1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "devlink/devlink.h"
17 #include "devlink/port.h"
18 #include "ice_sf_eth.h"
19 #include "ice_hwmon.h"
20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
21 * ice tracepoint functions. This must be done exactly once across the
22 * ice driver.
23 */
24 #define CREATE_TRACE_POINTS
25 #include "ice_trace.h"
26 #include "ice_eswitch.h"
27 #include "ice_tc_lib.h"
28 #include "ice_vsi_vlan_ops.h"
29 #include <net/xdp_sock_drv.h>
30
31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
32 static const char ice_driver_string[] = DRV_SUMMARY;
33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
34
35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
38
39 MODULE_DESCRIPTION(DRV_SUMMARY);
40 MODULE_IMPORT_NS("LIBETH");
41 MODULE_IMPORT_NS("LIBETH_XDP");
42 MODULE_IMPORT_NS("LIBIE");
43 MODULE_IMPORT_NS("LIBIE_ADMINQ");
44 MODULE_IMPORT_NS("LIBIE_FWLOG");
45 MODULE_LICENSE("GPL v2");
46 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
47
48 static int debug = -1;
49 module_param(debug, int, 0644);
50 #ifndef CONFIG_DYNAMIC_DEBUG
51 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
52 #else
53 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
54 #endif /* !CONFIG_DYNAMIC_DEBUG */
55
56 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
57 EXPORT_SYMBOL(ice_xdp_locking_key);
58
59 /**
60 * ice_hw_to_dev - Get device pointer from the hardware structure
61 * @hw: pointer to the device HW structure
62 *
63 * Used to access the device pointer from compilation units which can't easily
64 * include the definition of struct ice_pf without leading to circular header
65 * dependencies.
66 */
ice_hw_to_dev(struct ice_hw * hw)67 struct device *ice_hw_to_dev(struct ice_hw *hw)
68 {
69 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
70
71 return &pf->pdev->dev;
72 }
73
74 static struct workqueue_struct *ice_wq;
75 struct workqueue_struct *ice_lag_wq;
76 static const struct net_device_ops ice_netdev_safe_mode_ops;
77 static const struct net_device_ops ice_netdev_ops;
78
79 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
80
81 static void ice_vsi_release_all(struct ice_pf *pf);
82
83 static int ice_rebuild_channels(struct ice_pf *pf);
84 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
85
86 static int
87 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
88 void *cb_priv, enum tc_setup_type type, void *type_data,
89 void *data,
90 void (*cleanup)(struct flow_block_cb *block_cb));
91
netif_is_ice(const struct net_device * dev)92 bool netif_is_ice(const struct net_device *dev)
93 {
94 return dev && (dev->netdev_ops == &ice_netdev_ops ||
95 dev->netdev_ops == &ice_netdev_safe_mode_ops);
96 }
97
98 /**
99 * ice_get_tx_pending - returns number of Tx descriptors not processed
100 * @ring: the ring of descriptors
101 */
ice_get_tx_pending(struct ice_tx_ring * ring)102 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
103 {
104 u16 head, tail;
105
106 head = ring->next_to_clean;
107 tail = ring->next_to_use;
108
109 if (head != tail)
110 return (head < tail) ?
111 tail - head : (tail + ring->count - head);
112 return 0;
113 }
114
115 /**
116 * ice_check_for_hang_subtask - check for and recover hung queues
117 * @pf: pointer to PF struct
118 */
ice_check_for_hang_subtask(struct ice_pf * pf)119 static void ice_check_for_hang_subtask(struct ice_pf *pf)
120 {
121 struct ice_vsi *vsi = NULL;
122 struct ice_hw *hw;
123 unsigned int i;
124 int packets;
125 u32 v;
126
127 ice_for_each_vsi(pf, v)
128 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
129 vsi = pf->vsi[v];
130 break;
131 }
132
133 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
134 return;
135
136 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
137 return;
138
139 hw = &vsi->back->hw;
140
141 ice_for_each_txq(vsi, i) {
142 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
143 struct ice_ring_stats *ring_stats;
144
145 if (!tx_ring)
146 continue;
147 if (ice_ring_ch_enabled(tx_ring))
148 continue;
149
150 ring_stats = tx_ring->ring_stats;
151 if (!ring_stats)
152 continue;
153
154 if (tx_ring->desc) {
155 /* If packet counter has not changed the queue is
156 * likely stalled, so force an interrupt for this
157 * queue.
158 *
159 * prev_pkt would be negative if there was no
160 * pending work.
161 */
162 packets = ring_stats->stats.pkts & INT_MAX;
163 if (ring_stats->tx_stats.prev_pkt == packets) {
164 /* Trigger sw interrupt to revive the queue */
165 ice_trigger_sw_intr(hw, tx_ring->q_vector);
166 continue;
167 }
168
169 /* Memory barrier between read of packet count and call
170 * to ice_get_tx_pending()
171 */
172 smp_rmb();
173 ring_stats->tx_stats.prev_pkt =
174 ice_get_tx_pending(tx_ring) ? packets : -1;
175 }
176 }
177 }
178
179 /**
180 * ice_init_mac_fltr - Set initial MAC filters
181 * @pf: board private structure
182 *
183 * Set initial set of MAC filters for PF VSI; configure filters for permanent
184 * address and broadcast address. If an error is encountered, netdevice will be
185 * unregistered.
186 */
ice_init_mac_fltr(struct ice_pf * pf)187 static int ice_init_mac_fltr(struct ice_pf *pf)
188 {
189 struct ice_vsi *vsi;
190 u8 *perm_addr;
191
192 vsi = ice_get_main_vsi(pf);
193 if (!vsi)
194 return -EINVAL;
195
196 perm_addr = vsi->port_info->mac.perm_addr;
197 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
198 }
199
200 /**
201 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
202 * @netdev: the net device on which the sync is happening
203 * @addr: MAC address to sync
204 *
205 * This is a callback function which is called by the in kernel device sync
206 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
207 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
208 * MAC filters from the hardware.
209 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)210 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
211 {
212 struct ice_netdev_priv *np = netdev_priv(netdev);
213 struct ice_vsi *vsi = np->vsi;
214
215 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
216 ICE_FWD_TO_VSI))
217 return -EINVAL;
218
219 return 0;
220 }
221
222 /**
223 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
224 * @netdev: the net device on which the unsync is happening
225 * @addr: MAC address to unsync
226 *
227 * This is a callback function which is called by the in kernel device unsync
228 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
229 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
230 * delete the MAC filters from the hardware.
231 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)232 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
233 {
234 struct ice_netdev_priv *np = netdev_priv(netdev);
235 struct ice_vsi *vsi = np->vsi;
236
237 /* Under some circumstances, we might receive a request to delete our
238 * own device address from our uc list. Because we store the device
239 * address in the VSI's MAC filter list, we need to ignore such
240 * requests and not delete our device address from this list.
241 */
242 if (ether_addr_equal(addr, netdev->dev_addr))
243 return 0;
244
245 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
246 ICE_FWD_TO_VSI))
247 return -EINVAL;
248
249 return 0;
250 }
251
252 /**
253 * ice_vsi_fltr_changed - check if filter state changed
254 * @vsi: VSI to be checked
255 *
256 * returns true if filter state has changed, false otherwise.
257 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)258 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
259 {
260 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
261 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
262 }
263
264 /**
265 * ice_set_promisc - Enable promiscuous mode for a given PF
266 * @vsi: the VSI being configured
267 * @promisc_m: mask of promiscuous config bits
268 *
269 */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)270 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
271 {
272 int status;
273
274 if (vsi->type != ICE_VSI_PF)
275 return 0;
276
277 if (ice_vsi_has_non_zero_vlans(vsi)) {
278 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
279 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
280 promisc_m);
281 } else {
282 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
283 promisc_m, 0);
284 }
285 if (status && status != -EEXIST)
286 return status;
287
288 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
289 vsi->vsi_num, promisc_m);
290 return 0;
291 }
292
293 /**
294 * ice_clear_promisc - Disable promiscuous mode for a given PF
295 * @vsi: the VSI being configured
296 * @promisc_m: mask of promiscuous config bits
297 *
298 */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)299 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
300 {
301 int status;
302
303 if (vsi->type != ICE_VSI_PF)
304 return 0;
305
306 if (ice_vsi_has_non_zero_vlans(vsi)) {
307 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
308 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
309 promisc_m);
310 } else {
311 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
312 promisc_m, 0);
313 }
314
315 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
316 vsi->vsi_num, promisc_m);
317 return status;
318 }
319
320 /**
321 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
322 * @vsi: ptr to the VSI
323 *
324 * Push any outstanding VSI filter changes through the AdminQ.
325 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)326 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
327 {
328 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
329 struct device *dev = ice_pf_to_dev(vsi->back);
330 struct net_device *netdev = vsi->netdev;
331 bool promisc_forced_on = false;
332 struct ice_pf *pf = vsi->back;
333 struct ice_hw *hw = &pf->hw;
334 u32 changed_flags = 0;
335 int err;
336
337 if (!vsi->netdev)
338 return -EINVAL;
339
340 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
341 usleep_range(1000, 2000);
342
343 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
344 vsi->current_netdev_flags = vsi->netdev->flags;
345
346 INIT_LIST_HEAD(&vsi->tmp_sync_list);
347 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
348
349 if (ice_vsi_fltr_changed(vsi)) {
350 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
351 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
352
353 /* grab the netdev's addr_list_lock */
354 netif_addr_lock_bh(netdev);
355 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
356 ice_add_mac_to_unsync_list);
357 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
358 ice_add_mac_to_unsync_list);
359 /* our temp lists are populated. release lock */
360 netif_addr_unlock_bh(netdev);
361 }
362
363 /* Remove MAC addresses in the unsync list */
364 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
365 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
366 if (err) {
367 netdev_err(netdev, "Failed to delete MAC filters\n");
368 /* if we failed because of alloc failures, just bail */
369 if (err == -ENOMEM)
370 goto out;
371 }
372
373 /* Add MAC addresses in the sync list */
374 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
375 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
376 /* If filter is added successfully or already exists, do not go into
377 * 'if' condition and report it as error. Instead continue processing
378 * rest of the function.
379 */
380 if (err && err != -EEXIST) {
381 netdev_err(netdev, "Failed to add MAC filters\n");
382 /* If there is no more space for new umac filters, VSI
383 * should go into promiscuous mode. There should be some
384 * space reserved for promiscuous filters.
385 */
386 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_ENOSPC &&
387 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
388 vsi->state)) {
389 promisc_forced_on = true;
390 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
391 vsi->vsi_num);
392 } else {
393 goto out;
394 }
395 }
396 err = 0;
397 /* check for changes in promiscuous modes */
398 if (changed_flags & IFF_ALLMULTI) {
399 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
400 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
401 if (err) {
402 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
403 goto out_promisc;
404 }
405 } else {
406 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
407 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
408 if (err) {
409 vsi->current_netdev_flags |= IFF_ALLMULTI;
410 goto out_promisc;
411 }
412 }
413 }
414
415 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
416 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
417 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
418 if (vsi->current_netdev_flags & IFF_PROMISC) {
419 /* Apply Rx filter rule to get traffic from wire */
420 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
421 err = ice_set_dflt_vsi(vsi);
422 if (err && err != -EEXIST) {
423 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
424 err, vsi->vsi_num);
425 vsi->current_netdev_flags &=
426 ~IFF_PROMISC;
427 goto out_promisc;
428 }
429 err = 0;
430 vlan_ops->dis_rx_filtering(vsi);
431
432 /* promiscuous mode implies allmulticast so
433 * that VSIs that are in promiscuous mode are
434 * subscribed to multicast packets coming to
435 * the port
436 */
437 err = ice_set_promisc(vsi,
438 ICE_MCAST_PROMISC_BITS);
439 if (err)
440 goto out_promisc;
441 }
442 } else {
443 /* Clear Rx filter to remove traffic from wire */
444 if (ice_is_vsi_dflt_vsi(vsi)) {
445 err = ice_clear_dflt_vsi(vsi);
446 if (err) {
447 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
448 err, vsi->vsi_num);
449 vsi->current_netdev_flags |=
450 IFF_PROMISC;
451 goto out_promisc;
452 }
453 if (vsi->netdev->features &
454 NETIF_F_HW_VLAN_CTAG_FILTER)
455 vlan_ops->ena_rx_filtering(vsi);
456 }
457
458 /* disable allmulti here, but only if allmulti is not
459 * still enabled for the netdev
460 */
461 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
462 err = ice_clear_promisc(vsi,
463 ICE_MCAST_PROMISC_BITS);
464 if (err) {
465 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
466 err, vsi->vsi_num);
467 }
468 }
469 }
470 }
471 goto exit;
472
473 out_promisc:
474 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
475 goto exit;
476 out:
477 /* if something went wrong then set the changed flag so we try again */
478 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
479 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
480 exit:
481 clear_bit(ICE_CFG_BUSY, vsi->state);
482 return err;
483 }
484
485 /**
486 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
487 * @pf: board private structure
488 */
ice_sync_fltr_subtask(struct ice_pf * pf)489 static void ice_sync_fltr_subtask(struct ice_pf *pf)
490 {
491 int v;
492
493 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
494 return;
495
496 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
497
498 ice_for_each_vsi(pf, v)
499 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
500 ice_vsi_sync_fltr(pf->vsi[v])) {
501 /* come back and try again later */
502 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
503 break;
504 }
505 }
506
507 /**
508 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
509 * @pf: the PF
510 * @locked: is the rtnl_lock already held
511 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)512 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
513 {
514 int node;
515 int v;
516
517 ice_for_each_vsi(pf, v)
518 if (pf->vsi[v])
519 ice_dis_vsi(pf->vsi[v], locked);
520
521 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
522 pf->pf_agg_node[node].num_vsis = 0;
523
524 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
525 pf->vf_agg_node[node].num_vsis = 0;
526 }
527
528 /**
529 * ice_prepare_for_reset - prep for reset
530 * @pf: board private structure
531 * @reset_type: reset type requested
532 *
533 * Inform or close all dependent features in prep for reset.
534 */
535 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)536 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
537 {
538 struct ice_hw *hw = &pf->hw;
539 struct ice_vsi *vsi;
540 struct ice_vf *vf;
541 unsigned int bkt;
542
543 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
544
545 /* already prepared for reset */
546 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
547 return;
548
549 synchronize_irq(pf->oicr_irq.virq);
550
551 ice_unplug_aux_dev(pf);
552
553 /* Notify VFs of impending reset */
554 if (ice_check_sq_alive(hw, &hw->mailboxq))
555 ice_vc_notify_reset(pf);
556
557 /* Disable VFs until reset is completed */
558 mutex_lock(&pf->vfs.table_lock);
559 ice_for_each_vf(pf, bkt, vf)
560 ice_set_vf_state_dis(vf);
561 mutex_unlock(&pf->vfs.table_lock);
562
563 if (ice_is_eswitch_mode_switchdev(pf)) {
564 rtnl_lock();
565 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
566 rtnl_unlock();
567 }
568
569 /* release ADQ specific HW and SW resources */
570 vsi = ice_get_main_vsi(pf);
571 if (!vsi)
572 goto skip;
573
574 /* to be on safe side, reset orig_rss_size so that normal flow
575 * of deciding rss_size can take precedence
576 */
577 vsi->orig_rss_size = 0;
578
579 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
580 if (reset_type == ICE_RESET_PFR) {
581 vsi->old_ena_tc = vsi->all_enatc;
582 vsi->old_numtc = vsi->all_numtc;
583 } else {
584 ice_remove_q_channels(vsi, true);
585
586 /* for other reset type, do not support channel rebuild
587 * hence reset needed info
588 */
589 vsi->old_ena_tc = 0;
590 vsi->all_enatc = 0;
591 vsi->old_numtc = 0;
592 vsi->all_numtc = 0;
593 vsi->req_txq = 0;
594 vsi->req_rxq = 0;
595 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
596 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
597 }
598 }
599
600 if (vsi->netdev)
601 netif_device_detach(vsi->netdev);
602 skip:
603
604 /* clear SW filtering DB */
605 ice_clear_hw_tbls(hw);
606 /* disable the VSIs and their queues that are not already DOWN */
607 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
608 ice_pf_dis_all_vsi(pf, false);
609
610 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
611 ice_ptp_prepare_for_reset(pf, reset_type);
612
613 if (ice_is_feature_supported(pf, ICE_F_GNSS))
614 ice_gnss_exit(pf);
615
616 if (hw->port_info)
617 ice_sched_clear_port(hw->port_info);
618
619 ice_shutdown_all_ctrlq(hw, false);
620
621 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
622 }
623
624 /**
625 * ice_do_reset - Initiate one of many types of resets
626 * @pf: board private structure
627 * @reset_type: reset type requested before this function was called.
628 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)629 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
630 {
631 struct device *dev = ice_pf_to_dev(pf);
632 struct ice_hw *hw = &pf->hw;
633
634 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
635
636 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
637 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
638 reset_type = ICE_RESET_CORER;
639 }
640
641 ice_prepare_for_reset(pf, reset_type);
642
643 /* trigger the reset */
644 if (ice_reset(hw, reset_type)) {
645 dev_err(dev, "reset %d failed\n", reset_type);
646 set_bit(ICE_RESET_FAILED, pf->state);
647 clear_bit(ICE_RESET_OICR_RECV, pf->state);
648 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
649 clear_bit(ICE_PFR_REQ, pf->state);
650 clear_bit(ICE_CORER_REQ, pf->state);
651 clear_bit(ICE_GLOBR_REQ, pf->state);
652 wake_up(&pf->reset_wait_queue);
653 return;
654 }
655
656 /* PFR is a bit of a special case because it doesn't result in an OICR
657 * interrupt. So for PFR, rebuild after the reset and clear the reset-
658 * associated state bits.
659 */
660 if (reset_type == ICE_RESET_PFR) {
661 pf->pfr_count++;
662 ice_rebuild(pf, reset_type);
663 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
664 clear_bit(ICE_PFR_REQ, pf->state);
665 wake_up(&pf->reset_wait_queue);
666 ice_reset_all_vfs(pf);
667 }
668 }
669
670 /**
671 * ice_reset_subtask - Set up for resetting the device and driver
672 * @pf: board private structure
673 */
ice_reset_subtask(struct ice_pf * pf)674 static void ice_reset_subtask(struct ice_pf *pf)
675 {
676 enum ice_reset_req reset_type = ICE_RESET_INVAL;
677
678 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
679 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
680 * of reset is pending and sets bits in pf->state indicating the reset
681 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
682 * prepare for pending reset if not already (for PF software-initiated
683 * global resets the software should already be prepared for it as
684 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
685 * by firmware or software on other PFs, that bit is not set so prepare
686 * for the reset now), poll for reset done, rebuild and return.
687 */
688 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
689 /* Perform the largest reset requested */
690 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
691 reset_type = ICE_RESET_CORER;
692 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
693 reset_type = ICE_RESET_GLOBR;
694 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
695 reset_type = ICE_RESET_EMPR;
696 /* return if no valid reset type requested */
697 if (reset_type == ICE_RESET_INVAL)
698 return;
699 ice_prepare_for_reset(pf, reset_type);
700
701 /* make sure we are ready to rebuild */
702 if (ice_check_reset(&pf->hw)) {
703 set_bit(ICE_RESET_FAILED, pf->state);
704 } else {
705 /* done with reset. start rebuild */
706 pf->hw.reset_ongoing = false;
707 ice_rebuild(pf, reset_type);
708 /* clear bit to resume normal operations, but
709 * ICE_NEEDS_RESTART bit is set in case rebuild failed
710 */
711 clear_bit(ICE_RESET_OICR_RECV, pf->state);
712 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
713 clear_bit(ICE_PFR_REQ, pf->state);
714 clear_bit(ICE_CORER_REQ, pf->state);
715 clear_bit(ICE_GLOBR_REQ, pf->state);
716 wake_up(&pf->reset_wait_queue);
717 ice_reset_all_vfs(pf);
718 }
719
720 return;
721 }
722
723 /* No pending resets to finish processing. Check for new resets */
724 if (test_bit(ICE_PFR_REQ, pf->state)) {
725 reset_type = ICE_RESET_PFR;
726 if (pf->lag && pf->lag->bonded) {
727 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
728 reset_type = ICE_RESET_CORER;
729 }
730 }
731 if (test_bit(ICE_CORER_REQ, pf->state))
732 reset_type = ICE_RESET_CORER;
733 if (test_bit(ICE_GLOBR_REQ, pf->state))
734 reset_type = ICE_RESET_GLOBR;
735 /* If no valid reset type requested just return */
736 if (reset_type == ICE_RESET_INVAL)
737 return;
738
739 /* reset if not already down or busy */
740 if (!test_bit(ICE_DOWN, pf->state) &&
741 !test_bit(ICE_CFG_BUSY, pf->state)) {
742 ice_do_reset(pf, reset_type);
743 }
744 }
745
746 /**
747 * ice_print_topo_conflict - print topology conflict message
748 * @vsi: the VSI whose topology status is being checked
749 */
ice_print_topo_conflict(struct ice_vsi * vsi)750 static void ice_print_topo_conflict(struct ice_vsi *vsi)
751 {
752 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
753 case ICE_AQ_LINK_TOPO_CONFLICT:
754 case ICE_AQ_LINK_MEDIA_CONFLICT:
755 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
756 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
757 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
758 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
759 break;
760 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
761 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
762 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
763 else
764 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
765 break;
766 default:
767 break;
768 }
769 }
770
771 /**
772 * ice_print_link_msg - print link up or down message
773 * @vsi: the VSI whose link status is being queried
774 * @isup: boolean for if the link is now up or down
775 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)776 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
777 {
778 struct ice_aqc_get_phy_caps_data *caps;
779 const char *an_advertised;
780 const char *fec_req;
781 const char *speed;
782 const char *fec;
783 const char *fc;
784 const char *an;
785 int status;
786
787 if (!vsi)
788 return;
789
790 if (vsi->current_isup == isup)
791 return;
792
793 vsi->current_isup = isup;
794
795 if (!isup) {
796 netdev_info(vsi->netdev, "NIC Link is Down\n");
797 return;
798 }
799
800 switch (vsi->port_info->phy.link_info.link_speed) {
801 case ICE_AQ_LINK_SPEED_200GB:
802 speed = "200 G";
803 break;
804 case ICE_AQ_LINK_SPEED_100GB:
805 speed = "100 G";
806 break;
807 case ICE_AQ_LINK_SPEED_50GB:
808 speed = "50 G";
809 break;
810 case ICE_AQ_LINK_SPEED_40GB:
811 speed = "40 G";
812 break;
813 case ICE_AQ_LINK_SPEED_25GB:
814 speed = "25 G";
815 break;
816 case ICE_AQ_LINK_SPEED_20GB:
817 speed = "20 G";
818 break;
819 case ICE_AQ_LINK_SPEED_10GB:
820 speed = "10 G";
821 break;
822 case ICE_AQ_LINK_SPEED_5GB:
823 speed = "5 G";
824 break;
825 case ICE_AQ_LINK_SPEED_2500MB:
826 speed = "2.5 G";
827 break;
828 case ICE_AQ_LINK_SPEED_1000MB:
829 speed = "1 G";
830 break;
831 case ICE_AQ_LINK_SPEED_100MB:
832 speed = "100 M";
833 break;
834 default:
835 speed = "Unknown ";
836 break;
837 }
838
839 switch (vsi->port_info->fc.current_mode) {
840 case ICE_FC_FULL:
841 fc = "Rx/Tx";
842 break;
843 case ICE_FC_TX_PAUSE:
844 fc = "Tx";
845 break;
846 case ICE_FC_RX_PAUSE:
847 fc = "Rx";
848 break;
849 case ICE_FC_NONE:
850 fc = "None";
851 break;
852 default:
853 fc = "Unknown";
854 break;
855 }
856
857 /* Get FEC mode based on negotiated link info */
858 switch (vsi->port_info->phy.link_info.fec_info) {
859 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
860 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
861 fec = "RS-FEC";
862 break;
863 case ICE_AQ_LINK_25G_KR_FEC_EN:
864 fec = "FC-FEC/BASE-R";
865 break;
866 default:
867 fec = "NONE";
868 break;
869 }
870
871 /* check if autoneg completed, might be false due to not supported */
872 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
873 an = "True";
874 else
875 an = "False";
876
877 /* Get FEC mode requested based on PHY caps last SW configuration */
878 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
879 if (!caps) {
880 fec_req = "Unknown";
881 an_advertised = "Unknown";
882 goto done;
883 }
884
885 status = ice_aq_get_phy_caps(vsi->port_info, false,
886 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
887 if (status)
888 netdev_info(vsi->netdev, "Get phy capability failed.\n");
889
890 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
891
892 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
893 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
894 fec_req = "RS-FEC";
895 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
896 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
897 fec_req = "FC-FEC/BASE-R";
898 else
899 fec_req = "NONE";
900
901 kfree(caps);
902
903 done:
904 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
905 speed, fec_req, fec, an_advertised, an, fc);
906 ice_print_topo_conflict(vsi);
907 }
908
909 /**
910 * ice_vsi_link_event - update the VSI's netdev
911 * @vsi: the VSI on which the link event occurred
912 * @link_up: whether or not the VSI needs to be set up or down
913 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)914 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
915 {
916 if (!vsi)
917 return;
918
919 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
920 return;
921
922 if (vsi->type == ICE_VSI_PF) {
923 if (link_up == netif_carrier_ok(vsi->netdev))
924 return;
925
926 if (link_up) {
927 netif_carrier_on(vsi->netdev);
928 netif_tx_wake_all_queues(vsi->netdev);
929 } else {
930 netif_carrier_off(vsi->netdev);
931 netif_tx_stop_all_queues(vsi->netdev);
932 }
933 }
934 }
935
936 /**
937 * ice_set_dflt_mib - send a default config MIB to the FW
938 * @pf: private PF struct
939 *
940 * This function sends a default configuration MIB to the FW.
941 *
942 * If this function errors out at any point, the driver is still able to
943 * function. The main impact is that LFC may not operate as expected.
944 * Therefore an error state in this function should be treated with a DBG
945 * message and continue on with driver rebuild/reenable.
946 */
ice_set_dflt_mib(struct ice_pf * pf)947 static void ice_set_dflt_mib(struct ice_pf *pf)
948 {
949 struct device *dev = ice_pf_to_dev(pf);
950 u8 mib_type, *buf, *lldpmib = NULL;
951 u16 len, typelen, offset = 0;
952 struct ice_lldp_org_tlv *tlv;
953 struct ice_hw *hw = &pf->hw;
954 u32 ouisubtype;
955
956 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
957 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
958 if (!lldpmib) {
959 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
960 __func__);
961 return;
962 }
963
964 /* Add ETS CFG TLV */
965 tlv = (struct ice_lldp_org_tlv *)lldpmib;
966 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
967 ICE_IEEE_ETS_TLV_LEN);
968 tlv->typelen = htons(typelen);
969 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
970 ICE_IEEE_SUBTYPE_ETS_CFG);
971 tlv->ouisubtype = htonl(ouisubtype);
972
973 buf = tlv->tlvinfo;
974 buf[0] = 0;
975
976 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
977 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
978 * Octets 13 - 20 are TSA values - leave as zeros
979 */
980 buf[5] = 0x64;
981 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
982 offset += len + 2;
983 tlv = (struct ice_lldp_org_tlv *)
984 ((char *)tlv + sizeof(tlv->typelen) + len);
985
986 /* Add ETS REC TLV */
987 buf = tlv->tlvinfo;
988 tlv->typelen = htons(typelen);
989
990 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
991 ICE_IEEE_SUBTYPE_ETS_REC);
992 tlv->ouisubtype = htonl(ouisubtype);
993
994 /* First octet of buf is reserved
995 * Octets 1 - 4 map UP to TC - all UPs map to zero
996 * Octets 5 - 12 are BW values - set TC 0 to 100%.
997 * Octets 13 - 20 are TSA value - leave as zeros
998 */
999 buf[5] = 0x64;
1000 offset += len + 2;
1001 tlv = (struct ice_lldp_org_tlv *)
1002 ((char *)tlv + sizeof(tlv->typelen) + len);
1003
1004 /* Add PFC CFG TLV */
1005 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1006 ICE_IEEE_PFC_TLV_LEN);
1007 tlv->typelen = htons(typelen);
1008
1009 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1010 ICE_IEEE_SUBTYPE_PFC_CFG);
1011 tlv->ouisubtype = htonl(ouisubtype);
1012
1013 /* Octet 1 left as all zeros - PFC disabled */
1014 buf[0] = 0x08;
1015 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1016 offset += len + 2;
1017
1018 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1019 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1020
1021 kfree(lldpmib);
1022 }
1023
1024 /**
1025 * ice_check_phy_fw_load - check if PHY FW load failed
1026 * @pf: pointer to PF struct
1027 * @link_cfg_err: bitmap from the link info structure
1028 *
1029 * check if external PHY FW load failed and print an error message if it did
1030 */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1031 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1032 {
1033 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1034 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1035 return;
1036 }
1037
1038 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1039 return;
1040
1041 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1042 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1043 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1044 }
1045 }
1046
1047 /**
1048 * ice_check_module_power
1049 * @pf: pointer to PF struct
1050 * @link_cfg_err: bitmap from the link info structure
1051 *
1052 * check module power level returned by a previous call to aq_get_link_info
1053 * and print error messages if module power level is not supported
1054 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1055 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1056 {
1057 /* if module power level is supported, clear the flag */
1058 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1059 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1060 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1061 return;
1062 }
1063
1064 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1065 * above block didn't clear this bit, there's nothing to do
1066 */
1067 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1068 return;
1069
1070 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1071 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1072 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1073 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1074 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1075 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1076 }
1077 }
1078
1079 /**
1080 * ice_check_link_cfg_err - check if link configuration failed
1081 * @pf: pointer to the PF struct
1082 * @link_cfg_err: bitmap from the link info structure
1083 *
1084 * print if any link configuration failure happens due to the value in the
1085 * link_cfg_err parameter in the link info structure
1086 */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1087 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1088 {
1089 ice_check_module_power(pf, link_cfg_err);
1090 ice_check_phy_fw_load(pf, link_cfg_err);
1091 }
1092
1093 /**
1094 * ice_link_event - process the link event
1095 * @pf: PF that the link event is associated with
1096 * @pi: port_info for the port that the link event is associated with
1097 * @link_up: true if the physical link is up and false if it is down
1098 * @link_speed: current link speed received from the link event
1099 *
1100 * Returns 0 on success and negative on failure
1101 */
1102 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1103 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1104 u16 link_speed)
1105 {
1106 struct device *dev = ice_pf_to_dev(pf);
1107 struct ice_phy_info *phy_info;
1108 struct ice_vsi *vsi;
1109 u16 old_link_speed;
1110 bool old_link;
1111 int status;
1112
1113 phy_info = &pi->phy;
1114 phy_info->link_info_old = phy_info->link_info;
1115
1116 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1117 old_link_speed = phy_info->link_info_old.link_speed;
1118
1119 /* update the link info structures and re-enable link events,
1120 * don't bail on failure due to other book keeping needed
1121 */
1122 status = ice_update_link_info(pi);
1123 if (status)
1124 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1125 pi->lport, status,
1126 libie_aq_str(pi->hw->adminq.sq_last_status));
1127
1128 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1129
1130 /* Check if the link state is up after updating link info, and treat
1131 * this event as an UP event since the link is actually UP now.
1132 */
1133 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1134 link_up = true;
1135
1136 vsi = ice_get_main_vsi(pf);
1137 if (!vsi || !vsi->port_info)
1138 return -EINVAL;
1139
1140 /* turn off PHY if media was removed */
1141 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1142 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1143 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1144 ice_set_link(vsi, false);
1145 }
1146
1147 /* if the old link up/down and speed is the same as the new */
1148 if (link_up == old_link && link_speed == old_link_speed)
1149 return 0;
1150
1151 if (!link_up && old_link)
1152 pf->link_down_events++;
1153
1154 ice_ptp_link_change(pf, link_up);
1155
1156 if (ice_is_dcb_active(pf)) {
1157 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1158 ice_dcb_rebuild(pf);
1159 } else {
1160 if (link_up)
1161 ice_set_dflt_mib(pf);
1162 }
1163 ice_vsi_link_event(vsi, link_up);
1164 ice_print_link_msg(vsi, link_up);
1165
1166 ice_vc_notify_link_state(pf);
1167
1168 return 0;
1169 }
1170
1171 /**
1172 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1173 * @pf: board private structure
1174 */
ice_watchdog_subtask(struct ice_pf * pf)1175 static void ice_watchdog_subtask(struct ice_pf *pf)
1176 {
1177 int i;
1178
1179 /* if interface is down do nothing */
1180 if (test_bit(ICE_DOWN, pf->state) ||
1181 test_bit(ICE_CFG_BUSY, pf->state))
1182 return;
1183
1184 /* make sure we don't do these things too often */
1185 if (time_before(jiffies,
1186 pf->serv_tmr_prev + pf->serv_tmr_period))
1187 return;
1188
1189 pf->serv_tmr_prev = jiffies;
1190
1191 /* Update the stats for active netdevs so the network stack
1192 * can look at updated numbers whenever it cares to
1193 */
1194 ice_update_pf_stats(pf);
1195 ice_for_each_vsi(pf, i)
1196 if (pf->vsi[i] && pf->vsi[i]->netdev)
1197 ice_update_vsi_stats(pf->vsi[i]);
1198 }
1199
1200 /**
1201 * ice_init_link_events - enable/initialize link events
1202 * @pi: pointer to the port_info instance
1203 *
1204 * Returns -EIO on failure, 0 on success
1205 */
ice_init_link_events(struct ice_port_info * pi)1206 static int ice_init_link_events(struct ice_port_info *pi)
1207 {
1208 u16 mask;
1209
1210 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1211 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1212 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1213
1214 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1215 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1216 pi->lport);
1217 return -EIO;
1218 }
1219
1220 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1221 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1222 pi->lport);
1223 return -EIO;
1224 }
1225
1226 return 0;
1227 }
1228
1229 /**
1230 * ice_handle_link_event - handle link event via ARQ
1231 * @pf: PF that the link event is associated with
1232 * @event: event structure containing link status info
1233 */
1234 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1235 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1236 {
1237 struct ice_aqc_get_link_status_data *link_data;
1238 struct ice_port_info *port_info;
1239 int status;
1240
1241 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1242 port_info = pf->hw.port_info;
1243 if (!port_info)
1244 return -EINVAL;
1245
1246 status = ice_link_event(pf, port_info,
1247 !!(link_data->link_info & ICE_AQ_LINK_UP),
1248 le16_to_cpu(link_data->link_speed));
1249 if (status)
1250 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1251 status);
1252
1253 return status;
1254 }
1255
1256 /**
1257 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1258 * @pf: pointer to the PF private structure
1259 * @task: intermediate helper storage and identifier for waiting
1260 * @opcode: the opcode to wait for
1261 *
1262 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1263 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1264 *
1265 * Calls are separated to allow caller registering for event before sending
1266 * the command, which mitigates a race between registering and FW responding.
1267 *
1268 * To obtain only the descriptor contents, pass an task->event with null
1269 * msg_buf. If the complete data buffer is desired, allocate the
1270 * task->event.msg_buf with enough space ahead of time.
1271 */
ice_aq_prep_for_event(struct ice_pf * pf,struct ice_aq_task * task,u16 opcode)1272 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1273 u16 opcode)
1274 {
1275 INIT_HLIST_NODE(&task->entry);
1276 task->opcode = opcode;
1277 task->state = ICE_AQ_TASK_WAITING;
1278
1279 spin_lock_bh(&pf->aq_wait_lock);
1280 hlist_add_head(&task->entry, &pf->aq_wait_list);
1281 spin_unlock_bh(&pf->aq_wait_lock);
1282 }
1283
1284 /**
1285 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1286 * @pf: pointer to the PF private structure
1287 * @task: ptr prepared by ice_aq_prep_for_event()
1288 * @timeout: how long to wait, in jiffies
1289 *
1290 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1291 * current thread will be put to sleep until the specified event occurs or
1292 * until the given timeout is reached.
1293 *
1294 * Returns: zero on success, or a negative error code on failure.
1295 */
ice_aq_wait_for_event(struct ice_pf * pf,struct ice_aq_task * task,unsigned long timeout)1296 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1297 unsigned long timeout)
1298 {
1299 enum ice_aq_task_state *state = &task->state;
1300 struct device *dev = ice_pf_to_dev(pf);
1301 unsigned long start = jiffies;
1302 long ret;
1303 int err;
1304
1305 ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1306 *state != ICE_AQ_TASK_WAITING,
1307 timeout);
1308 switch (*state) {
1309 case ICE_AQ_TASK_NOT_PREPARED:
1310 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1311 err = -EINVAL;
1312 break;
1313 case ICE_AQ_TASK_WAITING:
1314 err = ret < 0 ? ret : -ETIMEDOUT;
1315 break;
1316 case ICE_AQ_TASK_CANCELED:
1317 err = ret < 0 ? ret : -ECANCELED;
1318 break;
1319 case ICE_AQ_TASK_COMPLETE:
1320 err = ret < 0 ? ret : 0;
1321 break;
1322 default:
1323 WARN(1, "Unexpected AdminQ wait task state %u", *state);
1324 err = -EINVAL;
1325 break;
1326 }
1327
1328 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1329 jiffies_to_msecs(jiffies - start),
1330 jiffies_to_msecs(timeout),
1331 task->opcode);
1332
1333 spin_lock_bh(&pf->aq_wait_lock);
1334 hlist_del(&task->entry);
1335 spin_unlock_bh(&pf->aq_wait_lock);
1336
1337 return err;
1338 }
1339
1340 /**
1341 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1342 * @pf: pointer to the PF private structure
1343 * @opcode: the opcode of the event
1344 * @event: the event to check
1345 *
1346 * Loops over the current list of pending threads waiting for an AdminQ event.
1347 * For each matching task, copy the contents of the event into the task
1348 * structure and wake up the thread.
1349 *
1350 * If multiple threads wait for the same opcode, they will all be woken up.
1351 *
1352 * Note that event->msg_buf will only be duplicated if the event has a buffer
1353 * with enough space already allocated. Otherwise, only the descriptor and
1354 * message length will be copied.
1355 *
1356 * Returns: true if an event was found, false otherwise
1357 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1358 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1359 struct ice_rq_event_info *event)
1360 {
1361 struct ice_rq_event_info *task_ev;
1362 struct ice_aq_task *task;
1363 bool found = false;
1364
1365 spin_lock_bh(&pf->aq_wait_lock);
1366 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1367 if (task->state != ICE_AQ_TASK_WAITING)
1368 continue;
1369 if (task->opcode != opcode)
1370 continue;
1371
1372 task_ev = &task->event;
1373 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1374 task_ev->msg_len = event->msg_len;
1375
1376 /* Only copy the data buffer if a destination was set */
1377 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1378 memcpy(task_ev->msg_buf, event->msg_buf,
1379 event->buf_len);
1380 task_ev->buf_len = event->buf_len;
1381 }
1382
1383 task->state = ICE_AQ_TASK_COMPLETE;
1384 found = true;
1385 }
1386 spin_unlock_bh(&pf->aq_wait_lock);
1387
1388 if (found)
1389 wake_up(&pf->aq_wait_queue);
1390 }
1391
1392 /**
1393 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1394 * @pf: the PF private structure
1395 *
1396 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1397 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1398 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1399 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1400 {
1401 struct ice_aq_task *task;
1402
1403 spin_lock_bh(&pf->aq_wait_lock);
1404 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1405 task->state = ICE_AQ_TASK_CANCELED;
1406 spin_unlock_bh(&pf->aq_wait_lock);
1407
1408 wake_up(&pf->aq_wait_queue);
1409 }
1410
1411 #define ICE_MBX_OVERFLOW_WATERMARK 64
1412
1413 /**
1414 * __ice_clean_ctrlq - helper function to clean controlq rings
1415 * @pf: ptr to struct ice_pf
1416 * @q_type: specific Control queue type
1417 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1418 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1419 {
1420 struct device *dev = ice_pf_to_dev(pf);
1421 struct ice_rq_event_info event;
1422 struct ice_hw *hw = &pf->hw;
1423 struct ice_ctl_q_info *cq;
1424 u16 pending, i = 0;
1425 const char *qtype;
1426 u32 oldval, val;
1427
1428 /* Do not clean control queue if/when PF reset fails */
1429 if (test_bit(ICE_RESET_FAILED, pf->state))
1430 return 0;
1431
1432 switch (q_type) {
1433 case ICE_CTL_Q_ADMIN:
1434 cq = &hw->adminq;
1435 qtype = "Admin";
1436 break;
1437 case ICE_CTL_Q_SB:
1438 cq = &hw->sbq;
1439 qtype = "Sideband";
1440 break;
1441 case ICE_CTL_Q_MAILBOX:
1442 cq = &hw->mailboxq;
1443 qtype = "Mailbox";
1444 /* we are going to try to detect a malicious VF, so set the
1445 * state to begin detection
1446 */
1447 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1448 break;
1449 default:
1450 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1451 return 0;
1452 }
1453
1454 /* check for error indications - PF_xx_AxQLEN register layout for
1455 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1456 */
1457 val = rd32(hw, cq->rq.len);
1458 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1459 PF_FW_ARQLEN_ARQCRIT_M)) {
1460 oldval = val;
1461 if (val & PF_FW_ARQLEN_ARQVFE_M)
1462 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1463 qtype);
1464 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1465 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1466 qtype);
1467 }
1468 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1469 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1470 qtype);
1471 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1472 PF_FW_ARQLEN_ARQCRIT_M);
1473 if (oldval != val)
1474 wr32(hw, cq->rq.len, val);
1475 }
1476
1477 val = rd32(hw, cq->sq.len);
1478 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1479 PF_FW_ATQLEN_ATQCRIT_M)) {
1480 oldval = val;
1481 if (val & PF_FW_ATQLEN_ATQVFE_M)
1482 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1483 qtype);
1484 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1485 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1486 qtype);
1487 }
1488 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1489 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1490 qtype);
1491 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1492 PF_FW_ATQLEN_ATQCRIT_M);
1493 if (oldval != val)
1494 wr32(hw, cq->sq.len, val);
1495 }
1496
1497 event.buf_len = cq->rq_buf_size;
1498 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1499 if (!event.msg_buf)
1500 return 0;
1501
1502 do {
1503 struct ice_mbx_data data = {};
1504 u16 opcode;
1505 int ret;
1506
1507 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1508 if (ret == -EALREADY)
1509 break;
1510 if (ret) {
1511 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1512 ret);
1513 break;
1514 }
1515
1516 opcode = le16_to_cpu(event.desc.opcode);
1517
1518 /* Notify any thread that might be waiting for this event */
1519 ice_aq_check_events(pf, opcode, &event);
1520
1521 switch (opcode) {
1522 case ice_aqc_opc_get_link_status:
1523 if (ice_handle_link_event(pf, &event))
1524 dev_err(dev, "Could not handle link event\n");
1525 break;
1526 case ice_aqc_opc_event_lan_overflow:
1527 ice_vf_lan_overflow_event(pf, &event);
1528 break;
1529 case ice_mbx_opc_send_msg_to_pf:
1530 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) {
1531 ice_vc_process_vf_msg(pf, &event, NULL);
1532 ice_mbx_vf_dec_trig_e830(hw, &event);
1533 } else {
1534 u16 val = hw->mailboxq.num_rq_entries;
1535
1536 data.max_num_msgs_mbx = val;
1537 val = ICE_MBX_OVERFLOW_WATERMARK;
1538 data.async_watermark_val = val;
1539 data.num_msg_proc = i;
1540 data.num_pending_arq = pending;
1541
1542 ice_vc_process_vf_msg(pf, &event, &data);
1543 }
1544 break;
1545 case ice_aqc_opc_fw_logs_event:
1546 libie_get_fwlog_data(&hw->fwlog, event.msg_buf,
1547 le16_to_cpu(event.desc.datalen));
1548 break;
1549 case ice_aqc_opc_lldp_set_mib_change:
1550 ice_dcb_process_lldp_set_mib_change(pf, &event);
1551 break;
1552 case ice_aqc_opc_get_health_status:
1553 ice_process_health_status_event(pf, &event);
1554 break;
1555 default:
1556 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1557 qtype, opcode);
1558 break;
1559 }
1560 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1561
1562 kfree(event.msg_buf);
1563
1564 return pending && (i == ICE_DFLT_IRQ_WORK);
1565 }
1566
1567 /**
1568 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1569 * @hw: pointer to hardware info
1570 * @cq: control queue information
1571 *
1572 * returns true if there are pending messages in a queue, false if there aren't
1573 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1574 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1575 {
1576 u16 ntu;
1577
1578 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1579 return cq->rq.next_to_clean != ntu;
1580 }
1581
1582 /**
1583 * ice_clean_adminq_subtask - clean the AdminQ rings
1584 * @pf: board private structure
1585 */
ice_clean_adminq_subtask(struct ice_pf * pf)1586 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1587 {
1588 struct ice_hw *hw = &pf->hw;
1589
1590 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1591 return;
1592
1593 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1594 return;
1595
1596 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1597
1598 /* There might be a situation where new messages arrive to a control
1599 * queue between processing the last message and clearing the
1600 * EVENT_PENDING bit. So before exiting, check queue head again (using
1601 * ice_ctrlq_pending) and process new messages if any.
1602 */
1603 if (ice_ctrlq_pending(hw, &hw->adminq))
1604 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1605
1606 ice_flush(hw);
1607 }
1608
1609 /**
1610 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1611 * @pf: board private structure
1612 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1613 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1614 {
1615 struct ice_hw *hw = &pf->hw;
1616
1617 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1618 return;
1619
1620 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1621 return;
1622
1623 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1624
1625 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1626 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1627
1628 ice_flush(hw);
1629 }
1630
1631 /**
1632 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1633 * @pf: board private structure
1634 */
ice_clean_sbq_subtask(struct ice_pf * pf)1635 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1636 {
1637 struct ice_hw *hw = &pf->hw;
1638
1639 /* if mac_type is not generic, sideband is not supported
1640 * and there's nothing to do here
1641 */
1642 if (!ice_is_generic_mac(hw)) {
1643 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1644 return;
1645 }
1646
1647 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1648 return;
1649
1650 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1651 return;
1652
1653 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1654
1655 if (ice_ctrlq_pending(hw, &hw->sbq))
1656 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1657
1658 ice_flush(hw);
1659 }
1660
1661 /**
1662 * ice_service_task_schedule - schedule the service task to wake up
1663 * @pf: board private structure
1664 *
1665 * If not already scheduled, this puts the task into the work queue.
1666 */
ice_service_task_schedule(struct ice_pf * pf)1667 void ice_service_task_schedule(struct ice_pf *pf)
1668 {
1669 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1670 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1671 !test_bit(ICE_NEEDS_RESTART, pf->state))
1672 queue_work(ice_wq, &pf->serv_task);
1673 }
1674
1675 /**
1676 * ice_service_task_complete - finish up the service task
1677 * @pf: board private structure
1678 */
ice_service_task_complete(struct ice_pf * pf)1679 static void ice_service_task_complete(struct ice_pf *pf)
1680 {
1681 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1682
1683 /* force memory (pf->state) to sync before next service task */
1684 smp_mb__before_atomic();
1685 clear_bit(ICE_SERVICE_SCHED, pf->state);
1686 }
1687
1688 /**
1689 * ice_service_task_stop - stop service task and cancel works
1690 * @pf: board private structure
1691 *
1692 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1693 * 1 otherwise.
1694 */
ice_service_task_stop(struct ice_pf * pf)1695 static int ice_service_task_stop(struct ice_pf *pf)
1696 {
1697 int ret;
1698
1699 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1700
1701 if (pf->serv_tmr.function)
1702 timer_delete_sync(&pf->serv_tmr);
1703 if (pf->serv_task.func)
1704 cancel_work_sync(&pf->serv_task);
1705
1706 clear_bit(ICE_SERVICE_SCHED, pf->state);
1707 return ret;
1708 }
1709
1710 /**
1711 * ice_service_task_restart - restart service task and schedule works
1712 * @pf: board private structure
1713 *
1714 * This function is needed for suspend and resume works (e.g WoL scenario)
1715 */
ice_service_task_restart(struct ice_pf * pf)1716 static void ice_service_task_restart(struct ice_pf *pf)
1717 {
1718 clear_bit(ICE_SERVICE_DIS, pf->state);
1719 ice_service_task_schedule(pf);
1720 }
1721
1722 /**
1723 * ice_service_timer - timer callback to schedule service task
1724 * @t: pointer to timer_list
1725 */
ice_service_timer(struct timer_list * t)1726 static void ice_service_timer(struct timer_list *t)
1727 {
1728 struct ice_pf *pf = timer_container_of(pf, t, serv_tmr);
1729
1730 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1731 ice_service_task_schedule(pf);
1732 }
1733
1734 /**
1735 * ice_mdd_maybe_reset_vf - reset VF after MDD event
1736 * @pf: pointer to the PF structure
1737 * @vf: pointer to the VF structure
1738 * @reset_vf_tx: whether Tx MDD has occurred
1739 * @reset_vf_rx: whether Rx MDD has occurred
1740 *
1741 * Since the queue can get stuck on VF MDD events, the PF can be configured to
1742 * automatically reset the VF by enabling the private ethtool flag
1743 * mdd-auto-reset-vf.
1744 */
ice_mdd_maybe_reset_vf(struct ice_pf * pf,struct ice_vf * vf,bool reset_vf_tx,bool reset_vf_rx)1745 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf,
1746 bool reset_vf_tx, bool reset_vf_rx)
1747 {
1748 struct device *dev = ice_pf_to_dev(pf);
1749
1750 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1751 return;
1752
1753 /* VF MDD event counters will be cleared by reset, so print the event
1754 * prior to reset.
1755 */
1756 if (reset_vf_tx)
1757 ice_print_vf_tx_mdd_event(vf);
1758
1759 if (reset_vf_rx)
1760 ice_print_vf_rx_mdd_event(vf);
1761
1762 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n",
1763 pf->hw.pf_id, vf->vf_id);
1764 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1765 }
1766
1767 /**
1768 * ice_handle_mdd_event - handle malicious driver detect event
1769 * @pf: pointer to the PF structure
1770 *
1771 * Called from service task. OICR interrupt handler indicates MDD event.
1772 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1773 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1774 * disable the queue, the PF can be configured to reset the VF using ethtool
1775 * private flag mdd-auto-reset-vf.
1776 */
ice_handle_mdd_event(struct ice_pf * pf)1777 static void ice_handle_mdd_event(struct ice_pf *pf)
1778 {
1779 struct device *dev = ice_pf_to_dev(pf);
1780 struct ice_hw *hw = &pf->hw;
1781 struct ice_vf *vf;
1782 unsigned int bkt;
1783 u32 reg;
1784
1785 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1786 /* Since the VF MDD event logging is rate limited, check if
1787 * there are pending MDD events.
1788 */
1789 ice_print_vfs_mdd_events(pf);
1790 return;
1791 }
1792
1793 /* find what triggered an MDD event */
1794 reg = rd32(hw, GL_MDET_TX_PQM);
1795 if (reg & GL_MDET_TX_PQM_VALID_M) {
1796 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1797 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1798 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1799 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1800
1801 if (netif_msg_tx_err(pf))
1802 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1803 event, queue, pf_num, vf_num);
1804 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num,
1805 event, queue);
1806 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1807 }
1808
1809 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1810 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1811 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1812 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1813 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1814 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1815
1816 if (netif_msg_tx_err(pf))
1817 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1818 event, queue, pf_num, vf_num);
1819 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num,
1820 event, queue);
1821 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1822 }
1823
1824 reg = rd32(hw, GL_MDET_RX);
1825 if (reg & GL_MDET_RX_VALID_M) {
1826 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1827 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1828 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1829 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1830
1831 if (netif_msg_rx_err(pf))
1832 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1833 event, queue, pf_num, vf_num);
1834 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event,
1835 queue);
1836 wr32(hw, GL_MDET_RX, 0xffffffff);
1837 }
1838
1839 /* check to see if this PF caused an MDD event */
1840 reg = rd32(hw, PF_MDET_TX_PQM);
1841 if (reg & PF_MDET_TX_PQM_VALID_M) {
1842 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1843 if (netif_msg_tx_err(pf))
1844 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1845 }
1846
1847 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1848 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1849 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1850 if (netif_msg_tx_err(pf))
1851 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1852 }
1853
1854 reg = rd32(hw, PF_MDET_RX);
1855 if (reg & PF_MDET_RX_VALID_M) {
1856 wr32(hw, PF_MDET_RX, 0xFFFF);
1857 if (netif_msg_rx_err(pf))
1858 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1859 }
1860
1861 /* Check to see if one of the VFs caused an MDD event, and then
1862 * increment counters and set print pending
1863 */
1864 mutex_lock(&pf->vfs.table_lock);
1865 ice_for_each_vf(pf, bkt, vf) {
1866 bool reset_vf_tx = false, reset_vf_rx = false;
1867
1868 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1869 if (reg & VP_MDET_TX_PQM_VALID_M) {
1870 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1871 vf->mdd_tx_events.count++;
1872 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1873 if (netif_msg_tx_err(pf))
1874 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1875 vf->vf_id);
1876
1877 reset_vf_tx = true;
1878 }
1879
1880 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1881 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1882 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1883 vf->mdd_tx_events.count++;
1884 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1885 if (netif_msg_tx_err(pf))
1886 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1887 vf->vf_id);
1888
1889 reset_vf_tx = true;
1890 }
1891
1892 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1893 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1894 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1895 vf->mdd_tx_events.count++;
1896 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1897 if (netif_msg_tx_err(pf))
1898 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1899 vf->vf_id);
1900
1901 reset_vf_tx = true;
1902 }
1903
1904 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1905 if (reg & VP_MDET_RX_VALID_M) {
1906 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1907 vf->mdd_rx_events.count++;
1908 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1909 if (netif_msg_rx_err(pf))
1910 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1911 vf->vf_id);
1912
1913 reset_vf_rx = true;
1914 }
1915
1916 if (reset_vf_tx || reset_vf_rx)
1917 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx,
1918 reset_vf_rx);
1919 }
1920 mutex_unlock(&pf->vfs.table_lock);
1921
1922 ice_print_vfs_mdd_events(pf);
1923 }
1924
1925 /**
1926 * ice_force_phys_link_state - Force the physical link state
1927 * @vsi: VSI to force the physical link state to up/down
1928 * @link_up: true/false indicates to set the physical link to up/down
1929 *
1930 * Force the physical link state by getting the current PHY capabilities from
1931 * hardware and setting the PHY config based on the determined capabilities. If
1932 * link changes a link event will be triggered because both the Enable Automatic
1933 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1934 *
1935 * Returns 0 on success, negative on failure
1936 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1937 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1938 {
1939 struct ice_aqc_get_phy_caps_data *pcaps;
1940 struct ice_aqc_set_phy_cfg_data *cfg;
1941 struct ice_port_info *pi;
1942 struct device *dev;
1943 int retcode;
1944
1945 if (!vsi || !vsi->port_info || !vsi->back)
1946 return -EINVAL;
1947 if (vsi->type != ICE_VSI_PF)
1948 return 0;
1949
1950 dev = ice_pf_to_dev(vsi->back);
1951
1952 pi = vsi->port_info;
1953
1954 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1955 if (!pcaps)
1956 return -ENOMEM;
1957
1958 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1959 NULL);
1960 if (retcode) {
1961 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1962 vsi->vsi_num, retcode);
1963 retcode = -EIO;
1964 goto out;
1965 }
1966
1967 /* No change in link */
1968 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1969 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1970 goto out;
1971
1972 /* Use the current user PHY configuration. The current user PHY
1973 * configuration is initialized during probe from PHY capabilities
1974 * software mode, and updated on set PHY configuration.
1975 */
1976 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1977 if (!cfg) {
1978 retcode = -ENOMEM;
1979 goto out;
1980 }
1981
1982 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1983 if (link_up)
1984 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1985 else
1986 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1987
1988 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1989 if (retcode) {
1990 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1991 vsi->vsi_num, retcode);
1992 retcode = -EIO;
1993 }
1994
1995 kfree(cfg);
1996 out:
1997 kfree(pcaps);
1998 return retcode;
1999 }
2000
2001 /**
2002 * ice_init_nvm_phy_type - Initialize the NVM PHY type
2003 * @pi: port info structure
2004 *
2005 * Initialize nvm_phy_type_[low|high] for link lenient mode support
2006 */
ice_init_nvm_phy_type(struct ice_port_info * pi)2007 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
2008 {
2009 struct ice_aqc_get_phy_caps_data *pcaps;
2010 struct ice_pf *pf = pi->hw->back;
2011 int err;
2012
2013 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2014 if (!pcaps)
2015 return -ENOMEM;
2016
2017 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
2018 pcaps, NULL);
2019
2020 if (err) {
2021 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2022 goto out;
2023 }
2024
2025 pf->nvm_phy_type_hi = pcaps->phy_type_high;
2026 pf->nvm_phy_type_lo = pcaps->phy_type_low;
2027
2028 out:
2029 kfree(pcaps);
2030 return err;
2031 }
2032
2033 /**
2034 * ice_init_link_dflt_override - Initialize link default override
2035 * @pi: port info structure
2036 *
2037 * Initialize link default override and PHY total port shutdown during probe
2038 */
ice_init_link_dflt_override(struct ice_port_info * pi)2039 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2040 {
2041 struct ice_link_default_override_tlv *ldo;
2042 struct ice_pf *pf = pi->hw->back;
2043
2044 ldo = &pf->link_dflt_override;
2045 if (ice_get_link_default_override(ldo, pi))
2046 return;
2047
2048 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2049 return;
2050
2051 /* Enable Total Port Shutdown (override/replace link-down-on-close
2052 * ethtool private flag) for ports with Port Disable bit set.
2053 */
2054 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2055 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2056 }
2057
2058 /**
2059 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2060 * @pi: port info structure
2061 *
2062 * If default override is enabled, initialize the user PHY cfg speed and FEC
2063 * settings using the default override mask from the NVM.
2064 *
2065 * The PHY should only be configured with the default override settings the
2066 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2067 * is used to indicate that the user PHY cfg default override is initialized
2068 * and the PHY has not been configured with the default override settings. The
2069 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2070 * configured.
2071 *
2072 * This function should be called only if the FW doesn't support default
2073 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2074 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)2075 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2076 {
2077 struct ice_link_default_override_tlv *ldo;
2078 struct ice_aqc_set_phy_cfg_data *cfg;
2079 struct ice_phy_info *phy = &pi->phy;
2080 struct ice_pf *pf = pi->hw->back;
2081
2082 ldo = &pf->link_dflt_override;
2083
2084 /* If link default override is enabled, use to mask NVM PHY capabilities
2085 * for speed and FEC default configuration.
2086 */
2087 cfg = &phy->curr_user_phy_cfg;
2088
2089 if (ldo->phy_type_low || ldo->phy_type_high) {
2090 cfg->phy_type_low = pf->nvm_phy_type_lo &
2091 cpu_to_le64(ldo->phy_type_low);
2092 cfg->phy_type_high = pf->nvm_phy_type_hi &
2093 cpu_to_le64(ldo->phy_type_high);
2094 }
2095 cfg->link_fec_opt = ldo->fec_options;
2096 phy->curr_user_fec_req = ICE_FEC_AUTO;
2097
2098 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2099 }
2100
2101 /**
2102 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2103 * @pi: port info structure
2104 *
2105 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2106 * mode to default. The PHY defaults are from get PHY capabilities topology
2107 * with media so call when media is first available. An error is returned if
2108 * called when media is not available. The PHY initialization completed state is
2109 * set here.
2110 *
2111 * These configurations are used when setting PHY
2112 * configuration. The user PHY configuration is updated on set PHY
2113 * configuration. Returns 0 on success, negative on failure
2114 */
ice_init_phy_user_cfg(struct ice_port_info * pi)2115 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2116 {
2117 struct ice_aqc_get_phy_caps_data *pcaps;
2118 struct ice_phy_info *phy = &pi->phy;
2119 struct ice_pf *pf = pi->hw->back;
2120 int err;
2121
2122 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2123 return -EIO;
2124
2125 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2126 if (!pcaps)
2127 return -ENOMEM;
2128
2129 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2130 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2131 pcaps, NULL);
2132 else
2133 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2134 pcaps, NULL);
2135 if (err) {
2136 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2137 goto err_out;
2138 }
2139
2140 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2141
2142 /* check if lenient mode is supported and enabled */
2143 if (ice_fw_supports_link_override(pi->hw) &&
2144 !(pcaps->module_compliance_enforcement &
2145 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2146 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2147
2148 /* if the FW supports default PHY configuration mode, then the driver
2149 * does not have to apply link override settings. If not,
2150 * initialize user PHY configuration with link override values
2151 */
2152 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2153 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2154 ice_init_phy_cfg_dflt_override(pi);
2155 goto out;
2156 }
2157 }
2158
2159 /* if link default override is not enabled, set user flow control and
2160 * FEC settings based on what get_phy_caps returned
2161 */
2162 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2163 pcaps->link_fec_options);
2164 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2165
2166 out:
2167 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2168 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2169 err_out:
2170 kfree(pcaps);
2171 return err;
2172 }
2173
2174 /**
2175 * ice_configure_phy - configure PHY
2176 * @vsi: VSI of PHY
2177 *
2178 * Set the PHY configuration. If the current PHY configuration is the same as
2179 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2180 * configure the based get PHY capabilities for topology with media.
2181 */
ice_configure_phy(struct ice_vsi * vsi)2182 static int ice_configure_phy(struct ice_vsi *vsi)
2183 {
2184 struct device *dev = ice_pf_to_dev(vsi->back);
2185 struct ice_port_info *pi = vsi->port_info;
2186 struct ice_aqc_get_phy_caps_data *pcaps;
2187 struct ice_aqc_set_phy_cfg_data *cfg;
2188 struct ice_phy_info *phy = &pi->phy;
2189 struct ice_pf *pf = vsi->back;
2190 int err;
2191
2192 /* Ensure we have media as we cannot configure a medialess port */
2193 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2194 return -ENOMEDIUM;
2195
2196 ice_print_topo_conflict(vsi);
2197
2198 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2199 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2200 return -EPERM;
2201
2202 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2203 return ice_force_phys_link_state(vsi, true);
2204
2205 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2206 if (!pcaps)
2207 return -ENOMEM;
2208
2209 /* Get current PHY config */
2210 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2211 NULL);
2212 if (err) {
2213 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2214 vsi->vsi_num, err);
2215 goto done;
2216 }
2217
2218 /* If PHY enable link is configured and configuration has not changed,
2219 * there's nothing to do
2220 */
2221 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2222 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2223 goto done;
2224
2225 /* Use PHY topology as baseline for configuration */
2226 memset(pcaps, 0, sizeof(*pcaps));
2227 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2228 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2229 pcaps, NULL);
2230 else
2231 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2232 pcaps, NULL);
2233 if (err) {
2234 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2235 vsi->vsi_num, err);
2236 goto done;
2237 }
2238
2239 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2240 if (!cfg) {
2241 err = -ENOMEM;
2242 goto done;
2243 }
2244
2245 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2246
2247 /* Speed - If default override pending, use curr_user_phy_cfg set in
2248 * ice_init_phy_user_cfg_ldo.
2249 */
2250 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2251 vsi->back->state)) {
2252 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2253 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2254 } else {
2255 u64 phy_low = 0, phy_high = 0;
2256
2257 ice_update_phy_type(&phy_low, &phy_high,
2258 pi->phy.curr_user_speed_req);
2259 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2260 cfg->phy_type_high = pcaps->phy_type_high &
2261 cpu_to_le64(phy_high);
2262 }
2263
2264 /* Can't provide what was requested; use PHY capabilities */
2265 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2266 cfg->phy_type_low = pcaps->phy_type_low;
2267 cfg->phy_type_high = pcaps->phy_type_high;
2268 }
2269
2270 /* FEC */
2271 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2272
2273 /* Can't provide what was requested; use PHY capabilities */
2274 if (cfg->link_fec_opt !=
2275 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2276 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2277 cfg->link_fec_opt = pcaps->link_fec_options;
2278 }
2279
2280 /* Flow Control - always supported; no need to check against
2281 * capabilities
2282 */
2283 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2284
2285 /* Enable link and link update */
2286 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2287
2288 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2289 if (err)
2290 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2291 vsi->vsi_num, err);
2292
2293 kfree(cfg);
2294 done:
2295 kfree(pcaps);
2296 return err;
2297 }
2298
2299 /**
2300 * ice_check_media_subtask - Check for media
2301 * @pf: pointer to PF struct
2302 *
2303 * If media is available, then initialize PHY user configuration if it is not
2304 * been, and configure the PHY if the interface is up.
2305 */
ice_check_media_subtask(struct ice_pf * pf)2306 static void ice_check_media_subtask(struct ice_pf *pf)
2307 {
2308 struct ice_port_info *pi;
2309 struct ice_vsi *vsi;
2310 int err;
2311
2312 /* No need to check for media if it's already present */
2313 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2314 return;
2315
2316 vsi = ice_get_main_vsi(pf);
2317 if (!vsi)
2318 return;
2319
2320 /* Refresh link info and check if media is present */
2321 pi = vsi->port_info;
2322 err = ice_update_link_info(pi);
2323 if (err)
2324 return;
2325
2326 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2327
2328 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2329 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2330 ice_init_phy_user_cfg(pi);
2331
2332 /* PHY settings are reset on media insertion, reconfigure
2333 * PHY to preserve settings.
2334 */
2335 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2336 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2337 return;
2338
2339 err = ice_configure_phy(vsi);
2340 if (!err)
2341 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2342
2343 /* A Link Status Event will be generated; the event handler
2344 * will complete bringing the interface up
2345 */
2346 }
2347 }
2348
ice_service_task_recovery_mode(struct work_struct * work)2349 static void ice_service_task_recovery_mode(struct work_struct *work)
2350 {
2351 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2352
2353 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2354 ice_clean_adminq_subtask(pf);
2355
2356 ice_service_task_complete(pf);
2357
2358 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100));
2359 }
2360
2361 /**
2362 * ice_service_task - manage and run subtasks
2363 * @work: pointer to work_struct contained by the PF struct
2364 */
ice_service_task(struct work_struct * work)2365 static void ice_service_task(struct work_struct *work)
2366 {
2367 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2368 unsigned long start_time = jiffies;
2369
2370 if (pf->health_reporters.tx_hang_buf.tx_ring) {
2371 ice_report_tx_hang(pf);
2372 pf->health_reporters.tx_hang_buf.tx_ring = NULL;
2373 }
2374
2375 ice_reset_subtask(pf);
2376
2377 /* bail if a reset/recovery cycle is pending or rebuild failed */
2378 if (ice_is_reset_in_progress(pf->state) ||
2379 test_bit(ICE_SUSPENDED, pf->state) ||
2380 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2381 ice_service_task_complete(pf);
2382 return;
2383 }
2384
2385 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2386 struct iidc_rdma_event *event;
2387
2388 event = kzalloc(sizeof(*event), GFP_KERNEL);
2389 if (event) {
2390 set_bit(IIDC_RDMA_EVENT_CRIT_ERR, event->type);
2391 /* report the entire OICR value to AUX driver */
2392 swap(event->reg, pf->oicr_err_reg);
2393 ice_send_event_to_aux(pf, event);
2394 kfree(event);
2395 }
2396 }
2397
2398 /* unplug aux dev per request, if an unplug request came in
2399 * while processing a plug request, this will handle it
2400 */
2401 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2402 ice_unplug_aux_dev(pf);
2403
2404 /* Plug aux device per request */
2405 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2406 ice_plug_aux_dev(pf);
2407
2408 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2409 struct iidc_rdma_event *event;
2410
2411 event = kzalloc(sizeof(*event), GFP_KERNEL);
2412 if (event) {
2413 set_bit(IIDC_RDMA_EVENT_AFTER_MTU_CHANGE, event->type);
2414 ice_send_event_to_aux(pf, event);
2415 kfree(event);
2416 }
2417 }
2418
2419 ice_clean_adminq_subtask(pf);
2420 ice_check_media_subtask(pf);
2421 ice_check_for_hang_subtask(pf);
2422 ice_sync_fltr_subtask(pf);
2423 ice_handle_mdd_event(pf);
2424 ice_watchdog_subtask(pf);
2425
2426 if (ice_is_safe_mode(pf)) {
2427 ice_service_task_complete(pf);
2428 return;
2429 }
2430
2431 ice_process_vflr_event(pf);
2432 ice_clean_mailboxq_subtask(pf);
2433 ice_clean_sbq_subtask(pf);
2434 ice_sync_arfs_fltrs(pf);
2435 ice_flush_fdir_ctx(pf);
2436
2437 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2438 ice_service_task_complete(pf);
2439
2440 /* If the tasks have taken longer than one service timer period
2441 * or there is more work to be done, reset the service timer to
2442 * schedule the service task now.
2443 */
2444 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2445 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2446 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2447 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2448 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2449 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2450 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2451 mod_timer(&pf->serv_tmr, jiffies);
2452 }
2453
2454 /**
2455 * ice_set_ctrlq_len - helper function to set controlq length
2456 * @hw: pointer to the HW instance
2457 */
ice_set_ctrlq_len(struct ice_hw * hw)2458 static void ice_set_ctrlq_len(struct ice_hw *hw)
2459 {
2460 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2461 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2462 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2463 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2464 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2465 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2466 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2467 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2468 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2469 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2470 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2471 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2472 }
2473
2474 /**
2475 * ice_schedule_reset - schedule a reset
2476 * @pf: board private structure
2477 * @reset: reset being requested
2478 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2479 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2480 {
2481 struct device *dev = ice_pf_to_dev(pf);
2482
2483 /* bail out if earlier reset has failed */
2484 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2485 dev_dbg(dev, "earlier reset has failed\n");
2486 return -EIO;
2487 }
2488 /* bail if reset/recovery already in progress */
2489 if (ice_is_reset_in_progress(pf->state)) {
2490 dev_dbg(dev, "Reset already in progress\n");
2491 return -EBUSY;
2492 }
2493
2494 switch (reset) {
2495 case ICE_RESET_PFR:
2496 set_bit(ICE_PFR_REQ, pf->state);
2497 break;
2498 case ICE_RESET_CORER:
2499 set_bit(ICE_CORER_REQ, pf->state);
2500 break;
2501 case ICE_RESET_GLOBR:
2502 set_bit(ICE_GLOBR_REQ, pf->state);
2503 break;
2504 default:
2505 return -EINVAL;
2506 }
2507
2508 ice_service_task_schedule(pf);
2509 return 0;
2510 }
2511
2512 /**
2513 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2514 * @vsi: the VSI being configured
2515 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2516 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2517 {
2518 struct ice_hw *hw = &vsi->back->hw;
2519 int i;
2520
2521 ice_for_each_q_vector(vsi, i)
2522 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2523
2524 ice_flush(hw);
2525 return 0;
2526 }
2527
2528 /**
2529 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2530 * @vsi: the VSI being configured
2531 * @basename: name for the vector
2532 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2533 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2534 {
2535 int q_vectors = vsi->num_q_vectors;
2536 struct ice_pf *pf = vsi->back;
2537 struct device *dev;
2538 int rx_int_idx = 0;
2539 int tx_int_idx = 0;
2540 int vector, err;
2541 int irq_num;
2542
2543 dev = ice_pf_to_dev(pf);
2544 for (vector = 0; vector < q_vectors; vector++) {
2545 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2546
2547 irq_num = q_vector->irq.virq;
2548
2549 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2550 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2551 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2552 tx_int_idx++;
2553 } else if (q_vector->rx.rx_ring) {
2554 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2555 "%s-%s-%d", basename, "rx", rx_int_idx++);
2556 } else if (q_vector->tx.tx_ring) {
2557 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2558 "%s-%s-%d", basename, "tx", tx_int_idx++);
2559 } else {
2560 /* skip this unused q_vector */
2561 continue;
2562 }
2563 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2564 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2565 IRQF_SHARED, q_vector->name,
2566 q_vector);
2567 else
2568 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2569 0, q_vector->name, q_vector);
2570 if (err) {
2571 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2572 err);
2573 goto free_q_irqs;
2574 }
2575 }
2576
2577 err = ice_set_cpu_rx_rmap(vsi);
2578 if (err) {
2579 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2580 vsi->vsi_num, ERR_PTR(err));
2581 goto free_q_irqs;
2582 }
2583
2584 vsi->irqs_ready = true;
2585 return 0;
2586
2587 free_q_irqs:
2588 while (vector--) {
2589 irq_num = vsi->q_vectors[vector]->irq.virq;
2590 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2591 }
2592 return err;
2593 }
2594
2595 /**
2596 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2597 * @vsi: VSI to setup Tx rings used by XDP
2598 *
2599 * Return 0 on success and negative value on error
2600 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2601 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2602 {
2603 struct device *dev = ice_pf_to_dev(vsi->back);
2604 struct ice_tx_desc *tx_desc;
2605 int i, j;
2606
2607 ice_for_each_xdp_txq(vsi, i) {
2608 u16 xdp_q_idx = vsi->alloc_txq + i;
2609 struct ice_ring_stats *ring_stats;
2610 struct ice_tx_ring *xdp_ring;
2611
2612 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2613 if (!xdp_ring)
2614 goto free_xdp_rings;
2615
2616 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2617 if (!ring_stats) {
2618 ice_free_tx_ring(xdp_ring);
2619 goto free_xdp_rings;
2620 }
2621
2622 xdp_ring->ring_stats = ring_stats;
2623 xdp_ring->q_index = xdp_q_idx;
2624 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2625 xdp_ring->vsi = vsi;
2626 xdp_ring->netdev = NULL;
2627 xdp_ring->dev = dev;
2628 xdp_ring->count = vsi->num_tx_desc;
2629 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2630 if (ice_setup_tx_ring(xdp_ring))
2631 goto free_xdp_rings;
2632 ice_set_ring_xdp(xdp_ring);
2633 spin_lock_init(&xdp_ring->tx_lock);
2634 for (j = 0; j < xdp_ring->count; j++) {
2635 tx_desc = ICE_TX_DESC(xdp_ring, j);
2636 tx_desc->cmd_type_offset_bsz = 0;
2637 }
2638 }
2639
2640 return 0;
2641
2642 free_xdp_rings:
2643 for (; i >= 0; i--) {
2644 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2645 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2646 vsi->xdp_rings[i]->ring_stats = NULL;
2647 ice_free_tx_ring(vsi->xdp_rings[i]);
2648 }
2649 }
2650 return -ENOMEM;
2651 }
2652
2653 /**
2654 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2655 * @vsi: VSI to set the bpf prog on
2656 * @prog: the bpf prog pointer
2657 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2658 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2659 {
2660 struct bpf_prog *old_prog;
2661 int i;
2662
2663 old_prog = xchg(&vsi->xdp_prog, prog);
2664 ice_for_each_rxq(vsi, i)
2665 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2666
2667 if (old_prog)
2668 bpf_prog_put(old_prog);
2669 }
2670
ice_xdp_ring_from_qid(struct ice_vsi * vsi,int qid)2671 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid)
2672 {
2673 struct ice_q_vector *q_vector;
2674 struct ice_tx_ring *ring;
2675
2676 if (static_key_enabled(&ice_xdp_locking_key))
2677 return vsi->xdp_rings[qid % vsi->num_xdp_txq];
2678
2679 q_vector = vsi->rx_rings[qid]->q_vector;
2680 ice_for_each_tx_ring(ring, q_vector->tx)
2681 if (ice_ring_is_xdp(ring))
2682 return ring;
2683
2684 return NULL;
2685 }
2686
2687 /**
2688 * ice_map_xdp_rings - Map XDP rings to interrupt vectors
2689 * @vsi: the VSI with XDP rings being configured
2690 *
2691 * Map XDP rings to interrupt vectors and perform the configuration steps
2692 * dependent on the mapping.
2693 */
ice_map_xdp_rings(struct ice_vsi * vsi)2694 void ice_map_xdp_rings(struct ice_vsi *vsi)
2695 {
2696 int xdp_rings_rem = vsi->num_xdp_txq;
2697 int v_idx, q_idx;
2698
2699 /* follow the logic from ice_vsi_map_rings_to_vectors */
2700 ice_for_each_q_vector(vsi, v_idx) {
2701 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2702 int xdp_rings_per_v, q_id, q_base;
2703
2704 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2705 vsi->num_q_vectors - v_idx);
2706 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2707
2708 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2709 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2710
2711 xdp_ring->q_vector = q_vector;
2712 xdp_ring->next = q_vector->tx.tx_ring;
2713 q_vector->tx.tx_ring = xdp_ring;
2714 }
2715 xdp_rings_rem -= xdp_rings_per_v;
2716 }
2717
2718 ice_for_each_rxq(vsi, q_idx) {
2719 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi,
2720 q_idx);
2721 ice_tx_xsk_pool(vsi, q_idx);
2722 }
2723 }
2724
2725 /**
2726 * ice_unmap_xdp_rings - Unmap XDP rings from interrupt vectors
2727 * @vsi: the VSI with XDP rings being unmapped
2728 */
ice_unmap_xdp_rings(struct ice_vsi * vsi)2729 static void ice_unmap_xdp_rings(struct ice_vsi *vsi)
2730 {
2731 int v_idx;
2732
2733 ice_for_each_q_vector(vsi, v_idx) {
2734 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2735 struct ice_tx_ring *ring;
2736
2737 ice_for_each_tx_ring(ring, q_vector->tx)
2738 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2739 break;
2740
2741 /* restore the value of last node prior to XDP setup */
2742 q_vector->tx.tx_ring = ring;
2743 }
2744 }
2745
2746 /**
2747 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2748 * @vsi: VSI to bring up Tx rings used by XDP
2749 * @prog: bpf program that will be assigned to VSI
2750 * @cfg_type: create from scratch or restore the existing configuration
2751 *
2752 * Return 0 on success and negative value on error
2753 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog,enum ice_xdp_cfg cfg_type)2754 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2755 enum ice_xdp_cfg cfg_type)
2756 {
2757 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2758 struct ice_pf *pf = vsi->back;
2759 struct ice_qs_cfg xdp_qs_cfg = {
2760 .qs_mutex = &pf->avail_q_mutex,
2761 .pf_map = pf->avail_txqs,
2762 .pf_map_size = pf->max_pf_txqs,
2763 .q_count = vsi->num_xdp_txq,
2764 .scatter_count = ICE_MAX_SCATTER_TXQS,
2765 .vsi_map = vsi->txq_map,
2766 .vsi_map_offset = vsi->alloc_txq,
2767 .mapping_mode = ICE_VSI_MAP_CONTIG
2768 };
2769 struct device *dev;
2770 int status, i;
2771
2772 dev = ice_pf_to_dev(pf);
2773 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2774 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2775 if (!vsi->xdp_rings)
2776 return -ENOMEM;
2777
2778 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2779 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2780 goto err_map_xdp;
2781
2782 if (static_key_enabled(&ice_xdp_locking_key))
2783 netdev_warn(vsi->netdev,
2784 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2785
2786 if (ice_xdp_alloc_setup_rings(vsi))
2787 goto clear_xdp_rings;
2788
2789 /* omit the scheduler update if in reset path; XDP queues will be
2790 * taken into account at the end of ice_vsi_rebuild, where
2791 * ice_cfg_vsi_lan is being called
2792 */
2793 if (cfg_type == ICE_XDP_CFG_PART)
2794 return 0;
2795
2796 ice_map_xdp_rings(vsi);
2797
2798 /* tell the Tx scheduler that right now we have
2799 * additional queues
2800 */
2801 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2802 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2803
2804 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2805 max_txqs);
2806 if (status) {
2807 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2808 status);
2809 goto unmap_xdp_rings;
2810 }
2811
2812 /* assign the prog only when it's not already present on VSI;
2813 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2814 * VSI rebuild that happens under ethtool -L can expose us to
2815 * the bpf_prog refcount issues as we would be swapping same
2816 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2817 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2818 * this is not harmful as dev_xdp_install bumps the refcount
2819 * before calling the op exposed by the driver;
2820 */
2821 if (!ice_is_xdp_ena_vsi(vsi))
2822 ice_vsi_assign_bpf_prog(vsi, prog);
2823
2824 return 0;
2825 unmap_xdp_rings:
2826 ice_unmap_xdp_rings(vsi);
2827 clear_xdp_rings:
2828 ice_for_each_xdp_txq(vsi, i)
2829 if (vsi->xdp_rings[i]) {
2830 kfree_rcu(vsi->xdp_rings[i], rcu);
2831 vsi->xdp_rings[i] = NULL;
2832 }
2833
2834 err_map_xdp:
2835 mutex_lock(&pf->avail_q_mutex);
2836 ice_for_each_xdp_txq(vsi, i) {
2837 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2838 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2839 }
2840 mutex_unlock(&pf->avail_q_mutex);
2841
2842 devm_kfree(dev, vsi->xdp_rings);
2843 vsi->xdp_rings = NULL;
2844
2845 return -ENOMEM;
2846 }
2847
2848 /**
2849 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2850 * @vsi: VSI to remove XDP rings
2851 * @cfg_type: disable XDP permanently or allow it to be restored later
2852 *
2853 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2854 * resources
2855 */
ice_destroy_xdp_rings(struct ice_vsi * vsi,enum ice_xdp_cfg cfg_type)2856 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2857 {
2858 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2859 struct ice_pf *pf = vsi->back;
2860 int i;
2861
2862 /* q_vectors are freed in reset path so there's no point in detaching
2863 * rings
2864 */
2865 if (cfg_type == ICE_XDP_CFG_PART)
2866 goto free_qmap;
2867
2868 ice_unmap_xdp_rings(vsi);
2869
2870 free_qmap:
2871 mutex_lock(&pf->avail_q_mutex);
2872 ice_for_each_xdp_txq(vsi, i) {
2873 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2874 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2875 }
2876 mutex_unlock(&pf->avail_q_mutex);
2877
2878 ice_for_each_xdp_txq(vsi, i)
2879 if (vsi->xdp_rings[i]) {
2880 if (vsi->xdp_rings[i]->desc) {
2881 synchronize_rcu();
2882 ice_free_tx_ring(vsi->xdp_rings[i]);
2883 }
2884 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2885 vsi->xdp_rings[i]->ring_stats = NULL;
2886 kfree_rcu(vsi->xdp_rings[i], rcu);
2887 vsi->xdp_rings[i] = NULL;
2888 }
2889
2890 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2891 vsi->xdp_rings = NULL;
2892
2893 if (static_key_enabled(&ice_xdp_locking_key))
2894 static_branch_dec(&ice_xdp_locking_key);
2895
2896 if (cfg_type == ICE_XDP_CFG_PART)
2897 return 0;
2898
2899 ice_vsi_assign_bpf_prog(vsi, NULL);
2900
2901 /* notify Tx scheduler that we destroyed XDP queues and bring
2902 * back the old number of child nodes
2903 */
2904 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2905 max_txqs[i] = vsi->num_txq;
2906
2907 /* change number of XDP Tx queues to 0 */
2908 vsi->num_xdp_txq = 0;
2909
2910 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2911 max_txqs);
2912 }
2913
2914 /**
2915 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2916 * @vsi: VSI to schedule napi on
2917 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2918 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2919 {
2920 int i;
2921
2922 ice_for_each_rxq(vsi, i) {
2923 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2924
2925 if (READ_ONCE(rx_ring->xsk_pool))
2926 napi_schedule(&rx_ring->q_vector->napi);
2927 }
2928 }
2929
2930 /**
2931 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2932 * @vsi: VSI to determine the count of XDP Tx qs
2933 *
2934 * returns 0 if Tx qs count is higher than at least half of CPU count,
2935 * -ENOMEM otherwise
2936 */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2937 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2938 {
2939 u16 avail = ice_get_avail_txq_count(vsi->back);
2940 u16 cpus = num_possible_cpus();
2941
2942 if (avail < cpus / 2)
2943 return -ENOMEM;
2944
2945 if (vsi->type == ICE_VSI_SF)
2946 avail = vsi->alloc_txq;
2947
2948 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2949
2950 if (vsi->num_xdp_txq < cpus)
2951 static_branch_inc(&ice_xdp_locking_key);
2952
2953 return 0;
2954 }
2955
2956 /**
2957 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2958 * @vsi: Pointer to VSI structure
2959 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)2960 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2961 {
2962 return ICE_RXBUF_3072;
2963 }
2964
2965 /**
2966 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2967 * @vsi: VSI to setup XDP for
2968 * @prog: XDP program
2969 * @extack: netlink extended ack
2970 */
2971 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2972 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2973 struct netlink_ext_ack *extack)
2974 {
2975 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2976 int ret = 0, xdp_ring_err = 0;
2977 bool if_running;
2978
2979 if (prog && !prog->aux->xdp_has_frags) {
2980 if (frame_size > ice_max_xdp_frame_size(vsi)) {
2981 NL_SET_ERR_MSG_MOD(extack,
2982 "MTU is too large for linear frames and XDP prog does not support frags");
2983 return -EOPNOTSUPP;
2984 }
2985 }
2986
2987 /* hot swap progs and avoid toggling link */
2988 if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
2989 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
2990 ice_vsi_assign_bpf_prog(vsi, prog);
2991 return 0;
2992 }
2993
2994 if_running = netif_running(vsi->netdev) &&
2995 !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
2996
2997 /* need to stop netdev while setting up the program for Rx rings */
2998 if (if_running) {
2999 ret = ice_down(vsi);
3000 if (ret) {
3001 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
3002 return ret;
3003 }
3004 }
3005
3006 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
3007 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
3008 if (xdp_ring_err) {
3009 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
3010 goto resume_if;
3011 } else {
3012 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
3013 ICE_XDP_CFG_FULL);
3014 if (xdp_ring_err) {
3015 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
3016 goto resume_if;
3017 }
3018 }
3019 xdp_features_set_redirect_target(vsi->netdev, true);
3020 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
3021 xdp_features_clear_redirect_target(vsi->netdev);
3022 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
3023 if (xdp_ring_err)
3024 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
3025 }
3026
3027 resume_if:
3028 if (if_running)
3029 ret = ice_up(vsi);
3030
3031 if (!ret && prog)
3032 ice_vsi_rx_napi_schedule(vsi);
3033
3034 return (ret || xdp_ring_err) ? -ENOMEM : 0;
3035 }
3036
3037 /**
3038 * ice_xdp_safe_mode - XDP handler for safe mode
3039 * @dev: netdevice
3040 * @xdp: XDP command
3041 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)3042 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3043 struct netdev_bpf *xdp)
3044 {
3045 NL_SET_ERR_MSG_MOD(xdp->extack,
3046 "Please provide working DDP firmware package in order to use XDP\n"
3047 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3048 return -EOPNOTSUPP;
3049 }
3050
3051 /**
3052 * ice_xdp - implements XDP handler
3053 * @dev: netdevice
3054 * @xdp: XDP command
3055 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)3056 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3057 {
3058 struct ice_netdev_priv *np = netdev_priv(dev);
3059 struct ice_vsi *vsi = np->vsi;
3060 int ret;
3061
3062 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) {
3063 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI");
3064 return -EINVAL;
3065 }
3066
3067 mutex_lock(&vsi->xdp_state_lock);
3068
3069 switch (xdp->command) {
3070 case XDP_SETUP_PROG:
3071 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3072 break;
3073 case XDP_SETUP_XSK_POOL:
3074 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3075 break;
3076 default:
3077 ret = -EINVAL;
3078 }
3079
3080 mutex_unlock(&vsi->xdp_state_lock);
3081 return ret;
3082 }
3083
3084 /**
3085 * ice_ena_misc_vector - enable the non-queue interrupts
3086 * @pf: board private structure
3087 */
ice_ena_misc_vector(struct ice_pf * pf)3088 static void ice_ena_misc_vector(struct ice_pf *pf)
3089 {
3090 struct ice_hw *hw = &pf->hw;
3091 u32 pf_intr_start_offset;
3092 u32 val;
3093
3094 /* Disable anti-spoof detection interrupt to prevent spurious event
3095 * interrupts during a function reset. Anti-spoof functionally is
3096 * still supported.
3097 */
3098 val = rd32(hw, GL_MDCK_TX_TDPU);
3099 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3100 wr32(hw, GL_MDCK_TX_TDPU, val);
3101
3102 /* clear things first */
3103 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3104 rd32(hw, PFINT_OICR); /* read to clear */
3105
3106 val = (PFINT_OICR_ECC_ERR_M |
3107 PFINT_OICR_MAL_DETECT_M |
3108 PFINT_OICR_GRST_M |
3109 PFINT_OICR_PCI_EXCEPTION_M |
3110 PFINT_OICR_VFLR_M |
3111 PFINT_OICR_HMC_ERR_M |
3112 PFINT_OICR_PE_PUSH_M |
3113 PFINT_OICR_PE_CRITERR_M);
3114
3115 wr32(hw, PFINT_OICR_ENA, val);
3116
3117 /* SW_ITR_IDX = 0, but don't change INTENA */
3118 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3119 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3120
3121 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3122 return;
3123 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3124 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3125 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3126 }
3127
3128 /**
3129 * ice_ll_ts_intr - ll_ts interrupt handler
3130 * @irq: interrupt number
3131 * @data: pointer to a q_vector
3132 */
ice_ll_ts_intr(int __always_unused irq,void * data)3133 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3134 {
3135 struct ice_pf *pf = data;
3136 u32 pf_intr_start_offset;
3137 struct ice_ptp_tx *tx;
3138 unsigned long flags;
3139 struct ice_hw *hw;
3140 u32 val;
3141 u8 idx;
3142
3143 hw = &pf->hw;
3144 tx = &pf->ptp.port.tx;
3145 spin_lock_irqsave(&tx->lock, flags);
3146 if (tx->init) {
3147 ice_ptp_complete_tx_single_tstamp(tx);
3148
3149 idx = find_next_bit_wrap(tx->in_use, tx->len,
3150 tx->last_ll_ts_idx_read + 1);
3151 if (idx != tx->len)
3152 ice_ptp_req_tx_single_tstamp(tx, idx);
3153 }
3154 spin_unlock_irqrestore(&tx->lock, flags);
3155
3156 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3157 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3158 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3159 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3160 val);
3161
3162 return IRQ_HANDLED;
3163 }
3164
3165 /**
3166 * ice_misc_intr - misc interrupt handler
3167 * @irq: interrupt number
3168 * @data: pointer to a q_vector
3169 */
ice_misc_intr(int __always_unused irq,void * data)3170 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3171 {
3172 struct ice_pf *pf = (struct ice_pf *)data;
3173 irqreturn_t ret = IRQ_HANDLED;
3174 struct ice_hw *hw = &pf->hw;
3175 struct device *dev;
3176 u32 oicr, ena_mask;
3177
3178 dev = ice_pf_to_dev(pf);
3179 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3180 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3181 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3182
3183 oicr = rd32(hw, PFINT_OICR);
3184 ena_mask = rd32(hw, PFINT_OICR_ENA);
3185
3186 if (oicr & PFINT_OICR_SWINT_M) {
3187 ena_mask &= ~PFINT_OICR_SWINT_M;
3188 pf->sw_int_count++;
3189 }
3190
3191 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3192 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3193 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3194 }
3195 if (oicr & PFINT_OICR_VFLR_M) {
3196 /* disable any further VFLR event notifications */
3197 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3198 u32 reg = rd32(hw, PFINT_OICR_ENA);
3199
3200 reg &= ~PFINT_OICR_VFLR_M;
3201 wr32(hw, PFINT_OICR_ENA, reg);
3202 } else {
3203 ena_mask &= ~PFINT_OICR_VFLR_M;
3204 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3205 }
3206 }
3207
3208 if (oicr & PFINT_OICR_GRST_M) {
3209 u32 reset;
3210
3211 /* we have a reset warning */
3212 ena_mask &= ~PFINT_OICR_GRST_M;
3213 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3214 rd32(hw, GLGEN_RSTAT));
3215
3216 if (reset == ICE_RESET_CORER)
3217 pf->corer_count++;
3218 else if (reset == ICE_RESET_GLOBR)
3219 pf->globr_count++;
3220 else if (reset == ICE_RESET_EMPR)
3221 pf->empr_count++;
3222 else
3223 dev_dbg(dev, "Invalid reset type %d\n", reset);
3224
3225 /* If a reset cycle isn't already in progress, we set a bit in
3226 * pf->state so that the service task can start a reset/rebuild.
3227 */
3228 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3229 if (reset == ICE_RESET_CORER)
3230 set_bit(ICE_CORER_RECV, pf->state);
3231 else if (reset == ICE_RESET_GLOBR)
3232 set_bit(ICE_GLOBR_RECV, pf->state);
3233 else
3234 set_bit(ICE_EMPR_RECV, pf->state);
3235
3236 /* There are couple of different bits at play here.
3237 * hw->reset_ongoing indicates whether the hardware is
3238 * in reset. This is set to true when a reset interrupt
3239 * is received and set back to false after the driver
3240 * has determined that the hardware is out of reset.
3241 *
3242 * ICE_RESET_OICR_RECV in pf->state indicates
3243 * that a post reset rebuild is required before the
3244 * driver is operational again. This is set above.
3245 *
3246 * As this is the start of the reset/rebuild cycle, set
3247 * both to indicate that.
3248 */
3249 hw->reset_ongoing = true;
3250 }
3251 }
3252
3253 if (oicr & PFINT_OICR_TSYN_TX_M) {
3254 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3255
3256 ret = ice_ptp_ts_irq(pf);
3257 }
3258
3259 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3260 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3261 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3262
3263 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3264
3265 if (ice_pf_src_tmr_owned(pf)) {
3266 /* Save EVENTs from GLTSYN register */
3267 pf->ptp.ext_ts_irq |= gltsyn_stat &
3268 (GLTSYN_STAT_EVENT0_M |
3269 GLTSYN_STAT_EVENT1_M |
3270 GLTSYN_STAT_EVENT2_M);
3271
3272 ice_ptp_extts_event(pf);
3273 }
3274 }
3275
3276 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3277 if (oicr & ICE_AUX_CRIT_ERR) {
3278 pf->oicr_err_reg |= oicr;
3279 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3280 ena_mask &= ~ICE_AUX_CRIT_ERR;
3281 }
3282
3283 /* Report any remaining unexpected interrupts */
3284 oicr &= ena_mask;
3285 if (oicr) {
3286 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3287 /* If a critical error is pending there is no choice but to
3288 * reset the device.
3289 */
3290 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3291 PFINT_OICR_ECC_ERR_M)) {
3292 set_bit(ICE_PFR_REQ, pf->state);
3293 }
3294 }
3295 ice_service_task_schedule(pf);
3296 if (ret == IRQ_HANDLED)
3297 ice_irq_dynamic_ena(hw, NULL, NULL);
3298
3299 return ret;
3300 }
3301
3302 /**
3303 * ice_misc_intr_thread_fn - misc interrupt thread function
3304 * @irq: interrupt number
3305 * @data: pointer to a q_vector
3306 */
ice_misc_intr_thread_fn(int __always_unused irq,void * data)3307 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3308 {
3309 struct ice_pf *pf = data;
3310 struct ice_hw *hw;
3311
3312 hw = &pf->hw;
3313
3314 if (ice_is_reset_in_progress(pf->state))
3315 goto skip_irq;
3316
3317 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread))
3318 ice_ptp_process_ts(pf);
3319
3320 skip_irq:
3321 ice_irq_dynamic_ena(hw, NULL, NULL);
3322 ice_flush(hw);
3323
3324 if (ice_ptp_tx_tstamps_pending(pf)) {
3325 /* If any new Tx timestamps happened while in interrupt,
3326 * re-arm the interrupt to trigger it again.
3327 */
3328 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3329 ice_flush(hw);
3330 }
3331
3332 return IRQ_HANDLED;
3333 }
3334
3335 /**
3336 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3337 * @hw: pointer to HW structure
3338 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3339 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3340 {
3341 /* disable Admin queue Interrupt causes */
3342 wr32(hw, PFINT_FW_CTL,
3343 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3344
3345 /* disable Mailbox queue Interrupt causes */
3346 wr32(hw, PFINT_MBX_CTL,
3347 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3348
3349 wr32(hw, PFINT_SB_CTL,
3350 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3351
3352 /* disable Control queue Interrupt causes */
3353 wr32(hw, PFINT_OICR_CTL,
3354 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3355
3356 ice_flush(hw);
3357 }
3358
3359 /**
3360 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3361 * @pf: board private structure
3362 */
ice_free_irq_msix_ll_ts(struct ice_pf * pf)3363 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3364 {
3365 int irq_num = pf->ll_ts_irq.virq;
3366
3367 synchronize_irq(irq_num);
3368 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3369
3370 ice_free_irq(pf, pf->ll_ts_irq);
3371 }
3372
3373 /**
3374 * ice_free_irq_msix_misc - Unroll misc vector setup
3375 * @pf: board private structure
3376 */
ice_free_irq_msix_misc(struct ice_pf * pf)3377 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3378 {
3379 int misc_irq_num = pf->oicr_irq.virq;
3380 struct ice_hw *hw = &pf->hw;
3381
3382 ice_dis_ctrlq_interrupts(hw);
3383
3384 /* disable OICR interrupt */
3385 wr32(hw, PFINT_OICR_ENA, 0);
3386 ice_flush(hw);
3387
3388 synchronize_irq(misc_irq_num);
3389 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3390
3391 ice_free_irq(pf, pf->oicr_irq);
3392 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3393 ice_free_irq_msix_ll_ts(pf);
3394 }
3395
3396 /**
3397 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3398 * @hw: pointer to HW structure
3399 * @reg_idx: HW vector index to associate the control queue interrupts with
3400 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3401 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3402 {
3403 u32 val;
3404
3405 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3406 PFINT_OICR_CTL_CAUSE_ENA_M);
3407 wr32(hw, PFINT_OICR_CTL, val);
3408
3409 /* enable Admin queue Interrupt causes */
3410 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3411 PFINT_FW_CTL_CAUSE_ENA_M);
3412 wr32(hw, PFINT_FW_CTL, val);
3413
3414 /* enable Mailbox queue Interrupt causes */
3415 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3416 PFINT_MBX_CTL_CAUSE_ENA_M);
3417 wr32(hw, PFINT_MBX_CTL, val);
3418
3419 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3420 /* enable Sideband queue Interrupt causes */
3421 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3422 PFINT_SB_CTL_CAUSE_ENA_M);
3423 wr32(hw, PFINT_SB_CTL, val);
3424 }
3425
3426 ice_flush(hw);
3427 }
3428
3429 /**
3430 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3431 * @pf: board private structure
3432 *
3433 * This sets up the handler for MSIX 0, which is used to manage the
3434 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3435 * when in MSI or Legacy interrupt mode.
3436 */
ice_req_irq_msix_misc(struct ice_pf * pf)3437 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3438 {
3439 struct device *dev = ice_pf_to_dev(pf);
3440 struct ice_hw *hw = &pf->hw;
3441 u32 pf_intr_start_offset;
3442 struct msi_map irq;
3443 int err = 0;
3444
3445 if (!pf->int_name[0])
3446 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3447 dev_driver_string(dev), dev_name(dev));
3448
3449 if (!pf->int_name_ll_ts[0])
3450 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3451 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3452 /* Do not request IRQ but do enable OICR interrupt since settings are
3453 * lost during reset. Note that this function is called only during
3454 * rebuild path and not while reset is in progress.
3455 */
3456 if (ice_is_reset_in_progress(pf->state))
3457 goto skip_req_irq;
3458
3459 /* reserve one vector in irq_tracker for misc interrupts */
3460 irq = ice_alloc_irq(pf, false);
3461 if (irq.index < 0)
3462 return irq.index;
3463
3464 pf->oicr_irq = irq;
3465 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3466 ice_misc_intr_thread_fn, 0,
3467 pf->int_name, pf);
3468 if (err) {
3469 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3470 pf->int_name, err);
3471 ice_free_irq(pf, pf->oicr_irq);
3472 return err;
3473 }
3474
3475 /* reserve one vector in irq_tracker for ll_ts interrupt */
3476 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3477 goto skip_req_irq;
3478
3479 irq = ice_alloc_irq(pf, false);
3480 if (irq.index < 0)
3481 return irq.index;
3482
3483 pf->ll_ts_irq = irq;
3484 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3485 pf->int_name_ll_ts, pf);
3486 if (err) {
3487 dev_err(dev, "devm_request_irq for %s failed: %d\n",
3488 pf->int_name_ll_ts, err);
3489 ice_free_irq(pf, pf->ll_ts_irq);
3490 return err;
3491 }
3492
3493 skip_req_irq:
3494 ice_ena_misc_vector(pf);
3495
3496 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3497 /* This enables LL TS interrupt */
3498 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3499 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3500 wr32(hw, PFINT_SB_CTL,
3501 ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3502 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3503 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3504 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3505
3506 ice_flush(hw);
3507 ice_irq_dynamic_ena(hw, NULL, NULL);
3508
3509 return 0;
3510 }
3511
3512 /**
3513 * ice_set_ops - set netdev and ethtools ops for the given netdev
3514 * @vsi: the VSI associated with the new netdev
3515 */
ice_set_ops(struct ice_vsi * vsi)3516 static void ice_set_ops(struct ice_vsi *vsi)
3517 {
3518 struct net_device *netdev = vsi->netdev;
3519 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3520
3521 if (ice_is_safe_mode(pf)) {
3522 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3523 ice_set_ethtool_safe_mode_ops(netdev);
3524 return;
3525 }
3526
3527 netdev->netdev_ops = &ice_netdev_ops;
3528 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3529 netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3530 ice_set_ethtool_ops(netdev);
3531
3532 if (vsi->type != ICE_VSI_PF)
3533 return;
3534
3535 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3536 NETDEV_XDP_ACT_XSK_ZEROCOPY |
3537 NETDEV_XDP_ACT_RX_SG;
3538 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3539 }
3540
3541 /**
3542 * ice_set_netdev_features - set features for the given netdev
3543 * @netdev: netdev instance
3544 */
ice_set_netdev_features(struct net_device * netdev)3545 void ice_set_netdev_features(struct net_device *netdev)
3546 {
3547 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3548 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3549 netdev_features_t csumo_features;
3550 netdev_features_t vlano_features;
3551 netdev_features_t dflt_features;
3552 netdev_features_t tso_features;
3553
3554 if (ice_is_safe_mode(pf)) {
3555 /* safe mode */
3556 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3557 netdev->hw_features = netdev->features;
3558 return;
3559 }
3560
3561 dflt_features = NETIF_F_SG |
3562 NETIF_F_HIGHDMA |
3563 NETIF_F_NTUPLE |
3564 NETIF_F_RXHASH;
3565
3566 csumo_features = NETIF_F_RXCSUM |
3567 NETIF_F_IP_CSUM |
3568 NETIF_F_SCTP_CRC |
3569 NETIF_F_IPV6_CSUM;
3570
3571 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3572 NETIF_F_HW_VLAN_CTAG_TX |
3573 NETIF_F_HW_VLAN_CTAG_RX;
3574
3575 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3576 if (is_dvm_ena)
3577 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3578
3579 tso_features = NETIF_F_TSO |
3580 NETIF_F_TSO_ECN |
3581 NETIF_F_TSO6 |
3582 NETIF_F_GSO_GRE |
3583 NETIF_F_GSO_UDP_TUNNEL |
3584 NETIF_F_GSO_GRE_CSUM |
3585 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3586 NETIF_F_GSO_PARTIAL |
3587 NETIF_F_GSO_IPXIP4 |
3588 NETIF_F_GSO_IPXIP6 |
3589 NETIF_F_GSO_UDP_L4;
3590
3591 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3592 NETIF_F_GSO_GRE_CSUM;
3593 /* set features that user can change */
3594 netdev->hw_features = dflt_features | csumo_features |
3595 vlano_features | tso_features;
3596
3597 /* add support for HW_CSUM on packets with MPLS header */
3598 netdev->mpls_features = NETIF_F_HW_CSUM |
3599 NETIF_F_TSO |
3600 NETIF_F_TSO6;
3601
3602 /* enable features */
3603 netdev->features |= netdev->hw_features;
3604
3605 netdev->hw_features |= NETIF_F_HW_TC;
3606 netdev->hw_features |= NETIF_F_LOOPBACK;
3607
3608 /* encap and VLAN devices inherit default, csumo and tso features */
3609 netdev->hw_enc_features |= dflt_features | csumo_features |
3610 tso_features;
3611 netdev->vlan_features |= dflt_features | csumo_features |
3612 tso_features;
3613
3614 /* advertise support but don't enable by default since only one type of
3615 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3616 * type turns on the other has to be turned off. This is enforced by the
3617 * ice_fix_features() ndo callback.
3618 */
3619 if (is_dvm_ena)
3620 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3621 NETIF_F_HW_VLAN_STAG_TX;
3622
3623 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3624 * be changed at runtime
3625 */
3626 netdev->hw_features |= NETIF_F_RXFCS;
3627
3628 /* Allow core to manage IRQs affinity */
3629 netif_set_affinity_auto(netdev);
3630
3631 /* Mutual exclusivity for TSO and GCS is enforced by the set features
3632 * ndo callback.
3633 */
3634 if (ice_is_feature_supported(pf, ICE_F_GCS))
3635 netdev->hw_features |= NETIF_F_HW_CSUM;
3636
3637 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3638 }
3639
3640 /**
3641 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3642 * @lut: Lookup table
3643 * @rss_table_size: Lookup table size
3644 * @rss_size: Range of queue number for hashing
3645 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3646 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3647 {
3648 u16 i;
3649
3650 for (i = 0; i < rss_table_size; i++)
3651 lut[i] = i % rss_size;
3652 }
3653
3654 /**
3655 * ice_pf_vsi_setup - Set up a PF VSI
3656 * @pf: board private structure
3657 * @pi: pointer to the port_info instance
3658 *
3659 * Returns pointer to the successfully allocated VSI software struct
3660 * on success, otherwise returns NULL on failure.
3661 */
3662 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3663 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3664 {
3665 struct ice_vsi_cfg_params params = {};
3666
3667 params.type = ICE_VSI_PF;
3668 params.port_info = pi;
3669 params.flags = ICE_VSI_FLAG_INIT;
3670
3671 return ice_vsi_setup(pf, ¶ms);
3672 }
3673
3674 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3675 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3676 struct ice_channel *ch)
3677 {
3678 struct ice_vsi_cfg_params params = {};
3679
3680 params.type = ICE_VSI_CHNL;
3681 params.port_info = pi;
3682 params.ch = ch;
3683 params.flags = ICE_VSI_FLAG_INIT;
3684
3685 return ice_vsi_setup(pf, ¶ms);
3686 }
3687
3688 /**
3689 * ice_ctrl_vsi_setup - Set up a control VSI
3690 * @pf: board private structure
3691 * @pi: pointer to the port_info instance
3692 *
3693 * Returns pointer to the successfully allocated VSI software struct
3694 * on success, otherwise returns NULL on failure.
3695 */
3696 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3697 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3698 {
3699 struct ice_vsi_cfg_params params = {};
3700
3701 params.type = ICE_VSI_CTRL;
3702 params.port_info = pi;
3703 params.flags = ICE_VSI_FLAG_INIT;
3704
3705 return ice_vsi_setup(pf, ¶ms);
3706 }
3707
3708 /**
3709 * ice_lb_vsi_setup - Set up a loopback VSI
3710 * @pf: board private structure
3711 * @pi: pointer to the port_info instance
3712 *
3713 * Returns pointer to the successfully allocated VSI software struct
3714 * on success, otherwise returns NULL on failure.
3715 */
3716 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3717 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3718 {
3719 struct ice_vsi_cfg_params params = {};
3720
3721 params.type = ICE_VSI_LB;
3722 params.port_info = pi;
3723 params.flags = ICE_VSI_FLAG_INIT;
3724
3725 return ice_vsi_setup(pf, ¶ms);
3726 }
3727
3728 /**
3729 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3730 * @netdev: network interface to be adjusted
3731 * @proto: VLAN TPID
3732 * @vid: VLAN ID to be added
3733 *
3734 * net_device_ops implementation for adding VLAN IDs
3735 */
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3736 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3737 {
3738 struct ice_netdev_priv *np = netdev_priv(netdev);
3739 struct ice_vsi_vlan_ops *vlan_ops;
3740 struct ice_vsi *vsi = np->vsi;
3741 struct ice_vlan vlan;
3742 int ret;
3743
3744 /* VLAN 0 is added by default during load/reset */
3745 if (!vid)
3746 return 0;
3747
3748 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3749 usleep_range(1000, 2000);
3750
3751 /* Add multicast promisc rule for the VLAN ID to be added if
3752 * all-multicast is currently enabled.
3753 */
3754 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3755 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3756 ICE_MCAST_VLAN_PROMISC_BITS,
3757 vid);
3758 if (ret)
3759 goto finish;
3760 }
3761
3762 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3763
3764 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3765 * packets aren't pruned by the device's internal switch on Rx
3766 */
3767 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3768 ret = vlan_ops->add_vlan(vsi, &vlan);
3769 if (ret)
3770 goto finish;
3771
3772 /* If all-multicast is currently enabled and this VLAN ID is only one
3773 * besides VLAN-0 we have to update look-up type of multicast promisc
3774 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3775 */
3776 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3777 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3778 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3779 ICE_MCAST_PROMISC_BITS, 0);
3780 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3781 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3782 }
3783
3784 finish:
3785 clear_bit(ICE_CFG_BUSY, vsi->state);
3786
3787 return ret;
3788 }
3789
3790 /**
3791 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3792 * @netdev: network interface to be adjusted
3793 * @proto: VLAN TPID
3794 * @vid: VLAN ID to be removed
3795 *
3796 * net_device_ops implementation for removing VLAN IDs
3797 */
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3798 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3799 {
3800 struct ice_netdev_priv *np = netdev_priv(netdev);
3801 struct ice_vsi_vlan_ops *vlan_ops;
3802 struct ice_vsi *vsi = np->vsi;
3803 struct ice_vlan vlan;
3804 int ret;
3805
3806 /* don't allow removal of VLAN 0 */
3807 if (!vid)
3808 return 0;
3809
3810 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3811 usleep_range(1000, 2000);
3812
3813 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3814 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3815 if (ret) {
3816 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3817 vsi->vsi_num);
3818 vsi->current_netdev_flags |= IFF_ALLMULTI;
3819 }
3820
3821 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3822
3823 /* Make sure VLAN delete is successful before updating VLAN
3824 * information
3825 */
3826 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3827 ret = vlan_ops->del_vlan(vsi, &vlan);
3828 if (ret)
3829 goto finish;
3830
3831 /* Remove multicast promisc rule for the removed VLAN ID if
3832 * all-multicast is enabled.
3833 */
3834 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3835 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3836 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3837
3838 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3839 /* Update look-up type of multicast promisc rule for VLAN 0
3840 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3841 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3842 */
3843 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3844 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3845 ICE_MCAST_VLAN_PROMISC_BITS,
3846 0);
3847 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3848 ICE_MCAST_PROMISC_BITS, 0);
3849 }
3850 }
3851
3852 finish:
3853 clear_bit(ICE_CFG_BUSY, vsi->state);
3854
3855 return ret;
3856 }
3857
3858 /**
3859 * ice_rep_indr_tc_block_unbind
3860 * @cb_priv: indirection block private data
3861 */
ice_rep_indr_tc_block_unbind(void * cb_priv)3862 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3863 {
3864 struct ice_indr_block_priv *indr_priv = cb_priv;
3865
3866 list_del(&indr_priv->list);
3867 kfree(indr_priv);
3868 }
3869
3870 /**
3871 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3872 * @vsi: VSI struct which has the netdev
3873 */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3874 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3875 {
3876 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3877
3878 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3879 ice_rep_indr_tc_block_unbind);
3880 }
3881
3882 /**
3883 * ice_tc_indir_block_register - Register TC indirect block notifications
3884 * @vsi: VSI struct which has the netdev
3885 *
3886 * Returns 0 on success, negative value on failure
3887 */
ice_tc_indir_block_register(struct ice_vsi * vsi)3888 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3889 {
3890 struct ice_netdev_priv *np;
3891
3892 if (!vsi || !vsi->netdev)
3893 return -EINVAL;
3894
3895 np = netdev_priv(vsi->netdev);
3896
3897 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3898 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3899 }
3900
3901 /**
3902 * ice_get_avail_q_count - Get count of queues in use
3903 * @pf_qmap: bitmap to get queue use count from
3904 * @lock: pointer to a mutex that protects access to pf_qmap
3905 * @size: size of the bitmap
3906 */
3907 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3908 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3909 {
3910 unsigned long bit;
3911 u16 count = 0;
3912
3913 mutex_lock(lock);
3914 for_each_clear_bit(bit, pf_qmap, size)
3915 count++;
3916 mutex_unlock(lock);
3917
3918 return count;
3919 }
3920
3921 /**
3922 * ice_get_avail_txq_count - Get count of Tx queues in use
3923 * @pf: pointer to an ice_pf instance
3924 */
ice_get_avail_txq_count(struct ice_pf * pf)3925 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3926 {
3927 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3928 pf->max_pf_txqs);
3929 }
3930
3931 /**
3932 * ice_get_avail_rxq_count - Get count of Rx queues in use
3933 * @pf: pointer to an ice_pf instance
3934 */
ice_get_avail_rxq_count(struct ice_pf * pf)3935 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3936 {
3937 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3938 pf->max_pf_rxqs);
3939 }
3940
3941 /**
3942 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3943 * @pf: board private structure to initialize
3944 */
ice_deinit_pf(struct ice_pf * pf)3945 void ice_deinit_pf(struct ice_pf *pf)
3946 {
3947 /* note that we unroll also on ice_init_pf() failure here */
3948
3949 mutex_destroy(&pf->lag_mutex);
3950 mutex_destroy(&pf->adev_mutex);
3951 mutex_destroy(&pf->sw_mutex);
3952 mutex_destroy(&pf->tc_mutex);
3953 mutex_destroy(&pf->avail_q_mutex);
3954 mutex_destroy(&pf->vfs.table_lock);
3955
3956 if (pf->avail_txqs) {
3957 bitmap_free(pf->avail_txqs);
3958 pf->avail_txqs = NULL;
3959 }
3960
3961 if (pf->avail_rxqs) {
3962 bitmap_free(pf->avail_rxqs);
3963 pf->avail_rxqs = NULL;
3964 }
3965
3966 if (pf->txtime_txqs) {
3967 bitmap_free(pf->txtime_txqs);
3968 pf->txtime_txqs = NULL;
3969 }
3970
3971 if (pf->ptp.clock)
3972 ptp_clock_unregister(pf->ptp.clock);
3973
3974 if (!xa_empty(&pf->irq_tracker.entries))
3975 ice_free_irq_msix_misc(pf);
3976
3977 xa_destroy(&pf->dyn_ports);
3978 xa_destroy(&pf->sf_nums);
3979 }
3980
3981 /**
3982 * ice_set_pf_caps - set PFs capability flags
3983 * @pf: pointer to the PF instance
3984 */
ice_set_pf_caps(struct ice_pf * pf)3985 static void ice_set_pf_caps(struct ice_pf *pf)
3986 {
3987 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3988
3989 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3990 if (func_caps->common_cap.rdma)
3991 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3992 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3993 if (func_caps->common_cap.dcb)
3994 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3995 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3996 if (func_caps->common_cap.sr_iov_1_1) {
3997 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3998 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3999 ICE_MAX_SRIOV_VFS);
4000 }
4001 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
4002 if (func_caps->common_cap.rss_table_size)
4003 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
4004
4005 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
4006 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
4007 u16 unused;
4008
4009 /* ctrl_vsi_idx will be set to a valid value when flow director
4010 * is setup by ice_init_fdir
4011 */
4012 pf->ctrl_vsi_idx = ICE_NO_VSI;
4013 set_bit(ICE_FLAG_FD_ENA, pf->flags);
4014 /* force guaranteed filter pool for PF */
4015 ice_alloc_fd_guar_item(&pf->hw, &unused,
4016 func_caps->fd_fltr_guar);
4017 /* force shared filter pool for PF */
4018 ice_alloc_fd_shrd_item(&pf->hw, &unused,
4019 func_caps->fd_fltr_best_effort);
4020 }
4021
4022 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4023 if (func_caps->common_cap.ieee_1588)
4024 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4025
4026 pf->max_pf_txqs = func_caps->common_cap.num_txq;
4027 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4028 }
4029
ice_start_service_task(struct ice_pf * pf)4030 void ice_start_service_task(struct ice_pf *pf)
4031 {
4032 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4033 pf->serv_tmr_period = HZ;
4034 INIT_WORK(&pf->serv_task, ice_service_task);
4035 clear_bit(ICE_SERVICE_SCHED, pf->state);
4036 }
4037
4038 /**
4039 * ice_init_pf - Initialize general software structures (struct ice_pf)
4040 * @pf: board private structure to initialize
4041 * Return: 0 on success, negative errno otherwise.
4042 */
ice_init_pf(struct ice_pf * pf)4043 int ice_init_pf(struct ice_pf *pf)
4044 {
4045 struct udp_tunnel_nic_info *udp_tunnel_nic = &pf->hw.udp_tunnel_nic;
4046 struct device *dev = ice_pf_to_dev(pf);
4047 struct ice_hw *hw = &pf->hw;
4048 int err = -ENOMEM;
4049
4050 mutex_init(&pf->sw_mutex);
4051 mutex_init(&pf->tc_mutex);
4052 mutex_init(&pf->adev_mutex);
4053 mutex_init(&pf->lag_mutex);
4054
4055 INIT_HLIST_HEAD(&pf->aq_wait_list);
4056 spin_lock_init(&pf->aq_wait_lock);
4057 init_waitqueue_head(&pf->aq_wait_queue);
4058
4059 init_waitqueue_head(&pf->reset_wait_queue);
4060
4061 mutex_init(&pf->avail_q_mutex);
4062
4063 mutex_init(&pf->vfs.table_lock);
4064 hash_init(pf->vfs.table);
4065 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
4066 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH,
4067 ICE_MBX_OVERFLOW_WATERMARK);
4068 else
4069 ice_mbx_init_snapshot(&pf->hw);
4070
4071 xa_init(&pf->dyn_ports);
4072 xa_init(&pf->sf_nums);
4073
4074 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4075 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4076 pf->txtime_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4077 if (!pf->avail_txqs || !pf->avail_rxqs || !pf->txtime_txqs)
4078 goto undo_init;
4079
4080 udp_tunnel_nic->set_port = ice_udp_tunnel_set_port;
4081 udp_tunnel_nic->unset_port = ice_udp_tunnel_unset_port;
4082 udp_tunnel_nic->shared = &hw->udp_tunnel_shared;
4083 udp_tunnel_nic->tables[0].n_entries = hw->tnl.valid_count[TNL_VXLAN];
4084 udp_tunnel_nic->tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN;
4085 udp_tunnel_nic->tables[1].n_entries = hw->tnl.valid_count[TNL_GENEVE];
4086 udp_tunnel_nic->tables[1].tunnel_types = UDP_TUNNEL_TYPE_GENEVE;
4087
4088 /* In case of MSIX we are going to setup the misc vector right here
4089 * to handle admin queue events etc. In case of legacy and MSI
4090 * the misc functionality and queue processing is combined in
4091 * the same vector and that gets setup at open.
4092 */
4093 err = ice_req_irq_msix_misc(pf);
4094 if (err) {
4095 dev_err(dev, "setup of misc vector failed: %d\n", err);
4096 goto undo_init;
4097 }
4098
4099 return 0;
4100 undo_init:
4101 /* deinit handles half-initialized pf just fine */
4102 ice_deinit_pf(pf);
4103 return err;
4104 }
4105
4106 /**
4107 * ice_is_wol_supported - check if WoL is supported
4108 * @hw: pointer to hardware info
4109 *
4110 * Check if WoL is supported based on the HW configuration.
4111 * Returns true if NVM supports and enables WoL for this port, false otherwise
4112 */
ice_is_wol_supported(struct ice_hw * hw)4113 bool ice_is_wol_supported(struct ice_hw *hw)
4114 {
4115 u16 wol_ctrl;
4116
4117 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4118 * word) indicates WoL is not supported on the corresponding PF ID.
4119 */
4120 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4121 return false;
4122
4123 return !(BIT(hw->port_info->lport) & wol_ctrl);
4124 }
4125
4126 /**
4127 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4128 * @vsi: VSI being changed
4129 * @new_rx: new number of Rx queues
4130 * @new_tx: new number of Tx queues
4131 * @locked: is adev device_lock held
4132 *
4133 * Only change the number of queues if new_tx, or new_rx is non-0.
4134 *
4135 * Returns 0 on success.
4136 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx,bool locked)4137 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4138 {
4139 struct ice_pf *pf = vsi->back;
4140 int i, err = 0, timeout = 50;
4141
4142 if (!new_rx && !new_tx)
4143 return -EINVAL;
4144
4145 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4146 timeout--;
4147 if (!timeout)
4148 return -EBUSY;
4149 usleep_range(1000, 2000);
4150 }
4151
4152 if (new_tx)
4153 vsi->req_txq = (u16)new_tx;
4154 if (new_rx)
4155 vsi->req_rxq = (u16)new_rx;
4156
4157 /* set for the next time the netdev is started */
4158 if (!netif_running(vsi->netdev)) {
4159 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4160 if (err)
4161 goto rebuild_err;
4162 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4163 goto done;
4164 }
4165
4166 ice_vsi_close(vsi);
4167 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4168 if (err)
4169 goto rebuild_err;
4170
4171 ice_for_each_traffic_class(i) {
4172 if (vsi->tc_cfg.ena_tc & BIT(i))
4173 netdev_set_tc_queue(vsi->netdev,
4174 vsi->tc_cfg.tc_info[i].netdev_tc,
4175 vsi->tc_cfg.tc_info[i].qcount_tx,
4176 vsi->tc_cfg.tc_info[i].qoffset);
4177 }
4178 ice_pf_dcb_recfg(pf, locked);
4179 ice_vsi_open(vsi);
4180 goto done;
4181
4182 rebuild_err:
4183 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4184 err);
4185 done:
4186 clear_bit(ICE_CFG_BUSY, pf->state);
4187 return err;
4188 }
4189
4190 /**
4191 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4192 * @pf: PF to configure
4193 *
4194 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4195 * VSI can still Tx/Rx VLAN tagged packets.
4196 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4197 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4198 {
4199 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4200 struct ice_vsi_ctx *ctxt;
4201 struct ice_hw *hw;
4202 int status;
4203
4204 if (!vsi)
4205 return;
4206
4207 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4208 if (!ctxt)
4209 return;
4210
4211 hw = &pf->hw;
4212 ctxt->info = vsi->info;
4213
4214 ctxt->info.valid_sections =
4215 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4216 ICE_AQ_VSI_PROP_SECURITY_VALID |
4217 ICE_AQ_VSI_PROP_SW_VALID);
4218
4219 /* disable VLAN anti-spoof */
4220 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4221 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4222
4223 /* disable VLAN pruning and keep all other settings */
4224 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4225
4226 /* allow all VLANs on Tx and don't strip on Rx */
4227 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4228 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4229
4230 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4231 if (status) {
4232 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4233 status, libie_aq_str(hw->adminq.sq_last_status));
4234 } else {
4235 vsi->info.sec_flags = ctxt->info.sec_flags;
4236 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4237 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4238 }
4239
4240 kfree(ctxt);
4241 }
4242
4243 /**
4244 * ice_log_pkg_init - log result of DDP package load
4245 * @hw: pointer to hardware info
4246 * @state: state of package load
4247 */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4248 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4249 {
4250 struct ice_pf *pf = hw->back;
4251 struct device *dev;
4252
4253 dev = ice_pf_to_dev(pf);
4254
4255 switch (state) {
4256 case ICE_DDP_PKG_SUCCESS:
4257 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4258 hw->active_pkg_name,
4259 hw->active_pkg_ver.major,
4260 hw->active_pkg_ver.minor,
4261 hw->active_pkg_ver.update,
4262 hw->active_pkg_ver.draft);
4263 break;
4264 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4265 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4266 hw->active_pkg_name,
4267 hw->active_pkg_ver.major,
4268 hw->active_pkg_ver.minor,
4269 hw->active_pkg_ver.update,
4270 hw->active_pkg_ver.draft);
4271 break;
4272 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4273 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4274 hw->active_pkg_name,
4275 hw->active_pkg_ver.major,
4276 hw->active_pkg_ver.minor,
4277 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4278 break;
4279 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4280 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4281 hw->active_pkg_name,
4282 hw->active_pkg_ver.major,
4283 hw->active_pkg_ver.minor,
4284 hw->active_pkg_ver.update,
4285 hw->active_pkg_ver.draft,
4286 hw->pkg_name,
4287 hw->pkg_ver.major,
4288 hw->pkg_ver.minor,
4289 hw->pkg_ver.update,
4290 hw->pkg_ver.draft);
4291 break;
4292 case ICE_DDP_PKG_FW_MISMATCH:
4293 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4294 break;
4295 case ICE_DDP_PKG_INVALID_FILE:
4296 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4297 break;
4298 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4299 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4300 break;
4301 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4302 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4303 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4304 break;
4305 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4306 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4307 break;
4308 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4309 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4310 break;
4311 case ICE_DDP_PKG_LOAD_ERROR:
4312 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4313 /* poll for reset to complete */
4314 if (ice_check_reset(hw))
4315 dev_err(dev, "Error resetting device. Please reload the driver\n");
4316 break;
4317 case ICE_DDP_PKG_ERR:
4318 default:
4319 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4320 break;
4321 }
4322 }
4323
4324 /**
4325 * ice_load_pkg - load/reload the DDP Package file
4326 * @firmware: firmware structure when firmware requested or NULL for reload
4327 * @pf: pointer to the PF instance
4328 *
4329 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4330 * initialize HW tables.
4331 */
4332 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4333 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4334 {
4335 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4336 struct device *dev = ice_pf_to_dev(pf);
4337 struct ice_hw *hw = &pf->hw;
4338
4339 /* Load DDP Package */
4340 if (firmware && !hw->pkg_copy) {
4341 state = ice_copy_and_init_pkg(hw, firmware->data,
4342 firmware->size);
4343 ice_log_pkg_init(hw, state);
4344 } else if (!firmware && hw->pkg_copy) {
4345 /* Reload package during rebuild after CORER/GLOBR reset */
4346 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4347 ice_log_pkg_init(hw, state);
4348 } else {
4349 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4350 }
4351
4352 if (!ice_is_init_pkg_successful(state)) {
4353 /* Safe Mode */
4354 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4355 return;
4356 }
4357
4358 /* Successful download package is the precondition for advanced
4359 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4360 */
4361 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4362 }
4363
4364 /**
4365 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4366 * @pf: pointer to the PF structure
4367 *
4368 * There is no error returned here because the driver should be able to handle
4369 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4370 * specifically with Tx.
4371 */
ice_verify_cacheline_size(struct ice_pf * pf)4372 static void ice_verify_cacheline_size(struct ice_pf *pf)
4373 {
4374 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4375 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4376 ICE_CACHE_LINE_BYTES);
4377 }
4378
4379 /**
4380 * ice_send_version - update firmware with driver version
4381 * @pf: PF struct
4382 *
4383 * Returns 0 on success, else error code
4384 */
ice_send_version(struct ice_pf * pf)4385 static int ice_send_version(struct ice_pf *pf)
4386 {
4387 struct ice_driver_ver dv;
4388
4389 dv.major_ver = 0xff;
4390 dv.minor_ver = 0xff;
4391 dv.build_ver = 0xff;
4392 dv.subbuild_ver = 0;
4393 strscpy((char *)dv.driver_string, UTS_RELEASE,
4394 sizeof(dv.driver_string));
4395 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4396 }
4397
4398 /**
4399 * ice_init_fdir - Initialize flow director VSI and configuration
4400 * @pf: pointer to the PF instance
4401 *
4402 * returns 0 on success, negative on error
4403 */
ice_init_fdir(struct ice_pf * pf)4404 static int ice_init_fdir(struct ice_pf *pf)
4405 {
4406 struct device *dev = ice_pf_to_dev(pf);
4407 struct ice_vsi *ctrl_vsi;
4408 int err;
4409
4410 /* Side Band Flow Director needs to have a control VSI.
4411 * Allocate it and store it in the PF.
4412 */
4413 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4414 if (!ctrl_vsi) {
4415 dev_dbg(dev, "could not create control VSI\n");
4416 return -ENOMEM;
4417 }
4418
4419 err = ice_vsi_open_ctrl(ctrl_vsi);
4420 if (err) {
4421 dev_dbg(dev, "could not open control VSI\n");
4422 goto err_vsi_open;
4423 }
4424
4425 mutex_init(&pf->hw.fdir_fltr_lock);
4426
4427 err = ice_fdir_create_dflt_rules(pf);
4428 if (err)
4429 goto err_fdir_rule;
4430
4431 return 0;
4432
4433 err_fdir_rule:
4434 ice_fdir_release_flows(&pf->hw);
4435 ice_vsi_close(ctrl_vsi);
4436 err_vsi_open:
4437 ice_vsi_release(ctrl_vsi);
4438 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4439 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4440 pf->ctrl_vsi_idx = ICE_NO_VSI;
4441 }
4442 return err;
4443 }
4444
ice_deinit_fdir(struct ice_pf * pf)4445 static void ice_deinit_fdir(struct ice_pf *pf)
4446 {
4447 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4448
4449 if (!vsi)
4450 return;
4451
4452 ice_vsi_manage_fdir(vsi, false);
4453 ice_vsi_release(vsi);
4454 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4455 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4456 pf->ctrl_vsi_idx = ICE_NO_VSI;
4457 }
4458
4459 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4460 }
4461
4462 /**
4463 * ice_get_opt_fw_name - return optional firmware file name or NULL
4464 * @pf: pointer to the PF instance
4465 */
ice_get_opt_fw_name(struct ice_pf * pf)4466 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4467 {
4468 /* Optional firmware name same as default with additional dash
4469 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4470 */
4471 struct pci_dev *pdev = pf->pdev;
4472 char *opt_fw_filename;
4473 u64 dsn;
4474
4475 /* Determine the name of the optional file using the DSN (two
4476 * dwords following the start of the DSN Capability).
4477 */
4478 dsn = pci_get_dsn(pdev);
4479 if (!dsn)
4480 return NULL;
4481
4482 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4483 if (!opt_fw_filename)
4484 return NULL;
4485
4486 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4487 ICE_DDP_PKG_PATH, dsn);
4488
4489 return opt_fw_filename;
4490 }
4491
4492 /**
4493 * ice_request_fw - Device initialization routine
4494 * @pf: pointer to the PF instance
4495 * @firmware: double pointer to firmware struct
4496 *
4497 * Return: zero when successful, negative values otherwise.
4498 */
ice_request_fw(struct ice_pf * pf,const struct firmware ** firmware)4499 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware)
4500 {
4501 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4502 struct device *dev = ice_pf_to_dev(pf);
4503 int err = 0;
4504
4505 /* optional device-specific DDP (if present) overrides the default DDP
4506 * package file. kernel logs a debug message if the file doesn't exist,
4507 * and warning messages for other errors.
4508 */
4509 if (opt_fw_filename) {
4510 err = firmware_request_nowarn(firmware, opt_fw_filename, dev);
4511 kfree(opt_fw_filename);
4512 if (!err)
4513 return err;
4514 }
4515 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev);
4516 if (err)
4517 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4518
4519 return err;
4520 }
4521
4522 /**
4523 * ice_init_tx_topology - performs Tx topology initialization
4524 * @hw: pointer to the hardware structure
4525 * @firmware: pointer to firmware structure
4526 *
4527 * Return: zero when init was successful, negative values otherwise.
4528 */
4529 static int
ice_init_tx_topology(struct ice_hw * hw,const struct firmware * firmware)4530 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware)
4531 {
4532 u8 num_tx_sched_layers = hw->num_tx_sched_layers;
4533 struct ice_pf *pf = hw->back;
4534 struct device *dev;
4535 int err;
4536
4537 dev = ice_pf_to_dev(pf);
4538 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size);
4539 if (!err) {
4540 if (hw->num_tx_sched_layers > num_tx_sched_layers)
4541 dev_info(dev, "Tx scheduling layers switching feature disabled\n");
4542 else
4543 dev_info(dev, "Tx scheduling layers switching feature enabled\n");
4544 return 0;
4545 } else if (err == -ENODEV) {
4546 /* If we failed to re-initialize the device, we can no longer
4547 * continue loading.
4548 */
4549 dev_warn(dev, "Failed to initialize hardware after applying Tx scheduling configuration.\n");
4550 return err;
4551 } else if (err == -EIO) {
4552 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n");
4553 return 0;
4554 } else if (err == -EEXIST) {
4555 return 0;
4556 }
4557
4558 /* Do not treat this as a fatal error. */
4559 dev_info(dev, "Failed to apply Tx scheduling configuration, err %pe\n",
4560 ERR_PTR(err));
4561 return 0;
4562 }
4563
4564 /**
4565 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs
4566 * @hw: pointer to the hardware structure
4567 * @pf: pointer to pf structure
4568 *
4569 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor
4570 * formats the PF hardware supports. The exact list of supported RXDIDs
4571 * depends on the loaded DDP package. The IDs can be determined by reading the
4572 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded.
4573 *
4574 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed
4575 * in the DDP package. The 16-byte legacy descriptor is never supported by
4576 * VFs.
4577 */
ice_init_supported_rxdids(struct ice_hw * hw,struct ice_pf * pf)4578 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf)
4579 {
4580 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1);
4581
4582 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
4583 u32 regval;
4584
4585 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
4586 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
4587 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
4588 pf->supported_rxdids |= BIT(i);
4589 }
4590 }
4591
4592 /**
4593 * ice_init_ddp_config - DDP related configuration
4594 * @hw: pointer to the hardware structure
4595 * @pf: pointer to pf structure
4596 *
4597 * This function loads DDP file from the disk, then initializes Tx
4598 * topology. At the end DDP package is loaded on the card.
4599 *
4600 * Return: zero when init was successful, negative values otherwise.
4601 */
ice_init_ddp_config(struct ice_hw * hw,struct ice_pf * pf)4602 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf)
4603 {
4604 struct device *dev = ice_pf_to_dev(pf);
4605 const struct firmware *firmware = NULL;
4606 int err;
4607
4608 err = ice_request_fw(pf, &firmware);
4609 if (err) {
4610 dev_err(dev, "Fail during requesting FW: %d\n", err);
4611 return err;
4612 }
4613
4614 err = ice_init_tx_topology(hw, firmware);
4615 if (err) {
4616 dev_err(dev, "Fail during initialization of Tx topology: %d\n",
4617 err);
4618 release_firmware(firmware);
4619 return err;
4620 }
4621
4622 /* Download firmware to device */
4623 ice_load_pkg(firmware, pf);
4624 release_firmware(firmware);
4625
4626 /* Initialize the supported Rx descriptor IDs after loading DDP */
4627 ice_init_supported_rxdids(hw, pf);
4628
4629 return 0;
4630 }
4631
4632 /**
4633 * ice_print_wake_reason - show the wake up cause in the log
4634 * @pf: pointer to the PF struct
4635 */
ice_print_wake_reason(struct ice_pf * pf)4636 static void ice_print_wake_reason(struct ice_pf *pf)
4637 {
4638 u32 wus = pf->wakeup_reason;
4639 const char *wake_str;
4640
4641 /* if no wake event, nothing to print */
4642 if (!wus)
4643 return;
4644
4645 if (wus & PFPM_WUS_LNKC_M)
4646 wake_str = "Link\n";
4647 else if (wus & PFPM_WUS_MAG_M)
4648 wake_str = "Magic Packet\n";
4649 else if (wus & PFPM_WUS_MNG_M)
4650 wake_str = "Management\n";
4651 else if (wus & PFPM_WUS_FW_RST_WK_M)
4652 wake_str = "Firmware Reset\n";
4653 else
4654 wake_str = "Unknown\n";
4655
4656 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4657 }
4658
4659 /**
4660 * ice_register_netdev - register netdev
4661 * @vsi: pointer to the VSI struct
4662 */
ice_register_netdev(struct ice_vsi * vsi)4663 static int ice_register_netdev(struct ice_vsi *vsi)
4664 {
4665 int err;
4666
4667 if (!vsi || !vsi->netdev)
4668 return -EIO;
4669
4670 err = register_netdev(vsi->netdev);
4671 if (err)
4672 return err;
4673
4674 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4675 netif_carrier_off(vsi->netdev);
4676 netif_tx_stop_all_queues(vsi->netdev);
4677
4678 return 0;
4679 }
4680
ice_unregister_netdev(struct ice_vsi * vsi)4681 static void ice_unregister_netdev(struct ice_vsi *vsi)
4682 {
4683 if (!vsi || !vsi->netdev)
4684 return;
4685
4686 unregister_netdev(vsi->netdev);
4687 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4688 }
4689
4690 /**
4691 * ice_cfg_netdev - Allocate, configure and register a netdev
4692 * @vsi: the VSI associated with the new netdev
4693 *
4694 * Returns 0 on success, negative value on failure
4695 */
ice_cfg_netdev(struct ice_vsi * vsi)4696 static int ice_cfg_netdev(struct ice_vsi *vsi)
4697 {
4698 struct ice_netdev_priv *np;
4699 struct net_device *netdev;
4700 u8 mac_addr[ETH_ALEN];
4701
4702 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4703 vsi->alloc_rxq);
4704 if (!netdev)
4705 return -ENOMEM;
4706
4707 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4708 vsi->netdev = netdev;
4709 np = netdev_priv(netdev);
4710 np->vsi = vsi;
4711
4712 ice_set_netdev_features(netdev);
4713 ice_set_ops(vsi);
4714
4715 if (vsi->type == ICE_VSI_PF) {
4716 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4717 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4718 eth_hw_addr_set(netdev, mac_addr);
4719 }
4720
4721 netdev->priv_flags |= IFF_UNICAST_FLT;
4722
4723 /* Setup netdev TC information */
4724 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4725
4726 netdev->max_mtu = ICE_MAX_MTU;
4727
4728 return 0;
4729 }
4730
ice_decfg_netdev(struct ice_vsi * vsi)4731 static void ice_decfg_netdev(struct ice_vsi *vsi)
4732 {
4733 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4734 free_netdev(vsi->netdev);
4735 vsi->netdev = NULL;
4736 }
4737
ice_init_dev_hw(struct ice_pf * pf)4738 void ice_init_dev_hw(struct ice_pf *pf)
4739 {
4740 struct ice_hw *hw = &pf->hw;
4741 int err;
4742
4743 ice_init_feature_support(pf);
4744
4745 err = ice_init_ddp_config(hw, pf);
4746
4747 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be
4748 * set in pf->state, which will cause ice_is_safe_mode to return
4749 * true
4750 */
4751 if (err || ice_is_safe_mode(pf)) {
4752 /* we already got function/device capabilities but these don't
4753 * reflect what the driver needs to do in safe mode. Instead of
4754 * adding conditional logic everywhere to ignore these
4755 * device/function capabilities, override them.
4756 */
4757 ice_set_safe_mode_caps(hw);
4758 }
4759 }
4760
ice_init_dev(struct ice_pf * pf)4761 int ice_init_dev(struct ice_pf *pf)
4762 {
4763 struct device *dev = ice_pf_to_dev(pf);
4764 int err;
4765
4766 ice_set_pf_caps(pf);
4767 err = ice_init_interrupt_scheme(pf);
4768 if (err) {
4769 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4770 return -EIO;
4771 }
4772
4773 ice_start_service_task(pf);
4774
4775 return 0;
4776 }
4777
ice_deinit_dev(struct ice_pf * pf)4778 void ice_deinit_dev(struct ice_pf *pf)
4779 {
4780 ice_service_task_stop(pf);
4781
4782 /* Service task is already stopped, so call reset directly. */
4783 ice_reset(&pf->hw, ICE_RESET_PFR);
4784 pci_wait_for_pending_transaction(pf->pdev);
4785 ice_clear_interrupt_scheme(pf);
4786 }
4787
ice_init_features(struct ice_pf * pf)4788 static void ice_init_features(struct ice_pf *pf)
4789 {
4790 struct device *dev = ice_pf_to_dev(pf);
4791
4792 if (ice_is_safe_mode(pf))
4793 return;
4794
4795 /* initialize DDP driven features */
4796 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4797 ice_ptp_init(pf);
4798
4799 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4800 ice_gnss_init(pf);
4801
4802 if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4803 ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4804 ice_dpll_init(pf);
4805
4806 /* Note: Flow director init failure is non-fatal to load */
4807 if (ice_init_fdir(pf))
4808 dev_err(dev, "could not initialize flow director\n");
4809
4810 /* Note: DCB init failure is non-fatal to load */
4811 if (ice_init_pf_dcb(pf, false)) {
4812 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4813 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4814 } else {
4815 ice_cfg_lldp_mib_change(&pf->hw, true);
4816 }
4817
4818 if (ice_init_lag(pf))
4819 dev_warn(dev, "Failed to init link aggregation support\n");
4820
4821 ice_hwmon_init(pf);
4822 }
4823
ice_deinit_features(struct ice_pf * pf)4824 static void ice_deinit_features(struct ice_pf *pf)
4825 {
4826 if (ice_is_safe_mode(pf))
4827 return;
4828
4829 ice_deinit_lag(pf);
4830 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4831 ice_cfg_lldp_mib_change(&pf->hw, false);
4832 ice_deinit_fdir(pf);
4833 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4834 ice_gnss_exit(pf);
4835 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4836 ice_ptp_release(pf);
4837 if (test_bit(ICE_FLAG_DPLL, pf->flags))
4838 ice_dpll_deinit(pf);
4839 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4840 xa_destroy(&pf->eswitch.reprs);
4841 ice_hwmon_exit(pf);
4842 }
4843
ice_init_wakeup(struct ice_pf * pf)4844 static void ice_init_wakeup(struct ice_pf *pf)
4845 {
4846 /* Save wakeup reason register for later use */
4847 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4848
4849 /* check for a power management event */
4850 ice_print_wake_reason(pf);
4851
4852 /* clear wake status, all bits */
4853 wr32(&pf->hw, PFPM_WUS, U32_MAX);
4854
4855 /* Disable WoL at init, wait for user to enable */
4856 device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4857 }
4858
ice_init_link(struct ice_pf * pf)4859 static int ice_init_link(struct ice_pf *pf)
4860 {
4861 struct device *dev = ice_pf_to_dev(pf);
4862 int err;
4863
4864 err = ice_init_link_events(pf->hw.port_info);
4865 if (err) {
4866 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4867 return err;
4868 }
4869
4870 /* not a fatal error if this fails */
4871 err = ice_init_nvm_phy_type(pf->hw.port_info);
4872 if (err)
4873 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4874
4875 /* not a fatal error if this fails */
4876 err = ice_update_link_info(pf->hw.port_info);
4877 if (err)
4878 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4879
4880 ice_init_link_dflt_override(pf->hw.port_info);
4881
4882 ice_check_link_cfg_err(pf,
4883 pf->hw.port_info->phy.link_info.link_cfg_err);
4884
4885 /* if media available, initialize PHY settings */
4886 if (pf->hw.port_info->phy.link_info.link_info &
4887 ICE_AQ_MEDIA_AVAILABLE) {
4888 /* not a fatal error if this fails */
4889 err = ice_init_phy_user_cfg(pf->hw.port_info);
4890 if (err)
4891 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4892
4893 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4894 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4895
4896 if (vsi)
4897 ice_configure_phy(vsi);
4898 }
4899 } else {
4900 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4901 }
4902
4903 return err;
4904 }
4905
ice_init_pf_sw(struct ice_pf * pf)4906 static int ice_init_pf_sw(struct ice_pf *pf)
4907 {
4908 bool dvm = ice_is_dvm_ena(&pf->hw);
4909 struct ice_vsi *vsi;
4910 int err;
4911
4912 /* create switch struct for the switch element created by FW on boot */
4913 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4914 if (!pf->first_sw)
4915 return -ENOMEM;
4916
4917 if (pf->hw.evb_veb)
4918 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4919 else
4920 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4921
4922 pf->first_sw->pf = pf;
4923
4924 /* record the sw_id available for later use */
4925 pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4926
4927 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4928 if (err)
4929 goto err_aq_set_port_params;
4930
4931 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4932 if (!vsi) {
4933 err = -ENOMEM;
4934 goto err_pf_vsi_setup;
4935 }
4936
4937 return 0;
4938
4939 err_pf_vsi_setup:
4940 err_aq_set_port_params:
4941 kfree(pf->first_sw);
4942 return err;
4943 }
4944
ice_deinit_pf_sw(struct ice_pf * pf)4945 static void ice_deinit_pf_sw(struct ice_pf *pf)
4946 {
4947 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4948
4949 if (!vsi)
4950 return;
4951
4952 ice_vsi_release(vsi);
4953 kfree(pf->first_sw);
4954 }
4955
ice_alloc_vsis(struct ice_pf * pf)4956 static int ice_alloc_vsis(struct ice_pf *pf)
4957 {
4958 struct device *dev = ice_pf_to_dev(pf);
4959
4960 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4961 if (!pf->num_alloc_vsi)
4962 return -EIO;
4963
4964 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4965 dev_warn(dev,
4966 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4967 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4968 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4969 }
4970
4971 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4972 GFP_KERNEL);
4973 if (!pf->vsi)
4974 return -ENOMEM;
4975
4976 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4977 sizeof(*pf->vsi_stats), GFP_KERNEL);
4978 if (!pf->vsi_stats) {
4979 devm_kfree(dev, pf->vsi);
4980 return -ENOMEM;
4981 }
4982
4983 return 0;
4984 }
4985
ice_dealloc_vsis(struct ice_pf * pf)4986 static void ice_dealloc_vsis(struct ice_pf *pf)
4987 {
4988 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4989 pf->vsi_stats = NULL;
4990
4991 pf->num_alloc_vsi = 0;
4992 devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4993 pf->vsi = NULL;
4994 }
4995
ice_init_devlink(struct ice_pf * pf)4996 static int ice_init_devlink(struct ice_pf *pf)
4997 {
4998 int err;
4999
5000 err = ice_devlink_register_params(pf);
5001 if (err)
5002 return err;
5003
5004 ice_devlink_init_regions(pf);
5005 ice_devlink_register(pf);
5006 ice_health_init(pf);
5007
5008 return 0;
5009 }
5010
ice_deinit_devlink(struct ice_pf * pf)5011 static void ice_deinit_devlink(struct ice_pf *pf)
5012 {
5013 ice_health_deinit(pf);
5014 ice_devlink_unregister(pf);
5015 ice_devlink_destroy_regions(pf);
5016 ice_devlink_unregister_params(pf);
5017 }
5018
ice_init(struct ice_pf * pf)5019 static int ice_init(struct ice_pf *pf)
5020 {
5021 struct device *dev = ice_pf_to_dev(pf);
5022 int err;
5023
5024 err = ice_init_pf(pf);
5025 if (err) {
5026 dev_err(dev, "ice_init_pf failed: %d\n", err);
5027 return err;
5028 }
5029
5030 if (pf->hw.mac_type == ICE_MAC_E830) {
5031 err = pci_enable_ptm(pf->pdev, NULL);
5032 if (err)
5033 dev_dbg(dev, "PCIe PTM not supported by PCIe bus/controller\n");
5034 }
5035
5036 err = ice_alloc_vsis(pf);
5037 if (err)
5038 goto unroll_pf_init;
5039
5040 err = ice_init_pf_sw(pf);
5041 if (err)
5042 goto err_init_pf_sw;
5043
5044 ice_init_wakeup(pf);
5045
5046 err = ice_init_link(pf);
5047 if (err)
5048 goto err_init_link;
5049
5050 err = ice_send_version(pf);
5051 if (err)
5052 goto err_init_link;
5053
5054 ice_verify_cacheline_size(pf);
5055
5056 if (ice_is_safe_mode(pf))
5057 ice_set_safe_mode_vlan_cfg(pf);
5058 else
5059 /* print PCI link speed and width */
5060 pcie_print_link_status(pf->pdev);
5061
5062 /* ready to go, so clear down state bit */
5063 clear_bit(ICE_DOWN, pf->state);
5064 clear_bit(ICE_SERVICE_DIS, pf->state);
5065
5066 /* since everything is good, start the service timer */
5067 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5068
5069 return 0;
5070
5071 err_init_link:
5072 ice_deinit_pf_sw(pf);
5073 err_init_pf_sw:
5074 ice_dealloc_vsis(pf);
5075 unroll_pf_init:
5076 ice_deinit_pf(pf);
5077 return err;
5078 }
5079
ice_deinit(struct ice_pf * pf)5080 static void ice_deinit(struct ice_pf *pf)
5081 {
5082 set_bit(ICE_SERVICE_DIS, pf->state);
5083 set_bit(ICE_DOWN, pf->state);
5084
5085 ice_deinit_pf_sw(pf);
5086 ice_dealloc_vsis(pf);
5087 ice_deinit_pf(pf);
5088 }
5089
5090 /**
5091 * ice_load - load pf by init hw and starting VSI
5092 * @pf: pointer to the pf instance
5093 *
5094 * This function has to be called under devl_lock.
5095 */
ice_load(struct ice_pf * pf)5096 int ice_load(struct ice_pf *pf)
5097 {
5098 struct ice_vsi *vsi;
5099 int err;
5100
5101 devl_assert_locked(priv_to_devlink(pf));
5102
5103 vsi = ice_get_main_vsi(pf);
5104
5105 /* init channel list */
5106 INIT_LIST_HEAD(&vsi->ch_list);
5107
5108 err = ice_cfg_netdev(vsi);
5109 if (err)
5110 return err;
5111
5112 /* Setup DCB netlink interface */
5113 ice_dcbnl_setup(vsi);
5114
5115 err = ice_init_mac_fltr(pf);
5116 if (err)
5117 goto err_init_mac_fltr;
5118
5119 err = ice_devlink_create_pf_port(pf);
5120 if (err)
5121 goto err_devlink_create_pf_port;
5122
5123 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
5124
5125 err = ice_register_netdev(vsi);
5126 if (err)
5127 goto err_register_netdev;
5128
5129 err = ice_tc_indir_block_register(vsi);
5130 if (err)
5131 goto err_tc_indir_block_register;
5132
5133 ice_napi_add(vsi);
5134
5135 ice_init_features(pf);
5136
5137 err = ice_init_rdma(pf);
5138 if (err)
5139 goto err_init_rdma;
5140
5141 ice_service_task_restart(pf);
5142
5143 clear_bit(ICE_DOWN, pf->state);
5144
5145 return 0;
5146
5147 err_init_rdma:
5148 ice_deinit_features(pf);
5149 ice_tc_indir_block_unregister(vsi);
5150 err_tc_indir_block_register:
5151 ice_unregister_netdev(vsi);
5152 err_register_netdev:
5153 ice_devlink_destroy_pf_port(pf);
5154 err_devlink_create_pf_port:
5155 err_init_mac_fltr:
5156 ice_decfg_netdev(vsi);
5157 return err;
5158 }
5159
5160 /**
5161 * ice_unload - unload pf by stopping VSI and deinit hw
5162 * @pf: pointer to the pf instance
5163 *
5164 * This function has to be called under devl_lock.
5165 */
ice_unload(struct ice_pf * pf)5166 void ice_unload(struct ice_pf *pf)
5167 {
5168 struct ice_vsi *vsi = ice_get_main_vsi(pf);
5169
5170 devl_assert_locked(priv_to_devlink(pf));
5171
5172 ice_deinit_rdma(pf);
5173 ice_deinit_features(pf);
5174 ice_tc_indir_block_unregister(vsi);
5175 ice_unregister_netdev(vsi);
5176 ice_devlink_destroy_pf_port(pf);
5177 ice_decfg_netdev(vsi);
5178 }
5179
ice_probe_recovery_mode(struct ice_pf * pf)5180 static int ice_probe_recovery_mode(struct ice_pf *pf)
5181 {
5182 struct device *dev = ice_pf_to_dev(pf);
5183 int err;
5184
5185 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n");
5186
5187 INIT_HLIST_HEAD(&pf->aq_wait_list);
5188 spin_lock_init(&pf->aq_wait_lock);
5189 init_waitqueue_head(&pf->aq_wait_queue);
5190
5191 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
5192 pf->serv_tmr_period = HZ;
5193 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode);
5194 clear_bit(ICE_SERVICE_SCHED, pf->state);
5195 err = ice_create_all_ctrlq(&pf->hw);
5196 if (err)
5197 return err;
5198
5199 scoped_guard(devl, priv_to_devlink(pf)) {
5200 err = ice_init_devlink(pf);
5201 if (err)
5202 return err;
5203 }
5204
5205 ice_service_task_restart(pf);
5206
5207 return 0;
5208 }
5209
5210 /**
5211 * ice_probe - Device initialization routine
5212 * @pdev: PCI device information struct
5213 * @ent: entry in ice_pci_tbl
5214 *
5215 * Returns 0 on success, negative on failure
5216 */
5217 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)5218 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5219 {
5220 struct device *dev = &pdev->dev;
5221 bool need_dev_deinit = false;
5222 struct ice_adapter *adapter;
5223 struct ice_pf *pf;
5224 struct ice_hw *hw;
5225 int err;
5226
5227 if (pdev->is_virtfn) {
5228 dev_err(dev, "can't probe a virtual function\n");
5229 return -EINVAL;
5230 }
5231
5232 /* when under a kdump kernel initiate a reset before enabling the
5233 * device in order to clear out any pending DMA transactions. These
5234 * transactions can cause some systems to machine check when doing
5235 * the pcim_enable_device() below.
5236 */
5237 if (is_kdump_kernel()) {
5238 pci_save_state(pdev);
5239 pci_clear_master(pdev);
5240 err = pcie_flr(pdev);
5241 if (err)
5242 return err;
5243 pci_restore_state(pdev);
5244 }
5245
5246 /* this driver uses devres, see
5247 * Documentation/driver-api/driver-model/devres.rst
5248 */
5249 err = pcim_enable_device(pdev);
5250 if (err)
5251 return err;
5252
5253 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5254 if (err) {
5255 dev_err(dev, "BAR0 I/O map error %d\n", err);
5256 return err;
5257 }
5258
5259 pf = ice_allocate_pf(dev);
5260 if (!pf)
5261 return -ENOMEM;
5262
5263 /* initialize Auxiliary index to invalid value */
5264 pf->aux_idx = -1;
5265
5266 /* set up for high or low DMA */
5267 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5268 if (err) {
5269 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5270 return err;
5271 }
5272
5273 pci_set_master(pdev);
5274 pf->pdev = pdev;
5275 pci_set_drvdata(pdev, pf);
5276 set_bit(ICE_DOWN, pf->state);
5277 /* Disable service task until DOWN bit is cleared */
5278 set_bit(ICE_SERVICE_DIS, pf->state);
5279
5280 hw = &pf->hw;
5281 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5282 pci_save_state(pdev);
5283
5284 hw->back = pf;
5285 hw->port_info = NULL;
5286 hw->vendor_id = pdev->vendor;
5287 hw->device_id = pdev->device;
5288 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5289 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5290 hw->subsystem_device_id = pdev->subsystem_device;
5291 hw->bus.device = PCI_SLOT(pdev->devfn);
5292 hw->bus.func = PCI_FUNC(pdev->devfn);
5293 ice_set_ctrlq_len(hw);
5294
5295 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5296
5297 #ifndef CONFIG_DYNAMIC_DEBUG
5298 if (debug < -1)
5299 hw->debug_mask = debug;
5300 #endif
5301
5302 if (ice_is_recovery_mode(hw))
5303 return ice_probe_recovery_mode(pf);
5304
5305 err = ice_init_hw(hw);
5306 if (err) {
5307 dev_err(dev, "ice_init_hw failed: %d\n", err);
5308 return err;
5309 }
5310
5311 adapter = ice_adapter_get(pdev);
5312 if (IS_ERR(adapter)) {
5313 err = PTR_ERR(adapter);
5314 goto unroll_hw_init;
5315 }
5316 pf->adapter = adapter;
5317
5318 err = ice_init_dev(pf);
5319 if (err)
5320 goto unroll_adapter;
5321
5322 err = ice_init(pf);
5323 if (err)
5324 goto unroll_dev_init;
5325
5326 devl_lock(priv_to_devlink(pf));
5327 err = ice_load(pf);
5328 if (err)
5329 goto unroll_init;
5330
5331 err = ice_init_devlink(pf);
5332 if (err)
5333 goto unroll_load;
5334 devl_unlock(priv_to_devlink(pf));
5335
5336 return 0;
5337
5338 unroll_load:
5339 ice_unload(pf);
5340 unroll_init:
5341 devl_unlock(priv_to_devlink(pf));
5342 ice_deinit(pf);
5343 unroll_dev_init:
5344 need_dev_deinit = true;
5345 unroll_adapter:
5346 ice_adapter_put(pdev);
5347 unroll_hw_init:
5348 ice_deinit_hw(hw);
5349 if (need_dev_deinit)
5350 ice_deinit_dev(pf);
5351 return err;
5352 }
5353
5354 /**
5355 * ice_set_wake - enable or disable Wake on LAN
5356 * @pf: pointer to the PF struct
5357 *
5358 * Simple helper for WoL control
5359 */
ice_set_wake(struct ice_pf * pf)5360 static void ice_set_wake(struct ice_pf *pf)
5361 {
5362 struct ice_hw *hw = &pf->hw;
5363 bool wol = pf->wol_ena;
5364
5365 /* clear wake state, otherwise new wake events won't fire */
5366 wr32(hw, PFPM_WUS, U32_MAX);
5367
5368 /* enable / disable APM wake up, no RMW needed */
5369 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5370
5371 /* set magic packet filter enabled */
5372 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5373 }
5374
5375 /**
5376 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5377 * @pf: pointer to the PF struct
5378 *
5379 * Issue firmware command to enable multicast magic wake, making
5380 * sure that any locally administered address (LAA) is used for
5381 * wake, and that PF reset doesn't undo the LAA.
5382 */
ice_setup_mc_magic_wake(struct ice_pf * pf)5383 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5384 {
5385 struct device *dev = ice_pf_to_dev(pf);
5386 struct ice_hw *hw = &pf->hw;
5387 u8 mac_addr[ETH_ALEN];
5388 struct ice_vsi *vsi;
5389 int status;
5390 u8 flags;
5391
5392 if (!pf->wol_ena)
5393 return;
5394
5395 vsi = ice_get_main_vsi(pf);
5396 if (!vsi)
5397 return;
5398
5399 /* Get current MAC address in case it's an LAA */
5400 if (vsi->netdev)
5401 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5402 else
5403 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5404
5405 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5406 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5407 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5408
5409 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5410 if (status)
5411 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5412 status, libie_aq_str(hw->adminq.sq_last_status));
5413 }
5414
5415 /**
5416 * ice_remove - Device removal routine
5417 * @pdev: PCI device information struct
5418 */
ice_remove(struct pci_dev * pdev)5419 static void ice_remove(struct pci_dev *pdev)
5420 {
5421 struct ice_pf *pf = pci_get_drvdata(pdev);
5422 int i;
5423
5424 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5425 if (!ice_is_reset_in_progress(pf->state))
5426 break;
5427 msleep(100);
5428 }
5429
5430 if (ice_is_recovery_mode(&pf->hw)) {
5431 ice_service_task_stop(pf);
5432 scoped_guard(devl, priv_to_devlink(pf)) {
5433 ice_deinit_devlink(pf);
5434 }
5435 return;
5436 }
5437
5438 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5439 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5440 ice_free_vfs(pf);
5441 }
5442
5443 if (!ice_is_safe_mode(pf))
5444 ice_remove_arfs(pf);
5445
5446 devl_lock(priv_to_devlink(pf));
5447 ice_dealloc_all_dynamic_ports(pf);
5448 ice_deinit_devlink(pf);
5449
5450 ice_unload(pf);
5451 devl_unlock(priv_to_devlink(pf));
5452
5453 ice_deinit(pf);
5454 ice_vsi_release_all(pf);
5455
5456 ice_setup_mc_magic_wake(pf);
5457 ice_set_wake(pf);
5458
5459 ice_adapter_put(pdev);
5460 ice_deinit_hw(&pf->hw);
5461
5462 ice_deinit_dev(pf);
5463 ice_aq_cancel_waiting_tasks(pf);
5464 set_bit(ICE_DOWN, pf->state);
5465 }
5466
5467 /**
5468 * ice_shutdown - PCI callback for shutting down device
5469 * @pdev: PCI device information struct
5470 */
ice_shutdown(struct pci_dev * pdev)5471 static void ice_shutdown(struct pci_dev *pdev)
5472 {
5473 struct ice_pf *pf = pci_get_drvdata(pdev);
5474
5475 ice_remove(pdev);
5476
5477 if (system_state == SYSTEM_POWER_OFF) {
5478 pci_wake_from_d3(pdev, pf->wol_ena);
5479 pci_set_power_state(pdev, PCI_D3hot);
5480 }
5481 }
5482
5483 /**
5484 * ice_prepare_for_shutdown - prep for PCI shutdown
5485 * @pf: board private structure
5486 *
5487 * Inform or close all dependent features in prep for PCI device shutdown
5488 */
ice_prepare_for_shutdown(struct ice_pf * pf)5489 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5490 {
5491 struct ice_hw *hw = &pf->hw;
5492 u32 v;
5493
5494 /* Notify VFs of impending reset */
5495 if (ice_check_sq_alive(hw, &hw->mailboxq))
5496 ice_vc_notify_reset(pf);
5497
5498 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5499
5500 /* disable the VSIs and their queues that are not already DOWN */
5501 ice_pf_dis_all_vsi(pf, false);
5502
5503 ice_for_each_vsi(pf, v)
5504 if (pf->vsi[v])
5505 pf->vsi[v]->vsi_num = 0;
5506
5507 ice_shutdown_all_ctrlq(hw, true);
5508 }
5509
5510 /**
5511 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5512 * @pf: board private structure to reinitialize
5513 *
5514 * This routine reinitialize interrupt scheme that was cleared during
5515 * power management suspend callback.
5516 *
5517 * This should be called during resume routine to re-allocate the q_vectors
5518 * and reacquire interrupts.
5519 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5520 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5521 {
5522 struct device *dev = ice_pf_to_dev(pf);
5523 int ret, v;
5524
5525 /* Since we clear MSIX flag during suspend, we need to
5526 * set it back during resume...
5527 */
5528
5529 ret = ice_init_interrupt_scheme(pf);
5530 if (ret) {
5531 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5532 return ret;
5533 }
5534
5535 /* Remap vectors and rings, after successful re-init interrupts */
5536 ice_for_each_vsi(pf, v) {
5537 if (!pf->vsi[v])
5538 continue;
5539
5540 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5541 if (ret)
5542 goto err_reinit;
5543 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5544 rtnl_lock();
5545 ice_vsi_set_napi_queues(pf->vsi[v]);
5546 rtnl_unlock();
5547 }
5548
5549 ret = ice_req_irq_msix_misc(pf);
5550 if (ret) {
5551 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5552 ret);
5553 goto err_reinit;
5554 }
5555
5556 return 0;
5557
5558 err_reinit:
5559 while (v--)
5560 if (pf->vsi[v]) {
5561 rtnl_lock();
5562 ice_vsi_clear_napi_queues(pf->vsi[v]);
5563 rtnl_unlock();
5564 ice_vsi_free_q_vectors(pf->vsi[v]);
5565 }
5566
5567 return ret;
5568 }
5569
5570 /**
5571 * ice_suspend
5572 * @dev: generic device information structure
5573 *
5574 * Power Management callback to quiesce the device and prepare
5575 * for D3 transition.
5576 */
ice_suspend(struct device * dev)5577 static int ice_suspend(struct device *dev)
5578 {
5579 struct pci_dev *pdev = to_pci_dev(dev);
5580 struct ice_pf *pf;
5581 int disabled, v;
5582
5583 pf = pci_get_drvdata(pdev);
5584
5585 if (!ice_pf_state_is_nominal(pf)) {
5586 dev_err(dev, "Device is not ready, no need to suspend it\n");
5587 return -EBUSY;
5588 }
5589
5590 /* Stop watchdog tasks until resume completion.
5591 * Even though it is most likely that the service task is
5592 * disabled if the device is suspended or down, the service task's
5593 * state is controlled by a different state bit, and we should
5594 * store and honor whatever state that bit is in at this point.
5595 */
5596 disabled = ice_service_task_stop(pf);
5597
5598 ice_deinit_rdma(pf);
5599
5600 /* Already suspended?, then there is nothing to do */
5601 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5602 if (!disabled)
5603 ice_service_task_restart(pf);
5604 return 0;
5605 }
5606
5607 if (test_bit(ICE_DOWN, pf->state) ||
5608 ice_is_reset_in_progress(pf->state)) {
5609 dev_err(dev, "can't suspend device in reset or already down\n");
5610 if (!disabled)
5611 ice_service_task_restart(pf);
5612 return 0;
5613 }
5614
5615 ice_setup_mc_magic_wake(pf);
5616
5617 ice_prepare_for_shutdown(pf);
5618
5619 ice_set_wake(pf);
5620
5621 /* Free vectors, clear the interrupt scheme and release IRQs
5622 * for proper hibernation, especially with large number of CPUs.
5623 * Otherwise hibernation might fail when mapping all the vectors back
5624 * to CPU0.
5625 */
5626 ice_free_irq_msix_misc(pf);
5627 ice_for_each_vsi(pf, v) {
5628 if (!pf->vsi[v])
5629 continue;
5630 rtnl_lock();
5631 ice_vsi_clear_napi_queues(pf->vsi[v]);
5632 rtnl_unlock();
5633 ice_vsi_free_q_vectors(pf->vsi[v]);
5634 }
5635 ice_clear_interrupt_scheme(pf);
5636
5637 pci_save_state(pdev);
5638 pci_wake_from_d3(pdev, pf->wol_ena);
5639 pci_set_power_state(pdev, PCI_D3hot);
5640 return 0;
5641 }
5642
5643 /**
5644 * ice_resume - PM callback for waking up from D3
5645 * @dev: generic device information structure
5646 */
ice_resume(struct device * dev)5647 static int ice_resume(struct device *dev)
5648 {
5649 struct pci_dev *pdev = to_pci_dev(dev);
5650 enum ice_reset_req reset_type;
5651 struct ice_pf *pf;
5652 struct ice_hw *hw;
5653 int ret;
5654
5655 pci_set_power_state(pdev, PCI_D0);
5656 pci_restore_state(pdev);
5657
5658 if (!pci_device_is_present(pdev))
5659 return -ENODEV;
5660
5661 ret = pci_enable_device_mem(pdev);
5662 if (ret) {
5663 dev_err(dev, "Cannot enable device after suspend\n");
5664 return ret;
5665 }
5666
5667 pf = pci_get_drvdata(pdev);
5668 hw = &pf->hw;
5669
5670 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5671 ice_print_wake_reason(pf);
5672
5673 /* We cleared the interrupt scheme when we suspended, so we need to
5674 * restore it now to resume device functionality.
5675 */
5676 ret = ice_reinit_interrupt_scheme(pf);
5677 if (ret)
5678 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5679
5680 ret = ice_init_rdma(pf);
5681 if (ret)
5682 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5683 ret);
5684
5685 clear_bit(ICE_DOWN, pf->state);
5686 /* Now perform PF reset and rebuild */
5687 reset_type = ICE_RESET_PFR;
5688 /* re-enable service task for reset, but allow reset to schedule it */
5689 clear_bit(ICE_SERVICE_DIS, pf->state);
5690
5691 if (ice_schedule_reset(pf, reset_type))
5692 dev_err(dev, "Reset during resume failed.\n");
5693
5694 clear_bit(ICE_SUSPENDED, pf->state);
5695 ice_service_task_restart(pf);
5696
5697 /* Restart the service task */
5698 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5699
5700 return 0;
5701 }
5702
5703 /**
5704 * ice_pci_err_detected - warning that PCI error has been detected
5705 * @pdev: PCI device information struct
5706 * @err: the type of PCI error
5707 *
5708 * Called to warn that something happened on the PCI bus and the error handling
5709 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5710 */
5711 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5712 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5713 {
5714 struct ice_pf *pf = pci_get_drvdata(pdev);
5715
5716 if (!pf) {
5717 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5718 __func__, err);
5719 return PCI_ERS_RESULT_DISCONNECT;
5720 }
5721
5722 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5723 ice_service_task_stop(pf);
5724
5725 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5726 set_bit(ICE_PFR_REQ, pf->state);
5727 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5728 }
5729 }
5730
5731 return PCI_ERS_RESULT_NEED_RESET;
5732 }
5733
5734 /**
5735 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5736 * @pdev: PCI device information struct
5737 *
5738 * Called to determine if the driver can recover from the PCI slot reset by
5739 * using a register read to determine if the device is recoverable.
5740 */
ice_pci_err_slot_reset(struct pci_dev * pdev)5741 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5742 {
5743 struct ice_pf *pf = pci_get_drvdata(pdev);
5744 pci_ers_result_t result;
5745 int err;
5746 u32 reg;
5747
5748 err = pci_enable_device_mem(pdev);
5749 if (err) {
5750 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5751 err);
5752 result = PCI_ERS_RESULT_DISCONNECT;
5753 } else {
5754 pci_set_master(pdev);
5755 pci_restore_state(pdev);
5756 pci_wake_from_d3(pdev, false);
5757
5758 /* Check for life */
5759 reg = rd32(&pf->hw, GLGEN_RTRIG);
5760 if (!reg)
5761 result = PCI_ERS_RESULT_RECOVERED;
5762 else
5763 result = PCI_ERS_RESULT_DISCONNECT;
5764 }
5765
5766 return result;
5767 }
5768
5769 /**
5770 * ice_pci_err_resume - restart operations after PCI error recovery
5771 * @pdev: PCI device information struct
5772 *
5773 * Called to allow the driver to bring things back up after PCI error and/or
5774 * reset recovery have finished
5775 */
ice_pci_err_resume(struct pci_dev * pdev)5776 static void ice_pci_err_resume(struct pci_dev *pdev)
5777 {
5778 struct ice_pf *pf = pci_get_drvdata(pdev);
5779
5780 if (!pf) {
5781 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5782 __func__);
5783 return;
5784 }
5785
5786 if (test_bit(ICE_SUSPENDED, pf->state)) {
5787 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5788 __func__);
5789 return;
5790 }
5791
5792 ice_restore_all_vfs_msi_state(pf);
5793
5794 ice_do_reset(pf, ICE_RESET_PFR);
5795 ice_service_task_restart(pf);
5796 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5797 }
5798
5799 /**
5800 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5801 * @pdev: PCI device information struct
5802 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5803 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5804 {
5805 struct ice_pf *pf = pci_get_drvdata(pdev);
5806
5807 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5808 ice_service_task_stop(pf);
5809
5810 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5811 set_bit(ICE_PFR_REQ, pf->state);
5812 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5813 }
5814 }
5815 }
5816
5817 /**
5818 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5819 * @pdev: PCI device information struct
5820 */
ice_pci_err_reset_done(struct pci_dev * pdev)5821 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5822 {
5823 ice_pci_err_resume(pdev);
5824 }
5825
5826 /* ice_pci_tbl - PCI Device ID Table
5827 *
5828 * Wildcard entries (PCI_ANY_ID) should come last
5829 * Last entry must be all 0s
5830 *
5831 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5832 * Class, Class Mask, private data (not used) }
5833 */
5834 static const struct pci_device_id ice_pci_tbl[] = {
5835 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5836 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5837 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5838 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) },
5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) },
5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) },
5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) },
5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), },
5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), },
5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), },
5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), },
5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), },
5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), },
5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_BACKPLANE), },
5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_QSFP56), },
5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_SFP), },
5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_BACKPLANE), },
5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_QSFP), },
5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_SFP), },
5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_BACKPLANE), },
5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_QSFP), },
5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_SFP), },
5884 /* required last entry */
5885 {}
5886 };
5887 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5888
5889 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5890
5891 static const struct pci_error_handlers ice_pci_err_handler = {
5892 .error_detected = ice_pci_err_detected,
5893 .slot_reset = ice_pci_err_slot_reset,
5894 .reset_prepare = ice_pci_err_reset_prepare,
5895 .reset_done = ice_pci_err_reset_done,
5896 .resume = ice_pci_err_resume
5897 };
5898
5899 static struct pci_driver ice_driver = {
5900 .name = KBUILD_MODNAME,
5901 .id_table = ice_pci_tbl,
5902 .probe = ice_probe,
5903 .remove = ice_remove,
5904 .driver.pm = pm_sleep_ptr(&ice_pm_ops),
5905 .shutdown = ice_shutdown,
5906 .sriov_configure = ice_sriov_configure,
5907 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5908 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5909 .err_handler = &ice_pci_err_handler
5910 };
5911
5912 /**
5913 * ice_module_init - Driver registration routine
5914 *
5915 * ice_module_init is the first routine called when the driver is
5916 * loaded. All it does is register with the PCI subsystem.
5917 */
ice_module_init(void)5918 static int __init ice_module_init(void)
5919 {
5920 int status = -ENOMEM;
5921
5922 pr_info("%s\n", ice_driver_string);
5923 pr_info("%s\n", ice_copyright);
5924
5925 ice_adv_lnk_speed_maps_init();
5926
5927 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME);
5928 if (!ice_wq) {
5929 pr_err("Failed to create workqueue\n");
5930 return status;
5931 }
5932
5933 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5934 if (!ice_lag_wq) {
5935 pr_err("Failed to create LAG workqueue\n");
5936 goto err_dest_wq;
5937 }
5938
5939 ice_debugfs_init();
5940
5941 status = pci_register_driver(&ice_driver);
5942 if (status) {
5943 pr_err("failed to register PCI driver, err %d\n", status);
5944 goto err_dest_lag_wq;
5945 }
5946
5947 status = ice_sf_driver_register();
5948 if (status) {
5949 pr_err("Failed to register SF driver, err %d\n", status);
5950 goto err_sf_driver;
5951 }
5952
5953 return 0;
5954
5955 err_sf_driver:
5956 pci_unregister_driver(&ice_driver);
5957 err_dest_lag_wq:
5958 destroy_workqueue(ice_lag_wq);
5959 ice_debugfs_exit();
5960 err_dest_wq:
5961 destroy_workqueue(ice_wq);
5962 return status;
5963 }
5964 module_init(ice_module_init);
5965
5966 /**
5967 * ice_module_exit - Driver exit cleanup routine
5968 *
5969 * ice_module_exit is called just before the driver is removed
5970 * from memory.
5971 */
ice_module_exit(void)5972 static void __exit ice_module_exit(void)
5973 {
5974 ice_sf_driver_unregister();
5975 pci_unregister_driver(&ice_driver);
5976 ice_debugfs_exit();
5977 destroy_workqueue(ice_wq);
5978 destroy_workqueue(ice_lag_wq);
5979 pr_info("module unloaded\n");
5980 }
5981 module_exit(ice_module_exit);
5982
5983 /**
5984 * ice_set_mac_address - NDO callback to set MAC address
5985 * @netdev: network interface device structure
5986 * @pi: pointer to an address structure
5987 *
5988 * Returns 0 on success, negative on failure
5989 */
ice_set_mac_address(struct net_device * netdev,void * pi)5990 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5991 {
5992 struct ice_netdev_priv *np = netdev_priv(netdev);
5993 struct ice_vsi *vsi = np->vsi;
5994 struct ice_pf *pf = vsi->back;
5995 struct ice_hw *hw = &pf->hw;
5996 struct sockaddr *addr = pi;
5997 u8 old_mac[ETH_ALEN];
5998 u8 flags = 0;
5999 u8 *mac;
6000 int err;
6001
6002 mac = (u8 *)addr->sa_data;
6003
6004 if (!is_valid_ether_addr(mac))
6005 return -EADDRNOTAVAIL;
6006
6007 if (test_bit(ICE_DOWN, pf->state) ||
6008 ice_is_reset_in_progress(pf->state)) {
6009 netdev_err(netdev, "can't set mac %pM. device not ready\n",
6010 mac);
6011 return -EBUSY;
6012 }
6013
6014 if (ice_chnl_dmac_fltr_cnt(pf)) {
6015 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
6016 mac);
6017 return -EAGAIN;
6018 }
6019
6020 netif_addr_lock_bh(netdev);
6021 ether_addr_copy(old_mac, netdev->dev_addr);
6022 /* change the netdev's MAC address */
6023 eth_hw_addr_set(netdev, mac);
6024 netif_addr_unlock_bh(netdev);
6025
6026 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
6027 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
6028 if (err && err != -ENOENT) {
6029 err = -EADDRNOTAVAIL;
6030 goto err_update_filters;
6031 }
6032
6033 /* Add filter for new MAC. If filter exists, return success */
6034 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
6035 if (err == -EEXIST) {
6036 /* Although this MAC filter is already present in hardware it's
6037 * possible in some cases (e.g. bonding) that dev_addr was
6038 * modified outside of the driver and needs to be restored back
6039 * to this value.
6040 */
6041 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
6042
6043 return 0;
6044 } else if (err) {
6045 /* error if the new filter addition failed */
6046 err = -EADDRNOTAVAIL;
6047 }
6048
6049 err_update_filters:
6050 if (err) {
6051 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
6052 mac);
6053 netif_addr_lock_bh(netdev);
6054 eth_hw_addr_set(netdev, old_mac);
6055 netif_addr_unlock_bh(netdev);
6056 return err;
6057 }
6058
6059 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
6060 netdev->dev_addr);
6061
6062 /* write new MAC address to the firmware */
6063 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
6064 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
6065 if (err) {
6066 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
6067 mac, err);
6068 }
6069 return 0;
6070 }
6071
6072 /**
6073 * ice_set_rx_mode - NDO callback to set the netdev filters
6074 * @netdev: network interface device structure
6075 */
ice_set_rx_mode(struct net_device * netdev)6076 static void ice_set_rx_mode(struct net_device *netdev)
6077 {
6078 struct ice_netdev_priv *np = netdev_priv(netdev);
6079 struct ice_vsi *vsi = np->vsi;
6080
6081 if (!vsi || ice_is_switchdev_running(vsi->back))
6082 return;
6083
6084 /* Set the flags to synchronize filters
6085 * ndo_set_rx_mode may be triggered even without a change in netdev
6086 * flags
6087 */
6088 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
6089 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
6090 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
6091
6092 /* schedule our worker thread which will take care of
6093 * applying the new filter changes
6094 */
6095 ice_service_task_schedule(vsi->back);
6096 }
6097
6098 /**
6099 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
6100 * @netdev: network interface device structure
6101 * @queue_index: Queue ID
6102 * @maxrate: maximum bandwidth in Mbps
6103 */
6104 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)6105 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
6106 {
6107 struct ice_netdev_priv *np = netdev_priv(netdev);
6108 struct ice_vsi *vsi = np->vsi;
6109 u16 q_handle;
6110 int status;
6111 u8 tc;
6112
6113 /* Validate maxrate requested is within permitted range */
6114 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
6115 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
6116 maxrate, queue_index);
6117 return -EINVAL;
6118 }
6119
6120 q_handle = vsi->tx_rings[queue_index]->q_handle;
6121 tc = ice_dcb_get_tc(vsi, queue_index);
6122
6123 vsi = ice_locate_vsi_using_queue(vsi, queue_index);
6124 if (!vsi) {
6125 netdev_err(netdev, "Invalid VSI for given queue %d\n",
6126 queue_index);
6127 return -EINVAL;
6128 }
6129
6130 /* Set BW back to default, when user set maxrate to 0 */
6131 if (!maxrate)
6132 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6133 q_handle, ICE_MAX_BW);
6134 else
6135 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6136 q_handle, ICE_MAX_BW, maxrate * 1000);
6137 if (status)
6138 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6139 status);
6140
6141 return status;
6142 }
6143
6144 /**
6145 * ice_fdb_add - add an entry to the hardware database
6146 * @ndm: the input from the stack
6147 * @tb: pointer to array of nladdr (unused)
6148 * @dev: the net device pointer
6149 * @addr: the MAC address entry being added
6150 * @vid: VLAN ID
6151 * @flags: instructions from stack about fdb operation
6152 * @notified: whether notification was emitted
6153 * @extack: netlink extended ack
6154 */
6155 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,bool * notified,struct netlink_ext_ack __always_unused * extack)6156 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6157 struct net_device *dev, const unsigned char *addr, u16 vid,
6158 u16 flags, bool *notified,
6159 struct netlink_ext_ack __always_unused *extack)
6160 {
6161 int err;
6162
6163 if (vid) {
6164 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6165 return -EINVAL;
6166 }
6167 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6168 netdev_err(dev, "FDB only supports static addresses\n");
6169 return -EINVAL;
6170 }
6171
6172 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6173 err = dev_uc_add_excl(dev, addr);
6174 else if (is_multicast_ether_addr(addr))
6175 err = dev_mc_add_excl(dev, addr);
6176 else
6177 err = -EINVAL;
6178
6179 /* Only return duplicate errors if NLM_F_EXCL is set */
6180 if (err == -EEXIST && !(flags & NLM_F_EXCL))
6181 err = 0;
6182
6183 return err;
6184 }
6185
6186 /**
6187 * ice_fdb_del - delete an entry from the hardware database
6188 * @ndm: the input from the stack
6189 * @tb: pointer to array of nladdr (unused)
6190 * @dev: the net device pointer
6191 * @addr: the MAC address entry being added
6192 * @vid: VLAN ID
6193 * @notified: whether notification was emitted
6194 * @extack: netlink extended ack
6195 */
6196 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,bool * notified,struct netlink_ext_ack * extack)6197 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6198 struct net_device *dev, const unsigned char *addr,
6199 __always_unused u16 vid, bool *notified,
6200 struct netlink_ext_ack *extack)
6201 {
6202 int err;
6203
6204 if (ndm->ndm_state & NUD_PERMANENT) {
6205 netdev_err(dev, "FDB only supports static addresses\n");
6206 return -EINVAL;
6207 }
6208
6209 if (is_unicast_ether_addr(addr))
6210 err = dev_uc_del(dev, addr);
6211 else if (is_multicast_ether_addr(addr))
6212 err = dev_mc_del(dev, addr);
6213 else
6214 err = -EINVAL;
6215
6216 return err;
6217 }
6218
6219 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6220 NETIF_F_HW_VLAN_CTAG_TX | \
6221 NETIF_F_HW_VLAN_STAG_RX | \
6222 NETIF_F_HW_VLAN_STAG_TX)
6223
6224 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6225 NETIF_F_HW_VLAN_STAG_RX)
6226
6227 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
6228 NETIF_F_HW_VLAN_STAG_FILTER)
6229
6230 /**
6231 * ice_fix_features - fix the netdev features flags based on device limitations
6232 * @netdev: ptr to the netdev that flags are being fixed on
6233 * @features: features that need to be checked and possibly fixed
6234 *
6235 * Make sure any fixups are made to features in this callback. This enables the
6236 * driver to not have to check unsupported configurations throughout the driver
6237 * because that's the responsiblity of this callback.
6238 *
6239 * Single VLAN Mode (SVM) Supported Features:
6240 * NETIF_F_HW_VLAN_CTAG_FILTER
6241 * NETIF_F_HW_VLAN_CTAG_RX
6242 * NETIF_F_HW_VLAN_CTAG_TX
6243 *
6244 * Double VLAN Mode (DVM) Supported Features:
6245 * NETIF_F_HW_VLAN_CTAG_FILTER
6246 * NETIF_F_HW_VLAN_CTAG_RX
6247 * NETIF_F_HW_VLAN_CTAG_TX
6248 *
6249 * NETIF_F_HW_VLAN_STAG_FILTER
6250 * NETIF_HW_VLAN_STAG_RX
6251 * NETIF_HW_VLAN_STAG_TX
6252 *
6253 * Features that need fixing:
6254 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6255 * These are mutually exlusive as the VSI context cannot support multiple
6256 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
6257 * is not done, then default to clearing the requested STAG offload
6258 * settings.
6259 *
6260 * All supported filtering has to be enabled or disabled together. For
6261 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6262 * together. If this is not done, then default to VLAN filtering disabled.
6263 * These are mutually exclusive as there is currently no way to
6264 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6265 * prune rules.
6266 */
6267 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)6268 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6269 {
6270 struct ice_netdev_priv *np = netdev_priv(netdev);
6271 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6272 bool cur_ctag, cur_stag, req_ctag, req_stag;
6273
6274 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6275 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6276 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6277
6278 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6279 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6280 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6281
6282 if (req_vlan_fltr != cur_vlan_fltr) {
6283 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6284 if (req_ctag && req_stag) {
6285 features |= NETIF_VLAN_FILTERING_FEATURES;
6286 } else if (!req_ctag && !req_stag) {
6287 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6288 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
6289 (!cur_stag && req_stag && !cur_ctag)) {
6290 features |= NETIF_VLAN_FILTERING_FEATURES;
6291 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6292 } else if ((cur_ctag && !req_ctag && cur_stag) ||
6293 (cur_stag && !req_stag && cur_ctag)) {
6294 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6295 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6296 }
6297 } else {
6298 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6299 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6300
6301 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6302 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6303 }
6304 }
6305
6306 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6307 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6308 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6309 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6310 NETIF_F_HW_VLAN_STAG_TX);
6311 }
6312
6313 if (!(netdev->features & NETIF_F_RXFCS) &&
6314 (features & NETIF_F_RXFCS) &&
6315 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6316 !ice_vsi_has_non_zero_vlans(np->vsi)) {
6317 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6318 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6319 }
6320
6321 return features;
6322 }
6323
6324 /**
6325 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6326 * @vsi: PF's VSI
6327 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6328 *
6329 * Store current stripped VLAN proto in ring packet context,
6330 * so it can be accessed more efficiently by packet processing code.
6331 */
6332 static void
ice_set_rx_rings_vlan_proto(struct ice_vsi * vsi,__be16 vlan_ethertype)6333 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6334 {
6335 u16 i;
6336
6337 ice_for_each_alloc_rxq(vsi, i)
6338 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6339 }
6340
6341 /**
6342 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6343 * @vsi: PF's VSI
6344 * @features: features used to determine VLAN offload settings
6345 *
6346 * First, determine the vlan_ethertype based on the VLAN offload bits in
6347 * features. Then determine if stripping and insertion should be enabled or
6348 * disabled. Finally enable or disable VLAN stripping and insertion.
6349 */
6350 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)6351 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6352 {
6353 bool enable_stripping = true, enable_insertion = true;
6354 struct ice_vsi_vlan_ops *vlan_ops;
6355 int strip_err = 0, insert_err = 0;
6356 u16 vlan_ethertype = 0;
6357
6358 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6359
6360 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6361 vlan_ethertype = ETH_P_8021AD;
6362 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6363 vlan_ethertype = ETH_P_8021Q;
6364
6365 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6366 enable_stripping = false;
6367 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6368 enable_insertion = false;
6369
6370 if (enable_stripping)
6371 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6372 else
6373 strip_err = vlan_ops->dis_stripping(vsi);
6374
6375 if (enable_insertion)
6376 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6377 else
6378 insert_err = vlan_ops->dis_insertion(vsi);
6379
6380 if (strip_err || insert_err)
6381 return -EIO;
6382
6383 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6384 htons(vlan_ethertype) : 0);
6385
6386 return 0;
6387 }
6388
6389 /**
6390 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6391 * @vsi: PF's VSI
6392 * @features: features used to determine VLAN filtering settings
6393 *
6394 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6395 * features.
6396 */
6397 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)6398 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6399 {
6400 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6401 int err = 0;
6402
6403 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6404 * if either bit is set. In switchdev mode Rx filtering should never be
6405 * enabled.
6406 */
6407 if ((features &
6408 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) &&
6409 !ice_is_eswitch_mode_switchdev(vsi->back))
6410 err = vlan_ops->ena_rx_filtering(vsi);
6411 else
6412 err = vlan_ops->dis_rx_filtering(vsi);
6413
6414 return err;
6415 }
6416
6417 /**
6418 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6419 * @netdev: ptr to the netdev being adjusted
6420 * @features: the feature set that the stack is suggesting
6421 *
6422 * Only update VLAN settings if the requested_vlan_features are different than
6423 * the current_vlan_features.
6424 */
6425 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)6426 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6427 {
6428 netdev_features_t current_vlan_features, requested_vlan_features;
6429 struct ice_netdev_priv *np = netdev_priv(netdev);
6430 struct ice_vsi *vsi = np->vsi;
6431 int err;
6432
6433 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6434 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6435 if (current_vlan_features ^ requested_vlan_features) {
6436 if ((features & NETIF_F_RXFCS) &&
6437 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6438 dev_err(ice_pf_to_dev(vsi->back),
6439 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6440 return -EIO;
6441 }
6442
6443 err = ice_set_vlan_offload_features(vsi, features);
6444 if (err)
6445 return err;
6446 }
6447
6448 current_vlan_features = netdev->features &
6449 NETIF_VLAN_FILTERING_FEATURES;
6450 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6451 if (current_vlan_features ^ requested_vlan_features) {
6452 err = ice_set_vlan_filtering_features(vsi, features);
6453 if (err)
6454 return err;
6455 }
6456
6457 return 0;
6458 }
6459
6460 /**
6461 * ice_set_loopback - turn on/off loopback mode on underlying PF
6462 * @vsi: ptr to VSI
6463 * @ena: flag to indicate the on/off setting
6464 */
ice_set_loopback(struct ice_vsi * vsi,bool ena)6465 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6466 {
6467 bool if_running = netif_running(vsi->netdev);
6468 int ret;
6469
6470 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6471 ret = ice_down(vsi);
6472 if (ret) {
6473 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6474 return ret;
6475 }
6476 }
6477 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6478 if (ret)
6479 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6480 if (if_running)
6481 ret = ice_up(vsi);
6482
6483 return ret;
6484 }
6485
6486 /**
6487 * ice_set_features - set the netdev feature flags
6488 * @netdev: ptr to the netdev being adjusted
6489 * @features: the feature set that the stack is suggesting
6490 */
6491 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)6492 ice_set_features(struct net_device *netdev, netdev_features_t features)
6493 {
6494 netdev_features_t changed = netdev->features ^ features;
6495 struct ice_netdev_priv *np = netdev_priv(netdev);
6496 struct ice_vsi *vsi = np->vsi;
6497 struct ice_pf *pf = vsi->back;
6498 int ret = 0;
6499
6500 /* Don't set any netdev advanced features with device in Safe Mode */
6501 if (ice_is_safe_mode(pf)) {
6502 dev_err(ice_pf_to_dev(pf),
6503 "Device is in Safe Mode - not enabling advanced netdev features\n");
6504 return ret;
6505 }
6506
6507 /* Do not change setting during reset */
6508 if (ice_is_reset_in_progress(pf->state)) {
6509 dev_err(ice_pf_to_dev(pf),
6510 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6511 return -EBUSY;
6512 }
6513
6514 /* Multiple features can be changed in one call so keep features in
6515 * separate if/else statements to guarantee each feature is checked
6516 */
6517 if (changed & NETIF_F_RXHASH)
6518 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6519
6520 ret = ice_set_vlan_features(netdev, features);
6521 if (ret)
6522 return ret;
6523
6524 /* Turn on receive of FCS aka CRC, and after setting this
6525 * flag the packet data will have the 4 byte CRC appended
6526 */
6527 if (changed & NETIF_F_RXFCS) {
6528 if ((features & NETIF_F_RXFCS) &&
6529 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6530 dev_err(ice_pf_to_dev(vsi->back),
6531 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6532 return -EIO;
6533 }
6534
6535 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6536 ret = ice_down_up(vsi);
6537 if (ret)
6538 return ret;
6539 }
6540
6541 if (changed & NETIF_F_NTUPLE) {
6542 bool ena = !!(features & NETIF_F_NTUPLE);
6543
6544 ice_vsi_manage_fdir(vsi, ena);
6545 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6546 }
6547
6548 /* don't turn off hw_tc_offload when ADQ is already enabled */
6549 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6550 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6551 return -EACCES;
6552 }
6553
6554 if (changed & NETIF_F_HW_TC) {
6555 bool ena = !!(features & NETIF_F_HW_TC);
6556
6557 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena);
6558 }
6559
6560 if (changed & NETIF_F_LOOPBACK)
6561 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6562
6563 /* Due to E830 hardware limitations, TSO (NETIF_F_ALL_TSO) with GCS
6564 * (NETIF_F_HW_CSUM) is not supported.
6565 */
6566 if (ice_is_feature_supported(pf, ICE_F_GCS) &&
6567 ((features & NETIF_F_HW_CSUM) && (features & NETIF_F_ALL_TSO))) {
6568 if (netdev->features & NETIF_F_HW_CSUM)
6569 dev_err(ice_pf_to_dev(pf), "To enable TSO, you must first disable HW checksum.\n");
6570 else
6571 dev_err(ice_pf_to_dev(pf), "To enable HW checksum, you must first disable TSO.\n");
6572 return -EIO;
6573 }
6574
6575 return ret;
6576 }
6577
6578 /**
6579 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6580 * @vsi: VSI to setup VLAN properties for
6581 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6582 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6583 {
6584 int err;
6585
6586 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6587 if (err)
6588 return err;
6589
6590 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6591 if (err)
6592 return err;
6593
6594 return ice_vsi_add_vlan_zero(vsi);
6595 }
6596
6597 /**
6598 * ice_vsi_cfg_lan - Setup the VSI lan related config
6599 * @vsi: the VSI being configured
6600 *
6601 * Return 0 on success and negative value on error
6602 */
ice_vsi_cfg_lan(struct ice_vsi * vsi)6603 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6604 {
6605 int err;
6606
6607 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6608 ice_set_rx_mode(vsi->netdev);
6609
6610 err = ice_vsi_vlan_setup(vsi);
6611 if (err)
6612 return err;
6613 }
6614 ice_vsi_cfg_dcb_rings(vsi);
6615
6616 err = ice_vsi_cfg_lan_txqs(vsi);
6617 if (!err && ice_is_xdp_ena_vsi(vsi))
6618 err = ice_vsi_cfg_xdp_txqs(vsi);
6619 if (!err)
6620 err = ice_vsi_cfg_rxqs(vsi);
6621
6622 return err;
6623 }
6624
6625 /* THEORY OF MODERATION:
6626 * The ice driver hardware works differently than the hardware that DIMLIB was
6627 * originally made for. ice hardware doesn't have packet count limits that
6628 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6629 * which is hard-coded to a limit of 250,000 ints/second.
6630 * If not using dynamic moderation, the INTRL value can be modified
6631 * by ethtool rx-usecs-high.
6632 */
6633 struct ice_dim {
6634 /* the throttle rate for interrupts, basically worst case delay before
6635 * an initial interrupt fires, value is stored in microseconds.
6636 */
6637 u16 itr;
6638 };
6639
6640 /* Make a different profile for Rx that doesn't allow quite so aggressive
6641 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6642 * second.
6643 */
6644 static const struct ice_dim rx_profile[] = {
6645 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6646 {8}, /* 125,000 ints/s */
6647 {16}, /* 62,500 ints/s */
6648 {62}, /* 16,129 ints/s */
6649 {126} /* 7,936 ints/s */
6650 };
6651
6652 /* The transmit profile, which has the same sorts of values
6653 * as the previous struct
6654 */
6655 static const struct ice_dim tx_profile[] = {
6656 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6657 {8}, /* 125,000 ints/s */
6658 {40}, /* 16,125 ints/s */
6659 {128}, /* 7,812 ints/s */
6660 {256} /* 3,906 ints/s */
6661 };
6662
ice_tx_dim_work(struct work_struct * work)6663 static void ice_tx_dim_work(struct work_struct *work)
6664 {
6665 struct ice_ring_container *rc;
6666 struct dim *dim;
6667 u16 itr;
6668
6669 dim = container_of(work, struct dim, work);
6670 rc = dim->priv;
6671
6672 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6673
6674 /* look up the values in our local table */
6675 itr = tx_profile[dim->profile_ix].itr;
6676
6677 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6678 ice_write_itr(rc, itr);
6679
6680 dim->state = DIM_START_MEASURE;
6681 }
6682
ice_rx_dim_work(struct work_struct * work)6683 static void ice_rx_dim_work(struct work_struct *work)
6684 {
6685 struct ice_ring_container *rc;
6686 struct dim *dim;
6687 u16 itr;
6688
6689 dim = container_of(work, struct dim, work);
6690 rc = dim->priv;
6691
6692 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6693
6694 /* look up the values in our local table */
6695 itr = rx_profile[dim->profile_ix].itr;
6696
6697 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6698 ice_write_itr(rc, itr);
6699
6700 dim->state = DIM_START_MEASURE;
6701 }
6702
6703 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6704
6705 /**
6706 * ice_init_moderation - set up interrupt moderation
6707 * @q_vector: the vector containing rings to be configured
6708 *
6709 * Set up interrupt moderation registers, with the intent to do the right thing
6710 * when called from reset or from probe, and whether or not dynamic moderation
6711 * is enabled or not. Take special care to write all the registers in both
6712 * dynamic moderation mode or not in order to make sure hardware is in a known
6713 * state.
6714 */
ice_init_moderation(struct ice_q_vector * q_vector)6715 static void ice_init_moderation(struct ice_q_vector *q_vector)
6716 {
6717 struct ice_ring_container *rc;
6718 bool tx_dynamic, rx_dynamic;
6719
6720 rc = &q_vector->tx;
6721 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6722 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6723 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6724 rc->dim.priv = rc;
6725 tx_dynamic = ITR_IS_DYNAMIC(rc);
6726
6727 /* set the initial TX ITR to match the above */
6728 ice_write_itr(rc, tx_dynamic ?
6729 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6730
6731 rc = &q_vector->rx;
6732 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6733 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6734 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6735 rc->dim.priv = rc;
6736 rx_dynamic = ITR_IS_DYNAMIC(rc);
6737
6738 /* set the initial RX ITR to match the above */
6739 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6740 rc->itr_setting);
6741
6742 ice_set_q_vector_intrl(q_vector);
6743 }
6744
6745 /**
6746 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6747 * @vsi: the VSI being configured
6748 */
ice_napi_enable_all(struct ice_vsi * vsi)6749 static void ice_napi_enable_all(struct ice_vsi *vsi)
6750 {
6751 int q_idx;
6752
6753 if (!vsi->netdev)
6754 return;
6755
6756 ice_for_each_q_vector(vsi, q_idx) {
6757 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6758
6759 ice_init_moderation(q_vector);
6760
6761 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6762 napi_enable(&q_vector->napi);
6763 }
6764 }
6765
6766 /**
6767 * ice_up_complete - Finish the last steps of bringing up a connection
6768 * @vsi: The VSI being configured
6769 *
6770 * Return 0 on success and negative value on error
6771 */
ice_up_complete(struct ice_vsi * vsi)6772 static int ice_up_complete(struct ice_vsi *vsi)
6773 {
6774 struct ice_pf *pf = vsi->back;
6775 int err;
6776
6777 ice_vsi_cfg_msix(vsi);
6778
6779 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6780 * Tx queue group list was configured and the context bits were
6781 * programmed using ice_vsi_cfg_txqs
6782 */
6783 err = ice_vsi_start_all_rx_rings(vsi);
6784 if (err)
6785 return err;
6786
6787 clear_bit(ICE_VSI_DOWN, vsi->state);
6788 ice_napi_enable_all(vsi);
6789 ice_vsi_ena_irq(vsi);
6790
6791 if (vsi->port_info &&
6792 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6793 ((vsi->netdev && (vsi->type == ICE_VSI_PF ||
6794 vsi->type == ICE_VSI_SF)))) {
6795 ice_print_link_msg(vsi, true);
6796 netif_tx_start_all_queues(vsi->netdev);
6797 netif_carrier_on(vsi->netdev);
6798 ice_ptp_link_change(pf, true);
6799 }
6800
6801 /* Perform an initial read of the statistics registers now to
6802 * set the baseline so counters are ready when interface is up
6803 */
6804 ice_update_eth_stats(vsi);
6805
6806 if (vsi->type == ICE_VSI_PF)
6807 ice_service_task_schedule(pf);
6808
6809 return 0;
6810 }
6811
6812 /**
6813 * ice_up - Bring the connection back up after being down
6814 * @vsi: VSI being configured
6815 */
ice_up(struct ice_vsi * vsi)6816 int ice_up(struct ice_vsi *vsi)
6817 {
6818 int err;
6819
6820 err = ice_vsi_cfg_lan(vsi);
6821 if (!err)
6822 err = ice_up_complete(vsi);
6823
6824 return err;
6825 }
6826
6827 /**
6828 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6829 * @syncp: pointer to u64_stats_sync
6830 * @stats: stats that pkts and bytes count will be taken from
6831 * @pkts: packets stats counter
6832 * @bytes: bytes stats counter
6833 *
6834 * This function fetches stats from the ring considering the atomic operations
6835 * that needs to be performed to read u64 values in 32 bit machine.
6836 */
6837 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6838 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6839 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6840 {
6841 unsigned int start;
6842
6843 do {
6844 start = u64_stats_fetch_begin(syncp);
6845 *pkts = stats.pkts;
6846 *bytes = stats.bytes;
6847 } while (u64_stats_fetch_retry(syncp, start));
6848 }
6849
6850 /**
6851 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6852 * @vsi: the VSI to be updated
6853 * @vsi_stats: the stats struct to be updated
6854 * @rings: rings to work on
6855 * @count: number of rings
6856 */
6857 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6858 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6859 struct rtnl_link_stats64 *vsi_stats,
6860 struct ice_tx_ring **rings, u16 count)
6861 {
6862 u16 i;
6863
6864 for (i = 0; i < count; i++) {
6865 struct ice_tx_ring *ring;
6866 u64 pkts = 0, bytes = 0;
6867
6868 ring = READ_ONCE(rings[i]);
6869 if (!ring || !ring->ring_stats)
6870 continue;
6871 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6872 ring->ring_stats->stats, &pkts,
6873 &bytes);
6874 vsi_stats->tx_packets += pkts;
6875 vsi_stats->tx_bytes += bytes;
6876 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6877 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6878 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6879 }
6880 }
6881
6882 /**
6883 * ice_update_vsi_ring_stats - Update VSI stats counters
6884 * @vsi: the VSI to be updated
6885 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6886 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6887 {
6888 struct rtnl_link_stats64 *net_stats, *stats_prev;
6889 struct rtnl_link_stats64 *vsi_stats;
6890 struct ice_pf *pf = vsi->back;
6891 u64 pkts, bytes;
6892 int i;
6893
6894 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6895 if (!vsi_stats)
6896 return;
6897
6898 /* reset non-netdev (extended) stats */
6899 vsi->tx_restart = 0;
6900 vsi->tx_busy = 0;
6901 vsi->tx_linearize = 0;
6902 vsi->rx_buf_failed = 0;
6903 vsi->rx_page_failed = 0;
6904
6905 rcu_read_lock();
6906
6907 /* update Tx rings counters */
6908 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6909 vsi->num_txq);
6910
6911 /* update Rx rings counters */
6912 ice_for_each_rxq(vsi, i) {
6913 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6914 struct ice_ring_stats *ring_stats;
6915
6916 ring_stats = ring->ring_stats;
6917 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6918 ring_stats->stats, &pkts,
6919 &bytes);
6920 vsi_stats->rx_packets += pkts;
6921 vsi_stats->rx_bytes += bytes;
6922 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6923 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6924 }
6925
6926 /* update XDP Tx rings counters */
6927 if (ice_is_xdp_ena_vsi(vsi))
6928 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6929 vsi->num_xdp_txq);
6930
6931 rcu_read_unlock();
6932
6933 net_stats = &vsi->net_stats;
6934 stats_prev = &vsi->net_stats_prev;
6935
6936 /* Update netdev counters, but keep in mind that values could start at
6937 * random value after PF reset. And as we increase the reported stat by
6938 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6939 * let's skip this round.
6940 */
6941 if (likely(pf->stat_prev_loaded)) {
6942 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6943 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6944 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6945 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6946 }
6947
6948 stats_prev->tx_packets = vsi_stats->tx_packets;
6949 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6950 stats_prev->rx_packets = vsi_stats->rx_packets;
6951 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6952
6953 kfree(vsi_stats);
6954 }
6955
6956 /**
6957 * ice_update_vsi_stats - Update VSI stats counters
6958 * @vsi: the VSI to be updated
6959 */
ice_update_vsi_stats(struct ice_vsi * vsi)6960 void ice_update_vsi_stats(struct ice_vsi *vsi)
6961 {
6962 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6963 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6964 struct ice_pf *pf = vsi->back;
6965
6966 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6967 test_bit(ICE_CFG_BUSY, pf->state))
6968 return;
6969
6970 /* get stats as recorded by Tx/Rx rings */
6971 ice_update_vsi_ring_stats(vsi);
6972
6973 /* get VSI stats as recorded by the hardware */
6974 ice_update_eth_stats(vsi);
6975
6976 cur_ns->tx_errors = cur_es->tx_errors;
6977 cur_ns->rx_dropped = cur_es->rx_discards;
6978 cur_ns->tx_dropped = cur_es->tx_discards;
6979 cur_ns->multicast = cur_es->rx_multicast;
6980
6981 /* update some more netdev stats if this is main VSI */
6982 if (vsi->type == ICE_VSI_PF) {
6983 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6984 cur_ns->rx_errors = pf->stats.crc_errors +
6985 pf->stats.illegal_bytes +
6986 pf->stats.rx_undersize +
6987 pf->stats.rx_jabber +
6988 pf->stats.rx_fragments +
6989 pf->stats.rx_oversize;
6990 /* record drops from the port level */
6991 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6992 }
6993 }
6994
6995 /**
6996 * ice_update_pf_stats - Update PF port stats counters
6997 * @pf: PF whose stats needs to be updated
6998 */
ice_update_pf_stats(struct ice_pf * pf)6999 void ice_update_pf_stats(struct ice_pf *pf)
7000 {
7001 struct ice_hw_port_stats *prev_ps, *cur_ps;
7002 struct ice_hw *hw = &pf->hw;
7003 u16 fd_ctr_base;
7004 u8 port;
7005
7006 port = hw->port_info->lport;
7007 prev_ps = &pf->stats_prev;
7008 cur_ps = &pf->stats;
7009
7010 if (ice_is_reset_in_progress(pf->state))
7011 pf->stat_prev_loaded = false;
7012
7013 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
7014 &prev_ps->eth.rx_bytes,
7015 &cur_ps->eth.rx_bytes);
7016
7017 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
7018 &prev_ps->eth.rx_unicast,
7019 &cur_ps->eth.rx_unicast);
7020
7021 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
7022 &prev_ps->eth.rx_multicast,
7023 &cur_ps->eth.rx_multicast);
7024
7025 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
7026 &prev_ps->eth.rx_broadcast,
7027 &cur_ps->eth.rx_broadcast);
7028
7029 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
7030 &prev_ps->eth.rx_discards,
7031 &cur_ps->eth.rx_discards);
7032
7033 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
7034 &prev_ps->eth.tx_bytes,
7035 &cur_ps->eth.tx_bytes);
7036
7037 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
7038 &prev_ps->eth.tx_unicast,
7039 &cur_ps->eth.tx_unicast);
7040
7041 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
7042 &prev_ps->eth.tx_multicast,
7043 &cur_ps->eth.tx_multicast);
7044
7045 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
7046 &prev_ps->eth.tx_broadcast,
7047 &cur_ps->eth.tx_broadcast);
7048
7049 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
7050 &prev_ps->tx_dropped_link_down,
7051 &cur_ps->tx_dropped_link_down);
7052
7053 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
7054 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
7055
7056 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
7057 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
7058
7059 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
7060 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
7061
7062 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
7063 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
7064
7065 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
7066 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
7067
7068 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
7069 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
7070
7071 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
7072 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
7073
7074 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
7075 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
7076
7077 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
7078 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
7079
7080 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
7081 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
7082
7083 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
7084 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
7085
7086 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
7087 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
7088
7089 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
7090 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
7091
7092 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
7093 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
7094
7095 fd_ctr_base = hw->fd_ctr_base;
7096
7097 ice_stat_update40(hw,
7098 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
7099 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
7100 &cur_ps->fd_sb_match);
7101 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
7102 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
7103
7104 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
7105 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
7106
7107 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
7108 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
7109
7110 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
7111 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
7112
7113 ice_update_dcb_stats(pf);
7114
7115 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
7116 &prev_ps->crc_errors, &cur_ps->crc_errors);
7117
7118 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
7119 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
7120
7121 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
7122 &prev_ps->mac_local_faults,
7123 &cur_ps->mac_local_faults);
7124
7125 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
7126 &prev_ps->mac_remote_faults,
7127 &cur_ps->mac_remote_faults);
7128
7129 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
7130 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
7131
7132 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
7133 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
7134
7135 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
7136 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
7137
7138 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
7139 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
7140
7141 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
7142 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
7143
7144 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
7145
7146 pf->stat_prev_loaded = true;
7147 }
7148
7149 /**
7150 * ice_get_stats64 - get statistics for network device structure
7151 * @netdev: network interface device structure
7152 * @stats: main device statistics structure
7153 */
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)7154 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7155 {
7156 struct ice_netdev_priv *np = netdev_priv(netdev);
7157 struct rtnl_link_stats64 *vsi_stats;
7158 struct ice_vsi *vsi = np->vsi;
7159
7160 vsi_stats = &vsi->net_stats;
7161
7162 if (!vsi->num_txq || !vsi->num_rxq)
7163 return;
7164
7165 /* netdev packet/byte stats come from ring counter. These are obtained
7166 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7167 * But, only call the update routine and read the registers if VSI is
7168 * not down.
7169 */
7170 if (!test_bit(ICE_VSI_DOWN, vsi->state))
7171 ice_update_vsi_ring_stats(vsi);
7172 stats->tx_packets = vsi_stats->tx_packets;
7173 stats->tx_bytes = vsi_stats->tx_bytes;
7174 stats->rx_packets = vsi_stats->rx_packets;
7175 stats->rx_bytes = vsi_stats->rx_bytes;
7176
7177 /* The rest of the stats can be read from the hardware but instead we
7178 * just return values that the watchdog task has already obtained from
7179 * the hardware.
7180 */
7181 stats->multicast = vsi_stats->multicast;
7182 stats->tx_errors = vsi_stats->tx_errors;
7183 stats->tx_dropped = vsi_stats->tx_dropped;
7184 stats->rx_errors = vsi_stats->rx_errors;
7185 stats->rx_dropped = vsi_stats->rx_dropped;
7186 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7187 stats->rx_length_errors = vsi_stats->rx_length_errors;
7188 }
7189
7190 /**
7191 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7192 * @vsi: VSI having NAPI disabled
7193 */
ice_napi_disable_all(struct ice_vsi * vsi)7194 static void ice_napi_disable_all(struct ice_vsi *vsi)
7195 {
7196 int q_idx;
7197
7198 if (!vsi->netdev)
7199 return;
7200
7201 ice_for_each_q_vector(vsi, q_idx) {
7202 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7203
7204 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7205 napi_disable(&q_vector->napi);
7206
7207 cancel_work_sync(&q_vector->tx.dim.work);
7208 cancel_work_sync(&q_vector->rx.dim.work);
7209 }
7210 }
7211
7212 /**
7213 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
7214 * @vsi: the VSI being un-configured
7215 */
ice_vsi_dis_irq(struct ice_vsi * vsi)7216 static void ice_vsi_dis_irq(struct ice_vsi *vsi)
7217 {
7218 struct ice_pf *pf = vsi->back;
7219 struct ice_hw *hw = &pf->hw;
7220 u32 val;
7221 int i;
7222
7223 /* disable interrupt causation from each Rx queue; Tx queues are
7224 * handled in ice_vsi_stop_tx_ring()
7225 */
7226 if (vsi->rx_rings) {
7227 ice_for_each_rxq(vsi, i) {
7228 if (vsi->rx_rings[i]) {
7229 u16 reg;
7230
7231 reg = vsi->rx_rings[i]->reg_idx;
7232 val = rd32(hw, QINT_RQCTL(reg));
7233 val &= ~QINT_RQCTL_CAUSE_ENA_M;
7234 wr32(hw, QINT_RQCTL(reg), val);
7235 }
7236 }
7237 }
7238
7239 /* disable each interrupt */
7240 ice_for_each_q_vector(vsi, i) {
7241 if (!vsi->q_vectors[i])
7242 continue;
7243 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
7244 }
7245
7246 ice_flush(hw);
7247
7248 /* don't call synchronize_irq() for VF's from the host */
7249 if (vsi->type == ICE_VSI_VF)
7250 return;
7251
7252 ice_for_each_q_vector(vsi, i)
7253 synchronize_irq(vsi->q_vectors[i]->irq.virq);
7254 }
7255
7256 /**
7257 * ice_down - Shutdown the connection
7258 * @vsi: The VSI being stopped
7259 *
7260 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7261 */
ice_down(struct ice_vsi * vsi)7262 int ice_down(struct ice_vsi *vsi)
7263 {
7264 int i, tx_err, rx_err, vlan_err = 0;
7265
7266 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7267
7268 if (vsi->netdev) {
7269 vlan_err = ice_vsi_del_vlan_zero(vsi);
7270 ice_ptp_link_change(vsi->back, false);
7271 netif_carrier_off(vsi->netdev);
7272 netif_tx_disable(vsi->netdev);
7273 }
7274
7275 ice_vsi_dis_irq(vsi);
7276
7277 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7278 if (tx_err)
7279 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7280 vsi->vsi_num, tx_err);
7281 if (!tx_err && vsi->xdp_rings) {
7282 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7283 if (tx_err)
7284 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7285 vsi->vsi_num, tx_err);
7286 }
7287
7288 rx_err = ice_vsi_stop_all_rx_rings(vsi);
7289 if (rx_err)
7290 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7291 vsi->vsi_num, rx_err);
7292
7293 ice_napi_disable_all(vsi);
7294
7295 ice_for_each_txq(vsi, i)
7296 ice_clean_tx_ring(vsi->tx_rings[i]);
7297
7298 if (vsi->xdp_rings)
7299 ice_for_each_xdp_txq(vsi, i)
7300 ice_clean_tx_ring(vsi->xdp_rings[i]);
7301
7302 ice_for_each_rxq(vsi, i)
7303 ice_clean_rx_ring(vsi->rx_rings[i]);
7304
7305 if (tx_err || rx_err || vlan_err) {
7306 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7307 vsi->vsi_num, vsi->vsw->sw_id);
7308 return -EIO;
7309 }
7310
7311 return 0;
7312 }
7313
7314 /**
7315 * ice_down_up - shutdown the VSI connection and bring it up
7316 * @vsi: the VSI to be reconnected
7317 */
ice_down_up(struct ice_vsi * vsi)7318 int ice_down_up(struct ice_vsi *vsi)
7319 {
7320 int ret;
7321
7322 /* if DOWN already set, nothing to do */
7323 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7324 return 0;
7325
7326 ret = ice_down(vsi);
7327 if (ret)
7328 return ret;
7329
7330 ret = ice_up(vsi);
7331 if (ret) {
7332 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7333 return ret;
7334 }
7335
7336 return 0;
7337 }
7338
7339 /**
7340 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7341 * @vsi: VSI having resources allocated
7342 *
7343 * Return 0 on success, negative on failure
7344 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)7345 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7346 {
7347 int i, err = 0;
7348
7349 if (!vsi->num_txq) {
7350 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7351 vsi->vsi_num);
7352 return -EINVAL;
7353 }
7354
7355 ice_for_each_txq(vsi, i) {
7356 struct ice_tx_ring *ring = vsi->tx_rings[i];
7357
7358 if (!ring)
7359 return -EINVAL;
7360
7361 if (vsi->netdev)
7362 ring->netdev = vsi->netdev;
7363 err = ice_setup_tx_ring(ring);
7364 if (err)
7365 break;
7366 }
7367
7368 return err;
7369 }
7370
7371 /**
7372 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7373 * @vsi: VSI having resources allocated
7374 *
7375 * Return 0 on success, negative on failure
7376 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)7377 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7378 {
7379 int i, err = 0;
7380
7381 if (!vsi->num_rxq) {
7382 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7383 vsi->vsi_num);
7384 return -EINVAL;
7385 }
7386
7387 ice_for_each_rxq(vsi, i) {
7388 struct ice_rx_ring *ring = vsi->rx_rings[i];
7389
7390 if (!ring)
7391 return -EINVAL;
7392
7393 if (vsi->netdev)
7394 ring->netdev = vsi->netdev;
7395 err = ice_setup_rx_ring(ring);
7396 if (err)
7397 break;
7398 }
7399
7400 return err;
7401 }
7402
7403 /**
7404 * ice_vsi_open_ctrl - open control VSI for use
7405 * @vsi: the VSI to open
7406 *
7407 * Initialization of the Control VSI
7408 *
7409 * Returns 0 on success, negative value on error
7410 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)7411 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7412 {
7413 char int_name[ICE_INT_NAME_STR_LEN];
7414 struct ice_pf *pf = vsi->back;
7415 struct device *dev;
7416 int err;
7417
7418 dev = ice_pf_to_dev(pf);
7419 /* allocate descriptors */
7420 err = ice_vsi_setup_tx_rings(vsi);
7421 if (err)
7422 goto err_setup_tx;
7423
7424 err = ice_vsi_setup_rx_rings(vsi);
7425 if (err)
7426 goto err_setup_rx;
7427
7428 err = ice_vsi_cfg_lan(vsi);
7429 if (err)
7430 goto err_setup_rx;
7431
7432 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7433 dev_driver_string(dev), dev_name(dev));
7434 err = ice_vsi_req_irq_msix(vsi, int_name);
7435 if (err)
7436 goto err_setup_rx;
7437
7438 ice_vsi_cfg_msix(vsi);
7439
7440 err = ice_vsi_start_all_rx_rings(vsi);
7441 if (err)
7442 goto err_up_complete;
7443
7444 clear_bit(ICE_VSI_DOWN, vsi->state);
7445 ice_vsi_ena_irq(vsi);
7446
7447 return 0;
7448
7449 err_up_complete:
7450 ice_down(vsi);
7451 err_setup_rx:
7452 ice_vsi_free_rx_rings(vsi);
7453 err_setup_tx:
7454 ice_vsi_free_tx_rings(vsi);
7455
7456 return err;
7457 }
7458
7459 /**
7460 * ice_vsi_open - Called when a network interface is made active
7461 * @vsi: the VSI to open
7462 *
7463 * Initialization of the VSI
7464 *
7465 * Returns 0 on success, negative value on error
7466 */
ice_vsi_open(struct ice_vsi * vsi)7467 int ice_vsi_open(struct ice_vsi *vsi)
7468 {
7469 char int_name[ICE_INT_NAME_STR_LEN];
7470 struct ice_pf *pf = vsi->back;
7471 int err;
7472
7473 /* allocate descriptors */
7474 err = ice_vsi_setup_tx_rings(vsi);
7475 if (err)
7476 goto err_setup_tx;
7477
7478 err = ice_vsi_setup_rx_rings(vsi);
7479 if (err)
7480 goto err_setup_rx;
7481
7482 err = ice_vsi_cfg_lan(vsi);
7483 if (err)
7484 goto err_setup_rx;
7485
7486 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7487 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7488 err = ice_vsi_req_irq_msix(vsi, int_name);
7489 if (err)
7490 goto err_setup_rx;
7491
7492 if (bitmap_empty(pf->txtime_txqs, pf->max_pf_txqs))
7493 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7494
7495 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) {
7496 /* Notify the stack of the actual queue counts. */
7497 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7498 if (err)
7499 goto err_set_qs;
7500
7501 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7502 if (err)
7503 goto err_set_qs;
7504
7505 ice_vsi_set_napi_queues(vsi);
7506 }
7507
7508 err = ice_up_complete(vsi);
7509 if (err)
7510 goto err_up_complete;
7511
7512 return 0;
7513
7514 err_up_complete:
7515 ice_down(vsi);
7516 err_set_qs:
7517 ice_vsi_free_irq(vsi);
7518 err_setup_rx:
7519 ice_vsi_free_rx_rings(vsi);
7520 err_setup_tx:
7521 ice_vsi_free_tx_rings(vsi);
7522
7523 return err;
7524 }
7525
7526 /**
7527 * ice_vsi_release_all - Delete all VSIs
7528 * @pf: PF from which all VSIs are being removed
7529 */
ice_vsi_release_all(struct ice_pf * pf)7530 static void ice_vsi_release_all(struct ice_pf *pf)
7531 {
7532 int err, i;
7533
7534 if (!pf->vsi)
7535 return;
7536
7537 ice_for_each_vsi(pf, i) {
7538 if (!pf->vsi[i])
7539 continue;
7540
7541 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7542 continue;
7543
7544 err = ice_vsi_release(pf->vsi[i]);
7545 if (err)
7546 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7547 i, err, pf->vsi[i]->vsi_num);
7548 }
7549 }
7550
7551 /**
7552 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7553 * @pf: pointer to the PF instance
7554 * @type: VSI type to rebuild
7555 *
7556 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7557 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)7558 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7559 {
7560 struct device *dev = ice_pf_to_dev(pf);
7561 int i, err;
7562
7563 ice_for_each_vsi(pf, i) {
7564 struct ice_vsi *vsi = pf->vsi[i];
7565
7566 if (!vsi || vsi->type != type)
7567 continue;
7568
7569 /* rebuild the VSI */
7570 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7571 if (err) {
7572 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7573 err, vsi->idx, ice_vsi_type_str(type));
7574 return err;
7575 }
7576
7577 /* replay filters for the VSI */
7578 err = ice_replay_vsi(&pf->hw, vsi->idx);
7579 if (err) {
7580 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7581 err, vsi->idx, ice_vsi_type_str(type));
7582 return err;
7583 }
7584
7585 /* Re-map HW VSI number, using VSI handle that has been
7586 * previously validated in ice_replay_vsi() call above
7587 */
7588 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7589
7590 /* enable the VSI */
7591 err = ice_ena_vsi(vsi, false);
7592 if (err) {
7593 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7594 err, vsi->idx, ice_vsi_type_str(type));
7595 return err;
7596 }
7597
7598 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7599 ice_vsi_type_str(type));
7600 }
7601
7602 return 0;
7603 }
7604
7605 /**
7606 * ice_update_pf_netdev_link - Update PF netdev link status
7607 * @pf: pointer to the PF instance
7608 */
ice_update_pf_netdev_link(struct ice_pf * pf)7609 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7610 {
7611 bool link_up;
7612 int i;
7613
7614 ice_for_each_vsi(pf, i) {
7615 struct ice_vsi *vsi = pf->vsi[i];
7616
7617 if (!vsi || vsi->type != ICE_VSI_PF)
7618 return;
7619
7620 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7621 if (link_up) {
7622 netif_carrier_on(pf->vsi[i]->netdev);
7623 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7624 } else {
7625 netif_carrier_off(pf->vsi[i]->netdev);
7626 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7627 }
7628 }
7629 }
7630
7631 /**
7632 * ice_rebuild - rebuild after reset
7633 * @pf: PF to rebuild
7634 * @reset_type: type of reset
7635 *
7636 * Do not rebuild VF VSI in this flow because that is already handled via
7637 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7638 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7639 * to reset/rebuild all the VF VSI twice.
7640 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)7641 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7642 {
7643 struct ice_vsi *vsi = ice_get_main_vsi(pf);
7644 struct device *dev = ice_pf_to_dev(pf);
7645 struct ice_hw *hw = &pf->hw;
7646 bool dvm;
7647 int err;
7648
7649 if (test_bit(ICE_DOWN, pf->state))
7650 goto clear_recovery;
7651
7652 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7653
7654 #define ICE_EMP_RESET_SLEEP_MS 5000
7655 if (reset_type == ICE_RESET_EMPR) {
7656 /* If an EMP reset has occurred, any previously pending flash
7657 * update will have completed. We no longer know whether or
7658 * not the NVM update EMP reset is restricted.
7659 */
7660 pf->fw_emp_reset_disabled = false;
7661
7662 msleep(ICE_EMP_RESET_SLEEP_MS);
7663 }
7664
7665 err = ice_init_all_ctrlq(hw);
7666 if (err) {
7667 dev_err(dev, "control queues init failed %d\n", err);
7668 goto err_init_ctrlq;
7669 }
7670
7671 /* if DDP was previously loaded successfully */
7672 if (!ice_is_safe_mode(pf)) {
7673 /* reload the SW DB of filter tables */
7674 if (reset_type == ICE_RESET_PFR)
7675 ice_fill_blk_tbls(hw);
7676 else
7677 /* Reload DDP Package after CORER/GLOBR reset */
7678 ice_load_pkg(NULL, pf);
7679 }
7680
7681 err = ice_clear_pf_cfg(hw);
7682 if (err) {
7683 dev_err(dev, "clear PF configuration failed %d\n", err);
7684 goto err_init_ctrlq;
7685 }
7686
7687 ice_clear_pxe_mode(hw);
7688
7689 err = ice_init_nvm(hw);
7690 if (err) {
7691 dev_err(dev, "ice_init_nvm failed %d\n", err);
7692 goto err_init_ctrlq;
7693 }
7694
7695 err = ice_get_caps(hw);
7696 if (err) {
7697 dev_err(dev, "ice_get_caps failed %d\n", err);
7698 goto err_init_ctrlq;
7699 }
7700
7701 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7702 if (err) {
7703 dev_err(dev, "set_mac_cfg failed %d\n", err);
7704 goto err_init_ctrlq;
7705 }
7706
7707 dvm = ice_is_dvm_ena(hw);
7708
7709 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7710 if (err)
7711 goto err_init_ctrlq;
7712
7713 err = ice_sched_init_port(hw->port_info);
7714 if (err)
7715 goto err_sched_init_port;
7716
7717 /* start misc vector */
7718 err = ice_req_irq_msix_misc(pf);
7719 if (err) {
7720 dev_err(dev, "misc vector setup failed: %d\n", err);
7721 goto err_sched_init_port;
7722 }
7723
7724 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7725 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7726 if (!rd32(hw, PFQF_FD_SIZE)) {
7727 u16 unused, guar, b_effort;
7728
7729 guar = hw->func_caps.fd_fltr_guar;
7730 b_effort = hw->func_caps.fd_fltr_best_effort;
7731
7732 /* force guaranteed filter pool for PF */
7733 ice_alloc_fd_guar_item(hw, &unused, guar);
7734 /* force shared filter pool for PF */
7735 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7736 }
7737 }
7738
7739 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7740 ice_dcb_rebuild(pf);
7741
7742 /* If the PF previously had enabled PTP, PTP init needs to happen before
7743 * the VSI rebuild. If not, this causes the PTP link status events to
7744 * fail.
7745 */
7746 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7747 ice_ptp_rebuild(pf, reset_type);
7748
7749 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7750 ice_gnss_init(pf);
7751
7752 /* rebuild PF VSI */
7753 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7754 if (err) {
7755 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7756 goto err_vsi_rebuild;
7757 }
7758
7759 if (reset_type == ICE_RESET_PFR) {
7760 err = ice_rebuild_channels(pf);
7761 if (err) {
7762 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7763 err);
7764 goto err_vsi_rebuild;
7765 }
7766 }
7767
7768 /* If Flow Director is active */
7769 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7770 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7771 if (err) {
7772 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7773 goto err_vsi_rebuild;
7774 }
7775
7776 /* replay HW Flow Director recipes */
7777 if (hw->fdir_prof)
7778 ice_fdir_replay_flows(hw);
7779
7780 /* replay Flow Director filters */
7781 ice_fdir_replay_fltrs(pf);
7782
7783 ice_rebuild_arfs(pf);
7784 }
7785
7786 if (vsi && vsi->netdev)
7787 netif_device_attach(vsi->netdev);
7788
7789 ice_update_pf_netdev_link(pf);
7790
7791 /* tell the firmware we are up */
7792 err = ice_send_version(pf);
7793 if (err) {
7794 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7795 err);
7796 goto err_vsi_rebuild;
7797 }
7798
7799 ice_replay_post(hw);
7800
7801 /* if we get here, reset flow is successful */
7802 clear_bit(ICE_RESET_FAILED, pf->state);
7803
7804 ice_health_clear(pf);
7805
7806 ice_plug_aux_dev(pf);
7807 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7808 ice_lag_rebuild(pf);
7809
7810 /* Restore timestamp mode settings after VSI rebuild */
7811 ice_ptp_restore_timestamp_mode(pf);
7812
7813 /* Start PTP periodic work after VSI is fully rebuilt */
7814 ice_ptp_queue_work(pf);
7815 return;
7816
7817 err_vsi_rebuild:
7818 err_sched_init_port:
7819 ice_sched_cleanup_all(hw);
7820 err_init_ctrlq:
7821 ice_shutdown_all_ctrlq(hw, false);
7822 set_bit(ICE_RESET_FAILED, pf->state);
7823 clear_recovery:
7824 /* set this bit in PF state to control service task scheduling */
7825 set_bit(ICE_NEEDS_RESTART, pf->state);
7826 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7827 }
7828
7829 /**
7830 * ice_change_mtu - NDO callback to change the MTU
7831 * @netdev: network interface device structure
7832 * @new_mtu: new value for maximum frame size
7833 *
7834 * Returns 0 on success, negative on failure
7835 */
ice_change_mtu(struct net_device * netdev,int new_mtu)7836 int ice_change_mtu(struct net_device *netdev, int new_mtu)
7837 {
7838 struct ice_netdev_priv *np = netdev_priv(netdev);
7839 struct ice_vsi *vsi = np->vsi;
7840 struct ice_pf *pf = vsi->back;
7841 struct bpf_prog *prog;
7842 u8 count = 0;
7843 int err = 0;
7844
7845 if (new_mtu == (int)netdev->mtu) {
7846 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7847 return 0;
7848 }
7849
7850 prog = vsi->xdp_prog;
7851 if (prog && !prog->aux->xdp_has_frags) {
7852 int frame_size = ice_max_xdp_frame_size(vsi);
7853
7854 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7855 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7856 frame_size - ICE_ETH_PKT_HDR_PAD);
7857 return -EINVAL;
7858 }
7859 }
7860
7861 /* if a reset is in progress, wait for some time for it to complete */
7862 do {
7863 if (ice_is_reset_in_progress(pf->state)) {
7864 count++;
7865 usleep_range(1000, 2000);
7866 } else {
7867 break;
7868 }
7869
7870 } while (count < 100);
7871
7872 if (count == 100) {
7873 netdev_err(netdev, "can't change MTU. Device is busy\n");
7874 return -EBUSY;
7875 }
7876
7877 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu);
7878 err = ice_down_up(vsi);
7879 if (err)
7880 return err;
7881
7882 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7883 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7884
7885 return err;
7886 }
7887
7888 /**
7889 * ice_set_rss_lut - Set RSS LUT
7890 * @vsi: Pointer to VSI structure
7891 * @lut: Lookup table
7892 * @lut_size: Lookup table size
7893 *
7894 * Returns 0 on success, negative on failure
7895 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7896 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7897 {
7898 struct ice_aq_get_set_rss_lut_params params = {};
7899 struct ice_hw *hw = &vsi->back->hw;
7900 int status;
7901
7902 if (!lut)
7903 return -EINVAL;
7904
7905 params.vsi_handle = vsi->idx;
7906 params.lut_size = lut_size;
7907 params.lut_type = vsi->rss_lut_type;
7908 params.lut = lut;
7909
7910 status = ice_aq_set_rss_lut(hw, ¶ms);
7911 if (status)
7912 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7913 status, libie_aq_str(hw->adminq.sq_last_status));
7914
7915 return status;
7916 }
7917
7918 /**
7919 * ice_set_rss_key - Set RSS key
7920 * @vsi: Pointer to the VSI structure
7921 * @seed: RSS hash seed
7922 *
7923 * Returns 0 on success, negative on failure
7924 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)7925 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7926 {
7927 struct ice_hw *hw = &vsi->back->hw;
7928 int status;
7929
7930 if (!seed)
7931 return -EINVAL;
7932
7933 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7934 if (status)
7935 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7936 status, libie_aq_str(hw->adminq.sq_last_status));
7937
7938 return status;
7939 }
7940
7941 /**
7942 * ice_get_rss_lut - Get RSS LUT
7943 * @vsi: Pointer to VSI structure
7944 * @lut: Buffer to store the lookup table entries
7945 * @lut_size: Size of buffer to store the lookup table entries
7946 *
7947 * Returns 0 on success, negative on failure
7948 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7949 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7950 {
7951 struct ice_aq_get_set_rss_lut_params params = {};
7952 struct ice_hw *hw = &vsi->back->hw;
7953 int status;
7954
7955 if (!lut)
7956 return -EINVAL;
7957
7958 params.vsi_handle = vsi->idx;
7959 params.lut_size = lut_size;
7960 params.lut_type = vsi->rss_lut_type;
7961 params.lut = lut;
7962
7963 status = ice_aq_get_rss_lut(hw, ¶ms);
7964 if (status)
7965 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7966 status, libie_aq_str(hw->adminq.sq_last_status));
7967
7968 return status;
7969 }
7970
7971 /**
7972 * ice_get_rss_key - Get RSS key
7973 * @vsi: Pointer to VSI structure
7974 * @seed: Buffer to store the key in
7975 *
7976 * Returns 0 on success, negative on failure
7977 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)7978 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7979 {
7980 struct ice_hw *hw = &vsi->back->hw;
7981 int status;
7982
7983 if (!seed)
7984 return -EINVAL;
7985
7986 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7987 if (status)
7988 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7989 status, libie_aq_str(hw->adminq.sq_last_status));
7990
7991 return status;
7992 }
7993
7994 /**
7995 * ice_get_rss - Get RSS LUT and/or key
7996 * @vsi: Pointer to VSI structure
7997 * @seed: Buffer to store the key in
7998 * @lut: Buffer to store the lookup table entries
7999 * @lut_size: Size of buffer to store the lookup table entries
8000 *
8001 * Return: 0 on success, negative on failure
8002 */
ice_get_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)8003 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
8004 {
8005 int err;
8006
8007 if (seed) {
8008 err = ice_get_rss_key(vsi, seed);
8009 if (err)
8010 return err;
8011 }
8012
8013 if (lut) {
8014 err = ice_get_rss_lut(vsi, lut, lut_size);
8015 if (err)
8016 return err;
8017 }
8018
8019 return 0;
8020 }
8021
8022 /**
8023 * ice_set_rss_hfunc - Set RSS HASH function
8024 * @vsi: Pointer to VSI structure
8025 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
8026 *
8027 * Returns 0 on success, negative on failure
8028 */
ice_set_rss_hfunc(struct ice_vsi * vsi,u8 hfunc)8029 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
8030 {
8031 struct ice_hw *hw = &vsi->back->hw;
8032 struct ice_vsi_ctx *ctx;
8033 bool symm;
8034 int err;
8035
8036 if (hfunc == vsi->rss_hfunc)
8037 return 0;
8038
8039 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
8040 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
8041 return -EOPNOTSUPP;
8042
8043 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8044 if (!ctx)
8045 return -ENOMEM;
8046
8047 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
8048 ctx->info.q_opt_rss = vsi->info.q_opt_rss;
8049 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
8050 ctx->info.q_opt_rss |=
8051 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
8052 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
8053 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
8054
8055 err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
8056 if (err) {
8057 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
8058 vsi->vsi_num, err);
8059 } else {
8060 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
8061 vsi->rss_hfunc = hfunc;
8062 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
8063 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
8064 "Symmetric " : "");
8065 }
8066 kfree(ctx);
8067 if (err)
8068 return err;
8069
8070 /* Fix the symmetry setting for all existing RSS configurations */
8071 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
8072 return ice_set_rss_cfg_symm(hw, vsi, symm);
8073 }
8074
8075 /**
8076 * ice_bridge_getlink - Get the hardware bridge mode
8077 * @skb: skb buff
8078 * @pid: process ID
8079 * @seq: RTNL message seq
8080 * @dev: the netdev being configured
8081 * @filter_mask: filter mask passed in
8082 * @nlflags: netlink flags passed in
8083 *
8084 * Return the bridge mode (VEB/VEPA)
8085 */
8086 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)8087 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8088 struct net_device *dev, u32 filter_mask, int nlflags)
8089 {
8090 struct ice_pf *pf = ice_netdev_to_pf(dev);
8091 u16 bmode;
8092
8093 bmode = pf->first_sw->bridge_mode;
8094
8095 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
8096 filter_mask, NULL);
8097 }
8098
8099 /**
8100 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
8101 * @vsi: Pointer to VSI structure
8102 * @bmode: Hardware bridge mode (VEB/VEPA)
8103 *
8104 * Returns 0 on success, negative on failure
8105 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)8106 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
8107 {
8108 struct ice_aqc_vsi_props *vsi_props;
8109 struct ice_hw *hw = &vsi->back->hw;
8110 struct ice_vsi_ctx *ctxt;
8111 int ret;
8112
8113 vsi_props = &vsi->info;
8114
8115 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
8116 if (!ctxt)
8117 return -ENOMEM;
8118
8119 ctxt->info = vsi->info;
8120
8121 if (bmode == BRIDGE_MODE_VEB)
8122 /* change from VEPA to VEB mode */
8123 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8124 else
8125 /* change from VEB to VEPA mode */
8126 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8127 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
8128
8129 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
8130 if (ret) {
8131 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
8132 bmode, ret, libie_aq_str(hw->adminq.sq_last_status));
8133 goto out;
8134 }
8135 /* Update sw flags for book keeping */
8136 vsi_props->sw_flags = ctxt->info.sw_flags;
8137
8138 out:
8139 kfree(ctxt);
8140 return ret;
8141 }
8142
8143 /**
8144 * ice_bridge_setlink - Set the hardware bridge mode
8145 * @dev: the netdev being configured
8146 * @nlh: RTNL message
8147 * @flags: bridge setlink flags
8148 * @extack: netlink extended ack
8149 *
8150 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
8151 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
8152 * not already set for all VSIs connected to this switch. And also update the
8153 * unicast switch filter rules for the corresponding switch of the netdev.
8154 */
8155 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)8156 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8157 u16 __always_unused flags,
8158 struct netlink_ext_ack __always_unused *extack)
8159 {
8160 struct ice_pf *pf = ice_netdev_to_pf(dev);
8161 struct nlattr *attr, *br_spec;
8162 struct ice_hw *hw = &pf->hw;
8163 struct ice_sw *pf_sw;
8164 int rem, v, err = 0;
8165
8166 pf_sw = pf->first_sw;
8167 /* find the attribute in the netlink message */
8168 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8169 if (!br_spec)
8170 return -EINVAL;
8171
8172 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
8173 __u16 mode = nla_get_u16(attr);
8174
8175 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8176 return -EINVAL;
8177 /* Continue if bridge mode is not being flipped */
8178 if (mode == pf_sw->bridge_mode)
8179 continue;
8180 /* Iterates through the PF VSI list and update the loopback
8181 * mode of the VSI
8182 */
8183 ice_for_each_vsi(pf, v) {
8184 if (!pf->vsi[v])
8185 continue;
8186 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8187 if (err)
8188 return err;
8189 }
8190
8191 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8192 /* Update the unicast switch filter rules for the corresponding
8193 * switch of the netdev
8194 */
8195 err = ice_update_sw_rule_bridge_mode(hw);
8196 if (err) {
8197 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8198 mode, err,
8199 libie_aq_str(hw->adminq.sq_last_status));
8200 /* revert hw->evb_veb */
8201 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8202 return err;
8203 }
8204
8205 pf_sw->bridge_mode = mode;
8206 }
8207
8208 return 0;
8209 }
8210
8211 /**
8212 * ice_tx_timeout - Respond to a Tx Hang
8213 * @netdev: network interface device structure
8214 * @txqueue: Tx queue
8215 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)8216 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8217 {
8218 struct ice_netdev_priv *np = netdev_priv(netdev);
8219 struct ice_tx_ring *tx_ring = NULL;
8220 struct ice_vsi *vsi = np->vsi;
8221 struct ice_pf *pf = vsi->back;
8222 u32 i;
8223
8224 pf->tx_timeout_count++;
8225
8226 /* Check if PFC is enabled for the TC to which the queue belongs
8227 * to. If yes then Tx timeout is not caused by a hung queue, no
8228 * need to reset and rebuild
8229 */
8230 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8231 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8232 txqueue);
8233 return;
8234 }
8235
8236 /* now that we have an index, find the tx_ring struct */
8237 ice_for_each_txq(vsi, i)
8238 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8239 if (txqueue == vsi->tx_rings[i]->q_index) {
8240 tx_ring = vsi->tx_rings[i];
8241 break;
8242 }
8243
8244 /* Reset recovery level if enough time has elapsed after last timeout.
8245 * Also ensure no new reset action happens before next timeout period.
8246 */
8247 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8248 pf->tx_timeout_recovery_level = 1;
8249 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8250 netdev->watchdog_timeo)))
8251 return;
8252
8253 if (tx_ring) {
8254 struct ice_hw *hw = &pf->hw;
8255 u32 head, intr = 0;
8256
8257 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8258 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8259 /* Read interrupt register */
8260 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8261
8262 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8263 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8264 head, tx_ring->next_to_use, intr);
8265
8266 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr);
8267 }
8268
8269 pf->tx_timeout_last_recovery = jiffies;
8270 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8271 pf->tx_timeout_recovery_level, txqueue);
8272
8273 switch (pf->tx_timeout_recovery_level) {
8274 case 1:
8275 set_bit(ICE_PFR_REQ, pf->state);
8276 break;
8277 case 2:
8278 set_bit(ICE_CORER_REQ, pf->state);
8279 break;
8280 case 3:
8281 set_bit(ICE_GLOBR_REQ, pf->state);
8282 break;
8283 default:
8284 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8285 set_bit(ICE_DOWN, pf->state);
8286 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8287 set_bit(ICE_SERVICE_DIS, pf->state);
8288 break;
8289 }
8290
8291 ice_service_task_schedule(pf);
8292 pf->tx_timeout_recovery_level++;
8293 }
8294
8295 /**
8296 * ice_setup_tc_cls_flower - flower classifier offloads
8297 * @np: net device to configure
8298 * @filter_dev: device on which filter is added
8299 * @cls_flower: offload data
8300 * @ingress: if the rule is added to an ingress block
8301 *
8302 * Return: 0 if the flower was successfully added or deleted,
8303 * negative error code otherwise.
8304 */
8305 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower,bool ingress)8306 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8307 struct net_device *filter_dev,
8308 struct flow_cls_offload *cls_flower,
8309 bool ingress)
8310 {
8311 struct ice_vsi *vsi = np->vsi;
8312
8313 if (cls_flower->common.chain_index)
8314 return -EOPNOTSUPP;
8315
8316 switch (cls_flower->command) {
8317 case FLOW_CLS_REPLACE:
8318 return ice_add_cls_flower(filter_dev, vsi, cls_flower, ingress);
8319 case FLOW_CLS_DESTROY:
8320 return ice_del_cls_flower(vsi, cls_flower);
8321 default:
8322 return -EINVAL;
8323 }
8324 }
8325
8326 /**
8327 * ice_setup_tc_block_cb_ingress - callback handler for ingress TC block
8328 * @type: TC SETUP type
8329 * @type_data: TC flower offload data that contains user input
8330 * @cb_priv: netdev private data
8331 *
8332 * Return: 0 if the setup was successful, negative error code otherwise.
8333 */
8334 static int
ice_setup_tc_block_cb_ingress(enum tc_setup_type type,void * type_data,void * cb_priv)8335 ice_setup_tc_block_cb_ingress(enum tc_setup_type type, void *type_data,
8336 void *cb_priv)
8337 {
8338 struct ice_netdev_priv *np = cb_priv;
8339
8340 switch (type) {
8341 case TC_SETUP_CLSFLOWER:
8342 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8343 type_data, true);
8344 default:
8345 return -EOPNOTSUPP;
8346 }
8347 }
8348
8349 /**
8350 * ice_setup_tc_block_cb_egress - callback handler for egress TC block
8351 * @type: TC SETUP type
8352 * @type_data: TC flower offload data that contains user input
8353 * @cb_priv: netdev private data
8354 *
8355 * Return: 0 if the setup was successful, negative error code otherwise.
8356 */
8357 static int
ice_setup_tc_block_cb_egress(enum tc_setup_type type,void * type_data,void * cb_priv)8358 ice_setup_tc_block_cb_egress(enum tc_setup_type type, void *type_data,
8359 void *cb_priv)
8360 {
8361 struct ice_netdev_priv *np = cb_priv;
8362
8363 switch (type) {
8364 case TC_SETUP_CLSFLOWER:
8365 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8366 type_data, false);
8367 default:
8368 return -EOPNOTSUPP;
8369 }
8370 }
8371
8372 /**
8373 * ice_validate_mqprio_qopt - Validate TCF input parameters
8374 * @vsi: Pointer to VSI
8375 * @mqprio_qopt: input parameters for mqprio queue configuration
8376 *
8377 * This function validates MQPRIO params, such as qcount (power of 2 wherever
8378 * needed), and make sure user doesn't specify qcount and BW rate limit
8379 * for TCs, which are more than "num_tc"
8380 */
8381 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)8382 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8383 struct tc_mqprio_qopt_offload *mqprio_qopt)
8384 {
8385 int non_power_of_2_qcount = 0;
8386 struct ice_pf *pf = vsi->back;
8387 int max_rss_q_cnt = 0;
8388 u64 sum_min_rate = 0;
8389 struct device *dev;
8390 int i, speed;
8391 u8 num_tc;
8392
8393 if (vsi->type != ICE_VSI_PF)
8394 return -EINVAL;
8395
8396 if (mqprio_qopt->qopt.offset[0] != 0 ||
8397 mqprio_qopt->qopt.num_tc < 1 ||
8398 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8399 return -EINVAL;
8400
8401 dev = ice_pf_to_dev(pf);
8402 vsi->ch_rss_size = 0;
8403 num_tc = mqprio_qopt->qopt.num_tc;
8404 speed = ice_get_link_speed_kbps(vsi);
8405
8406 for (i = 0; num_tc; i++) {
8407 int qcount = mqprio_qopt->qopt.count[i];
8408 u64 max_rate, min_rate, rem;
8409
8410 if (!qcount)
8411 return -EINVAL;
8412
8413 if (is_power_of_2(qcount)) {
8414 if (non_power_of_2_qcount &&
8415 qcount > non_power_of_2_qcount) {
8416 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8417 qcount, non_power_of_2_qcount);
8418 return -EINVAL;
8419 }
8420 if (qcount > max_rss_q_cnt)
8421 max_rss_q_cnt = qcount;
8422 } else {
8423 if (non_power_of_2_qcount &&
8424 qcount != non_power_of_2_qcount) {
8425 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8426 qcount, non_power_of_2_qcount);
8427 return -EINVAL;
8428 }
8429 if (qcount < max_rss_q_cnt) {
8430 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8431 qcount, max_rss_q_cnt);
8432 return -EINVAL;
8433 }
8434 max_rss_q_cnt = qcount;
8435 non_power_of_2_qcount = qcount;
8436 }
8437
8438 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8439 * converts the bandwidth rate limit into Bytes/s when
8440 * passing it down to the driver. So convert input bandwidth
8441 * from Bytes/s to Kbps
8442 */
8443 max_rate = mqprio_qopt->max_rate[i];
8444 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8445
8446 /* min_rate is minimum guaranteed rate and it can't be zero */
8447 min_rate = mqprio_qopt->min_rate[i];
8448 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8449 sum_min_rate += min_rate;
8450
8451 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8452 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8453 min_rate, ICE_MIN_BW_LIMIT);
8454 return -EINVAL;
8455 }
8456
8457 if (max_rate && max_rate > speed) {
8458 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8459 i, max_rate, speed);
8460 return -EINVAL;
8461 }
8462
8463 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8464 if (rem) {
8465 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8466 i, ICE_MIN_BW_LIMIT);
8467 return -EINVAL;
8468 }
8469
8470 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8471 if (rem) {
8472 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8473 i, ICE_MIN_BW_LIMIT);
8474 return -EINVAL;
8475 }
8476
8477 /* min_rate can't be more than max_rate, except when max_rate
8478 * is zero (implies max_rate sought is max line rate). In such
8479 * a case min_rate can be more than max.
8480 */
8481 if (max_rate && min_rate > max_rate) {
8482 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8483 min_rate, max_rate);
8484 return -EINVAL;
8485 }
8486
8487 if (i >= mqprio_qopt->qopt.num_tc - 1)
8488 break;
8489 if (mqprio_qopt->qopt.offset[i + 1] !=
8490 (mqprio_qopt->qopt.offset[i] + qcount))
8491 return -EINVAL;
8492 }
8493 if (vsi->num_rxq <
8494 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8495 return -EINVAL;
8496 if (vsi->num_txq <
8497 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8498 return -EINVAL;
8499
8500 if (sum_min_rate && sum_min_rate > (u64)speed) {
8501 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8502 sum_min_rate, speed);
8503 return -EINVAL;
8504 }
8505
8506 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8507 vsi->ch_rss_size = max_rss_q_cnt;
8508
8509 return 0;
8510 }
8511
8512 /**
8513 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8514 * @pf: ptr to PF device
8515 * @vsi: ptr to VSI
8516 */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)8517 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8518 {
8519 struct device *dev = ice_pf_to_dev(pf);
8520 bool added = false;
8521 struct ice_hw *hw;
8522 int flow;
8523
8524 if (!(vsi->num_gfltr || vsi->num_bfltr))
8525 return -EINVAL;
8526
8527 hw = &pf->hw;
8528 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8529 struct ice_fd_hw_prof *prof;
8530 int tun, status;
8531 u64 entry_h;
8532
8533 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8534 hw->fdir_prof[flow]->cnt))
8535 continue;
8536
8537 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8538 enum ice_flow_priority prio;
8539
8540 /* add this VSI to FDir profile for this flow */
8541 prio = ICE_FLOW_PRIO_NORMAL;
8542 prof = hw->fdir_prof[flow];
8543 status = ice_flow_add_entry(hw, ICE_BLK_FD,
8544 prof->prof_id[tun],
8545 prof->vsi_h[0], vsi->idx,
8546 prio, prof->fdir_seg[tun],
8547 &entry_h);
8548 if (status) {
8549 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8550 vsi->idx, flow);
8551 continue;
8552 }
8553
8554 prof->entry_h[prof->cnt][tun] = entry_h;
8555 }
8556
8557 /* store VSI for filter replay and delete */
8558 prof->vsi_h[prof->cnt] = vsi->idx;
8559 prof->cnt++;
8560
8561 added = true;
8562 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8563 flow);
8564 }
8565
8566 if (!added)
8567 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8568
8569 return 0;
8570 }
8571
8572 /**
8573 * ice_add_channel - add a channel by adding VSI
8574 * @pf: ptr to PF device
8575 * @sw_id: underlying HW switching element ID
8576 * @ch: ptr to channel structure
8577 *
8578 * Add a channel (VSI) using add_vsi and queue_map
8579 */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)8580 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8581 {
8582 struct device *dev = ice_pf_to_dev(pf);
8583 struct ice_vsi *vsi;
8584
8585 if (ch->type != ICE_VSI_CHNL) {
8586 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8587 return -EINVAL;
8588 }
8589
8590 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8591 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8592 dev_err(dev, "create chnl VSI failure\n");
8593 return -EINVAL;
8594 }
8595
8596 ice_add_vsi_to_fdir(pf, vsi);
8597
8598 ch->sw_id = sw_id;
8599 ch->vsi_num = vsi->vsi_num;
8600 ch->info.mapping_flags = vsi->info.mapping_flags;
8601 ch->ch_vsi = vsi;
8602 /* set the back pointer of channel for newly created VSI */
8603 vsi->ch = ch;
8604
8605 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8606 sizeof(vsi->info.q_mapping));
8607 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8608 sizeof(vsi->info.tc_mapping));
8609
8610 return 0;
8611 }
8612
8613 /**
8614 * ice_chnl_cfg_res
8615 * @vsi: the VSI being setup
8616 * @ch: ptr to channel structure
8617 *
8618 * Configure channel specific resources such as rings, vector.
8619 */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)8620 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8621 {
8622 int i;
8623
8624 for (i = 0; i < ch->num_txq; i++) {
8625 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8626 struct ice_ring_container *rc;
8627 struct ice_tx_ring *tx_ring;
8628 struct ice_rx_ring *rx_ring;
8629
8630 tx_ring = vsi->tx_rings[ch->base_q + i];
8631 rx_ring = vsi->rx_rings[ch->base_q + i];
8632 if (!tx_ring || !rx_ring)
8633 continue;
8634
8635 /* setup ring being channel enabled */
8636 tx_ring->ch = ch;
8637 rx_ring->ch = ch;
8638
8639 /* following code block sets up vector specific attributes */
8640 tx_q_vector = tx_ring->q_vector;
8641 rx_q_vector = rx_ring->q_vector;
8642 if (!tx_q_vector && !rx_q_vector)
8643 continue;
8644
8645 if (tx_q_vector) {
8646 tx_q_vector->ch = ch;
8647 /* setup Tx and Rx ITR setting if DIM is off */
8648 rc = &tx_q_vector->tx;
8649 if (!ITR_IS_DYNAMIC(rc))
8650 ice_write_itr(rc, rc->itr_setting);
8651 }
8652 if (rx_q_vector) {
8653 rx_q_vector->ch = ch;
8654 /* setup Tx and Rx ITR setting if DIM is off */
8655 rc = &rx_q_vector->rx;
8656 if (!ITR_IS_DYNAMIC(rc))
8657 ice_write_itr(rc, rc->itr_setting);
8658 }
8659 }
8660
8661 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8662 * GLINT_ITR register would have written to perform in-context
8663 * update, hence perform flush
8664 */
8665 if (ch->num_txq || ch->num_rxq)
8666 ice_flush(&vsi->back->hw);
8667 }
8668
8669 /**
8670 * ice_cfg_chnl_all_res - configure channel resources
8671 * @vsi: pte to main_vsi
8672 * @ch: ptr to channel structure
8673 *
8674 * This function configures channel specific resources such as flow-director
8675 * counter index, and other resources such as queues, vectors, ITR settings
8676 */
8677 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8678 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8679 {
8680 /* configure channel (aka ADQ) resources such as queues, vectors,
8681 * ITR settings for channel specific vectors and anything else
8682 */
8683 ice_chnl_cfg_res(vsi, ch);
8684 }
8685
8686 /**
8687 * ice_setup_hw_channel - setup new channel
8688 * @pf: ptr to PF device
8689 * @vsi: the VSI being setup
8690 * @ch: ptr to channel structure
8691 * @sw_id: underlying HW switching element ID
8692 * @type: type of channel to be created (VMDq2/VF)
8693 *
8694 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8695 * and configures Tx rings accordingly
8696 */
8697 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8698 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8699 struct ice_channel *ch, u16 sw_id, u8 type)
8700 {
8701 struct device *dev = ice_pf_to_dev(pf);
8702 int ret;
8703
8704 ch->base_q = vsi->next_base_q;
8705 ch->type = type;
8706
8707 ret = ice_add_channel(pf, sw_id, ch);
8708 if (ret) {
8709 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8710 return ret;
8711 }
8712
8713 /* configure/setup ADQ specific resources */
8714 ice_cfg_chnl_all_res(vsi, ch);
8715
8716 /* make sure to update the next_base_q so that subsequent channel's
8717 * (aka ADQ) VSI queue map is correct
8718 */
8719 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8720 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8721 ch->num_rxq);
8722
8723 return 0;
8724 }
8725
8726 /**
8727 * ice_setup_channel - setup new channel using uplink element
8728 * @pf: ptr to PF device
8729 * @vsi: the VSI being setup
8730 * @ch: ptr to channel structure
8731 *
8732 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8733 * and uplink switching element
8734 */
8735 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8736 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8737 struct ice_channel *ch)
8738 {
8739 struct device *dev = ice_pf_to_dev(pf);
8740 u16 sw_id;
8741 int ret;
8742
8743 if (vsi->type != ICE_VSI_PF) {
8744 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8745 return false;
8746 }
8747
8748 sw_id = pf->first_sw->sw_id;
8749
8750 /* create channel (VSI) */
8751 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8752 if (ret) {
8753 dev_err(dev, "failed to setup hw_channel\n");
8754 return false;
8755 }
8756 dev_dbg(dev, "successfully created channel()\n");
8757
8758 return ch->ch_vsi ? true : false;
8759 }
8760
8761 /**
8762 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8763 * @vsi: VSI to be configured
8764 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8765 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8766 */
8767 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8768 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8769 {
8770 int err;
8771
8772 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8773 if (err)
8774 return err;
8775
8776 return ice_set_max_bw_limit(vsi, max_tx_rate);
8777 }
8778
8779 /**
8780 * ice_create_q_channel - function to create channel
8781 * @vsi: VSI to be configured
8782 * @ch: ptr to channel (it contains channel specific params)
8783 *
8784 * This function creates channel (VSI) using num_queues specified by user,
8785 * reconfigs RSS if needed.
8786 */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8787 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8788 {
8789 struct ice_pf *pf = vsi->back;
8790 struct device *dev;
8791
8792 if (!ch)
8793 return -EINVAL;
8794
8795 dev = ice_pf_to_dev(pf);
8796 if (!ch->num_txq || !ch->num_rxq) {
8797 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8798 return -EINVAL;
8799 }
8800
8801 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8802 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8803 vsi->cnt_q_avail, ch->num_txq);
8804 return -EINVAL;
8805 }
8806
8807 if (!ice_setup_channel(pf, vsi, ch)) {
8808 dev_info(dev, "Failed to setup channel\n");
8809 return -EINVAL;
8810 }
8811 /* configure BW rate limit */
8812 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8813 int ret;
8814
8815 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8816 ch->min_tx_rate);
8817 if (ret)
8818 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8819 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8820 else
8821 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8822 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8823 }
8824
8825 vsi->cnt_q_avail -= ch->num_txq;
8826
8827 return 0;
8828 }
8829
8830 /**
8831 * ice_rem_all_chnl_fltrs - removes all channel filters
8832 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8833 *
8834 * Remove all advanced switch filters only if they are channel specific
8835 * tc-flower based filter
8836 */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8837 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8838 {
8839 struct ice_tc_flower_fltr *fltr;
8840 struct hlist_node *node;
8841
8842 /* to remove all channel filters, iterate an ordered list of filters */
8843 hlist_for_each_entry_safe(fltr, node,
8844 &pf->tc_flower_fltr_list,
8845 tc_flower_node) {
8846 struct ice_rule_query_data rule;
8847 int status;
8848
8849 /* for now process only channel specific filters */
8850 if (!ice_is_chnl_fltr(fltr))
8851 continue;
8852
8853 rule.rid = fltr->rid;
8854 rule.rule_id = fltr->rule_id;
8855 rule.vsi_handle = fltr->dest_vsi_handle;
8856 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8857 if (status) {
8858 if (status == -ENOENT)
8859 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8860 rule.rule_id);
8861 else
8862 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8863 status);
8864 } else if (fltr->dest_vsi) {
8865 /* update advanced switch filter count */
8866 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8867 u32 flags = fltr->flags;
8868
8869 fltr->dest_vsi->num_chnl_fltr--;
8870 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8871 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8872 pf->num_dmac_chnl_fltrs--;
8873 }
8874 }
8875
8876 hlist_del(&fltr->tc_flower_node);
8877 kfree(fltr);
8878 }
8879 }
8880
8881 /**
8882 * ice_remove_q_channels - Remove queue channels for the TCs
8883 * @vsi: VSI to be configured
8884 * @rem_fltr: delete advanced switch filter or not
8885 *
8886 * Remove queue channels for the TCs
8887 */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8888 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8889 {
8890 struct ice_channel *ch, *ch_tmp;
8891 struct ice_pf *pf = vsi->back;
8892 int i;
8893
8894 /* remove all tc-flower based filter if they are channel filters only */
8895 if (rem_fltr)
8896 ice_rem_all_chnl_fltrs(pf);
8897
8898 /* remove ntuple filters since queue configuration is being changed */
8899 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8900 struct ice_hw *hw = &pf->hw;
8901
8902 mutex_lock(&hw->fdir_fltr_lock);
8903 ice_fdir_del_all_fltrs(vsi);
8904 mutex_unlock(&hw->fdir_fltr_lock);
8905 }
8906
8907 /* perform cleanup for channels if they exist */
8908 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8909 struct ice_vsi *ch_vsi;
8910
8911 list_del(&ch->list);
8912 ch_vsi = ch->ch_vsi;
8913 if (!ch_vsi) {
8914 kfree(ch);
8915 continue;
8916 }
8917
8918 /* Reset queue contexts */
8919 for (i = 0; i < ch->num_rxq; i++) {
8920 struct ice_tx_ring *tx_ring;
8921 struct ice_rx_ring *rx_ring;
8922
8923 tx_ring = vsi->tx_rings[ch->base_q + i];
8924 rx_ring = vsi->rx_rings[ch->base_q + i];
8925 if (tx_ring) {
8926 tx_ring->ch = NULL;
8927 if (tx_ring->q_vector)
8928 tx_ring->q_vector->ch = NULL;
8929 }
8930 if (rx_ring) {
8931 rx_ring->ch = NULL;
8932 if (rx_ring->q_vector)
8933 rx_ring->q_vector->ch = NULL;
8934 }
8935 }
8936
8937 /* Release FD resources for the channel VSI */
8938 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8939
8940 /* clear the VSI from scheduler tree */
8941 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8942
8943 /* Delete VSI from FW, PF and HW VSI arrays */
8944 ice_vsi_delete(ch->ch_vsi);
8945
8946 /* free the channel */
8947 kfree(ch);
8948 }
8949
8950 /* clear the channel VSI map which is stored in main VSI */
8951 ice_for_each_chnl_tc(i)
8952 vsi->tc_map_vsi[i] = NULL;
8953
8954 /* reset main VSI's all TC information */
8955 vsi->all_enatc = 0;
8956 vsi->all_numtc = 0;
8957 }
8958
8959 /**
8960 * ice_rebuild_channels - rebuild channel
8961 * @pf: ptr to PF
8962 *
8963 * Recreate channel VSIs and replay filters
8964 */
ice_rebuild_channels(struct ice_pf * pf)8965 static int ice_rebuild_channels(struct ice_pf *pf)
8966 {
8967 struct device *dev = ice_pf_to_dev(pf);
8968 struct ice_vsi *main_vsi;
8969 bool rem_adv_fltr = true;
8970 struct ice_channel *ch;
8971 struct ice_vsi *vsi;
8972 int tc_idx = 1;
8973 int i, err;
8974
8975 main_vsi = ice_get_main_vsi(pf);
8976 if (!main_vsi)
8977 return 0;
8978
8979 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8980 main_vsi->old_numtc == 1)
8981 return 0; /* nothing to be done */
8982
8983 /* reconfigure main VSI based on old value of TC and cached values
8984 * for MQPRIO opts
8985 */
8986 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8987 if (err) {
8988 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8989 main_vsi->old_ena_tc, main_vsi->vsi_num);
8990 return err;
8991 }
8992
8993 /* rebuild ADQ VSIs */
8994 ice_for_each_vsi(pf, i) {
8995 enum ice_vsi_type type;
8996
8997 vsi = pf->vsi[i];
8998 if (!vsi || vsi->type != ICE_VSI_CHNL)
8999 continue;
9000
9001 type = vsi->type;
9002
9003 /* rebuild ADQ VSI */
9004 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
9005 if (err) {
9006 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
9007 ice_vsi_type_str(type), vsi->idx, err);
9008 goto cleanup;
9009 }
9010
9011 /* Re-map HW VSI number, using VSI handle that has been
9012 * previously validated in ice_replay_vsi() call above
9013 */
9014 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
9015
9016 /* replay filters for the VSI */
9017 err = ice_replay_vsi(&pf->hw, vsi->idx);
9018 if (err) {
9019 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
9020 ice_vsi_type_str(type), err, vsi->idx);
9021 rem_adv_fltr = false;
9022 goto cleanup;
9023 }
9024 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
9025 ice_vsi_type_str(type), vsi->idx);
9026
9027 /* store ADQ VSI at correct TC index in main VSI's
9028 * map of TC to VSI
9029 */
9030 main_vsi->tc_map_vsi[tc_idx++] = vsi;
9031 }
9032
9033 /* ADQ VSI(s) has been rebuilt successfully, so setup
9034 * channel for main VSI's Tx and Rx rings
9035 */
9036 list_for_each_entry(ch, &main_vsi->ch_list, list) {
9037 struct ice_vsi *ch_vsi;
9038
9039 ch_vsi = ch->ch_vsi;
9040 if (!ch_vsi)
9041 continue;
9042
9043 /* reconfig channel resources */
9044 ice_cfg_chnl_all_res(main_vsi, ch);
9045
9046 /* replay BW rate limit if it is non-zero */
9047 if (!ch->max_tx_rate && !ch->min_tx_rate)
9048 continue;
9049
9050 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
9051 ch->min_tx_rate);
9052 if (err)
9053 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9054 err, ch->max_tx_rate, ch->min_tx_rate,
9055 ch_vsi->vsi_num);
9056 else
9057 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9058 ch->max_tx_rate, ch->min_tx_rate,
9059 ch_vsi->vsi_num);
9060 }
9061
9062 /* reconfig RSS for main VSI */
9063 if (main_vsi->ch_rss_size)
9064 ice_vsi_cfg_rss_lut_key(main_vsi);
9065
9066 return 0;
9067
9068 cleanup:
9069 ice_remove_q_channels(main_vsi, rem_adv_fltr);
9070 return err;
9071 }
9072
9073 /**
9074 * ice_create_q_channels - Add queue channel for the given TCs
9075 * @vsi: VSI to be configured
9076 *
9077 * Configures queue channel mapping to the given TCs
9078 */
ice_create_q_channels(struct ice_vsi * vsi)9079 static int ice_create_q_channels(struct ice_vsi *vsi)
9080 {
9081 struct ice_pf *pf = vsi->back;
9082 struct ice_channel *ch;
9083 int ret = 0, i;
9084
9085 ice_for_each_chnl_tc(i) {
9086 if (!(vsi->all_enatc & BIT(i)))
9087 continue;
9088
9089 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
9090 if (!ch) {
9091 ret = -ENOMEM;
9092 goto err_free;
9093 }
9094 INIT_LIST_HEAD(&ch->list);
9095 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
9096 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
9097 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
9098 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
9099 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
9100
9101 /* convert to Kbits/s */
9102 if (ch->max_tx_rate)
9103 ch->max_tx_rate = div_u64(ch->max_tx_rate,
9104 ICE_BW_KBPS_DIVISOR);
9105 if (ch->min_tx_rate)
9106 ch->min_tx_rate = div_u64(ch->min_tx_rate,
9107 ICE_BW_KBPS_DIVISOR);
9108
9109 ret = ice_create_q_channel(vsi, ch);
9110 if (ret) {
9111 dev_err(ice_pf_to_dev(pf),
9112 "failed creating channel TC:%d\n", i);
9113 kfree(ch);
9114 goto err_free;
9115 }
9116 list_add_tail(&ch->list, &vsi->ch_list);
9117 vsi->tc_map_vsi[i] = ch->ch_vsi;
9118 dev_dbg(ice_pf_to_dev(pf),
9119 "successfully created channel: VSI %p\n", ch->ch_vsi);
9120 }
9121 return 0;
9122
9123 err_free:
9124 ice_remove_q_channels(vsi, false);
9125
9126 return ret;
9127 }
9128
9129 /**
9130 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
9131 * @netdev: net device to configure
9132 * @type_data: TC offload data
9133 */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)9134 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
9135 {
9136 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
9137 struct ice_netdev_priv *np = netdev_priv(netdev);
9138 struct ice_vsi *vsi = np->vsi;
9139 struct ice_pf *pf = vsi->back;
9140 u16 mode, ena_tc_qdisc = 0;
9141 int cur_txq, cur_rxq;
9142 u8 hw = 0, num_tcf;
9143 struct device *dev;
9144 int ret, i;
9145
9146 dev = ice_pf_to_dev(pf);
9147 num_tcf = mqprio_qopt->qopt.num_tc;
9148 hw = mqprio_qopt->qopt.hw;
9149 mode = mqprio_qopt->mode;
9150 if (!hw) {
9151 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9152 vsi->ch_rss_size = 0;
9153 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9154 goto config_tcf;
9155 }
9156
9157 /* Generate queue region map for number of TCF requested */
9158 for (i = 0; i < num_tcf; i++)
9159 ena_tc_qdisc |= BIT(i);
9160
9161 switch (mode) {
9162 case TC_MQPRIO_MODE_CHANNEL:
9163
9164 if (pf->hw.port_info->is_custom_tx_enabled) {
9165 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
9166 return -EBUSY;
9167 }
9168 ice_tear_down_devlink_rate_tree(pf);
9169
9170 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
9171 if (ret) {
9172 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
9173 ret);
9174 return ret;
9175 }
9176 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9177 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9178 /* don't assume state of hw_tc_offload during driver load
9179 * and set the flag for TC flower filter if hw_tc_offload
9180 * already ON
9181 */
9182 if (vsi->netdev->features & NETIF_F_HW_TC)
9183 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9184 break;
9185 default:
9186 return -EINVAL;
9187 }
9188
9189 config_tcf:
9190
9191 /* Requesting same TCF configuration as already enabled */
9192 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9193 mode != TC_MQPRIO_MODE_CHANNEL)
9194 return 0;
9195
9196 /* Pause VSI queues */
9197 ice_dis_vsi(vsi, true);
9198
9199 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9200 ice_remove_q_channels(vsi, true);
9201
9202 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9203 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9204 num_online_cpus());
9205 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9206 num_online_cpus());
9207 } else {
9208 /* logic to rebuild VSI, same like ethtool -L */
9209 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9210
9211 for (i = 0; i < num_tcf; i++) {
9212 if (!(ena_tc_qdisc & BIT(i)))
9213 continue;
9214
9215 offset = vsi->mqprio_qopt.qopt.offset[i];
9216 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9217 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9218 }
9219 vsi->req_txq = offset + qcount_tx;
9220 vsi->req_rxq = offset + qcount_rx;
9221
9222 /* store away original rss_size info, so that it gets reused
9223 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9224 * determine, what should be the rss_sizefor main VSI
9225 */
9226 vsi->orig_rss_size = vsi->rss_size;
9227 }
9228
9229 /* save current values of Tx and Rx queues before calling VSI rebuild
9230 * for fallback option
9231 */
9232 cur_txq = vsi->num_txq;
9233 cur_rxq = vsi->num_rxq;
9234
9235 /* proceed with rebuild main VSI using correct number of queues */
9236 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9237 if (ret) {
9238 /* fallback to current number of queues */
9239 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9240 vsi->req_txq = cur_txq;
9241 vsi->req_rxq = cur_rxq;
9242 clear_bit(ICE_RESET_FAILED, pf->state);
9243 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9244 dev_err(dev, "Rebuild of main VSI failed again\n");
9245 return ret;
9246 }
9247 }
9248
9249 vsi->all_numtc = num_tcf;
9250 vsi->all_enatc = ena_tc_qdisc;
9251 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9252 if (ret) {
9253 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9254 vsi->vsi_num);
9255 goto exit;
9256 }
9257
9258 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9259 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9260 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9261
9262 /* set TC0 rate limit if specified */
9263 if (max_tx_rate || min_tx_rate) {
9264 /* convert to Kbits/s */
9265 if (max_tx_rate)
9266 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9267 if (min_tx_rate)
9268 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9269
9270 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9271 if (!ret) {
9272 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9273 max_tx_rate, min_tx_rate, vsi->vsi_num);
9274 } else {
9275 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9276 max_tx_rate, min_tx_rate, vsi->vsi_num);
9277 goto exit;
9278 }
9279 }
9280 ret = ice_create_q_channels(vsi);
9281 if (ret) {
9282 netdev_err(netdev, "failed configuring queue channels\n");
9283 goto exit;
9284 } else {
9285 netdev_dbg(netdev, "successfully configured channels\n");
9286 }
9287 }
9288
9289 if (vsi->ch_rss_size)
9290 ice_vsi_cfg_rss_lut_key(vsi);
9291
9292 exit:
9293 /* if error, reset the all_numtc and all_enatc */
9294 if (ret) {
9295 vsi->all_numtc = 0;
9296 vsi->all_enatc = 0;
9297 }
9298 /* resume VSI */
9299 ice_ena_vsi(vsi, true);
9300
9301 return ret;
9302 }
9303
9304 /**
9305 * ice_cfg_txtime - configure Tx Time for the Tx ring
9306 * @tx_ring: pointer to the Tx ring structure
9307 *
9308 * Return: 0 on success, negative value on failure.
9309 */
ice_cfg_txtime(struct ice_tx_ring * tx_ring)9310 static int ice_cfg_txtime(struct ice_tx_ring *tx_ring)
9311 {
9312 int err, timeout = 50;
9313 struct ice_vsi *vsi;
9314 struct device *dev;
9315 struct ice_pf *pf;
9316 u32 queue;
9317
9318 if (!tx_ring)
9319 return -EINVAL;
9320
9321 vsi = tx_ring->vsi;
9322 pf = vsi->back;
9323 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
9324 timeout--;
9325 if (!timeout)
9326 return -EBUSY;
9327 usleep_range(1000, 2000);
9328 }
9329
9330 queue = tx_ring->q_index;
9331 dev = ice_pf_to_dev(pf);
9332
9333 /* Ignore return value, and always attempt to enable queue. */
9334 ice_qp_dis(vsi, queue);
9335
9336 err = ice_qp_ena(vsi, queue);
9337 if (err)
9338 dev_err(dev, "Failed to enable Tx queue %d for TxTime configuration\n",
9339 queue);
9340
9341 clear_bit(ICE_CFG_BUSY, pf->state);
9342 return err;
9343 }
9344
9345 /**
9346 * ice_offload_txtime - set earliest TxTime first
9347 * @netdev: network interface device structure
9348 * @qopt_off: etf queue option offload from the skb to set
9349 *
9350 * Return: 0 on success, negative value on failure.
9351 */
ice_offload_txtime(struct net_device * netdev,void * qopt_off)9352 static int ice_offload_txtime(struct net_device *netdev,
9353 void *qopt_off)
9354 {
9355 struct ice_netdev_priv *np = netdev_priv(netdev);
9356 struct ice_pf *pf = np->vsi->back;
9357 struct tc_etf_qopt_offload *qopt;
9358 struct ice_vsi *vsi = np->vsi;
9359 struct ice_tx_ring *tx_ring;
9360 int ret = 0;
9361
9362 if (!ice_is_feature_supported(pf, ICE_F_TXTIME))
9363 return -EOPNOTSUPP;
9364
9365 qopt = qopt_off;
9366 if (!qopt_off || qopt->queue < 0 || qopt->queue >= vsi->num_txq)
9367 return -EINVAL;
9368
9369 if (qopt->enable)
9370 set_bit(qopt->queue, pf->txtime_txqs);
9371 else
9372 clear_bit(qopt->queue, pf->txtime_txqs);
9373
9374 if (netif_running(vsi->netdev)) {
9375 tx_ring = vsi->tx_rings[qopt->queue];
9376 ret = ice_cfg_txtime(tx_ring);
9377 if (ret)
9378 goto err;
9379 }
9380
9381 netdev_info(netdev, "%s TxTime on queue: %i\n",
9382 str_enable_disable(qopt->enable), qopt->queue);
9383 return 0;
9384
9385 err:
9386 netdev_err(netdev, "Failed to %s TxTime on queue: %i\n",
9387 str_enable_disable(qopt->enable), qopt->queue);
9388
9389 if (qopt->enable)
9390 clear_bit(qopt->queue, pf->txtime_txqs);
9391 return ret;
9392 }
9393
9394 static LIST_HEAD(ice_block_cb_list);
9395
9396 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)9397 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9398 void *type_data)
9399 {
9400 struct ice_netdev_priv *np = netdev_priv(netdev);
9401 enum flow_block_binder_type binder_type;
9402 struct iidc_rdma_core_dev_info *cdev;
9403 struct ice_pf *pf = np->vsi->back;
9404 flow_setup_cb_t *flower_handler;
9405 bool locked = false;
9406 int err;
9407
9408 switch (type) {
9409 case TC_SETUP_BLOCK:
9410 binder_type =
9411 ((struct flow_block_offload *)type_data)->binder_type;
9412
9413 switch (binder_type) {
9414 case FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS:
9415 flower_handler = ice_setup_tc_block_cb_ingress;
9416 break;
9417 case FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS:
9418 flower_handler = ice_setup_tc_block_cb_egress;
9419 break;
9420 default:
9421 return -EOPNOTSUPP;
9422 }
9423
9424 return flow_block_cb_setup_simple(type_data,
9425 &ice_block_cb_list,
9426 flower_handler,
9427 np, np, false);
9428 case TC_SETUP_QDISC_MQPRIO:
9429 if (ice_is_eswitch_mode_switchdev(pf)) {
9430 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9431 return -EOPNOTSUPP;
9432 }
9433
9434 cdev = pf->cdev_info;
9435 if (cdev && cdev->adev) {
9436 mutex_lock(&pf->adev_mutex);
9437 device_lock(&cdev->adev->dev);
9438 locked = true;
9439 if (cdev->adev->dev.driver) {
9440 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9441 err = -EBUSY;
9442 goto adev_unlock;
9443 }
9444 }
9445
9446 /* setup traffic classifier for receive side */
9447 mutex_lock(&pf->tc_mutex);
9448 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9449 mutex_unlock(&pf->tc_mutex);
9450
9451 adev_unlock:
9452 if (locked) {
9453 device_unlock(&cdev->adev->dev);
9454 mutex_unlock(&pf->adev_mutex);
9455 }
9456 return err;
9457 case TC_SETUP_QDISC_ETF:
9458 return ice_offload_txtime(netdev, type_data);
9459 default:
9460 return -EOPNOTSUPP;
9461 }
9462 return -EOPNOTSUPP;
9463 }
9464
9465 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)9466 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9467 struct net_device *netdev)
9468 {
9469 struct ice_indr_block_priv *cb_priv;
9470
9471 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9472 if (!cb_priv->netdev)
9473 return NULL;
9474 if (cb_priv->netdev == netdev)
9475 return cb_priv;
9476 }
9477 return NULL;
9478 }
9479
9480 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)9481 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9482 void *indr_priv)
9483 {
9484 struct ice_indr_block_priv *priv = indr_priv;
9485 struct ice_netdev_priv *np = priv->np;
9486
9487 switch (type) {
9488 case TC_SETUP_CLSFLOWER:
9489 return ice_setup_tc_cls_flower(np, priv->netdev,
9490 (struct flow_cls_offload *)
9491 type_data, false);
9492 default:
9493 return -EOPNOTSUPP;
9494 }
9495 }
9496
9497 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9498 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9499 struct ice_netdev_priv *np,
9500 struct flow_block_offload *f, void *data,
9501 void (*cleanup)(struct flow_block_cb *block_cb))
9502 {
9503 struct ice_indr_block_priv *indr_priv;
9504 struct flow_block_cb *block_cb;
9505
9506 if (!ice_is_tunnel_supported(netdev) &&
9507 !(is_vlan_dev(netdev) &&
9508 vlan_dev_real_dev(netdev) == np->vsi->netdev))
9509 return -EOPNOTSUPP;
9510
9511 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9512 return -EOPNOTSUPP;
9513
9514 switch (f->command) {
9515 case FLOW_BLOCK_BIND:
9516 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9517 if (indr_priv)
9518 return -EEXIST;
9519
9520 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9521 if (!indr_priv)
9522 return -ENOMEM;
9523
9524 indr_priv->netdev = netdev;
9525 indr_priv->np = np;
9526 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9527
9528 block_cb =
9529 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9530 indr_priv, indr_priv,
9531 ice_rep_indr_tc_block_unbind,
9532 f, netdev, sch, data, np,
9533 cleanup);
9534
9535 if (IS_ERR(block_cb)) {
9536 list_del(&indr_priv->list);
9537 kfree(indr_priv);
9538 return PTR_ERR(block_cb);
9539 }
9540 flow_block_cb_add(block_cb, f);
9541 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9542 break;
9543 case FLOW_BLOCK_UNBIND:
9544 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9545 if (!indr_priv)
9546 return -ENOENT;
9547
9548 block_cb = flow_block_cb_lookup(f->block,
9549 ice_indr_setup_block_cb,
9550 indr_priv);
9551 if (!block_cb)
9552 return -ENOENT;
9553
9554 flow_indr_block_cb_remove(block_cb, f);
9555
9556 list_del(&block_cb->driver_list);
9557 break;
9558 default:
9559 return -EOPNOTSUPP;
9560 }
9561 return 0;
9562 }
9563
9564 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9565 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9566 void *cb_priv, enum tc_setup_type type, void *type_data,
9567 void *data,
9568 void (*cleanup)(struct flow_block_cb *block_cb))
9569 {
9570 switch (type) {
9571 case TC_SETUP_BLOCK:
9572 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9573 data, cleanup);
9574
9575 default:
9576 return -EOPNOTSUPP;
9577 }
9578 }
9579
9580 /**
9581 * ice_open - Called when a network interface becomes active
9582 * @netdev: network interface device structure
9583 *
9584 * The open entry point is called when a network interface is made
9585 * active by the system (IFF_UP). At this point all resources needed
9586 * for transmit and receive operations are allocated, the interrupt
9587 * handler is registered with the OS, the netdev watchdog is enabled,
9588 * and the stack is notified that the interface is ready.
9589 *
9590 * Returns 0 on success, negative value on failure
9591 */
ice_open(struct net_device * netdev)9592 int ice_open(struct net_device *netdev)
9593 {
9594 struct ice_pf *pf = ice_netdev_to_pf(netdev);
9595
9596 if (ice_is_reset_in_progress(pf->state)) {
9597 netdev_err(netdev, "can't open net device while reset is in progress");
9598 return -EBUSY;
9599 }
9600
9601 return ice_open_internal(netdev);
9602 }
9603
9604 /**
9605 * ice_open_internal - Called when a network interface becomes active
9606 * @netdev: network interface device structure
9607 *
9608 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9609 * handling routine
9610 *
9611 * Returns 0 on success, negative value on failure
9612 */
ice_open_internal(struct net_device * netdev)9613 int ice_open_internal(struct net_device *netdev)
9614 {
9615 struct ice_netdev_priv *np = netdev_priv(netdev);
9616 struct ice_vsi *vsi = np->vsi;
9617 struct ice_pf *pf = vsi->back;
9618 struct ice_port_info *pi;
9619 int err;
9620
9621 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9622 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9623 return -EIO;
9624 }
9625
9626 netif_carrier_off(netdev);
9627
9628 pi = vsi->port_info;
9629 err = ice_update_link_info(pi);
9630 if (err) {
9631 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9632 return err;
9633 }
9634
9635 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9636
9637 /* Set PHY if there is media, otherwise, turn off PHY */
9638 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9639 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9640 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9641 err = ice_init_phy_user_cfg(pi);
9642 if (err) {
9643 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9644 err);
9645 return err;
9646 }
9647 }
9648
9649 err = ice_configure_phy(vsi);
9650 if (err) {
9651 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9652 err);
9653 return err;
9654 }
9655 } else {
9656 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9657 ice_set_link(vsi, false);
9658 }
9659
9660 err = ice_vsi_open(vsi);
9661 if (err)
9662 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9663 vsi->vsi_num, vsi->vsw->sw_id);
9664
9665 return err;
9666 }
9667
9668 /**
9669 * ice_stop - Disables a network interface
9670 * @netdev: network interface device structure
9671 *
9672 * The stop entry point is called when an interface is de-activated by the OS,
9673 * and the netdevice enters the DOWN state. The hardware is still under the
9674 * driver's control, but the netdev interface is disabled.
9675 *
9676 * Returns success only - not allowed to fail
9677 */
ice_stop(struct net_device * netdev)9678 int ice_stop(struct net_device *netdev)
9679 {
9680 struct ice_netdev_priv *np = netdev_priv(netdev);
9681 struct ice_vsi *vsi = np->vsi;
9682 struct ice_pf *pf = vsi->back;
9683
9684 if (ice_is_reset_in_progress(pf->state)) {
9685 netdev_err(netdev, "can't stop net device while reset is in progress");
9686 return -EBUSY;
9687 }
9688
9689 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9690 int link_err = ice_force_phys_link_state(vsi, false);
9691
9692 if (link_err) {
9693 if (link_err == -ENOMEDIUM)
9694 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9695 vsi->vsi_num);
9696 else
9697 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9698 vsi->vsi_num, link_err);
9699
9700 ice_vsi_close(vsi);
9701 return -EIO;
9702 }
9703 }
9704
9705 ice_vsi_close(vsi);
9706
9707 return 0;
9708 }
9709
9710 /**
9711 * ice_features_check - Validate encapsulated packet conforms to limits
9712 * @skb: skb buffer
9713 * @netdev: This port's netdev
9714 * @features: Offload features that the stack believes apply
9715 */
9716 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)9717 ice_features_check(struct sk_buff *skb,
9718 struct net_device __always_unused *netdev,
9719 netdev_features_t features)
9720 {
9721 bool gso = skb_is_gso(skb);
9722 size_t len;
9723
9724 /* No point in doing any of this if neither checksum nor GSO are
9725 * being requested for this frame. We can rule out both by just
9726 * checking for CHECKSUM_PARTIAL
9727 */
9728 if (skb->ip_summed != CHECKSUM_PARTIAL)
9729 return features;
9730
9731 /* We cannot support GSO if the MSS is going to be less than
9732 * 64 bytes. If it is then we need to drop support for GSO.
9733 */
9734 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9735 features &= ~NETIF_F_GSO_MASK;
9736
9737 len = skb_network_offset(skb);
9738 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9739 goto out_rm_features;
9740
9741 len = skb_network_header_len(skb);
9742 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9743 goto out_rm_features;
9744
9745 if (skb->encapsulation) {
9746 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9747 * the case of IPIP frames, the transport header pointer is
9748 * after the inner header! So check to make sure that this
9749 * is a GRE or UDP_TUNNEL frame before doing that math.
9750 */
9751 if (gso && (skb_shinfo(skb)->gso_type &
9752 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9753 len = skb_inner_network_header(skb) -
9754 skb_transport_header(skb);
9755 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9756 goto out_rm_features;
9757 }
9758
9759 len = skb_inner_network_header_len(skb);
9760 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9761 goto out_rm_features;
9762 }
9763
9764 return features;
9765 out_rm_features:
9766 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9767 }
9768
9769 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9770 .ndo_open = ice_open,
9771 .ndo_stop = ice_stop,
9772 .ndo_start_xmit = ice_start_xmit,
9773 .ndo_set_mac_address = ice_set_mac_address,
9774 .ndo_validate_addr = eth_validate_addr,
9775 .ndo_change_mtu = ice_change_mtu,
9776 .ndo_get_stats64 = ice_get_stats64,
9777 .ndo_tx_timeout = ice_tx_timeout,
9778 .ndo_bpf = ice_xdp_safe_mode,
9779 };
9780
9781 static const struct net_device_ops ice_netdev_ops = {
9782 .ndo_open = ice_open,
9783 .ndo_stop = ice_stop,
9784 .ndo_start_xmit = ice_start_xmit,
9785 .ndo_select_queue = ice_select_queue,
9786 .ndo_features_check = ice_features_check,
9787 .ndo_fix_features = ice_fix_features,
9788 .ndo_set_rx_mode = ice_set_rx_mode,
9789 .ndo_set_mac_address = ice_set_mac_address,
9790 .ndo_validate_addr = eth_validate_addr,
9791 .ndo_change_mtu = ice_change_mtu,
9792 .ndo_get_stats64 = ice_get_stats64,
9793 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9794 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9795 .ndo_set_vf_mac = ice_set_vf_mac,
9796 .ndo_get_vf_config = ice_get_vf_cfg,
9797 .ndo_set_vf_trust = ice_set_vf_trust,
9798 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9799 .ndo_set_vf_link_state = ice_set_vf_link_state,
9800 .ndo_get_vf_stats = ice_get_vf_stats,
9801 .ndo_set_vf_rate = ice_set_vf_bw,
9802 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9803 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9804 .ndo_setup_tc = ice_setup_tc,
9805 .ndo_set_features = ice_set_features,
9806 .ndo_bridge_getlink = ice_bridge_getlink,
9807 .ndo_bridge_setlink = ice_bridge_setlink,
9808 .ndo_fdb_add = ice_fdb_add,
9809 .ndo_fdb_del = ice_fdb_del,
9810 #ifdef CONFIG_RFS_ACCEL
9811 .ndo_rx_flow_steer = ice_rx_flow_steer,
9812 #endif
9813 .ndo_tx_timeout = ice_tx_timeout,
9814 .ndo_bpf = ice_xdp,
9815 .ndo_xdp_xmit = ice_xdp_xmit,
9816 .ndo_xsk_wakeup = ice_xsk_wakeup,
9817 .ndo_hwtstamp_get = ice_ptp_hwtstamp_get,
9818 .ndo_hwtstamp_set = ice_ptp_hwtstamp_set,
9819 };
9820