; 3718 } 3719 3720 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3721 { 3722 struct kvm_queued_interrupt *intr = &vcpu->arch.interrupt; 3723 struct vcpu_svm *svm = to_svm(vcpu); 3724 u32 type; 3725 3726 if (intr->soft) { 3727 if (svm_update_soft_interrupt_rip(vcpu, intr->nr)) 3728 return; 3729 3730 type = SVM_EVTINJ_TYPE_SOFT; 3731 } else { 3732 type = SVM_EVTINJ_TYPE_INTR; 3733 } 3734 3735 trace_kvm_inj_virq(intr->nr, intr->soft, reinjected); 3736 ++vcpu->stat.irq_injections; 3737 3738 svm->vmcb->control.event_inj = intr->nr | SVM_EVTINJ_VALID | type; 3739 } 3740 3741 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3742 int trig_mode, int vector) 3743 { 3744 /* 3745 * apic->apicv_active must be read after vcpu->mode. 3746 * Pairs with smp_store_release in vcpu_enter_guest. 3747 */ 3748 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3749 3750 /* Note, this is called iff the local APIC is in-kernel. */ 3751 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3752 /* Process the interrupt via kvm_check_and_inject_events(). */ 3753 kvm_make_request(KVM_REQ_EVENT, vcpu); 3754 kvm_vcpu_kick(vcpu); 3755 return; 3756 } 3757 3758 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3759 if (in_guest_mode) { 3760 /* 3761 * Signal the doorbell to tell hardware to inject the IRQ. If 3762 * the vCPU exits the guest before the doorbell chimes, hardware 3763 * will automatically process AVIC interrupts at the next VMRUN. 3764 */ 3765 avic_ring_doorbell(vcpu); 3766 } else { 3767 /* 3768 * Wake the vCPU if it was blocking. KVM will then detect the 3769 * pending IRQ when checking if the vCPU has a wake event. 3770 */ 3771 kvm_vcpu_wake_up(vcpu); 3772 } 3773 } 3774 3775 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3776 int trig_mode, int vector) 3777 { 3778 kvm_lapic_set_irr(vector, apic); 3779 3780 /* 3781 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3782 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3783 * the read of guest_mode. This guarantees that either VMRUN will see 3784 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3785 * will signal the doorbell if the CPU has already entered the guest. 3786 */ 3787 smp_mb__after_atomic(); 3788 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3789 } 3790 3791 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3792 { 3793 struct vcpu_svm *svm = to_svm(vcpu); 3794 3795 /* 3796 * SEV-ES guests must always keep the CR intercepts cleared. CR 3797 * tracking is done using the CR write traps. 3798 */ 3799 if (sev_es_guest(vcpu->kvm)) 3800 return; 3801 3802 if (nested_svm_virtualize_tpr(vcpu)) 3803 return; 3804 3805 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3806 3807 if (irr == -1) 3808 return; 3809 3810 if (tpr >= irr) 3811 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3812 } 3813 3814 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3815 { 3816 struct vcpu_svm *svm = to_svm(vcpu); 3817 3818 if (is_vnmi_enabled(svm)) 3819 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3820 else 3821 return svm->nmi_masked; 3822 } 3823 3824 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3825 { 3826 struct vcpu_svm *svm = to_svm(vcpu); 3827 3828 if (is_vnmi_enabled(svm)) { 3829 if (masked) 3830 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3831 else 3832 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3833 3834 } else { 3835 svm->nmi_masked = masked; 3836 if (masked) 3837 svm_set_iret_intercept(svm); 3838 else 3839 svm_clr_iret_intercept(svm); 3840 } 3841 } 3842 3843 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3844 { 3845 struct vcpu_svm *svm = to_svm(vcpu); 3846 struct vmcb *vmcb = svm->vmcb; 3847 3848 if (!gif_set(svm)) 3849 return true; 3850 3851 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3852 return false; 3853 3854 if (svm_get_nmi_mask(vcpu)) 3855 return true; 3856 3857 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3858 } 3859 3860 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3861 { 3862 struct vcpu_svm *svm = to_svm(vcpu); 3863 if (svm->nested.nested_run_pending) 3864 return -EBUSY; 3865 3866 if (svm_nmi_blocked(vcpu)) 3867 return 0; 3868 3869 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3870 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3871 return -EBUSY; 3872 return 1; 3873 } 3874 3875 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3876 { 3877 struct vcpu_svm *svm = to_svm(vcpu); 3878 struct vmcb *vmcb = svm->vmcb; 3879 3880 if (!gif_set(svm)) 3881 return true; 3882 3883 if (is_guest_mode(vcpu)) { 3884 /* As long as interrupts are being delivered... */ 3885 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3886 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3887 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3888 return true; 3889 3890 /* ... vmexits aren't blocked by the interrupt shadow */ 3891 if (nested_exit_on_intr(svm)) 3892 return false; 3893 } else { 3894 if (!svm_get_if_flag(vcpu)) 3895 return true; 3896 } 3897 3898 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3899 } 3900 3901 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3902 { 3903 struct vcpu_svm *svm = to_svm(vcpu); 3904 3905 if (svm->nested.nested_run_pending) 3906 return -EBUSY; 3907 3908 if (svm_interrupt_blocked(vcpu)) 3909 return 0; 3910 3911 /* 3912 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3913 * e.g. if the IRQ arrived asynchronously after checking nested events. 3914 */ 3915 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3916 return -EBUSY; 3917 3918 return 1; 3919 } 3920 3921 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3922 { 3923 struct vcpu_svm *svm = to_svm(vcpu); 3924 3925 /* 3926 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3927 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3928 * get that intercept, this function will be called again though and 3929 * we'll get the vintr intercept. However, if the vGIF feature is 3930 * enabled, the STGI interception will not occur. Enable the irq 3931 * window under the assumption that the hardware will set the GIF. 3932 */ 3933 if (vgif || gif_set(svm)) { 3934 /* 3935 * IRQ window is not needed when AVIC is enabled, 3936 * unless we have pending ExtINT since it cannot be injected 3937 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3938 * and fallback to injecting IRQ via V_IRQ. 3939 * 3940 * If running nested, AVIC is already locally inhibited 3941 * on this vCPU, therefore there is no need to request 3942 * the VM wide AVIC inhibition. 3943 */ 3944 if (!is_guest_mode(vcpu)) 3945 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3946 3947 svm_set_vintr(svm); 3948 } 3949 } 3950 3951 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3952 { 3953 struct vcpu_svm *svm = to_svm(vcpu); 3954 3955 /* 3956 * If NMIs are outright masked, i.e. the vCPU is already handling an 3957 * NMI, and KVM has not yet intercepted an IRET, then there is nothing 3958 * more to do at this time as KVM has already enabled IRET intercepts. 3959 * If KVM has already intercepted IRET, then single-step over the IRET, 3960 * as NMIs aren't architecturally unmasked until the IRET completes. 3961 * 3962 * If vNMI is enabled, KVM should never request an NMI window if NMIs 3963 * are masked, as KVM allows at most one to-be-injected NMI and one 3964 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one 3965 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are 3966 * unmasked. KVM _will_ request an NMI window in some situations, e.g. 3967 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately 3968 * inject the NMI. In those situations, KVM needs to single-step over 3969 * the STI shadow or intercept STGI. 3970 */ 3971 if (svm_get_nmi_mask(vcpu)) { 3972 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3973 3974 if (!svm->awaiting_iret_completion) 3975 return; /* IRET will cause a vm exit */ 3976 } 3977 3978 /* 3979 * SEV-ES guests are responsible for signaling when a vCPU is ready to 3980 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 3981 * KVM can't intercept and single-step IRET to detect when NMIs are 3982 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 3983 * 3984 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 3985 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 3986 * supported NAEs in the GHCB protocol. 3987 */ 3988 if (sev_es_guest(vcpu->kvm)) 3989 return; 3990 3991 if (!gif_set(svm)) { 3992 if (vgif) 3993 svm_set_intercept(svm, INTERCEPT_STGI); 3994 return; /* STGI will cause a vm exit */ 3995 } 3996 3997 /* 3998 * Something prevents NMI from been injected. Single step over possible 3999 * problem (IRET or exception injection or interrupt shadow) 4000 */ 4001 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 4002 svm->nmi_singlestep = true; 4003 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 4004 } 4005 4006 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 4007 { 4008 struct vcpu_svm *svm = to_svm(vcpu); 4009 4010 /* 4011 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 4012 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 4013 * entries, and thus is a superset of Hyper-V's fine grained flushing. 4014 */ 4015 kvm_hv_vcpu_purge_flush_tlb(vcpu); 4016 4017 /* 4018 * Flush only the current ASID even if the TLB flush was invoked via 4019 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 4020 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 4021 * unconditionally does a TLB flush on both nested VM-Enter and nested 4022 * VM-Exit (via kvm_mmu_reset_context()). 4023 */ 4024 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 4025 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 4026 else 4027 svm->current_vmcb->asid_generation--; 4028 } 4029 4030 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 4031 { 4032 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 4033 4034 /* 4035 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 4036 * flush the NPT mappings via hypercall as flushing the ASID only 4037 * affects virtual to physical mappings, it does not invalidate guest 4038 * physical to host physical mappings. 4039 */ 4040 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 4041 hyperv_flush_guest_mapping(root_tdp); 4042 4043 svm_flush_tlb_asid(vcpu); 4044 } 4045 4046 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 4047 { 4048 /* 4049 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 4050 * flushes should be routed to hv_flush_remote_tlbs() without requesting 4051 * a "regular" remote flush. Reaching this point means either there's 4052 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 4053 * which might be fatal to the guest. Yell, but try to recover. 4054 */ 4055 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 4056 hv_flush_remote_tlbs(vcpu->kvm); 4057 4058 svm_flush_tlb_asid(vcpu); 4059 } 4060 4061 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 4062 { 4063 struct vcpu_svm *svm = to_svm(vcpu); 4064 4065 invlpga(gva, svm->vmcb->control.asid); 4066 } 4067 4068 static void svm_flush_tlb_guest(struct kvm_vcpu *vcpu) 4069 { 4070 kvm_register_mark_dirty(vcpu, VCPU_EXREG_ERAPS); 4071 4072 svm_flush_tlb_asid(vcpu); 4073 } 4074 4075 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 4076 { 4077 struct vcpu_svm *svm = to_svm(vcpu); 4078 4079 if (nested_svm_virtualize_tpr(vcpu)) 4080 return; 4081 4082 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 4083 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 4084 kvm_set_cr8(vcpu, cr8); 4085 } 4086 } 4087 4088 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 4089 { 4090 struct vcpu_svm *svm = to_svm(vcpu); 4091 u64 cr8; 4092 4093 if (nested_svm_virtualize_tpr(vcpu)) 4094 return; 4095 4096 cr8 = kvm_get_cr8(vcpu); 4097 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 4098 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 4099 } 4100 4101 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 4102 int type) 4103 { 4104 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 4105 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 4106 struct vcpu_svm *svm = to_svm(vcpu); 4107 4108 /* 4109 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 4110 * associated with the original soft exception/interrupt. next_rip is 4111 * cleared on all exits that can occur while vectoring an event, so KVM 4112 * needs to manually set next_rip for re-injection. Unlike the !nrips 4113 * case below, this needs to be done if and only if KVM is re-injecting 4114 * the same event, i.e. if the event is a soft exception/interrupt, 4115 * otherwise next_rip is unused on VMRUN. 4116 */ 4117 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 4118 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 4119 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 4120 /* 4121 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 4122 * injecting the soft exception/interrupt. That advancement needs to 4123 * be unwound if vectoring didn't complete. Note, the new event may 4124 * not be the injected event, e.g. if KVM injected an INTn, the INTn 4125 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 4126 * be the reported vectored event, but RIP still needs to be unwound. 4127 */ 4128 else if (!nrips && (is_soft || is_exception) && 4129 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4130 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4131 } 4132 4133 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4134 { 4135 struct vcpu_svm *svm = to_svm(vcpu); 4136 u8 vector; 4137 int type; 4138 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4139 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4140 bool soft_int_injected = svm->soft_int_injected; 4141 4142 svm->nmi_l1_to_l2 = false; 4143 svm->soft_int_injected = false; 4144 4145 /* 4146 * If we've made progress since setting awaiting_iret_completion, we've 4147 * executed an IRET and can allow NMI injection. 4148 */ 4149 if (svm->awaiting_iret_completion && 4150 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4151 svm->awaiting_iret_completion = false; 4152 svm->nmi_masked = false; 4153 kvm_make_request(KVM_REQ_EVENT, vcpu); 4154 } 4155 4156 vcpu->arch.nmi_injected = false; 4157 kvm_clear_exception_queue(vcpu); 4158 kvm_clear_interrupt_queue(vcpu); 4159 4160 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4161 return; 4162 4163 kvm_make_request(KVM_REQ_EVENT, vcpu); 4164 4165 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4166 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4167 4168 if (soft_int_injected) 4169 svm_complete_soft_interrupt(vcpu, vector, type); 4170 4171 switch (type) { 4172 case SVM_EXITINTINFO_TYPE_NMI: 4173 vcpu->arch.nmi_injected = true; 4174 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4175 break; 4176 case SVM_EXITINTINFO_TYPE_EXEPT: { 4177 u32 error_code = 0; 4178 4179 /* 4180 * Never re-inject a #VC exception. 4181 */ 4182 if (vector == X86_TRAP_VC) 4183 break; 4184 4185 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) 4186 error_code = svm->vmcb->control.exit_int_info_err; 4187 4188 kvm_requeue_exception(vcpu, vector, 4189 exitintinfo & SVM_EXITINTINFO_VALID_ERR, 4190 error_code); 4191 break; 4192 } 4193 case SVM_EXITINTINFO_TYPE_INTR: 4194 kvm_queue_interrupt(vcpu, vector, false); 4195 break; 4196 case SVM_EXITINTINFO_TYPE_SOFT: 4197 kvm_queue_interrupt(vcpu, vector, true); 4198 break; 4199 default: 4200 break; 4201 } 4202 4203 } 4204 4205 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4206 { 4207 struct vcpu_svm *svm = to_svm(vcpu); 4208 struct vmcb_control_area *control = &svm->vmcb->control; 4209 4210 control->exit_int_info = control->event_inj; 4211 control->exit_int_info_err = control->event_inj_err; 4212 control->event_inj = 0; 4213 svm_complete_interrupts(vcpu); 4214 } 4215 4216 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4217 { 4218 if (to_kvm_sev_info(vcpu->kvm)->need_init) 4219 return -EINVAL; 4220 4221 return 1; 4222 } 4223 4224 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4225 { 4226 struct vcpu_svm *svm = to_svm(vcpu); 4227 struct vmcb_control_area *control = &svm->vmcb->control; 4228 4229 /* 4230 * Next RIP must be provided as IRQs are disabled, and accessing guest 4231 * memory to decode the instruction might fault, i.e. might sleep. 4232 */ 4233 if (!nrips || !control->next_rip) 4234 return EXIT_FASTPATH_NONE; 4235 4236 if (is_guest_mode(vcpu)) 4237 return EXIT_FASTPATH_NONE; 4238 4239 switch (control->exit_code) { 4240 case SVM_EXIT_MSR: 4241 if (!control->exit_info_1) 4242 break; 4243 return handle_fastpath_wrmsr(vcpu); 4244 case SVM_EXIT_HLT: 4245 return handle_fastpath_hlt(vcpu); 4246 case SVM_EXIT_INVD: 4247 return handle_fastpath_invd(vcpu); 4248 default: 4249 break; 4250 } 4251 4252 return EXIT_FASTPATH_NONE; 4253 } 4254 4255 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4256 { 4257 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 4258 struct vcpu_svm *svm = to_svm(vcpu); 4259 4260 guest_state_enter_irqoff(); 4261 4262 /* 4263 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of 4264 * VMRUN controls whether or not physical IRQs are masked (KVM always 4265 * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the 4266 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow 4267 * into guest state if delivery of an event during VMRUN triggers a 4268 * #VMEXIT, and the guest_state transitions already tell lockdep that 4269 * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of 4270 * this path, so IRQs aren't actually unmasked while running host code. 4271 */ 4272 raw_local_irq_enable(); 4273 4274 amd_clear_divider(); 4275 4276 if (sev_es_guest(vcpu->kvm)) 4277 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted, 4278 sev_es_host_save_area(sd)); 4279 else 4280 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4281 4282 raw_local_irq_disable(); 4283 4284 guest_state_exit_irqoff(); 4285 } 4286 4287 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags) 4288 { 4289 bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT; 4290 struct vcpu_svm *svm = to_svm(vcpu); 4291 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4292 4293 trace_kvm_entry(vcpu, force_immediate_exit); 4294 4295 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4296 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4297 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4298 4299 /* 4300 * Disable singlestep if we're injecting an interrupt/exception. 4301 * We don't want our modified rflags to be pushed on the stack where 4302 * we might not be able to easily reset them if we disabled NMI 4303 * singlestep later. 4304 */ 4305 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4306 /* 4307 * Event injection happens before external interrupts cause a 4308 * vmexit and interrupts are disabled here, so smp_send_reschedule 4309 * is enough to force an immediate vmexit. 4310 */ 4311 disable_nmi_singlestep(svm); 4312 force_immediate_exit = true; 4313 } 4314 4315 if (force_immediate_exit) 4316 smp_send_reschedule(vcpu->cpu); 4317 4318 if (pre_svm_run(vcpu)) { 4319 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4320 vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR; 4321 vcpu->run->fail_entry.cpu = vcpu->cpu; 4322 return EXIT_FASTPATH_EXIT_USERSPACE; 4323 } 4324 4325 sync_lapic_to_cr8(vcpu); 4326 4327 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4328 svm->vmcb->control.asid = svm->asid; 4329 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4330 } 4331 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4332 4333 if (guest_cpu_cap_has(vcpu, X86_FEATURE_ERAPS) && 4334 kvm_register_is_dirty(vcpu, VCPU_EXREG_ERAPS)) 4335 svm->vmcb->control.erap_ctl |= ERAP_CONTROL_CLEAR_RAP; 4336 4337 svm_hv_update_vp_id(svm->vmcb, vcpu); 4338 4339 /* 4340 * Run with all-zero DR6 unless the guest can write DR6 freely, so that 4341 * KVM can get the exact cause of a #DB. Note, loading guest DR6 from 4342 * KVM's snapshot is only necessary when DR accesses won't exit. 4343 */ 4344 if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6)) 4345 svm_set_dr6(vcpu, vcpu->arch.dr6); 4346 else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))) 4347 svm_set_dr6(vcpu, DR6_ACTIVE_LOW); 4348 4349 clgi(); 4350 4351 /* 4352 * Hardware only context switches DEBUGCTL if LBR virtualization is 4353 * enabled. Manually load DEBUGCTL if necessary (and restore it after 4354 * VM-Exit), as running with the host's DEBUGCTL can negatively affect 4355 * guest state and can even be fatal, e.g. due to Bus Lock Detect. 4356 */ 4357 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && 4358 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) 4359 update_debugctlmsr(svm->vmcb->save.dbgctl); 4360 4361 kvm_wait_lapic_expire(vcpu); 4362 4363 /* 4364 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4365 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4366 * is no need to worry about the conditional branch over the wrmsr 4367 * being speculatively taken. 4368 */ 4369 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4370 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4371 4372 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4373 4374 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4375 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4376 4377 if (!sev_es_guest(vcpu->kvm)) { 4378 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4379 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4380 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4381 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4382 } 4383 vcpu->arch.regs_dirty = 0; 4384 4385 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4386 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4387 4388 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && 4389 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) 4390 update_debugctlmsr(vcpu->arch.host_debugctl); 4391 4392 stgi(); 4393 4394 /* Any pending NMI will happen here */ 4395 4396 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4397 kvm_after_interrupt(vcpu); 4398 4399 sync_cr8_to_lapic(vcpu); 4400 4401 svm->next_rip = 0; 4402 if (is_guest_mode(vcpu)) { 4403 nested_sync_control_from_vmcb02(svm); 4404 4405 /* Track VMRUNs that have made past consistency checking */ 4406 if (svm->nested.nested_run_pending && 4407 !svm_is_vmrun_failure(svm->vmcb->control.exit_code)) 4408 ++vcpu->stat.nested_run; 4409 4410 svm->nested.nested_run_pending = 0; 4411 } 4412 4413 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4414 4415 /* 4416 * Unconditionally mask off the CLEAR_RAP bit, the AND is just as cheap 4417 * as the TEST+Jcc to avoid it. 4418 */ 4419 if (cpu_feature_enabled(X86_FEATURE_ERAPS)) 4420 svm->vmcb->control.erap_ctl &= ~ERAP_CONTROL_CLEAR_RAP; 4421 4422 vmcb_mark_all_clean(svm->vmcb); 4423 4424 /* if exit due to PF check for async PF */ 4425 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4426 vcpu->arch.apf.host_apf_flags = 4427 kvm_read_and_reset_apf_flags(); 4428 4429 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4430 4431 if (!msr_write_intercepted(vcpu, MSR_AMD64_PERF_CNTR_GLOBAL_CTL)) 4432 rdmsrq(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, vcpu_to_pmu(vcpu)->global_ctrl); 4433 4434 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4435 4436 svm_complete_interrupts(vcpu); 4437 4438 return svm_exit_handlers_fastpath(vcpu); 4439 } 4440 4441 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4442 int root_level) 4443 { 4444 struct vcpu_svm *svm = to_svm(vcpu); 4445 unsigned long cr3; 4446 4447 if (npt_enabled) { 4448 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4449 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4450 4451 hv_track_root_tdp(vcpu, root_hpa); 4452 4453 cr3 = vcpu->arch.cr3; 4454 } else if (root_level >= PT64_ROOT_4LEVEL) { 4455 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4456 } else { 4457 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4458 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4459 cr3 = root_hpa; 4460 } 4461 4462 svm->vmcb->save.cr3 = cr3; 4463 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4464 } 4465 4466 static void 4467 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4468 { 4469 /* 4470 * Patch in the VMMCALL instruction: 4471 */ 4472 hypercall[0] = 0x0f; 4473 hypercall[1] = 0x01; 4474 hypercall[2] = 0xd9; 4475 } 4476 4477 /* 4478 * The kvm parameter can be NULL (module initialization, or invocation before 4479 * VM creation). Be sure to check the kvm parameter before using it. 4480 */ 4481 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4482 { 4483 switch (index) { 4484 case MSR_IA32_MCG_EXT_CTL: 4485 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4486 return false; 4487 case MSR_IA32_SMBASE: 4488 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4489 return false; 4490 /* SEV-ES guests do not support SMM, so report false */ 4491 if (kvm && sev_es_guest(kvm)) 4492 return false; 4493 break; 4494 default: 4495 break; 4496 } 4497 4498 return true; 4499 } 4500 4501 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4502 { 4503 struct vcpu_svm *svm = to_svm(vcpu); 4504 4505 /* 4506 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4507 * can only disable all variants of by disallowing CR4.OSXSAVE from 4508 * being set. As a result, if the host has XSAVE and XSAVES, and the 4509 * guest has XSAVE enabled, the guest can execute XSAVES without 4510 * faulting. Treat XSAVES as enabled in this case regardless of 4511 * whether it's advertised to the guest so that KVM context switches 4512 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4513 * the guest read/write access to the host's XSS. 4514 */ 4515 guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES, 4516 boot_cpu_has(X86_FEATURE_XSAVES) && 4517 guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE)); 4518 4519 /* 4520 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that 4521 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4522 * SVM on Intel is bonkers and extremely unlikely to work). 4523 */ 4524 if (guest_cpuid_is_intel_compatible(vcpu)) 4525 guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4526 4527 if (sev_guest(vcpu->kvm)) 4528 sev_vcpu_after_set_cpuid(svm); 4529 } 4530 4531 static bool svm_has_wbinvd_exit(void) 4532 { 4533 return true; 4534 } 4535 4536 #define PRE_EX(exit) { .exit_code = (exit), \ 4537 .stage = X86_ICPT_PRE_EXCEPT, } 4538 #define POST_EX(exit) { .exit_code = (exit), \ 4539 .stage = X86_ICPT_POST_EXCEPT, } 4540 #define POST_MEM(exit) { .exit_code = (exit), \ 4541 .stage = X86_ICPT_POST_MEMACCESS, } 4542 4543 static const struct __x86_intercept { 4544 u32 exit_code; 4545 enum x86_intercept_stage stage; 4546 } x86_intercept_map[] = { 4547 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4548 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4549 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4550 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4551 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4552 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4553 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4554 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4555 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4556 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4557 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4558 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4559 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4560 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4561 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4562 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4563 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4564 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4565 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4566 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4567 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4568 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4569 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4570 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4571 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4572 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4573 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4574 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4575 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4576 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4577 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4578 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4579 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4580 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4581 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4582 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4583 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4584 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4585 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4586 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4587 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4588 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4589 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4590 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4591 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4592 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4593 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4594 }; 4595 4596 #undef PRE_EX 4597 #undef POST_EX 4598 #undef POST_MEM 4599 4600 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4601 struct x86_instruction_info *info, 4602 enum x86_intercept_stage stage, 4603 struct x86_exception *exception) 4604 { 4605 struct vcpu_svm *svm = to_svm(vcpu); 4606 int vmexit, ret = X86EMUL_CONTINUE; 4607 struct __x86_intercept icpt_info; 4608 struct vmcb *vmcb = svm->vmcb; 4609 4610 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4611 goto out; 4612 4613 icpt_info = x86_intercept_map[info->intercept]; 4614 4615 if (stage != icpt_info.stage) 4616 goto out; 4617 4618 switch (icpt_info.exit_code) { 4619 case SVM_EXIT_READ_CR0: 4620 if (info->intercept == x86_intercept_cr_read) 4621 icpt_info.exit_code += info->modrm_reg; 4622 break; 4623 case SVM_EXIT_WRITE_CR0: { 4624 unsigned long cr0, val; 4625 4626 /* 4627 * Adjust the exit code accordingly if a CR other than CR0 is 4628 * being written, and skip straight to the common handling as 4629 * only CR0 has an additional selective intercept. 4630 */ 4631 if (info->intercept == x86_intercept_cr_write && info->modrm_reg) { 4632 icpt_info.exit_code += info->modrm_reg; 4633 break; 4634 } 4635 4636 /* 4637 * Convert the exit_code to SVM_EXIT_CR0_SEL_WRITE if a 4638 * selective CR0 intercept is triggered (the common logic will 4639 * treat the selective intercept as being enabled). Note, the 4640 * unconditional intercept has higher priority, i.e. this is 4641 * only relevant if *only* the selective intercept is enabled. 4642 */ 4643 if (vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_CR0_WRITE) || 4644 !(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))) 4645 break; 4646 4647 /* CLTS never triggers INTERCEPT_SELECTIVE_CR0 */ 4648 if (info->intercept == x86_intercept_clts) 4649 break; 4650 4651 /* LMSW always triggers INTERCEPT_SELECTIVE_CR0 */ 4652 if (info->intercept == x86_intercept_lmsw) { 4653 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4654 break; 4655 } 4656 4657 /* 4658 * MOV-to-CR0 only triggers INTERCEPT_SELECTIVE_CR0 if any bit 4659 * other than SVM_CR0_SELECTIVE_MASK is changed. 4660 */ 4661 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4662 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4663 if (cr0 ^ val) 4664 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4665 break; 4666 } 4667 case SVM_EXIT_READ_DR0: 4668 case SVM_EXIT_WRITE_DR0: 4669 icpt_info.exit_code += info->modrm_reg; 4670 break; 4671 case SVM_EXIT_MSR: 4672 if (info->intercept == x86_intercept_wrmsr) 4673 vmcb->control.exit_info_1 = 1; 4674 else 4675 vmcb->control.exit_info_1 = 0; 4676 break; 4677 case SVM_EXIT_PAUSE: 4678 /* 4679 * We get this for NOP only, but pause 4680 * is rep not, check this here 4681 */ 4682 if (info->rep_prefix != REPE_PREFIX) 4683 goto out; 4684 break; 4685 case SVM_EXIT_IOIO: { 4686 u64 exit_info; 4687 u32 bytes; 4688 4689 if (info->intercept == x86_intercept_in || 4690 info->intercept == x86_intercept_ins) { 4691 exit_info = ((info->src_val & 0xffff) << 16) | 4692 SVM_IOIO_TYPE_MASK; 4693 bytes = info->dst_bytes; 4694 } else { 4695 exit_info = (info->dst_val & 0xffff) << 16; 4696 bytes = info->src_bytes; 4697 } 4698 4699 if (info->intercept == x86_intercept_outs || 4700 info->intercept == x86_intercept_ins) 4701 exit_info |= SVM_IOIO_STR_MASK; 4702 4703 if (info->rep_prefix) 4704 exit_info |= SVM_IOIO_REP_MASK; 4705 4706 bytes = min(bytes, 4u); 4707 4708 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4709 4710 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4711 4712 vmcb->control.exit_info_1 = exit_info; 4713 vmcb->control.exit_info_2 = info->next_rip; 4714 4715 break; 4716 } 4717 default: 4718 break; 4719 } 4720 4721 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4722 if (static_cpu_has(X86_FEATURE_NRIPS)) 4723 vmcb->control.next_rip = info->next_rip; 4724 vmcb->control.exit_code = icpt_info.exit_code; 4725 vmexit = nested_svm_exit_handled(svm); 4726 4727 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4728 : X86EMUL_CONTINUE; 4729 4730 out: 4731 return ret; 4732 } 4733 4734 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4735 { 4736 switch (to_svm(vcpu)->vmcb->control.exit_code) { 4737 case SVM_EXIT_EXCP_BASE + MC_VECTOR: 4738 svm_handle_mce(vcpu); 4739 break; 4740 case SVM_EXIT_INTR: 4741 vcpu->arch.at_instruction_boundary = true; 4742 break; 4743 default: 4744 break; 4745 } 4746 } 4747 4748 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4749 { 4750 /* [63:9] are reserved. */ 4751 vcpu->arch.mcg_cap &= 0x1ff; 4752 } 4753 4754 #ifdef CONFIG_KVM_SMM 4755 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4756 { 4757 struct vcpu_svm *svm = to_svm(vcpu); 4758 4759 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4760 if (!gif_set(svm)) 4761 return true; 4762 4763 return is_smm(vcpu); 4764 } 4765 4766 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4767 { 4768 struct vcpu_svm *svm = to_svm(vcpu); 4769 if (svm->nested.nested_run_pending) 4770 return -EBUSY; 4771 4772 if (svm_smi_blocked(vcpu)) 4773 return 0; 4774 4775 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4776 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4777 return -EBUSY; 4778 4779 return 1; 4780 } 4781 4782 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4783 { 4784 struct vcpu_svm *svm = to_svm(vcpu); 4785 struct kvm_host_map map_save; 4786 int ret; 4787 4788 if (!is_guest_mode(vcpu)) 4789 return 0; 4790 4791 /* 4792 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4793 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4794 */ 4795 4796 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 4797 return 1; 4798 4799 smram->smram64.svm_guest_flag = 1; 4800 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4801 4802 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4803 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4804 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4805 4806 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4807 if (ret) 4808 return ret; 4809 4810 /* 4811 * KVM uses VMCB01 to store L1 host state while L2 runs but 4812 * VMCB01 is going to be used during SMM and thus the state will 4813 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4814 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4815 * format of the area is identical to guest save area offsetted 4816 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4817 * within 'struct vmcb'). Note: HSAVE area may also be used by 4818 * L1 hypervisor to save additional host context (e.g. KVM does 4819 * that, see svm_prepare_switch_to_guest()) which must be 4820 * preserved. 4821 */ 4822 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4823 return 1; 4824 4825 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4826 4827 svm_copy_vmrun_state(map_save.hva + 0x400, 4828 &svm->vmcb01.ptr->save); 4829 4830 kvm_vcpu_unmap(vcpu, &map_save); 4831 return 0; 4832 } 4833 4834 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4835 { 4836 struct vcpu_svm *svm = to_svm(vcpu); 4837 struct kvm_host_map map, map_save; 4838 struct vmcb *vmcb12; 4839 int ret; 4840 4841 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4842 4843 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 4844 return 0; 4845 4846 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4847 if (!smram64->svm_guest_flag) 4848 return 0; 4849 4850 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) 4851 return 1; 4852 4853 if (!(smram64->efer & EFER_SVME)) 4854 return 1; 4855 4856 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4857 return 1; 4858 4859 ret = 1; 4860 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4861 goto unmap_map; 4862 4863 if (svm_allocate_nested(svm)) 4864 goto unmap_save; 4865 4866 /* 4867 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4868 * used during SMM (see svm_enter_smm()) 4869 */ 4870 4871 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4872 4873 /* 4874 * Enter the nested guest now 4875 */ 4876 4877 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4878 4879 vmcb12 = map.hva; 4880 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4881 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4882 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4883 4884 if (ret) 4885 goto unmap_save; 4886 4887 svm->nested.nested_run_pending = 1; 4888 4889 unmap_save: 4890 kvm_vcpu_unmap(vcpu, &map_save); 4891 unmap_map: 4892 kvm_vcpu_unmap(vcpu, &map); 4893 return ret; 4894 } 4895 4896 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4897 { 4898 struct vcpu_svm *svm = to_svm(vcpu); 4899 4900 if (!gif_set(svm)) { 4901 if (vgif) 4902 svm_set_intercept(svm, INTERCEPT_STGI); 4903 /* STGI will cause a vm exit */ 4904 } else { 4905 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4906 } 4907 } 4908 #endif 4909 4910 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4911 void *insn, int insn_len) 4912 { 4913 struct vcpu_svm *svm = to_svm(vcpu); 4914 bool smep, smap, is_user; 4915 u64 error_code; 4916 4917 /* Check that emulation is possible during event vectoring */ 4918 if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) && 4919 !kvm_can_emulate_event_vectoring(emul_type)) 4920 return X86EMUL_UNHANDLEABLE_VECTORING; 4921 4922 /* Emulation is always possible when KVM has access to all guest state. */ 4923 if (!sev_guest(vcpu->kvm)) 4924 return X86EMUL_CONTINUE; 4925 4926 /* #UD and #GP should never be intercepted for SEV guests. */ 4927 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4928 EMULTYPE_TRAP_UD_FORCED | 4929 EMULTYPE_VMWARE_GP)); 4930 4931 /* 4932 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4933 * to guest register state. 4934 */ 4935 if (sev_es_guest(vcpu->kvm)) 4936 return X86EMUL_RETRY_INSTR; 4937 4938 /* 4939 * Emulation is possible if the instruction is already decoded, e.g. 4940 * when completing I/O after returning from userspace. 4941 */ 4942 if (emul_type & EMULTYPE_NO_DECODE) 4943 return X86EMUL_CONTINUE; 4944 4945 /* 4946 * Emulation is possible for SEV guests if and only if a prefilled 4947 * buffer containing the bytes of the intercepted instruction is 4948 * available. SEV guest memory is encrypted with a guest specific key 4949 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and 4950 * decode garbage. 4951 * 4952 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4953 * KVM reached this point without an instruction buffer. In practice, 4954 * this path should never be hit by a well-behaved guest, e.g. KVM 4955 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4956 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4957 * access, and needs to be handled by KVM to avoid putting the guest 4958 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4959 * its the least awful option given lack of insight into the guest. 4960 * 4961 * If KVM is trying to skip an instruction, simply resume the guest. 4962 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4963 * will attempt to re-inject the INT3/INTO and skip the instruction. 4964 * In that scenario, retrying the INT3/INTO and hoping the guest will 4965 * make forward progress is the only option that has a chance of 4966 * success (and in practice it will work the vast majority of the time). 4967 */ 4968 if (unlikely(!insn)) { 4969 if (emul_type & EMULTYPE_SKIP) 4970 return X86EMUL_UNHANDLEABLE; 4971 4972 kvm_queue_exception(vcpu, UD_VECTOR); 4973 return X86EMUL_PROPAGATE_FAULT; 4974 } 4975 4976 /* 4977 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4978 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4979 * the faulting instruction because the code fetch itself faulted, e.g. 4980 * the guest attempted to fetch from emulated MMIO or a guest page 4981 * table used to translate CS:RIP resides in emulated MMIO. 4982 */ 4983 if (likely(insn_len)) 4984 return X86EMUL_CONTINUE; 4985 4986 /* 4987 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4988 * 4989 * Errata: 4990 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4991 * possible that CPU microcode implementing DecodeAssist will fail to 4992 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4993 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4994 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4995 * gives up and does not fill the instruction bytes buffer. 4996 * 4997 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4998 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4999 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 5000 * GuestIntrBytes field of the VMCB. 5001 * 5002 * This does _not_ mean that the erratum has been encountered, as the 5003 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 5004 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 5005 * encountered a reserved/not-present #PF. 5006 * 5007 * To hit the erratum, the following conditions must be true: 5008 * 1. CR4.SMAP=1 (obviously). 5009 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 5010 * have been hit as the guest would have encountered a SMEP 5011 * violation #PF, not a #NPF. 5012 * 3. The #NPF is not due to a code fetch, in which case failure to 5013 * retrieve the instruction bytes is legitimate (see abvoe). 5014 * 5015 * In addition, don't apply the erratum workaround if the #NPF occurred 5016 * while translating guest page tables (see below). 5017 */ 5018 error_code = svm->vmcb->control.exit_info_1; 5019 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 5020 goto resume_guest; 5021 5022 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 5023 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 5024 is_user = svm_get_cpl(vcpu) == 3; 5025 if (smap && (!smep || is_user)) { 5026 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 5027 5028 /* 5029 * If the fault occurred in userspace, arbitrarily inject #GP 5030 * to avoid killing the guest and to hopefully avoid confusing 5031 * the guest kernel too much, e.g. injecting #PF would not be 5032 * coherent with respect to the guest's page tables. Request 5033 * triple fault if the fault occurred in the kernel as there's 5034 * no fault that KVM can inject without confusing the guest. 5035 * In practice, the triple fault is moot as no sane SEV kernel 5036 * will execute from user memory while also running with SMAP=1. 5037 */ 5038 if (is_user) 5039 kvm_inject_gp(vcpu, 0); 5040 else 5041 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5042 return X86EMUL_PROPAGATE_FAULT; 5043 } 5044 5045 resume_guest: 5046 /* 5047 * If the erratum was not hit, simply resume the guest and let it fault 5048 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 5049 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 5050 * userspace will kill the guest, and letting the emulator read garbage 5051 * will yield random behavior and potentially corrupt the guest. 5052 * 5053 * Simply resuming the guest is technically not a violation of the SEV 5054 * architecture. AMD's APM states that all code fetches and page table 5055 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 5056 * APM also states that encrypted accesses to MMIO are "ignored", but 5057 * doesn't explicitly define "ignored", i.e. doing nothing and letting 5058 * the guest spin is technically "ignoring" the access. 5059 */ 5060 return X86EMUL_RETRY_INSTR; 5061 } 5062 5063 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 5064 { 5065 struct vcpu_svm *svm = to_svm(vcpu); 5066 5067 return !gif_set(svm); 5068 } 5069 5070 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 5071 { 5072 if (!sev_es_guest(vcpu->kvm)) 5073 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 5074 5075 sev_vcpu_deliver_sipi_vector(vcpu, vector); 5076 } 5077 5078 static void svm_vm_destroy(struct kvm *kvm) 5079 { 5080 avic_vm_destroy(kvm); 5081 sev_vm_destroy(kvm); 5082 5083 svm_srso_vm_destroy(); 5084 } 5085 5086 static int svm_vm_init(struct kvm *kvm) 5087 { 5088 int type = kvm->arch.vm_type; 5089 5090 if (type != KVM_X86_DEFAULT_VM && 5091 type != KVM_X86_SW_PROTECTED_VM) { 5092 kvm->arch.has_protected_state = 5093 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM); 5094 to_kvm_sev_info(kvm)->need_init = true; 5095 5096 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM); 5097 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem; 5098 } 5099 5100 if (!pause_filter_count || !pause_filter_thresh) 5101 kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE); 5102 5103 if (enable_apicv) { 5104 int ret = avic_vm_init(kvm); 5105 if (ret) 5106 return ret; 5107 } 5108 5109 svm_srso_vm_init(); 5110 return 0; 5111 } 5112 5113 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu) 5114 { 5115 struct page *page = snp_safe_alloc_page(); 5116 5117 if (!page) 5118 return NULL; 5119 5120 return page_address(page); 5121 } 5122 5123 struct kvm_x86_ops svm_x86_ops __initdata = { 5124 .name = KBUILD_MODNAME, 5125 5126 .check_processor_compatibility = svm_check_processor_compat, 5127 5128 .hardware_unsetup = svm_hardware_unsetup, 5129 .enable_virtualization_cpu = svm_enable_virtualization_cpu, 5130 .disable_virtualization_cpu = svm_disable_virtualization_cpu, 5131 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu, 5132 .has_emulated_msr = svm_has_emulated_msr, 5133 5134 .vcpu_precreate = svm_vcpu_precreate, 5135 .vcpu_create = svm_vcpu_create, 5136 .vcpu_free = svm_vcpu_free, 5137 .vcpu_reset = svm_vcpu_reset, 5138 5139 .vm_size = sizeof(struct kvm_svm), 5140 .vm_init = svm_vm_init, 5141 .vm_destroy = svm_vm_destroy, 5142 5143 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 5144 .vcpu_load = svm_vcpu_load, 5145 .vcpu_put = svm_vcpu_put, 5146 .vcpu_blocking = avic_vcpu_blocking, 5147 .vcpu_unblocking = avic_vcpu_unblocking, 5148 5149 .update_exception_bitmap = svm_update_exception_bitmap, 5150 .get_feature_msr = svm_get_feature_msr, 5151 .get_msr = svm_get_msr, 5152 .set_msr = svm_set_msr, 5153 .get_segment_base = svm_get_segment_base, 5154 .get_segment = svm_get_segment, 5155 .set_segment = svm_set_segment, 5156 .get_cpl = svm_get_cpl, 5157 .get_cpl_no_cache = svm_get_cpl, 5158 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 5159 .is_valid_cr0 = svm_is_valid_cr0, 5160 .set_cr0 = svm_set_cr0, 5161 .post_set_cr3 = sev_post_set_cr3, 5162 .is_valid_cr4 = svm_is_valid_cr4, 5163 .set_cr4 = svm_set_cr4, 5164 .set_efer = svm_set_efer, 5165 .get_idt = svm_get_idt, 5166 .set_idt = svm_set_idt, 5167 .get_gdt = svm_get_gdt, 5168 .set_gdt = svm_set_gdt, 5169 .set_dr7 = svm_set_dr7, 5170 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 5171 .cache_reg = svm_cache_reg, 5172 .get_rflags = svm_get_rflags, 5173 .set_rflags = svm_set_rflags, 5174 .get_if_flag = svm_get_if_flag, 5175 5176 .flush_tlb_all = svm_flush_tlb_all, 5177 .flush_tlb_current = svm_flush_tlb_current, 5178 .flush_tlb_gva = svm_flush_tlb_gva, 5179 .flush_tlb_guest = svm_flush_tlb_guest, 5180 5181 .vcpu_pre_run = svm_vcpu_pre_run, 5182 .vcpu_run = svm_vcpu_run, 5183 .handle_exit = svm_handle_exit, 5184 .skip_emulated_instruction = svm_skip_emulated_instruction, 5185 .update_emulated_instruction = NULL, 5186 .set_interrupt_shadow = svm_set_interrupt_shadow, 5187 .get_interrupt_shadow = svm_get_interrupt_shadow, 5188 .patch_hypercall = svm_patch_hypercall, 5189 .inject_irq = svm_inject_irq, 5190 .inject_nmi = svm_inject_nmi, 5191 .is_vnmi_pending = svm_is_vnmi_pending, 5192 .set_vnmi_pending = svm_set_vnmi_pending, 5193 .inject_exception = svm_inject_exception, 5194 .cancel_injection = svm_cancel_injection, 5195 .interrupt_allowed = svm_interrupt_allowed, 5196 .nmi_allowed = svm_nmi_allowed, 5197 .get_nmi_mask = svm_get_nmi_mask, 5198 .set_nmi_mask = svm_set_nmi_mask, 5199 .enable_nmi_window = svm_enable_nmi_window, 5200 .enable_irq_window = svm_enable_irq_window, 5201 .update_cr8_intercept = svm_update_cr8_intercept, 5202 5203 .x2apic_icr_is_split = true, 5204 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 5205 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 5206 .apicv_post_state_restore = avic_apicv_post_state_restore, 5207 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 5208 5209 .get_exit_info = svm_get_exit_info, 5210 .get_entry_info = svm_get_entry_info, 5211 5212 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 5213 5214 .has_wbinvd_exit = svm_has_wbinvd_exit, 5215 5216 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 5217 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 5218 .write_tsc_offset = svm_write_tsc_offset, 5219 .write_tsc_multiplier = svm_write_tsc_multiplier, 5220 5221 .load_mmu_pgd = svm_load_mmu_pgd, 5222 5223 .check_intercept = svm_check_intercept, 5224 .handle_exit_irqoff = svm_handle_exit_irqoff, 5225 5226 .nested_ops = &svm_nested_ops, 5227 5228 .deliver_interrupt = svm_deliver_interrupt, 5229 .pi_update_irte = avic_pi_update_irte, 5230 .setup_mce = svm_setup_mce, 5231 5232 #ifdef CONFIG_KVM_SMM 5233 .smi_allowed = svm_smi_allowed, 5234 .enter_smm = svm_enter_smm, 5235 .leave_smm = svm_leave_smm, 5236 .enable_smi_window = svm_enable_smi_window, 5237 #endif 5238 5239 #ifdef CONFIG_KVM_AMD_SEV 5240 .dev_get_attr = sev_dev_get_attr, 5241 .mem_enc_ioctl = sev_mem_enc_ioctl, 5242 .mem_enc_register_region = sev_mem_enc_register_region, 5243 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5244 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5245 5246 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5247 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5248 #endif 5249 .check_emulate_instruction = svm_check_emulate_instruction, 5250 5251 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5252 5253 .recalc_intercepts = svm_recalc_intercepts, 5254 .complete_emulated_msr = svm_complete_emulated_msr, 5255 5256 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5257 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5258 .alloc_apic_backing_page = svm_alloc_apic_backing_page, 5259 5260 .gmem_prepare = sev_gmem_prepare, 5261 .gmem_invalidate = sev_gmem_invalidate, 5262 .gmem_max_mapping_level = sev_gmem_max_mapping_level, 5263 }; 5264 5265 /* 5266 * The default MMIO mask is a single bit (excluding the present bit), 5267 * which could conflict with the memory encryption bit. Check for 5268 * memory encryption support and override the default MMIO mask if 5269 * memory encryption is enabled. 5270 */ 5271 static __init void svm_adjust_mmio_mask(void) 5272 { 5273 unsigned int enc_bit, mask_bit; 5274 u64 msr, mask; 5275 5276 /* If there is no memory encryption support, use existing mask */ 5277 if (cpuid_eax(0x80000000) < 0x8000001f) 5278 return; 5279 5280 /* If memory encryption is not enabled, use existing mask */ 5281 rdmsrq(MSR_AMD64_SYSCFG, msr); 5282 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5283 return; 5284 5285 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5286 mask_bit = boot_cpu_data.x86_phys_bits; 5287 5288 /* Increment the mask bit if it is the same as the encryption bit */ 5289 if (enc_bit == mask_bit) 5290 mask_bit++; 5291 5292 /* 5293 * If the mask bit location is below 52, then some bits above the 5294 * physical addressing limit will always be reserved, so use the 5295 * rsvd_bits() function to generate the mask. This mask, along with 5296 * the present bit, will be used to generate a page fault with 5297 * PFER.RSV = 1. 5298 * 5299 * If the mask bit location is 52 (or above), then clear the mask. 5300 */ 5301 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5302 5303 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5304 } 5305 5306 static __init void svm_set_cpu_caps(void) 5307 { 5308 kvm_initialize_cpu_caps(); 5309 5310 kvm_caps.supported_perf_cap = 0; 5311 5312 kvm_cpu_cap_clear(X86_FEATURE_IBT); 5313 5314 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5315 if (nested) { 5316 kvm_cpu_cap_set(X86_FEATURE_SVM); 5317 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5318 5319 /* 5320 * KVM currently flushes TLBs on *every* nested SVM transition, 5321 * and so for all intents and purposes KVM supports flushing by 5322 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush. 5323 */ 5324 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID); 5325 5326 if (nrips) 5327 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5328 5329 if (npt_enabled) 5330 kvm_cpu_cap_set(X86_FEATURE_NPT); 5331 5332 if (tsc_scaling) 5333 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5334 5335 if (vls) 5336 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5337 if (lbrv) 5338 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5339 5340 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5341 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5342 5343 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5344 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5345 5346 if (vgif) 5347 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5348 5349 if (vnmi) 5350 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5351 5352 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5353 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5354 } 5355 5356 if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD)) 5357 kvm_caps.has_bus_lock_exit = true; 5358 5359 /* CPUID 0x80000008 */ 5360 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5361 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5362 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5363 5364 if (enable_pmu) { 5365 /* 5366 * Enumerate support for PERFCTR_CORE if and only if KVM has 5367 * access to enough counters to virtualize "core" support, 5368 * otherwise limit vPMU support to the legacy number of counters. 5369 */ 5370 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5371 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5372 kvm_pmu_cap.num_counters_gp); 5373 else 5374 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5375 5376 if (kvm_pmu_cap.version != 2 || 5377 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5378 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5379 } 5380 5381 /* CPUID 0x8000001F (SME/SEV features) */ 5382 sev_set_cpu_caps(); 5383 5384 /* 5385 * Clear capabilities that are automatically configured by common code, 5386 * but that require explicit SVM support (that isn't yet implemented). 5387 */ 5388 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT); 5389 kvm_cpu_cap_clear(X86_FEATURE_MSR_IMM); 5390 5391 kvm_setup_xss_caps(); 5392 kvm_finalize_cpu_caps(); 5393 } 5394 5395 static __init int svm_hardware_setup(void) 5396 { 5397 void *iopm_va; 5398 int cpu, r; 5399 5400 /* 5401 * NX is required for shadow paging and for NPT if the NX huge pages 5402 * mitigation is enabled. 5403 */ 5404 if (!boot_cpu_has(X86_FEATURE_NX)) { 5405 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5406 return -EOPNOTSUPP; 5407 } 5408 kvm_enable_efer_bits(EFER_NX); 5409 5410 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5411 XFEATURE_MASK_BNDCSR); 5412 5413 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5414 kvm_enable_efer_bits(EFER_FFXSR); 5415 5416 if (tsc_scaling) { 5417 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5418 tsc_scaling = false; 5419 } else { 5420 pr_info("TSC scaling supported\n"); 5421 kvm_caps.has_tsc_control = true; 5422 } 5423 } 5424 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5425 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5426 5427 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5428 5429 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5430 kvm_enable_efer_bits(EFER_AUTOIBRS); 5431 5432 /* Check for pause filtering support */ 5433 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5434 pause_filter_count = 0; 5435 pause_filter_thresh = 0; 5436 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5437 pause_filter_thresh = 0; 5438 } 5439 5440 if (nested) { 5441 pr_info("Nested Virtualization enabled\n"); 5442 kvm_enable_efer_bits(EFER_SVME); 5443 if (!boot_cpu_has(X86_FEATURE_EFER_LMSLE_MBZ)) 5444 kvm_enable_efer_bits(EFER_LMSLE); 5445 5446 r = nested_svm_init_msrpm_merge_offsets(); 5447 if (r) 5448 return r; 5449 } 5450 5451 /* 5452 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5453 * NPT isn't supported if the host is using 2-level paging since host 5454 * CR4 is unchanged on VMRUN. 5455 */ 5456 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5457 npt_enabled = false; 5458 5459 if (!boot_cpu_has(X86_FEATURE_NPT)) 5460 npt_enabled = false; 5461 5462 /* Force VM NPT level equal to the host's paging level */ 5463 kvm_configure_mmu(npt_enabled, get_npt_level(), 5464 get_npt_level(), PG_LEVEL_1G); 5465 pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled)); 5466 5467 /* 5468 * It seems that on AMD processors PTE's accessed bit is 5469 * being set by the CPU hardware before the NPF vmexit. 5470 * This is not expected behaviour and our tests fail because 5471 * of it. 5472 * A workaround here is to disable support for 5473 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5474 * In this case userspace can know if there is support using 5475 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5476 * it 5477 * If future AMD CPU models change the behaviour described above, 5478 * this variable can be changed accordingly 5479 */ 5480 allow_smaller_maxphyaddr = !npt_enabled; 5481 5482 /* Setup shadow_me_value and shadow_me_mask */ 5483 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5484 5485 svm_adjust_mmio_mask(); 5486 5487 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5488 5489 if (lbrv) { 5490 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5491 lbrv = false; 5492 else 5493 pr_info("LBR virtualization supported\n"); 5494 } 5495 5496 iopm_va = svm_alloc_permissions_map(IOPM_SIZE, GFP_KERNEL); 5497 if (!iopm_va) 5498 return -ENOMEM; 5499 5500 iopm_base = __sme_set(__pa(iopm_va)); 5501 5502 /* 5503 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5504 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5505 */ 5506 sev_hardware_setup(); 5507 5508 svm_hv_hardware_setup(); 5509 5510 enable_apicv = avic_hardware_setup(); 5511 if (!enable_apicv) { 5512 enable_ipiv = false; 5513 svm_x86_ops.vcpu_blocking = NULL; 5514 svm_x86_ops.vcpu_unblocking = NULL; 5515 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5516 } 5517 5518 if (vls) { 5519 if (!npt_enabled || 5520 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5521 !IS_ENABLED(CONFIG_X86_64)) { 5522 vls = false; 5523 } else { 5524 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5525 } 5526 } 5527 5528 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5529 svm_gp_erratum_intercept = false; 5530 5531 if (vgif) { 5532 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5533 vgif = false; 5534 else 5535 pr_info("Virtual GIF supported\n"); 5536 } 5537 5538 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5539 if (vnmi) 5540 pr_info("Virtual NMI enabled\n"); 5541 5542 if (!vnmi) { 5543 svm_x86_ops.is_vnmi_pending = NULL; 5544 svm_x86_ops.set_vnmi_pending = NULL; 5545 } 5546 5547 if (!enable_pmu) 5548 pr_info("PMU virtualization is disabled\n"); 5549 5550 svm_set_cpu_caps(); 5551 5552 kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED; 5553 5554 for_each_possible_cpu(cpu) { 5555 r = svm_cpu_init(cpu); 5556 if (r) 5557 goto err; 5558 } 5559 5560 return 0; 5561 5562 err: 5563 svm_hardware_unsetup(); 5564 return r; 5565 } 5566 5567 5568 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5569 .hardware_setup = svm_hardware_setup, 5570 5571 .runtime_ops = &svm_x86_ops, 5572 .pmu_ops = &amd_pmu_ops, 5573 }; 5574 5575 static void __svm_exit(void) 5576 { 5577 kvm_x86_vendor_exit(); 5578 } 5579 5580 static int __init svm_init(void) 5581 { 5582 int r; 5583 5584 KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_svm); 5585 5586 __unused_size_checks(); 5587 5588 if (!kvm_is_svm_supported()) 5589 return -EOPNOTSUPP; 5590 5591 r = kvm_x86_vendor_init(&svm_init_ops); 5592 if (r) 5593 return r; 5594 5595 /* 5596 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5597 * exposed to userspace! 5598 */ 5599 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5600 THIS_MODULE); 5601 if (r) 5602 goto err_kvm_init; 5603 5604 return 0; 5605 5606 err_kvm_init: 5607 __svm_exit(); 5608 return r; 5609 } 5610 5611 static void __exit svm_exit(void) 5612 { 5613 kvm_exit(); 5614 __svm_exit(); 5615 } 5616 5617 module_init(svm_init) 5618 module_exit(svm_exit) 5619