xref: /linux/drivers/net/ethernet/intel/ice/ice_txrx.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/mm.h>
7 #include <linux/netdevice.h>
8 #include <linux/prefetch.h>
9 #include <linux/bpf_trace.h>
10 #include <linux/net/intel/libie/rx.h>
11 #include <net/libeth/xdp.h>
12 #include <net/dsfield.h>
13 #include <net/mpls.h>
14 #include <net/xdp.h>
15 #include "ice_txrx_lib.h"
16 #include "ice_lib.h"
17 #include "ice.h"
18 #include "ice_trace.h"
19 #include "ice_dcb_lib.h"
20 #include "ice_xsk.h"
21 #include "ice_eswitch.h"
22 
23 #define ICE_RX_HDR_SIZE		256
24 
25 #define ICE_FDIR_CLEAN_DELAY 10
26 
27 /**
28  * ice_prgm_fdir_fltr - Program a Flow Director filter
29  * @vsi: VSI to send dummy packet
30  * @fdir_desc: flow director descriptor
31  * @raw_packet: allocated buffer for flow director
32  */
33 int
34 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
35 		   u8 *raw_packet)
36 {
37 	struct ice_tx_buf *tx_buf, *first;
38 	struct ice_fltr_desc *f_desc;
39 	struct ice_tx_desc *tx_desc;
40 	struct ice_tx_ring *tx_ring;
41 	struct device *dev;
42 	dma_addr_t dma;
43 	u32 td_cmd;
44 	u16 i;
45 
46 	/* VSI and Tx ring */
47 	if (!vsi)
48 		return -ENOENT;
49 	tx_ring = vsi->tx_rings[0];
50 	if (!tx_ring || !tx_ring->desc)
51 		return -ENOENT;
52 	dev = tx_ring->dev;
53 
54 	/* we are using two descriptors to add/del a filter and we can wait */
55 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
56 		if (!i)
57 			return -EAGAIN;
58 		msleep_interruptible(1);
59 	}
60 
61 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
62 			     DMA_TO_DEVICE);
63 
64 	if (dma_mapping_error(dev, dma))
65 		return -EINVAL;
66 
67 	/* grab the next descriptor */
68 	i = tx_ring->next_to_use;
69 	first = &tx_ring->tx_buf[i];
70 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
71 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
72 
73 	i++;
74 	i = (i < tx_ring->count) ? i : 0;
75 	tx_desc = ICE_TX_DESC(tx_ring, i);
76 	tx_buf = &tx_ring->tx_buf[i];
77 
78 	i++;
79 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
80 
81 	memset(tx_buf, 0, sizeof(*tx_buf));
82 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
83 	dma_unmap_addr_set(tx_buf, dma, dma);
84 
85 	tx_desc->buf_addr = cpu_to_le64(dma);
86 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
87 		 ICE_TX_DESC_CMD_RE;
88 
89 	tx_buf->type = ICE_TX_BUF_DUMMY;
90 	tx_buf->raw_buf = raw_packet;
91 
92 	tx_desc->cmd_type_offset_bsz =
93 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
94 
95 	/* Force memory write to complete before letting h/w know
96 	 * there are new descriptors to fetch.
97 	 */
98 	wmb();
99 
100 	/* mark the data descriptor to be watched */
101 	first->next_to_watch = tx_desc;
102 
103 	writel(tx_ring->next_to_use, tx_ring->tail);
104 
105 	return 0;
106 }
107 
108 /**
109  * ice_unmap_and_free_tx_buf - Release a Tx buffer
110  * @ring: the ring that owns the buffer
111  * @tx_buf: the buffer to free
112  */
113 static void
114 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
115 {
116 	if (tx_buf->type != ICE_TX_BUF_XDP_TX && dma_unmap_len(tx_buf, len))
117 		dma_unmap_page(ring->dev,
118 			       dma_unmap_addr(tx_buf, dma),
119 			       dma_unmap_len(tx_buf, len),
120 			       DMA_TO_DEVICE);
121 
122 	switch (tx_buf->type) {
123 	case ICE_TX_BUF_DUMMY:
124 		devm_kfree(ring->dev, tx_buf->raw_buf);
125 		break;
126 	case ICE_TX_BUF_SKB:
127 		dev_kfree_skb_any(tx_buf->skb);
128 		break;
129 	case ICE_TX_BUF_XDP_TX:
130 		libeth_xdp_return_va(tx_buf->raw_buf, false);
131 		break;
132 	case ICE_TX_BUF_XDP_XMIT:
133 		xdp_return_frame(tx_buf->xdpf);
134 		break;
135 	}
136 
137 	tx_buf->next_to_watch = NULL;
138 	tx_buf->type = ICE_TX_BUF_EMPTY;
139 	dma_unmap_len_set(tx_buf, len, 0);
140 	/* tx_buf must be completely set up in the transmit path */
141 }
142 
143 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
144 {
145 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
146 }
147 
148 /**
149  * ice_clean_tstamp_ring - clean time stamp ring
150  * @tx_ring: Tx ring to clean the Time Stamp ring for
151  */
152 static void ice_clean_tstamp_ring(struct ice_tx_ring *tx_ring)
153 {
154 	struct ice_tstamp_ring *tstamp_ring = tx_ring->tstamp_ring;
155 	u32 size;
156 
157 	if (!tstamp_ring->desc)
158 		return;
159 
160 	size = ALIGN(tstamp_ring->count * sizeof(struct ice_ts_desc),
161 		     PAGE_SIZE);
162 	memset(tstamp_ring->desc, 0, size);
163 	tstamp_ring->next_to_use = 0;
164 }
165 
166 /**
167  * ice_free_tstamp_ring - free time stamp resources per queue
168  * @tx_ring: Tx ring to free the Time Stamp ring for
169  */
170 void ice_free_tstamp_ring(struct ice_tx_ring *tx_ring)
171 {
172 	struct ice_tstamp_ring *tstamp_ring = tx_ring->tstamp_ring;
173 	u32 size;
174 
175 	if (!tstamp_ring->desc)
176 		return;
177 
178 	ice_clean_tstamp_ring(tx_ring);
179 	size = ALIGN(tstamp_ring->count * sizeof(struct ice_ts_desc),
180 		     PAGE_SIZE);
181 	dmam_free_coherent(tx_ring->dev, size, tstamp_ring->desc,
182 			   tstamp_ring->dma);
183 	tstamp_ring->desc = NULL;
184 }
185 
186 /**
187  * ice_free_tx_tstamp_ring - free time stamp resources per Tx ring
188  * @tx_ring: Tx ring to free the Time Stamp ring for
189  */
190 void ice_free_tx_tstamp_ring(struct ice_tx_ring *tx_ring)
191 {
192 	ice_free_tstamp_ring(tx_ring);
193 	kfree_rcu(tx_ring->tstamp_ring, rcu);
194 	tx_ring->tstamp_ring = NULL;
195 	tx_ring->flags &= ~ICE_TX_FLAGS_TXTIME;
196 }
197 
198 /**
199  * ice_clean_tx_ring - Free any empty Tx buffers
200  * @tx_ring: ring to be cleaned
201  */
202 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
203 {
204 	u32 size;
205 	u16 i;
206 
207 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
208 		ice_xsk_clean_xdp_ring(tx_ring);
209 		goto tx_skip_free;
210 	}
211 
212 	/* ring already cleared, nothing to do */
213 	if (!tx_ring->tx_buf)
214 		return;
215 
216 	/* Free all the Tx ring sk_buffs */
217 	for (i = 0; i < tx_ring->count; i++)
218 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
219 
220 tx_skip_free:
221 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
222 
223 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
224 		     PAGE_SIZE);
225 	/* Zero out the descriptor ring */
226 	memset(tx_ring->desc, 0, size);
227 
228 	tx_ring->next_to_use = 0;
229 	tx_ring->next_to_clean = 0;
230 
231 	if (!tx_ring->netdev)
232 		return;
233 
234 	/* cleanup Tx queue statistics */
235 	netdev_tx_reset_queue(txring_txq(tx_ring));
236 
237 	if (ice_is_txtime_cfg(tx_ring))
238 		ice_free_tx_tstamp_ring(tx_ring);
239 }
240 
241 /**
242  * ice_free_tx_ring - Free Tx resources per queue
243  * @tx_ring: Tx descriptor ring for a specific queue
244  *
245  * Free all transmit software resources
246  */
247 void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
248 {
249 	u32 size;
250 
251 	ice_clean_tx_ring(tx_ring);
252 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
253 	tx_ring->tx_buf = NULL;
254 
255 	if (tx_ring->desc) {
256 		size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
257 			     PAGE_SIZE);
258 		dmam_free_coherent(tx_ring->dev, size,
259 				   tx_ring->desc, tx_ring->dma);
260 		tx_ring->desc = NULL;
261 	}
262 }
263 
264 /**
265  * ice_clean_tx_irq - Reclaim resources after transmit completes
266  * @tx_ring: Tx ring to clean
267  * @napi_budget: Used to determine if we are in netpoll
268  *
269  * Returns true if there's any budget left (e.g. the clean is finished)
270  */
271 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
272 {
273 	unsigned int total_bytes = 0, total_pkts = 0;
274 	unsigned int budget = ICE_DFLT_IRQ_WORK;
275 	struct ice_vsi *vsi = tx_ring->vsi;
276 	s16 i = tx_ring->next_to_clean;
277 	struct ice_tx_desc *tx_desc;
278 	struct ice_tx_buf *tx_buf;
279 
280 	/* get the bql data ready */
281 	netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
282 
283 	tx_buf = &tx_ring->tx_buf[i];
284 	tx_desc = ICE_TX_DESC(tx_ring, i);
285 	i -= tx_ring->count;
286 
287 	prefetch(&vsi->state);
288 
289 	do {
290 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
291 
292 		/* if next_to_watch is not set then there is no work pending */
293 		if (!eop_desc)
294 			break;
295 
296 		/* follow the guidelines of other drivers */
297 		prefetchw(&tx_buf->skb->users);
298 
299 		smp_rmb();	/* prevent any other reads prior to eop_desc */
300 
301 		ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
302 		/* if the descriptor isn't done, no work yet to do */
303 		if (!(eop_desc->cmd_type_offset_bsz &
304 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
305 			break;
306 
307 		/* clear next_to_watch to prevent false hangs */
308 		tx_buf->next_to_watch = NULL;
309 
310 		/* update the statistics for this packet */
311 		total_bytes += tx_buf->bytecount;
312 		total_pkts += tx_buf->gso_segs;
313 
314 		/* free the skb */
315 		napi_consume_skb(tx_buf->skb, napi_budget);
316 
317 		/* unmap skb header data */
318 		dma_unmap_single(tx_ring->dev,
319 				 dma_unmap_addr(tx_buf, dma),
320 				 dma_unmap_len(tx_buf, len),
321 				 DMA_TO_DEVICE);
322 
323 		/* clear tx_buf data */
324 		tx_buf->type = ICE_TX_BUF_EMPTY;
325 		dma_unmap_len_set(tx_buf, len, 0);
326 
327 		/* unmap remaining buffers */
328 		while (tx_desc != eop_desc) {
329 			ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
330 			tx_buf++;
331 			tx_desc++;
332 			i++;
333 			if (unlikely(!i)) {
334 				i -= tx_ring->count;
335 				tx_buf = tx_ring->tx_buf;
336 				tx_desc = ICE_TX_DESC(tx_ring, 0);
337 			}
338 
339 			/* unmap any remaining paged data */
340 			if (dma_unmap_len(tx_buf, len)) {
341 				dma_unmap_page(tx_ring->dev,
342 					       dma_unmap_addr(tx_buf, dma),
343 					       dma_unmap_len(tx_buf, len),
344 					       DMA_TO_DEVICE);
345 				dma_unmap_len_set(tx_buf, len, 0);
346 			}
347 		}
348 		ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
349 
350 		/* move us one more past the eop_desc for start of next pkt */
351 		tx_buf++;
352 		tx_desc++;
353 		i++;
354 		if (unlikely(!i)) {
355 			i -= tx_ring->count;
356 			tx_buf = tx_ring->tx_buf;
357 			tx_desc = ICE_TX_DESC(tx_ring, 0);
358 		}
359 
360 		prefetch(tx_desc);
361 
362 		/* update budget accounting */
363 		budget--;
364 	} while (likely(budget));
365 
366 	i += tx_ring->count;
367 	tx_ring->next_to_clean = i;
368 
369 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
370 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
371 
372 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
373 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
374 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
375 		/* Make sure that anybody stopping the queue after this
376 		 * sees the new next_to_clean.
377 		 */
378 		smp_mb();
379 		if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
380 		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
381 			netif_tx_wake_queue(txring_txq(tx_ring));
382 			++tx_ring->ring_stats->tx_stats.restart_q;
383 		}
384 	}
385 
386 	return !!budget;
387 }
388 
389 /**
390  * ice_alloc_tstamp_ring - allocate the Time Stamp ring
391  * @tx_ring: Tx ring to allocate the Time Stamp ring for
392  *
393  * Return: 0 on success, negative on error
394  */
395 static int ice_alloc_tstamp_ring(struct ice_tx_ring *tx_ring)
396 {
397 	struct ice_tstamp_ring *tstamp_ring;
398 
399 	/* allocate with kzalloc(), free with kfree_rcu() */
400 	tstamp_ring = kzalloc(sizeof(*tstamp_ring), GFP_KERNEL);
401 	if (!tstamp_ring)
402 		return -ENOMEM;
403 
404 	tstamp_ring->tx_ring = tx_ring;
405 	tx_ring->tstamp_ring = tstamp_ring;
406 	tstamp_ring->desc = NULL;
407 	tstamp_ring->count = ice_calc_ts_ring_count(tx_ring);
408 	tx_ring->flags |= ICE_TX_FLAGS_TXTIME;
409 	return 0;
410 }
411 
412 /**
413  * ice_setup_tstamp_ring - allocate the Time Stamp ring
414  * @tx_ring: Tx ring to set up the Time Stamp ring for
415  *
416  * Return: 0 on success, negative on error
417  */
418 static int ice_setup_tstamp_ring(struct ice_tx_ring *tx_ring)
419 {
420 	struct ice_tstamp_ring *tstamp_ring = tx_ring->tstamp_ring;
421 	struct device *dev = tx_ring->dev;
422 	u32 size;
423 
424 	/* round up to nearest page */
425 	size = ALIGN(tstamp_ring->count * sizeof(struct ice_ts_desc),
426 		     PAGE_SIZE);
427 	tstamp_ring->desc = dmam_alloc_coherent(dev, size, &tstamp_ring->dma,
428 						GFP_KERNEL);
429 	if (!tstamp_ring->desc) {
430 		dev_err(dev, "Unable to allocate memory for Time stamp Ring, size=%d\n",
431 			size);
432 		return -ENOMEM;
433 	}
434 
435 	tstamp_ring->next_to_use = 0;
436 	return 0;
437 }
438 
439 /**
440  * ice_alloc_setup_tstamp_ring - Allocate and setup the Time Stamp ring
441  * @tx_ring: Tx ring to allocate and setup the Time Stamp ring for
442  *
443  * Return: 0 on success, negative on error
444  */
445 int ice_alloc_setup_tstamp_ring(struct ice_tx_ring *tx_ring)
446 {
447 	struct device *dev = tx_ring->dev;
448 	int err;
449 
450 	err = ice_alloc_tstamp_ring(tx_ring);
451 	if (err) {
452 		dev_err(dev, "Unable to allocate Time stamp ring for Tx ring %d\n",
453 			tx_ring->q_index);
454 		return err;
455 	}
456 
457 	err = ice_setup_tstamp_ring(tx_ring);
458 	if (err) {
459 		dev_err(dev, "Unable to setup Time stamp ring for Tx ring %d\n",
460 			tx_ring->q_index);
461 		ice_free_tx_tstamp_ring(tx_ring);
462 		return err;
463 	}
464 	return 0;
465 }
466 
467 /**
468  * ice_setup_tx_ring - Allocate the Tx descriptors
469  * @tx_ring: the Tx ring to set up
470  *
471  * Return 0 on success, negative on error
472  */
473 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
474 {
475 	struct device *dev = tx_ring->dev;
476 	u32 size;
477 
478 	if (!dev)
479 		return -ENOMEM;
480 
481 	/* warn if we are about to overwrite the pointer */
482 	WARN_ON(tx_ring->tx_buf);
483 	tx_ring->tx_buf =
484 		devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
485 			     GFP_KERNEL);
486 	if (!tx_ring->tx_buf)
487 		return -ENOMEM;
488 
489 	/* round up to nearest page */
490 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
491 		     PAGE_SIZE);
492 	tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
493 					    GFP_KERNEL);
494 	if (!tx_ring->desc) {
495 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
496 			size);
497 		goto err;
498 	}
499 
500 	tx_ring->next_to_use = 0;
501 	tx_ring->next_to_clean = 0;
502 	tx_ring->ring_stats->tx_stats.prev_pkt = -1;
503 	return 0;
504 
505 err:
506 	devm_kfree(dev, tx_ring->tx_buf);
507 	tx_ring->tx_buf = NULL;
508 	return -ENOMEM;
509 }
510 
511 void ice_rxq_pp_destroy(struct ice_rx_ring *rq)
512 {
513 	struct libeth_fq fq = {
514 		.fqes	= rq->rx_fqes,
515 		.pp	= rq->pp,
516 	};
517 
518 	libeth_rx_fq_destroy(&fq);
519 	rq->rx_fqes = NULL;
520 	rq->pp = NULL;
521 
522 	if (!rq->hdr_pp)
523 		return;
524 
525 	fq.fqes = rq->hdr_fqes;
526 	fq.pp = rq->hdr_pp;
527 
528 	libeth_rx_fq_destroy(&fq);
529 	rq->hdr_fqes = NULL;
530 	rq->hdr_pp = NULL;
531 }
532 
533 /**
534  * ice_clean_rx_ring - Free Rx buffers
535  * @rx_ring: ring to be cleaned
536  */
537 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
538 {
539 	u32 size;
540 
541 	if (rx_ring->xsk_pool) {
542 		ice_xsk_clean_rx_ring(rx_ring);
543 		goto rx_skip_free;
544 	}
545 
546 	/* ring already cleared, nothing to do */
547 	if (!rx_ring->rx_fqes)
548 		return;
549 
550 	libeth_xdp_return_stash(&rx_ring->xdp);
551 
552 	/* Free all the Rx ring sk_buffs */
553 	for (u32 i = rx_ring->next_to_clean; i != rx_ring->next_to_use; ) {
554 		libeth_rx_recycle_slow(rx_ring->rx_fqes[i].netmem);
555 
556 		if (rx_ring->hdr_pp)
557 			libeth_rx_recycle_slow(rx_ring->hdr_fqes[i].netmem);
558 
559 		if (unlikely(++i == rx_ring->count))
560 			i = 0;
561 	}
562 
563 	if (rx_ring->vsi->type == ICE_VSI_PF &&
564 	    xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) {
565 		xdp_rxq_info_detach_mem_model(&rx_ring->xdp_rxq);
566 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
567 	}
568 
569 	ice_rxq_pp_destroy(rx_ring);
570 
571 rx_skip_free:
572 	/* Zero out the descriptor ring */
573 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
574 		     PAGE_SIZE);
575 	memset(rx_ring->desc, 0, size);
576 
577 	rx_ring->next_to_alloc = 0;
578 	rx_ring->next_to_clean = 0;
579 	rx_ring->next_to_use = 0;
580 }
581 
582 /**
583  * ice_free_rx_ring - Free Rx resources
584  * @rx_ring: ring to clean the resources from
585  *
586  * Free all receive software resources
587  */
588 void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
589 {
590 	struct device *dev = ice_pf_to_dev(rx_ring->vsi->back);
591 	u32 size;
592 
593 	ice_clean_rx_ring(rx_ring);
594 	WRITE_ONCE(rx_ring->xdp_prog, NULL);
595 	if (rx_ring->xsk_pool) {
596 		kfree(rx_ring->xdp_buf);
597 		rx_ring->xdp_buf = NULL;
598 	}
599 
600 	if (rx_ring->desc) {
601 		size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
602 			     PAGE_SIZE);
603 		dmam_free_coherent(dev, size, rx_ring->desc, rx_ring->dma);
604 		rx_ring->desc = NULL;
605 	}
606 }
607 
608 /**
609  * ice_setup_rx_ring - Allocate the Rx descriptors
610  * @rx_ring: the Rx ring to set up
611  *
612  * Return 0 on success, negative on error
613  */
614 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
615 {
616 	struct device *dev = ice_pf_to_dev(rx_ring->vsi->back);
617 	u32 size;
618 
619 	/* round up to nearest page */
620 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
621 		     PAGE_SIZE);
622 	rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
623 					    GFP_KERNEL);
624 	if (!rx_ring->desc) {
625 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
626 			size);
627 		return -ENOMEM;
628 	}
629 
630 	rx_ring->next_to_use = 0;
631 	rx_ring->next_to_clean = 0;
632 
633 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
634 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
635 
636 	return 0;
637 }
638 
639 /**
640  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
641  * @rx_ring: Rx ring
642  * @xdp: xdp_buff used as input to the XDP program
643  * @xdp_prog: XDP program to run
644  * @xdp_ring: ring to be used for XDP_TX action
645  * @eop_desc: Last descriptor in packet to read metadata from
646  *
647  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
648  */
649 static u32
650 ice_run_xdp(struct ice_rx_ring *rx_ring, struct libeth_xdp_buff *xdp,
651 	    struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring,
652 	    union ice_32b_rx_flex_desc *eop_desc)
653 {
654 	unsigned int ret = ICE_XDP_PASS;
655 	u32 act;
656 
657 	if (!xdp_prog)
658 		goto exit;
659 
660 	xdp->desc = eop_desc;
661 
662 	act = bpf_prog_run_xdp(xdp_prog, &xdp->base);
663 	switch (act) {
664 	case XDP_PASS:
665 		break;
666 	case XDP_TX:
667 		if (static_branch_unlikely(&ice_xdp_locking_key))
668 			spin_lock(&xdp_ring->tx_lock);
669 		ret = __ice_xmit_xdp_ring(&xdp->base, xdp_ring, false);
670 		if (static_branch_unlikely(&ice_xdp_locking_key))
671 			spin_unlock(&xdp_ring->tx_lock);
672 		if (ret == ICE_XDP_CONSUMED)
673 			goto out_failure;
674 		break;
675 	case XDP_REDIRECT:
676 		if (xdp_do_redirect(rx_ring->netdev, &xdp->base, xdp_prog))
677 			goto out_failure;
678 		ret = ICE_XDP_REDIR;
679 		break;
680 	default:
681 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
682 		fallthrough;
683 	case XDP_ABORTED:
684 out_failure:
685 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
686 		fallthrough;
687 	case XDP_DROP:
688 		libeth_xdp_return_buff(xdp);
689 		ret = ICE_XDP_CONSUMED;
690 	}
691 
692 exit:
693 	return ret;
694 }
695 
696 /**
697  * ice_xmit_xdp_ring - submit frame to XDP ring for transmission
698  * @xdpf: XDP frame that will be converted to XDP buff
699  * @xdp_ring: XDP ring for transmission
700  */
701 static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf,
702 			     struct ice_tx_ring *xdp_ring)
703 {
704 	struct xdp_buff xdp;
705 
706 	xdp.data_hard_start = (void *)xdpf;
707 	xdp.data = xdpf->data;
708 	xdp.data_end = xdp.data + xdpf->len;
709 	xdp.frame_sz = xdpf->frame_sz;
710 	xdp.flags = xdpf->flags;
711 
712 	return __ice_xmit_xdp_ring(&xdp, xdp_ring, true);
713 }
714 
715 /**
716  * ice_xdp_xmit - submit packets to XDP ring for transmission
717  * @dev: netdev
718  * @n: number of XDP frames to be transmitted
719  * @frames: XDP frames to be transmitted
720  * @flags: transmit flags
721  *
722  * Returns number of frames successfully sent. Failed frames
723  * will be free'ed by XDP core.
724  * For error cases, a negative errno code is returned and no-frames
725  * are transmitted (caller must handle freeing frames).
726  */
727 int
728 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
729 	     u32 flags)
730 {
731 	struct ice_netdev_priv *np = netdev_priv(dev);
732 	unsigned int queue_index = smp_processor_id();
733 	struct ice_vsi *vsi = np->vsi;
734 	struct ice_tx_ring *xdp_ring;
735 	struct ice_tx_buf *tx_buf;
736 	int nxmit = 0, i;
737 
738 	if (test_bit(ICE_VSI_DOWN, vsi->state))
739 		return -ENETDOWN;
740 
741 	if (!ice_is_xdp_ena_vsi(vsi))
742 		return -ENXIO;
743 
744 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
745 		return -EINVAL;
746 
747 	if (static_branch_unlikely(&ice_xdp_locking_key)) {
748 		queue_index %= vsi->num_xdp_txq;
749 		xdp_ring = vsi->xdp_rings[queue_index];
750 		spin_lock(&xdp_ring->tx_lock);
751 	} else {
752 		/* Generally, should not happen */
753 		if (unlikely(queue_index >= vsi->num_xdp_txq))
754 			return -ENXIO;
755 		xdp_ring = vsi->xdp_rings[queue_index];
756 	}
757 
758 	tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
759 	for (i = 0; i < n; i++) {
760 		const struct xdp_frame *xdpf = frames[i];
761 		int err;
762 
763 		err = ice_xmit_xdp_ring(xdpf, xdp_ring);
764 		if (err != ICE_XDP_TX)
765 			break;
766 		nxmit++;
767 	}
768 
769 	tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
770 	if (unlikely(flags & XDP_XMIT_FLUSH))
771 		ice_xdp_ring_update_tail(xdp_ring);
772 
773 	if (static_branch_unlikely(&ice_xdp_locking_key))
774 		spin_unlock(&xdp_ring->tx_lock);
775 
776 	return nxmit;
777 }
778 
779 /**
780  * ice_init_ctrl_rx_descs - Initialize Rx descriptors for control vsi.
781  * @rx_ring: ring to init descriptors on
782  * @count: number of descriptors to initialize
783  */
784 void ice_init_ctrl_rx_descs(struct ice_rx_ring *rx_ring, u32 count)
785 {
786 	union ice_32b_rx_flex_desc *rx_desc;
787 	u32 ntu = rx_ring->next_to_use;
788 
789 	if (!count)
790 		return;
791 
792 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
793 
794 	do {
795 		rx_desc++;
796 		ntu++;
797 		if (unlikely(ntu == rx_ring->count)) {
798 			rx_desc = ICE_RX_DESC(rx_ring, 0);
799 			ntu = 0;
800 		}
801 
802 		rx_desc->wb.status_error0 = 0;
803 		count--;
804 	} while (count);
805 
806 	if (rx_ring->next_to_use != ntu)
807 		ice_release_rx_desc(rx_ring, ntu);
808 }
809 
810 /**
811  * ice_alloc_rx_bufs - Replace used receive buffers
812  * @rx_ring: ring to place buffers on
813  * @cleaned_count: number of buffers to replace
814  *
815  * Returns false if all allocations were successful, true if any fail. Returning
816  * true signals to the caller that we didn't replace cleaned_count buffers and
817  * there is more work to do.
818  *
819  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
820  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
821  * multiple tail writes per call.
822  */
823 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count)
824 {
825 	const struct libeth_fq_fp hdr_fq = {
826 		.pp		= rx_ring->hdr_pp,
827 		.fqes		= rx_ring->hdr_fqes,
828 		.truesize	= rx_ring->hdr_truesize,
829 		.count		= rx_ring->count,
830 	};
831 	const struct libeth_fq_fp fq = {
832 		.pp		= rx_ring->pp,
833 		.fqes		= rx_ring->rx_fqes,
834 		.truesize	= rx_ring->truesize,
835 		.count		= rx_ring->count,
836 	};
837 	union ice_32b_rx_flex_desc *rx_desc;
838 	u16 ntu = rx_ring->next_to_use;
839 
840 	/* do nothing if no valid netdev defined */
841 	if (!rx_ring->netdev || !cleaned_count)
842 		return false;
843 
844 	/* get the Rx descriptor and buffer based on next_to_use */
845 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
846 
847 	do {
848 		dma_addr_t addr;
849 
850 		addr = libeth_rx_alloc(&fq, ntu);
851 		if (addr == DMA_MAPPING_ERROR) {
852 			rx_ring->ring_stats->rx_stats.alloc_page_failed++;
853 			break;
854 		}
855 
856 		/* Refresh the desc even if buffer_addrs didn't change
857 		 * because each write-back erases this info.
858 		 */
859 		rx_desc->read.pkt_addr = cpu_to_le64(addr);
860 
861 		if (!hdr_fq.pp)
862 			goto next;
863 
864 		addr = libeth_rx_alloc(&hdr_fq, ntu);
865 		if (addr == DMA_MAPPING_ERROR) {
866 			rx_ring->ring_stats->rx_stats.alloc_page_failed++;
867 
868 			libeth_rx_recycle_slow(fq.fqes[ntu].netmem);
869 			break;
870 		}
871 
872 		rx_desc->read.hdr_addr = cpu_to_le64(addr);
873 
874 next:
875 		rx_desc++;
876 		ntu++;
877 		if (unlikely(ntu == rx_ring->count)) {
878 			rx_desc = ICE_RX_DESC(rx_ring, 0);
879 			ntu = 0;
880 		}
881 
882 		/* clear the status bits for the next_to_use descriptor */
883 		rx_desc->wb.status_error0 = 0;
884 
885 		cleaned_count--;
886 	} while (cleaned_count);
887 
888 	if (rx_ring->next_to_use != ntu)
889 		ice_release_rx_desc(rx_ring, ntu);
890 
891 	return !!cleaned_count;
892 }
893 
894 /**
895  * ice_clean_ctrl_rx_irq - Clean descriptors from flow director Rx ring
896  * @rx_ring: Rx descriptor ring for ctrl_vsi to transact packets on
897  *
898  * This function cleans Rx descriptors from the ctrl_vsi Rx ring used
899  * to set flow director rules on VFs.
900  */
901 void ice_clean_ctrl_rx_irq(struct ice_rx_ring *rx_ring)
902 {
903 	u32 ntc = rx_ring->next_to_clean;
904 	unsigned int total_rx_pkts = 0;
905 	u32 cnt = rx_ring->count;
906 
907 	while (likely(total_rx_pkts < ICE_DFLT_IRQ_WORK)) {
908 		struct ice_vsi *ctrl_vsi = rx_ring->vsi;
909 		union ice_32b_rx_flex_desc *rx_desc;
910 		u16 stat_err_bits;
911 
912 		rx_desc = ICE_RX_DESC(rx_ring, ntc);
913 
914 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
915 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
916 			break;
917 
918 		dma_rmb();
919 
920 		if (ctrl_vsi->vf)
921 			ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
922 
923 		if (++ntc == cnt)
924 			ntc = 0;
925 		total_rx_pkts++;
926 	}
927 
928 	rx_ring->next_to_clean = ntc;
929 	ice_init_ctrl_rx_descs(rx_ring, ICE_DESC_UNUSED(rx_ring));
930 }
931 
932 /**
933  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
934  * @rx_ring: Rx descriptor ring to transact packets on
935  * @budget: Total limit on number of packets to process
936  *
937  * This function provides a "bounce buffer" approach to Rx interrupt
938  * processing. The advantage to this is that on systems that have
939  * expensive overhead for IOMMU access this provides a means of avoiding
940  * it by maintaining the mapping of the page to the system.
941  *
942  * Returns amount of work completed
943  */
944 static int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
945 {
946 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
947 	struct ice_tx_ring *xdp_ring = NULL;
948 	struct bpf_prog *xdp_prog = NULL;
949 	u32 ntc = rx_ring->next_to_clean;
950 	LIBETH_XDP_ONSTACK_BUFF(xdp);
951 	u32 cached_ntu, xdp_verdict;
952 	u32 cnt = rx_ring->count;
953 	u32 xdp_xmit = 0;
954 	bool failure;
955 
956 	libeth_xdp_init_buff(xdp, &rx_ring->xdp, &rx_ring->xdp_rxq);
957 
958 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
959 	if (xdp_prog) {
960 		xdp_ring = rx_ring->xdp_ring;
961 		cached_ntu = xdp_ring->next_to_use;
962 	}
963 
964 	/* start the loop to process Rx packets bounded by 'budget' */
965 	while (likely(total_rx_pkts < (unsigned int)budget)) {
966 		union ice_32b_rx_flex_desc *rx_desc;
967 		struct libeth_fqe *rx_buf;
968 		struct sk_buff *skb;
969 		unsigned int size;
970 		u16 stat_err_bits;
971 		u16 vlan_tci;
972 		bool rxe;
973 
974 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
975 		rx_desc = ICE_RX_DESC(rx_ring, ntc);
976 
977 		/*
978 		 * The DD bit will always be zero for unused descriptors
979 		 * because it's cleared in cleanup or when setting the DMA
980 		 * address of the header buffer, which never uses the DD bit.
981 		 * If the hardware wrote the descriptor, it will be non-zero.
982 		 */
983 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
984 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
985 			break;
986 
987 		/* This memory barrier is needed to keep us from reading
988 		 * any other fields out of the rx_desc until we know the
989 		 * DD bit is set.
990 		 */
991 		dma_rmb();
992 
993 		ice_trace(clean_rx_irq, rx_ring, rx_desc);
994 
995 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_HBO_S) |
996 				BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
997 		rxe = ice_test_staterr(rx_desc->wb.status_error0,
998 				       stat_err_bits);
999 
1000 		if (!rx_ring->hdr_pp)
1001 			goto payload;
1002 
1003 		size = le16_get_bits(rx_desc->wb.hdr_len_sph_flex_flags1,
1004 				     ICE_RX_FLEX_DESC_HDR_LEN_M);
1005 		if (unlikely(rxe))
1006 			size = 0;
1007 
1008 		rx_buf = &rx_ring->hdr_fqes[ntc];
1009 		libeth_xdp_process_buff(xdp, rx_buf, size);
1010 		rx_buf->netmem = 0;
1011 
1012 payload:
1013 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1014 			ICE_RX_FLX_DESC_PKT_LEN_M;
1015 		if (unlikely(rxe))
1016 			size = 0;
1017 
1018 		/* retrieve a buffer from the ring */
1019 		rx_buf = &rx_ring->rx_fqes[ntc];
1020 		libeth_xdp_process_buff(xdp, rx_buf, size);
1021 
1022 		if (++ntc == cnt)
1023 			ntc = 0;
1024 
1025 		/* skip if it is NOP desc */
1026 		if (ice_is_non_eop(rx_ring, rx_desc) || unlikely(!xdp->data))
1027 			continue;
1028 
1029 		xdp_verdict = ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_desc);
1030 		if (xdp_verdict == ICE_XDP_PASS)
1031 			goto construct_skb;
1032 
1033 		if (xdp_verdict & (ICE_XDP_TX | ICE_XDP_REDIR))
1034 			xdp_xmit |= xdp_verdict;
1035 		total_rx_bytes += xdp_get_buff_len(&xdp->base);
1036 		total_rx_pkts++;
1037 
1038 		xdp->data = NULL;
1039 		continue;
1040 
1041 construct_skb:
1042 		skb = xdp_build_skb_from_buff(&xdp->base);
1043 		xdp->data = NULL;
1044 
1045 		/* exit if we failed to retrieve a buffer */
1046 		if (!skb) {
1047 			libeth_xdp_return_buff_slow(xdp);
1048 			rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
1049 			continue;
1050 		}
1051 
1052 		vlan_tci = ice_get_vlan_tci(rx_desc);
1053 
1054 		/* probably a little skewed due to removing CRC */
1055 		total_rx_bytes += skb->len;
1056 
1057 		/* populate checksum, VLAN, and protocol */
1058 		ice_process_skb_fields(rx_ring, rx_desc, skb);
1059 
1060 		ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1061 		/* send completed skb up the stack */
1062 		ice_receive_skb(rx_ring, skb, vlan_tci);
1063 
1064 		/* update budget accounting */
1065 		total_rx_pkts++;
1066 	}
1067 
1068 	rx_ring->next_to_clean = ntc;
1069 	/* return up to cleaned_count buffers to hardware */
1070 	failure = ice_alloc_rx_bufs(rx_ring, ICE_DESC_UNUSED(rx_ring));
1071 
1072 	if (xdp_xmit)
1073 		ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu);
1074 
1075 	libeth_xdp_save_buff(&rx_ring->xdp, xdp);
1076 
1077 	if (rx_ring->ring_stats)
1078 		ice_update_rx_ring_stats(rx_ring, total_rx_pkts,
1079 					 total_rx_bytes);
1080 
1081 	/* guarantee a trip back through this routine if there was a failure */
1082 	return failure ? budget : (int)total_rx_pkts;
1083 }
1084 
1085 static void __ice_update_sample(struct ice_q_vector *q_vector,
1086 				struct ice_ring_container *rc,
1087 				struct dim_sample *sample,
1088 				bool is_tx)
1089 {
1090 	u64 packets = 0, bytes = 0;
1091 
1092 	if (is_tx) {
1093 		struct ice_tx_ring *tx_ring;
1094 
1095 		ice_for_each_tx_ring(tx_ring, *rc) {
1096 			struct ice_ring_stats *ring_stats;
1097 
1098 			ring_stats = tx_ring->ring_stats;
1099 			if (!ring_stats)
1100 				continue;
1101 			packets += ring_stats->stats.pkts;
1102 			bytes += ring_stats->stats.bytes;
1103 		}
1104 	} else {
1105 		struct ice_rx_ring *rx_ring;
1106 
1107 		ice_for_each_rx_ring(rx_ring, *rc) {
1108 			struct ice_ring_stats *ring_stats;
1109 
1110 			ring_stats = rx_ring->ring_stats;
1111 			if (!ring_stats)
1112 				continue;
1113 			packets += ring_stats->stats.pkts;
1114 			bytes += ring_stats->stats.bytes;
1115 		}
1116 	}
1117 
1118 	dim_update_sample(q_vector->total_events, packets, bytes, sample);
1119 	sample->comp_ctr = 0;
1120 
1121 	/* if dim settings get stale, like when not updated for 1
1122 	 * second or longer, force it to start again. This addresses the
1123 	 * frequent case of an idle queue being switched to by the
1124 	 * scheduler. The 1,000 here means 1,000 milliseconds.
1125 	 */
1126 	if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
1127 		rc->dim.state = DIM_START_MEASURE;
1128 }
1129 
1130 /**
1131  * ice_net_dim - Update net DIM algorithm
1132  * @q_vector: the vector associated with the interrupt
1133  *
1134  * Create a DIM sample and notify net_dim() so that it can possibly decide
1135  * a new ITR value based on incoming packets, bytes, and interrupts.
1136  *
1137  * This function is a no-op if the ring is not configured to dynamic ITR.
1138  */
1139 static void ice_net_dim(struct ice_q_vector *q_vector)
1140 {
1141 	struct ice_ring_container *tx = &q_vector->tx;
1142 	struct ice_ring_container *rx = &q_vector->rx;
1143 
1144 	if (ITR_IS_DYNAMIC(tx)) {
1145 		struct dim_sample dim_sample;
1146 
1147 		__ice_update_sample(q_vector, tx, &dim_sample, true);
1148 		net_dim(&tx->dim, &dim_sample);
1149 	}
1150 
1151 	if (ITR_IS_DYNAMIC(rx)) {
1152 		struct dim_sample dim_sample;
1153 
1154 		__ice_update_sample(q_vector, rx, &dim_sample, false);
1155 		net_dim(&rx->dim, &dim_sample);
1156 	}
1157 }
1158 
1159 /**
1160  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1161  * @itr_idx: interrupt throttling index
1162  * @itr: interrupt throttling value in usecs
1163  */
1164 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1165 {
1166 	/* The ITR value is reported in microseconds, and the register value is
1167 	 * recorded in 2 microsecond units. For this reason we only need to
1168 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1169 	 * granularity as a shift instead of division. The mask makes sure the
1170 	 * ITR value is never odd so we don't accidentally write into the field
1171 	 * prior to the ITR field.
1172 	 */
1173 	itr &= ICE_ITR_MASK;
1174 
1175 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1176 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1177 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1178 }
1179 
1180 /**
1181  * ice_enable_interrupt - re-enable MSI-X interrupt
1182  * @q_vector: the vector associated with the interrupt to enable
1183  *
1184  * If the VSI is down, the interrupt will not be re-enabled. Also,
1185  * when enabling the interrupt always reset the wb_on_itr to false
1186  * and trigger a software interrupt to clean out internal state.
1187  */
1188 static void ice_enable_interrupt(struct ice_q_vector *q_vector)
1189 {
1190 	struct ice_vsi *vsi = q_vector->vsi;
1191 	bool wb_en = q_vector->wb_on_itr;
1192 	u32 itr_val;
1193 
1194 	if (test_bit(ICE_DOWN, vsi->state))
1195 		return;
1196 
1197 	/* trigger an ITR delayed software interrupt when exiting busy poll, to
1198 	 * make sure to catch any pending cleanups that might have been missed
1199 	 * due to interrupt state transition. If busy poll or poll isn't
1200 	 * enabled, then don't update ITR, and just enable the interrupt.
1201 	 */
1202 	if (!wb_en) {
1203 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1204 	} else {
1205 		q_vector->wb_on_itr = false;
1206 
1207 		/* do two things here with a single write. Set up the third ITR
1208 		 * index to be used for software interrupt moderation, and then
1209 		 * trigger a software interrupt with a rate limit of 20K on
1210 		 * software interrupts, this will help avoid high interrupt
1211 		 * loads due to frequently polling and exiting polling.
1212 		 */
1213 		itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
1214 		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1215 			   ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
1216 			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1217 	}
1218 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1219 }
1220 
1221 /**
1222  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1223  * @q_vector: q_vector to set WB_ON_ITR on
1224  *
1225  * We need to tell hardware to write-back completed descriptors even when
1226  * interrupts are disabled. Descriptors will be written back on cache line
1227  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1228  * descriptors may not be written back if they don't fill a cache line until
1229  * the next interrupt.
1230  *
1231  * This sets the write-back frequency to whatever was set previously for the
1232  * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1233  * aren't meddling with the INTENA_M bit.
1234  */
1235 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1236 {
1237 	struct ice_vsi *vsi = q_vector->vsi;
1238 
1239 	/* already in wb_on_itr mode no need to change it */
1240 	if (q_vector->wb_on_itr)
1241 		return;
1242 
1243 	/* use previously set ITR values for all of the ITR indices by
1244 	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1245 	 * be static in non-adaptive mode (user configured)
1246 	 */
1247 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1248 	     FIELD_PREP(GLINT_DYN_CTL_ITR_INDX_M, ICE_ITR_NONE) |
1249 	     FIELD_PREP(GLINT_DYN_CTL_INTENA_MSK_M, 1) |
1250 	     FIELD_PREP(GLINT_DYN_CTL_WB_ON_ITR_M, 1));
1251 
1252 	q_vector->wb_on_itr = true;
1253 }
1254 
1255 /**
1256  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1257  * @napi: napi struct with our devices info in it
1258  * @budget: amount of work driver is allowed to do this pass, in packets
1259  *
1260  * This function will clean all queues associated with a q_vector.
1261  *
1262  * Returns the amount of work done
1263  */
1264 int ice_napi_poll(struct napi_struct *napi, int budget)
1265 {
1266 	struct ice_q_vector *q_vector =
1267 				container_of(napi, struct ice_q_vector, napi);
1268 	struct ice_tx_ring *tx_ring;
1269 	struct ice_rx_ring *rx_ring;
1270 	bool clean_complete = true;
1271 	int budget_per_ring;
1272 	int work_done = 0;
1273 
1274 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1275 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1276 	 */
1277 	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
1278 		struct xsk_buff_pool *xsk_pool = READ_ONCE(tx_ring->xsk_pool);
1279 		bool wd;
1280 
1281 		if (xsk_pool)
1282 			wd = ice_xmit_zc(tx_ring, xsk_pool);
1283 		else if (ice_ring_is_xdp(tx_ring))
1284 			wd = true;
1285 		else
1286 			wd = ice_clean_tx_irq(tx_ring, budget);
1287 
1288 		if (!wd)
1289 			clean_complete = false;
1290 	}
1291 
1292 	/* Handle case where we are called by netpoll with a budget of 0 */
1293 	if (unlikely(budget <= 0))
1294 		return budget;
1295 
1296 	/* normally we have 1 Rx ring per q_vector */
1297 	if (unlikely(q_vector->num_ring_rx > 1))
1298 		/* We attempt to distribute budget to each Rx queue fairly, but
1299 		 * don't allow the budget to go below 1 because that would exit
1300 		 * polling early.
1301 		 */
1302 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1303 	else
1304 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1305 		budget_per_ring = budget;
1306 
1307 	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
1308 		struct xsk_buff_pool *xsk_pool = READ_ONCE(rx_ring->xsk_pool);
1309 		int cleaned;
1310 
1311 		/* A dedicated path for zero-copy allows making a single
1312 		 * comparison in the irq context instead of many inside the
1313 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1314 		 */
1315 		cleaned = rx_ring->xsk_pool ?
1316 			  ice_clean_rx_irq_zc(rx_ring, xsk_pool, budget_per_ring) :
1317 			  ice_clean_rx_irq(rx_ring, budget_per_ring);
1318 		work_done += cleaned;
1319 		/* if we clean as many as budgeted, we must not be done */
1320 		if (cleaned >= budget_per_ring)
1321 			clean_complete = false;
1322 	}
1323 
1324 	/* If work not completed, return budget and polling will return */
1325 	if (!clean_complete) {
1326 		/* Set the writeback on ITR so partial completions of
1327 		 * cache-lines will still continue even if we're polling.
1328 		 */
1329 		ice_set_wb_on_itr(q_vector);
1330 		return budget;
1331 	}
1332 
1333 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1334 	 * poll us due to busy-polling
1335 	 */
1336 	if (napi_complete_done(napi, work_done)) {
1337 		ice_net_dim(q_vector);
1338 		ice_enable_interrupt(q_vector);
1339 	} else {
1340 		ice_set_wb_on_itr(q_vector);
1341 	}
1342 
1343 	return min_t(int, work_done, budget - 1);
1344 }
1345 
1346 /**
1347  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1348  * @tx_ring: the ring to be checked
1349  * @size: the size buffer we want to assure is available
1350  *
1351  * Returns -EBUSY if a stop is needed, else 0
1352  */
1353 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1354 {
1355 	netif_tx_stop_queue(txring_txq(tx_ring));
1356 	/* Memory barrier before checking head and tail */
1357 	smp_mb();
1358 
1359 	/* Check again in a case another CPU has just made room available. */
1360 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1361 		return -EBUSY;
1362 
1363 	/* A reprieve! - use start_queue because it doesn't call schedule */
1364 	netif_tx_start_queue(txring_txq(tx_ring));
1365 	++tx_ring->ring_stats->tx_stats.restart_q;
1366 	return 0;
1367 }
1368 
1369 /**
1370  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1371  * @tx_ring: the ring to be checked
1372  * @size:    the size buffer we want to assure is available
1373  *
1374  * Returns 0 if stop is not needed
1375  */
1376 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1377 {
1378 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1379 		return 0;
1380 
1381 	return __ice_maybe_stop_tx(tx_ring, size);
1382 }
1383 
1384 /**
1385  * ice_tx_map - Build the Tx descriptor
1386  * @tx_ring: ring to send buffer on
1387  * @first: first buffer info buffer to use
1388  * @off: pointer to struct that holds offload parameters
1389  *
1390  * This function loops over the skb data pointed to by *first
1391  * and gets a physical address for each memory location and programs
1392  * it and the length into the transmit descriptor.
1393  */
1394 static void
1395 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
1396 	   struct ice_tx_offload_params *off)
1397 {
1398 	u64 td_offset, td_tag, td_cmd;
1399 	u16 i = tx_ring->next_to_use;
1400 	unsigned int data_len, size;
1401 	struct ice_tx_desc *tx_desc;
1402 	struct ice_tx_buf *tx_buf;
1403 	struct sk_buff *skb;
1404 	skb_frag_t *frag;
1405 	dma_addr_t dma;
1406 	bool kick;
1407 
1408 	td_tag = off->td_l2tag1;
1409 	td_cmd = off->td_cmd;
1410 	td_offset = off->td_offset;
1411 	skb = first->skb;
1412 
1413 	data_len = skb->data_len;
1414 	size = skb_headlen(skb);
1415 
1416 	tx_desc = ICE_TX_DESC(tx_ring, i);
1417 
1418 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1419 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1420 		td_tag = first->vid;
1421 	}
1422 
1423 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1424 
1425 	tx_buf = first;
1426 
1427 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1428 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1429 
1430 		if (dma_mapping_error(tx_ring->dev, dma))
1431 			goto dma_error;
1432 
1433 		/* record length, and DMA address */
1434 		dma_unmap_len_set(tx_buf, len, size);
1435 		dma_unmap_addr_set(tx_buf, dma, dma);
1436 
1437 		/* align size to end of page */
1438 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1439 		tx_desc->buf_addr = cpu_to_le64(dma);
1440 
1441 		/* account for data chunks larger than the hardware
1442 		 * can handle
1443 		 */
1444 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1445 			tx_desc->cmd_type_offset_bsz =
1446 				ice_build_ctob(td_cmd, td_offset, max_data,
1447 					       td_tag);
1448 
1449 			tx_desc++;
1450 			i++;
1451 
1452 			if (i == tx_ring->count) {
1453 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1454 				i = 0;
1455 			}
1456 
1457 			dma += max_data;
1458 			size -= max_data;
1459 
1460 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1461 			tx_desc->buf_addr = cpu_to_le64(dma);
1462 		}
1463 
1464 		if (likely(!data_len))
1465 			break;
1466 
1467 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1468 							      size, td_tag);
1469 
1470 		tx_desc++;
1471 		i++;
1472 
1473 		if (i == tx_ring->count) {
1474 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1475 			i = 0;
1476 		}
1477 
1478 		size = skb_frag_size(frag);
1479 		data_len -= size;
1480 
1481 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1482 				       DMA_TO_DEVICE);
1483 
1484 		tx_buf = &tx_ring->tx_buf[i];
1485 		tx_buf->type = ICE_TX_BUF_FRAG;
1486 	}
1487 
1488 	/* record SW timestamp if HW timestamp is not available */
1489 	skb_tx_timestamp(first->skb);
1490 
1491 	i++;
1492 	if (i == tx_ring->count)
1493 		i = 0;
1494 
1495 	/* write last descriptor with RS and EOP bits */
1496 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1497 	tx_desc->cmd_type_offset_bsz =
1498 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1499 
1500 	/* Force memory writes to complete before letting h/w know there
1501 	 * are new descriptors to fetch.
1502 	 *
1503 	 * We also use this memory barrier to make certain all of the
1504 	 * status bits have been updated before next_to_watch is written.
1505 	 */
1506 	wmb();
1507 
1508 	/* set next_to_watch value indicating a packet is present */
1509 	first->next_to_watch = tx_desc;
1510 
1511 	tx_ring->next_to_use = i;
1512 
1513 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1514 
1515 	/* notify HW of packet */
1516 	kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
1517 				      netdev_xmit_more());
1518 	if (!kick)
1519 		return;
1520 
1521 	if (ice_is_txtime_cfg(tx_ring)) {
1522 		struct ice_tstamp_ring *tstamp_ring = tx_ring->tstamp_ring;
1523 		u32 tstamp_count = tstamp_ring->count;
1524 		u32 j = tstamp_ring->next_to_use;
1525 		struct ice_ts_desc *ts_desc;
1526 		struct timespec64 ts;
1527 		u32 tstamp;
1528 
1529 		ts = ktime_to_timespec64(first->skb->tstamp);
1530 		tstamp = ts.tv_nsec >> ICE_TXTIME_CTX_RESOLUTION_128NS;
1531 
1532 		ts_desc = ICE_TS_DESC(tstamp_ring, j);
1533 		ts_desc->tx_desc_idx_tstamp = ice_build_tstamp_desc(i, tstamp);
1534 
1535 		j++;
1536 		if (j == tstamp_count) {
1537 			u32 fetch = tstamp_count - tx_ring->count;
1538 
1539 			j = 0;
1540 
1541 			/* To prevent an MDD, when wrapping the tstamp ring
1542 			 * create additional TS descriptors equal to the number
1543 			 * of the fetch TS descriptors value. HW will merge the
1544 			 * TS descriptors with the same timestamp value into a
1545 			 * single descriptor.
1546 			 */
1547 			for (; j < fetch; j++) {
1548 				ts_desc = ICE_TS_DESC(tstamp_ring, j);
1549 				ts_desc->tx_desc_idx_tstamp =
1550 				       ice_build_tstamp_desc(i, tstamp);
1551 			}
1552 		}
1553 		tstamp_ring->next_to_use = j;
1554 		writel_relaxed(j, tstamp_ring->tail);
1555 	} else {
1556 		writel_relaxed(i, tx_ring->tail);
1557 	}
1558 	return;
1559 
1560 dma_error:
1561 	/* clear DMA mappings for failed tx_buf map */
1562 	for (;;) {
1563 		tx_buf = &tx_ring->tx_buf[i];
1564 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1565 		if (tx_buf == first)
1566 			break;
1567 		if (i == 0)
1568 			i = tx_ring->count;
1569 		i--;
1570 	}
1571 
1572 	tx_ring->next_to_use = i;
1573 }
1574 
1575 /**
1576  * ice_tx_csum - Enable Tx checksum offloads
1577  * @first: pointer to the first descriptor
1578  * @off: pointer to struct that holds offload parameters
1579  *
1580  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1581  */
1582 static
1583 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1584 {
1585 	const struct ice_tx_ring *tx_ring = off->tx_ring;
1586 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1587 	struct sk_buff *skb = first->skb;
1588 	union {
1589 		struct iphdr *v4;
1590 		struct ipv6hdr *v6;
1591 		unsigned char *hdr;
1592 	} ip;
1593 	union {
1594 		struct tcphdr *tcp;
1595 		unsigned char *hdr;
1596 	} l4;
1597 	__be16 frag_off, protocol;
1598 	unsigned char *exthdr;
1599 	u32 offset, cmd = 0;
1600 	u8 l4_proto = 0;
1601 
1602 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1603 		return 0;
1604 
1605 	protocol = vlan_get_protocol(skb);
1606 
1607 	if (eth_p_mpls(protocol)) {
1608 		ip.hdr = skb_inner_network_header(skb);
1609 		l4.hdr = skb_checksum_start(skb);
1610 	} else {
1611 		ip.hdr = skb_network_header(skb);
1612 		l4.hdr = skb_transport_header(skb);
1613 	}
1614 
1615 	/* compute outer L2 header size */
1616 	l2_len = ip.hdr - skb->data;
1617 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1618 
1619 	/* set the tx_flags to indicate the IP protocol type. this is
1620 	 * required so that checksum header computation below is accurate.
1621 	 */
1622 	if (ip.v4->version == 4)
1623 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1624 	else if (ip.v6->version == 6)
1625 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1626 
1627 	if (skb->encapsulation) {
1628 		bool gso_ena = false;
1629 		u32 tunnel = 0;
1630 
1631 		/* define outer network header type */
1632 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1633 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1634 				  ICE_TX_CTX_EIPT_IPV4 :
1635 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1636 			l4_proto = ip.v4->protocol;
1637 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1638 			int ret;
1639 
1640 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1641 			exthdr = ip.hdr + sizeof(*ip.v6);
1642 			l4_proto = ip.v6->nexthdr;
1643 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1644 					       &l4_proto, &frag_off);
1645 			if (ret < 0)
1646 				return -1;
1647 		}
1648 
1649 		/* define outer transport */
1650 		switch (l4_proto) {
1651 		case IPPROTO_UDP:
1652 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1653 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1654 			break;
1655 		case IPPROTO_GRE:
1656 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1657 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1658 			break;
1659 		case IPPROTO_IPIP:
1660 		case IPPROTO_IPV6:
1661 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1662 			l4.hdr = skb_inner_network_header(skb);
1663 			break;
1664 		default:
1665 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1666 				return -1;
1667 
1668 			skb_checksum_help(skb);
1669 			return 0;
1670 		}
1671 
1672 		/* compute outer L3 header size */
1673 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1674 			  ICE_TXD_CTX_QW0_EIPLEN_S;
1675 
1676 		/* switch IP header pointer from outer to inner header */
1677 		ip.hdr = skb_inner_network_header(skb);
1678 
1679 		/* compute tunnel header size */
1680 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1681 			   ICE_TXD_CTX_QW0_NATLEN_S;
1682 
1683 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1684 		/* indicate if we need to offload outer UDP header */
1685 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1686 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1687 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1688 
1689 		/* record tunnel offload values */
1690 		off->cd_tunnel_params |= tunnel;
1691 
1692 		/* set DTYP=1 to indicate that it's an Tx context descriptor
1693 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1694 		 */
1695 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1696 
1697 		/* switch L4 header pointer from outer to inner */
1698 		l4.hdr = skb_inner_transport_header(skb);
1699 		l4_proto = 0;
1700 
1701 		/* reset type as we transition from outer to inner headers */
1702 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1703 		if (ip.v4->version == 4)
1704 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1705 		if (ip.v6->version == 6)
1706 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1707 	}
1708 
1709 	/* Enable IP checksum offloads */
1710 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1711 		l4_proto = ip.v4->protocol;
1712 		/* the stack computes the IP header already, the only time we
1713 		 * need the hardware to recompute it is in the case of TSO.
1714 		 */
1715 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1716 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1717 		else
1718 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1719 
1720 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1721 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1722 		exthdr = ip.hdr + sizeof(*ip.v6);
1723 		l4_proto = ip.v6->nexthdr;
1724 		if (l4.hdr != exthdr)
1725 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1726 					 &frag_off);
1727 	} else {
1728 		return -1;
1729 	}
1730 
1731 	/* compute inner L3 header size */
1732 	l3_len = l4.hdr - ip.hdr;
1733 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1734 
1735 	if ((tx_ring->netdev->features & NETIF_F_HW_CSUM) &&
1736 	    !(first->tx_flags & ICE_TX_FLAGS_TSO) &&
1737 	    !skb_csum_is_sctp(skb)) {
1738 		/* Set GCS */
1739 		u16 csum_start = (skb->csum_start - skb->mac_header) / 2;
1740 		u16 csum_offset = skb->csum_offset / 2;
1741 		u16 gcs_params;
1742 
1743 		gcs_params = FIELD_PREP(ICE_TX_GCS_DESC_START_M, csum_start) |
1744 			     FIELD_PREP(ICE_TX_GCS_DESC_OFFSET_M, csum_offset) |
1745 			     FIELD_PREP(ICE_TX_GCS_DESC_TYPE_M,
1746 					ICE_TX_GCS_DESC_CSUM_PSH);
1747 
1748 		/* Unlike legacy HW checksums, GCS requires a context
1749 		 * descriptor.
1750 		 */
1751 		off->cd_qw1 |= ICE_TX_DESC_DTYPE_CTX;
1752 		off->cd_gcs_params = gcs_params;
1753 		/* Fill out CSO info in data descriptors */
1754 		off->td_offset |= offset;
1755 		off->td_cmd |= cmd;
1756 		return 1;
1757 	}
1758 
1759 	/* Enable L4 checksum offloads */
1760 	switch (l4_proto) {
1761 	case IPPROTO_TCP:
1762 		/* enable checksum offloads */
1763 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1764 		l4_len = l4.tcp->doff;
1765 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1766 		break;
1767 	case IPPROTO_UDP:
1768 		/* enable UDP checksum offload */
1769 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1770 		l4_len = (sizeof(struct udphdr) >> 2);
1771 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1772 		break;
1773 	case IPPROTO_SCTP:
1774 		/* enable SCTP checksum offload */
1775 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1776 		l4_len = sizeof(struct sctphdr) >> 2;
1777 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1778 		break;
1779 
1780 	default:
1781 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1782 			return -1;
1783 		skb_checksum_help(skb);
1784 		return 0;
1785 	}
1786 
1787 	off->td_cmd |= cmd;
1788 	off->td_offset |= offset;
1789 	return 1;
1790 }
1791 
1792 /**
1793  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1794  * @tx_ring: ring to send buffer on
1795  * @first: pointer to struct ice_tx_buf
1796  *
1797  * Checks the skb and set up correspondingly several generic transmit flags
1798  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1799  */
1800 static void
1801 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
1802 {
1803 	struct sk_buff *skb = first->skb;
1804 
1805 	/* nothing left to do, software offloaded VLAN */
1806 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1807 		return;
1808 
1809 	/* the VLAN ethertype/tpid is determined by VSI configuration and netdev
1810 	 * feature flags, which the driver only allows either 802.1Q or 802.1ad
1811 	 * VLAN offloads exclusively so we only care about the VLAN ID here
1812 	 */
1813 	if (skb_vlan_tag_present(skb)) {
1814 		first->vid = skb_vlan_tag_get(skb);
1815 		if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
1816 			first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1817 		else
1818 			first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1819 	}
1820 
1821 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1822 }
1823 
1824 /**
1825  * ice_tso - computes mss and TSO length to prepare for TSO
1826  * @first: pointer to struct ice_tx_buf
1827  * @off: pointer to struct that holds offload parameters
1828  *
1829  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1830  */
1831 static
1832 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1833 {
1834 	struct sk_buff *skb = first->skb;
1835 	union {
1836 		struct iphdr *v4;
1837 		struct ipv6hdr *v6;
1838 		unsigned char *hdr;
1839 	} ip;
1840 	union {
1841 		struct tcphdr *tcp;
1842 		struct udphdr *udp;
1843 		unsigned char *hdr;
1844 	} l4;
1845 	u64 cd_mss, cd_tso_len;
1846 	__be16 protocol;
1847 	u32 paylen;
1848 	u8 l4_start;
1849 	int err;
1850 
1851 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1852 		return 0;
1853 
1854 	if (!skb_is_gso(skb))
1855 		return 0;
1856 
1857 	err = skb_cow_head(skb, 0);
1858 	if (err < 0)
1859 		return err;
1860 
1861 	protocol = vlan_get_protocol(skb);
1862 
1863 	if (eth_p_mpls(protocol))
1864 		ip.hdr = skb_inner_network_header(skb);
1865 	else
1866 		ip.hdr = skb_network_header(skb);
1867 	l4.hdr = skb_checksum_start(skb);
1868 
1869 	/* initialize outer IP header fields */
1870 	if (ip.v4->version == 4) {
1871 		ip.v4->tot_len = 0;
1872 		ip.v4->check = 0;
1873 	} else {
1874 		ip.v6->payload_len = 0;
1875 	}
1876 
1877 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1878 					 SKB_GSO_GRE_CSUM |
1879 					 SKB_GSO_IPXIP4 |
1880 					 SKB_GSO_IPXIP6 |
1881 					 SKB_GSO_UDP_TUNNEL |
1882 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1883 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1884 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1885 			l4.udp->len = 0;
1886 
1887 			/* determine offset of outer transport header */
1888 			l4_start = (u8)(l4.hdr - skb->data);
1889 
1890 			/* remove payload length from outer checksum */
1891 			paylen = skb->len - l4_start;
1892 			csum_replace_by_diff(&l4.udp->check,
1893 					     (__force __wsum)htonl(paylen));
1894 		}
1895 
1896 		/* reset pointers to inner headers */
1897 		ip.hdr = skb_inner_network_header(skb);
1898 		l4.hdr = skb_inner_transport_header(skb);
1899 
1900 		/* initialize inner IP header fields */
1901 		if (ip.v4->version == 4) {
1902 			ip.v4->tot_len = 0;
1903 			ip.v4->check = 0;
1904 		} else {
1905 			ip.v6->payload_len = 0;
1906 		}
1907 	}
1908 
1909 	/* determine offset of transport header */
1910 	l4_start = (u8)(l4.hdr - skb->data);
1911 
1912 	/* remove payload length from checksum */
1913 	paylen = skb->len - l4_start;
1914 
1915 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1916 		csum_replace_by_diff(&l4.udp->check,
1917 				     (__force __wsum)htonl(paylen));
1918 		/* compute length of UDP segmentation header */
1919 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
1920 	} else {
1921 		csum_replace_by_diff(&l4.tcp->check,
1922 				     (__force __wsum)htonl(paylen));
1923 		/* compute length of TCP segmentation header */
1924 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
1925 	}
1926 
1927 	/* update gso_segs and bytecount */
1928 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1929 	first->bytecount += (first->gso_segs - 1) * off->header_len;
1930 
1931 	cd_tso_len = skb->len - off->header_len;
1932 	cd_mss = skb_shinfo(skb)->gso_size;
1933 
1934 	/* record cdesc_qw1 with TSO parameters */
1935 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
1936 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1937 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1938 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
1939 	first->tx_flags |= ICE_TX_FLAGS_TSO;
1940 	return 1;
1941 }
1942 
1943 /**
1944  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
1945  * @size: transmit request size in bytes
1946  *
1947  * Due to hardware alignment restrictions (4K alignment), we need to
1948  * assume that we can have no more than 12K of data per descriptor, even
1949  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1950  * Thus, we need to divide by 12K. But division is slow! Instead,
1951  * we decompose the operation into shifts and one relatively cheap
1952  * multiply operation.
1953  *
1954  * To divide by 12K, we first divide by 4K, then divide by 3:
1955  *     To divide by 4K, shift right by 12 bits
1956  *     To divide by 3, multiply by 85, then divide by 256
1957  *     (Divide by 256 is done by shifting right by 8 bits)
1958  * Finally, we add one to round up. Because 256 isn't an exact multiple of
1959  * 3, we'll underestimate near each multiple of 12K. This is actually more
1960  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1961  * segment. For our purposes this is accurate out to 1M which is orders of
1962  * magnitude greater than our largest possible GSO size.
1963  *
1964  * This would then be implemented as:
1965  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
1966  *
1967  * Since multiplication and division are commutative, we can reorder
1968  * operations into:
1969  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
1970  */
1971 static unsigned int ice_txd_use_count(unsigned int size)
1972 {
1973 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
1974 }
1975 
1976 /**
1977  * ice_xmit_desc_count - calculate number of Tx descriptors needed
1978  * @skb: send buffer
1979  *
1980  * Returns number of data descriptors needed for this skb.
1981  */
1982 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
1983 {
1984 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
1985 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1986 	unsigned int count = 0, size = skb_headlen(skb);
1987 
1988 	for (;;) {
1989 		count += ice_txd_use_count(size);
1990 
1991 		if (!nr_frags--)
1992 			break;
1993 
1994 		size = skb_frag_size(frag++);
1995 	}
1996 
1997 	return count;
1998 }
1999 
2000 /**
2001  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2002  * @skb: send buffer
2003  *
2004  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2005  * and so we need to figure out the cases where we need to linearize the skb.
2006  *
2007  * For TSO we need to count the TSO header and segment payload separately.
2008  * As such we need to check cases where we have 7 fragments or more as we
2009  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2010  * the segment payload in the first descriptor, and another 7 for the
2011  * fragments.
2012  */
2013 static bool __ice_chk_linearize(struct sk_buff *skb)
2014 {
2015 	const skb_frag_t *frag, *stale;
2016 	int nr_frags, sum;
2017 
2018 	/* no need to check if number of frags is less than 7 */
2019 	nr_frags = skb_shinfo(skb)->nr_frags;
2020 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2021 		return false;
2022 
2023 	/* We need to walk through the list and validate that each group
2024 	 * of 6 fragments totals at least gso_size.
2025 	 */
2026 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2027 	frag = &skb_shinfo(skb)->frags[0];
2028 
2029 	/* Initialize size to the negative value of gso_size minus 1. We
2030 	 * use this as the worst case scenario in which the frag ahead
2031 	 * of us only provides one byte which is why we are limited to 6
2032 	 * descriptors for a single transmit as the header and previous
2033 	 * fragment are already consuming 2 descriptors.
2034 	 */
2035 	sum = 1 - skb_shinfo(skb)->gso_size;
2036 
2037 	/* Add size of frags 0 through 4 to create our initial sum */
2038 	sum += skb_frag_size(frag++);
2039 	sum += skb_frag_size(frag++);
2040 	sum += skb_frag_size(frag++);
2041 	sum += skb_frag_size(frag++);
2042 	sum += skb_frag_size(frag++);
2043 
2044 	/* Walk through fragments adding latest fragment, testing it, and
2045 	 * then removing stale fragments from the sum.
2046 	 */
2047 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2048 		int stale_size = skb_frag_size(stale);
2049 
2050 		sum += skb_frag_size(frag++);
2051 
2052 		/* The stale fragment may present us with a smaller
2053 		 * descriptor than the actual fragment size. To account
2054 		 * for that we need to remove all the data on the front and
2055 		 * figure out what the remainder would be in the last
2056 		 * descriptor associated with the fragment.
2057 		 */
2058 		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2059 			int align_pad = -(skb_frag_off(stale)) &
2060 					(ICE_MAX_READ_REQ_SIZE - 1);
2061 
2062 			sum -= align_pad;
2063 			stale_size -= align_pad;
2064 
2065 			do {
2066 				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2067 				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2068 			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2069 		}
2070 
2071 		/* if sum is negative we failed to make sufficient progress */
2072 		if (sum < 0)
2073 			return true;
2074 
2075 		if (!nr_frags--)
2076 			break;
2077 
2078 		sum -= stale_size;
2079 	}
2080 
2081 	return false;
2082 }
2083 
2084 /**
2085  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2086  * @skb:      send buffer
2087  * @count:    number of buffers used
2088  *
2089  * Note: Our HW can't scatter-gather more than 8 fragments to build
2090  * a packet on the wire and so we need to figure out the cases where we
2091  * need to linearize the skb.
2092  */
2093 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2094 {
2095 	/* Both TSO and single send will work if count is less than 8 */
2096 	if (likely(count < ICE_MAX_BUF_TXD))
2097 		return false;
2098 
2099 	if (skb_is_gso(skb))
2100 		return __ice_chk_linearize(skb);
2101 
2102 	/* we can support up to 8 data buffers for a single send */
2103 	return count != ICE_MAX_BUF_TXD;
2104 }
2105 
2106 /**
2107  * ice_tstamp - set up context descriptor for hardware timestamp
2108  * @tx_ring: pointer to the Tx ring to send buffer on
2109  * @skb: pointer to the SKB we're sending
2110  * @first: Tx buffer
2111  * @off: Tx offload parameters
2112  */
2113 static void
2114 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
2115 	   struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2116 {
2117 	s8 idx;
2118 
2119 	/* only timestamp the outbound packet if the user has requested it */
2120 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2121 		return;
2122 
2123 	/* Tx timestamps cannot be sampled when doing TSO */
2124 	if (first->tx_flags & ICE_TX_FLAGS_TSO)
2125 		return;
2126 
2127 	/* Grab an open timestamp slot */
2128 	idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2129 	if (idx < 0) {
2130 		tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++;
2131 		return;
2132 	}
2133 
2134 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2135 			     (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2136 			     ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2137 	first->tx_flags |= ICE_TX_FLAGS_TSYN;
2138 }
2139 
2140 /**
2141  * ice_xmit_frame_ring - Sends buffer on Tx ring
2142  * @skb: send buffer
2143  * @tx_ring: ring to send buffer on
2144  *
2145  * Returns NETDEV_TX_OK if sent, else an error code
2146  */
2147 static netdev_tx_t
2148 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
2149 {
2150 	struct ice_tx_offload_params offload = { 0 };
2151 	struct ice_vsi *vsi = tx_ring->vsi;
2152 	struct ice_tx_buf *first;
2153 	struct ethhdr *eth;
2154 	unsigned int count;
2155 	int tso, csum;
2156 
2157 	ice_trace(xmit_frame_ring, tx_ring, skb);
2158 
2159 	if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
2160 		goto out_drop;
2161 
2162 	count = ice_xmit_desc_count(skb);
2163 	if (ice_chk_linearize(skb, count)) {
2164 		if (__skb_linearize(skb))
2165 			goto out_drop;
2166 		count = ice_txd_use_count(skb->len);
2167 		tx_ring->ring_stats->tx_stats.tx_linearize++;
2168 	}
2169 
2170 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2171 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2172 	 *       + 4 desc gap to avoid the cache line where head is,
2173 	 *       + 1 desc for context descriptor,
2174 	 * otherwise try next time
2175 	 */
2176 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2177 			      ICE_DESCS_FOR_CTX_DESC)) {
2178 		tx_ring->ring_stats->tx_stats.tx_busy++;
2179 		return NETDEV_TX_BUSY;
2180 	}
2181 
2182 	/* prefetch for bql data which is infrequently used */
2183 	netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
2184 
2185 	offload.tx_ring = tx_ring;
2186 
2187 	/* record the location of the first descriptor for this packet */
2188 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2189 	first->skb = skb;
2190 	first->type = ICE_TX_BUF_SKB;
2191 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2192 	first->gso_segs = 1;
2193 	first->tx_flags = 0;
2194 
2195 	/* prepare the VLAN tagging flags for Tx */
2196 	ice_tx_prepare_vlan_flags(tx_ring, first);
2197 	if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2198 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2199 					(ICE_TX_CTX_DESC_IL2TAG2 <<
2200 					ICE_TXD_CTX_QW1_CMD_S));
2201 		offload.cd_l2tag2 = first->vid;
2202 	}
2203 
2204 	/* set up TSO offload */
2205 	tso = ice_tso(first, &offload);
2206 	if (tso < 0)
2207 		goto out_drop;
2208 
2209 	/* always set up Tx checksum offload */
2210 	csum = ice_tx_csum(first, &offload);
2211 	if (csum < 0)
2212 		goto out_drop;
2213 
2214 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2215 	eth = (struct ethhdr *)skb_mac_header(skb);
2216 
2217 	if ((ice_is_switchdev_running(vsi->back) ||
2218 	     ice_lag_is_switchdev_running(vsi->back)) &&
2219 	    vsi->type != ICE_VSI_SF)
2220 		ice_eswitch_set_target_vsi(skb, &offload);
2221 	else if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2222 			   eth->h_proto == htons(ETH_P_LLDP)) &&
2223 			   vsi->type == ICE_VSI_PF &&
2224 			   vsi->port_info->qos_cfg.is_sw_lldp))
2225 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2226 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2227 					ICE_TXD_CTX_QW1_CMD_S);
2228 
2229 	ice_tstamp(tx_ring, skb, first, &offload);
2230 
2231 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2232 		struct ice_tx_ctx_desc *cdesc;
2233 		u16 i = tx_ring->next_to_use;
2234 
2235 		/* grab the next descriptor */
2236 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2237 		i++;
2238 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2239 
2240 		/* setup context descriptor */
2241 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2242 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2243 		cdesc->gcs = cpu_to_le16(offload.cd_gcs_params);
2244 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2245 	}
2246 
2247 	ice_tx_map(tx_ring, first, &offload);
2248 	return NETDEV_TX_OK;
2249 
2250 out_drop:
2251 	ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2252 	dev_kfree_skb_any(skb);
2253 	return NETDEV_TX_OK;
2254 }
2255 
2256 /**
2257  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2258  * @skb: send buffer
2259  * @netdev: network interface device structure
2260  *
2261  * Returns NETDEV_TX_OK if sent, else an error code
2262  */
2263 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2264 {
2265 	struct ice_netdev_priv *np = netdev_priv(netdev);
2266 	struct ice_vsi *vsi = np->vsi;
2267 	struct ice_tx_ring *tx_ring;
2268 
2269 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2270 
2271 	/* hardware can't handle really short frames, hardware padding works
2272 	 * beyond this point
2273 	 */
2274 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2275 		return NETDEV_TX_OK;
2276 
2277 	return ice_xmit_frame_ring(skb, tx_ring);
2278 }
2279 
2280 /**
2281  * ice_get_dscp_up - return the UP/TC value for a SKB
2282  * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
2283  * @skb: SKB to query for info to determine UP/TC
2284  *
2285  * This function is to only be called when the PF is in L3 DSCP PFC mode
2286  */
2287 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
2288 {
2289 	u8 dscp = 0;
2290 
2291 	if (skb->protocol == htons(ETH_P_IP))
2292 		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
2293 	else if (skb->protocol == htons(ETH_P_IPV6))
2294 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
2295 
2296 	return dcbcfg->dscp_map[dscp];
2297 }
2298 
2299 u16
2300 ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
2301 		 struct net_device *sb_dev)
2302 {
2303 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2304 	struct ice_dcbx_cfg *dcbcfg;
2305 
2306 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
2307 	if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
2308 		skb->priority = ice_get_dscp_up(dcbcfg, skb);
2309 
2310 	return netdev_pick_tx(netdev, skb, sb_dev);
2311 }
2312 
2313 /**
2314  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2315  * @tx_ring: tx_ring to clean
2316  */
2317 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
2318 {
2319 	struct ice_vsi *vsi = tx_ring->vsi;
2320 	s16 i = tx_ring->next_to_clean;
2321 	int budget = ICE_DFLT_IRQ_WORK;
2322 	struct ice_tx_desc *tx_desc;
2323 	struct ice_tx_buf *tx_buf;
2324 
2325 	tx_buf = &tx_ring->tx_buf[i];
2326 	tx_desc = ICE_TX_DESC(tx_ring, i);
2327 	i -= tx_ring->count;
2328 
2329 	do {
2330 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2331 
2332 		/* if next_to_watch is not set then there is no pending work */
2333 		if (!eop_desc)
2334 			break;
2335 
2336 		/* prevent any other reads prior to eop_desc */
2337 		smp_rmb();
2338 
2339 		/* if the descriptor isn't done, no work to do */
2340 		if (!(eop_desc->cmd_type_offset_bsz &
2341 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2342 			break;
2343 
2344 		/* clear next_to_watch to prevent false hangs */
2345 		tx_buf->next_to_watch = NULL;
2346 		tx_desc->buf_addr = 0;
2347 		tx_desc->cmd_type_offset_bsz = 0;
2348 
2349 		/* move past filter desc */
2350 		tx_buf++;
2351 		tx_desc++;
2352 		i++;
2353 		if (unlikely(!i)) {
2354 			i -= tx_ring->count;
2355 			tx_buf = tx_ring->tx_buf;
2356 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2357 		}
2358 
2359 		/* unmap the data header */
2360 		if (dma_unmap_len(tx_buf, len))
2361 			dma_unmap_single(tx_ring->dev,
2362 					 dma_unmap_addr(tx_buf, dma),
2363 					 dma_unmap_len(tx_buf, len),
2364 					 DMA_TO_DEVICE);
2365 		if (tx_buf->type == ICE_TX_BUF_DUMMY)
2366 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2367 
2368 		/* clear next_to_watch to prevent false hangs */
2369 		tx_buf->type = ICE_TX_BUF_EMPTY;
2370 		tx_buf->tx_flags = 0;
2371 		tx_buf->next_to_watch = NULL;
2372 		dma_unmap_len_set(tx_buf, len, 0);
2373 		tx_desc->buf_addr = 0;
2374 		tx_desc->cmd_type_offset_bsz = 0;
2375 
2376 		/* move past eop_desc for start of next FD desc */
2377 		tx_buf++;
2378 		tx_desc++;
2379 		i++;
2380 		if (unlikely(!i)) {
2381 			i -= tx_ring->count;
2382 			tx_buf = tx_ring->tx_buf;
2383 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2384 		}
2385 
2386 		budget--;
2387 	} while (likely(budget));
2388 
2389 	i += tx_ring->count;
2390 	tx_ring->next_to_clean = i;
2391 
2392 	/* re-enable interrupt if needed */
2393 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2394 }
2395