1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 #include <linux/packing.h>
10
11 #define ICE_PF_RESET_WAIT_COUNT 300
12 #define ICE_MAX_NETLIST_SIZE 10
13
14 static const char * const ice_link_mode_str_low[] = {
15 [0] = "100BASE_TX",
16 [1] = "100M_SGMII",
17 [2] = "1000BASE_T",
18 [3] = "1000BASE_SX",
19 [4] = "1000BASE_LX",
20 [5] = "1000BASE_KX",
21 [6] = "1G_SGMII",
22 [7] = "2500BASE_T",
23 [8] = "2500BASE_X",
24 [9] = "2500BASE_KX",
25 [10] = "5GBASE_T",
26 [11] = "5GBASE_KR",
27 [12] = "10GBASE_T",
28 [13] = "10G_SFI_DA",
29 [14] = "10GBASE_SR",
30 [15] = "10GBASE_LR",
31 [16] = "10GBASE_KR_CR1",
32 [17] = "10G_SFI_AOC_ACC",
33 [18] = "10G_SFI_C2C",
34 [19] = "25GBASE_T",
35 [20] = "25GBASE_CR",
36 [21] = "25GBASE_CR_S",
37 [22] = "25GBASE_CR1",
38 [23] = "25GBASE_SR",
39 [24] = "25GBASE_LR",
40 [25] = "25GBASE_KR",
41 [26] = "25GBASE_KR_S",
42 [27] = "25GBASE_KR1",
43 [28] = "25G_AUI_AOC_ACC",
44 [29] = "25G_AUI_C2C",
45 [30] = "40GBASE_CR4",
46 [31] = "40GBASE_SR4",
47 [32] = "40GBASE_LR4",
48 [33] = "40GBASE_KR4",
49 [34] = "40G_XLAUI_AOC_ACC",
50 [35] = "40G_XLAUI",
51 [36] = "50GBASE_CR2",
52 [37] = "50GBASE_SR2",
53 [38] = "50GBASE_LR2",
54 [39] = "50GBASE_KR2",
55 [40] = "50G_LAUI2_AOC_ACC",
56 [41] = "50G_LAUI2",
57 [42] = "50G_AUI2_AOC_ACC",
58 [43] = "50G_AUI2",
59 [44] = "50GBASE_CP",
60 [45] = "50GBASE_SR",
61 [46] = "50GBASE_FR",
62 [47] = "50GBASE_LR",
63 [48] = "50GBASE_KR_PAM4",
64 [49] = "50G_AUI1_AOC_ACC",
65 [50] = "50G_AUI1",
66 [51] = "100GBASE_CR4",
67 [52] = "100GBASE_SR4",
68 [53] = "100GBASE_LR4",
69 [54] = "100GBASE_KR4",
70 [55] = "100G_CAUI4_AOC_ACC",
71 [56] = "100G_CAUI4",
72 [57] = "100G_AUI4_AOC_ACC",
73 [58] = "100G_AUI4",
74 [59] = "100GBASE_CR_PAM4",
75 [60] = "100GBASE_KR_PAM4",
76 [61] = "100GBASE_CP2",
77 [62] = "100GBASE_SR2",
78 [63] = "100GBASE_DR",
79 };
80
81 static const char * const ice_link_mode_str_high[] = {
82 [0] = "100GBASE_KR2_PAM4",
83 [1] = "100G_CAUI2_AOC_ACC",
84 [2] = "100G_CAUI2",
85 [3] = "100G_AUI2_AOC_ACC",
86 [4] = "100G_AUI2",
87 };
88
89 /**
90 * ice_dump_phy_type - helper function to dump phy_type
91 * @hw: pointer to the HW structure
92 * @low: 64 bit value for phy_type_low
93 * @high: 64 bit value for phy_type_high
94 * @prefix: prefix string to differentiate multiple dumps
95 */
96 static void
ice_dump_phy_type(struct ice_hw * hw,u64 low,u64 high,const char * prefix)97 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
98 {
99 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
100
101 for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
102 if (low & BIT_ULL(i))
103 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
104 prefix, i, ice_link_mode_str_low[i]);
105 }
106
107 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
108
109 for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
110 if (high & BIT_ULL(i))
111 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
112 prefix, i, ice_link_mode_str_high[i]);
113 }
114 }
115
116 /**
117 * ice_set_mac_type - Sets MAC type
118 * @hw: pointer to the HW structure
119 *
120 * This function sets the MAC type of the adapter based on the
121 * vendor ID and device ID stored in the HW structure.
122 */
ice_set_mac_type(struct ice_hw * hw)123 static int ice_set_mac_type(struct ice_hw *hw)
124 {
125 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
126 return -ENODEV;
127
128 switch (hw->device_id) {
129 case ICE_DEV_ID_E810C_BACKPLANE:
130 case ICE_DEV_ID_E810C_QSFP:
131 case ICE_DEV_ID_E810C_SFP:
132 case ICE_DEV_ID_E810_XXV_BACKPLANE:
133 case ICE_DEV_ID_E810_XXV_QSFP:
134 case ICE_DEV_ID_E810_XXV_SFP:
135 hw->mac_type = ICE_MAC_E810;
136 break;
137 case ICE_DEV_ID_E823C_10G_BASE_T:
138 case ICE_DEV_ID_E823C_BACKPLANE:
139 case ICE_DEV_ID_E823C_QSFP:
140 case ICE_DEV_ID_E823C_SFP:
141 case ICE_DEV_ID_E823C_SGMII:
142 case ICE_DEV_ID_E822C_10G_BASE_T:
143 case ICE_DEV_ID_E822C_BACKPLANE:
144 case ICE_DEV_ID_E822C_QSFP:
145 case ICE_DEV_ID_E822C_SFP:
146 case ICE_DEV_ID_E822C_SGMII:
147 case ICE_DEV_ID_E822L_10G_BASE_T:
148 case ICE_DEV_ID_E822L_BACKPLANE:
149 case ICE_DEV_ID_E822L_SFP:
150 case ICE_DEV_ID_E822L_SGMII:
151 case ICE_DEV_ID_E823L_10G_BASE_T:
152 case ICE_DEV_ID_E823L_1GBE:
153 case ICE_DEV_ID_E823L_BACKPLANE:
154 case ICE_DEV_ID_E823L_QSFP:
155 case ICE_DEV_ID_E823L_SFP:
156 hw->mac_type = ICE_MAC_GENERIC;
157 break;
158 case ICE_DEV_ID_E825C_BACKPLANE:
159 case ICE_DEV_ID_E825C_QSFP:
160 case ICE_DEV_ID_E825C_SFP:
161 case ICE_DEV_ID_E825C_SGMII:
162 hw->mac_type = ICE_MAC_GENERIC_3K_E825;
163 break;
164 case ICE_DEV_ID_E830CC_BACKPLANE:
165 case ICE_DEV_ID_E830CC_QSFP56:
166 case ICE_DEV_ID_E830CC_SFP:
167 case ICE_DEV_ID_E830CC_SFP_DD:
168 case ICE_DEV_ID_E830C_BACKPLANE:
169 case ICE_DEV_ID_E830_XXV_BACKPLANE:
170 case ICE_DEV_ID_E830C_QSFP:
171 case ICE_DEV_ID_E830_XXV_QSFP:
172 case ICE_DEV_ID_E830C_SFP:
173 case ICE_DEV_ID_E830_XXV_SFP:
174 case ICE_DEV_ID_E835CC_BACKPLANE:
175 case ICE_DEV_ID_E835CC_QSFP56:
176 case ICE_DEV_ID_E835CC_SFP:
177 case ICE_DEV_ID_E835C_BACKPLANE:
178 case ICE_DEV_ID_E835C_QSFP:
179 case ICE_DEV_ID_E835C_SFP:
180 case ICE_DEV_ID_E835_L_BACKPLANE:
181 case ICE_DEV_ID_E835_L_QSFP:
182 case ICE_DEV_ID_E835_L_SFP:
183 hw->mac_type = ICE_MAC_E830;
184 break;
185 default:
186 hw->mac_type = ICE_MAC_UNKNOWN;
187 break;
188 }
189
190 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
191 return 0;
192 }
193
194 /**
195 * ice_is_generic_mac - check if device's mac_type is generic
196 * @hw: pointer to the hardware structure
197 *
198 * Return: true if mac_type is ICE_MAC_GENERIC*, false otherwise.
199 */
ice_is_generic_mac(struct ice_hw * hw)200 bool ice_is_generic_mac(struct ice_hw *hw)
201 {
202 return (hw->mac_type == ICE_MAC_GENERIC ||
203 hw->mac_type == ICE_MAC_GENERIC_3K_E825);
204 }
205
206 /**
207 * ice_is_pf_c827 - check if pf contains c827 phy
208 * @hw: pointer to the hw struct
209 *
210 * Return: true if the device has c827 phy.
211 */
ice_is_pf_c827(struct ice_hw * hw)212 static bool ice_is_pf_c827(struct ice_hw *hw)
213 {
214 struct ice_aqc_get_link_topo cmd = {};
215 u8 node_part_number;
216 u16 node_handle;
217 int status;
218
219 if (hw->mac_type != ICE_MAC_E810)
220 return false;
221
222 if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
223 return true;
224
225 cmd.addr.topo_params.node_type_ctx =
226 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
227 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
228 cmd.addr.topo_params.index = 0;
229
230 status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
231 &node_handle);
232
233 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
234 return false;
235
236 if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
237 return true;
238
239 return false;
240 }
241
242 /**
243 * ice_clear_pf_cfg - Clear PF configuration
244 * @hw: pointer to the hardware structure
245 *
246 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
247 * configuration, flow director filters, etc.).
248 */
ice_clear_pf_cfg(struct ice_hw * hw)249 int ice_clear_pf_cfg(struct ice_hw *hw)
250 {
251 struct libie_aq_desc desc;
252
253 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
254
255 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
256 }
257
258 /**
259 * ice_aq_manage_mac_read - manage MAC address read command
260 * @hw: pointer to the HW struct
261 * @buf: a virtual buffer to hold the manage MAC read response
262 * @buf_size: Size of the virtual buffer
263 * @cd: pointer to command details structure or NULL
264 *
265 * This function is used to return per PF station MAC address (0x0107).
266 * NOTE: Upon successful completion of this command, MAC address information
267 * is returned in user specified buffer. Please interpret user specified
268 * buffer as "manage_mac_read" response.
269 * Response such as various MAC addresses are stored in HW struct (port.mac)
270 * ice_discover_dev_caps is expected to be called before this function is
271 * called.
272 */
273 static int
ice_aq_manage_mac_read(struct ice_hw * hw,void * buf,u16 buf_size,struct ice_sq_cd * cd)274 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
275 struct ice_sq_cd *cd)
276 {
277 struct ice_aqc_manage_mac_read_resp *resp;
278 struct ice_aqc_manage_mac_read *cmd;
279 struct libie_aq_desc desc;
280 int status;
281 u16 flags;
282 u8 i;
283
284 cmd = libie_aq_raw(&desc);
285
286 if (buf_size < sizeof(*resp))
287 return -EINVAL;
288
289 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
290
291 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
292 if (status)
293 return status;
294
295 resp = buf;
296 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
297
298 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
299 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
300 return -EIO;
301 }
302
303 /* A single port can report up to two (LAN and WoL) addresses */
304 for (i = 0; i < cmd->num_addr; i++)
305 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
306 ether_addr_copy(hw->port_info->mac.lan_addr,
307 resp[i].mac_addr);
308 ether_addr_copy(hw->port_info->mac.perm_addr,
309 resp[i].mac_addr);
310 break;
311 }
312
313 return 0;
314 }
315
316 /**
317 * ice_aq_get_phy_caps - returns PHY capabilities
318 * @pi: port information structure
319 * @qual_mods: report qualified modules
320 * @report_mode: report mode capabilities
321 * @pcaps: structure for PHY capabilities to be filled
322 * @cd: pointer to command details structure or NULL
323 *
324 * Returns the various PHY capabilities supported on the Port (0x0600)
325 */
326 int
ice_aq_get_phy_caps(struct ice_port_info * pi,bool qual_mods,u8 report_mode,struct ice_aqc_get_phy_caps_data * pcaps,struct ice_sq_cd * cd)327 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
328 struct ice_aqc_get_phy_caps_data *pcaps,
329 struct ice_sq_cd *cd)
330 {
331 struct ice_aqc_get_phy_caps *cmd;
332 u16 pcaps_size = sizeof(*pcaps);
333 struct libie_aq_desc desc;
334 const char *prefix;
335 struct ice_hw *hw;
336 int status;
337
338 cmd = libie_aq_raw(&desc);
339
340 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
341 return -EINVAL;
342 hw = pi->hw;
343
344 if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
345 !ice_fw_supports_report_dflt_cfg(hw))
346 return -EINVAL;
347
348 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
349
350 if (qual_mods)
351 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
352
353 cmd->param0 |= cpu_to_le16(report_mode);
354 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
355
356 ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
357
358 switch (report_mode) {
359 case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
360 prefix = "phy_caps_media";
361 break;
362 case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
363 prefix = "phy_caps_no_media";
364 break;
365 case ICE_AQC_REPORT_ACTIVE_CFG:
366 prefix = "phy_caps_active";
367 break;
368 case ICE_AQC_REPORT_DFLT_CFG:
369 prefix = "phy_caps_default";
370 break;
371 default:
372 prefix = "phy_caps_invalid";
373 }
374
375 ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
376 le64_to_cpu(pcaps->phy_type_high), prefix);
377
378 ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
379 prefix, report_mode);
380 ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
381 ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
382 pcaps->low_power_ctrl_an);
383 ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
384 pcaps->eee_cap);
385 ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
386 pcaps->eeer_value);
387 ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
388 pcaps->link_fec_options);
389 ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
390 prefix, pcaps->module_compliance_enforcement);
391 ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
392 prefix, pcaps->extended_compliance_code);
393 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
394 pcaps->module_type[0]);
395 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
396 pcaps->module_type[1]);
397 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
398 pcaps->module_type[2]);
399
400 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
401 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
402 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
403 memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
404 sizeof(pi->phy.link_info.module_type));
405 }
406
407 return status;
408 }
409
410 /**
411 * ice_aq_get_link_topo_handle - get link topology node return status
412 * @pi: port information structure
413 * @node_type: requested node type
414 * @cd: pointer to command details structure or NULL
415 *
416 * Get link topology node return status for specified node type (0x06E0)
417 *
418 * Node type cage can be used to determine if cage is present. If AQC
419 * returns error (ENOENT), then no cage present. If no cage present, then
420 * connection type is backplane or BASE-T.
421 */
422 static int
ice_aq_get_link_topo_handle(struct ice_port_info * pi,u8 node_type,struct ice_sq_cd * cd)423 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
424 struct ice_sq_cd *cd)
425 {
426 struct ice_aqc_get_link_topo *cmd;
427 struct libie_aq_desc desc;
428
429 cmd = libie_aq_raw(&desc);
430
431 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
432
433 cmd->addr.topo_params.node_type_ctx =
434 (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
435 ICE_AQC_LINK_TOPO_NODE_CTX_S);
436
437 /* set node type */
438 cmd->addr.topo_params.node_type_ctx |=
439 (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
440
441 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
442 }
443
444 /**
445 * ice_aq_get_netlist_node
446 * @hw: pointer to the hw struct
447 * @cmd: get_link_topo AQ structure
448 * @node_part_number: output node part number if node found
449 * @node_handle: output node handle parameter if node found
450 *
451 * Get netlist node handle.
452 */
453 int
ice_aq_get_netlist_node(struct ice_hw * hw,struct ice_aqc_get_link_topo * cmd,u8 * node_part_number,u16 * node_handle)454 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
455 u8 *node_part_number, u16 *node_handle)
456 {
457 struct ice_aqc_get_link_topo *resp;
458 struct libie_aq_desc desc;
459
460 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
461 resp = libie_aq_raw(&desc);
462 *resp = *cmd;
463
464 if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
465 return -EINTR;
466
467 if (node_handle)
468 *node_handle = le16_to_cpu(resp->addr.handle);
469 if (node_part_number)
470 *node_part_number = resp->node_part_num;
471
472 return 0;
473 }
474
475 /**
476 * ice_find_netlist_node
477 * @hw: pointer to the hw struct
478 * @node_type: type of netlist node to look for
479 * @ctx: context of the search
480 * @node_part_number: node part number to look for
481 * @node_handle: output parameter if node found - optional
482 *
483 * Scan the netlist for a node handle of the given node type and part number.
484 *
485 * If node_handle is non-NULL it will be modified on function exit. It is only
486 * valid if the function returns zero, and should be ignored on any non-zero
487 * return value.
488 *
489 * Return:
490 * * 0 if the node is found,
491 * * -ENOENT if no handle was found,
492 * * negative error code on failure to access the AQ.
493 */
ice_find_netlist_node(struct ice_hw * hw,u8 node_type,u8 ctx,u8 node_part_number,u16 * node_handle)494 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
495 u8 node_part_number, u16 *node_handle)
496 {
497 u8 idx;
498
499 for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
500 struct ice_aqc_get_link_topo cmd = {};
501 u8 rec_node_part_number;
502 int status;
503
504 cmd.addr.topo_params.node_type_ctx =
505 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
506 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
507 cmd.addr.topo_params.index = idx;
508
509 status = ice_aq_get_netlist_node(hw, &cmd,
510 &rec_node_part_number,
511 node_handle);
512 if (status)
513 return status;
514
515 if (rec_node_part_number == node_part_number)
516 return 0;
517 }
518
519 return -ENOENT;
520 }
521
522 /**
523 * ice_is_media_cage_present
524 * @pi: port information structure
525 *
526 * Returns true if media cage is present, else false. If no cage, then
527 * media type is backplane or BASE-T.
528 */
ice_is_media_cage_present(struct ice_port_info * pi)529 static bool ice_is_media_cage_present(struct ice_port_info *pi)
530 {
531 /* Node type cage can be used to determine if cage is present. If AQC
532 * returns error (ENOENT), then no cage present. If no cage present then
533 * connection type is backplane or BASE-T.
534 */
535 return !ice_aq_get_link_topo_handle(pi,
536 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
537 NULL);
538 }
539
540 /**
541 * ice_get_media_type - Gets media type
542 * @pi: port information structure
543 */
ice_get_media_type(struct ice_port_info * pi)544 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
545 {
546 struct ice_link_status *hw_link_info;
547
548 if (!pi)
549 return ICE_MEDIA_UNKNOWN;
550
551 hw_link_info = &pi->phy.link_info;
552 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
553 /* If more than one media type is selected, report unknown */
554 return ICE_MEDIA_UNKNOWN;
555
556 if (hw_link_info->phy_type_low) {
557 /* 1G SGMII is a special case where some DA cable PHYs
558 * may show this as an option when it really shouldn't
559 * be since SGMII is meant to be between a MAC and a PHY
560 * in a backplane. Try to detect this case and handle it
561 */
562 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
563 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
564 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
565 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
566 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
567 return ICE_MEDIA_DA;
568
569 switch (hw_link_info->phy_type_low) {
570 case ICE_PHY_TYPE_LOW_1000BASE_SX:
571 case ICE_PHY_TYPE_LOW_1000BASE_LX:
572 case ICE_PHY_TYPE_LOW_10GBASE_SR:
573 case ICE_PHY_TYPE_LOW_10GBASE_LR:
574 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
575 case ICE_PHY_TYPE_LOW_25GBASE_SR:
576 case ICE_PHY_TYPE_LOW_25GBASE_LR:
577 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
578 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
579 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
580 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
581 case ICE_PHY_TYPE_LOW_50GBASE_SR:
582 case ICE_PHY_TYPE_LOW_50GBASE_FR:
583 case ICE_PHY_TYPE_LOW_50GBASE_LR:
584 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
585 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
586 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
587 case ICE_PHY_TYPE_LOW_100GBASE_DR:
588 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
589 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
590 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
591 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
592 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
593 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
594 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
595 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
596 return ICE_MEDIA_FIBER;
597 case ICE_PHY_TYPE_LOW_100BASE_TX:
598 case ICE_PHY_TYPE_LOW_1000BASE_T:
599 case ICE_PHY_TYPE_LOW_2500BASE_T:
600 case ICE_PHY_TYPE_LOW_5GBASE_T:
601 case ICE_PHY_TYPE_LOW_10GBASE_T:
602 case ICE_PHY_TYPE_LOW_25GBASE_T:
603 return ICE_MEDIA_BASET;
604 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
605 case ICE_PHY_TYPE_LOW_25GBASE_CR:
606 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
607 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
608 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
609 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
610 case ICE_PHY_TYPE_LOW_50GBASE_CP:
611 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
612 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
613 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
614 return ICE_MEDIA_DA;
615 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
616 case ICE_PHY_TYPE_LOW_40G_XLAUI:
617 case ICE_PHY_TYPE_LOW_50G_LAUI2:
618 case ICE_PHY_TYPE_LOW_50G_AUI2:
619 case ICE_PHY_TYPE_LOW_50G_AUI1:
620 case ICE_PHY_TYPE_LOW_100G_AUI4:
621 case ICE_PHY_TYPE_LOW_100G_CAUI4:
622 if (ice_is_media_cage_present(pi))
623 return ICE_MEDIA_DA;
624 fallthrough;
625 case ICE_PHY_TYPE_LOW_1000BASE_KX:
626 case ICE_PHY_TYPE_LOW_2500BASE_KX:
627 case ICE_PHY_TYPE_LOW_2500BASE_X:
628 case ICE_PHY_TYPE_LOW_5GBASE_KR:
629 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
630 case ICE_PHY_TYPE_LOW_25GBASE_KR:
631 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
632 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
633 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
634 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
635 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
636 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
637 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
638 return ICE_MEDIA_BACKPLANE;
639 }
640 } else {
641 switch (hw_link_info->phy_type_high) {
642 case ICE_PHY_TYPE_HIGH_100G_AUI2:
643 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
644 if (ice_is_media_cage_present(pi))
645 return ICE_MEDIA_DA;
646 fallthrough;
647 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
648 return ICE_MEDIA_BACKPLANE;
649 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
650 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
651 return ICE_MEDIA_FIBER;
652 }
653 }
654 return ICE_MEDIA_UNKNOWN;
655 }
656
657 /**
658 * ice_get_link_status_datalen
659 * @hw: pointer to the HW struct
660 *
661 * Returns datalength for the Get Link Status AQ command, which is bigger for
662 * newer adapter families handled by ice driver.
663 */
ice_get_link_status_datalen(struct ice_hw * hw)664 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
665 {
666 switch (hw->mac_type) {
667 case ICE_MAC_E830:
668 return ICE_AQC_LS_DATA_SIZE_V2;
669 case ICE_MAC_E810:
670 default:
671 return ICE_AQC_LS_DATA_SIZE_V1;
672 }
673 }
674
675 /**
676 * ice_aq_get_link_info
677 * @pi: port information structure
678 * @ena_lse: enable/disable LinkStatusEvent reporting
679 * @link: pointer to link status structure - optional
680 * @cd: pointer to command details structure or NULL
681 *
682 * Get Link Status (0x607). Returns the link status of the adapter.
683 */
684 int
ice_aq_get_link_info(struct ice_port_info * pi,bool ena_lse,struct ice_link_status * link,struct ice_sq_cd * cd)685 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
686 struct ice_link_status *link, struct ice_sq_cd *cd)
687 {
688 struct ice_aqc_get_link_status_data link_data = { 0 };
689 struct ice_aqc_get_link_status *resp;
690 struct ice_link_status *li_old, *li;
691 enum ice_media_type *hw_media_type;
692 struct ice_fc_info *hw_fc_info;
693 struct libie_aq_desc desc;
694 bool tx_pause, rx_pause;
695 struct ice_hw *hw;
696 u16 cmd_flags;
697 int status;
698
699 if (!pi)
700 return -EINVAL;
701 hw = pi->hw;
702 li_old = &pi->phy.link_info_old;
703 hw_media_type = &pi->phy.media_type;
704 li = &pi->phy.link_info;
705 hw_fc_info = &pi->fc;
706
707 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
708 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
709 resp = libie_aq_raw(&desc);
710 resp->cmd_flags = cpu_to_le16(cmd_flags);
711 resp->lport_num = pi->lport;
712
713 status = ice_aq_send_cmd(hw, &desc, &link_data,
714 ice_get_link_status_datalen(hw), cd);
715 if (status)
716 return status;
717
718 /* save off old link status information */
719 *li_old = *li;
720
721 /* update current link status information */
722 li->link_speed = le16_to_cpu(link_data.link_speed);
723 li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
724 li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
725 *hw_media_type = ice_get_media_type(pi);
726 li->link_info = link_data.link_info;
727 li->link_cfg_err = link_data.link_cfg_err;
728 li->an_info = link_data.an_info;
729 li->ext_info = link_data.ext_info;
730 li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
731 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
732 li->topo_media_conflict = link_data.topo_media_conflict;
733 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
734 ICE_AQ_CFG_PACING_TYPE_M);
735
736 /* update fc info */
737 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
738 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
739 if (tx_pause && rx_pause)
740 hw_fc_info->current_mode = ICE_FC_FULL;
741 else if (tx_pause)
742 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
743 else if (rx_pause)
744 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
745 else
746 hw_fc_info->current_mode = ICE_FC_NONE;
747
748 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
749
750 ice_debug(hw, ICE_DBG_LINK, "get link info\n");
751 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
752 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
753 (unsigned long long)li->phy_type_low);
754 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
755 (unsigned long long)li->phy_type_high);
756 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
757 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
758 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
759 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
760 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
761 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
762 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
763 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
764 li->max_frame_size);
765 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
766
767 /* save link status information */
768 if (link)
769 *link = *li;
770
771 /* flag cleared so calling functions don't call AQ again */
772 pi->phy.get_link_info = false;
773
774 return 0;
775 }
776
777 /**
778 * ice_fill_tx_timer_and_fc_thresh
779 * @hw: pointer to the HW struct
780 * @cmd: pointer to MAC cfg structure
781 *
782 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
783 * descriptor
784 */
785 static void
ice_fill_tx_timer_and_fc_thresh(struct ice_hw * hw,struct ice_aqc_set_mac_cfg * cmd)786 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
787 struct ice_aqc_set_mac_cfg *cmd)
788 {
789 u32 val, fc_thres_m;
790
791 /* We read back the transmit timer and FC threshold value of
792 * LFC. Thus, we will use index =
793 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
794 *
795 * Also, because we are operating on transmit timer and FC
796 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
797 */
798 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
799 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
800
801 if (hw->mac_type == ICE_MAC_E830) {
802 /* Retrieve the transmit timer */
803 val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
804 cmd->tx_tmr_value =
805 le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
806
807 /* Retrieve the fc threshold */
808 val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
809 fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
810 } else {
811 /* Retrieve the transmit timer */
812 val = rd32(hw,
813 E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
814 cmd->tx_tmr_value =
815 le16_encode_bits(val,
816 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
817
818 /* Retrieve the fc threshold */
819 val = rd32(hw,
820 E800_REFRESH_TMR(E800_IDX_OF_LFC));
821 fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
822 }
823 cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
824 }
825
826 /**
827 * ice_aq_set_mac_cfg
828 * @hw: pointer to the HW struct
829 * @max_frame_size: Maximum Frame Size to be supported
830 * @cd: pointer to command details structure or NULL
831 *
832 * Set MAC configuration (0x0603)
833 */
834 int
ice_aq_set_mac_cfg(struct ice_hw * hw,u16 max_frame_size,struct ice_sq_cd * cd)835 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
836 {
837 struct ice_aqc_set_mac_cfg *cmd;
838 struct libie_aq_desc desc;
839
840 cmd = libie_aq_raw(&desc);
841
842 if (max_frame_size == 0)
843 return -EINVAL;
844
845 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
846
847 cmd->max_frame_size = cpu_to_le16(max_frame_size);
848
849 ice_fill_tx_timer_and_fc_thresh(hw, cmd);
850
851 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
852 }
853
854 /**
855 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
856 * @hw: pointer to the HW struct
857 */
ice_init_fltr_mgmt_struct(struct ice_hw * hw)858 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
859 {
860 struct ice_switch_info *sw;
861 int status;
862
863 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
864 sizeof(*hw->switch_info), GFP_KERNEL);
865 sw = hw->switch_info;
866
867 if (!sw)
868 return -ENOMEM;
869
870 INIT_LIST_HEAD(&sw->vsi_list_map_head);
871 sw->prof_res_bm_init = 0;
872
873 /* Initialize recipe count with default recipes read from NVM */
874 sw->recp_cnt = ICE_SW_LKUP_LAST;
875
876 status = ice_init_def_sw_recp(hw);
877 if (status) {
878 devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
879 return status;
880 }
881 return 0;
882 }
883
884 /**
885 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
886 * @hw: pointer to the HW struct
887 */
ice_cleanup_fltr_mgmt_struct(struct ice_hw * hw)888 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
889 {
890 struct ice_switch_info *sw = hw->switch_info;
891 struct ice_vsi_list_map_info *v_pos_map;
892 struct ice_vsi_list_map_info *v_tmp_map;
893 struct ice_sw_recipe *recps;
894 u8 i;
895
896 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
897 list_entry) {
898 list_del(&v_pos_map->list_entry);
899 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
900 }
901 recps = sw->recp_list;
902 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
903 recps[i].root_rid = i;
904
905 if (recps[i].adv_rule) {
906 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
907 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
908
909 mutex_destroy(&recps[i].filt_rule_lock);
910 list_for_each_entry_safe(lst_itr, tmp_entry,
911 &recps[i].filt_rules,
912 list_entry) {
913 list_del(&lst_itr->list_entry);
914 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
915 devm_kfree(ice_hw_to_dev(hw), lst_itr);
916 }
917 } else {
918 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
919
920 mutex_destroy(&recps[i].filt_rule_lock);
921 list_for_each_entry_safe(lst_itr, tmp_entry,
922 &recps[i].filt_rules,
923 list_entry) {
924 list_del(&lst_itr->list_entry);
925 devm_kfree(ice_hw_to_dev(hw), lst_itr);
926 }
927 }
928 }
929 ice_rm_all_sw_replay_rule_info(hw);
930 devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
931 devm_kfree(ice_hw_to_dev(hw), sw);
932 }
933
934 /**
935 * ice_get_itr_intrl_gran
936 * @hw: pointer to the HW struct
937 *
938 * Determines the ITR/INTRL granularities based on the maximum aggregate
939 * bandwidth according to the device's configuration during power-on.
940 */
ice_get_itr_intrl_gran(struct ice_hw * hw)941 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
942 {
943 u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
944 rd32(hw, GL_PWR_MODE_CTL));
945
946 switch (max_agg_bw) {
947 case ICE_MAX_AGG_BW_200G:
948 case ICE_MAX_AGG_BW_100G:
949 case ICE_MAX_AGG_BW_50G:
950 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
951 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
952 break;
953 case ICE_MAX_AGG_BW_25G:
954 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
955 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
956 break;
957 }
958 }
959
960 /**
961 * ice_wait_for_fw - wait for full FW readiness
962 * @hw: pointer to the hardware structure
963 * @timeout: milliseconds that can elapse before timing out
964 *
965 * Return: 0 on success, -ETIMEDOUT on timeout.
966 */
ice_wait_for_fw(struct ice_hw * hw,u32 timeout)967 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
968 {
969 int fw_loading;
970 u32 elapsed = 0;
971
972 while (elapsed <= timeout) {
973 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
974
975 /* firmware was not yet loaded, we have to wait more */
976 if (fw_loading) {
977 elapsed += 100;
978 msleep(100);
979 continue;
980 }
981 return 0;
982 }
983
984 return -ETIMEDOUT;
985 }
986
__fwlog_send_cmd(void * priv,struct libie_aq_desc * desc,void * buf,u16 size)987 static int __fwlog_send_cmd(void *priv, struct libie_aq_desc *desc, void *buf,
988 u16 size)
989 {
990 struct ice_hw *hw = priv;
991
992 return ice_aq_send_cmd(hw, desc, buf, size, NULL);
993 }
994
__fwlog_init(struct ice_hw * hw)995 static int __fwlog_init(struct ice_hw *hw)
996 {
997 struct ice_pf *pf = hw->back;
998 struct libie_fwlog_api api = {
999 .pdev = pf->pdev,
1000 .send_cmd = __fwlog_send_cmd,
1001 .priv = hw,
1002 };
1003 int err;
1004
1005 /* only support fw log commands on PF 0 */
1006 if (hw->bus.func)
1007 return -EINVAL;
1008
1009 err = ice_debugfs_pf_init(pf);
1010 if (err)
1011 return err;
1012
1013 api.debugfs_root = pf->ice_debugfs_pf;
1014
1015 return libie_fwlog_init(&hw->fwlog, &api);
1016 }
1017
1018 /**
1019 * ice_init_hw - main hardware initialization routine
1020 * @hw: pointer to the hardware structure
1021 */
ice_init_hw(struct ice_hw * hw)1022 int ice_init_hw(struct ice_hw *hw)
1023 {
1024 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1025 void *mac_buf __free(kfree) = NULL;
1026 u16 mac_buf_len;
1027 int status;
1028
1029 /* Set MAC type based on DeviceID */
1030 status = ice_set_mac_type(hw);
1031 if (status)
1032 return status;
1033
1034 hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1035
1036 status = ice_reset(hw, ICE_RESET_PFR);
1037 if (status)
1038 return status;
1039
1040 ice_get_itr_intrl_gran(hw);
1041
1042 status = ice_create_all_ctrlq(hw);
1043 if (status)
1044 goto err_unroll_cqinit;
1045
1046 status = __fwlog_init(hw);
1047 if (status)
1048 ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1049 status);
1050
1051 status = ice_clear_pf_cfg(hw);
1052 if (status)
1053 goto err_unroll_cqinit;
1054
1055 /* Set bit to enable Flow Director filters */
1056 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1057 INIT_LIST_HEAD(&hw->fdir_list_head);
1058
1059 ice_clear_pxe_mode(hw);
1060
1061 status = ice_init_nvm(hw);
1062 if (status)
1063 goto err_unroll_cqinit;
1064
1065 status = ice_get_caps(hw);
1066 if (status)
1067 goto err_unroll_cqinit;
1068
1069 if (!hw->port_info)
1070 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1071 sizeof(*hw->port_info),
1072 GFP_KERNEL);
1073 if (!hw->port_info) {
1074 status = -ENOMEM;
1075 goto err_unroll_cqinit;
1076 }
1077
1078 hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1079 /* set the back pointer to HW */
1080 hw->port_info->hw = hw;
1081
1082 /* Initialize port_info struct with switch configuration data */
1083 status = ice_get_initial_sw_cfg(hw);
1084 if (status)
1085 goto err_unroll_alloc;
1086
1087 hw->evb_veb = true;
1088
1089 /* init xarray for identifying scheduling nodes uniquely */
1090 xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1091
1092 /* Query the allocated resources for Tx scheduler */
1093 status = ice_sched_query_res_alloc(hw);
1094 if (status) {
1095 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1096 goto err_unroll_alloc;
1097 }
1098 ice_sched_get_psm_clk_freq(hw);
1099
1100 /* Initialize port_info struct with scheduler data */
1101 status = ice_sched_init_port(hw->port_info);
1102 if (status)
1103 goto err_unroll_sched;
1104
1105 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1106 if (!pcaps) {
1107 status = -ENOMEM;
1108 goto err_unroll_sched;
1109 }
1110
1111 /* Initialize port_info struct with PHY capabilities */
1112 status = ice_aq_get_phy_caps(hw->port_info, false,
1113 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1114 NULL);
1115 if (status)
1116 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1117 status);
1118
1119 /* Initialize port_info struct with link information */
1120 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1121 if (status)
1122 goto err_unroll_sched;
1123
1124 /* need a valid SW entry point to build a Tx tree */
1125 if (!hw->sw_entry_point_layer) {
1126 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1127 status = -EIO;
1128 goto err_unroll_sched;
1129 }
1130 INIT_LIST_HEAD(&hw->agg_list);
1131 /* Initialize max burst size */
1132 if (!hw->max_burst_size)
1133 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1134
1135 status = ice_init_fltr_mgmt_struct(hw);
1136 if (status)
1137 goto err_unroll_sched;
1138
1139 /* Get MAC information */
1140 /* A single port can report up to two (LAN and WoL) addresses */
1141 mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1142 GFP_KERNEL);
1143 if (!mac_buf) {
1144 status = -ENOMEM;
1145 goto err_unroll_fltr_mgmt_struct;
1146 }
1147
1148 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1149 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1150
1151 if (status)
1152 goto err_unroll_fltr_mgmt_struct;
1153 /* enable jumbo frame support at MAC level */
1154 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1155 if (status)
1156 goto err_unroll_fltr_mgmt_struct;
1157 /* Obtain counter base index which would be used by flow director */
1158 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1159 if (status)
1160 goto err_unroll_fltr_mgmt_struct;
1161 status = ice_init_hw_tbls(hw);
1162 if (status)
1163 goto err_unroll_fltr_mgmt_struct;
1164 mutex_init(&hw->tnl_lock);
1165 ice_init_chk_recipe_reuse_support(hw);
1166
1167 /* Some cards require longer initialization times
1168 * due to necessity of loading FW from an external source.
1169 * This can take even half a minute.
1170 */
1171 if (ice_is_pf_c827(hw)) {
1172 status = ice_wait_for_fw(hw, 30000);
1173 if (status) {
1174 dev_err(ice_hw_to_dev(hw), "ice_wait_for_fw timed out");
1175 goto err_unroll_fltr_mgmt_struct;
1176 }
1177 }
1178
1179 hw->lane_num = ice_get_phy_lane_number(hw);
1180
1181 return 0;
1182 err_unroll_fltr_mgmt_struct:
1183 ice_cleanup_fltr_mgmt_struct(hw);
1184 err_unroll_sched:
1185 ice_sched_cleanup_all(hw);
1186 err_unroll_alloc:
1187 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1188 err_unroll_cqinit:
1189 ice_destroy_all_ctrlq(hw);
1190 return status;
1191 }
1192
__fwlog_deinit(struct ice_hw * hw)1193 static void __fwlog_deinit(struct ice_hw *hw)
1194 {
1195 /* only support fw log commands on PF 0 */
1196 if (hw->bus.func)
1197 return;
1198
1199 ice_debugfs_pf_deinit(hw->back);
1200 libie_fwlog_deinit(&hw->fwlog);
1201 }
1202
1203 /**
1204 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1205 * @hw: pointer to the hardware structure
1206 *
1207 * This should be called only during nominal operation, not as a result of
1208 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1209 * applicable initializations if it fails for any reason.
1210 */
ice_deinit_hw(struct ice_hw * hw)1211 void ice_deinit_hw(struct ice_hw *hw)
1212 {
1213 ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1214 ice_cleanup_fltr_mgmt_struct(hw);
1215
1216 ice_sched_cleanup_all(hw);
1217 ice_sched_clear_agg(hw);
1218 ice_free_seg(hw);
1219 ice_free_hw_tbls(hw);
1220 mutex_destroy(&hw->tnl_lock);
1221 __fwlog_deinit(hw);
1222 ice_destroy_all_ctrlq(hw);
1223
1224 /* Clear VSI contexts if not already cleared */
1225 ice_clear_all_vsi_ctx(hw);
1226 }
1227
1228 /**
1229 * ice_check_reset - Check to see if a global reset is complete
1230 * @hw: pointer to the hardware structure
1231 */
ice_check_reset(struct ice_hw * hw)1232 int ice_check_reset(struct ice_hw *hw)
1233 {
1234 u32 cnt, reg = 0, grst_timeout, uld_mask;
1235
1236 /* Poll for Device Active state in case a recent CORER, GLOBR,
1237 * or EMPR has occurred. The grst delay value is in 100ms units.
1238 * Add 1sec for outstanding AQ commands that can take a long time.
1239 */
1240 grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1241 rd32(hw, GLGEN_RSTCTL)) + 10;
1242
1243 for (cnt = 0; cnt < grst_timeout; cnt++) {
1244 mdelay(100);
1245 reg = rd32(hw, GLGEN_RSTAT);
1246 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1247 break;
1248 }
1249
1250 if (cnt == grst_timeout) {
1251 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1252 return -EIO;
1253 }
1254
1255 #define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
1256 GLNVM_ULD_PCIER_DONE_1_M |\
1257 GLNVM_ULD_CORER_DONE_M |\
1258 GLNVM_ULD_GLOBR_DONE_M |\
1259 GLNVM_ULD_POR_DONE_M |\
1260 GLNVM_ULD_POR_DONE_1_M |\
1261 GLNVM_ULD_PCIER_DONE_2_M)
1262
1263 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1264 GLNVM_ULD_PE_DONE_M : 0);
1265
1266 /* Device is Active; check Global Reset processes are done */
1267 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1268 reg = rd32(hw, GLNVM_ULD) & uld_mask;
1269 if (reg == uld_mask) {
1270 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1271 break;
1272 }
1273 mdelay(10);
1274 }
1275
1276 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1277 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1278 reg);
1279 return -EIO;
1280 }
1281
1282 return 0;
1283 }
1284
1285 /**
1286 * ice_pf_reset - Reset the PF
1287 * @hw: pointer to the hardware structure
1288 *
1289 * If a global reset has been triggered, this function checks
1290 * for its completion and then issues the PF reset
1291 */
ice_pf_reset(struct ice_hw * hw)1292 static int ice_pf_reset(struct ice_hw *hw)
1293 {
1294 u32 cnt, reg;
1295
1296 /* If at function entry a global reset was already in progress, i.e.
1297 * state is not 'device active' or any of the reset done bits are not
1298 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1299 * global reset is done.
1300 */
1301 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1302 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1303 /* poll on global reset currently in progress until done */
1304 if (ice_check_reset(hw))
1305 return -EIO;
1306
1307 return 0;
1308 }
1309
1310 /* Reset the PF */
1311 reg = rd32(hw, PFGEN_CTRL);
1312
1313 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1314
1315 /* Wait for the PFR to complete. The wait time is the global config lock
1316 * timeout plus the PFR timeout which will account for a possible reset
1317 * that is occurring during a download package operation.
1318 */
1319 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1320 ICE_PF_RESET_WAIT_COUNT; cnt++) {
1321 reg = rd32(hw, PFGEN_CTRL);
1322 if (!(reg & PFGEN_CTRL_PFSWR_M))
1323 break;
1324
1325 mdelay(1);
1326 }
1327
1328 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1329 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1330 return -EIO;
1331 }
1332
1333 return 0;
1334 }
1335
1336 /**
1337 * ice_reset - Perform different types of reset
1338 * @hw: pointer to the hardware structure
1339 * @req: reset request
1340 *
1341 * This function triggers a reset as specified by the req parameter.
1342 *
1343 * Note:
1344 * If anything other than a PF reset is triggered, PXE mode is restored.
1345 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1346 * interface has been restored in the rebuild flow.
1347 */
ice_reset(struct ice_hw * hw,enum ice_reset_req req)1348 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1349 {
1350 u32 val = 0;
1351
1352 switch (req) {
1353 case ICE_RESET_PFR:
1354 return ice_pf_reset(hw);
1355 case ICE_RESET_CORER:
1356 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1357 val = GLGEN_RTRIG_CORER_M;
1358 break;
1359 case ICE_RESET_GLOBR:
1360 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1361 val = GLGEN_RTRIG_GLOBR_M;
1362 break;
1363 default:
1364 return -EINVAL;
1365 }
1366
1367 val |= rd32(hw, GLGEN_RTRIG);
1368 wr32(hw, GLGEN_RTRIG, val);
1369 ice_flush(hw);
1370
1371 /* wait for the FW to be ready */
1372 return ice_check_reset(hw);
1373 }
1374
1375 /**
1376 * ice_copy_rxq_ctx_to_hw - Copy packed Rx queue context to HW registers
1377 * @hw: pointer to the hardware structure
1378 * @rxq_ctx: pointer to the packed Rx queue context
1379 * @rxq_index: the index of the Rx queue
1380 */
ice_copy_rxq_ctx_to_hw(struct ice_hw * hw,const ice_rxq_ctx_buf_t * rxq_ctx,u32 rxq_index)1381 static void ice_copy_rxq_ctx_to_hw(struct ice_hw *hw,
1382 const ice_rxq_ctx_buf_t *rxq_ctx,
1383 u32 rxq_index)
1384 {
1385 /* Copy each dword separately to HW */
1386 for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1387 u32 ctx = ((const u32 *)rxq_ctx)[i];
1388
1389 wr32(hw, QRX_CONTEXT(i, rxq_index), ctx);
1390
1391 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, ctx);
1392 }
1393 }
1394
1395 /**
1396 * ice_copy_rxq_ctx_from_hw - Copy packed Rx Queue context from HW registers
1397 * @hw: pointer to the hardware structure
1398 * @rxq_ctx: pointer to the packed Rx queue context
1399 * @rxq_index: the index of the Rx queue
1400 */
ice_copy_rxq_ctx_from_hw(struct ice_hw * hw,ice_rxq_ctx_buf_t * rxq_ctx,u32 rxq_index)1401 static void ice_copy_rxq_ctx_from_hw(struct ice_hw *hw,
1402 ice_rxq_ctx_buf_t *rxq_ctx,
1403 u32 rxq_index)
1404 {
1405 u32 *ctx = (u32 *)rxq_ctx;
1406
1407 /* Copy each dword separately from HW */
1408 for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++, ctx++) {
1409 *ctx = rd32(hw, QRX_CONTEXT(i, rxq_index));
1410
1411 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, *ctx);
1412 }
1413 }
1414
1415 #define ICE_CTX_STORE(struct_name, struct_field, width, lsb) \
1416 PACKED_FIELD((lsb) + (width) - 1, (lsb), struct struct_name, struct_field)
1417
1418 /* LAN Rx Queue Context */
1419 static const struct packed_field_u8 ice_rlan_ctx_fields[] = {
1420 /* Field Width LSB */
1421 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1422 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1423 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1424 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1425 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1426 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1427 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1428 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1429 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1430 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1431 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1432 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1433 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1434 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1435 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1436 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1437 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1438 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1439 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1440 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
1441 };
1442
1443 /**
1444 * ice_pack_rxq_ctx - Pack Rx queue context into a HW buffer
1445 * @ctx: the Rx queue context to pack
1446 * @buf: the HW buffer to pack into
1447 *
1448 * Pack the Rx queue context from the CPU-friendly unpacked buffer into its
1449 * bit-packed HW layout.
1450 */
ice_pack_rxq_ctx(const struct ice_rlan_ctx * ctx,ice_rxq_ctx_buf_t * buf)1451 static void ice_pack_rxq_ctx(const struct ice_rlan_ctx *ctx,
1452 ice_rxq_ctx_buf_t *buf)
1453 {
1454 pack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1455 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1456 }
1457
1458 /**
1459 * ice_unpack_rxq_ctx - Unpack Rx queue context from a HW buffer
1460 * @buf: the HW buffer to unpack from
1461 * @ctx: the Rx queue context to unpack
1462 *
1463 * Unpack the Rx queue context from the HW buffer into the CPU-friendly
1464 * structure.
1465 */
ice_unpack_rxq_ctx(const ice_rxq_ctx_buf_t * buf,struct ice_rlan_ctx * ctx)1466 static void ice_unpack_rxq_ctx(const ice_rxq_ctx_buf_t *buf,
1467 struct ice_rlan_ctx *ctx)
1468 {
1469 unpack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1470 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1471 }
1472
1473 /**
1474 * ice_write_rxq_ctx - Write Rx Queue context to hardware
1475 * @hw: pointer to the hardware structure
1476 * @rlan_ctx: pointer to the unpacked Rx queue context
1477 * @rxq_index: the index of the Rx queue
1478 *
1479 * Pack the sparse Rx Queue context into dense hardware format and write it
1480 * into the HW register space.
1481 *
1482 * Return: 0 on success, or -EINVAL if the Rx queue index is invalid.
1483 */
ice_write_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1484 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1485 u32 rxq_index)
1486 {
1487 ice_rxq_ctx_buf_t buf = {};
1488
1489 if (rxq_index > QRX_CTRL_MAX_INDEX)
1490 return -EINVAL;
1491
1492 ice_pack_rxq_ctx(rlan_ctx, &buf);
1493 ice_copy_rxq_ctx_to_hw(hw, &buf, rxq_index);
1494
1495 return 0;
1496 }
1497
1498 /**
1499 * ice_read_rxq_ctx - Read Rx queue context from HW
1500 * @hw: pointer to the hardware structure
1501 * @rlan_ctx: pointer to the Rx queue context
1502 * @rxq_index: the index of the Rx queue
1503 *
1504 * Read the Rx queue context from the hardware registers, and unpack it into
1505 * the sparse Rx queue context structure.
1506 *
1507 * Returns: 0 on success, or -EINVAL if the Rx queue index is invalid.
1508 */
ice_read_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1509 int ice_read_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1510 u32 rxq_index)
1511 {
1512 ice_rxq_ctx_buf_t buf = {};
1513
1514 if (rxq_index > QRX_CTRL_MAX_INDEX)
1515 return -EINVAL;
1516
1517 ice_copy_rxq_ctx_from_hw(hw, &buf, rxq_index);
1518 ice_unpack_rxq_ctx(&buf, rlan_ctx);
1519
1520 return 0;
1521 }
1522
1523 /* LAN Tx Queue Context */
1524 static const struct packed_field_u8 ice_tlan_ctx_fields[] = {
1525 /* Field Width LSB */
1526 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1527 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1528 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1529 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1530 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1531 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1532 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1533 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1534 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
1535 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1536 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1537 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1538 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1539 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1540 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1541 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1542 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1543 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1544 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1545 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1546 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1547 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1548 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1549 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1550 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1551 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1552 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1553 };
1554
1555 /**
1556 * ice_pack_txq_ctx - Pack Tx queue context into Admin Queue buffer
1557 * @ctx: the Tx queue context to pack
1558 * @buf: the Admin Queue HW buffer to pack into
1559 *
1560 * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1561 * bit-packed Admin Queue layout.
1562 */
ice_pack_txq_ctx(const struct ice_tlan_ctx * ctx,ice_txq_ctx_buf_t * buf)1563 void ice_pack_txq_ctx(const struct ice_tlan_ctx *ctx, ice_txq_ctx_buf_t *buf)
1564 {
1565 pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1566 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1567 }
1568
1569 /**
1570 * ice_pack_txq_ctx_full - Pack Tx queue context into a HW buffer
1571 * @ctx: the Tx queue context to pack
1572 * @buf: the HW buffer to pack into
1573 *
1574 * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1575 * bit-packed HW layout, including the internal data portion.
1576 */
ice_pack_txq_ctx_full(const struct ice_tlan_ctx * ctx,ice_txq_ctx_buf_full_t * buf)1577 static void ice_pack_txq_ctx_full(const struct ice_tlan_ctx *ctx,
1578 ice_txq_ctx_buf_full_t *buf)
1579 {
1580 pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1581 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1582 }
1583
1584 /**
1585 * ice_unpack_txq_ctx_full - Unpack Tx queue context from a HW buffer
1586 * @buf: the HW buffer to unpack from
1587 * @ctx: the Tx queue context to unpack
1588 *
1589 * Unpack the Tx queue context from the HW buffer (including the full internal
1590 * state) into the CPU-friendly structure.
1591 */
ice_unpack_txq_ctx_full(const ice_txq_ctx_buf_full_t * buf,struct ice_tlan_ctx * ctx)1592 static void ice_unpack_txq_ctx_full(const ice_txq_ctx_buf_full_t *buf,
1593 struct ice_tlan_ctx *ctx)
1594 {
1595 unpack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1596 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1597 }
1598
1599 /**
1600 * ice_copy_txq_ctx_from_hw - Copy Tx Queue context from HW registers
1601 * @hw: pointer to the hardware structure
1602 * @txq_ctx: pointer to the packed Tx queue context, including internal state
1603 * @txq_index: the index of the Tx queue
1604 *
1605 * Copy Tx Queue context from HW register space to dense structure
1606 */
ice_copy_txq_ctx_from_hw(struct ice_hw * hw,ice_txq_ctx_buf_full_t * txq_ctx,u32 txq_index)1607 static void ice_copy_txq_ctx_from_hw(struct ice_hw *hw,
1608 ice_txq_ctx_buf_full_t *txq_ctx,
1609 u32 txq_index)
1610 {
1611 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
1612 u32 *ctx = (u32 *)txq_ctx;
1613 u32 txq_base, reg;
1614
1615 /* Get Tx queue base within card space */
1616 txq_base = rd32(hw, PFLAN_TX_QALLOC(hw->pf_id));
1617 txq_base = FIELD_GET(PFLAN_TX_QALLOC_FIRSTQ_M, txq_base);
1618
1619 reg = FIELD_PREP(GLCOMM_QTX_CNTX_CTL_CMD_M,
1620 GLCOMM_QTX_CNTX_CTL_CMD_READ) |
1621 FIELD_PREP(GLCOMM_QTX_CNTX_CTL_QUEUE_ID_M,
1622 txq_base + txq_index) |
1623 GLCOMM_QTX_CNTX_CTL_CMD_EXEC_M;
1624
1625 /* Prevent other PFs on the same adapter from accessing the Tx queue
1626 * context interface concurrently.
1627 */
1628 spin_lock(&pf->adapter->txq_ctx_lock);
1629
1630 wr32(hw, GLCOMM_QTX_CNTX_CTL, reg);
1631 ice_flush(hw);
1632
1633 /* Copy each dword separately from HW */
1634 for (int i = 0; i < ICE_TXQ_CTX_FULL_SIZE_DWORDS; i++, ctx++) {
1635 *ctx = rd32(hw, GLCOMM_QTX_CNTX_DATA(i));
1636
1637 ice_debug(hw, ICE_DBG_QCTX, "qtxdata[%d]: %08X\n", i, *ctx);
1638 }
1639
1640 spin_unlock(&pf->adapter->txq_ctx_lock);
1641 }
1642
1643 /**
1644 * ice_copy_txq_ctx_to_hw - Copy Tx Queue context into HW registers
1645 * @hw: pointer to the hardware structure
1646 * @txq_ctx: pointer to the packed Tx queue context, including internal state
1647 * @txq_index: the index of the Tx queue
1648 */
ice_copy_txq_ctx_to_hw(struct ice_hw * hw,const ice_txq_ctx_buf_full_t * txq_ctx,u32 txq_index)1649 static void ice_copy_txq_ctx_to_hw(struct ice_hw *hw,
1650 const ice_txq_ctx_buf_full_t *txq_ctx,
1651 u32 txq_index)
1652 {
1653 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
1654 u32 txq_base, reg;
1655
1656 /* Get Tx queue base within card space */
1657 txq_base = rd32(hw, PFLAN_TX_QALLOC(hw->pf_id));
1658 txq_base = FIELD_GET(PFLAN_TX_QALLOC_FIRSTQ_M, txq_base);
1659
1660 reg = FIELD_PREP(GLCOMM_QTX_CNTX_CTL_CMD_M,
1661 GLCOMM_QTX_CNTX_CTL_CMD_WRITE_NO_DYN) |
1662 FIELD_PREP(GLCOMM_QTX_CNTX_CTL_QUEUE_ID_M,
1663 txq_base + txq_index) |
1664 GLCOMM_QTX_CNTX_CTL_CMD_EXEC_M;
1665
1666 /* Prevent other PFs on the same adapter from accessing the Tx queue
1667 * context interface concurrently.
1668 */
1669 spin_lock(&pf->adapter->txq_ctx_lock);
1670
1671 /* Copy each dword separately to HW */
1672 for (int i = 0; i < ICE_TXQ_CTX_FULL_SIZE_DWORDS; i++) {
1673 u32 ctx = ((const u32 *)txq_ctx)[i];
1674
1675 wr32(hw, GLCOMM_QTX_CNTX_DATA(i), ctx);
1676
1677 ice_debug(hw, ICE_DBG_QCTX, "qtxdata[%d]: %08X\n", i, ctx);
1678 }
1679
1680 wr32(hw, GLCOMM_QTX_CNTX_CTL, reg);
1681 ice_flush(hw);
1682
1683 spin_unlock(&pf->adapter->txq_ctx_lock);
1684 }
1685
1686 /**
1687 * ice_read_txq_ctx - Read Tx queue context from HW
1688 * @hw: pointer to the hardware structure
1689 * @tlan_ctx: pointer to the Tx queue context
1690 * @txq_index: the index of the Tx queue
1691 *
1692 * Read the Tx queue context from the HW registers, then unpack it into the
1693 * ice_tlan_ctx structure for use.
1694 *
1695 * Returns: 0 on success, or -EINVAL on an invalid Tx queue index.
1696 */
ice_read_txq_ctx(struct ice_hw * hw,struct ice_tlan_ctx * tlan_ctx,u32 txq_index)1697 int ice_read_txq_ctx(struct ice_hw *hw, struct ice_tlan_ctx *tlan_ctx,
1698 u32 txq_index)
1699 {
1700 ice_txq_ctx_buf_full_t buf = {};
1701
1702 if (txq_index > QTX_COMM_HEAD_MAX_INDEX)
1703 return -EINVAL;
1704
1705 ice_copy_txq_ctx_from_hw(hw, &buf, txq_index);
1706 ice_unpack_txq_ctx_full(&buf, tlan_ctx);
1707
1708 return 0;
1709 }
1710
1711 /**
1712 * ice_write_txq_ctx - Write Tx queue context to HW
1713 * @hw: pointer to the hardware structure
1714 * @tlan_ctx: pointer to the Tx queue context
1715 * @txq_index: the index of the Tx queue
1716 *
1717 * Pack the Tx queue context into the dense HW layout, then write it into the
1718 * HW registers.
1719 *
1720 * Returns: 0 on success, or -EINVAL on an invalid Tx queue index.
1721 */
ice_write_txq_ctx(struct ice_hw * hw,struct ice_tlan_ctx * tlan_ctx,u32 txq_index)1722 int ice_write_txq_ctx(struct ice_hw *hw, struct ice_tlan_ctx *tlan_ctx,
1723 u32 txq_index)
1724 {
1725 ice_txq_ctx_buf_full_t buf = {};
1726
1727 if (txq_index > QTX_COMM_HEAD_MAX_INDEX)
1728 return -EINVAL;
1729
1730 ice_pack_txq_ctx_full(tlan_ctx, &buf);
1731 ice_copy_txq_ctx_to_hw(hw, &buf, txq_index);
1732
1733 return 0;
1734 }
1735
1736 /* Tx time Queue Context */
1737 static const struct packed_field_u8 ice_txtime_ctx_fields[] = {
1738 /* Field Width LSB */
1739 ICE_CTX_STORE(ice_txtime_ctx, base, 57, 0),
1740 ICE_CTX_STORE(ice_txtime_ctx, pf_num, 3, 57),
1741 ICE_CTX_STORE(ice_txtime_ctx, vmvf_num, 10, 60),
1742 ICE_CTX_STORE(ice_txtime_ctx, vmvf_type, 2, 70),
1743 ICE_CTX_STORE(ice_txtime_ctx, src_vsi, 10, 72),
1744 ICE_CTX_STORE(ice_txtime_ctx, cpuid, 8, 82),
1745 ICE_CTX_STORE(ice_txtime_ctx, tphrd_desc, 1, 90),
1746 ICE_CTX_STORE(ice_txtime_ctx, qlen, 13, 91),
1747 ICE_CTX_STORE(ice_txtime_ctx, timer_num, 1, 104),
1748 ICE_CTX_STORE(ice_txtime_ctx, txtime_ena_q, 1, 105),
1749 ICE_CTX_STORE(ice_txtime_ctx, drbell_mode_32, 1, 106),
1750 ICE_CTX_STORE(ice_txtime_ctx, ts_res, 4, 107),
1751 ICE_CTX_STORE(ice_txtime_ctx, ts_round_type, 2, 111),
1752 ICE_CTX_STORE(ice_txtime_ctx, ts_pacing_slot, 3, 113),
1753 ICE_CTX_STORE(ice_txtime_ctx, merging_ena, 1, 116),
1754 ICE_CTX_STORE(ice_txtime_ctx, ts_fetch_prof_id, 4, 117),
1755 ICE_CTX_STORE(ice_txtime_ctx, ts_fetch_cache_line_aln_thld, 4, 121),
1756 ICE_CTX_STORE(ice_txtime_ctx, tx_pipe_delay_mode, 1, 125),
1757 };
1758
1759 /**
1760 * ice_pack_txtime_ctx - pack Tx time queue context into a HW buffer
1761 * @ctx: the Tx time queue context to pack
1762 * @buf: the HW buffer to pack into
1763 *
1764 * Pack the Tx time queue context from the CPU-friendly unpacked buffer into
1765 * its bit-packed HW layout.
1766 */
ice_pack_txtime_ctx(const struct ice_txtime_ctx * ctx,ice_txtime_ctx_buf_t * buf)1767 void ice_pack_txtime_ctx(const struct ice_txtime_ctx *ctx,
1768 ice_txtime_ctx_buf_t *buf)
1769 {
1770 pack_fields(buf, sizeof(*buf), ctx, ice_txtime_ctx_fields,
1771 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1772 }
1773
1774 /* Sideband Queue command wrappers */
1775
1776 /**
1777 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1778 * @hw: pointer to the HW struct
1779 * @desc: descriptor describing the command
1780 * @buf: buffer to use for indirect commands (NULL for direct commands)
1781 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1782 * @cd: pointer to command details structure
1783 */
1784 static int
ice_sbq_send_cmd(struct ice_hw * hw,struct ice_sbq_cmd_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1785 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1786 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1787 {
1788 return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1789 (struct libie_aq_desc *)desc, buf, buf_size, cd);
1790 }
1791
1792 /**
1793 * ice_sbq_rw_reg - Fill Sideband Queue command
1794 * @hw: pointer to the HW struct
1795 * @in: message info to be filled in descriptor
1796 * @flags: control queue descriptor flags
1797 */
ice_sbq_rw_reg(struct ice_hw * hw,struct ice_sbq_msg_input * in,u16 flags)1798 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1799 {
1800 struct ice_sbq_cmd_desc desc = {0};
1801 struct ice_sbq_msg_req msg = {0};
1802 u16 msg_len;
1803 int status;
1804
1805 msg_len = sizeof(msg);
1806
1807 msg.dest_dev = in->dest_dev;
1808 msg.opcode = in->opcode;
1809 msg.flags = ICE_SBQ_MSG_FLAGS;
1810 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1811 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1812 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1813
1814 if (in->opcode)
1815 msg.data = cpu_to_le32(in->data);
1816 else
1817 /* data read comes back in completion, so shorten the struct by
1818 * sizeof(msg.data)
1819 */
1820 msg_len -= sizeof(msg.data);
1821
1822 desc.flags = cpu_to_le16(flags);
1823 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1824 desc.param0.cmd_len = cpu_to_le16(msg_len);
1825 status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1826 if (!status && !in->opcode)
1827 in->data = le32_to_cpu
1828 (((struct ice_sbq_msg_cmpl *)&msg)->data);
1829 return status;
1830 }
1831
1832 /* FW Admin Queue command wrappers */
1833
1834 /* Software lock/mutex that is meant to be held while the Global Config Lock
1835 * in firmware is acquired by the software to prevent most (but not all) types
1836 * of AQ commands from being sent to FW
1837 */
1838 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1839
1840 /**
1841 * ice_should_retry_sq_send_cmd
1842 * @opcode: AQ opcode
1843 *
1844 * Decide if we should retry the send command routine for the ATQ, depending
1845 * on the opcode.
1846 */
ice_should_retry_sq_send_cmd(u16 opcode)1847 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1848 {
1849 switch (opcode) {
1850 case ice_aqc_opc_get_link_topo:
1851 case ice_aqc_opc_lldp_stop:
1852 case ice_aqc_opc_lldp_start:
1853 case ice_aqc_opc_lldp_filter_ctrl:
1854 return true;
1855 }
1856
1857 return false;
1858 }
1859
1860 /**
1861 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1862 * @hw: pointer to the HW struct
1863 * @cq: pointer to the specific Control queue
1864 * @desc: prefilled descriptor describing the command
1865 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1866 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1867 * @cd: pointer to command details structure
1868 *
1869 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1870 * Queue if the EBUSY AQ error is returned.
1871 */
1872 static int
ice_sq_send_cmd_retry(struct ice_hw * hw,struct ice_ctl_q_info * cq,struct libie_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1873 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1874 struct libie_aq_desc *desc, void *buf, u16 buf_size,
1875 struct ice_sq_cd *cd)
1876 {
1877 struct libie_aq_desc desc_cpy;
1878 bool is_cmd_for_retry;
1879 u8 idx = 0;
1880 u16 opcode;
1881 int status;
1882
1883 opcode = le16_to_cpu(desc->opcode);
1884 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1885 memset(&desc_cpy, 0, sizeof(desc_cpy));
1886
1887 if (is_cmd_for_retry) {
1888 /* All retryable cmds are direct, without buf. */
1889 WARN_ON(buf);
1890
1891 memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1892 }
1893
1894 do {
1895 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1896
1897 if (!is_cmd_for_retry || !status ||
1898 hw->adminq.sq_last_status != LIBIE_AQ_RC_EBUSY)
1899 break;
1900
1901 memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1902
1903 msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1904
1905 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1906
1907 return status;
1908 }
1909
1910 /**
1911 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1912 * @hw: pointer to the HW struct
1913 * @desc: descriptor describing the command
1914 * @buf: buffer to use for indirect commands (NULL for direct commands)
1915 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1916 * @cd: pointer to command details structure
1917 *
1918 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1919 */
1920 int
ice_aq_send_cmd(struct ice_hw * hw,struct libie_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1921 ice_aq_send_cmd(struct ice_hw *hw, struct libie_aq_desc *desc, void *buf,
1922 u16 buf_size, struct ice_sq_cd *cd)
1923 {
1924 struct libie_aqc_req_res *cmd = libie_aq_raw(desc);
1925 bool lock_acquired = false;
1926 int status;
1927
1928 /* When a package download is in process (i.e. when the firmware's
1929 * Global Configuration Lock resource is held), only the Download
1930 * Package, Get Version, Get Package Info List, Upload Section,
1931 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1932 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1933 * Recipes to Profile Association, and Release Resource (with resource
1934 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1935 * must block until the package download completes and the Global Config
1936 * Lock is released. See also ice_acquire_global_cfg_lock().
1937 */
1938 switch (le16_to_cpu(desc->opcode)) {
1939 case ice_aqc_opc_download_pkg:
1940 case ice_aqc_opc_get_pkg_info_list:
1941 case ice_aqc_opc_get_ver:
1942 case ice_aqc_opc_upload_section:
1943 case ice_aqc_opc_update_pkg:
1944 case ice_aqc_opc_set_port_params:
1945 case ice_aqc_opc_get_vlan_mode_parameters:
1946 case ice_aqc_opc_set_vlan_mode_parameters:
1947 case ice_aqc_opc_set_tx_topo:
1948 case ice_aqc_opc_get_tx_topo:
1949 case ice_aqc_opc_add_recipe:
1950 case ice_aqc_opc_recipe_to_profile:
1951 case ice_aqc_opc_get_recipe:
1952 case ice_aqc_opc_get_recipe_to_profile:
1953 break;
1954 case ice_aqc_opc_release_res:
1955 if (le16_to_cpu(cmd->res_id) == LIBIE_AQC_RES_ID_GLBL_LOCK)
1956 break;
1957 fallthrough;
1958 default:
1959 mutex_lock(&ice_global_cfg_lock_sw);
1960 lock_acquired = true;
1961 break;
1962 }
1963
1964 status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1965 if (lock_acquired)
1966 mutex_unlock(&ice_global_cfg_lock_sw);
1967
1968 return status;
1969 }
1970
1971 /**
1972 * ice_aq_get_fw_ver
1973 * @hw: pointer to the HW struct
1974 * @cd: pointer to command details structure or NULL
1975 *
1976 * Get the firmware version (0x0001) from the admin queue commands
1977 */
ice_aq_get_fw_ver(struct ice_hw * hw,struct ice_sq_cd * cd)1978 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1979 {
1980 struct libie_aqc_get_ver *resp;
1981 struct libie_aq_desc desc;
1982 int status;
1983
1984 resp = &desc.params.get_ver;
1985
1986 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1987
1988 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1989
1990 if (!status) {
1991 hw->fw_branch = resp->fw_branch;
1992 hw->fw_maj_ver = resp->fw_major;
1993 hw->fw_min_ver = resp->fw_minor;
1994 hw->fw_patch = resp->fw_patch;
1995 hw->fw_build = le32_to_cpu(resp->fw_build);
1996 hw->api_branch = resp->api_branch;
1997 hw->api_maj_ver = resp->api_major;
1998 hw->api_min_ver = resp->api_minor;
1999 hw->api_patch = resp->api_patch;
2000 }
2001
2002 return status;
2003 }
2004
2005 /**
2006 * ice_aq_send_driver_ver
2007 * @hw: pointer to the HW struct
2008 * @dv: driver's major, minor version
2009 * @cd: pointer to command details structure or NULL
2010 *
2011 * Send the driver version (0x0002) to the firmware
2012 */
2013 int
ice_aq_send_driver_ver(struct ice_hw * hw,struct ice_driver_ver * dv,struct ice_sq_cd * cd)2014 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
2015 struct ice_sq_cd *cd)
2016 {
2017 struct libie_aqc_driver_ver *cmd;
2018 struct libie_aq_desc desc;
2019 u16 len;
2020
2021 cmd = &desc.params.driver_ver;
2022
2023 if (!dv)
2024 return -EINVAL;
2025
2026 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
2027
2028 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
2029 cmd->major_ver = dv->major_ver;
2030 cmd->minor_ver = dv->minor_ver;
2031 cmd->build_ver = dv->build_ver;
2032 cmd->subbuild_ver = dv->subbuild_ver;
2033
2034 len = 0;
2035 while (len < sizeof(dv->driver_string) &&
2036 isascii(dv->driver_string[len]) && dv->driver_string[len])
2037 len++;
2038
2039 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
2040 }
2041
2042 /**
2043 * ice_aq_q_shutdown
2044 * @hw: pointer to the HW struct
2045 * @unloading: is the driver unloading itself
2046 *
2047 * Tell the Firmware that we're shutting down the AdminQ and whether
2048 * or not the driver is unloading as well (0x0003).
2049 */
ice_aq_q_shutdown(struct ice_hw * hw,bool unloading)2050 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
2051 {
2052 struct ice_aqc_q_shutdown *cmd;
2053 struct libie_aq_desc desc;
2054
2055 cmd = libie_aq_raw(&desc);
2056
2057 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
2058
2059 if (unloading)
2060 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
2061
2062 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2063 }
2064
2065 /**
2066 * ice_aq_req_res
2067 * @hw: pointer to the HW struct
2068 * @res: resource ID
2069 * @access: access type
2070 * @sdp_number: resource number
2071 * @timeout: the maximum time in ms that the driver may hold the resource
2072 * @cd: pointer to command details structure or NULL
2073 *
2074 * Requests common resource using the admin queue commands (0x0008).
2075 * When attempting to acquire the Global Config Lock, the driver can
2076 * learn of three states:
2077 * 1) 0 - acquired lock, and can perform download package
2078 * 2) -EIO - did not get lock, driver should fail to load
2079 * 3) -EALREADY - did not get lock, but another driver has
2080 * successfully downloaded the package; the driver does
2081 * not have to download the package and can continue
2082 * loading
2083 *
2084 * Note that if the caller is in an acquire lock, perform action, release lock
2085 * phase of operation, it is possible that the FW may detect a timeout and issue
2086 * a CORER. In this case, the driver will receive a CORER interrupt and will
2087 * have to determine its cause. The calling thread that is handling this flow
2088 * will likely get an error propagated back to it indicating the Download
2089 * Package, Update Package or the Release Resource AQ commands timed out.
2090 */
2091 static int
ice_aq_req_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u8 sdp_number,u32 * timeout,struct ice_sq_cd * cd)2092 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2093 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
2094 struct ice_sq_cd *cd)
2095 {
2096 struct libie_aqc_req_res *cmd_resp;
2097 struct libie_aq_desc desc;
2098 int status;
2099
2100 cmd_resp = &desc.params.res_owner;
2101
2102 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
2103
2104 cmd_resp->res_id = cpu_to_le16(res);
2105 cmd_resp->access_type = cpu_to_le16(access);
2106 cmd_resp->res_number = cpu_to_le32(sdp_number);
2107 cmd_resp->timeout = cpu_to_le32(*timeout);
2108 *timeout = 0;
2109
2110 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2111
2112 /* The completion specifies the maximum time in ms that the driver
2113 * may hold the resource in the Timeout field.
2114 */
2115
2116 /* Global config lock response utilizes an additional status field.
2117 *
2118 * If the Global config lock resource is held by some other driver, the
2119 * command completes with LIBIE_AQ_RES_GLBL_IN_PROG in the status field
2120 * and the timeout field indicates the maximum time the current owner
2121 * of the resource has to free it.
2122 */
2123 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
2124 if (le16_to_cpu(cmd_resp->status) == LIBIE_AQ_RES_GLBL_SUCCESS) {
2125 *timeout = le32_to_cpu(cmd_resp->timeout);
2126 return 0;
2127 } else if (le16_to_cpu(cmd_resp->status) ==
2128 LIBIE_AQ_RES_GLBL_IN_PROG) {
2129 *timeout = le32_to_cpu(cmd_resp->timeout);
2130 return -EIO;
2131 } else if (le16_to_cpu(cmd_resp->status) ==
2132 LIBIE_AQ_RES_GLBL_DONE) {
2133 return -EALREADY;
2134 }
2135
2136 /* invalid FW response, force a timeout immediately */
2137 *timeout = 0;
2138 return -EIO;
2139 }
2140
2141 /* If the resource is held by some other driver, the command completes
2142 * with a busy return value and the timeout field indicates the maximum
2143 * time the current owner of the resource has to free it.
2144 */
2145 if (!status || hw->adminq.sq_last_status == LIBIE_AQ_RC_EBUSY)
2146 *timeout = le32_to_cpu(cmd_resp->timeout);
2147
2148 return status;
2149 }
2150
2151 /**
2152 * ice_aq_release_res
2153 * @hw: pointer to the HW struct
2154 * @res: resource ID
2155 * @sdp_number: resource number
2156 * @cd: pointer to command details structure or NULL
2157 *
2158 * release common resource using the admin queue commands (0x0009)
2159 */
2160 static int
ice_aq_release_res(struct ice_hw * hw,enum ice_aq_res_ids res,u8 sdp_number,struct ice_sq_cd * cd)2161 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
2162 struct ice_sq_cd *cd)
2163 {
2164 struct libie_aqc_req_res *cmd;
2165 struct libie_aq_desc desc;
2166
2167 cmd = &desc.params.res_owner;
2168
2169 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
2170
2171 cmd->res_id = cpu_to_le16(res);
2172 cmd->res_number = cpu_to_le32(sdp_number);
2173
2174 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2175 }
2176
2177 /**
2178 * ice_acquire_res
2179 * @hw: pointer to the HW structure
2180 * @res: resource ID
2181 * @access: access type (read or write)
2182 * @timeout: timeout in milliseconds
2183 *
2184 * This function will attempt to acquire the ownership of a resource.
2185 */
2186 int
ice_acquire_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u32 timeout)2187 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2188 enum ice_aq_res_access_type access, u32 timeout)
2189 {
2190 #define ICE_RES_POLLING_DELAY_MS 10
2191 u32 delay = ICE_RES_POLLING_DELAY_MS;
2192 u32 time_left = timeout;
2193 int status;
2194
2195 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2196
2197 /* A return code of -EALREADY means that another driver has
2198 * previously acquired the resource and performed any necessary updates;
2199 * in this case the caller does not obtain the resource and has no
2200 * further work to do.
2201 */
2202 if (status == -EALREADY)
2203 goto ice_acquire_res_exit;
2204
2205 if (status)
2206 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
2207
2208 /* If necessary, poll until the current lock owner timeouts */
2209 timeout = time_left;
2210 while (status && timeout && time_left) {
2211 mdelay(delay);
2212 timeout = (timeout > delay) ? timeout - delay : 0;
2213 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2214
2215 if (status == -EALREADY)
2216 /* lock free, but no work to do */
2217 break;
2218
2219 if (!status)
2220 /* lock acquired */
2221 break;
2222 }
2223 if (status && status != -EALREADY)
2224 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2225
2226 ice_acquire_res_exit:
2227 if (status == -EALREADY) {
2228 if (access == ICE_RES_WRITE)
2229 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2230 else
2231 ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
2232 }
2233 return status;
2234 }
2235
2236 /**
2237 * ice_release_res
2238 * @hw: pointer to the HW structure
2239 * @res: resource ID
2240 *
2241 * This function will release a resource using the proper Admin Command.
2242 */
ice_release_res(struct ice_hw * hw,enum ice_aq_res_ids res)2243 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2244 {
2245 unsigned long timeout;
2246 int status;
2247
2248 /* there are some rare cases when trying to release the resource
2249 * results in an admin queue timeout, so handle them correctly
2250 */
2251 timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
2252 do {
2253 status = ice_aq_release_res(hw, res, 0, NULL);
2254 if (status != -EIO)
2255 break;
2256 usleep_range(1000, 2000);
2257 } while (time_before(jiffies, timeout));
2258 }
2259
2260 /**
2261 * ice_aq_alloc_free_res - command to allocate/free resources
2262 * @hw: pointer to the HW struct
2263 * @buf: Indirect buffer to hold data parameters and response
2264 * @buf_size: size of buffer for indirect commands
2265 * @opc: pass in the command opcode
2266 *
2267 * Helper function to allocate/free resources using the admin queue commands
2268 */
ice_aq_alloc_free_res(struct ice_hw * hw,struct ice_aqc_alloc_free_res_elem * buf,u16 buf_size,enum ice_adminq_opc opc)2269 int ice_aq_alloc_free_res(struct ice_hw *hw,
2270 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2271 enum ice_adminq_opc opc)
2272 {
2273 struct ice_aqc_alloc_free_res_cmd *cmd;
2274 struct libie_aq_desc desc;
2275
2276 cmd = libie_aq_raw(&desc);
2277
2278 if (!buf || buf_size < flex_array_size(buf, elem, 1))
2279 return -EINVAL;
2280
2281 ice_fill_dflt_direct_cmd_desc(&desc, opc);
2282
2283 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
2284
2285 cmd->num_entries = cpu_to_le16(1);
2286
2287 return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
2288 }
2289
2290 /**
2291 * ice_alloc_hw_res - allocate resource
2292 * @hw: pointer to the HW struct
2293 * @type: type of resource
2294 * @num: number of resources to allocate
2295 * @btm: allocate from bottom
2296 * @res: pointer to array that will receive the resources
2297 */
2298 int
ice_alloc_hw_res(struct ice_hw * hw,u16 type,u16 num,bool btm,u16 * res)2299 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2300 {
2301 struct ice_aqc_alloc_free_res_elem *buf;
2302 u16 buf_len;
2303 int status;
2304
2305 buf_len = struct_size(buf, elem, num);
2306 buf = kzalloc(buf_len, GFP_KERNEL);
2307 if (!buf)
2308 return -ENOMEM;
2309
2310 /* Prepare buffer to allocate resource. */
2311 buf->num_elems = cpu_to_le16(num);
2312 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2313 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2314 if (btm)
2315 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2316
2317 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2318 if (status)
2319 goto ice_alloc_res_exit;
2320
2321 memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2322
2323 ice_alloc_res_exit:
2324 kfree(buf);
2325 return status;
2326 }
2327
2328 /**
2329 * ice_free_hw_res - free allocated HW resource
2330 * @hw: pointer to the HW struct
2331 * @type: type of resource to free
2332 * @num: number of resources
2333 * @res: pointer to array that contains the resources to free
2334 */
ice_free_hw_res(struct ice_hw * hw,u16 type,u16 num,u16 * res)2335 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2336 {
2337 struct ice_aqc_alloc_free_res_elem *buf;
2338 u16 buf_len;
2339 int status;
2340
2341 buf_len = struct_size(buf, elem, num);
2342 buf = kzalloc(buf_len, GFP_KERNEL);
2343 if (!buf)
2344 return -ENOMEM;
2345
2346 /* Prepare buffer to free resource. */
2347 buf->num_elems = cpu_to_le16(num);
2348 buf->res_type = cpu_to_le16(type);
2349 memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2350
2351 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2352 if (status)
2353 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2354
2355 kfree(buf);
2356 return status;
2357 }
2358
2359 /**
2360 * ice_get_num_per_func - determine number of resources per PF
2361 * @hw: pointer to the HW structure
2362 * @max: value to be evenly split between each PF
2363 *
2364 * Determine the number of valid functions by going through the bitmap returned
2365 * from parsing capabilities and use this to calculate the number of resources
2366 * per PF based on the max value passed in.
2367 */
ice_get_num_per_func(struct ice_hw * hw,u32 max)2368 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2369 {
2370 u8 funcs;
2371
2372 #define ICE_CAPS_VALID_FUNCS_M 0xFF
2373 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2374 ICE_CAPS_VALID_FUNCS_M);
2375
2376 if (!funcs)
2377 return 0;
2378
2379 return max / funcs;
2380 }
2381
2382 /**
2383 * ice_parse_common_caps - parse common device/function capabilities
2384 * @hw: pointer to the HW struct
2385 * @caps: pointer to common capabilities structure
2386 * @elem: the capability element to parse
2387 * @prefix: message prefix for tracing capabilities
2388 *
2389 * Given a capability element, extract relevant details into the common
2390 * capability structure.
2391 *
2392 * Returns: true if the capability matches one of the common capability ids,
2393 * false otherwise.
2394 */
2395 static bool
ice_parse_common_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps,struct libie_aqc_list_caps_elem * elem,const char * prefix)2396 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2397 struct libie_aqc_list_caps_elem *elem, const char *prefix)
2398 {
2399 u32 logical_id = le32_to_cpu(elem->logical_id);
2400 u32 phys_id = le32_to_cpu(elem->phys_id);
2401 u32 number = le32_to_cpu(elem->number);
2402 u16 cap = le16_to_cpu(elem->cap);
2403 bool found = true;
2404
2405 switch (cap) {
2406 case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
2407 caps->valid_functions = number;
2408 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2409 caps->valid_functions);
2410 break;
2411 case LIBIE_AQC_CAPS_SRIOV:
2412 caps->sr_iov_1_1 = (number == 1);
2413 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2414 caps->sr_iov_1_1);
2415 break;
2416 case LIBIE_AQC_CAPS_DCB:
2417 caps->dcb = (number == 1);
2418 caps->active_tc_bitmap = logical_id;
2419 caps->maxtc = phys_id;
2420 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2421 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2422 caps->active_tc_bitmap);
2423 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2424 break;
2425 case LIBIE_AQC_CAPS_RSS:
2426 caps->rss_table_size = number;
2427 caps->rss_table_entry_width = logical_id;
2428 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2429 caps->rss_table_size);
2430 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2431 caps->rss_table_entry_width);
2432 break;
2433 case LIBIE_AQC_CAPS_RXQS:
2434 caps->num_rxq = number;
2435 caps->rxq_first_id = phys_id;
2436 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2437 caps->num_rxq);
2438 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2439 caps->rxq_first_id);
2440 break;
2441 case LIBIE_AQC_CAPS_TXQS:
2442 caps->num_txq = number;
2443 caps->txq_first_id = phys_id;
2444 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2445 caps->num_txq);
2446 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2447 caps->txq_first_id);
2448 break;
2449 case LIBIE_AQC_CAPS_MSIX:
2450 caps->num_msix_vectors = number;
2451 caps->msix_vector_first_id = phys_id;
2452 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2453 caps->num_msix_vectors);
2454 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2455 caps->msix_vector_first_id);
2456 break;
2457 case LIBIE_AQC_CAPS_PENDING_NVM_VER:
2458 caps->nvm_update_pending_nvm = true;
2459 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2460 break;
2461 case LIBIE_AQC_CAPS_PENDING_OROM_VER:
2462 caps->nvm_update_pending_orom = true;
2463 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2464 break;
2465 case LIBIE_AQC_CAPS_PENDING_NET_VER:
2466 caps->nvm_update_pending_netlist = true;
2467 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2468 break;
2469 case LIBIE_AQC_CAPS_NVM_MGMT:
2470 caps->nvm_unified_update =
2471 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2472 true : false;
2473 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2474 caps->nvm_unified_update);
2475 break;
2476 case LIBIE_AQC_CAPS_RDMA:
2477 if (IS_ENABLED(CONFIG_INFINIBAND_IRDMA))
2478 caps->rdma = (number == 1);
2479 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2480 break;
2481 case LIBIE_AQC_CAPS_MAX_MTU:
2482 caps->max_mtu = number;
2483 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2484 prefix, caps->max_mtu);
2485 break;
2486 case LIBIE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2487 caps->pcie_reset_avoidance = (number > 0);
2488 ice_debug(hw, ICE_DBG_INIT,
2489 "%s: pcie_reset_avoidance = %d\n", prefix,
2490 caps->pcie_reset_avoidance);
2491 break;
2492 case LIBIE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2493 caps->reset_restrict_support = (number == 1);
2494 ice_debug(hw, ICE_DBG_INIT,
2495 "%s: reset_restrict_support = %d\n", prefix,
2496 caps->reset_restrict_support);
2497 break;
2498 case LIBIE_AQC_CAPS_FW_LAG_SUPPORT:
2499 caps->roce_lag = number & LIBIE_AQC_BIT_ROCEV2_LAG;
2500 ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2501 prefix, caps->roce_lag);
2502 caps->sriov_lag = number & LIBIE_AQC_BIT_SRIOV_LAG;
2503 ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2504 prefix, caps->sriov_lag);
2505 caps->sriov_aa_lag = number & LIBIE_AQC_BIT_SRIOV_AA_LAG;
2506 ice_debug(hw, ICE_DBG_INIT, "%s: sriov_aa_lag = %u\n",
2507 prefix, caps->sriov_aa_lag);
2508 break;
2509 case LIBIE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2510 caps->tx_sched_topo_comp_mode_en = (number == 1);
2511 break;
2512 default:
2513 /* Not one of the recognized common capabilities */
2514 found = false;
2515 }
2516
2517 return found;
2518 }
2519
2520 /**
2521 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2522 * @hw: pointer to the HW structure
2523 * @caps: pointer to capabilities structure to fix
2524 *
2525 * Re-calculate the capabilities that are dependent on the number of physical
2526 * ports; i.e. some features are not supported or function differently on
2527 * devices with more than 4 ports.
2528 */
2529 static void
ice_recalc_port_limited_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps)2530 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2531 {
2532 /* This assumes device capabilities are always scanned before function
2533 * capabilities during the initialization flow.
2534 */
2535 if (hw->dev_caps.num_funcs > 4) {
2536 /* Max 4 TCs per port */
2537 caps->maxtc = 4;
2538 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2539 caps->maxtc);
2540 if (caps->rdma) {
2541 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2542 caps->rdma = 0;
2543 }
2544
2545 /* print message only when processing device capabilities
2546 * during initialization.
2547 */
2548 if (caps == &hw->dev_caps.common_cap)
2549 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2550 }
2551 }
2552
2553 /**
2554 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2555 * @hw: pointer to the HW struct
2556 * @func_p: pointer to function capabilities structure
2557 * @cap: pointer to the capability element to parse
2558 *
2559 * Extract function capabilities for ICE_AQC_CAPS_VF.
2560 */
2561 static void
ice_parse_vf_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct libie_aqc_list_caps_elem * cap)2562 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2563 struct libie_aqc_list_caps_elem *cap)
2564 {
2565 u32 logical_id = le32_to_cpu(cap->logical_id);
2566 u32 number = le32_to_cpu(cap->number);
2567
2568 func_p->num_allocd_vfs = number;
2569 func_p->vf_base_id = logical_id;
2570 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2571 func_p->num_allocd_vfs);
2572 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2573 func_p->vf_base_id);
2574 }
2575
2576 /**
2577 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2578 * @hw: pointer to the HW struct
2579 * @func_p: pointer to function capabilities structure
2580 * @cap: pointer to the capability element to parse
2581 *
2582 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2583 */
2584 static void
ice_parse_vsi_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct libie_aqc_list_caps_elem * cap)2585 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2586 struct libie_aqc_list_caps_elem *cap)
2587 {
2588 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2589 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2590 le32_to_cpu(cap->number));
2591 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2592 func_p->guar_num_vsi);
2593 }
2594
2595 /**
2596 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2597 * @hw: pointer to the HW struct
2598 * @func_p: pointer to function capabilities structure
2599 * @cap: pointer to the capability element to parse
2600 *
2601 * Extract function capabilities for ICE_AQC_CAPS_1588.
2602 */
2603 static void
ice_parse_1588_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct libie_aqc_list_caps_elem * cap)2604 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2605 struct libie_aqc_list_caps_elem *cap)
2606 {
2607 struct ice_ts_func_info *info = &func_p->ts_func_info;
2608 u32 number = le32_to_cpu(cap->number);
2609
2610 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2611 func_p->common_cap.ieee_1588 = info->ena;
2612
2613 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2614 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2615 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2616 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2617
2618 if (hw->mac_type != ICE_MAC_GENERIC_3K_E825) {
2619 info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2620 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2621 } else {
2622 info->clk_freq = ICE_TSPLL_FREQ_156_250;
2623 info->clk_src = ICE_CLK_SRC_TIME_REF;
2624 }
2625
2626 if (info->clk_freq < NUM_ICE_TSPLL_FREQ) {
2627 info->time_ref = (enum ice_tspll_freq)info->clk_freq;
2628 } else {
2629 /* Unknown clock frequency, so assume a (probably incorrect)
2630 * default to avoid out-of-bounds look ups of frequency
2631 * related information.
2632 */
2633 ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2634 info->clk_freq);
2635 info->time_ref = ICE_TSPLL_FREQ_25_000;
2636 }
2637
2638 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2639 func_p->common_cap.ieee_1588);
2640 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2641 info->src_tmr_owned);
2642 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2643 info->tmr_ena);
2644 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2645 info->tmr_index_owned);
2646 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2647 info->tmr_index_assoc);
2648 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2649 info->clk_freq);
2650 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2651 info->clk_src);
2652 }
2653
2654 /**
2655 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2656 * @hw: pointer to the HW struct
2657 * @func_p: pointer to function capabilities structure
2658 *
2659 * Extract function capabilities for ICE_AQC_CAPS_FD.
2660 */
2661 static void
ice_parse_fdir_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p)2662 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2663 {
2664 u32 reg_val, gsize, bsize;
2665
2666 reg_val = rd32(hw, GLQF_FD_SIZE);
2667 switch (hw->mac_type) {
2668 case ICE_MAC_E830:
2669 gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2670 bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2671 break;
2672 case ICE_MAC_E810:
2673 default:
2674 gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2675 bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2676 }
2677 func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2678 func_p->fd_fltr_best_effort = bsize;
2679
2680 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2681 func_p->fd_fltr_guar);
2682 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2683 func_p->fd_fltr_best_effort);
2684 }
2685
2686 /**
2687 * ice_parse_func_caps - Parse function capabilities
2688 * @hw: pointer to the HW struct
2689 * @func_p: pointer to function capabilities structure
2690 * @buf: buffer containing the function capability records
2691 * @cap_count: the number of capabilities
2692 *
2693 * Helper function to parse function (0x000A) capabilities list. For
2694 * capabilities shared between device and function, this relies on
2695 * ice_parse_common_caps.
2696 *
2697 * Loop through the list of provided capabilities and extract the relevant
2698 * data into the function capabilities structured.
2699 */
2700 static void
ice_parse_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,void * buf,u32 cap_count)2701 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2702 void *buf, u32 cap_count)
2703 {
2704 struct libie_aqc_list_caps_elem *cap_resp;
2705 u32 i;
2706
2707 cap_resp = buf;
2708
2709 memset(func_p, 0, sizeof(*func_p));
2710
2711 for (i = 0; i < cap_count; i++) {
2712 u16 cap = le16_to_cpu(cap_resp[i].cap);
2713 bool found;
2714
2715 found = ice_parse_common_caps(hw, &func_p->common_cap,
2716 &cap_resp[i], "func caps");
2717
2718 switch (cap) {
2719 case LIBIE_AQC_CAPS_VF:
2720 ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2721 break;
2722 case LIBIE_AQC_CAPS_VSI:
2723 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2724 break;
2725 case LIBIE_AQC_CAPS_1588:
2726 ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2727 break;
2728 case LIBIE_AQC_CAPS_FD:
2729 ice_parse_fdir_func_caps(hw, func_p);
2730 break;
2731 default:
2732 /* Don't list common capabilities as unknown */
2733 if (!found)
2734 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2735 i, cap);
2736 break;
2737 }
2738 }
2739
2740 ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2741 }
2742
2743 /**
2744 * ice_func_id_to_logical_id - map from function id to logical pf id
2745 * @active_function_bitmap: active function bitmap
2746 * @pf_id: function number of device
2747 *
2748 * Return: logical PF ID.
2749 */
ice_func_id_to_logical_id(u32 active_function_bitmap,u8 pf_id)2750 static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2751 {
2752 u8 logical_id = 0;
2753 u8 i;
2754
2755 for (i = 0; i < pf_id; i++)
2756 if (active_function_bitmap & BIT(i))
2757 logical_id++;
2758
2759 return logical_id;
2760 }
2761
2762 /**
2763 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2764 * @hw: pointer to the HW struct
2765 * @dev_p: pointer to device capabilities structure
2766 * @cap: capability element to parse
2767 *
2768 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2769 */
2770 static void
ice_parse_valid_functions_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2771 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2772 struct libie_aqc_list_caps_elem *cap)
2773 {
2774 u32 number = le32_to_cpu(cap->number);
2775
2776 dev_p->num_funcs = hweight32(number);
2777 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2778 dev_p->num_funcs);
2779
2780 hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id);
2781 }
2782
2783 /**
2784 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2785 * @hw: pointer to the HW struct
2786 * @dev_p: pointer to device capabilities structure
2787 * @cap: capability element to parse
2788 *
2789 * Parse ICE_AQC_CAPS_VF for device capabilities.
2790 */
2791 static void
ice_parse_vf_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2792 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2793 struct libie_aqc_list_caps_elem *cap)
2794 {
2795 u32 number = le32_to_cpu(cap->number);
2796
2797 dev_p->num_vfs_exposed = number;
2798 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2799 dev_p->num_vfs_exposed);
2800 }
2801
2802 /**
2803 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2804 * @hw: pointer to the HW struct
2805 * @dev_p: pointer to device capabilities structure
2806 * @cap: capability element to parse
2807 *
2808 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2809 */
2810 static void
ice_parse_vsi_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2811 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2812 struct libie_aqc_list_caps_elem *cap)
2813 {
2814 u32 number = le32_to_cpu(cap->number);
2815
2816 dev_p->num_vsi_allocd_to_host = number;
2817 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2818 dev_p->num_vsi_allocd_to_host);
2819 }
2820
2821 /**
2822 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2823 * @hw: pointer to the HW struct
2824 * @dev_p: pointer to device capabilities structure
2825 * @cap: capability element to parse
2826 *
2827 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2828 */
2829 static void
ice_parse_1588_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2830 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2831 struct libie_aqc_list_caps_elem *cap)
2832 {
2833 struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2834 u32 logical_id = le32_to_cpu(cap->logical_id);
2835 u32 phys_id = le32_to_cpu(cap->phys_id);
2836 u32 number = le32_to_cpu(cap->number);
2837
2838 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2839 dev_p->common_cap.ieee_1588 = info->ena;
2840
2841 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2842 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2843 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2844
2845 info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2846 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2847 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2848
2849 info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2850 info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2851 info->ll_phy_tmr_update = ((number & ICE_TS_LL_PHY_TMR_UPDATE_M) != 0);
2852
2853 info->ena_ports = logical_id;
2854 info->tmr_own_map = phys_id;
2855
2856 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2857 dev_p->common_cap.ieee_1588);
2858 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2859 info->tmr0_owner);
2860 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2861 info->tmr0_owned);
2862 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2863 info->tmr0_ena);
2864 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2865 info->tmr1_owner);
2866 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2867 info->tmr1_owned);
2868 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2869 info->tmr1_ena);
2870 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2871 info->ts_ll_read);
2872 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2873 info->ts_ll_int_read);
2874 ice_debug(hw, ICE_DBG_INIT, "dev caps: ll_phy_tmr_update = %u\n",
2875 info->ll_phy_tmr_update);
2876 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2877 info->ena_ports);
2878 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2879 info->tmr_own_map);
2880 }
2881
2882 /**
2883 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2884 * @hw: pointer to the HW struct
2885 * @dev_p: pointer to device capabilities structure
2886 * @cap: capability element to parse
2887 *
2888 * Parse ICE_AQC_CAPS_FD for device capabilities.
2889 */
2890 static void
ice_parse_fdir_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2891 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2892 struct libie_aqc_list_caps_elem *cap)
2893 {
2894 u32 number = le32_to_cpu(cap->number);
2895
2896 dev_p->num_flow_director_fltr = number;
2897 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2898 dev_p->num_flow_director_fltr);
2899 }
2900
2901 /**
2902 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2903 * @hw: pointer to the HW struct
2904 * @dev_p: pointer to device capabilities structure
2905 * @cap: capability element to parse
2906 *
2907 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2908 * enabled sensors.
2909 */
2910 static void
ice_parse_sensor_reading_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2911 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2912 struct libie_aqc_list_caps_elem *cap)
2913 {
2914 dev_p->supported_sensors = le32_to_cpu(cap->number);
2915
2916 ice_debug(hw, ICE_DBG_INIT,
2917 "dev caps: supported sensors (bitmap) = 0x%x\n",
2918 dev_p->supported_sensors);
2919 }
2920
2921 /**
2922 * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2923 * @hw: pointer to the HW struct
2924 * @dev_p: pointer to device capabilities structure
2925 * @cap: capability element to parse
2926 *
2927 * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2928 */
ice_parse_nac_topo_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2929 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2930 struct ice_hw_dev_caps *dev_p,
2931 struct libie_aqc_list_caps_elem *cap)
2932 {
2933 dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2934 dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2935
2936 dev_info(ice_hw_to_dev(hw),
2937 "PF is configured in %s mode with IP instance ID %d\n",
2938 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2939 "primary" : "secondary", dev_p->nac_topo.id);
2940
2941 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2942 !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2943 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2944 !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2945 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2946 dev_p->nac_topo.id);
2947 }
2948
2949 /**
2950 * ice_parse_dev_caps - Parse device capabilities
2951 * @hw: pointer to the HW struct
2952 * @dev_p: pointer to device capabilities structure
2953 * @buf: buffer containing the device capability records
2954 * @cap_count: the number of capabilities
2955 *
2956 * Helper device to parse device (0x000B) capabilities list. For
2957 * capabilities shared between device and function, this relies on
2958 * ice_parse_common_caps.
2959 *
2960 * Loop through the list of provided capabilities and extract the relevant
2961 * data into the device capabilities structured.
2962 */
2963 static void
ice_parse_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,void * buf,u32 cap_count)2964 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2965 void *buf, u32 cap_count)
2966 {
2967 struct libie_aqc_list_caps_elem *cap_resp;
2968 u32 i;
2969
2970 cap_resp = buf;
2971
2972 memset(dev_p, 0, sizeof(*dev_p));
2973
2974 for (i = 0; i < cap_count; i++) {
2975 u16 cap = le16_to_cpu(cap_resp[i].cap);
2976 bool found;
2977
2978 found = ice_parse_common_caps(hw, &dev_p->common_cap,
2979 &cap_resp[i], "dev caps");
2980
2981 switch (cap) {
2982 case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
2983 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2984 break;
2985 case LIBIE_AQC_CAPS_VF:
2986 ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2987 break;
2988 case LIBIE_AQC_CAPS_VSI:
2989 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2990 break;
2991 case LIBIE_AQC_CAPS_1588:
2992 ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2993 break;
2994 case LIBIE_AQC_CAPS_FD:
2995 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2996 break;
2997 case LIBIE_AQC_CAPS_SENSOR_READING:
2998 ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2999 break;
3000 case LIBIE_AQC_CAPS_NAC_TOPOLOGY:
3001 ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
3002 break;
3003 default:
3004 /* Don't list common capabilities as unknown */
3005 if (!found)
3006 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
3007 i, cap);
3008 break;
3009 }
3010 }
3011
3012 ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
3013 }
3014
3015 /**
3016 * ice_is_phy_rclk_in_netlist
3017 * @hw: pointer to the hw struct
3018 *
3019 * Check if the PHY Recovered Clock device is present in the netlist
3020 */
ice_is_phy_rclk_in_netlist(struct ice_hw * hw)3021 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
3022 {
3023 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
3024 ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
3025 ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
3026 ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
3027 ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
3028 ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
3029 return false;
3030
3031 return true;
3032 }
3033
3034 /**
3035 * ice_is_clock_mux_in_netlist
3036 * @hw: pointer to the hw struct
3037 *
3038 * Check if the Clock Multiplexer device is present in the netlist
3039 */
ice_is_clock_mux_in_netlist(struct ice_hw * hw)3040 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
3041 {
3042 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
3043 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3044 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
3045 NULL))
3046 return false;
3047
3048 return true;
3049 }
3050
3051 /**
3052 * ice_is_cgu_in_netlist - check for CGU presence
3053 * @hw: pointer to the hw struct
3054 *
3055 * Check if the Clock Generation Unit (CGU) device is present in the netlist.
3056 * Save the CGU part number in the hw structure for later use.
3057 * Return:
3058 * * true - cgu is present
3059 * * false - cgu is not present
3060 */
ice_is_cgu_in_netlist(struct ice_hw * hw)3061 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
3062 {
3063 if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
3064 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3065 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
3066 NULL)) {
3067 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
3068 return true;
3069 } else if (!ice_find_netlist_node(hw,
3070 ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
3071 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3072 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
3073 NULL)) {
3074 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
3075 return true;
3076 }
3077
3078 return false;
3079 }
3080
3081 /**
3082 * ice_is_gps_in_netlist
3083 * @hw: pointer to the hw struct
3084 *
3085 * Check if the GPS generic device is present in the netlist
3086 */
ice_is_gps_in_netlist(struct ice_hw * hw)3087 bool ice_is_gps_in_netlist(struct ice_hw *hw)
3088 {
3089 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
3090 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3091 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
3092 return false;
3093
3094 return true;
3095 }
3096
3097 /**
3098 * ice_aq_list_caps - query function/device capabilities
3099 * @hw: pointer to the HW struct
3100 * @buf: a buffer to hold the capabilities
3101 * @buf_size: size of the buffer
3102 * @cap_count: if not NULL, set to the number of capabilities reported
3103 * @opc: capabilities type to discover, device or function
3104 * @cd: pointer to command details structure or NULL
3105 *
3106 * Get the function (0x000A) or device (0x000B) capabilities description from
3107 * firmware and store it in the buffer.
3108 *
3109 * If the cap_count pointer is not NULL, then it is set to the number of
3110 * capabilities firmware will report. Note that if the buffer size is too
3111 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
3112 * cap_count will still be updated in this case. It is recommended that the
3113 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
3114 * firmware could return) to avoid this.
3115 */
3116 int
ice_aq_list_caps(struct ice_hw * hw,void * buf,u16 buf_size,u32 * cap_count,enum ice_adminq_opc opc,struct ice_sq_cd * cd)3117 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
3118 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
3119 {
3120 struct libie_aqc_list_caps *cmd;
3121 struct libie_aq_desc desc;
3122 int status;
3123
3124 cmd = &desc.params.get_cap;
3125
3126 if (opc != ice_aqc_opc_list_func_caps &&
3127 opc != ice_aqc_opc_list_dev_caps)
3128 return -EINVAL;
3129
3130 ice_fill_dflt_direct_cmd_desc(&desc, opc);
3131 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
3132
3133 if (cap_count)
3134 *cap_count = le32_to_cpu(cmd->count);
3135
3136 return status;
3137 }
3138
3139 /**
3140 * ice_discover_dev_caps - Read and extract device capabilities
3141 * @hw: pointer to the hardware structure
3142 * @dev_caps: pointer to device capabilities structure
3143 *
3144 * Read the device capabilities and extract them into the dev_caps structure
3145 * for later use.
3146 */
3147 int
ice_discover_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_caps)3148 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
3149 {
3150 u32 cap_count = 0;
3151 void *cbuf;
3152 int status;
3153
3154 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
3155 if (!cbuf)
3156 return -ENOMEM;
3157
3158 /* Although the driver doesn't know the number of capabilities the
3159 * device will return, we can simply send a 4KB buffer, the maximum
3160 * possible size that firmware can return.
3161 */
3162 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct libie_aqc_list_caps_elem);
3163
3164 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3165 ice_aqc_opc_list_dev_caps, NULL);
3166 if (!status)
3167 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
3168 kfree(cbuf);
3169
3170 return status;
3171 }
3172
3173 /**
3174 * ice_discover_func_caps - Read and extract function capabilities
3175 * @hw: pointer to the hardware structure
3176 * @func_caps: pointer to function capabilities structure
3177 *
3178 * Read the function capabilities and extract them into the func_caps structure
3179 * for later use.
3180 */
3181 static int
ice_discover_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_caps)3182 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
3183 {
3184 u32 cap_count = 0;
3185 void *cbuf;
3186 int status;
3187
3188 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
3189 if (!cbuf)
3190 return -ENOMEM;
3191
3192 /* Although the driver doesn't know the number of capabilities the
3193 * device will return, we can simply send a 4KB buffer, the maximum
3194 * possible size that firmware can return.
3195 */
3196 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct libie_aqc_list_caps_elem);
3197
3198 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3199 ice_aqc_opc_list_func_caps, NULL);
3200 if (!status)
3201 ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
3202 kfree(cbuf);
3203
3204 return status;
3205 }
3206
3207 /**
3208 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
3209 * @hw: pointer to the hardware structure
3210 */
ice_set_safe_mode_caps(struct ice_hw * hw)3211 void ice_set_safe_mode_caps(struct ice_hw *hw)
3212 {
3213 struct ice_hw_func_caps *func_caps = &hw->func_caps;
3214 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
3215 struct ice_hw_common_caps cached_caps;
3216 u32 num_funcs;
3217
3218 /* cache some func_caps values that should be restored after memset */
3219 cached_caps = func_caps->common_cap;
3220
3221 /* unset func capabilities */
3222 memset(func_caps, 0, sizeof(*func_caps));
3223
3224 #define ICE_RESTORE_FUNC_CAP(name) \
3225 func_caps->common_cap.name = cached_caps.name
3226
3227 /* restore cached values */
3228 ICE_RESTORE_FUNC_CAP(valid_functions);
3229 ICE_RESTORE_FUNC_CAP(txq_first_id);
3230 ICE_RESTORE_FUNC_CAP(rxq_first_id);
3231 ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
3232 ICE_RESTORE_FUNC_CAP(max_mtu);
3233 ICE_RESTORE_FUNC_CAP(nvm_unified_update);
3234 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
3235 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
3236 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
3237
3238 /* one Tx and one Rx queue in safe mode */
3239 func_caps->common_cap.num_rxq = 1;
3240 func_caps->common_cap.num_txq = 1;
3241
3242 /* two MSIX vectors, one for traffic and one for misc causes */
3243 func_caps->common_cap.num_msix_vectors = 2;
3244 func_caps->guar_num_vsi = 1;
3245
3246 /* cache some dev_caps values that should be restored after memset */
3247 cached_caps = dev_caps->common_cap;
3248 num_funcs = dev_caps->num_funcs;
3249
3250 /* unset dev capabilities */
3251 memset(dev_caps, 0, sizeof(*dev_caps));
3252
3253 #define ICE_RESTORE_DEV_CAP(name) \
3254 dev_caps->common_cap.name = cached_caps.name
3255
3256 /* restore cached values */
3257 ICE_RESTORE_DEV_CAP(valid_functions);
3258 ICE_RESTORE_DEV_CAP(txq_first_id);
3259 ICE_RESTORE_DEV_CAP(rxq_first_id);
3260 ICE_RESTORE_DEV_CAP(msix_vector_first_id);
3261 ICE_RESTORE_DEV_CAP(max_mtu);
3262 ICE_RESTORE_DEV_CAP(nvm_unified_update);
3263 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
3264 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
3265 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
3266 dev_caps->num_funcs = num_funcs;
3267
3268 /* one Tx and one Rx queue per function in safe mode */
3269 dev_caps->common_cap.num_rxq = num_funcs;
3270 dev_caps->common_cap.num_txq = num_funcs;
3271
3272 /* two MSIX vectors per function */
3273 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3274 }
3275
3276 /**
3277 * ice_get_caps - get info about the HW
3278 * @hw: pointer to the hardware structure
3279 */
ice_get_caps(struct ice_hw * hw)3280 int ice_get_caps(struct ice_hw *hw)
3281 {
3282 int status;
3283
3284 status = ice_discover_dev_caps(hw, &hw->dev_caps);
3285 if (status)
3286 return status;
3287
3288 return ice_discover_func_caps(hw, &hw->func_caps);
3289 }
3290
3291 /**
3292 * ice_aq_manage_mac_write - manage MAC address write command
3293 * @hw: pointer to the HW struct
3294 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3295 * @flags: flags to control write behavior
3296 * @cd: pointer to command details structure or NULL
3297 *
3298 * This function is used to write MAC address to the NVM (0x0108).
3299 */
3300 int
ice_aq_manage_mac_write(struct ice_hw * hw,const u8 * mac_addr,u8 flags,struct ice_sq_cd * cd)3301 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3302 struct ice_sq_cd *cd)
3303 {
3304 struct ice_aqc_manage_mac_write *cmd;
3305 struct libie_aq_desc desc;
3306
3307 cmd = libie_aq_raw(&desc);
3308 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3309
3310 cmd->flags = flags;
3311 ether_addr_copy(cmd->mac_addr, mac_addr);
3312
3313 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3314 }
3315
3316 /**
3317 * ice_aq_clear_pxe_mode
3318 * @hw: pointer to the HW struct
3319 *
3320 * Tell the firmware that the driver is taking over from PXE (0x0110).
3321 */
ice_aq_clear_pxe_mode(struct ice_hw * hw)3322 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3323 {
3324 struct ice_aqc_clear_pxe *cmd;
3325 struct libie_aq_desc desc;
3326
3327 cmd = libie_aq_raw(&desc);
3328 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3329 cmd->rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3330
3331 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3332 }
3333
3334 /**
3335 * ice_clear_pxe_mode - clear pxe operations mode
3336 * @hw: pointer to the HW struct
3337 *
3338 * Make sure all PXE mode settings are cleared, including things
3339 * like descriptor fetch/write-back mode.
3340 */
ice_clear_pxe_mode(struct ice_hw * hw)3341 void ice_clear_pxe_mode(struct ice_hw *hw)
3342 {
3343 if (ice_check_sq_alive(hw, &hw->adminq))
3344 ice_aq_clear_pxe_mode(hw);
3345 }
3346
3347 /**
3348 * ice_aq_set_port_params - set physical port parameters.
3349 * @pi: pointer to the port info struct
3350 * @double_vlan: if set double VLAN is enabled
3351 * @cd: pointer to command details structure or NULL
3352 *
3353 * Set Physical port parameters (0x0203)
3354 */
3355 int
ice_aq_set_port_params(struct ice_port_info * pi,bool double_vlan,struct ice_sq_cd * cd)3356 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3357 struct ice_sq_cd *cd)
3358
3359 {
3360 struct ice_aqc_set_port_params *cmd;
3361 struct ice_hw *hw = pi->hw;
3362 struct libie_aq_desc desc;
3363 u16 cmd_flags = 0;
3364
3365 cmd = libie_aq_raw(&desc);
3366
3367 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3368 if (double_vlan)
3369 cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3370 cmd->cmd_flags = cpu_to_le16(cmd_flags);
3371
3372 cmd->local_fwd_mode = pi->local_fwd_mode |
3373 ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3374
3375 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3376 }
3377
3378 /**
3379 * ice_is_100m_speed_supported
3380 * @hw: pointer to the HW struct
3381 *
3382 * returns true if 100M speeds are supported by the device,
3383 * false otherwise.
3384 */
ice_is_100m_speed_supported(struct ice_hw * hw)3385 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3386 {
3387 switch (hw->device_id) {
3388 case ICE_DEV_ID_E822C_SGMII:
3389 case ICE_DEV_ID_E822L_SGMII:
3390 case ICE_DEV_ID_E823L_1GBE:
3391 case ICE_DEV_ID_E823C_SGMII:
3392 return true;
3393 default:
3394 return false;
3395 }
3396 }
3397
3398 /**
3399 * ice_get_link_speed_based_on_phy_type - returns link speed
3400 * @phy_type_low: lower part of phy_type
3401 * @phy_type_high: higher part of phy_type
3402 *
3403 * This helper function will convert an entry in PHY type structure
3404 * [phy_type_low, phy_type_high] to its corresponding link speed.
3405 * Note: In the structure of [phy_type_low, phy_type_high], there should
3406 * be one bit set, as this function will convert one PHY type to its
3407 * speed.
3408 *
3409 * Return:
3410 * * PHY speed for recognized PHY type
3411 * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3412 * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3413 */
ice_get_link_speed_based_on_phy_type(u64 phy_type_low,u64 phy_type_high)3414 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3415 {
3416 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3417 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3418
3419 switch (phy_type_low) {
3420 case ICE_PHY_TYPE_LOW_100BASE_TX:
3421 case ICE_PHY_TYPE_LOW_100M_SGMII:
3422 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3423 break;
3424 case ICE_PHY_TYPE_LOW_1000BASE_T:
3425 case ICE_PHY_TYPE_LOW_1000BASE_SX:
3426 case ICE_PHY_TYPE_LOW_1000BASE_LX:
3427 case ICE_PHY_TYPE_LOW_1000BASE_KX:
3428 case ICE_PHY_TYPE_LOW_1G_SGMII:
3429 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3430 break;
3431 case ICE_PHY_TYPE_LOW_2500BASE_T:
3432 case ICE_PHY_TYPE_LOW_2500BASE_X:
3433 case ICE_PHY_TYPE_LOW_2500BASE_KX:
3434 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3435 break;
3436 case ICE_PHY_TYPE_LOW_5GBASE_T:
3437 case ICE_PHY_TYPE_LOW_5GBASE_KR:
3438 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3439 break;
3440 case ICE_PHY_TYPE_LOW_10GBASE_T:
3441 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3442 case ICE_PHY_TYPE_LOW_10GBASE_SR:
3443 case ICE_PHY_TYPE_LOW_10GBASE_LR:
3444 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3445 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3446 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3447 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3448 break;
3449 case ICE_PHY_TYPE_LOW_25GBASE_T:
3450 case ICE_PHY_TYPE_LOW_25GBASE_CR:
3451 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3452 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3453 case ICE_PHY_TYPE_LOW_25GBASE_SR:
3454 case ICE_PHY_TYPE_LOW_25GBASE_LR:
3455 case ICE_PHY_TYPE_LOW_25GBASE_KR:
3456 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3457 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3458 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3459 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3460 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3461 break;
3462 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3463 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3464 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3465 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3466 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3467 case ICE_PHY_TYPE_LOW_40G_XLAUI:
3468 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3469 break;
3470 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3471 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3472 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3473 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3474 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3475 case ICE_PHY_TYPE_LOW_50G_LAUI2:
3476 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3477 case ICE_PHY_TYPE_LOW_50G_AUI2:
3478 case ICE_PHY_TYPE_LOW_50GBASE_CP:
3479 case ICE_PHY_TYPE_LOW_50GBASE_SR:
3480 case ICE_PHY_TYPE_LOW_50GBASE_FR:
3481 case ICE_PHY_TYPE_LOW_50GBASE_LR:
3482 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3483 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3484 case ICE_PHY_TYPE_LOW_50G_AUI1:
3485 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3486 break;
3487 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3488 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3489 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3490 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3491 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3492 case ICE_PHY_TYPE_LOW_100G_CAUI4:
3493 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3494 case ICE_PHY_TYPE_LOW_100G_AUI4:
3495 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3496 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3497 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3498 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3499 case ICE_PHY_TYPE_LOW_100GBASE_DR:
3500 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3501 break;
3502 default:
3503 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3504 break;
3505 }
3506
3507 switch (phy_type_high) {
3508 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3509 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3510 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3511 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3512 case ICE_PHY_TYPE_HIGH_100G_AUI2:
3513 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3514 break;
3515 case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3516 case ICE_PHY_TYPE_HIGH_200G_SR4:
3517 case ICE_PHY_TYPE_HIGH_200G_FR4:
3518 case ICE_PHY_TYPE_HIGH_200G_LR4:
3519 case ICE_PHY_TYPE_HIGH_200G_DR4:
3520 case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3521 case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3522 case ICE_PHY_TYPE_HIGH_200G_AUI4:
3523 speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3524 break;
3525 default:
3526 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3527 break;
3528 }
3529
3530 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3531 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3532 return ICE_AQ_LINK_SPEED_UNKNOWN;
3533 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3534 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3535 return ICE_AQ_LINK_SPEED_UNKNOWN;
3536 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3537 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3538 return speed_phy_type_low;
3539 else
3540 return speed_phy_type_high;
3541 }
3542
3543 /**
3544 * ice_update_phy_type
3545 * @phy_type_low: pointer to the lower part of phy_type
3546 * @phy_type_high: pointer to the higher part of phy_type
3547 * @link_speeds_bitmap: targeted link speeds bitmap
3548 *
3549 * Note: For the link_speeds_bitmap structure, you can check it at
3550 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3551 * link_speeds_bitmap include multiple speeds.
3552 *
3553 * Each entry in this [phy_type_low, phy_type_high] structure will
3554 * present a certain link speed. This helper function will turn on bits
3555 * in [phy_type_low, phy_type_high] structure based on the value of
3556 * link_speeds_bitmap input parameter.
3557 */
3558 void
ice_update_phy_type(u64 * phy_type_low,u64 * phy_type_high,u16 link_speeds_bitmap)3559 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3560 u16 link_speeds_bitmap)
3561 {
3562 u64 pt_high;
3563 u64 pt_low;
3564 int index;
3565 u16 speed;
3566
3567 /* We first check with low part of phy_type */
3568 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3569 pt_low = BIT_ULL(index);
3570 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3571
3572 if (link_speeds_bitmap & speed)
3573 *phy_type_low |= BIT_ULL(index);
3574 }
3575
3576 /* We then check with high part of phy_type */
3577 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3578 pt_high = BIT_ULL(index);
3579 speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3580
3581 if (link_speeds_bitmap & speed)
3582 *phy_type_high |= BIT_ULL(index);
3583 }
3584 }
3585
3586 /**
3587 * ice_aq_set_phy_cfg
3588 * @hw: pointer to the HW struct
3589 * @pi: port info structure of the interested logical port
3590 * @cfg: structure with PHY configuration data to be set
3591 * @cd: pointer to command details structure or NULL
3592 *
3593 * Set the various PHY configuration parameters supported on the Port.
3594 * One or more of the Set PHY config parameters may be ignored in an MFP
3595 * mode as the PF may not have the privilege to set some of the PHY Config
3596 * parameters. This status will be indicated by the command response (0x0601).
3597 */
3598 int
ice_aq_set_phy_cfg(struct ice_hw * hw,struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,struct ice_sq_cd * cd)3599 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3600 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3601 {
3602 struct ice_aqc_set_phy_cfg *cmd;
3603 struct libie_aq_desc desc;
3604 int status;
3605
3606 if (!cfg)
3607 return -EINVAL;
3608
3609 /* Ensure that only valid bits of cfg->caps can be turned on. */
3610 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3611 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3612 cfg->caps);
3613
3614 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3615 }
3616
3617 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3618 cmd = libie_aq_raw(&desc);
3619 cmd->lport_num = pi->lport;
3620 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
3621
3622 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3623 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
3624 (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3625 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
3626 (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3627 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
3628 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
3629 cfg->low_power_ctrl_an);
3630 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
3631 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
3632 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
3633 cfg->link_fec_opt);
3634
3635 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3636 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_EMODE)
3637 status = 0;
3638
3639 if (!status)
3640 pi->phy.curr_user_phy_cfg = *cfg;
3641
3642 return status;
3643 }
3644
3645 /**
3646 * ice_update_link_info - update status of the HW network link
3647 * @pi: port info structure of the interested logical port
3648 */
ice_update_link_info(struct ice_port_info * pi)3649 int ice_update_link_info(struct ice_port_info *pi)
3650 {
3651 struct ice_link_status *li;
3652 int status;
3653
3654 if (!pi)
3655 return -EINVAL;
3656
3657 li = &pi->phy.link_info;
3658
3659 status = ice_aq_get_link_info(pi, true, NULL, NULL);
3660 if (status)
3661 return status;
3662
3663 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3664 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3665
3666 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3667 if (!pcaps)
3668 return -ENOMEM;
3669
3670 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3671 pcaps, NULL);
3672 }
3673
3674 return status;
3675 }
3676
3677 /**
3678 * ice_aq_get_phy_equalization - function to read serdes equaliser
3679 * value from firmware using admin queue command.
3680 * @hw: pointer to the HW struct
3681 * @data_in: represents the serdes equalization parameter requested
3682 * @op_code: represents the serdes number and flag to represent tx or rx
3683 * @serdes_num: represents the serdes number
3684 * @output: pointer to the caller-supplied buffer to return serdes equaliser
3685 *
3686 * Return: non-zero status on error and 0 on success.
3687 */
ice_aq_get_phy_equalization(struct ice_hw * hw,u16 data_in,u16 op_code,u8 serdes_num,int * output)3688 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3689 u8 serdes_num, int *output)
3690 {
3691 struct ice_aqc_dnl_call_command *cmd;
3692 struct ice_aqc_dnl_call buf = {};
3693 struct libie_aq_desc desc;
3694 int err;
3695
3696 buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3697 buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3698 cpu_to_le16(op_code | (serdes_num & 0xF));
3699 cmd = libie_aq_raw(&desc);
3700 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3701 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_BUF |
3702 LIBIE_AQ_FLAG_RD |
3703 LIBIE_AQ_FLAG_SI);
3704 desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3705 cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3706
3707 err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3708 NULL);
3709 *output = err ? 0 : buf.sto.txrx_equa_resp.val;
3710
3711 return err;
3712 }
3713
3714 #define FEC_REG_PORT(port) { \
3715 FEC_CORR_LOW_REG_PORT##port, \
3716 FEC_CORR_HIGH_REG_PORT##port, \
3717 FEC_UNCORR_LOW_REG_PORT##port, \
3718 FEC_UNCORR_HIGH_REG_PORT##port, \
3719 }
3720
3721 static const u32 fec_reg[][ICE_FEC_MAX] = {
3722 FEC_REG_PORT(0),
3723 FEC_REG_PORT(1),
3724 FEC_REG_PORT(2),
3725 FEC_REG_PORT(3)
3726 };
3727
3728 /**
3729 * ice_aq_get_fec_stats - reads fec stats from phy
3730 * @hw: pointer to the HW struct
3731 * @pcs_quad: represents pcsquad of user input serdes
3732 * @pcs_port: represents the pcs port number part of above pcs quad
3733 * @fec_type: represents FEC stats type
3734 * @output: pointer to the caller-supplied buffer to return requested fec stats
3735 *
3736 * Return: non-zero status on error and 0 on success.
3737 */
ice_aq_get_fec_stats(struct ice_hw * hw,u16 pcs_quad,u16 pcs_port,enum ice_fec_stats_types fec_type,u32 * output)3738 int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3739 enum ice_fec_stats_types fec_type, u32 *output)
3740 {
3741 u16 flag = (LIBIE_AQ_FLAG_RD | LIBIE_AQ_FLAG_BUF | LIBIE_AQ_FLAG_SI);
3742 struct ice_sbq_msg_input msg = {};
3743 u32 receiver_id, reg_offset;
3744 int err;
3745
3746 if (pcs_port > 3)
3747 return -EINVAL;
3748
3749 reg_offset = fec_reg[pcs_port][fec_type];
3750
3751 if (pcs_quad == 0)
3752 receiver_id = FEC_RECEIVER_ID_PCS0;
3753 else if (pcs_quad == 1)
3754 receiver_id = FEC_RECEIVER_ID_PCS1;
3755 else
3756 return -EINVAL;
3757
3758 msg.msg_addr_low = lower_16_bits(reg_offset);
3759 msg.msg_addr_high = receiver_id;
3760 msg.opcode = ice_sbq_msg_rd;
3761 msg.dest_dev = ice_sbq_dev_phy_0;
3762
3763 err = ice_sbq_rw_reg(hw, &msg, flag);
3764 if (err)
3765 return err;
3766
3767 *output = msg.data;
3768 return 0;
3769 }
3770
3771 /**
3772 * ice_cache_phy_user_req
3773 * @pi: port information structure
3774 * @cache_data: PHY logging data
3775 * @cache_mode: PHY logging mode
3776 *
3777 * Log the user request on (FC, FEC, SPEED) for later use.
3778 */
3779 static void
ice_cache_phy_user_req(struct ice_port_info * pi,struct ice_phy_cache_mode_data cache_data,enum ice_phy_cache_mode cache_mode)3780 ice_cache_phy_user_req(struct ice_port_info *pi,
3781 struct ice_phy_cache_mode_data cache_data,
3782 enum ice_phy_cache_mode cache_mode)
3783 {
3784 if (!pi)
3785 return;
3786
3787 switch (cache_mode) {
3788 case ICE_FC_MODE:
3789 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3790 break;
3791 case ICE_SPEED_MODE:
3792 pi->phy.curr_user_speed_req =
3793 cache_data.data.curr_user_speed_req;
3794 break;
3795 case ICE_FEC_MODE:
3796 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3797 break;
3798 default:
3799 break;
3800 }
3801 }
3802
3803 /**
3804 * ice_caps_to_fc_mode
3805 * @caps: PHY capabilities
3806 *
3807 * Convert PHY FC capabilities to ice FC mode
3808 */
ice_caps_to_fc_mode(u8 caps)3809 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3810 {
3811 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3812 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3813 return ICE_FC_FULL;
3814
3815 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3816 return ICE_FC_TX_PAUSE;
3817
3818 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3819 return ICE_FC_RX_PAUSE;
3820
3821 return ICE_FC_NONE;
3822 }
3823
3824 /**
3825 * ice_caps_to_fec_mode
3826 * @caps: PHY capabilities
3827 * @fec_options: Link FEC options
3828 *
3829 * Convert PHY FEC capabilities to ice FEC mode
3830 */
ice_caps_to_fec_mode(u8 caps,u8 fec_options)3831 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3832 {
3833 if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3834 return ICE_FEC_AUTO;
3835
3836 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3837 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3838 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3839 ICE_AQC_PHY_FEC_25G_KR_REQ))
3840 return ICE_FEC_BASER;
3841
3842 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3843 ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3844 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3845 return ICE_FEC_RS;
3846
3847 return ICE_FEC_NONE;
3848 }
3849
3850 /**
3851 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3852 * @pi: port information structure
3853 * @cfg: PHY configuration data to set FC mode
3854 * @req_mode: FC mode to configure
3855 */
3856 int
ice_cfg_phy_fc(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fc_mode req_mode)3857 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3858 enum ice_fc_mode req_mode)
3859 {
3860 struct ice_phy_cache_mode_data cache_data;
3861 u8 pause_mask = 0x0;
3862
3863 if (!pi || !cfg)
3864 return -EINVAL;
3865
3866 switch (req_mode) {
3867 case ICE_FC_FULL:
3868 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3869 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3870 break;
3871 case ICE_FC_RX_PAUSE:
3872 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3873 break;
3874 case ICE_FC_TX_PAUSE:
3875 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3876 break;
3877 default:
3878 break;
3879 }
3880
3881 /* clear the old pause settings */
3882 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3883 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3884
3885 /* set the new capabilities */
3886 cfg->caps |= pause_mask;
3887
3888 /* Cache user FC request */
3889 cache_data.data.curr_user_fc_req = req_mode;
3890 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3891
3892 return 0;
3893 }
3894
3895 /**
3896 * ice_set_fc
3897 * @pi: port information structure
3898 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3899 * @ena_auto_link_update: enable automatic link update
3900 *
3901 * Set the requested flow control mode.
3902 */
3903 int
ice_set_fc(struct ice_port_info * pi,u8 * aq_failures,bool ena_auto_link_update)3904 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3905 {
3906 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3907 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3908 struct ice_hw *hw;
3909 int status;
3910
3911 if (!pi || !aq_failures)
3912 return -EINVAL;
3913
3914 *aq_failures = 0;
3915 hw = pi->hw;
3916
3917 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3918 if (!pcaps)
3919 return -ENOMEM;
3920
3921 /* Get the current PHY config */
3922 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3923 pcaps, NULL);
3924 if (status) {
3925 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3926 goto out;
3927 }
3928
3929 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3930
3931 /* Configure the set PHY data */
3932 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3933 if (status)
3934 goto out;
3935
3936 /* If the capabilities have changed, then set the new config */
3937 if (cfg.caps != pcaps->caps) {
3938 int retry_count, retry_max = 10;
3939
3940 /* Auto restart link so settings take effect */
3941 if (ena_auto_link_update)
3942 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3943
3944 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3945 if (status) {
3946 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3947 goto out;
3948 }
3949
3950 /* Update the link info
3951 * It sometimes takes a really long time for link to
3952 * come back from the atomic reset. Thus, we wait a
3953 * little bit.
3954 */
3955 for (retry_count = 0; retry_count < retry_max; retry_count++) {
3956 status = ice_update_link_info(pi);
3957
3958 if (!status)
3959 break;
3960
3961 mdelay(100);
3962 }
3963
3964 if (status)
3965 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3966 }
3967
3968 out:
3969 return status;
3970 }
3971
3972 /**
3973 * ice_phy_caps_equals_cfg
3974 * @phy_caps: PHY capabilities
3975 * @phy_cfg: PHY configuration
3976 *
3977 * Helper function to determine if PHY capabilities matches PHY
3978 * configuration
3979 */
3980 bool
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data * phy_caps,struct ice_aqc_set_phy_cfg_data * phy_cfg)3981 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3982 struct ice_aqc_set_phy_cfg_data *phy_cfg)
3983 {
3984 u8 caps_mask, cfg_mask;
3985
3986 if (!phy_caps || !phy_cfg)
3987 return false;
3988
3989 /* These bits are not common between capabilities and configuration.
3990 * Do not use them to determine equality.
3991 */
3992 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3993 ICE_AQC_GET_PHY_EN_MOD_QUAL);
3994 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3995
3996 if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3997 phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3998 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3999 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
4000 phy_caps->eee_cap != phy_cfg->eee_cap ||
4001 phy_caps->eeer_value != phy_cfg->eeer_value ||
4002 phy_caps->link_fec_options != phy_cfg->link_fec_opt)
4003 return false;
4004
4005 return true;
4006 }
4007
4008 /**
4009 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
4010 * @pi: port information structure
4011 * @caps: PHY ability structure to copy date from
4012 * @cfg: PHY configuration structure to copy data to
4013 *
4014 * Helper function to copy AQC PHY get ability data to PHY set configuration
4015 * data structure
4016 */
4017 void
ice_copy_phy_caps_to_cfg(struct ice_port_info * pi,struct ice_aqc_get_phy_caps_data * caps,struct ice_aqc_set_phy_cfg_data * cfg)4018 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
4019 struct ice_aqc_get_phy_caps_data *caps,
4020 struct ice_aqc_set_phy_cfg_data *cfg)
4021 {
4022 if (!pi || !caps || !cfg)
4023 return;
4024
4025 memset(cfg, 0, sizeof(*cfg));
4026 cfg->phy_type_low = caps->phy_type_low;
4027 cfg->phy_type_high = caps->phy_type_high;
4028 cfg->caps = caps->caps;
4029 cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
4030 cfg->eee_cap = caps->eee_cap;
4031 cfg->eeer_value = caps->eeer_value;
4032 cfg->link_fec_opt = caps->link_fec_options;
4033 cfg->module_compliance_enforcement =
4034 caps->module_compliance_enforcement;
4035 }
4036
4037 /**
4038 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
4039 * @pi: port information structure
4040 * @cfg: PHY configuration data to set FEC mode
4041 * @fec: FEC mode to configure
4042 */
4043 int
ice_cfg_phy_fec(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fec_mode fec)4044 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
4045 enum ice_fec_mode fec)
4046 {
4047 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
4048 struct ice_hw *hw;
4049 int status;
4050
4051 if (!pi || !cfg)
4052 return -EINVAL;
4053
4054 hw = pi->hw;
4055
4056 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
4057 if (!pcaps)
4058 return -ENOMEM;
4059
4060 status = ice_aq_get_phy_caps(pi, false,
4061 (ice_fw_supports_report_dflt_cfg(hw) ?
4062 ICE_AQC_REPORT_DFLT_CFG :
4063 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
4064 if (status)
4065 goto out;
4066
4067 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
4068 cfg->link_fec_opt = pcaps->link_fec_options;
4069
4070 switch (fec) {
4071 case ICE_FEC_BASER:
4072 /* Clear RS bits, and AND BASE-R ability
4073 * bits and OR request bits.
4074 */
4075 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
4076 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
4077 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
4078 ICE_AQC_PHY_FEC_25G_KR_REQ;
4079 break;
4080 case ICE_FEC_RS:
4081 /* Clear BASE-R bits, and AND RS ability
4082 * bits and OR request bits.
4083 */
4084 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
4085 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
4086 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
4087 break;
4088 case ICE_FEC_NONE:
4089 /* Clear all FEC option bits. */
4090 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
4091 break;
4092 case ICE_FEC_AUTO:
4093 /* AND auto FEC bit, and all caps bits. */
4094 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
4095 cfg->link_fec_opt |= pcaps->link_fec_options;
4096 break;
4097 default:
4098 status = -EINVAL;
4099 break;
4100 }
4101
4102 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
4103 !ice_fw_supports_report_dflt_cfg(hw)) {
4104 struct ice_link_default_override_tlv tlv = { 0 };
4105
4106 status = ice_get_link_default_override(&tlv, pi);
4107 if (status)
4108 goto out;
4109
4110 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
4111 (tlv.options & ICE_LINK_OVERRIDE_EN))
4112 cfg->link_fec_opt = tlv.fec_options;
4113 }
4114
4115 out:
4116 return status;
4117 }
4118
4119 /**
4120 * ice_get_link_status - get status of the HW network link
4121 * @pi: port information structure
4122 * @link_up: pointer to bool (true/false = linkup/linkdown)
4123 *
4124 * Variable link_up is true if link is up, false if link is down.
4125 * The variable link_up is invalid if status is non zero. As a
4126 * result of this call, link status reporting becomes enabled
4127 */
ice_get_link_status(struct ice_port_info * pi,bool * link_up)4128 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
4129 {
4130 struct ice_phy_info *phy_info;
4131 int status = 0;
4132
4133 if (!pi || !link_up)
4134 return -EINVAL;
4135
4136 phy_info = &pi->phy;
4137
4138 if (phy_info->get_link_info) {
4139 status = ice_update_link_info(pi);
4140
4141 if (status)
4142 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
4143 status);
4144 }
4145
4146 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
4147
4148 return status;
4149 }
4150
4151 /**
4152 * ice_aq_set_link_restart_an
4153 * @pi: pointer to the port information structure
4154 * @ena_link: if true: enable link, if false: disable link
4155 * @cd: pointer to command details structure or NULL
4156 *
4157 * Sets up the link and restarts the Auto-Negotiation over the link.
4158 */
4159 int
ice_aq_set_link_restart_an(struct ice_port_info * pi,bool ena_link,struct ice_sq_cd * cd)4160 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
4161 struct ice_sq_cd *cd)
4162 {
4163 struct ice_aqc_restart_an *cmd;
4164 struct libie_aq_desc desc;
4165
4166 cmd = libie_aq_raw(&desc);
4167
4168 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
4169
4170 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
4171 cmd->lport_num = pi->lport;
4172 if (ena_link)
4173 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
4174 else
4175 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
4176
4177 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
4178 }
4179
4180 /**
4181 * ice_aq_set_event_mask
4182 * @hw: pointer to the HW struct
4183 * @port_num: port number of the physical function
4184 * @mask: event mask to be set
4185 * @cd: pointer to command details structure or NULL
4186 *
4187 * Set event mask (0x0613)
4188 */
4189 int
ice_aq_set_event_mask(struct ice_hw * hw,u8 port_num,u16 mask,struct ice_sq_cd * cd)4190 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
4191 struct ice_sq_cd *cd)
4192 {
4193 struct ice_aqc_set_event_mask *cmd;
4194 struct libie_aq_desc desc;
4195
4196 cmd = libie_aq_raw(&desc);
4197
4198 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
4199
4200 cmd->lport_num = port_num;
4201
4202 cmd->event_mask = cpu_to_le16(mask);
4203 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4204 }
4205
4206 /**
4207 * ice_aq_set_mac_loopback
4208 * @hw: pointer to the HW struct
4209 * @ena_lpbk: Enable or Disable loopback
4210 * @cd: pointer to command details structure or NULL
4211 *
4212 * Enable/disable loopback on a given port
4213 */
4214 int
ice_aq_set_mac_loopback(struct ice_hw * hw,bool ena_lpbk,struct ice_sq_cd * cd)4215 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
4216 {
4217 struct ice_aqc_set_mac_lb *cmd;
4218 struct libie_aq_desc desc;
4219
4220 cmd = libie_aq_raw(&desc);
4221
4222 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
4223 if (ena_lpbk)
4224 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
4225
4226 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4227 }
4228
4229 /**
4230 * ice_aq_set_port_id_led
4231 * @pi: pointer to the port information
4232 * @is_orig_mode: is this LED set to original mode (by the net-list)
4233 * @cd: pointer to command details structure or NULL
4234 *
4235 * Set LED value for the given port (0x06e9)
4236 */
4237 int
ice_aq_set_port_id_led(struct ice_port_info * pi,bool is_orig_mode,struct ice_sq_cd * cd)4238 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
4239 struct ice_sq_cd *cd)
4240 {
4241 struct ice_aqc_set_port_id_led *cmd;
4242 struct ice_hw *hw = pi->hw;
4243 struct libie_aq_desc desc;
4244
4245 cmd = libie_aq_raw(&desc);
4246
4247 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
4248
4249 if (is_orig_mode)
4250 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
4251 else
4252 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
4253
4254 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4255 }
4256
4257 /**
4258 * ice_aq_get_port_options
4259 * @hw: pointer to the HW struct
4260 * @options: buffer for the resultant port options
4261 * @option_count: input - size of the buffer in port options structures,
4262 * output - number of returned port options
4263 * @lport: logical port to call the command with (optional)
4264 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4265 * when PF owns more than 1 port it must be true
4266 * @active_option_idx: index of active port option in returned buffer
4267 * @active_option_valid: active option in returned buffer is valid
4268 * @pending_option_idx: index of pending port option in returned buffer
4269 * @pending_option_valid: pending option in returned buffer is valid
4270 *
4271 * Calls Get Port Options AQC (0x06ea) and verifies result.
4272 */
4273 int
ice_aq_get_port_options(struct ice_hw * hw,struct ice_aqc_get_port_options_elem * options,u8 * option_count,u8 lport,bool lport_valid,u8 * active_option_idx,bool * active_option_valid,u8 * pending_option_idx,bool * pending_option_valid)4274 ice_aq_get_port_options(struct ice_hw *hw,
4275 struct ice_aqc_get_port_options_elem *options,
4276 u8 *option_count, u8 lport, bool lport_valid,
4277 u8 *active_option_idx, bool *active_option_valid,
4278 u8 *pending_option_idx, bool *pending_option_valid)
4279 {
4280 struct ice_aqc_get_port_options *cmd;
4281 struct libie_aq_desc desc;
4282 int status;
4283 u8 i;
4284
4285 /* options buffer shall be able to hold max returned options */
4286 if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
4287 return -EINVAL;
4288
4289 cmd = libie_aq_raw(&desc);
4290 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
4291
4292 if (lport_valid)
4293 cmd->lport_num = lport;
4294 cmd->lport_num_valid = lport_valid;
4295
4296 status = ice_aq_send_cmd(hw, &desc, options,
4297 *option_count * sizeof(*options), NULL);
4298 if (status)
4299 return status;
4300
4301 /* verify direct FW response & set output parameters */
4302 *option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
4303 cmd->port_options_count);
4304 ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4305 *active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4306 cmd->port_options);
4307 if (*active_option_valid) {
4308 *active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4309 cmd->port_options);
4310 if (*active_option_idx > (*option_count - 1))
4311 return -EIO;
4312 ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4313 *active_option_idx);
4314 }
4315
4316 *pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4317 cmd->pending_port_option_status);
4318 if (*pending_option_valid) {
4319 *pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4320 cmd->pending_port_option_status);
4321 if (*pending_option_idx > (*option_count - 1))
4322 return -EIO;
4323 ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4324 *pending_option_idx);
4325 }
4326
4327 /* mask output options fields */
4328 for (i = 0; i < *option_count; i++) {
4329 options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4330 options[i].pmd);
4331 options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4332 options[i].max_lane_speed);
4333 ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4334 options[i].pmd, options[i].max_lane_speed);
4335 }
4336
4337 return 0;
4338 }
4339
4340 /**
4341 * ice_aq_set_port_option
4342 * @hw: pointer to the HW struct
4343 * @lport: logical port to call the command with
4344 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4345 * when PF owns more than 1 port it must be true
4346 * @new_option: new port option to be written
4347 *
4348 * Calls Set Port Options AQC (0x06eb).
4349 */
4350 int
ice_aq_set_port_option(struct ice_hw * hw,u8 lport,u8 lport_valid,u8 new_option)4351 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4352 u8 new_option)
4353 {
4354 struct ice_aqc_set_port_option *cmd;
4355 struct libie_aq_desc desc;
4356
4357 if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4358 return -EINVAL;
4359
4360 cmd = libie_aq_raw(&desc);
4361 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4362
4363 if (lport_valid)
4364 cmd->lport_num = lport;
4365
4366 cmd->lport_num_valid = lport_valid;
4367 cmd->selected_port_option = new_option;
4368
4369 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4370 }
4371
4372 /**
4373 * ice_get_phy_lane_number - Get PHY lane number for current adapter
4374 * @hw: pointer to the hw struct
4375 *
4376 * Return: PHY lane number on success, negative error code otherwise.
4377 */
ice_get_phy_lane_number(struct ice_hw * hw)4378 int ice_get_phy_lane_number(struct ice_hw *hw)
4379 {
4380 struct ice_aqc_get_port_options_elem *options;
4381 unsigned int lport = 0;
4382 unsigned int lane;
4383 int err;
4384
4385 /* E82X does not have sequential IDs, lane number is PF ID.
4386 * For E825 device, the exception is the variant with external
4387 * PHY (0x579F), in which there is also 1:1 pf_id -> lane_number
4388 * mapping.
4389 */
4390 if (hw->mac_type == ICE_MAC_GENERIC ||
4391 hw->device_id == ICE_DEV_ID_E825C_SGMII)
4392 return hw->pf_id;
4393
4394 options = kcalloc(ICE_AQC_PORT_OPT_MAX, sizeof(*options), GFP_KERNEL);
4395 if (!options)
4396 return -ENOMEM;
4397
4398 for (lane = 0; lane < ICE_MAX_PORT_PER_PCI_DEV; lane++) {
4399 u8 options_count = ICE_AQC_PORT_OPT_MAX;
4400 u8 speed, active_idx, pending_idx;
4401 bool active_valid, pending_valid;
4402
4403 err = ice_aq_get_port_options(hw, options, &options_count, lane,
4404 true, &active_idx, &active_valid,
4405 &pending_idx, &pending_valid);
4406 if (err)
4407 goto err;
4408
4409 if (!active_valid)
4410 continue;
4411
4412 speed = options[active_idx].max_lane_speed;
4413 /* If we don't get speed for this lane, it's unoccupied */
4414 if (speed > ICE_AQC_PORT_OPT_MAX_LANE_40G)
4415 continue;
4416
4417 if (hw->pf_id == lport) {
4418 if (hw->mac_type == ICE_MAC_GENERIC_3K_E825 &&
4419 ice_is_dual(hw) && !ice_is_primary(hw))
4420 lane += ICE_PORTS_PER_QUAD;
4421 kfree(options);
4422 return lane;
4423 }
4424 lport++;
4425 }
4426
4427 /* PHY lane not found */
4428 err = -ENXIO;
4429 err:
4430 kfree(options);
4431 return err;
4432 }
4433
4434 /**
4435 * ice_aq_sff_eeprom
4436 * @hw: pointer to the HW struct
4437 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4438 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4439 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4440 * @page: QSFP page
4441 * @set_page: set or ignore the page
4442 * @data: pointer to data buffer to be read/written to the I2C device.
4443 * @length: 1-16 for read, 1 for write.
4444 * @write: 0 read, 1 for write.
4445 * @cd: pointer to command details structure or NULL
4446 *
4447 * Read/Write SFF EEPROM (0x06EE)
4448 */
4449 int
ice_aq_sff_eeprom(struct ice_hw * hw,u16 lport,u8 bus_addr,u16 mem_addr,u8 page,u8 set_page,u8 * data,u8 length,bool write,struct ice_sq_cd * cd)4450 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4451 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4452 bool write, struct ice_sq_cd *cd)
4453 {
4454 struct ice_aqc_sff_eeprom *cmd;
4455 struct libie_aq_desc desc;
4456 u16 i2c_bus_addr;
4457 int status;
4458
4459 if (!data || (mem_addr & 0xff00))
4460 return -EINVAL;
4461
4462 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4463 cmd = libie_aq_raw(&desc);
4464 desc.flags = cpu_to_le16(LIBIE_AQ_FLAG_RD);
4465 cmd->lport_num = (u8)(lport & 0xff);
4466 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4467 i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4468 FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4469 if (write)
4470 i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4471 cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4472 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4473 cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4474
4475 status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4476 return status;
4477 }
4478
ice_lut_type_to_size(enum ice_lut_type type)4479 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4480 {
4481 switch (type) {
4482 case ICE_LUT_VSI:
4483 return ICE_LUT_VSI_SIZE;
4484 case ICE_LUT_GLOBAL:
4485 return ICE_LUT_GLOBAL_SIZE;
4486 case ICE_LUT_PF:
4487 return ICE_LUT_PF_SIZE;
4488 }
4489 WARN_ONCE(1, "incorrect type passed");
4490 return ICE_LUT_VSI_SIZE;
4491 }
4492
ice_lut_size_to_flag(enum ice_lut_size size)4493 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4494 {
4495 switch (size) {
4496 case ICE_LUT_VSI_SIZE:
4497 return ICE_AQC_LUT_SIZE_SMALL;
4498 case ICE_LUT_GLOBAL_SIZE:
4499 return ICE_AQC_LUT_SIZE_512;
4500 case ICE_LUT_PF_SIZE:
4501 return ICE_AQC_LUT_SIZE_2K;
4502 }
4503 WARN_ONCE(1, "incorrect size passed");
4504 return 0;
4505 }
4506
4507 /**
4508 * __ice_aq_get_set_rss_lut
4509 * @hw: pointer to the hardware structure
4510 * @params: RSS LUT parameters
4511 * @set: set true to set the table, false to get the table
4512 *
4513 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4514 */
4515 static int
__ice_aq_get_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * params,bool set)4516 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4517 struct ice_aq_get_set_rss_lut_params *params, bool set)
4518 {
4519 u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4520 enum ice_lut_type lut_type = params->lut_type;
4521 struct ice_aqc_get_set_rss_lut *desc_params;
4522 enum ice_aqc_lut_flags flags;
4523 enum ice_lut_size lut_size;
4524 struct libie_aq_desc desc;
4525 u8 *lut = params->lut;
4526
4527
4528 if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4529 return -EINVAL;
4530
4531 lut_size = ice_lut_type_to_size(lut_type);
4532 if (lut_size > params->lut_size)
4533 return -EINVAL;
4534 else if (set && lut_size != params->lut_size)
4535 return -EINVAL;
4536
4537 opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4538 ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4539 if (set)
4540 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4541
4542 desc_params = libie_aq_raw(&desc);
4543 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4544 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4545
4546 if (lut_type == ICE_LUT_GLOBAL)
4547 glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4548 params->global_lut_id);
4549
4550 flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4551 desc_params->flags = cpu_to_le16(flags);
4552
4553 return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4554 }
4555
4556 /**
4557 * ice_aq_get_rss_lut
4558 * @hw: pointer to the hardware structure
4559 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4560 *
4561 * get the RSS lookup table, PF or VSI type
4562 */
4563 int
ice_aq_get_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * get_params)4564 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4565 {
4566 return __ice_aq_get_set_rss_lut(hw, get_params, false);
4567 }
4568
4569 /**
4570 * ice_aq_set_rss_lut
4571 * @hw: pointer to the hardware structure
4572 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4573 *
4574 * set the RSS lookup table, PF or VSI type
4575 */
4576 int
ice_aq_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * set_params)4577 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4578 {
4579 return __ice_aq_get_set_rss_lut(hw, set_params, true);
4580 }
4581
4582 /**
4583 * __ice_aq_get_set_rss_key
4584 * @hw: pointer to the HW struct
4585 * @vsi_id: VSI FW index
4586 * @key: pointer to key info struct
4587 * @set: set true to set the key, false to get the key
4588 *
4589 * get (0x0B04) or set (0x0B02) the RSS key per VSI
4590 */
4591 static int
__ice_aq_get_set_rss_key(struct ice_hw * hw,u16 vsi_id,struct ice_aqc_get_set_rss_keys * key,bool set)4592 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4593 struct ice_aqc_get_set_rss_keys *key, bool set)
4594 {
4595 struct ice_aqc_get_set_rss_key *desc_params;
4596 u16 key_size = sizeof(*key);
4597 struct libie_aq_desc desc;
4598
4599 if (set) {
4600 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4601 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4602 } else {
4603 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4604 }
4605
4606 desc_params = libie_aq_raw(&desc);
4607 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4608
4609 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4610 }
4611
4612 /**
4613 * ice_aq_get_rss_key
4614 * @hw: pointer to the HW struct
4615 * @vsi_handle: software VSI handle
4616 * @key: pointer to key info struct
4617 *
4618 * get the RSS key per VSI
4619 */
4620 int
ice_aq_get_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * key)4621 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4622 struct ice_aqc_get_set_rss_keys *key)
4623 {
4624 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4625 return -EINVAL;
4626
4627 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4628 key, false);
4629 }
4630
4631 /**
4632 * ice_aq_set_rss_key
4633 * @hw: pointer to the HW struct
4634 * @vsi_handle: software VSI handle
4635 * @keys: pointer to key info struct
4636 *
4637 * set the RSS key per VSI
4638 */
4639 int
ice_aq_set_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * keys)4640 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4641 struct ice_aqc_get_set_rss_keys *keys)
4642 {
4643 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4644 return -EINVAL;
4645
4646 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4647 keys, true);
4648 }
4649
4650 /**
4651 * ice_aq_add_lan_txq
4652 * @hw: pointer to the hardware structure
4653 * @num_qgrps: Number of added queue groups
4654 * @qg_list: list of queue groups to be added
4655 * @buf_size: size of buffer for indirect command
4656 * @cd: pointer to command details structure or NULL
4657 *
4658 * Add Tx LAN queue (0x0C30)
4659 *
4660 * NOTE:
4661 * Prior to calling add Tx LAN queue:
4662 * Initialize the following as part of the Tx queue context:
4663 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4664 * Cache profile and Packet shaper profile.
4665 *
4666 * After add Tx LAN queue AQ command is completed:
4667 * Interrupts should be associated with specific queues,
4668 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4669 * flow.
4670 */
4671 static int
ice_aq_add_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * qg_list,u16 buf_size,struct ice_sq_cd * cd)4672 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4673 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4674 struct ice_sq_cd *cd)
4675 {
4676 struct ice_aqc_add_tx_qgrp *list;
4677 struct ice_aqc_add_txqs *cmd;
4678 struct libie_aq_desc desc;
4679 u16 i, sum_size = 0;
4680
4681 cmd = libie_aq_raw(&desc);
4682
4683 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4684
4685 if (!qg_list)
4686 return -EINVAL;
4687
4688 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4689 return -EINVAL;
4690
4691 for (i = 0, list = qg_list; i < num_qgrps; i++) {
4692 sum_size += struct_size(list, txqs, list->num_txqs);
4693 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4694 list->num_txqs);
4695 }
4696
4697 if (buf_size != sum_size)
4698 return -EINVAL;
4699
4700 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4701
4702 cmd->num_qgrps = num_qgrps;
4703
4704 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4705 }
4706
4707 /**
4708 * ice_aq_dis_lan_txq
4709 * @hw: pointer to the hardware structure
4710 * @num_qgrps: number of groups in the list
4711 * @qg_list: the list of groups to disable
4712 * @buf_size: the total size of the qg_list buffer in bytes
4713 * @rst_src: if called due to reset, specifies the reset source
4714 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4715 * @cd: pointer to command details structure or NULL
4716 *
4717 * Disable LAN Tx queue (0x0C31)
4718 */
4719 static int
ice_aq_dis_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_dis_txq_item * qg_list,u16 buf_size,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4720 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4721 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4722 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4723 struct ice_sq_cd *cd)
4724 {
4725 struct ice_aqc_dis_txq_item *item;
4726 struct ice_aqc_dis_txqs *cmd;
4727 struct libie_aq_desc desc;
4728 u16 vmvf_and_timeout;
4729 u16 i, sz = 0;
4730 int status;
4731
4732 cmd = libie_aq_raw(&desc);
4733 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4734
4735 /* qg_list can be NULL only in VM/VF reset flow */
4736 if (!qg_list && !rst_src)
4737 return -EINVAL;
4738
4739 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4740 return -EINVAL;
4741
4742 cmd->num_entries = num_qgrps;
4743
4744 vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4745
4746 switch (rst_src) {
4747 case ICE_VM_RESET:
4748 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4749 vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4750 break;
4751 case ICE_VF_RESET:
4752 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4753 /* In this case, FW expects vmvf_num to be absolute VF ID */
4754 vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4755 ICE_AQC_Q_DIS_VMVF_NUM_M;
4756 break;
4757 case ICE_NO_RESET:
4758 default:
4759 break;
4760 }
4761
4762 cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4763
4764 /* flush pipe on time out */
4765 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4766 /* If no queue group info, we are in a reset flow. Issue the AQ */
4767 if (!qg_list)
4768 goto do_aq;
4769
4770 /* set RD bit to indicate that command buffer is provided by the driver
4771 * and it needs to be read by the firmware
4772 */
4773 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4774
4775 for (i = 0, item = qg_list; i < num_qgrps; i++) {
4776 u16 item_size = struct_size(item, q_id, item->num_qs);
4777
4778 /* If the num of queues is even, add 2 bytes of padding */
4779 if ((item->num_qs % 2) == 0)
4780 item_size += 2;
4781
4782 sz += item_size;
4783
4784 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4785 }
4786
4787 if (buf_size != sz)
4788 return -EINVAL;
4789
4790 do_aq:
4791 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4792 if (status) {
4793 if (!qg_list)
4794 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4795 vmvf_num, hw->adminq.sq_last_status);
4796 else
4797 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4798 le16_to_cpu(qg_list[0].q_id[0]),
4799 hw->adminq.sq_last_status);
4800 }
4801 return status;
4802 }
4803
4804 /**
4805 * ice_aq_cfg_lan_txq - send AQ command 0x0C32 to FW
4806 * @hw: pointer to the hardware structure
4807 * @buf: buffer for command
4808 * @buf_size: size of buffer in bytes
4809 * @num_qs: number of queues being configured
4810 * @oldport: origination lport
4811 * @newport: destination lport
4812 * @mode: cmd_type for move to use
4813 * @cd: pointer to command details structure or NULL
4814 *
4815 * Move/Configure LAN Tx queue (0x0C32)
4816 *
4817 * Return: Zero on success, associated error code on failure.
4818 */
4819 int
ice_aq_cfg_lan_txq(struct ice_hw * hw,struct ice_aqc_cfg_txqs_buf * buf,u16 buf_size,u16 num_qs,u8 oldport,u8 newport,u8 mode,struct ice_sq_cd * cd)4820 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4821 u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4822 u8 mode, struct ice_sq_cd *cd)
4823 {
4824 struct ice_aqc_cfg_txqs *cmd;
4825 struct libie_aq_desc desc;
4826 int status;
4827
4828 cmd = libie_aq_raw(&desc);
4829 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4830 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4831
4832 if (!buf)
4833 return -EINVAL;
4834
4835 cmd->cmd_type = mode;
4836 cmd->num_qs = num_qs;
4837 cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4838 cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4839 cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_MODE_M,
4840 ICE_AQC_Q_CFG_MODE_KEEP_OWN);
4841 cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4842 cmd->blocked_cgds = 0;
4843
4844 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4845 if (status)
4846 ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4847 hw->adminq.sq_last_status);
4848 return status;
4849 }
4850
4851 /**
4852 * ice_aq_add_rdma_qsets
4853 * @hw: pointer to the hardware structure
4854 * @num_qset_grps: Number of RDMA Qset groups
4855 * @qset_list: list of Qset groups to be added
4856 * @buf_size: size of buffer for indirect command
4857 * @cd: pointer to command details structure or NULL
4858 *
4859 * Add Tx RDMA Qsets (0x0C33)
4860 */
4861 static int
ice_aq_add_rdma_qsets(struct ice_hw * hw,u8 num_qset_grps,struct ice_aqc_add_rdma_qset_data * qset_list,u16 buf_size,struct ice_sq_cd * cd)4862 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4863 struct ice_aqc_add_rdma_qset_data *qset_list,
4864 u16 buf_size, struct ice_sq_cd *cd)
4865 {
4866 struct ice_aqc_add_rdma_qset_data *list;
4867 struct ice_aqc_add_rdma_qset *cmd;
4868 struct libie_aq_desc desc;
4869 u16 i, sum_size = 0;
4870
4871 cmd = libie_aq_raw(&desc);
4872
4873 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4874
4875 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4876 return -EINVAL;
4877
4878 for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4879 u16 num_qsets = le16_to_cpu(list->num_qsets);
4880
4881 sum_size += struct_size(list, rdma_qsets, num_qsets);
4882 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4883 num_qsets);
4884 }
4885
4886 if (buf_size != sum_size)
4887 return -EINVAL;
4888
4889 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4890
4891 cmd->num_qset_grps = num_qset_grps;
4892
4893 return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4894 }
4895
4896 /**
4897 * ice_aq_set_txtimeq - set Tx time queues
4898 * @hw: pointer to the hardware structure
4899 * @txtimeq: first Tx time queue id to configure
4900 * @q_count: number of queues to configure
4901 * @txtime_qg: queue group to be set
4902 * @buf_size: size of buffer for indirect command
4903 * @cd: pointer to command details structure or NULL
4904 *
4905 * Set Tx Time queue (0x0C35)
4906 * Return: 0 on success or negative value on failure.
4907 */
4908 int
ice_aq_set_txtimeq(struct ice_hw * hw,u16 txtimeq,u8 q_count,struct ice_aqc_set_txtime_qgrp * txtime_qg,u16 buf_size,struct ice_sq_cd * cd)4909 ice_aq_set_txtimeq(struct ice_hw *hw, u16 txtimeq, u8 q_count,
4910 struct ice_aqc_set_txtime_qgrp *txtime_qg, u16 buf_size,
4911 struct ice_sq_cd *cd)
4912 {
4913 struct ice_aqc_set_txtimeqs *cmd;
4914 struct libie_aq_desc desc;
4915 u16 size;
4916
4917 if (!txtime_qg || txtimeq > ICE_TXTIME_MAX_QUEUE ||
4918 q_count < 1 || q_count > ICE_SET_TXTIME_MAX_Q_AMOUNT)
4919 return -EINVAL;
4920
4921 size = struct_size(txtime_qg, txtimeqs, q_count);
4922 if (buf_size != size)
4923 return -EINVAL;
4924
4925 cmd = libie_aq_raw(&desc);
4926
4927 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_txtimeqs);
4928
4929 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4930
4931 cmd->q_id = cpu_to_le16(txtimeq);
4932 cmd->q_amount = cpu_to_le16(q_count);
4933 return ice_aq_send_cmd(hw, &desc, txtime_qg, buf_size, cd);
4934 }
4935
4936 /* End of FW Admin Queue command wrappers */
4937
4938 /**
4939 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4940 * @hw: pointer to the HW struct
4941 * @vsi_handle: software VSI handle
4942 * @tc: TC number
4943 * @q_handle: software queue handle
4944 */
4945 struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 q_handle)4946 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4947 {
4948 struct ice_vsi_ctx *vsi;
4949 struct ice_q_ctx *q_ctx;
4950
4951 vsi = ice_get_vsi_ctx(hw, vsi_handle);
4952 if (!vsi)
4953 return NULL;
4954 if (q_handle >= vsi->num_lan_q_entries[tc])
4955 return NULL;
4956 if (!vsi->lan_q_ctx[tc])
4957 return NULL;
4958 q_ctx = vsi->lan_q_ctx[tc];
4959 return &q_ctx[q_handle];
4960 }
4961
4962 /**
4963 * ice_ena_vsi_txq
4964 * @pi: port information structure
4965 * @vsi_handle: software VSI handle
4966 * @tc: TC number
4967 * @q_handle: software queue handle
4968 * @num_qgrps: Number of added queue groups
4969 * @buf: list of queue groups to be added
4970 * @buf_size: size of buffer for indirect command
4971 * @cd: pointer to command details structure or NULL
4972 *
4973 * This function adds one LAN queue
4974 */
4975 int
ice_ena_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * buf,u16 buf_size,struct ice_sq_cd * cd)4976 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4977 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4978 struct ice_sq_cd *cd)
4979 {
4980 struct ice_aqc_txsched_elem_data node = { 0 };
4981 struct ice_sched_node *parent;
4982 struct ice_q_ctx *q_ctx;
4983 struct ice_hw *hw;
4984 int status;
4985
4986 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4987 return -EIO;
4988
4989 if (num_qgrps > 1 || buf->num_txqs > 1)
4990 return -ENOSPC;
4991
4992 hw = pi->hw;
4993
4994 if (!ice_is_vsi_valid(hw, vsi_handle))
4995 return -EINVAL;
4996
4997 mutex_lock(&pi->sched_lock);
4998
4999 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
5000 if (!q_ctx) {
5001 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
5002 q_handle);
5003 status = -EINVAL;
5004 goto ena_txq_exit;
5005 }
5006
5007 /* find a parent node */
5008 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5009 ICE_SCHED_NODE_OWNER_LAN);
5010 if (!parent) {
5011 status = -EINVAL;
5012 goto ena_txq_exit;
5013 }
5014
5015 buf->parent_teid = parent->info.node_teid;
5016 node.parent_teid = parent->info.node_teid;
5017 /* Mark that the values in the "generic" section as valid. The default
5018 * value in the "generic" section is zero. This means that :
5019 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
5020 * - 0 priority among siblings, indicated by Bit 1-3.
5021 * - WFQ, indicated by Bit 4.
5022 * - 0 Adjustment value is used in PSM credit update flow, indicated by
5023 * Bit 5-6.
5024 * - Bit 7 is reserved.
5025 * Without setting the generic section as valid in valid_sections, the
5026 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
5027 */
5028 buf->txqs[0].info.valid_sections =
5029 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5030 ICE_AQC_ELEM_VALID_EIR;
5031 buf->txqs[0].info.generic = 0;
5032 buf->txqs[0].info.cir_bw.bw_profile_idx =
5033 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5034 buf->txqs[0].info.cir_bw.bw_alloc =
5035 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5036 buf->txqs[0].info.eir_bw.bw_profile_idx =
5037 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5038 buf->txqs[0].info.eir_bw.bw_alloc =
5039 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5040
5041 /* add the LAN queue */
5042 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
5043 if (status) {
5044 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
5045 le16_to_cpu(buf->txqs[0].txq_id),
5046 hw->adminq.sq_last_status);
5047 goto ena_txq_exit;
5048 }
5049
5050 node.node_teid = buf->txqs[0].q_teid;
5051 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5052 q_ctx->q_handle = q_handle;
5053 q_ctx->q_teid = le32_to_cpu(node.node_teid);
5054
5055 /* add a leaf node into scheduler tree queue layer */
5056 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
5057 if (!status)
5058 status = ice_sched_replay_q_bw(pi, q_ctx);
5059
5060 ena_txq_exit:
5061 mutex_unlock(&pi->sched_lock);
5062 return status;
5063 }
5064
5065 /**
5066 * ice_dis_vsi_txq
5067 * @pi: port information structure
5068 * @vsi_handle: software VSI handle
5069 * @tc: TC number
5070 * @num_queues: number of queues
5071 * @q_handles: pointer to software queue handle array
5072 * @q_ids: pointer to the q_id array
5073 * @q_teids: pointer to queue node teids
5074 * @rst_src: if called due to reset, specifies the reset source
5075 * @vmvf_num: the relative VM or VF number that is undergoing the reset
5076 * @cd: pointer to command details structure or NULL
5077 *
5078 * This function removes queues and their corresponding nodes in SW DB
5079 */
5080 int
ice_dis_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 num_queues,u16 * q_handles,u16 * q_ids,u32 * q_teids,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)5081 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
5082 u16 *q_handles, u16 *q_ids, u32 *q_teids,
5083 enum ice_disq_rst_src rst_src, u16 vmvf_num,
5084 struct ice_sq_cd *cd)
5085 {
5086 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5087 u16 i, buf_size = __struct_size(qg_list);
5088 struct ice_q_ctx *q_ctx;
5089 int status = -ENOENT;
5090 struct ice_hw *hw;
5091
5092 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5093 return -EIO;
5094
5095 hw = pi->hw;
5096
5097 if (!num_queues) {
5098 /* if queue is disabled already yet the disable queue command
5099 * has to be sent to complete the VF reset, then call
5100 * ice_aq_dis_lan_txq without any queue information
5101 */
5102 if (rst_src)
5103 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
5104 vmvf_num, NULL);
5105 return -EIO;
5106 }
5107
5108 mutex_lock(&pi->sched_lock);
5109
5110 for (i = 0; i < num_queues; i++) {
5111 struct ice_sched_node *node;
5112
5113 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
5114 if (!node)
5115 continue;
5116 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
5117 if (!q_ctx) {
5118 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
5119 q_handles[i]);
5120 continue;
5121 }
5122 if (q_ctx->q_handle != q_handles[i]) {
5123 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
5124 q_ctx->q_handle, q_handles[i]);
5125 continue;
5126 }
5127 qg_list->parent_teid = node->info.parent_teid;
5128 qg_list->num_qs = 1;
5129 qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
5130 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
5131 vmvf_num, cd);
5132
5133 if (status)
5134 break;
5135 ice_free_sched_node(pi, node);
5136 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5137 q_ctx->q_teid = ICE_INVAL_TEID;
5138 }
5139 mutex_unlock(&pi->sched_lock);
5140 return status;
5141 }
5142
5143 /**
5144 * ice_cfg_vsi_qs - configure the new/existing VSI queues
5145 * @pi: port information structure
5146 * @vsi_handle: software VSI handle
5147 * @tc_bitmap: TC bitmap
5148 * @maxqs: max queues array per TC
5149 * @owner: LAN or RDMA
5150 *
5151 * This function adds/updates the VSI queues per TC.
5152 */
5153 static int
ice_cfg_vsi_qs(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * maxqs,u8 owner)5154 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5155 u16 *maxqs, u8 owner)
5156 {
5157 int status = 0;
5158 u8 i;
5159
5160 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5161 return -EIO;
5162
5163 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5164 return -EINVAL;
5165
5166 mutex_lock(&pi->sched_lock);
5167
5168 ice_for_each_traffic_class(i) {
5169 /* configuration is possible only if TC node is present */
5170 if (!ice_sched_get_tc_node(pi, i))
5171 continue;
5172
5173 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5174 ice_is_tc_ena(tc_bitmap, i));
5175 if (status)
5176 break;
5177 }
5178
5179 mutex_unlock(&pi->sched_lock);
5180 return status;
5181 }
5182
5183 /**
5184 * ice_cfg_vsi_lan - configure VSI LAN queues
5185 * @pi: port information structure
5186 * @vsi_handle: software VSI handle
5187 * @tc_bitmap: TC bitmap
5188 * @max_lanqs: max LAN queues array per TC
5189 *
5190 * This function adds/updates the VSI LAN queues per TC.
5191 */
5192 int
ice_cfg_vsi_lan(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * max_lanqs)5193 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5194 u16 *max_lanqs)
5195 {
5196 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5197 ICE_SCHED_NODE_OWNER_LAN);
5198 }
5199
5200 /**
5201 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5202 * @pi: port information structure
5203 * @vsi_handle: software VSI handle
5204 * @tc_bitmap: TC bitmap
5205 * @max_rdmaqs: max RDMA queues array per TC
5206 *
5207 * This function adds/updates the VSI RDMA queues per TC.
5208 */
5209 int
ice_cfg_vsi_rdma(struct ice_port_info * pi,u16 vsi_handle,u16 tc_bitmap,u16 * max_rdmaqs)5210 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5211 u16 *max_rdmaqs)
5212 {
5213 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5214 ICE_SCHED_NODE_OWNER_RDMA);
5215 }
5216
5217 /**
5218 * ice_ena_vsi_rdma_qset
5219 * @pi: port information structure
5220 * @vsi_handle: software VSI handle
5221 * @tc: TC number
5222 * @rdma_qset: pointer to RDMA Qset
5223 * @num_qsets: number of RDMA Qsets
5224 * @qset_teid: pointer to Qset node TEIDs
5225 *
5226 * This function adds RDMA Qset
5227 */
5228 int
ice_ena_vsi_rdma_qset(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 * rdma_qset,u16 num_qsets,u32 * qset_teid)5229 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5230 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5231 {
5232 struct ice_aqc_txsched_elem_data node = { 0 };
5233 struct ice_aqc_add_rdma_qset_data *buf;
5234 struct ice_sched_node *parent;
5235 struct ice_hw *hw;
5236 u16 i, buf_size;
5237 int ret;
5238
5239 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5240 return -EIO;
5241 hw = pi->hw;
5242
5243 if (!ice_is_vsi_valid(hw, vsi_handle))
5244 return -EINVAL;
5245
5246 buf_size = struct_size(buf, rdma_qsets, num_qsets);
5247 buf = kzalloc(buf_size, GFP_KERNEL);
5248 if (!buf)
5249 return -ENOMEM;
5250 mutex_lock(&pi->sched_lock);
5251
5252 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5253 ICE_SCHED_NODE_OWNER_RDMA);
5254 if (!parent) {
5255 ret = -EINVAL;
5256 goto rdma_error_exit;
5257 }
5258 buf->parent_teid = parent->info.node_teid;
5259 node.parent_teid = parent->info.node_teid;
5260
5261 buf->num_qsets = cpu_to_le16(num_qsets);
5262 for (i = 0; i < num_qsets; i++) {
5263 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5264 buf->rdma_qsets[i].info.valid_sections =
5265 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5266 ICE_AQC_ELEM_VALID_EIR;
5267 buf->rdma_qsets[i].info.generic = 0;
5268 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5269 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5270 buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5271 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5272 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5273 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5274 buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5275 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5276 }
5277 ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5278 if (ret) {
5279 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5280 goto rdma_error_exit;
5281 }
5282 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5283 for (i = 0; i < num_qsets; i++) {
5284 node.node_teid = buf->rdma_qsets[i].qset_teid;
5285 ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5286 &node, NULL);
5287 if (ret)
5288 break;
5289 qset_teid[i] = le32_to_cpu(node.node_teid);
5290 }
5291 rdma_error_exit:
5292 mutex_unlock(&pi->sched_lock);
5293 kfree(buf);
5294 return ret;
5295 }
5296
5297 /**
5298 * ice_dis_vsi_rdma_qset - free RDMA resources
5299 * @pi: port_info struct
5300 * @count: number of RDMA Qsets to free
5301 * @qset_teid: TEID of Qset node
5302 * @q_id: list of queue IDs being disabled
5303 */
5304 int
ice_dis_vsi_rdma_qset(struct ice_port_info * pi,u16 count,u32 * qset_teid,u16 * q_id)5305 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5306 u16 *q_id)
5307 {
5308 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5309 u16 qg_size = __struct_size(qg_list);
5310 struct ice_hw *hw;
5311 int status = 0;
5312 int i;
5313
5314 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5315 return -EIO;
5316
5317 hw = pi->hw;
5318
5319 mutex_lock(&pi->sched_lock);
5320
5321 for (i = 0; i < count; i++) {
5322 struct ice_sched_node *node;
5323
5324 node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5325 if (!node)
5326 continue;
5327
5328 qg_list->parent_teid = node->info.parent_teid;
5329 qg_list->num_qs = 1;
5330 qg_list->q_id[0] =
5331 cpu_to_le16(q_id[i] |
5332 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5333
5334 status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5335 ICE_NO_RESET, 0, NULL);
5336 if (status)
5337 break;
5338
5339 ice_free_sched_node(pi, node);
5340 }
5341
5342 mutex_unlock(&pi->sched_lock);
5343 return status;
5344 }
5345
5346 /**
5347 * ice_aq_get_cgu_input_pin_measure - get input pin signal measurements
5348 * @hw: pointer to the HW struct
5349 * @dpll_idx: index of dpll to be measured
5350 * @meas: array to be filled with results
5351 * @meas_num: max number of results array can hold
5352 *
5353 * Get CGU measurements (0x0C59) of phase and frequency offsets for input
5354 * pins on given dpll.
5355 *
5356 * Return: 0 on success or negative value on failure.
5357 */
ice_aq_get_cgu_input_pin_measure(struct ice_hw * hw,u8 dpll_idx,struct ice_cgu_input_measure * meas,u16 meas_num)5358 int ice_aq_get_cgu_input_pin_measure(struct ice_hw *hw, u8 dpll_idx,
5359 struct ice_cgu_input_measure *meas,
5360 u16 meas_num)
5361 {
5362 struct ice_aqc_get_cgu_input_measure *cmd;
5363 struct libie_aq_desc desc;
5364
5365 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_measure);
5366 cmd = libie_aq_raw(&desc);
5367 cmd->dpll_idx_opt = dpll_idx & ICE_AQC_GET_CGU_IN_MEAS_DPLL_IDX_M;
5368
5369 return ice_aq_send_cmd(hw, &desc, meas, meas_num * sizeof(*meas), NULL);
5370 }
5371
5372 /**
5373 * ice_aq_get_cgu_abilities - get cgu abilities
5374 * @hw: pointer to the HW struct
5375 * @abilities: CGU abilities
5376 *
5377 * Get CGU abilities (0x0C61)
5378 * Return: 0 on success or negative value on failure.
5379 */
5380 int
ice_aq_get_cgu_abilities(struct ice_hw * hw,struct ice_aqc_get_cgu_abilities * abilities)5381 ice_aq_get_cgu_abilities(struct ice_hw *hw,
5382 struct ice_aqc_get_cgu_abilities *abilities)
5383 {
5384 struct libie_aq_desc desc;
5385
5386 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5387 return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5388 }
5389
5390 /**
5391 * ice_aq_set_input_pin_cfg - set input pin config
5392 * @hw: pointer to the HW struct
5393 * @input_idx: Input index
5394 * @flags1: Input flags
5395 * @flags2: Input flags
5396 * @freq: Frequency in Hz
5397 * @phase_delay: Delay in ps
5398 *
5399 * Set CGU input config (0x0C62)
5400 * Return: 0 on success or negative value on failure.
5401 */
5402 int
ice_aq_set_input_pin_cfg(struct ice_hw * hw,u8 input_idx,u8 flags1,u8 flags2,u32 freq,s32 phase_delay)5403 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5404 u32 freq, s32 phase_delay)
5405 {
5406 struct ice_aqc_set_cgu_input_config *cmd;
5407 struct libie_aq_desc desc;
5408
5409 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5410 cmd = libie_aq_raw(&desc);
5411 cmd->input_idx = input_idx;
5412 cmd->flags1 = flags1;
5413 cmd->flags2 = flags2;
5414 cmd->freq = cpu_to_le32(freq);
5415 cmd->phase_delay = cpu_to_le32(phase_delay);
5416
5417 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5418 }
5419
5420 /**
5421 * ice_aq_get_input_pin_cfg - get input pin config
5422 * @hw: pointer to the HW struct
5423 * @input_idx: Input index
5424 * @status: Pin status
5425 * @type: Pin type
5426 * @flags1: Input flags
5427 * @flags2: Input flags
5428 * @freq: Frequency in Hz
5429 * @phase_delay: Delay in ps
5430 *
5431 * Get CGU input config (0x0C63)
5432 * Return: 0 on success or negative value on failure.
5433 */
5434 int
ice_aq_get_input_pin_cfg(struct ice_hw * hw,u8 input_idx,u8 * status,u8 * type,u8 * flags1,u8 * flags2,u32 * freq,s32 * phase_delay)5435 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5436 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5437 {
5438 struct ice_aqc_get_cgu_input_config *cmd;
5439 struct libie_aq_desc desc;
5440 int ret;
5441
5442 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5443 cmd = libie_aq_raw(&desc);
5444 cmd->input_idx = input_idx;
5445
5446 ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5447 if (!ret) {
5448 if (status)
5449 *status = cmd->status;
5450 if (type)
5451 *type = cmd->type;
5452 if (flags1)
5453 *flags1 = cmd->flags1;
5454 if (flags2)
5455 *flags2 = cmd->flags2;
5456 if (freq)
5457 *freq = le32_to_cpu(cmd->freq);
5458 if (phase_delay)
5459 *phase_delay = le32_to_cpu(cmd->phase_delay);
5460 }
5461
5462 return ret;
5463 }
5464
5465 /**
5466 * ice_aq_set_output_pin_cfg - set output pin config
5467 * @hw: pointer to the HW struct
5468 * @output_idx: Output index
5469 * @flags: Output flags
5470 * @src_sel: Index of DPLL block
5471 * @freq: Output frequency
5472 * @phase_delay: Output phase compensation
5473 *
5474 * Set CGU output config (0x0C64)
5475 * Return: 0 on success or negative value on failure.
5476 */
5477 int
ice_aq_set_output_pin_cfg(struct ice_hw * hw,u8 output_idx,u8 flags,u8 src_sel,u32 freq,s32 phase_delay)5478 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5479 u8 src_sel, u32 freq, s32 phase_delay)
5480 {
5481 struct ice_aqc_set_cgu_output_config *cmd;
5482 struct libie_aq_desc desc;
5483
5484 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5485 cmd = libie_aq_raw(&desc);
5486 cmd->output_idx = output_idx;
5487 cmd->flags = flags;
5488 cmd->src_sel = src_sel;
5489 cmd->freq = cpu_to_le32(freq);
5490 cmd->phase_delay = cpu_to_le32(phase_delay);
5491
5492 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5493 }
5494
5495 /**
5496 * ice_aq_get_output_pin_cfg - get output pin config
5497 * @hw: pointer to the HW struct
5498 * @output_idx: Output index
5499 * @flags: Output flags
5500 * @src_sel: Internal DPLL source
5501 * @freq: Output frequency
5502 * @src_freq: Source frequency
5503 *
5504 * Get CGU output config (0x0C65)
5505 * Return: 0 on success or negative value on failure.
5506 */
5507 int
ice_aq_get_output_pin_cfg(struct ice_hw * hw,u8 output_idx,u8 * flags,u8 * src_sel,u32 * freq,u32 * src_freq)5508 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5509 u8 *src_sel, u32 *freq, u32 *src_freq)
5510 {
5511 struct ice_aqc_get_cgu_output_config *cmd;
5512 struct libie_aq_desc desc;
5513 int ret;
5514
5515 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5516 cmd = libie_aq_raw(&desc);
5517 cmd->output_idx = output_idx;
5518
5519 ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5520 if (!ret) {
5521 if (flags)
5522 *flags = cmd->flags;
5523 if (src_sel)
5524 *src_sel = cmd->src_sel;
5525 if (freq)
5526 *freq = le32_to_cpu(cmd->freq);
5527 if (src_freq)
5528 *src_freq = le32_to_cpu(cmd->src_freq);
5529 }
5530
5531 return ret;
5532 }
5533
5534 /**
5535 * ice_aq_get_cgu_dpll_status - get dpll status
5536 * @hw: pointer to the HW struct
5537 * @dpll_num: DPLL index
5538 * @ref_state: Reference clock state
5539 * @config: current DPLL config
5540 * @dpll_state: current DPLL state
5541 * @phase_offset: Phase offset in ns
5542 * @eec_mode: EEC_mode
5543 *
5544 * Get CGU DPLL status (0x0C66)
5545 * Return: 0 on success or negative value on failure.
5546 */
5547 int
ice_aq_get_cgu_dpll_status(struct ice_hw * hw,u8 dpll_num,u8 * ref_state,u8 * dpll_state,u8 * config,s64 * phase_offset,u8 * eec_mode)5548 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5549 u8 *dpll_state, u8 *config, s64 *phase_offset,
5550 u8 *eec_mode)
5551 {
5552 struct ice_aqc_get_cgu_dpll_status *cmd;
5553 struct libie_aq_desc desc;
5554 int status;
5555
5556 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5557 cmd = libie_aq_raw(&desc);
5558 cmd->dpll_num = dpll_num;
5559
5560 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5561 if (!status) {
5562 *ref_state = cmd->ref_state;
5563 *dpll_state = cmd->dpll_state;
5564 *config = cmd->config;
5565 *phase_offset = le32_to_cpu(cmd->phase_offset_h);
5566 *phase_offset <<= 32;
5567 *phase_offset += le32_to_cpu(cmd->phase_offset_l);
5568 *phase_offset = sign_extend64(*phase_offset, 47);
5569 *eec_mode = cmd->eec_mode;
5570 }
5571
5572 return status;
5573 }
5574
5575 /**
5576 * ice_aq_set_cgu_dpll_config - set dpll config
5577 * @hw: pointer to the HW struct
5578 * @dpll_num: DPLL index
5579 * @ref_state: Reference clock state
5580 * @config: DPLL config
5581 * @eec_mode: EEC mode
5582 *
5583 * Set CGU DPLL config (0x0C67)
5584 * Return: 0 on success or negative value on failure.
5585 */
5586 int
ice_aq_set_cgu_dpll_config(struct ice_hw * hw,u8 dpll_num,u8 ref_state,u8 config,u8 eec_mode)5587 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5588 u8 config, u8 eec_mode)
5589 {
5590 struct ice_aqc_set_cgu_dpll_config *cmd;
5591 struct libie_aq_desc desc;
5592
5593 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5594 cmd = libie_aq_raw(&desc);
5595 cmd->dpll_num = dpll_num;
5596 cmd->ref_state = ref_state;
5597 cmd->config = config;
5598 cmd->eec_mode = eec_mode;
5599
5600 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5601 }
5602
5603 /**
5604 * ice_aq_set_cgu_ref_prio - set input reference priority
5605 * @hw: pointer to the HW struct
5606 * @dpll_num: DPLL index
5607 * @ref_idx: Reference pin index
5608 * @ref_priority: Reference input priority
5609 *
5610 * Set CGU reference priority (0x0C68)
5611 * Return: 0 on success or negative value on failure.
5612 */
5613 int
ice_aq_set_cgu_ref_prio(struct ice_hw * hw,u8 dpll_num,u8 ref_idx,u8 ref_priority)5614 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5615 u8 ref_priority)
5616 {
5617 struct ice_aqc_set_cgu_ref_prio *cmd;
5618 struct libie_aq_desc desc;
5619
5620 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5621 cmd = libie_aq_raw(&desc);
5622 cmd->dpll_num = dpll_num;
5623 cmd->ref_idx = ref_idx;
5624 cmd->ref_priority = ref_priority;
5625
5626 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5627 }
5628
5629 /**
5630 * ice_aq_get_cgu_ref_prio - get input reference priority
5631 * @hw: pointer to the HW struct
5632 * @dpll_num: DPLL index
5633 * @ref_idx: Reference pin index
5634 * @ref_prio: Reference input priority
5635 *
5636 * Get CGU reference priority (0x0C69)
5637 * Return: 0 on success or negative value on failure.
5638 */
5639 int
ice_aq_get_cgu_ref_prio(struct ice_hw * hw,u8 dpll_num,u8 ref_idx,u8 * ref_prio)5640 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5641 u8 *ref_prio)
5642 {
5643 struct ice_aqc_get_cgu_ref_prio *cmd;
5644 struct libie_aq_desc desc;
5645 int status;
5646
5647 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5648 cmd = libie_aq_raw(&desc);
5649 cmd->dpll_num = dpll_num;
5650 cmd->ref_idx = ref_idx;
5651
5652 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5653 if (!status)
5654 *ref_prio = cmd->ref_priority;
5655
5656 return status;
5657 }
5658
5659 /**
5660 * ice_aq_get_cgu_info - get cgu info
5661 * @hw: pointer to the HW struct
5662 * @cgu_id: CGU ID
5663 * @cgu_cfg_ver: CGU config version
5664 * @cgu_fw_ver: CGU firmware version
5665 *
5666 * Get CGU info (0x0C6A)
5667 * Return: 0 on success or negative value on failure.
5668 */
5669 int
ice_aq_get_cgu_info(struct ice_hw * hw,u32 * cgu_id,u32 * cgu_cfg_ver,u32 * cgu_fw_ver)5670 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5671 u32 *cgu_fw_ver)
5672 {
5673 struct ice_aqc_get_cgu_info *cmd;
5674 struct libie_aq_desc desc;
5675 int status;
5676
5677 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5678 cmd = libie_aq_raw(&desc);
5679
5680 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5681 if (!status) {
5682 *cgu_id = le32_to_cpu(cmd->cgu_id);
5683 *cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5684 *cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5685 }
5686
5687 return status;
5688 }
5689
5690 /**
5691 * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5692 * @hw: pointer to the HW struct
5693 * @phy_output: PHY reference clock output pin
5694 * @enable: GPIO state to be applied
5695 * @freq: PHY output frequency
5696 *
5697 * Set phy recovered clock as reference (0x0630)
5698 * Return: 0 on success or negative value on failure.
5699 */
5700 int
ice_aq_set_phy_rec_clk_out(struct ice_hw * hw,u8 phy_output,bool enable,u32 * freq)5701 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5702 u32 *freq)
5703 {
5704 struct ice_aqc_set_phy_rec_clk_out *cmd;
5705 struct libie_aq_desc desc;
5706 int status;
5707
5708 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5709 cmd = libie_aq_raw(&desc);
5710 cmd->phy_output = phy_output;
5711 cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5712 cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5713 cmd->freq = cpu_to_le32(*freq);
5714
5715 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5716 if (!status)
5717 *freq = le32_to_cpu(cmd->freq);
5718
5719 return status;
5720 }
5721
5722 /**
5723 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5724 * @hw: pointer to the HW struct
5725 * @phy_output: PHY reference clock output pin
5726 * @port_num: Port number
5727 * @flags: PHY flags
5728 * @node_handle: PHY output frequency
5729 *
5730 * Get PHY recovered clock output info (0x0631)
5731 * Return: 0 on success or negative value on failure.
5732 */
5733 int
ice_aq_get_phy_rec_clk_out(struct ice_hw * hw,u8 * phy_output,u8 * port_num,u8 * flags,u16 * node_handle)5734 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5735 u8 *flags, u16 *node_handle)
5736 {
5737 struct ice_aqc_get_phy_rec_clk_out *cmd;
5738 struct libie_aq_desc desc;
5739 int status;
5740
5741 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5742 cmd = libie_aq_raw(&desc);
5743 cmd->phy_output = *phy_output;
5744
5745 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5746 if (!status) {
5747 *phy_output = cmd->phy_output;
5748 if (port_num)
5749 *port_num = cmd->port_num;
5750 if (flags)
5751 *flags = cmd->flags;
5752 if (node_handle)
5753 *node_handle = le16_to_cpu(cmd->node_handle);
5754 }
5755
5756 return status;
5757 }
5758
5759 /**
5760 * ice_aq_get_sensor_reading
5761 * @hw: pointer to the HW struct
5762 * @data: pointer to data to be read from the sensor
5763 *
5764 * Get sensor reading (0x0632)
5765 */
ice_aq_get_sensor_reading(struct ice_hw * hw,struct ice_aqc_get_sensor_reading_resp * data)5766 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5767 struct ice_aqc_get_sensor_reading_resp *data)
5768 {
5769 struct ice_aqc_get_sensor_reading *cmd;
5770 struct libie_aq_desc desc;
5771 int status;
5772
5773 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5774 cmd = libie_aq_raw(&desc);
5775 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT 0
5776 #define ICE_INTERNAL_TEMP_SENSOR 0
5777 cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5778 cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5779
5780 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5781 if (!status)
5782 memcpy(data, &desc.params.raw,
5783 sizeof(*data));
5784
5785 return status;
5786 }
5787
5788 /**
5789 * ice_replay_pre_init - replay pre initialization
5790 * @hw: pointer to the HW struct
5791 *
5792 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5793 */
ice_replay_pre_init(struct ice_hw * hw)5794 static int ice_replay_pre_init(struct ice_hw *hw)
5795 {
5796 struct ice_switch_info *sw = hw->switch_info;
5797 u8 i;
5798
5799 /* Delete old entries from replay filter list head if there is any */
5800 ice_rm_all_sw_replay_rule_info(hw);
5801 /* In start of replay, move entries into replay_rules list, it
5802 * will allow adding rules entries back to filt_rules list,
5803 * which is operational list.
5804 */
5805 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5806 list_replace_init(&sw->recp_list[i].filt_rules,
5807 &sw->recp_list[i].filt_replay_rules);
5808 ice_sched_replay_agg_vsi_preinit(hw);
5809
5810 return 0;
5811 }
5812
5813 /**
5814 * ice_replay_vsi - replay VSI configuration
5815 * @hw: pointer to the HW struct
5816 * @vsi_handle: driver VSI handle
5817 *
5818 * Restore all VSI configuration after reset. It is required to call this
5819 * function with main VSI first.
5820 */
ice_replay_vsi(struct ice_hw * hw,u16 vsi_handle)5821 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5822 {
5823 int status;
5824
5825 if (!ice_is_vsi_valid(hw, vsi_handle))
5826 return -EINVAL;
5827
5828 /* Replay pre-initialization if there is any */
5829 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5830 status = ice_replay_pre_init(hw);
5831 if (status)
5832 return status;
5833 }
5834 /* Replay per VSI all RSS configurations */
5835 status = ice_replay_rss_cfg(hw, vsi_handle);
5836 if (status)
5837 return status;
5838 /* Replay per VSI all filters */
5839 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5840 if (!status)
5841 status = ice_replay_vsi_agg(hw, vsi_handle);
5842 return status;
5843 }
5844
5845 /**
5846 * ice_replay_post - post replay configuration cleanup
5847 * @hw: pointer to the HW struct
5848 *
5849 * Post replay cleanup.
5850 */
ice_replay_post(struct ice_hw * hw)5851 void ice_replay_post(struct ice_hw *hw)
5852 {
5853 /* Delete old entries from replay filter list head */
5854 ice_rm_all_sw_replay_rule_info(hw);
5855 ice_sched_replay_agg(hw);
5856 }
5857
5858 /**
5859 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5860 * @hw: ptr to the hardware info
5861 * @reg: offset of 64 bit HW register to read from
5862 * @prev_stat_loaded: bool to specify if previous stats are loaded
5863 * @prev_stat: ptr to previous loaded stat value
5864 * @cur_stat: ptr to current stat value
5865 */
5866 void
ice_stat_update40(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5867 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5868 u64 *prev_stat, u64 *cur_stat)
5869 {
5870 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5871
5872 /* device stats are not reset at PFR, they likely will not be zeroed
5873 * when the driver starts. Thus, save the value from the first read
5874 * without adding to the statistic value so that we report stats which
5875 * count up from zero.
5876 */
5877 if (!prev_stat_loaded) {
5878 *prev_stat = new_data;
5879 return;
5880 }
5881
5882 /* Calculate the difference between the new and old values, and then
5883 * add it to the software stat value.
5884 */
5885 if (new_data >= *prev_stat)
5886 *cur_stat += new_data - *prev_stat;
5887 else
5888 /* to manage the potential roll-over */
5889 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5890
5891 /* Update the previously stored value to prepare for next read */
5892 *prev_stat = new_data;
5893 }
5894
5895 /**
5896 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5897 * @hw: ptr to the hardware info
5898 * @reg: offset of HW register to read from
5899 * @prev_stat_loaded: bool to specify if previous stats are loaded
5900 * @prev_stat: ptr to previous loaded stat value
5901 * @cur_stat: ptr to current stat value
5902 */
5903 void
ice_stat_update32(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5904 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5905 u64 *prev_stat, u64 *cur_stat)
5906 {
5907 u32 new_data;
5908
5909 new_data = rd32(hw, reg);
5910
5911 /* device stats are not reset at PFR, they likely will not be zeroed
5912 * when the driver starts. Thus, save the value from the first read
5913 * without adding to the statistic value so that we report stats which
5914 * count up from zero.
5915 */
5916 if (!prev_stat_loaded) {
5917 *prev_stat = new_data;
5918 return;
5919 }
5920
5921 /* Calculate the difference between the new and old values, and then
5922 * add it to the software stat value.
5923 */
5924 if (new_data >= *prev_stat)
5925 *cur_stat += new_data - *prev_stat;
5926 else
5927 /* to manage the potential roll-over */
5928 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5929
5930 /* Update the previously stored value to prepare for next read */
5931 *prev_stat = new_data;
5932 }
5933
5934 /**
5935 * ice_sched_query_elem - query element information from HW
5936 * @hw: pointer to the HW struct
5937 * @node_teid: node TEID to be queried
5938 * @buf: buffer to element information
5939 *
5940 * This function queries HW element information
5941 */
5942 int
ice_sched_query_elem(struct ice_hw * hw,u32 node_teid,struct ice_aqc_txsched_elem_data * buf)5943 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5944 struct ice_aqc_txsched_elem_data *buf)
5945 {
5946 u16 buf_size, num_elem_ret = 0;
5947 int status;
5948
5949 buf_size = sizeof(*buf);
5950 memset(buf, 0, buf_size);
5951 buf->node_teid = cpu_to_le32(node_teid);
5952 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5953 NULL);
5954 if (status || num_elem_ret != 1)
5955 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5956 return status;
5957 }
5958
5959 /**
5960 * ice_aq_read_i2c
5961 * @hw: pointer to the hw struct
5962 * @topo_addr: topology address for a device to communicate with
5963 * @bus_addr: 7-bit I2C bus address
5964 * @addr: I2C memory address (I2C offset) with up to 16 bits
5965 * @params: I2C parameters: bit [7] - Repeated start,
5966 * bits [6:5] data offset size,
5967 * bit [4] - I2C address type,
5968 * bits [3:0] - data size to read (0-16 bytes)
5969 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5970 * @cd: pointer to command details structure or NULL
5971 *
5972 * Read I2C (0x06E2)
5973 */
5974 int
ice_aq_read_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,u8 * data,struct ice_sq_cd * cd)5975 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5976 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5977 struct ice_sq_cd *cd)
5978 {
5979 struct libie_aq_desc desc = { 0 };
5980 struct ice_aqc_i2c *cmd;
5981 u8 data_size;
5982 int status;
5983
5984 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5985 cmd = libie_aq_raw(&desc);
5986
5987 if (!data)
5988 return -EINVAL;
5989
5990 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5991
5992 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5993 cmd->topo_addr = topo_addr;
5994 cmd->i2c_params = params;
5995 cmd->i2c_addr = addr;
5996
5997 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5998 if (!status) {
5999 struct ice_aqc_read_i2c_resp *resp;
6000 u8 i;
6001
6002 resp = libie_aq_raw(&desc);
6003 for (i = 0; i < data_size; i++) {
6004 *data = resp->i2c_data[i];
6005 data++;
6006 }
6007 }
6008
6009 return status;
6010 }
6011
6012 /**
6013 * ice_aq_write_i2c
6014 * @hw: pointer to the hw struct
6015 * @topo_addr: topology address for a device to communicate with
6016 * @bus_addr: 7-bit I2C bus address
6017 * @addr: I2C memory address (I2C offset) with up to 16 bits
6018 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
6019 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
6020 * @cd: pointer to command details structure or NULL
6021 *
6022 * Write I2C (0x06E3)
6023 *
6024 * * Return:
6025 * * 0 - Successful write to the i2c device
6026 * * -EINVAL - Data size greater than 4 bytes
6027 * * -EIO - FW error
6028 */
6029 int
ice_aq_write_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,const u8 * data,struct ice_sq_cd * cd)6030 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
6031 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
6032 struct ice_sq_cd *cd)
6033 {
6034 struct libie_aq_desc desc = { 0 };
6035 struct ice_aqc_i2c *cmd;
6036 u8 data_size;
6037
6038 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
6039 cmd = libie_aq_raw(&desc);
6040
6041 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
6042
6043 /* data_size limited to 4 */
6044 if (data_size > 4)
6045 return -EINVAL;
6046
6047 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
6048 cmd->topo_addr = topo_addr;
6049 cmd->i2c_params = params;
6050 cmd->i2c_addr = addr;
6051
6052 memcpy(cmd->i2c_data, data, data_size);
6053
6054 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6055 }
6056
6057 /**
6058 * ice_get_pca9575_handle - find and return the PCA9575 controller
6059 * @hw: pointer to the hw struct
6060 * @pca9575_handle: GPIO controller's handle
6061 *
6062 * Find and return the GPIO controller's handle in the netlist.
6063 * When found - the value will be cached in the hw structure and following calls
6064 * will return cached value.
6065 *
6066 * Return: 0 on success, -ENXIO when there's no PCA9575 present.
6067 */
ice_get_pca9575_handle(struct ice_hw * hw,u16 * pca9575_handle)6068 int ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
6069 {
6070 struct ice_aqc_get_link_topo *cmd;
6071 struct libie_aq_desc desc;
6072 int err;
6073 u8 idx;
6074
6075 /* If handle was read previously return cached value */
6076 if (hw->io_expander_handle) {
6077 *pca9575_handle = hw->io_expander_handle;
6078 return 0;
6079 }
6080
6081 #define SW_PCA9575_SFP_TOPO_IDX 2
6082 #define SW_PCA9575_QSFP_TOPO_IDX 1
6083
6084 /* Check if the SW IO expander controlling SMA exists in the netlist. */
6085 if (hw->device_id == ICE_DEV_ID_E810C_SFP)
6086 idx = SW_PCA9575_SFP_TOPO_IDX;
6087 else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
6088 idx = SW_PCA9575_QSFP_TOPO_IDX;
6089 else
6090 return -ENXIO;
6091
6092 /* If handle was not detected read it from the netlist */
6093 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
6094 cmd = libie_aq_raw(&desc);
6095 cmd->addr.topo_params.node_type_ctx =
6096 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL;
6097 cmd->addr.topo_params.index = idx;
6098
6099 err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6100 if (err)
6101 return -ENXIO;
6102
6103 /* Verify if we found the right IO expander type */
6104 if (cmd->node_part_num != ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
6105 return -ENXIO;
6106
6107 /* If present save the handle and return it */
6108 hw->io_expander_handle =
6109 le16_to_cpu(cmd->addr.handle);
6110 *pca9575_handle = hw->io_expander_handle;
6111
6112 return 0;
6113 }
6114
6115 /**
6116 * ice_read_pca9575_reg - read the register from the PCA9575 controller
6117 * @hw: pointer to the hw struct
6118 * @offset: GPIO controller register offset
6119 * @data: pointer to data to be read from the GPIO controller
6120 *
6121 * Return: 0 on success, negative error code otherwise.
6122 */
ice_read_pca9575_reg(struct ice_hw * hw,u8 offset,u8 * data)6123 int ice_read_pca9575_reg(struct ice_hw *hw, u8 offset, u8 *data)
6124 {
6125 struct ice_aqc_link_topo_addr link_topo;
6126 __le16 addr;
6127 u16 handle;
6128 int err;
6129
6130 memset(&link_topo, 0, sizeof(link_topo));
6131
6132 err = ice_get_pca9575_handle(hw, &handle);
6133 if (err)
6134 return err;
6135
6136 link_topo.handle = cpu_to_le16(handle);
6137 link_topo.topo_params.node_type_ctx =
6138 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
6139 ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
6140
6141 addr = cpu_to_le16((u16)offset);
6142
6143 return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
6144 }
6145
6146 /**
6147 * ice_aq_set_gpio
6148 * @hw: pointer to the hw struct
6149 * @gpio_ctrl_handle: GPIO controller node handle
6150 * @pin_idx: IO Number of the GPIO that needs to be set
6151 * @value: SW provide IO value to set in the LSB
6152 * @cd: pointer to command details structure or NULL
6153 *
6154 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
6155 */
6156 int
ice_aq_set_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool value,struct ice_sq_cd * cd)6157 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
6158 struct ice_sq_cd *cd)
6159 {
6160 struct libie_aq_desc desc;
6161 struct ice_aqc_gpio *cmd;
6162
6163 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
6164 cmd = libie_aq_raw(&desc);
6165 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
6166 cmd->gpio_num = pin_idx;
6167 cmd->gpio_val = value ? 1 : 0;
6168
6169 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6170 }
6171
6172 /**
6173 * ice_aq_get_gpio
6174 * @hw: pointer to the hw struct
6175 * @gpio_ctrl_handle: GPIO controller node handle
6176 * @pin_idx: IO Number of the GPIO that needs to be set
6177 * @value: IO value read
6178 * @cd: pointer to command details structure or NULL
6179 *
6180 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
6181 * the topology
6182 */
6183 int
ice_aq_get_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool * value,struct ice_sq_cd * cd)6184 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
6185 bool *value, struct ice_sq_cd *cd)
6186 {
6187 struct libie_aq_desc desc;
6188 struct ice_aqc_gpio *cmd;
6189 int status;
6190
6191 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
6192 cmd = libie_aq_raw(&desc);
6193 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
6194 cmd->gpio_num = pin_idx;
6195
6196 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6197 if (status)
6198 return status;
6199
6200 *value = !!cmd->gpio_val;
6201 return 0;
6202 }
6203
6204 /**
6205 * ice_is_fw_api_min_ver
6206 * @hw: pointer to the hardware structure
6207 * @maj: major version
6208 * @min: minor version
6209 * @patch: patch version
6210 *
6211 * Checks if the firmware API is minimum version
6212 */
ice_is_fw_api_min_ver(struct ice_hw * hw,u8 maj,u8 min,u8 patch)6213 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
6214 {
6215 if (hw->api_maj_ver == maj) {
6216 if (hw->api_min_ver > min)
6217 return true;
6218 if (hw->api_min_ver == min && hw->api_patch >= patch)
6219 return true;
6220 } else if (hw->api_maj_ver > maj) {
6221 return true;
6222 }
6223
6224 return false;
6225 }
6226
6227 /**
6228 * ice_fw_supports_link_override
6229 * @hw: pointer to the hardware structure
6230 *
6231 * Checks if the firmware supports link override
6232 */
ice_fw_supports_link_override(struct ice_hw * hw)6233 bool ice_fw_supports_link_override(struct ice_hw *hw)
6234 {
6235 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
6236 ICE_FW_API_LINK_OVERRIDE_MIN,
6237 ICE_FW_API_LINK_OVERRIDE_PATCH);
6238 }
6239
6240 /**
6241 * ice_get_link_default_override
6242 * @ldo: pointer to the link default override struct
6243 * @pi: pointer to the port info struct
6244 *
6245 * Gets the link default override for a port
6246 */
6247 int
ice_get_link_default_override(struct ice_link_default_override_tlv * ldo,struct ice_port_info * pi)6248 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
6249 struct ice_port_info *pi)
6250 {
6251 u16 i, tlv, tlv_len, tlv_start, buf, offset;
6252 struct ice_hw *hw = pi->hw;
6253 int status;
6254
6255 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
6256 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
6257 if (status) {
6258 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
6259 return status;
6260 }
6261
6262 /* Each port has its own config; calculate for our port */
6263 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
6264 ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
6265
6266 /* link options first */
6267 status = ice_read_sr_word(hw, tlv_start, &buf);
6268 if (status) {
6269 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6270 return status;
6271 }
6272 ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
6273 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
6274 ICE_LINK_OVERRIDE_PHY_CFG_S;
6275
6276 /* link PHY config */
6277 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
6278 status = ice_read_sr_word(hw, offset, &buf);
6279 if (status) {
6280 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
6281 return status;
6282 }
6283 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
6284
6285 /* PHY types low */
6286 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
6287 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6288 status = ice_read_sr_word(hw, (offset + i), &buf);
6289 if (status) {
6290 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6291 return status;
6292 }
6293 /* shift 16 bits at a time to fill 64 bits */
6294 ldo->phy_type_low |= ((u64)buf << (i * 16));
6295 }
6296
6297 /* PHY types high */
6298 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6299 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6300 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6301 status = ice_read_sr_word(hw, (offset + i), &buf);
6302 if (status) {
6303 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6304 return status;
6305 }
6306 /* shift 16 bits at a time to fill 64 bits */
6307 ldo->phy_type_high |= ((u64)buf << (i * 16));
6308 }
6309
6310 return status;
6311 }
6312
6313 /**
6314 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6315 * @caps: get PHY capability data
6316 */
ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data * caps)6317 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6318 {
6319 if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6320 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6321 ICE_AQC_PHY_AN_EN_CLAUSE73 |
6322 ICE_AQC_PHY_AN_EN_CLAUSE37))
6323 return true;
6324
6325 return false;
6326 }
6327
6328 /**
6329 * ice_is_fw_health_report_supported - checks if firmware supports health events
6330 * @hw: pointer to the hardware structure
6331 *
6332 * Return: true if firmware supports health status reports,
6333 * false otherwise
6334 */
ice_is_fw_health_report_supported(struct ice_hw * hw)6335 bool ice_is_fw_health_report_supported(struct ice_hw *hw)
6336 {
6337 return ice_is_fw_api_min_ver(hw, ICE_FW_API_HEALTH_REPORT_MAJ,
6338 ICE_FW_API_HEALTH_REPORT_MIN,
6339 ICE_FW_API_HEALTH_REPORT_PATCH);
6340 }
6341
6342 /**
6343 * ice_aq_set_health_status_cfg - Configure FW health events
6344 * @hw: pointer to the HW struct
6345 * @event_source: type of diagnostic events to enable
6346 *
6347 * Configure the health status event types that the firmware will send to this
6348 * PF. The supported event types are: PF-specific, all PFs, and global.
6349 *
6350 * Return: 0 on success, negative error code otherwise.
6351 */
ice_aq_set_health_status_cfg(struct ice_hw * hw,u8 event_source)6352 int ice_aq_set_health_status_cfg(struct ice_hw *hw, u8 event_source)
6353 {
6354 struct ice_aqc_set_health_status_cfg *cmd;
6355 struct libie_aq_desc desc;
6356
6357 cmd = libie_aq_raw(&desc);
6358
6359 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_health_status_cfg);
6360
6361 cmd->event_source = event_source;
6362
6363 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6364 }
6365
6366 /**
6367 * ice_aq_set_lldp_mib - Set the LLDP MIB
6368 * @hw: pointer to the HW struct
6369 * @mib_type: Local, Remote or both Local and Remote MIBs
6370 * @buf: pointer to the caller-supplied buffer to store the MIB block
6371 * @buf_size: size of the buffer (in bytes)
6372 * @cd: pointer to command details structure or NULL
6373 *
6374 * Set the LLDP MIB. (0x0A08)
6375 */
6376 int
ice_aq_set_lldp_mib(struct ice_hw * hw,u8 mib_type,void * buf,u16 buf_size,struct ice_sq_cd * cd)6377 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6378 struct ice_sq_cd *cd)
6379 {
6380 struct ice_aqc_lldp_set_local_mib *cmd;
6381 struct libie_aq_desc desc;
6382
6383 cmd = libie_aq_raw(&desc);
6384
6385 if (buf_size == 0 || !buf)
6386 return -EINVAL;
6387
6388 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6389
6390 desc.flags |= cpu_to_le16((u16)LIBIE_AQ_FLAG_RD);
6391 desc.datalen = cpu_to_le16(buf_size);
6392
6393 cmd->type = mib_type;
6394 cmd->length = cpu_to_le16(buf_size);
6395
6396 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6397 }
6398
6399 /**
6400 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6401 * @hw: pointer to HW struct
6402 */
ice_fw_supports_lldp_fltr_ctrl(struct ice_hw * hw)6403 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6404 {
6405 if (hw->mac_type != ICE_MAC_E810)
6406 return false;
6407
6408 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6409 ICE_FW_API_LLDP_FLTR_MIN,
6410 ICE_FW_API_LLDP_FLTR_PATCH);
6411 }
6412
6413 /**
6414 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6415 * @hw: pointer to HW struct
6416 * @vsi: VSI to add the filter to
6417 * @add: boolean for if adding or removing a filter
6418 *
6419 * Return: 0 on success, -EOPNOTSUPP if the operation cannot be performed
6420 * with this HW or VSI, otherwise an error corresponding to
6421 * the AQ transaction result.
6422 */
ice_lldp_fltr_add_remove(struct ice_hw * hw,struct ice_vsi * vsi,bool add)6423 int ice_lldp_fltr_add_remove(struct ice_hw *hw, struct ice_vsi *vsi, bool add)
6424 {
6425 struct ice_aqc_lldp_filter_ctrl *cmd;
6426 struct libie_aq_desc desc;
6427
6428 if (vsi->type != ICE_VSI_PF || !ice_fw_supports_lldp_fltr_ctrl(hw))
6429 return -EOPNOTSUPP;
6430
6431 cmd = libie_aq_raw(&desc);
6432
6433 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6434
6435 if (add)
6436 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6437 else
6438 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6439
6440 cmd->vsi_num = cpu_to_le16(vsi->vsi_num);
6441
6442 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6443 }
6444
6445 /**
6446 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6447 * @hw: pointer to HW struct
6448 */
ice_lldp_execute_pending_mib(struct ice_hw * hw)6449 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6450 {
6451 struct libie_aq_desc desc;
6452
6453 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6454
6455 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6456 }
6457
6458 /**
6459 * ice_fw_supports_report_dflt_cfg
6460 * @hw: pointer to the hardware structure
6461 *
6462 * Checks if the firmware supports report default configuration
6463 */
ice_fw_supports_report_dflt_cfg(struct ice_hw * hw)6464 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6465 {
6466 return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6467 ICE_FW_API_REPORT_DFLT_CFG_MIN,
6468 ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6469 }
6470
6471 /* each of the indexes into the following array match the speed of a return
6472 * value from the list of AQ returned speeds like the range:
6473 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6474 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6475 * array. The array is defined as 15 elements long because the link_speed
6476 * returned by the firmware is a 16 bit * value, but is indexed
6477 * by [fls(speed) - 1]
6478 */
6479 static const u32 ice_aq_to_link_speed[] = {
6480 SPEED_10, /* BIT(0) */
6481 SPEED_100,
6482 SPEED_1000,
6483 SPEED_2500,
6484 SPEED_5000,
6485 SPEED_10000,
6486 SPEED_20000,
6487 SPEED_25000,
6488 SPEED_40000,
6489 SPEED_50000,
6490 SPEED_100000, /* BIT(10) */
6491 SPEED_200000,
6492 };
6493
6494 /**
6495 * ice_get_link_speed - get integer speed from table
6496 * @index: array index from fls(aq speed) - 1
6497 *
6498 * Returns: u32 value containing integer speed
6499 */
ice_get_link_speed(u16 index)6500 u32 ice_get_link_speed(u16 index)
6501 {
6502 if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6503 return 0;
6504
6505 return ice_aq_to_link_speed[index];
6506 }
6507
6508 /**
6509 * ice_get_dest_cgu - get destination CGU dev for given HW
6510 * @hw: pointer to the HW struct
6511 *
6512 * Get CGU client id for CGU register read/write operations.
6513 *
6514 * Return: CGU device id to use in SBQ transactions.
6515 */
ice_get_dest_cgu(struct ice_hw * hw)6516 static enum ice_sbq_dev_id ice_get_dest_cgu(struct ice_hw *hw)
6517 {
6518 /* On dual complex E825 only complex 0 has functional CGU powering all
6519 * the PHYs.
6520 * SBQ destination device cgu points to CGU on a current complex and to
6521 * access primary CGU from the secondary complex, the driver should use
6522 * cgu_peer as a destination device.
6523 */
6524 if (hw->mac_type == ICE_MAC_GENERIC_3K_E825 && ice_is_dual(hw) &&
6525 !ice_is_primary(hw))
6526 return ice_sbq_dev_cgu_peer;
6527 return ice_sbq_dev_cgu;
6528 }
6529
6530 /**
6531 * ice_read_cgu_reg - Read a CGU register
6532 * @hw: Pointer to the HW struct
6533 * @addr: Register address to read
6534 * @val: Storage for register value read
6535 *
6536 * Read the contents of a register of the Clock Generation Unit. Only
6537 * applicable to E82X devices.
6538 *
6539 * Return: 0 on success, other error codes when failed to read from CGU.
6540 */
ice_read_cgu_reg(struct ice_hw * hw,u32 addr,u32 * val)6541 int ice_read_cgu_reg(struct ice_hw *hw, u32 addr, u32 *val)
6542 {
6543 struct ice_sbq_msg_input cgu_msg = {
6544 .dest_dev = ice_get_dest_cgu(hw),
6545 .opcode = ice_sbq_msg_rd,
6546 .msg_addr_low = addr
6547 };
6548 int err;
6549
6550 err = ice_sbq_rw_reg(hw, &cgu_msg, LIBIE_AQ_FLAG_RD);
6551 if (err) {
6552 ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
6553 addr, err);
6554 return err;
6555 }
6556
6557 *val = cgu_msg.data;
6558
6559 return 0;
6560 }
6561
6562 /**
6563 * ice_write_cgu_reg - Write a CGU register
6564 * @hw: Pointer to the HW struct
6565 * @addr: Register address to write
6566 * @val: Value to write into the register
6567 *
6568 * Write the specified value to a register of the Clock Generation Unit. Only
6569 * applicable to E82X devices.
6570 *
6571 * Return: 0 on success, other error codes when failed to write to CGU.
6572 */
ice_write_cgu_reg(struct ice_hw * hw,u32 addr,u32 val)6573 int ice_write_cgu_reg(struct ice_hw *hw, u32 addr, u32 val)
6574 {
6575 struct ice_sbq_msg_input cgu_msg = {
6576 .dest_dev = ice_get_dest_cgu(hw),
6577 .opcode = ice_sbq_msg_wr,
6578 .msg_addr_low = addr,
6579 .data = val
6580 };
6581 int err;
6582
6583 err = ice_sbq_rw_reg(hw, &cgu_msg, LIBIE_AQ_FLAG_RD);
6584 if (err)
6585 ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
6586 addr, err);
6587
6588 return err;
6589 }
6590