xref: /linux/drivers/net/ethernet/intel/ice/ice_ptp.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_trace.h"
7 #include "ice_cgu_regs.h"
8 
9 static const char ice_pin_names[][64] = {
10 	"SDP0",
11 	"SDP1",
12 	"SDP2",
13 	"SDP3",
14 	"TIME_SYNC",
15 	"1PPS"
16 };
17 
18 static const struct ice_ptp_pin_desc ice_pin_desc_e82x[] = {
19 	/* name,        gpio,       delay */
20 	{  TIME_SYNC, {  4, -1 }, { 0,  0 }},
21 	{  ONE_PPS,   { -1,  5 }, { 0, 11 }},
22 };
23 
24 static const struct ice_ptp_pin_desc ice_pin_desc_e825c[] = {
25 	/* name,        gpio,       delay */
26 	{  SDP0,      {  0,  0 }, { 15, 14 }},
27 	{  SDP1,      {  1,  1 }, { 15, 14 }},
28 	{  SDP2,      {  2,  2 }, { 15, 14 }},
29 	{  SDP3,      {  3,  3 }, { 15, 14 }},
30 	{  TIME_SYNC, {  4, -1 }, { 11,  0 }},
31 	{  ONE_PPS,   { -1,  5 }, {  0,  9 }},
32 };
33 
34 static const struct ice_ptp_pin_desc ice_pin_desc_e810[] = {
35 	/* name,        gpio,       delay */
36 	{  SDP0,      {  0,  0 }, { 0, 1 }},
37 	{  SDP1,      {  1,  1 }, { 0, 1 }},
38 	{  SDP2,      {  2,  2 }, { 0, 1 }},
39 	{  SDP3,      {  3,  3 }, { 0, 1 }},
40 	{  ONE_PPS,   { -1,  5 }, { 0, 1 }},
41 };
42 
43 static const char ice_pin_names_nvm[][64] = {
44 	"GNSS",
45 	"SMA1",
46 	"U.FL1",
47 	"SMA2",
48 	"U.FL2",
49 };
50 
51 static const struct ice_ptp_pin_desc ice_pin_desc_e810_sma[] = {
52 	/* name,   gpio,       delay */
53 	{  GNSS, {  1, -1 }, { 0, 0 }},
54 	{  SMA1, {  1,  0 }, { 0, 1 }},
55 	{  UFL1, { -1,  0 }, { 0, 1 }},
56 	{  SMA2, {  3,  2 }, { 0, 1 }},
57 	{  UFL2, {  3, -1 }, { 0, 0 }},
58 };
59 
ice_get_ctrl_pf(struct ice_pf * pf)60 static struct ice_pf *ice_get_ctrl_pf(struct ice_pf *pf)
61 {
62 	return !pf->adapter ? NULL : pf->adapter->ctrl_pf;
63 }
64 
ice_get_ctrl_ptp(struct ice_pf * pf)65 static struct ice_ptp *ice_get_ctrl_ptp(struct ice_pf *pf)
66 {
67 	struct ice_pf *ctrl_pf = ice_get_ctrl_pf(pf);
68 
69 	return !ctrl_pf ? NULL : &ctrl_pf->ptp;
70 }
71 
72 /**
73  * ice_ptp_find_pin_idx - Find pin index in ptp_pin_desc
74  * @pf: Board private structure
75  * @func: Pin function
76  * @chan: GPIO channel
77  *
78  * Return: positive pin number when pin is present, -1 otherwise
79  */
ice_ptp_find_pin_idx(struct ice_pf * pf,enum ptp_pin_function func,unsigned int chan)80 static int ice_ptp_find_pin_idx(struct ice_pf *pf, enum ptp_pin_function func,
81 				unsigned int chan)
82 {
83 	const struct ptp_clock_info *info = &pf->ptp.info;
84 	int i;
85 
86 	for (i = 0; i < info->n_pins; i++) {
87 		if (info->pin_config[i].func == func &&
88 		    info->pin_config[i].chan == chan)
89 			return i;
90 	}
91 
92 	return -1;
93 }
94 
95 /**
96  * ice_ptp_update_sma_data - update SMA pins data according to pins setup
97  * @pf: Board private structure
98  * @sma_pins: parsed SMA pins status
99  * @data: SMA data to update
100  */
ice_ptp_update_sma_data(struct ice_pf * pf,unsigned int sma_pins[],u8 * data)101 static void ice_ptp_update_sma_data(struct ice_pf *pf, unsigned int sma_pins[],
102 				    u8 *data)
103 {
104 	const char *state1, *state2;
105 
106 	/* Set the right state based on the desired configuration.
107 	 * When bit is set, functionality is disabled.
108 	 */
109 	*data &= ~ICE_ALL_SMA_MASK;
110 	if (!sma_pins[UFL1 - 1]) {
111 		if (sma_pins[SMA1 - 1] == PTP_PF_EXTTS) {
112 			state1 = "SMA1 Rx, U.FL1 disabled";
113 			*data |= ICE_SMA1_TX_EN;
114 		} else if (sma_pins[SMA1 - 1] == PTP_PF_PEROUT) {
115 			state1 = "SMA1 Tx U.FL1 disabled";
116 			*data |= ICE_SMA1_DIR_EN;
117 		} else {
118 			state1 = "SMA1 disabled, U.FL1 disabled";
119 			*data |= ICE_SMA1_MASK;
120 		}
121 	} else {
122 		/* U.FL1 Tx will always enable SMA1 Rx */
123 		state1 = "SMA1 Rx, U.FL1 Tx";
124 	}
125 
126 	if (!sma_pins[UFL2 - 1]) {
127 		if (sma_pins[SMA2 - 1] == PTP_PF_EXTTS) {
128 			state2 = "SMA2 Rx, U.FL2 disabled";
129 			*data |= ICE_SMA2_TX_EN | ICE_SMA2_UFL2_RX_DIS;
130 		} else if (sma_pins[SMA2 - 1] == PTP_PF_PEROUT) {
131 			state2 = "SMA2 Tx, U.FL2 disabled";
132 			*data |= ICE_SMA2_DIR_EN | ICE_SMA2_UFL2_RX_DIS;
133 		} else {
134 			state2 = "SMA2 disabled, U.FL2 disabled";
135 			*data |= ICE_SMA2_MASK;
136 		}
137 	} else {
138 		if (!sma_pins[SMA2 - 1]) {
139 			state2 = "SMA2 disabled, U.FL2 Rx";
140 			*data |= ICE_SMA2_DIR_EN | ICE_SMA2_TX_EN;
141 		} else {
142 			state2 = "SMA2 Tx, U.FL2 Rx";
143 			*data |= ICE_SMA2_DIR_EN;
144 		}
145 	}
146 
147 	dev_dbg(ice_pf_to_dev(pf), "%s, %s\n", state1, state2);
148 }
149 
150 /**
151  * ice_ptp_set_sma_cfg - set the configuration of the SMA control logic
152  * @pf: Board private structure
153  *
154  * Return: 0 on success, negative error code otherwise
155  */
ice_ptp_set_sma_cfg(struct ice_pf * pf)156 static int ice_ptp_set_sma_cfg(struct ice_pf *pf)
157 {
158 	const struct ice_ptp_pin_desc *ice_pins = pf->ptp.ice_pin_desc;
159 	struct ptp_pin_desc *pins = pf->ptp.pin_desc;
160 	unsigned int sma_pins[ICE_SMA_PINS_NUM] = {};
161 	int err;
162 	u8 data;
163 
164 	/* Read initial pin state value */
165 	err = ice_read_sma_ctrl(&pf->hw, &data);
166 	if (err)
167 		return err;
168 
169 	/* Get SMA/U.FL pins states */
170 	for (int i = 0; i < pf->ptp.info.n_pins; i++)
171 		if (pins[i].func) {
172 			int name_idx = ice_pins[i].name_idx;
173 
174 			switch (name_idx) {
175 			case SMA1:
176 			case UFL1:
177 			case SMA2:
178 			case UFL2:
179 				sma_pins[name_idx - 1] = pins[i].func;
180 				break;
181 			default:
182 				continue;
183 			}
184 		}
185 
186 	ice_ptp_update_sma_data(pf, sma_pins, &data);
187 	return ice_write_sma_ctrl(&pf->hw, data);
188 }
189 
190 /**
191  * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device
192  * @pf: Board private structure
193  *
194  * Program the device to respond appropriately to the Tx timestamp interrupt
195  * cause.
196  */
ice_ptp_cfg_tx_interrupt(struct ice_pf * pf)197 static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf)
198 {
199 	struct ice_hw *hw = &pf->hw;
200 	bool enable;
201 	u32 val;
202 
203 	switch (pf->ptp.tx_interrupt_mode) {
204 	case ICE_PTP_TX_INTERRUPT_ALL:
205 		/* React to interrupts across all quads. */
206 		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
207 		enable = true;
208 		break;
209 	case ICE_PTP_TX_INTERRUPT_NONE:
210 		/* Do not react to interrupts on any quad. */
211 		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
212 		enable = false;
213 		break;
214 	case ICE_PTP_TX_INTERRUPT_SELF:
215 	default:
216 		enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON;
217 		break;
218 	}
219 
220 	/* Configure the Tx timestamp interrupt */
221 	val = rd32(hw, PFINT_OICR_ENA);
222 	if (enable)
223 		val |= PFINT_OICR_TSYN_TX_M;
224 	else
225 		val &= ~PFINT_OICR_TSYN_TX_M;
226 	wr32(hw, PFINT_OICR_ENA, val);
227 }
228 
229 /**
230  * ice_set_rx_tstamp - Enable or disable Rx timestamping
231  * @pf: The PF pointer to search in
232  * @on: bool value for whether timestamps are enabled or disabled
233  */
ice_set_rx_tstamp(struct ice_pf * pf,bool on)234 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
235 {
236 	struct ice_vsi *vsi;
237 	u16 i;
238 
239 	vsi = ice_get_main_vsi(pf);
240 	if (!vsi || !vsi->rx_rings)
241 		return;
242 
243 	/* Set the timestamp flag for all the Rx rings */
244 	ice_for_each_rxq(vsi, i) {
245 		if (!vsi->rx_rings[i])
246 			continue;
247 		vsi->rx_rings[i]->ptp_rx = on;
248 	}
249 }
250 
251 /**
252  * ice_ptp_disable_timestamp_mode - Disable current timestamp mode
253  * @pf: Board private structure
254  *
255  * Called during preparation for reset to temporarily disable timestamping on
256  * the device. Called during remove to disable timestamping while cleaning up
257  * driver resources.
258  */
ice_ptp_disable_timestamp_mode(struct ice_pf * pf)259 static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf)
260 {
261 	struct ice_hw *hw = &pf->hw;
262 	u32 val;
263 
264 	val = rd32(hw, PFINT_OICR_ENA);
265 	val &= ~PFINT_OICR_TSYN_TX_M;
266 	wr32(hw, PFINT_OICR_ENA, val);
267 
268 	ice_set_rx_tstamp(pf, false);
269 }
270 
271 /**
272  * ice_ptp_restore_timestamp_mode - Restore timestamp configuration
273  * @pf: Board private structure
274  *
275  * Called at the end of rebuild to restore timestamp configuration after
276  * a device reset.
277  */
ice_ptp_restore_timestamp_mode(struct ice_pf * pf)278 void ice_ptp_restore_timestamp_mode(struct ice_pf *pf)
279 {
280 	struct ice_hw *hw = &pf->hw;
281 	bool enable_rx;
282 
283 	ice_ptp_cfg_tx_interrupt(pf);
284 
285 	enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL;
286 	ice_set_rx_tstamp(pf, enable_rx);
287 
288 	/* Trigger an immediate software interrupt to ensure that timestamps
289 	 * which occurred during reset are handled now.
290 	 */
291 	wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
292 	ice_flush(hw);
293 }
294 
295 /**
296  * ice_ptp_read_src_clk_reg - Read the source clock register
297  * @pf: Board private structure
298  * @sts: Optional parameter for holding a pair of system timestamps from
299  *       the system clock. Will be ignored if NULL is given.
300  */
ice_ptp_read_src_clk_reg(struct ice_pf * pf,struct ptp_system_timestamp * sts)301 u64 ice_ptp_read_src_clk_reg(struct ice_pf *pf,
302 			     struct ptp_system_timestamp *sts)
303 {
304 	struct ice_hw *hw = &pf->hw;
305 	u32 hi, lo, lo2;
306 	u8 tmr_idx;
307 
308 	tmr_idx = ice_get_ptp_src_clock_index(hw);
309 	guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
310 	/* Read the system timestamp pre PHC read */
311 	ptp_read_system_prets(sts);
312 
313 	if (hw->mac_type == ICE_MAC_E830) {
314 		u64 clk_time = rd64(hw, E830_GLTSYN_TIME_L(tmr_idx));
315 
316 		/* Read the system timestamp post PHC read */
317 		ptp_read_system_postts(sts);
318 
319 		return clk_time;
320 	}
321 
322 	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
323 
324 	/* Read the system timestamp post PHC read */
325 	ptp_read_system_postts(sts);
326 
327 	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
328 	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
329 
330 	if (lo2 < lo) {
331 		/* if TIME_L rolled over read TIME_L again and update
332 		 * system timestamps
333 		 */
334 		ptp_read_system_prets(sts);
335 		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
336 		ptp_read_system_postts(sts);
337 		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
338 	}
339 
340 	return ((u64)hi << 32) | lo;
341 }
342 
343 /**
344  * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
345  * @cached_phc_time: recently cached copy of PHC time
346  * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
347  *
348  * Hardware captures timestamps which contain only 32 bits of nominal
349  * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
350  * Note that the captured timestamp values may be 40 bits, but the lower
351  * 8 bits are sub-nanoseconds and generally discarded.
352  *
353  * Extend the 32bit nanosecond timestamp using the following algorithm and
354  * assumptions:
355  *
356  * 1) have a recently cached copy of the PHC time
357  * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
358  *    seconds) before or after the PHC time was captured.
359  * 3) calculate the delta between the cached time and the timestamp
360  * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
361  *    captured after the PHC time. In this case, the full timestamp is just
362  *    the cached PHC time plus the delta.
363  * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
364  *    timestamp was captured *before* the PHC time, i.e. because the PHC
365  *    cache was updated after the timestamp was captured by hardware. In this
366  *    case, the full timestamp is the cached time minus the inverse delta.
367  *
368  * This algorithm works even if the PHC time was updated after a Tx timestamp
369  * was requested, but before the Tx timestamp event was reported from
370  * hardware.
371  *
372  * This calculation primarily relies on keeping the cached PHC time up to
373  * date. If the timestamp was captured more than 2^31 nanoseconds after the
374  * PHC time, it is possible that the lower 32bits of PHC time have
375  * overflowed more than once, and we might generate an incorrect timestamp.
376  *
377  * This is prevented by (a) periodically updating the cached PHC time once
378  * a second, and (b) discarding any Tx timestamp packet if it has waited for
379  * a timestamp for more than one second.
380  */
ice_ptp_extend_32b_ts(u64 cached_phc_time,u32 in_tstamp)381 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
382 {
383 	u32 delta, phc_time_lo;
384 	u64 ns;
385 
386 	/* Extract the lower 32 bits of the PHC time */
387 	phc_time_lo = (u32)cached_phc_time;
388 
389 	/* Calculate the delta between the lower 32bits of the cached PHC
390 	 * time and the in_tstamp value
391 	 */
392 	delta = (in_tstamp - phc_time_lo);
393 
394 	/* Do not assume that the in_tstamp is always more recent than the
395 	 * cached PHC time. If the delta is large, it indicates that the
396 	 * in_tstamp was taken in the past, and should be converted
397 	 * forward.
398 	 */
399 	if (delta > (U32_MAX / 2)) {
400 		/* reverse the delta calculation here */
401 		delta = (phc_time_lo - in_tstamp);
402 		ns = cached_phc_time - delta;
403 	} else {
404 		ns = cached_phc_time + delta;
405 	}
406 
407 	return ns;
408 }
409 
410 /**
411  * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
412  * @pf: Board private structure
413  * @in_tstamp: Ingress/egress 40b timestamp value
414  *
415  * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
416  * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
417  *
418  *  *--------------------------------------------------------------*
419  *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
420  *  *--------------------------------------------------------------*
421  *
422  * The low bit is an indicator of whether the timestamp is valid. The next
423  * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
424  * and the remaining 32 bits are the lower 32 bits of the PHC timer.
425  *
426  * It is assumed that the caller verifies the timestamp is valid prior to
427  * calling this function.
428  *
429  * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
430  * time stored in the device private PTP structure as the basis for timestamp
431  * extension.
432  *
433  * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
434  * algorithm.
435  */
ice_ptp_extend_40b_ts(struct ice_pf * pf,u64 in_tstamp)436 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
437 {
438 	const u64 mask = GENMASK_ULL(31, 0);
439 	unsigned long discard_time;
440 
441 	/* Discard the hardware timestamp if the cached PHC time is too old */
442 	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
443 	if (time_is_before_jiffies(discard_time)) {
444 		pf->ptp.tx_hwtstamp_discarded++;
445 		return 0;
446 	}
447 
448 	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
449 				     (in_tstamp >> 8) & mask);
450 }
451 
452 /**
453  * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
454  * @tx: the PTP Tx timestamp tracker to check
455  *
456  * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
457  * to accept new timestamp requests.
458  *
459  * Assumes the tx->lock spinlock is already held.
460  */
461 static bool
ice_ptp_is_tx_tracker_up(struct ice_ptp_tx * tx)462 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
463 {
464 	lockdep_assert_held(&tx->lock);
465 
466 	return tx->init && !tx->calibrating;
467 }
468 
469 /**
470  * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW
471  * @tx: the PTP Tx timestamp tracker
472  * @idx: index of the timestamp to request
473  */
ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx * tx,u8 idx)474 void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx)
475 {
476 	struct ice_e810_params *params;
477 	struct ice_ptp_port *ptp_port;
478 	unsigned long flags;
479 	struct sk_buff *skb;
480 	struct ice_pf *pf;
481 
482 	if (!tx->init)
483 		return;
484 
485 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
486 	pf = ptp_port_to_pf(ptp_port);
487 	params = &pf->hw.ptp.phy.e810;
488 
489 	/* Drop packets which have waited for more than 2 seconds */
490 	if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
491 		/* Count the number of Tx timestamps that timed out */
492 		pf->ptp.tx_hwtstamp_timeouts++;
493 
494 		skb = tx->tstamps[idx].skb;
495 		tx->tstamps[idx].skb = NULL;
496 		clear_bit(idx, tx->in_use);
497 
498 		dev_kfree_skb_any(skb);
499 		return;
500 	}
501 
502 	ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
503 
504 	spin_lock_irqsave(&params->atqbal_wq.lock, flags);
505 
506 	params->atqbal_flags |= ATQBAL_FLAGS_INTR_IN_PROGRESS;
507 
508 	/* Write TS index to read to the PF register so the FW can read it */
509 	wr32(&pf->hw, REG_LL_PROXY_H,
510 	     REG_LL_PROXY_H_TS_INTR_ENA | FIELD_PREP(REG_LL_PROXY_H_TS_IDX, idx) |
511 	     REG_LL_PROXY_H_EXEC);
512 	tx->last_ll_ts_idx_read = idx;
513 
514 	spin_unlock_irqrestore(&params->atqbal_wq.lock, flags);
515 }
516 
517 /**
518  * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port
519  * @tx: the PTP Tx timestamp tracker
520  */
ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx * tx)521 void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx)
522 {
523 	struct skb_shared_hwtstamps shhwtstamps = {};
524 	u8 idx = tx->last_ll_ts_idx_read;
525 	struct ice_e810_params *params;
526 	struct ice_ptp_port *ptp_port;
527 	u64 raw_tstamp, tstamp;
528 	bool drop_ts = false;
529 	struct sk_buff *skb;
530 	unsigned long flags;
531 	struct device *dev;
532 	struct ice_pf *pf;
533 	u32 reg_ll_high;
534 
535 	if (!tx->init || tx->last_ll_ts_idx_read < 0)
536 		return;
537 
538 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
539 	pf = ptp_port_to_pf(ptp_port);
540 	dev = ice_pf_to_dev(pf);
541 	params = &pf->hw.ptp.phy.e810;
542 
543 	ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
544 
545 	spin_lock_irqsave(&params->atqbal_wq.lock, flags);
546 
547 	if (!(params->atqbal_flags & ATQBAL_FLAGS_INTR_IN_PROGRESS))
548 		dev_dbg(dev, "%s: low latency interrupt request not in progress?\n",
549 			__func__);
550 
551 	/* Read the low 32 bit value */
552 	raw_tstamp = rd32(&pf->hw, REG_LL_PROXY_L);
553 	/* Read the status together with high TS part */
554 	reg_ll_high = rd32(&pf->hw, REG_LL_PROXY_H);
555 
556 	/* Wake up threads waiting on low latency interface */
557 	params->atqbal_flags &= ~ATQBAL_FLAGS_INTR_IN_PROGRESS;
558 
559 	wake_up_locked(&params->atqbal_wq);
560 
561 	spin_unlock_irqrestore(&params->atqbal_wq.lock, flags);
562 
563 	/* When the bit is cleared, the TS is ready in the register */
564 	if (reg_ll_high & REG_LL_PROXY_H_EXEC) {
565 		dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready");
566 		return;
567 	}
568 
569 	/* High 8 bit value of the TS is on the bits 16:23 */
570 	raw_tstamp |= ((u64)FIELD_GET(REG_LL_PROXY_H_TS_HIGH, reg_ll_high)) << 32;
571 
572 	/* Devices using this interface always verify the timestamp differs
573 	 * relative to the last cached timestamp value.
574 	 */
575 	if (raw_tstamp == tx->tstamps[idx].cached_tstamp)
576 		return;
577 
578 	tx->tstamps[idx].cached_tstamp = raw_tstamp;
579 	clear_bit(idx, tx->in_use);
580 	skb = tx->tstamps[idx].skb;
581 	tx->tstamps[idx].skb = NULL;
582 	if (test_and_clear_bit(idx, tx->stale))
583 		drop_ts = true;
584 
585 	if (!skb)
586 		return;
587 
588 	if (drop_ts) {
589 		dev_kfree_skb_any(skb);
590 		return;
591 	}
592 
593 	/* Extend the timestamp using cached PHC time */
594 	tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
595 	if (tstamp) {
596 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
597 		ice_trace(tx_tstamp_complete, skb, idx);
598 	}
599 
600 	skb_tstamp_tx(skb, &shhwtstamps);
601 	dev_kfree_skb_any(skb);
602 }
603 
604 /**
605  * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
606  * @tx: the PTP Tx timestamp tracker
607  *
608  * Process timestamps captured by the PHY associated with this port. To do
609  * this, loop over each index with a waiting skb.
610  *
611  * If a given index has a valid timestamp, perform the following steps:
612  *
613  * 1) check that the timestamp request is not stale
614  * 2) check that a timestamp is ready and available in the PHY memory bank
615  * 3) read and copy the timestamp out of the PHY register
616  * 4) unlock the index by clearing the associated in_use bit
617  * 5) check if the timestamp is stale, and discard if so
618  * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
619  * 7) send this 64 bit timestamp to the stack
620  *
621  * Note that we do not hold the tracking lock while reading the Tx timestamp.
622  * This is because reading the timestamp requires taking a mutex that might
623  * sleep.
624  *
625  * The only place where we set in_use is when a new timestamp is initiated
626  * with a slot index. This is only called in the hard xmit routine where an
627  * SKB has a request flag set. The only places where we clear this bit is this
628  * function, or during teardown when the Tx timestamp tracker is being
629  * removed. A timestamp index will never be re-used until the in_use bit for
630  * that index is cleared.
631  *
632  * If a Tx thread starts a new timestamp, we might not begin processing it
633  * right away but we will notice it at the end when we re-queue the task.
634  *
635  * If a Tx thread starts a new timestamp just after this function exits, the
636  * interrupt for that timestamp should re-trigger this function once
637  * a timestamp is ready.
638  *
639  * In cases where the PTP hardware clock was directly adjusted, some
640  * timestamps may not be able to safely use the timestamp extension math. In
641  * this case, software will set the stale bit for any outstanding Tx
642  * timestamps when the clock is adjusted. Then this function will discard
643  * those captured timestamps instead of sending them to the stack.
644  *
645  * If a Tx packet has been waiting for more than 2 seconds, it is not possible
646  * to correctly extend the timestamp using the cached PHC time. It is
647  * extremely unlikely that a packet will ever take this long to timestamp. If
648  * we detect a Tx timestamp request that has waited for this long we assume
649  * the packet will never be sent by hardware and discard it without reading
650  * the timestamp register.
651  */
ice_ptp_process_tx_tstamp(struct ice_ptp_tx * tx)652 static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
653 {
654 	struct ice_ptp_port *ptp_port;
655 	unsigned long flags;
656 	struct ice_pf *pf;
657 	struct ice_hw *hw;
658 	u64 tstamp_ready;
659 	bool link_up;
660 	int err;
661 	u8 idx;
662 
663 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
664 	pf = ptp_port_to_pf(ptp_port);
665 	hw = &pf->hw;
666 
667 	/* Read the Tx ready status first */
668 	if (tx->has_ready_bitmap) {
669 		err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
670 		if (err)
671 			return;
672 	}
673 
674 	/* Drop packets if the link went down */
675 	link_up = ptp_port->link_up;
676 
677 	for_each_set_bit(idx, tx->in_use, tx->len) {
678 		struct skb_shared_hwtstamps shhwtstamps = {};
679 		u8 phy_idx = idx + tx->offset;
680 		u64 raw_tstamp = 0, tstamp;
681 		bool drop_ts = !link_up;
682 		struct sk_buff *skb;
683 
684 		/* Drop packets which have waited for more than 2 seconds */
685 		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
686 			drop_ts = true;
687 
688 			/* Count the number of Tx timestamps that timed out */
689 			pf->ptp.tx_hwtstamp_timeouts++;
690 		}
691 
692 		/* Only read a timestamp from the PHY if its marked as ready
693 		 * by the tstamp_ready register. This avoids unnecessary
694 		 * reading of timestamps which are not yet valid. This is
695 		 * important as we must read all timestamps which are valid
696 		 * and only timestamps which are valid during each interrupt.
697 		 * If we do not, the hardware logic for generating a new
698 		 * interrupt can get stuck on some devices.
699 		 */
700 		if (tx->has_ready_bitmap &&
701 		    !(tstamp_ready & BIT_ULL(phy_idx))) {
702 			if (drop_ts)
703 				goto skip_ts_read;
704 
705 			continue;
706 		}
707 
708 		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
709 
710 		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
711 		if (err && !drop_ts)
712 			continue;
713 
714 		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
715 
716 		/* For PHYs which don't implement a proper timestamp ready
717 		 * bitmap, verify that the timestamp value is different
718 		 * from the last cached timestamp. If it is not, skip this for
719 		 * now assuming it hasn't yet been captured by hardware.
720 		 */
721 		if (!drop_ts && !tx->has_ready_bitmap &&
722 		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
723 			continue;
724 
725 		/* Discard any timestamp value without the valid bit set */
726 		if (!(raw_tstamp & ICE_PTP_TS_VALID))
727 			drop_ts = true;
728 
729 skip_ts_read:
730 		spin_lock_irqsave(&tx->lock, flags);
731 		if (!tx->has_ready_bitmap && raw_tstamp)
732 			tx->tstamps[idx].cached_tstamp = raw_tstamp;
733 		clear_bit(idx, tx->in_use);
734 		skb = tx->tstamps[idx].skb;
735 		tx->tstamps[idx].skb = NULL;
736 		if (test_and_clear_bit(idx, tx->stale))
737 			drop_ts = true;
738 		spin_unlock_irqrestore(&tx->lock, flags);
739 
740 		/* It is unlikely but possible that the SKB will have been
741 		 * flushed at this point due to link change or teardown.
742 		 */
743 		if (!skb)
744 			continue;
745 
746 		if (drop_ts) {
747 			dev_kfree_skb_any(skb);
748 			continue;
749 		}
750 
751 		/* Extend the timestamp using cached PHC time */
752 		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
753 		if (tstamp) {
754 			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
755 			ice_trace(tx_tstamp_complete, skb, idx);
756 		}
757 
758 		skb_tstamp_tx(skb, &shhwtstamps);
759 		dev_kfree_skb_any(skb);
760 	}
761 }
762 
763 /**
764  * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
765  * @pf: Board private structure
766  */
ice_ptp_tx_tstamp_owner(struct ice_pf * pf)767 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
768 {
769 	struct ice_ptp_port *port;
770 	unsigned int i;
771 
772 	mutex_lock(&pf->adapter->ports.lock);
773 	list_for_each_entry(port, &pf->adapter->ports.ports, list_node) {
774 		struct ice_ptp_tx *tx = &port->tx;
775 
776 		if (!tx || !tx->init)
777 			continue;
778 
779 		ice_ptp_process_tx_tstamp(tx);
780 	}
781 	mutex_unlock(&pf->adapter->ports.lock);
782 
783 	for (i = 0; i < ICE_GET_QUAD_NUM(pf->hw.ptp.num_lports); i++) {
784 		u64 tstamp_ready;
785 		int err;
786 
787 		/* Read the Tx ready status first */
788 		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
789 		if (err)
790 			break;
791 		else if (tstamp_ready)
792 			return ICE_TX_TSTAMP_WORK_PENDING;
793 	}
794 
795 	return ICE_TX_TSTAMP_WORK_DONE;
796 }
797 
798 /**
799  * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
800  * @tx: Tx tracking structure to initialize
801  *
802  * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
803  * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
804  */
ice_ptp_tx_tstamp(struct ice_ptp_tx * tx)805 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
806 {
807 	bool more_timestamps;
808 	unsigned long flags;
809 
810 	if (!tx->init)
811 		return ICE_TX_TSTAMP_WORK_DONE;
812 
813 	/* Process the Tx timestamp tracker */
814 	ice_ptp_process_tx_tstamp(tx);
815 
816 	/* Check if there are outstanding Tx timestamps */
817 	spin_lock_irqsave(&tx->lock, flags);
818 	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
819 	spin_unlock_irqrestore(&tx->lock, flags);
820 
821 	if (more_timestamps)
822 		return ICE_TX_TSTAMP_WORK_PENDING;
823 
824 	return ICE_TX_TSTAMP_WORK_DONE;
825 }
826 
827 /**
828  * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
829  * @tx: Tx tracking structure to initialize
830  *
831  * Assumes that the length has already been initialized. Do not call directly,
832  * use the ice_ptp_init_tx_* instead.
833  */
834 static int
ice_ptp_alloc_tx_tracker(struct ice_ptp_tx * tx)835 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
836 {
837 	unsigned long *in_use, *stale;
838 	struct ice_tx_tstamp *tstamps;
839 
840 	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
841 	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
842 	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
843 
844 	if (!tstamps || !in_use || !stale) {
845 		kfree(tstamps);
846 		bitmap_free(in_use);
847 		bitmap_free(stale);
848 
849 		return -ENOMEM;
850 	}
851 
852 	tx->tstamps = tstamps;
853 	tx->in_use = in_use;
854 	tx->stale = stale;
855 	tx->init = 1;
856 	tx->last_ll_ts_idx_read = -1;
857 
858 	spin_lock_init(&tx->lock);
859 
860 	return 0;
861 }
862 
863 /**
864  * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
865  * @pf: Board private structure
866  * @tx: the tracker to flush
867  *
868  * Called during teardown when a Tx tracker is being removed.
869  */
870 static void
ice_ptp_flush_tx_tracker(struct ice_pf * pf,struct ice_ptp_tx * tx)871 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
872 {
873 	struct ice_hw *hw = &pf->hw;
874 	unsigned long flags;
875 	u64 tstamp_ready;
876 	int err;
877 	u8 idx;
878 
879 	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
880 	if (err) {
881 		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
882 			tx->block, err);
883 
884 		/* If we fail to read the Tx timestamp ready bitmap just
885 		 * skip clearing the PHY timestamps.
886 		 */
887 		tstamp_ready = 0;
888 	}
889 
890 	for_each_set_bit(idx, tx->in_use, tx->len) {
891 		u8 phy_idx = idx + tx->offset;
892 		struct sk_buff *skb;
893 
894 		/* In case this timestamp is ready, we need to clear it. */
895 		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
896 			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
897 
898 		spin_lock_irqsave(&tx->lock, flags);
899 		skb = tx->tstamps[idx].skb;
900 		tx->tstamps[idx].skb = NULL;
901 		clear_bit(idx, tx->in_use);
902 		clear_bit(idx, tx->stale);
903 		spin_unlock_irqrestore(&tx->lock, flags);
904 
905 		/* Count the number of Tx timestamps flushed */
906 		pf->ptp.tx_hwtstamp_flushed++;
907 
908 		/* Free the SKB after we've cleared the bit */
909 		dev_kfree_skb_any(skb);
910 	}
911 }
912 
913 /**
914  * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
915  * @tx: the tracker to mark
916  *
917  * Mark currently outstanding Tx timestamps as stale. This prevents sending
918  * their timestamp value to the stack. This is required to prevent extending
919  * the 40bit hardware timestamp incorrectly.
920  *
921  * This should be called when the PTP clock is modified such as after a set
922  * time request.
923  */
924 static void
ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx * tx)925 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
926 {
927 	unsigned long flags;
928 
929 	spin_lock_irqsave(&tx->lock, flags);
930 	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
931 	spin_unlock_irqrestore(&tx->lock, flags);
932 }
933 
934 /**
935  * ice_ptp_flush_all_tx_tracker - Flush all timestamp trackers on this clock
936  * @pf: Board private structure
937  *
938  * Called by the clock owner to flush all the Tx timestamp trackers associated
939  * with the clock.
940  */
941 static void
ice_ptp_flush_all_tx_tracker(struct ice_pf * pf)942 ice_ptp_flush_all_tx_tracker(struct ice_pf *pf)
943 {
944 	struct ice_ptp_port *port;
945 
946 	list_for_each_entry(port, &pf->adapter->ports.ports, list_node)
947 		ice_ptp_flush_tx_tracker(ptp_port_to_pf(port), &port->tx);
948 }
949 
950 /**
951  * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
952  * @pf: Board private structure
953  * @tx: Tx tracking structure to release
954  *
955  * Free memory associated with the Tx timestamp tracker.
956  */
957 static void
ice_ptp_release_tx_tracker(struct ice_pf * pf,struct ice_ptp_tx * tx)958 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
959 {
960 	unsigned long flags;
961 
962 	spin_lock_irqsave(&tx->lock, flags);
963 	tx->init = 0;
964 	spin_unlock_irqrestore(&tx->lock, flags);
965 
966 	/* wait for potentially outstanding interrupt to complete */
967 	synchronize_irq(pf->oicr_irq.virq);
968 
969 	ice_ptp_flush_tx_tracker(pf, tx);
970 
971 	kfree(tx->tstamps);
972 	tx->tstamps = NULL;
973 
974 	bitmap_free(tx->in_use);
975 	tx->in_use = NULL;
976 
977 	bitmap_free(tx->stale);
978 	tx->stale = NULL;
979 
980 	tx->len = 0;
981 }
982 
983 /**
984  * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps
985  * @pf: Board private structure
986  * @tx: the Tx tracking structure to initialize
987  * @port: the port this structure tracks
988  *
989  * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
990  * the timestamp block is shared for all ports in the same quad. To avoid
991  * ports using the same timestamp index, logically break the block of
992  * registers into chunks based on the port number.
993  *
994  * Return: 0 on success, -ENOMEM when out of memory
995  */
ice_ptp_init_tx_e82x(struct ice_pf * pf,struct ice_ptp_tx * tx,u8 port)996 static int ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx,
997 				u8 port)
998 {
999 	tx->block = ICE_GET_QUAD_NUM(port);
1000 	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X;
1001 	tx->len = INDEX_PER_PORT_E82X;
1002 	tx->has_ready_bitmap = 1;
1003 
1004 	return ice_ptp_alloc_tx_tracker(tx);
1005 }
1006 
1007 /**
1008  * ice_ptp_init_tx - Initialize tracking for Tx timestamps
1009  * @pf: Board private structure
1010  * @tx: the Tx tracking structure to initialize
1011  * @port: the port this structure tracks
1012  *
1013  * Initialize the Tx timestamp tracker for this PF. For all PHYs except E82X,
1014  * each port has its own block of timestamps, independent of the other ports.
1015  *
1016  * Return: 0 on success, -ENOMEM when out of memory
1017  */
ice_ptp_init_tx(struct ice_pf * pf,struct ice_ptp_tx * tx,u8 port)1018 static int ice_ptp_init_tx(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
1019 {
1020 	tx->block = port;
1021 	tx->offset = 0;
1022 	tx->len = INDEX_PER_PORT;
1023 
1024 	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
1025 	 * verify new timestamps against cached copy of the last read
1026 	 * timestamp.
1027 	 */
1028 	tx->has_ready_bitmap = pf->hw.mac_type != ICE_MAC_E810;
1029 
1030 	return ice_ptp_alloc_tx_tracker(tx);
1031 }
1032 
1033 /**
1034  * ice_ptp_update_cached_phctime - Update the cached PHC time values
1035  * @pf: Board specific private structure
1036  *
1037  * This function updates the system time values which are cached in the PF
1038  * structure and the Rx rings.
1039  *
1040  * This function must be called periodically to ensure that the cached value
1041  * is never more than 2 seconds old.
1042  *
1043  * Note that the cached copy in the PF PTP structure is always updated, even
1044  * if we can't update the copy in the Rx rings.
1045  *
1046  * Return:
1047  * * 0 - OK, successfully updated
1048  * * -EAGAIN - PF was busy, need to reschedule the update
1049  */
ice_ptp_update_cached_phctime(struct ice_pf * pf)1050 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
1051 {
1052 	struct device *dev = ice_pf_to_dev(pf);
1053 	unsigned long update_before;
1054 	u64 systime;
1055 	int i;
1056 
1057 	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1058 	if (pf->ptp.cached_phc_time &&
1059 	    time_is_before_jiffies(update_before)) {
1060 		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1061 
1062 		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1063 			 jiffies_to_msecs(time_taken));
1064 		pf->ptp.late_cached_phc_updates++;
1065 	}
1066 
1067 	/* Read the current PHC time */
1068 	systime = ice_ptp_read_src_clk_reg(pf, NULL);
1069 
1070 	/* Update the cached PHC time stored in the PF structure */
1071 	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1072 	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1073 
1074 	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1075 		return -EAGAIN;
1076 
1077 	ice_for_each_vsi(pf, i) {
1078 		struct ice_vsi *vsi = pf->vsi[i];
1079 		int j;
1080 
1081 		if (!vsi)
1082 			continue;
1083 
1084 		if (vsi->type != ICE_VSI_PF)
1085 			continue;
1086 
1087 		ice_for_each_rxq(vsi, j) {
1088 			if (!vsi->rx_rings[j])
1089 				continue;
1090 			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1091 		}
1092 	}
1093 	clear_bit(ICE_CFG_BUSY, pf->state);
1094 
1095 	return 0;
1096 }
1097 
1098 /**
1099  * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1100  * @pf: Board specific private structure
1101  *
1102  * This function must be called when the cached PHC time is no longer valid,
1103  * such as after a time adjustment. It marks any currently outstanding Tx
1104  * timestamps as stale and updates the cached PHC time for both the PF and Rx
1105  * rings.
1106  *
1107  * If updating the PHC time cannot be done immediately, a warning message is
1108  * logged and the work item is scheduled immediately to minimize the window
1109  * with a wrong cached timestamp.
1110  */
ice_ptp_reset_cached_phctime(struct ice_pf * pf)1111 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1112 {
1113 	struct device *dev = ice_pf_to_dev(pf);
1114 	int err;
1115 
1116 	/* Update the cached PHC time immediately if possible, otherwise
1117 	 * schedule the work item to execute soon.
1118 	 */
1119 	err = ice_ptp_update_cached_phctime(pf);
1120 	if (err) {
1121 		/* If another thread is updating the Rx rings, we won't
1122 		 * properly reset them here. This could lead to reporting of
1123 		 * invalid timestamps, but there isn't much we can do.
1124 		 */
1125 		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1126 			 __func__);
1127 
1128 		/* Queue the work item to update the Rx rings when possible */
1129 		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1130 					   msecs_to_jiffies(10));
1131 	}
1132 
1133 	/* Mark any outstanding timestamps as stale, since they might have
1134 	 * been captured in hardware before the time update. This could lead
1135 	 * to us extending them with the wrong cached value resulting in
1136 	 * incorrect timestamp values.
1137 	 */
1138 	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1139 }
1140 
1141 /**
1142  * ice_ptp_write_init - Set PHC time to provided value
1143  * @pf: Board private structure
1144  * @ts: timespec structure that holds the new time value
1145  *
1146  * Set the PHC time to the specified time provided in the timespec.
1147  */
ice_ptp_write_init(struct ice_pf * pf,struct timespec64 * ts)1148 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1149 {
1150 	u64 ns = timespec64_to_ns(ts);
1151 	struct ice_hw *hw = &pf->hw;
1152 
1153 	return ice_ptp_init_time(hw, ns);
1154 }
1155 
1156 /**
1157  * ice_ptp_write_adj - Adjust PHC clock time atomically
1158  * @pf: Board private structure
1159  * @adj: Adjustment in nanoseconds
1160  *
1161  * Perform an atomic adjustment of the PHC time by the specified number of
1162  * nanoseconds.
1163  */
ice_ptp_write_adj(struct ice_pf * pf,s32 adj)1164 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1165 {
1166 	struct ice_hw *hw = &pf->hw;
1167 
1168 	return ice_ptp_adj_clock(hw, adj);
1169 }
1170 
1171 /**
1172  * ice_base_incval - Get base timer increment value
1173  * @pf: Board private structure
1174  *
1175  * Look up the base timer increment value for this device. The base increment
1176  * value is used to define the nominal clock tick rate. This increment value
1177  * is programmed during device initialization. It is also used as the basis
1178  * for calculating adjustments using scaled_ppm.
1179  */
ice_base_incval(struct ice_pf * pf)1180 static u64 ice_base_incval(struct ice_pf *pf)
1181 {
1182 	struct ice_hw *hw = &pf->hw;
1183 	u64 incval;
1184 
1185 	incval = ice_get_base_incval(hw);
1186 
1187 	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1188 		incval);
1189 
1190 	return incval;
1191 }
1192 
1193 /**
1194  * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1195  * @port: PTP port for which Tx FIFO is checked
1196  */
ice_ptp_check_tx_fifo(struct ice_ptp_port * port)1197 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1198 {
1199 	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1200 	int quad = ICE_GET_QUAD_NUM(port->port_num);
1201 	struct ice_pf *pf;
1202 	struct ice_hw *hw;
1203 	u32 val, phy_sts;
1204 	int err;
1205 
1206 	pf = ptp_port_to_pf(port);
1207 	hw = &pf->hw;
1208 
1209 	if (port->tx_fifo_busy_cnt == FIFO_OK)
1210 		return 0;
1211 
1212 	/* need to read FIFO state */
1213 	if (offs == 0 || offs == 1)
1214 		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS,
1215 					     &val);
1216 	else
1217 		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS,
1218 					     &val);
1219 
1220 	if (err) {
1221 		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1222 			port->port_num, err);
1223 		return err;
1224 	}
1225 
1226 	if (offs & 0x1)
1227 		phy_sts = FIELD_GET(Q_REG_FIFO13_M, val);
1228 	else
1229 		phy_sts = FIELD_GET(Q_REG_FIFO02_M, val);
1230 
1231 	if (phy_sts & FIFO_EMPTY) {
1232 		port->tx_fifo_busy_cnt = FIFO_OK;
1233 		return 0;
1234 	}
1235 
1236 	port->tx_fifo_busy_cnt++;
1237 
1238 	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1239 		port->tx_fifo_busy_cnt, port->port_num);
1240 
1241 	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1242 		dev_dbg(ice_pf_to_dev(pf),
1243 			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1244 			port->port_num, quad);
1245 		ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
1246 		port->tx_fifo_busy_cnt = FIFO_OK;
1247 		return 0;
1248 	}
1249 
1250 	return -EAGAIN;
1251 }
1252 
1253 /**
1254  * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1255  * @work: Pointer to the kthread_work structure for this task
1256  *
1257  * Check whether hardware has completed measuring the Tx and Rx offset values
1258  * used to configure and enable vernier timestamp calibration.
1259  *
1260  * Once the offset in either direction is measured, configure the associated
1261  * registers with the calibrated offset values and enable timestamping. The Tx
1262  * and Rx directions are configured independently as soon as their associated
1263  * offsets are known.
1264  *
1265  * This function reschedules itself until both Tx and Rx calibration have
1266  * completed.
1267  */
ice_ptp_wait_for_offsets(struct kthread_work * work)1268 static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1269 {
1270 	struct ice_ptp_port *port;
1271 	struct ice_pf *pf;
1272 	struct ice_hw *hw;
1273 	int tx_err;
1274 	int rx_err;
1275 
1276 	port = container_of(work, struct ice_ptp_port, ov_work.work);
1277 	pf = ptp_port_to_pf(port);
1278 	hw = &pf->hw;
1279 
1280 	if (ice_is_reset_in_progress(pf->state)) {
1281 		/* wait for device driver to complete reset */
1282 		kthread_queue_delayed_work(pf->ptp.kworker,
1283 					   &port->ov_work,
1284 					   msecs_to_jiffies(100));
1285 		return;
1286 	}
1287 
1288 	tx_err = ice_ptp_check_tx_fifo(port);
1289 	if (!tx_err)
1290 		tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num);
1291 	rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num);
1292 	if (tx_err || rx_err) {
1293 		/* Tx and/or Rx offset not yet configured, try again later */
1294 		kthread_queue_delayed_work(pf->ptp.kworker,
1295 					   &port->ov_work,
1296 					   msecs_to_jiffies(100));
1297 		return;
1298 	}
1299 }
1300 
1301 /**
1302  * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1303  * @ptp_port: PTP port to stop
1304  */
1305 static int
ice_ptp_port_phy_stop(struct ice_ptp_port * ptp_port)1306 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1307 {
1308 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1309 	u8 port = ptp_port->port_num;
1310 	struct ice_hw *hw = &pf->hw;
1311 	int err;
1312 
1313 	mutex_lock(&ptp_port->ps_lock);
1314 
1315 	switch (hw->mac_type) {
1316 	case ICE_MAC_E810:
1317 	case ICE_MAC_E830:
1318 		err = 0;
1319 		break;
1320 	case ICE_MAC_GENERIC:
1321 		kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1322 
1323 		err = ice_stop_phy_timer_e82x(hw, port, true);
1324 		break;
1325 	case ICE_MAC_GENERIC_3K_E825:
1326 		err = ice_stop_phy_timer_eth56g(hw, port, true);
1327 		break;
1328 	default:
1329 		err = -ENODEV;
1330 	}
1331 	if (err && err != -EBUSY)
1332 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1333 			port, err);
1334 
1335 	mutex_unlock(&ptp_port->ps_lock);
1336 
1337 	return err;
1338 }
1339 
1340 /**
1341  * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1342  * @ptp_port: PTP port for which the PHY start is set
1343  *
1344  * Start the PHY timestamping block, and initiate Vernier timestamping
1345  * calibration. If timestamping cannot be calibrated (such as if link is down)
1346  * then disable the timestamping block instead.
1347  */
1348 static int
ice_ptp_port_phy_restart(struct ice_ptp_port * ptp_port)1349 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1350 {
1351 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1352 	u8 port = ptp_port->port_num;
1353 	struct ice_hw *hw = &pf->hw;
1354 	unsigned long flags;
1355 	int err;
1356 
1357 	if (!ptp_port->link_up)
1358 		return ice_ptp_port_phy_stop(ptp_port);
1359 
1360 	mutex_lock(&ptp_port->ps_lock);
1361 
1362 	switch (hw->mac_type) {
1363 	case ICE_MAC_E810:
1364 	case ICE_MAC_E830:
1365 		err = 0;
1366 		break;
1367 	case ICE_MAC_GENERIC:
1368 		/* Start the PHY timer in Vernier mode */
1369 		kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1370 
1371 		/* temporarily disable Tx timestamps while calibrating
1372 		 * PHY offset
1373 		 */
1374 		spin_lock_irqsave(&ptp_port->tx.lock, flags);
1375 		ptp_port->tx.calibrating = true;
1376 		spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1377 		ptp_port->tx_fifo_busy_cnt = 0;
1378 
1379 		/* Start the PHY timer in Vernier mode */
1380 		err = ice_start_phy_timer_e82x(hw, port);
1381 		if (err)
1382 			break;
1383 
1384 		/* Enable Tx timestamps right away */
1385 		spin_lock_irqsave(&ptp_port->tx.lock, flags);
1386 		ptp_port->tx.calibrating = false;
1387 		spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1388 
1389 		kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work,
1390 					   0);
1391 		break;
1392 	case ICE_MAC_GENERIC_3K_E825:
1393 		err = ice_start_phy_timer_eth56g(hw, port);
1394 		break;
1395 	default:
1396 		err = -ENODEV;
1397 	}
1398 
1399 	if (err)
1400 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1401 			port, err);
1402 
1403 	mutex_unlock(&ptp_port->ps_lock);
1404 
1405 	return err;
1406 }
1407 
1408 /**
1409  * ice_ptp_link_change - Reconfigure PTP after link status change
1410  * @pf: Board private structure
1411  * @linkup: Link is up or down
1412  */
ice_ptp_link_change(struct ice_pf * pf,bool linkup)1413 void ice_ptp_link_change(struct ice_pf *pf, bool linkup)
1414 {
1415 	struct ice_ptp_port *ptp_port;
1416 	struct ice_hw *hw = &pf->hw;
1417 
1418 	if (pf->ptp.state != ICE_PTP_READY)
1419 		return;
1420 
1421 	ptp_port = &pf->ptp.port;
1422 
1423 	/* Update cached link status for this port immediately */
1424 	ptp_port->link_up = linkup;
1425 
1426 	/* Skip HW writes if reset is in progress */
1427 	if (pf->hw.reset_ongoing)
1428 		return;
1429 
1430 	switch (hw->mac_type) {
1431 	case ICE_MAC_E810:
1432 	case ICE_MAC_E830:
1433 		/* Do not reconfigure E810 or E830 PHY */
1434 		return;
1435 	case ICE_MAC_GENERIC:
1436 	case ICE_MAC_GENERIC_3K_E825:
1437 		ice_ptp_port_phy_restart(ptp_port);
1438 		return;
1439 	default:
1440 		dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
1441 	}
1442 }
1443 
1444 /**
1445  * ice_ptp_cfg_phy_interrupt - Configure PHY interrupt settings
1446  * @pf: PF private structure
1447  * @ena: bool value to enable or disable interrupt
1448  * @threshold: Minimum number of packets at which intr is triggered
1449  *
1450  * Utility function to configure all the PHY interrupt settings, including
1451  * whether the PHY interrupt is enabled, and what threshold to use. Also
1452  * configures The E82X timestamp owner to react to interrupts from all PHYs.
1453  *
1454  * Return: 0 on success, -EOPNOTSUPP when PHY model incorrect, other error codes
1455  * when failed to configure PHY interrupt for E82X
1456  */
ice_ptp_cfg_phy_interrupt(struct ice_pf * pf,bool ena,u32 threshold)1457 static int ice_ptp_cfg_phy_interrupt(struct ice_pf *pf, bool ena, u32 threshold)
1458 {
1459 	struct device *dev = ice_pf_to_dev(pf);
1460 	struct ice_hw *hw = &pf->hw;
1461 
1462 	ice_ptp_reset_ts_memory(hw);
1463 
1464 	switch (hw->mac_type) {
1465 	case ICE_MAC_E810:
1466 	case ICE_MAC_E830:
1467 		return 0;
1468 	case ICE_MAC_GENERIC: {
1469 		int quad;
1470 
1471 		for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports);
1472 		     quad++) {
1473 			int err;
1474 
1475 			err = ice_phy_cfg_intr_e82x(hw, quad, ena, threshold);
1476 			if (err) {
1477 				dev_err(dev, "Failed to configure PHY interrupt for quad %d, err %d\n",
1478 					quad, err);
1479 				return err;
1480 			}
1481 		}
1482 
1483 		return 0;
1484 	}
1485 	case ICE_MAC_GENERIC_3K_E825: {
1486 		int port;
1487 
1488 		for (port = 0; port < hw->ptp.num_lports; port++) {
1489 			int err;
1490 
1491 			err = ice_phy_cfg_intr_eth56g(hw, port, ena, threshold);
1492 			if (err) {
1493 				dev_err(dev, "Failed to configure PHY interrupt for port %d, err %d\n",
1494 					port, err);
1495 				return err;
1496 			}
1497 		}
1498 
1499 		return 0;
1500 	}
1501 	case ICE_MAC_UNKNOWN:
1502 	default:
1503 		return -EOPNOTSUPP;
1504 	}
1505 }
1506 
1507 /**
1508  * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1509  * @pf: Board private structure
1510  */
ice_ptp_reset_phy_timestamping(struct ice_pf * pf)1511 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1512 {
1513 	ice_ptp_port_phy_restart(&pf->ptp.port);
1514 }
1515 
1516 /**
1517  * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
1518  * @pf: Board private structure
1519  */
ice_ptp_restart_all_phy(struct ice_pf * pf)1520 static void ice_ptp_restart_all_phy(struct ice_pf *pf)
1521 {
1522 	struct list_head *entry;
1523 
1524 	list_for_each(entry, &pf->adapter->ports.ports) {
1525 		struct ice_ptp_port *port = list_entry(entry,
1526 						       struct ice_ptp_port,
1527 						       list_node);
1528 
1529 		if (port->link_up)
1530 			ice_ptp_port_phy_restart(port);
1531 	}
1532 }
1533 
1534 /**
1535  * ice_ptp_adjfine - Adjust clock increment rate
1536  * @info: the driver's PTP info structure
1537  * @scaled_ppm: Parts per million with 16-bit fractional field
1538  *
1539  * Adjust the frequency of the clock by the indicated scaled ppm from the
1540  * base frequency.
1541  */
ice_ptp_adjfine(struct ptp_clock_info * info,long scaled_ppm)1542 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1543 {
1544 	struct ice_pf *pf = ptp_info_to_pf(info);
1545 	struct ice_hw *hw = &pf->hw;
1546 	u64 incval;
1547 	int err;
1548 
1549 	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1550 	err = ice_ptp_write_incval_locked(hw, incval);
1551 	if (err) {
1552 		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1553 			err);
1554 		return -EIO;
1555 	}
1556 
1557 	return 0;
1558 }
1559 
1560 /**
1561  * ice_ptp_extts_event - Process PTP external clock event
1562  * @pf: Board private structure
1563  */
ice_ptp_extts_event(struct ice_pf * pf)1564 void ice_ptp_extts_event(struct ice_pf *pf)
1565 {
1566 	struct ptp_clock_event event;
1567 	struct ice_hw *hw = &pf->hw;
1568 	u8 chan, tmr_idx;
1569 	u32 hi, lo;
1570 
1571 	/* Don't process timestamp events if PTP is not ready */
1572 	if (pf->ptp.state != ICE_PTP_READY)
1573 		return;
1574 
1575 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1576 	/* Event time is captured by one of the two matched registers
1577 	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1578 	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1579 	 * Event is defined in GLTSYN_EVNT_0 register
1580 	 */
1581 	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1582 		int pin_desc_idx;
1583 
1584 		/* Check if channel is enabled */
1585 		if (!(pf->ptp.ext_ts_irq & (1 << chan)))
1586 			continue;
1587 
1588 		lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1589 		hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1590 		event.timestamp = (u64)hi << 32 | lo;
1591 
1592 		/* Add delay compensation */
1593 		pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_EXTTS, chan);
1594 		if (pin_desc_idx >= 0) {
1595 			const struct ice_ptp_pin_desc *desc;
1596 
1597 			desc = &pf->ptp.ice_pin_desc[pin_desc_idx];
1598 			event.timestamp -= desc->delay[0];
1599 		}
1600 
1601 		event.type = PTP_CLOCK_EXTTS;
1602 		event.index = chan;
1603 		pf->ptp.ext_ts_irq &= ~(1 << chan);
1604 		ptp_clock_event(pf->ptp.clock, &event);
1605 	}
1606 }
1607 
1608 /**
1609  * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1610  * @pf: Board private structure
1611  * @rq: External timestamp request
1612  * @on: Enable/disable flag
1613  *
1614  * Configure an external timestamp event on the requested channel.
1615  *
1616  * Return: 0 on success, negative error code otherwise
1617  */
ice_ptp_cfg_extts(struct ice_pf * pf,struct ptp_extts_request * rq,int on)1618 static int ice_ptp_cfg_extts(struct ice_pf *pf, struct ptp_extts_request *rq,
1619 			     int on)
1620 {
1621 	u32 aux_reg, gpio_reg, irq_reg;
1622 	struct ice_hw *hw = &pf->hw;
1623 	unsigned int chan, gpio_pin;
1624 	int pin_desc_idx;
1625 	u8 tmr_idx;
1626 
1627 	/* Reject requests with unsupported flags */
1628 
1629 	if (rq->flags & ~(PTP_ENABLE_FEATURE |
1630 			  PTP_RISING_EDGE |
1631 			  PTP_FALLING_EDGE |
1632 			  PTP_STRICT_FLAGS))
1633 		return -EOPNOTSUPP;
1634 
1635 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1636 	chan = rq->index;
1637 
1638 	pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_EXTTS, chan);
1639 	if (pin_desc_idx < 0)
1640 		return -EIO;
1641 
1642 	gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[0];
1643 	irq_reg = rd32(hw, PFINT_OICR_ENA);
1644 
1645 	if (on) {
1646 		/* Enable the interrupt */
1647 		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1648 		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1649 
1650 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1651 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1652 
1653 		/* set event level to requested edge */
1654 		if (rq->flags & PTP_FALLING_EDGE)
1655 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1656 		if (rq->flags & PTP_RISING_EDGE)
1657 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1658 
1659 		/* Write GPIO CTL reg.
1660 		 * 0x1 is input sampled by EVENT register(channel)
1661 		 * + num_in_channels * tmr_idx
1662 		 */
1663 		gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M,
1664 				      1 + chan + (tmr_idx * 3));
1665 	} else {
1666 		bool last_enabled = true;
1667 
1668 		/* clear the values we set to reset defaults */
1669 		aux_reg = 0;
1670 		gpio_reg = 0;
1671 
1672 		for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts; i++)
1673 			if ((pf->ptp.extts_rqs[i].flags &
1674 			     PTP_ENABLE_FEATURE) &&
1675 			    i != chan) {
1676 				last_enabled = false;
1677 			}
1678 
1679 		if (last_enabled)
1680 			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1681 	}
1682 
1683 	wr32(hw, PFINT_OICR_ENA, irq_reg);
1684 	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1685 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1686 
1687 	return 0;
1688 }
1689 
1690 /**
1691  * ice_ptp_disable_all_extts - Disable all EXTTS channels
1692  * @pf: Board private structure
1693  */
ice_ptp_disable_all_extts(struct ice_pf * pf)1694 static void ice_ptp_disable_all_extts(struct ice_pf *pf)
1695 {
1696 	for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++)
1697 		if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE)
1698 			ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i],
1699 					  false);
1700 
1701 	synchronize_irq(pf->oicr_irq.virq);
1702 }
1703 
1704 /**
1705  * ice_ptp_enable_all_extts - Enable all EXTTS channels
1706  * @pf: Board private structure
1707  *
1708  * Called during reset to restore user configuration.
1709  */
ice_ptp_enable_all_extts(struct ice_pf * pf)1710 static void ice_ptp_enable_all_extts(struct ice_pf *pf)
1711 {
1712 	for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++)
1713 		if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE)
1714 			ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i],
1715 					  true);
1716 }
1717 
1718 /**
1719  * ice_ptp_write_perout - Write periodic wave parameters to HW
1720  * @hw: pointer to the HW struct
1721  * @chan: target channel
1722  * @gpio_pin: target GPIO pin
1723  * @start: target time to start periodic output
1724  * @period: target period
1725  *
1726  * Return: 0 on success, negative error code otherwise
1727  */
ice_ptp_write_perout(struct ice_hw * hw,unsigned int chan,unsigned int gpio_pin,u64 start,u64 period)1728 static int ice_ptp_write_perout(struct ice_hw *hw, unsigned int chan,
1729 				unsigned int gpio_pin, u64 start, u64 period)
1730 {
1731 
1732 	u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1733 	u32 val = 0;
1734 
1735 	/* 0. Reset mode & out_en in AUX_OUT */
1736 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1737 
1738 	if (hw->mac_type == ICE_MAC_GENERIC_3K_E825) {
1739 		int err;
1740 
1741 		/* Enable/disable CGU 1PPS output for E825C */
1742 		err = ice_cgu_cfg_pps_out(hw, !!period);
1743 		if (err)
1744 			return err;
1745 	}
1746 
1747 	/* 1. Write perout with half of required period value.
1748 	 * HW toggles output when source clock hits the TGT and then adds
1749 	 * GLTSYN_CLKO value to the target, so it ends up with 50% duty cycle.
1750 	 */
1751 	period >>= 1;
1752 
1753 	/* For proper operation, GLTSYN_CLKO must be larger than clock tick and
1754 	 * period has to fit in 32 bit register.
1755 	 */
1756 #define MIN_PULSE 3
1757 	if (!!period && (period <= MIN_PULSE || period > U32_MAX)) {
1758 		dev_err(ice_hw_to_dev(hw), "CLK period ticks must be >= %d && <= 2^32",
1759 			MIN_PULSE);
1760 		return -EIO;
1761 	}
1762 
1763 	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1764 
1765 	/* 2. Write TARGET time */
1766 	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start));
1767 	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start));
1768 
1769 	/* 3. Write AUX_OUT register */
1770 	if (!!period)
1771 		val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1772 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1773 
1774 	/* 4. write GPIO CTL reg */
1775 	val = GLGEN_GPIO_CTL_PIN_DIR_M;
1776 	if (!!period)
1777 		val |= FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M,
1778 				  8 + chan + (tmr_idx * 4));
1779 
1780 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1781 	ice_flush(hw);
1782 
1783 	return 0;
1784 }
1785 
1786 /**
1787  * ice_ptp_cfg_perout - Configure clock to generate periodic wave
1788  * @pf: Board private structure
1789  * @rq: Periodic output request
1790  * @on: Enable/disable flag
1791  *
1792  * Configure the internal clock generator modules to generate the clock wave of
1793  * specified period.
1794  *
1795  * Return: 0 on success, negative error code otherwise
1796  */
ice_ptp_cfg_perout(struct ice_pf * pf,struct ptp_perout_request * rq,int on)1797 static int ice_ptp_cfg_perout(struct ice_pf *pf, struct ptp_perout_request *rq,
1798 			      int on)
1799 {
1800 	unsigned int gpio_pin, prop_delay_ns;
1801 	u64 clk, period, start, phase;
1802 	struct ice_hw *hw = &pf->hw;
1803 	int pin_desc_idx;
1804 
1805 	if (rq->flags & ~PTP_PEROUT_PHASE)
1806 		return -EOPNOTSUPP;
1807 
1808 	pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_PEROUT, rq->index);
1809 	if (pin_desc_idx < 0)
1810 		return -EIO;
1811 
1812 	gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[1];
1813 	prop_delay_ns = pf->ptp.ice_pin_desc[pin_desc_idx].delay[1];
1814 	period = rq->period.sec * NSEC_PER_SEC + rq->period.nsec;
1815 
1816 	/* If we're disabling the output or period is 0, clear out CLKO and TGT
1817 	 * and keep output level low.
1818 	 */
1819 	if (!on || !period)
1820 		return ice_ptp_write_perout(hw, rq->index, gpio_pin, 0, 0);
1821 
1822 	if (strncmp(pf->ptp.pin_desc[pin_desc_idx].name, "1PPS", 64) == 0 &&
1823 	    period != NSEC_PER_SEC && hw->mac_type == ICE_MAC_GENERIC) {
1824 		dev_err(ice_pf_to_dev(pf), "1PPS pin supports only 1 s period\n");
1825 		return -EOPNOTSUPP;
1826 	}
1827 
1828 	if (period & 0x1) {
1829 		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1830 		return -EIO;
1831 	}
1832 
1833 	start = rq->start.sec * NSEC_PER_SEC + rq->start.nsec;
1834 
1835 	/* If PTP_PEROUT_PHASE is set, rq has phase instead of start time */
1836 	if (rq->flags & PTP_PEROUT_PHASE)
1837 		phase = start;
1838 	else
1839 		div64_u64_rem(start, period, &phase);
1840 
1841 	/* If we have only phase or start time is in the past, start the timer
1842 	 * at the next multiple of period, maintaining phase at least 0.5 second
1843 	 * from now, so we have time to write it to HW.
1844 	 */
1845 	clk = ice_ptp_read_src_clk_reg(pf, NULL) + NSEC_PER_MSEC * 500;
1846 	if (rq->flags & PTP_PEROUT_PHASE || start <= clk - prop_delay_ns)
1847 		start = div64_u64(clk + period - 1, period) * period + phase;
1848 
1849 	/* Compensate for propagation delay from the generator to the pin. */
1850 	start -= prop_delay_ns;
1851 
1852 	return ice_ptp_write_perout(hw, rq->index, gpio_pin, start, period);
1853 }
1854 
1855 /**
1856  * ice_ptp_disable_all_perout - Disable all currently configured outputs
1857  * @pf: Board private structure
1858  *
1859  * Disable all currently configured clock outputs. This is necessary before
1860  * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_perout to
1861  * re-enable the clocks again.
1862  */
ice_ptp_disable_all_perout(struct ice_pf * pf)1863 static void ice_ptp_disable_all_perout(struct ice_pf *pf)
1864 {
1865 	for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++)
1866 		if (pf->ptp.perout_rqs[i].period.sec ||
1867 		    pf->ptp.perout_rqs[i].period.nsec)
1868 			ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i],
1869 					   false);
1870 }
1871 
1872 /**
1873  * ice_ptp_enable_all_perout - Enable all configured periodic clock outputs
1874  * @pf: Board private structure
1875  *
1876  * Enable all currently configured clock outputs. Use this after
1877  * ice_ptp_disable_all_perout to reconfigure the output signals according to
1878  * their configuration.
1879  */
ice_ptp_enable_all_perout(struct ice_pf * pf)1880 static void ice_ptp_enable_all_perout(struct ice_pf *pf)
1881 {
1882 	for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++)
1883 		if (pf->ptp.perout_rqs[i].period.sec ||
1884 		    pf->ptp.perout_rqs[i].period.nsec)
1885 			ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i],
1886 					   true);
1887 }
1888 
1889 /**
1890  * ice_ptp_disable_shared_pin - Disable enabled pin that shares GPIO
1891  * @pf: Board private structure
1892  * @pin: Pin index
1893  * @func: Assigned function
1894  *
1895  * Return: 0 on success, negative error code otherwise
1896  */
ice_ptp_disable_shared_pin(struct ice_pf * pf,unsigned int pin,enum ptp_pin_function func)1897 static int ice_ptp_disable_shared_pin(struct ice_pf *pf, unsigned int pin,
1898 				      enum ptp_pin_function func)
1899 {
1900 	unsigned int gpio_pin;
1901 
1902 	switch (func) {
1903 	case PTP_PF_PEROUT:
1904 		gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[1];
1905 		break;
1906 	case PTP_PF_EXTTS:
1907 		gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[0];
1908 		break;
1909 	default:
1910 		return -EOPNOTSUPP;
1911 	}
1912 
1913 	for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) {
1914 		struct ptp_pin_desc *pin_desc = &pf->ptp.pin_desc[i];
1915 		unsigned int chan = pin_desc->chan;
1916 
1917 		/* Skip pin idx from the request */
1918 		if (i == pin)
1919 			continue;
1920 
1921 		if (pin_desc->func == PTP_PF_PEROUT &&
1922 		    pf->ptp.ice_pin_desc[i].gpio[1] == gpio_pin) {
1923 			pf->ptp.perout_rqs[chan].period.sec = 0;
1924 			pf->ptp.perout_rqs[chan].period.nsec = 0;
1925 			pin_desc->func = PTP_PF_NONE;
1926 			pin_desc->chan = 0;
1927 			dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared output GPIO pin %u\n",
1928 				i, gpio_pin);
1929 			return ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[chan],
1930 						  false);
1931 		} else if (pf->ptp.pin_desc->func == PTP_PF_EXTTS &&
1932 			   pf->ptp.ice_pin_desc[i].gpio[0] == gpio_pin) {
1933 			pf->ptp.extts_rqs[chan].flags &= ~PTP_ENABLE_FEATURE;
1934 			pin_desc->func = PTP_PF_NONE;
1935 			pin_desc->chan = 0;
1936 			dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared input GPIO pin %u\n",
1937 				i, gpio_pin);
1938 			return ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[chan],
1939 						 false);
1940 		}
1941 	}
1942 
1943 	return 0;
1944 }
1945 
1946 /**
1947  * ice_verify_pin - verify if pin supports requested pin function
1948  * @info: the driver's PTP info structure
1949  * @pin: Pin index
1950  * @func: Assigned function
1951  * @chan: Assigned channel
1952  *
1953  * Return: 0 on success, -EOPNOTSUPP when function is not supported.
1954  */
ice_verify_pin(struct ptp_clock_info * info,unsigned int pin,enum ptp_pin_function func,unsigned int chan)1955 static int ice_verify_pin(struct ptp_clock_info *info, unsigned int pin,
1956 			  enum ptp_pin_function func, unsigned int chan)
1957 {
1958 	struct ice_pf *pf = ptp_info_to_pf(info);
1959 	const struct ice_ptp_pin_desc *pin_desc;
1960 
1961 	pin_desc = &pf->ptp.ice_pin_desc[pin];
1962 
1963 	/* Is assigned function allowed? */
1964 	switch (func) {
1965 	case PTP_PF_EXTTS:
1966 		if (pin_desc->gpio[0] < 0)
1967 			return -EOPNOTSUPP;
1968 		break;
1969 	case PTP_PF_PEROUT:
1970 		if (pin_desc->gpio[1] < 0)
1971 			return -EOPNOTSUPP;
1972 		break;
1973 	case PTP_PF_NONE:
1974 		break;
1975 	case PTP_PF_PHYSYNC:
1976 	default:
1977 		return -EOPNOTSUPP;
1978 	}
1979 
1980 	/* On adapters with SMA_CTRL disable other pins that share same GPIO */
1981 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
1982 		ice_ptp_disable_shared_pin(pf, pin, func);
1983 		pf->ptp.pin_desc[pin].func = func;
1984 		pf->ptp.pin_desc[pin].chan = chan;
1985 		return ice_ptp_set_sma_cfg(pf);
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 /**
1992  * ice_ptp_gpio_enable - Enable/disable ancillary features of PHC
1993  * @info: The driver's PTP info structure
1994  * @rq: The requested feature to change
1995  * @on: Enable/disable flag
1996  *
1997  * Return: 0 on success, negative error code otherwise
1998  */
ice_ptp_gpio_enable(struct ptp_clock_info * info,struct ptp_clock_request * rq,int on)1999 static int ice_ptp_gpio_enable(struct ptp_clock_info *info,
2000 			       struct ptp_clock_request *rq, int on)
2001 {
2002 	struct ice_pf *pf = ptp_info_to_pf(info);
2003 	int err;
2004 
2005 	switch (rq->type) {
2006 	case PTP_CLK_REQ_PEROUT:
2007 	{
2008 		struct ptp_perout_request *cached =
2009 			&pf->ptp.perout_rqs[rq->perout.index];
2010 
2011 		err = ice_ptp_cfg_perout(pf, &rq->perout, on);
2012 		if (!err) {
2013 			*cached = rq->perout;
2014 		} else {
2015 			cached->period.sec = 0;
2016 			cached->period.nsec = 0;
2017 		}
2018 		return err;
2019 	}
2020 	case PTP_CLK_REQ_EXTTS:
2021 	{
2022 		struct ptp_extts_request *cached =
2023 			&pf->ptp.extts_rqs[rq->extts.index];
2024 
2025 		err = ice_ptp_cfg_extts(pf, &rq->extts, on);
2026 		if (!err)
2027 			*cached = rq->extts;
2028 		else
2029 			cached->flags &= ~PTP_ENABLE_FEATURE;
2030 		return err;
2031 	}
2032 	default:
2033 		return -EOPNOTSUPP;
2034 	}
2035 }
2036 
2037 /**
2038  * ice_ptp_gettimex64 - Get the time of the clock
2039  * @info: the driver's PTP info structure
2040  * @ts: timespec64 structure to hold the current time value
2041  * @sts: Optional parameter for holding a pair of system timestamps from
2042  *       the system clock. Will be ignored if NULL is given.
2043  *
2044  * Read the device clock and return the correct value on ns, after converting it
2045  * into a timespec struct.
2046  */
2047 static int
ice_ptp_gettimex64(struct ptp_clock_info * info,struct timespec64 * ts,struct ptp_system_timestamp * sts)2048 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
2049 		   struct ptp_system_timestamp *sts)
2050 {
2051 	struct ice_pf *pf = ptp_info_to_pf(info);
2052 	u64 time_ns;
2053 
2054 	time_ns = ice_ptp_read_src_clk_reg(pf, sts);
2055 	*ts = ns_to_timespec64(time_ns);
2056 	return 0;
2057 }
2058 
2059 /**
2060  * ice_ptp_settime64 - Set the time of the clock
2061  * @info: the driver's PTP info structure
2062  * @ts: timespec64 structure that holds the new time value
2063  *
2064  * Set the device clock to the user input value. The conversion from timespec
2065  * to ns happens in the write function.
2066  */
2067 static int
ice_ptp_settime64(struct ptp_clock_info * info,const struct timespec64 * ts)2068 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
2069 {
2070 	struct ice_pf *pf = ptp_info_to_pf(info);
2071 	struct timespec64 ts64 = *ts;
2072 	struct ice_hw *hw = &pf->hw;
2073 	int err;
2074 
2075 	/* For Vernier mode on E82X, we need to recalibrate after new settime.
2076 	 * Start with marking timestamps as invalid.
2077 	 */
2078 	if (hw->mac_type == ICE_MAC_GENERIC) {
2079 		err = ice_ptp_clear_phy_offset_ready_e82x(hw);
2080 		if (err)
2081 			dev_warn(ice_pf_to_dev(pf), "Failed to mark timestamps as invalid before settime\n");
2082 	}
2083 
2084 	if (!ice_ptp_lock(hw)) {
2085 		err = -EBUSY;
2086 		goto exit;
2087 	}
2088 
2089 	/* Disable periodic outputs */
2090 	ice_ptp_disable_all_perout(pf);
2091 
2092 	err = ice_ptp_write_init(pf, &ts64);
2093 	ice_ptp_unlock(hw);
2094 
2095 	if (!err)
2096 		ice_ptp_reset_cached_phctime(pf);
2097 
2098 	/* Reenable periodic outputs */
2099 	ice_ptp_enable_all_perout(pf);
2100 
2101 	/* Recalibrate and re-enable timestamp blocks for E822/E823 */
2102 	if (hw->mac_type == ICE_MAC_GENERIC)
2103 		ice_ptp_restart_all_phy(pf);
2104 exit:
2105 	if (err) {
2106 		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
2107 		return err;
2108 	}
2109 
2110 	return 0;
2111 }
2112 
2113 /**
2114  * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
2115  * @info: the driver's PTP info structure
2116  * @delta: Offset in nanoseconds to adjust the time by
2117  */
ice_ptp_adjtime_nonatomic(struct ptp_clock_info * info,s64 delta)2118 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
2119 {
2120 	struct timespec64 now, then;
2121 	int ret;
2122 
2123 	then = ns_to_timespec64(delta);
2124 	ret = ice_ptp_gettimex64(info, &now, NULL);
2125 	if (ret)
2126 		return ret;
2127 	now = timespec64_add(now, then);
2128 
2129 	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
2130 }
2131 
2132 /**
2133  * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
2134  * @info: the driver's PTP info structure
2135  * @delta: Offset in nanoseconds to adjust the time by
2136  */
ice_ptp_adjtime(struct ptp_clock_info * info,s64 delta)2137 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
2138 {
2139 	struct ice_pf *pf = ptp_info_to_pf(info);
2140 	struct ice_hw *hw = &pf->hw;
2141 	struct device *dev;
2142 	int err;
2143 
2144 	dev = ice_pf_to_dev(pf);
2145 
2146 	/* Hardware only supports atomic adjustments using signed 32-bit
2147 	 * integers. For any adjustment outside this range, perform
2148 	 * a non-atomic get->adjust->set flow.
2149 	 */
2150 	if (delta > S32_MAX || delta < S32_MIN) {
2151 		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
2152 		return ice_ptp_adjtime_nonatomic(info, delta);
2153 	}
2154 
2155 	if (!ice_ptp_lock(hw)) {
2156 		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
2157 		return -EBUSY;
2158 	}
2159 
2160 	/* Disable periodic outputs */
2161 	ice_ptp_disable_all_perout(pf);
2162 
2163 	err = ice_ptp_write_adj(pf, delta);
2164 
2165 	/* Reenable periodic outputs */
2166 	ice_ptp_enable_all_perout(pf);
2167 
2168 	ice_ptp_unlock(hw);
2169 
2170 	if (err) {
2171 		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
2172 		return err;
2173 	}
2174 
2175 	ice_ptp_reset_cached_phctime(pf);
2176 
2177 	return 0;
2178 }
2179 
2180 /**
2181  * struct ice_crosststamp_cfg - Device cross timestamp configuration
2182  * @lock_reg: The hardware semaphore lock to use
2183  * @lock_busy: Bit in the semaphore lock indicating the lock is busy
2184  * @ctl_reg: The hardware register to request cross timestamp
2185  * @ctl_active: Bit in the control register to request cross timestamp
2186  * @art_time_l: Lower 32-bits of ART system time
2187  * @art_time_h: Upper 32-bits of ART system time
2188  * @dev_time_l: Lower 32-bits of device time (per timer index)
2189  * @dev_time_h: Upper 32-bits of device time (per timer index)
2190  */
2191 struct ice_crosststamp_cfg {
2192 	/* HW semaphore lock register */
2193 	u32 lock_reg;
2194 	u32 lock_busy;
2195 
2196 	/* Capture control register */
2197 	u32 ctl_reg;
2198 	u32 ctl_active;
2199 
2200 	/* Time storage */
2201 	u32 art_time_l;
2202 	u32 art_time_h;
2203 	u32 dev_time_l[2];
2204 	u32 dev_time_h[2];
2205 };
2206 
2207 static const struct ice_crosststamp_cfg ice_crosststamp_cfg_e82x = {
2208 	.lock_reg = PFHH_SEM,
2209 	.lock_busy = PFHH_SEM_BUSY_M,
2210 	.ctl_reg = GLHH_ART_CTL,
2211 	.ctl_active = GLHH_ART_CTL_ACTIVE_M,
2212 	.art_time_l = GLHH_ART_TIME_L,
2213 	.art_time_h = GLHH_ART_TIME_H,
2214 	.dev_time_l[0] = GLTSYN_HHTIME_L(0),
2215 	.dev_time_h[0] = GLTSYN_HHTIME_H(0),
2216 	.dev_time_l[1] = GLTSYN_HHTIME_L(1),
2217 	.dev_time_h[1] = GLTSYN_HHTIME_H(1),
2218 };
2219 
2220 #ifdef CONFIG_ICE_HWTS
2221 static const struct ice_crosststamp_cfg ice_crosststamp_cfg_e830 = {
2222 	.lock_reg = E830_PFPTM_SEM,
2223 	.lock_busy = E830_PFPTM_SEM_BUSY_M,
2224 	.ctl_reg = E830_GLPTM_ART_CTL,
2225 	.ctl_active = E830_GLPTM_ART_CTL_ACTIVE_M,
2226 	.art_time_l = E830_GLPTM_ART_TIME_L,
2227 	.art_time_h = E830_GLPTM_ART_TIME_H,
2228 	.dev_time_l[0] = E830_GLTSYN_PTMTIME_L(0),
2229 	.dev_time_h[0] = E830_GLTSYN_PTMTIME_H(0),
2230 	.dev_time_l[1] = E830_GLTSYN_PTMTIME_L(1),
2231 	.dev_time_h[1] = E830_GLTSYN_PTMTIME_H(1),
2232 };
2233 
2234 #endif /* CONFIG_ICE_HWTS */
2235 /**
2236  * struct ice_crosststamp_ctx - Device cross timestamp context
2237  * @snapshot: snapshot of system clocks for historic interpolation
2238  * @pf: pointer to the PF private structure
2239  * @cfg: pointer to hardware configuration for cross timestamp
2240  */
2241 struct ice_crosststamp_ctx {
2242 	struct system_time_snapshot snapshot;
2243 	struct ice_pf *pf;
2244 	const struct ice_crosststamp_cfg *cfg;
2245 };
2246 
2247 /**
2248  * ice_capture_crosststamp - Capture a device/system cross timestamp
2249  * @device: Current device time
2250  * @system: System counter value read synchronously with device time
2251  * @__ctx: Context passed from ice_ptp_getcrosststamp
2252  *
2253  * Read device and system (ART) clock simultaneously and return the corrected
2254  * clock values in ns.
2255  *
2256  * Return: zero on success, or a negative error code on failure.
2257  */
ice_capture_crosststamp(ktime_t * device,struct system_counterval_t * system,void * __ctx)2258 static int ice_capture_crosststamp(ktime_t *device,
2259 				   struct system_counterval_t *system,
2260 				   void *__ctx)
2261 {
2262 	struct ice_crosststamp_ctx *ctx = __ctx;
2263 	const struct ice_crosststamp_cfg *cfg;
2264 	u32 lock, ctl, ts_lo, ts_hi, tmr_idx;
2265 	struct ice_pf *pf;
2266 	struct ice_hw *hw;
2267 	int err;
2268 	u64 ts;
2269 
2270 	cfg = ctx->cfg;
2271 	pf = ctx->pf;
2272 	hw = &pf->hw;
2273 
2274 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
2275 	if (tmr_idx > 1)
2276 		return -EINVAL;
2277 
2278 	/* Poll until we obtain the cross-timestamp hardware semaphore */
2279 	err = rd32_poll_timeout(hw, cfg->lock_reg, lock,
2280 				!(lock & cfg->lock_busy),
2281 				10 * USEC_PER_MSEC, 50 * USEC_PER_MSEC);
2282 	if (err) {
2283 		dev_err(ice_pf_to_dev(pf), "PTP failed to get cross timestamp lock\n");
2284 		return -EBUSY;
2285 	}
2286 
2287 	/* Snapshot system time for historic interpolation */
2288 	ktime_get_snapshot(&ctx->snapshot);
2289 
2290 	/* Program cmd to master timer */
2291 	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2292 
2293 	/* Start the ART and device clock sync sequence */
2294 	ctl = rd32(hw, cfg->ctl_reg);
2295 	ctl |= cfg->ctl_active;
2296 	wr32(hw, cfg->ctl_reg, ctl);
2297 
2298 	/* Poll until hardware completes the capture */
2299 	err = rd32_poll_timeout(hw, cfg->ctl_reg, ctl, !(ctl & cfg->ctl_active),
2300 				5, 20 * USEC_PER_MSEC);
2301 	if (err)
2302 		goto err_timeout;
2303 
2304 	/* Read ART system time */
2305 	ts_lo = rd32(hw, cfg->art_time_l);
2306 	ts_hi = rd32(hw, cfg->art_time_h);
2307 	ts = ((u64)ts_hi << 32) | ts_lo;
2308 	system->cycles = ts;
2309 	system->cs_id = CSID_X86_ART;
2310 
2311 	/* Read Device source clock time */
2312 	ts_lo = rd32(hw, cfg->dev_time_l[tmr_idx]);
2313 	ts_hi = rd32(hw, cfg->dev_time_h[tmr_idx]);
2314 	ts = ((u64)ts_hi << 32) | ts_lo;
2315 	*device = ns_to_ktime(ts);
2316 
2317 err_timeout:
2318 	/* Clear the master timer */
2319 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2320 
2321 	/* Release HW lock */
2322 	lock = rd32(hw, cfg->lock_reg);
2323 	lock &= ~cfg->lock_busy;
2324 	wr32(hw, cfg->lock_reg, lock);
2325 
2326 	return err;
2327 }
2328 
2329 /**
2330  * ice_ptp_getcrosststamp - Capture a device cross timestamp
2331  * @info: the driver's PTP info structure
2332  * @cts: The memory to fill the cross timestamp info
2333  *
2334  * Capture a cross timestamp between the ART and the device PTP hardware
2335  * clock. Fill the cross timestamp information and report it back to the
2336  * caller.
2337  *
2338  * In order to correctly correlate the ART timestamp back to the TSC time, the
2339  * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2340  *
2341  * Return: zero on success, or a negative error code on failure.
2342  */
ice_ptp_getcrosststamp(struct ptp_clock_info * info,struct system_device_crosststamp * cts)2343 static int ice_ptp_getcrosststamp(struct ptp_clock_info *info,
2344 				  struct system_device_crosststamp *cts)
2345 {
2346 	struct ice_pf *pf = ptp_info_to_pf(info);
2347 	struct ice_crosststamp_ctx ctx = {
2348 		.pf = pf,
2349 	};
2350 
2351 	switch (pf->hw.mac_type) {
2352 	case ICE_MAC_GENERIC:
2353 	case ICE_MAC_GENERIC_3K_E825:
2354 		ctx.cfg = &ice_crosststamp_cfg_e82x;
2355 		break;
2356 #ifdef CONFIG_ICE_HWTS
2357 	case ICE_MAC_E830:
2358 		ctx.cfg = &ice_crosststamp_cfg_e830;
2359 		break;
2360 #endif /* CONFIG_ICE_HWTS */
2361 	default:
2362 		return -EOPNOTSUPP;
2363 	}
2364 
2365 	return get_device_system_crosststamp(ice_capture_crosststamp, &ctx,
2366 					     &ctx.snapshot, cts);
2367 }
2368 
2369 /**
2370  * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2371  * @pf: Board private structure
2372  * @ifr: ioctl data
2373  *
2374  * Copy the timestamping config to user buffer
2375  */
ice_ptp_get_ts_config(struct ice_pf * pf,struct ifreq * ifr)2376 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2377 {
2378 	struct hwtstamp_config *config;
2379 
2380 	if (pf->ptp.state != ICE_PTP_READY)
2381 		return -EIO;
2382 
2383 	config = &pf->ptp.tstamp_config;
2384 
2385 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2386 		-EFAULT : 0;
2387 }
2388 
2389 /**
2390  * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2391  * @pf: Board private structure
2392  * @config: hwtstamp settings requested or saved
2393  */
2394 static int
ice_ptp_set_timestamp_mode(struct ice_pf * pf,struct hwtstamp_config * config)2395 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2396 {
2397 	switch (config->tx_type) {
2398 	case HWTSTAMP_TX_OFF:
2399 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
2400 		break;
2401 	case HWTSTAMP_TX_ON:
2402 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
2403 		break;
2404 	default:
2405 		return -ERANGE;
2406 	}
2407 
2408 	switch (config->rx_filter) {
2409 	case HWTSTAMP_FILTER_NONE:
2410 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2411 		break;
2412 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2413 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2414 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2415 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2416 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2417 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2418 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2419 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2420 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2421 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2422 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2423 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2424 	case HWTSTAMP_FILTER_NTP_ALL:
2425 	case HWTSTAMP_FILTER_ALL:
2426 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
2427 		break;
2428 	default:
2429 		return -ERANGE;
2430 	}
2431 
2432 	/* Immediately update the device timestamping mode */
2433 	ice_ptp_restore_timestamp_mode(pf);
2434 
2435 	return 0;
2436 }
2437 
2438 /**
2439  * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2440  * @pf: Board private structure
2441  * @ifr: ioctl data
2442  *
2443  * Get the user config and store it
2444  */
ice_ptp_set_ts_config(struct ice_pf * pf,struct ifreq * ifr)2445 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2446 {
2447 	struct hwtstamp_config config;
2448 	int err;
2449 
2450 	if (pf->ptp.state != ICE_PTP_READY)
2451 		return -EAGAIN;
2452 
2453 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2454 		return -EFAULT;
2455 
2456 	err = ice_ptp_set_timestamp_mode(pf, &config);
2457 	if (err)
2458 		return err;
2459 
2460 	/* Return the actual configuration set */
2461 	config = pf->ptp.tstamp_config;
2462 
2463 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2464 		-EFAULT : 0;
2465 }
2466 
2467 /**
2468  * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns
2469  * @rx_desc: Receive descriptor
2470  * @pkt_ctx: Packet context to get the cached time
2471  *
2472  * The driver receives a notification in the receive descriptor with timestamp.
2473  */
ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc * rx_desc,const struct ice_pkt_ctx * pkt_ctx)2474 u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
2475 			const struct ice_pkt_ctx *pkt_ctx)
2476 {
2477 	u64 ts_ns, cached_time;
2478 	u32 ts_high;
2479 
2480 	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2481 		return 0;
2482 
2483 	cached_time = READ_ONCE(pkt_ctx->cached_phctime);
2484 
2485 	/* Do not report a timestamp if we don't have a cached PHC time */
2486 	if (!cached_time)
2487 		return 0;
2488 
2489 	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2490 	 * PHC value, rather than accessing the PF. This also allows us to
2491 	 * simply pass the upper 32bits of nanoseconds directly. Calling
2492 	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2493 	 * bits itself.
2494 	 */
2495 	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2496 	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2497 
2498 	return ts_ns;
2499 }
2500 
2501 /**
2502  * ice_ptp_setup_pin_cfg - setup PTP pin_config structure
2503  * @pf: Board private structure
2504  */
ice_ptp_setup_pin_cfg(struct ice_pf * pf)2505 static void ice_ptp_setup_pin_cfg(struct ice_pf *pf)
2506 {
2507 	for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) {
2508 		const struct ice_ptp_pin_desc *desc = &pf->ptp.ice_pin_desc[i];
2509 		struct ptp_pin_desc *pin = &pf->ptp.pin_desc[i];
2510 		const char *name = NULL;
2511 
2512 		if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
2513 			name = ice_pin_names[desc->name_idx];
2514 		else if (desc->name_idx != GPIO_NA)
2515 			name = ice_pin_names_nvm[desc->name_idx];
2516 		if (name)
2517 			strscpy(pin->name, name, sizeof(pin->name));
2518 
2519 		pin->index = i;
2520 	}
2521 
2522 	pf->ptp.info.pin_config = pf->ptp.pin_desc;
2523 }
2524 
2525 /**
2526  * ice_ptp_disable_pins - Disable PTP pins
2527  * @pf: pointer to the PF structure
2528  *
2529  * Disable the OS access to the SMA pins. Called to clear out the OS
2530  * indications of pin support when we fail to setup the SMA control register.
2531  */
ice_ptp_disable_pins(struct ice_pf * pf)2532 static void ice_ptp_disable_pins(struct ice_pf *pf)
2533 {
2534 	struct ptp_clock_info *info = &pf->ptp.info;
2535 
2536 	dev_warn(ice_pf_to_dev(pf), "Failed to configure PTP pin control\n");
2537 
2538 	info->enable = NULL;
2539 	info->verify = NULL;
2540 	info->n_pins = 0;
2541 	info->n_ext_ts = 0;
2542 	info->n_per_out = 0;
2543 }
2544 
2545 /**
2546  * ice_ptp_parse_sdp_entries - update ice_ptp_pin_desc structure from NVM
2547  * @pf: pointer to the PF structure
2548  * @entries: SDP connection section from NVM
2549  * @num_entries: number of valid entries in sdp_entries
2550  * @pins: PTP pins array to update
2551  *
2552  * Return: 0 on success, negative error code otherwise.
2553  */
ice_ptp_parse_sdp_entries(struct ice_pf * pf,__le16 * entries,unsigned int num_entries,struct ice_ptp_pin_desc * pins)2554 static int ice_ptp_parse_sdp_entries(struct ice_pf *pf, __le16 *entries,
2555 				     unsigned int num_entries,
2556 				     struct ice_ptp_pin_desc *pins)
2557 {
2558 	unsigned int n_pins = 0;
2559 	unsigned int i;
2560 
2561 	/* Setup ice_pin_desc array */
2562 	for (i = 0; i < ICE_N_PINS_MAX; i++) {
2563 		pins[i].name_idx = -1;
2564 		pins[i].gpio[0] = -1;
2565 		pins[i].gpio[1] = -1;
2566 	}
2567 
2568 	for (i = 0; i < num_entries; i++) {
2569 		u16 entry = le16_to_cpu(entries[i]);
2570 		DECLARE_BITMAP(bitmap, GPIO_NA);
2571 		unsigned int bitmap_idx;
2572 		bool dir;
2573 		u16 gpio;
2574 
2575 		*bitmap = FIELD_GET(ICE_AQC_NVM_SDP_AC_PIN_M, entry);
2576 		dir = !!FIELD_GET(ICE_AQC_NVM_SDP_AC_DIR_M, entry);
2577 		gpio = FIELD_GET(ICE_AQC_NVM_SDP_AC_SDP_NUM_M, entry);
2578 		for_each_set_bit(bitmap_idx, bitmap, GPIO_NA + 1) {
2579 			unsigned int idx;
2580 
2581 			/* Check if entry's pin bit is valid */
2582 			if (bitmap_idx >= NUM_PTP_PINS_NVM &&
2583 			    bitmap_idx != GPIO_NA)
2584 				continue;
2585 
2586 			/* Check if pin already exists */
2587 			for (idx = 0; idx < ICE_N_PINS_MAX; idx++)
2588 				if (pins[idx].name_idx == bitmap_idx)
2589 					break;
2590 
2591 			if (idx == ICE_N_PINS_MAX) {
2592 				/* Pin not found, setup its entry and name */
2593 				idx = n_pins++;
2594 				pins[idx].name_idx = bitmap_idx;
2595 				if (bitmap_idx == GPIO_NA)
2596 					strscpy(pf->ptp.pin_desc[idx].name,
2597 						ice_pin_names[gpio],
2598 						sizeof(pf->ptp.pin_desc[idx]
2599 							       .name));
2600 			}
2601 
2602 			/* Setup in/out GPIO number */
2603 			pins[idx].gpio[dir] = gpio;
2604 		}
2605 	}
2606 
2607 	for (i = 0; i < n_pins; i++) {
2608 		dev_dbg(ice_pf_to_dev(pf),
2609 			"NVM pin entry[%d] : name_idx %d gpio_out %d gpio_in %d\n",
2610 			i, pins[i].name_idx, pins[i].gpio[1], pins[i].gpio[0]);
2611 	}
2612 
2613 	pf->ptp.info.n_pins = n_pins;
2614 	return 0;
2615 }
2616 
2617 /**
2618  * ice_ptp_set_funcs_e82x - Set specialized functions for E82X support
2619  * @pf: Board private structure
2620  *
2621  * Assign functions to the PTP capabilities structure for E82X devices.
2622  * Functions which operate across all device families should be set directly
2623  * in ice_ptp_set_caps. Only add functions here which are distinct for E82X
2624  * devices.
2625  */
ice_ptp_set_funcs_e82x(struct ice_pf * pf)2626 static void ice_ptp_set_funcs_e82x(struct ice_pf *pf)
2627 {
2628 	pf->ptp.info.getcrosststamp = ice_ptp_getcrosststamp;
2629 
2630 	if (pf->hw.mac_type == ICE_MAC_GENERIC_3K_E825) {
2631 		pf->ptp.ice_pin_desc = ice_pin_desc_e825c;
2632 		pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e825c);
2633 	} else {
2634 		pf->ptp.ice_pin_desc = ice_pin_desc_e82x;
2635 		pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e82x);
2636 	}
2637 	ice_ptp_setup_pin_cfg(pf);
2638 }
2639 
2640 /**
2641  * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2642  * @pf: Board private structure
2643  *
2644  * Assign functions to the PTP capabiltiies structure for E810 devices.
2645  * Functions which operate across all device families should be set directly
2646  * in ice_ptp_set_caps. Only add functions here which are distinct for E810
2647  * devices.
2648  */
ice_ptp_set_funcs_e810(struct ice_pf * pf)2649 static void ice_ptp_set_funcs_e810(struct ice_pf *pf)
2650 {
2651 	__le16 entries[ICE_AQC_NVM_SDP_AC_MAX_SIZE];
2652 	struct ice_ptp_pin_desc *desc = NULL;
2653 	struct ice_ptp *ptp = &pf->ptp;
2654 	unsigned int num_entries;
2655 	int err;
2656 
2657 	err = ice_ptp_read_sdp_ac(&pf->hw, entries, &num_entries);
2658 	if (err) {
2659 		/* SDP section does not exist in NVM or is corrupted */
2660 		if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2661 			ptp->ice_pin_desc = ice_pin_desc_e810_sma;
2662 			ptp->info.n_pins =
2663 				ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810_sma);
2664 		} else {
2665 			pf->ptp.ice_pin_desc = ice_pin_desc_e810;
2666 			pf->ptp.info.n_pins =
2667 				ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810);
2668 			err = 0;
2669 		}
2670 	} else {
2671 		desc = devm_kcalloc(ice_pf_to_dev(pf), ICE_N_PINS_MAX,
2672 				    sizeof(struct ice_ptp_pin_desc),
2673 				    GFP_KERNEL);
2674 		if (!desc)
2675 			goto err;
2676 
2677 		err = ice_ptp_parse_sdp_entries(pf, entries, num_entries, desc);
2678 		if (err)
2679 			goto err;
2680 
2681 		ptp->ice_pin_desc = (const struct ice_ptp_pin_desc *)desc;
2682 	}
2683 
2684 	ptp->info.pin_config = ptp->pin_desc;
2685 	ice_ptp_setup_pin_cfg(pf);
2686 
2687 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
2688 		err = ice_ptp_set_sma_cfg(pf);
2689 err:
2690 	if (err) {
2691 		devm_kfree(ice_pf_to_dev(pf), desc);
2692 		ice_ptp_disable_pins(pf);
2693 	}
2694 }
2695 
2696 /**
2697  * ice_ptp_set_funcs_e830 - Set specialized functions for E830 support
2698  * @pf: Board private structure
2699  *
2700  * Assign functions to the PTP capabiltiies structure for E830 devices.
2701  * Functions which operate across all device families should be set directly
2702  * in ice_ptp_set_caps. Only add functions here which are distinct for E830
2703  * devices.
2704  */
ice_ptp_set_funcs_e830(struct ice_pf * pf)2705 static void ice_ptp_set_funcs_e830(struct ice_pf *pf)
2706 {
2707 #ifdef CONFIG_ICE_HWTS
2708 	if (pcie_ptm_enabled(pf->pdev) && boot_cpu_has(X86_FEATURE_ART))
2709 		pf->ptp.info.getcrosststamp = ice_ptp_getcrosststamp;
2710 
2711 #endif /* CONFIG_ICE_HWTS */
2712 	/* Rest of the config is the same as base E810 */
2713 	pf->ptp.ice_pin_desc = ice_pin_desc_e810;
2714 	pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810);
2715 	ice_ptp_setup_pin_cfg(pf);
2716 }
2717 
2718 /**
2719  * ice_ptp_set_caps - Set PTP capabilities
2720  * @pf: Board private structure
2721  */
ice_ptp_set_caps(struct ice_pf * pf)2722 static void ice_ptp_set_caps(struct ice_pf *pf)
2723 {
2724 	struct ptp_clock_info *info = &pf->ptp.info;
2725 	struct device *dev = ice_pf_to_dev(pf);
2726 
2727 	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2728 		 dev_driver_string(dev), dev_name(dev));
2729 	info->owner = THIS_MODULE;
2730 	info->max_adj = 100000000;
2731 	info->adjtime = ice_ptp_adjtime;
2732 	info->adjfine = ice_ptp_adjfine;
2733 	info->gettimex64 = ice_ptp_gettimex64;
2734 	info->settime64 = ice_ptp_settime64;
2735 	info->n_per_out = GLTSYN_TGT_H_IDX_MAX;
2736 	info->n_ext_ts = GLTSYN_EVNT_H_IDX_MAX;
2737 	info->enable = ice_ptp_gpio_enable;
2738 	info->verify = ice_verify_pin;
2739 
2740 	switch (pf->hw.mac_type) {
2741 	case ICE_MAC_E810:
2742 		ice_ptp_set_funcs_e810(pf);
2743 		return;
2744 	case ICE_MAC_E830:
2745 		ice_ptp_set_funcs_e830(pf);
2746 		return;
2747 	case ICE_MAC_GENERIC:
2748 	case ICE_MAC_GENERIC_3K_E825:
2749 		ice_ptp_set_funcs_e82x(pf);
2750 		return;
2751 	default:
2752 		return;
2753 	}
2754 }
2755 
2756 /**
2757  * ice_ptp_create_clock - Create PTP clock device for userspace
2758  * @pf: Board private structure
2759  *
2760  * This function creates a new PTP clock device. It only creates one if we
2761  * don't already have one. Will return error if it can't create one, but success
2762  * if we already have a device. Should be used by ice_ptp_init to create clock
2763  * initially, and prevent global resets from creating new clock devices.
2764  */
ice_ptp_create_clock(struct ice_pf * pf)2765 static long ice_ptp_create_clock(struct ice_pf *pf)
2766 {
2767 	struct ptp_clock_info *info;
2768 	struct device *dev;
2769 
2770 	/* No need to create a clock device if we already have one */
2771 	if (pf->ptp.clock)
2772 		return 0;
2773 
2774 	ice_ptp_set_caps(pf);
2775 
2776 	info = &pf->ptp.info;
2777 	dev = ice_pf_to_dev(pf);
2778 
2779 	/* Attempt to register the clock before enabling the hardware. */
2780 	pf->ptp.clock = ptp_clock_register(info, dev);
2781 	if (IS_ERR(pf->ptp.clock)) {
2782 		dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
2783 		return PTR_ERR(pf->ptp.clock);
2784 	}
2785 
2786 	return 0;
2787 }
2788 
2789 /**
2790  * ice_ptp_request_ts - Request an available Tx timestamp index
2791  * @tx: the PTP Tx timestamp tracker to request from
2792  * @skb: the SKB to associate with this timestamp request
2793  */
ice_ptp_request_ts(struct ice_ptp_tx * tx,struct sk_buff * skb)2794 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2795 {
2796 	unsigned long flags;
2797 	u8 idx;
2798 
2799 	spin_lock_irqsave(&tx->lock, flags);
2800 
2801 	/* Check that this tracker is accepting new timestamp requests */
2802 	if (!ice_ptp_is_tx_tracker_up(tx)) {
2803 		spin_unlock_irqrestore(&tx->lock, flags);
2804 		return -1;
2805 	}
2806 
2807 	/* Find and set the first available index */
2808 	idx = find_next_zero_bit(tx->in_use, tx->len,
2809 				 tx->last_ll_ts_idx_read + 1);
2810 	if (idx == tx->len)
2811 		idx = find_first_zero_bit(tx->in_use, tx->len);
2812 
2813 	if (idx < tx->len) {
2814 		/* We got a valid index that no other thread could have set. Store
2815 		 * a reference to the skb and the start time to allow discarding old
2816 		 * requests.
2817 		 */
2818 		set_bit(idx, tx->in_use);
2819 		clear_bit(idx, tx->stale);
2820 		tx->tstamps[idx].start = jiffies;
2821 		tx->tstamps[idx].skb = skb_get(skb);
2822 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2823 		ice_trace(tx_tstamp_request, skb, idx);
2824 	}
2825 
2826 	spin_unlock_irqrestore(&tx->lock, flags);
2827 
2828 	/* return the appropriate PHY timestamp register index, -1 if no
2829 	 * indexes were available.
2830 	 */
2831 	if (idx >= tx->len)
2832 		return -1;
2833 	else
2834 		return idx + tx->offset;
2835 }
2836 
2837 /**
2838  * ice_ptp_process_ts - Process the PTP Tx timestamps
2839  * @pf: Board private structure
2840  *
2841  * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2842  * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2843  */
ice_ptp_process_ts(struct ice_pf * pf)2844 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2845 {
2846 	switch (pf->ptp.tx_interrupt_mode) {
2847 	case ICE_PTP_TX_INTERRUPT_NONE:
2848 		/* This device has the clock owner handle timestamps for it */
2849 		return ICE_TX_TSTAMP_WORK_DONE;
2850 	case ICE_PTP_TX_INTERRUPT_SELF:
2851 		/* This device handles its own timestamps */
2852 		return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2853 	case ICE_PTP_TX_INTERRUPT_ALL:
2854 		/* This device handles timestamps for all ports */
2855 		return ice_ptp_tx_tstamp_owner(pf);
2856 	default:
2857 		WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
2858 			  pf->ptp.tx_interrupt_mode);
2859 		return ICE_TX_TSTAMP_WORK_DONE;
2860 	}
2861 }
2862 
2863 /**
2864  * ice_ptp_ts_irq - Process the PTP Tx timestamps in IRQ context
2865  * @pf: Board private structure
2866  *
2867  * Return: IRQ_WAKE_THREAD if Tx timestamp read has to be handled in the bottom
2868  *         half of the interrupt and IRQ_HANDLED otherwise.
2869  */
ice_ptp_ts_irq(struct ice_pf * pf)2870 irqreturn_t ice_ptp_ts_irq(struct ice_pf *pf)
2871 {
2872 	struct ice_hw *hw = &pf->hw;
2873 
2874 	switch (hw->mac_type) {
2875 	case ICE_MAC_E810:
2876 		/* E810 capable of low latency timestamping with interrupt can
2877 		 * request a single timestamp in the top half and wait for
2878 		 * a second LL TS interrupt from the FW when it's ready.
2879 		 */
2880 		if (hw->dev_caps.ts_dev_info.ts_ll_int_read) {
2881 			struct ice_ptp_tx *tx = &pf->ptp.port.tx;
2882 			u8 idx;
2883 
2884 			if (!ice_pf_state_is_nominal(pf))
2885 				return IRQ_HANDLED;
2886 
2887 			spin_lock(&tx->lock);
2888 			idx = find_next_bit_wrap(tx->in_use, tx->len,
2889 						 tx->last_ll_ts_idx_read + 1);
2890 			if (idx != tx->len)
2891 				ice_ptp_req_tx_single_tstamp(tx, idx);
2892 			spin_unlock(&tx->lock);
2893 
2894 			return IRQ_HANDLED;
2895 		}
2896 		fallthrough; /* non-LL_TS E810 */
2897 	case ICE_MAC_GENERIC:
2898 	case ICE_MAC_GENERIC_3K_E825:
2899 		/* All other devices process timestamps in the bottom half due
2900 		 * to sleeping or polling.
2901 		 */
2902 		if (!ice_ptp_pf_handles_tx_interrupt(pf))
2903 			return IRQ_HANDLED;
2904 
2905 		set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
2906 		return IRQ_WAKE_THREAD;
2907 	case ICE_MAC_E830:
2908 		/* E830 can read timestamps in the top half using rd32() */
2909 		if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
2910 			/* Process outstanding Tx timestamps. If there
2911 			 * is more work, re-arm the interrupt to trigger again.
2912 			 */
2913 			wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
2914 			ice_flush(hw);
2915 		}
2916 		return IRQ_HANDLED;
2917 	default:
2918 		return IRQ_HANDLED;
2919 	}
2920 }
2921 
2922 /**
2923  * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt
2924  * @pf: Board private structure
2925  *
2926  * The device PHY issues Tx timestamp interrupts to the driver for processing
2927  * timestamp data from the PHY. It will not interrupt again until all
2928  * current timestamp data is read. In rare circumstances, it is possible that
2929  * the driver fails to read all outstanding data.
2930  *
2931  * To avoid getting permanently stuck, periodically check if the PHY has
2932  * outstanding timestamp data. If so, trigger an interrupt from software to
2933  * process this data.
2934  */
ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf * pf)2935 static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf)
2936 {
2937 	struct device *dev = ice_pf_to_dev(pf);
2938 	struct ice_hw *hw = &pf->hw;
2939 	bool trigger_oicr = false;
2940 	unsigned int i;
2941 
2942 	if (!pf->ptp.port.tx.has_ready_bitmap)
2943 		return;
2944 
2945 	if (!ice_pf_src_tmr_owned(pf))
2946 		return;
2947 
2948 	for (i = 0; i < ICE_GET_QUAD_NUM(hw->ptp.num_lports); i++) {
2949 		u64 tstamp_ready;
2950 		int err;
2951 
2952 		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
2953 		if (!err && tstamp_ready) {
2954 			trigger_oicr = true;
2955 			break;
2956 		}
2957 	}
2958 
2959 	if (trigger_oicr) {
2960 		/* Trigger a software interrupt, to ensure this data
2961 		 * gets processed.
2962 		 */
2963 		dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n");
2964 
2965 		wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
2966 		ice_flush(hw);
2967 	}
2968 }
2969 
ice_ptp_periodic_work(struct kthread_work * work)2970 static void ice_ptp_periodic_work(struct kthread_work *work)
2971 {
2972 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2973 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2974 	int err;
2975 
2976 	if (pf->ptp.state != ICE_PTP_READY)
2977 		return;
2978 
2979 	err = ice_ptp_update_cached_phctime(pf);
2980 
2981 	ice_ptp_maybe_trigger_tx_interrupt(pf);
2982 
2983 	/* Run twice a second or reschedule if phc update failed */
2984 	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2985 				   msecs_to_jiffies(err ? 10 : 500));
2986 }
2987 
2988 /**
2989  * ice_ptp_prepare_for_reset - Prepare PTP for reset
2990  * @pf: Board private structure
2991  * @reset_type: the reset type being performed
2992  */
ice_ptp_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)2993 void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
2994 {
2995 	struct ice_ptp *ptp = &pf->ptp;
2996 	u8 src_tmr;
2997 
2998 	if (ptp->state != ICE_PTP_READY)
2999 		return;
3000 
3001 	ptp->state = ICE_PTP_RESETTING;
3002 
3003 	/* Disable timestamping for both Tx and Rx */
3004 	ice_ptp_disable_timestamp_mode(pf);
3005 
3006 	kthread_cancel_delayed_work_sync(&ptp->work);
3007 
3008 	if (reset_type == ICE_RESET_PFR)
3009 		return;
3010 
3011 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3012 
3013 	/* Disable periodic outputs */
3014 	ice_ptp_disable_all_perout(pf);
3015 
3016 	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
3017 
3018 	/* Disable source clock */
3019 	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
3020 
3021 	/* Acquire PHC and system timer to restore after reset */
3022 	ptp->reset_time = ktime_get_real_ns();
3023 }
3024 
3025 /**
3026  * ice_ptp_rebuild_owner - Initialize PTP clock owner after reset
3027  * @pf: Board private structure
3028  *
3029  * Companion function for ice_ptp_rebuild() which handles tasks that only the
3030  * PTP clock owner instance should perform.
3031  */
ice_ptp_rebuild_owner(struct ice_pf * pf)3032 static int ice_ptp_rebuild_owner(struct ice_pf *pf)
3033 {
3034 	struct ice_ptp *ptp = &pf->ptp;
3035 	struct ice_hw *hw = &pf->hw;
3036 	struct timespec64 ts;
3037 	u64 time_diff;
3038 	int err;
3039 
3040 	err = ice_ptp_init_phc(hw);
3041 	if (err)
3042 		return err;
3043 
3044 	/* Acquire the global hardware lock */
3045 	if (!ice_ptp_lock(hw)) {
3046 		err = -EBUSY;
3047 		return err;
3048 	}
3049 
3050 	/* Write the increment time value to PHY and LAN */
3051 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
3052 	if (err)
3053 		goto err_unlock;
3054 
3055 	/* Write the initial Time value to PHY and LAN using the cached PHC
3056 	 * time before the reset and time difference between stopping and
3057 	 * starting the clock.
3058 	 */
3059 	if (ptp->cached_phc_time) {
3060 		time_diff = ktime_get_real_ns() - ptp->reset_time;
3061 		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
3062 	} else {
3063 		ts = ktime_to_timespec64(ktime_get_real());
3064 	}
3065 	err = ice_ptp_write_init(pf, &ts);
3066 	if (err)
3067 		goto err_unlock;
3068 
3069 	/* Release the global hardware lock */
3070 	ice_ptp_unlock(hw);
3071 
3072 	/* Flush software tracking of any outstanding timestamps since we're
3073 	 * about to flush the PHY timestamp block.
3074 	 */
3075 	ice_ptp_flush_all_tx_tracker(pf);
3076 
3077 	/* Enable quad interrupts */
3078 	err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
3079 	if (err)
3080 		return err;
3081 
3082 	ice_ptp_restart_all_phy(pf);
3083 
3084 	/* Re-enable all periodic outputs and external timestamp events */
3085 	ice_ptp_enable_all_perout(pf);
3086 	ice_ptp_enable_all_extts(pf);
3087 
3088 	return 0;
3089 
3090 err_unlock:
3091 	ice_ptp_unlock(hw);
3092 	return err;
3093 }
3094 
3095 /**
3096  * ice_ptp_rebuild - Initialize PTP hardware clock support after reset
3097  * @pf: Board private structure
3098  * @reset_type: the reset type being performed
3099  */
ice_ptp_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)3100 void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
3101 {
3102 	struct ice_ptp *ptp = &pf->ptp;
3103 	int err;
3104 
3105 	if (ptp->state == ICE_PTP_READY) {
3106 		ice_ptp_prepare_for_reset(pf, reset_type);
3107 	} else if (ptp->state != ICE_PTP_RESETTING) {
3108 		err = -EINVAL;
3109 		dev_err(ice_pf_to_dev(pf), "PTP was not initialized\n");
3110 		goto err;
3111 	}
3112 
3113 	if (ice_pf_src_tmr_owned(pf) && reset_type != ICE_RESET_PFR) {
3114 		err = ice_ptp_rebuild_owner(pf);
3115 		if (err)
3116 			goto err;
3117 	}
3118 
3119 	ptp->state = ICE_PTP_READY;
3120 
3121 	/* Start periodic work going */
3122 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
3123 
3124 	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
3125 	return;
3126 
3127 err:
3128 	ptp->state = ICE_PTP_ERROR;
3129 	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
3130 }
3131 
ice_is_primary(struct ice_hw * hw)3132 static bool ice_is_primary(struct ice_hw *hw)
3133 {
3134 	return hw->mac_type == ICE_MAC_GENERIC_3K_E825 && ice_is_dual(hw) ?
3135 		       !!(hw->dev_caps.nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) :
3136 		       true;
3137 }
3138 
ice_ptp_setup_adapter(struct ice_pf * pf)3139 static int ice_ptp_setup_adapter(struct ice_pf *pf)
3140 {
3141 	if (!ice_pf_src_tmr_owned(pf) || !ice_is_primary(&pf->hw))
3142 		return -EPERM;
3143 
3144 	pf->adapter->ctrl_pf = pf;
3145 
3146 	return 0;
3147 }
3148 
ice_ptp_setup_pf(struct ice_pf * pf)3149 static int ice_ptp_setup_pf(struct ice_pf *pf)
3150 {
3151 	struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf);
3152 	struct ice_ptp *ptp = &pf->ptp;
3153 
3154 	if (WARN_ON(!ctrl_ptp) || pf->hw.mac_type == ICE_MAC_UNKNOWN)
3155 		return -ENODEV;
3156 
3157 	INIT_LIST_HEAD(&ptp->port.list_node);
3158 	mutex_lock(&pf->adapter->ports.lock);
3159 
3160 	list_add(&ptp->port.list_node,
3161 		 &pf->adapter->ports.ports);
3162 	mutex_unlock(&pf->adapter->ports.lock);
3163 
3164 	return 0;
3165 }
3166 
ice_ptp_cleanup_pf(struct ice_pf * pf)3167 static void ice_ptp_cleanup_pf(struct ice_pf *pf)
3168 {
3169 	struct ice_ptp *ptp = &pf->ptp;
3170 
3171 	if (pf->hw.mac_type != ICE_MAC_UNKNOWN) {
3172 		mutex_lock(&pf->adapter->ports.lock);
3173 		list_del(&ptp->port.list_node);
3174 		mutex_unlock(&pf->adapter->ports.lock);
3175 	}
3176 }
3177 
3178 /**
3179  * ice_ptp_clock_index - Get the PTP clock index for this device
3180  * @pf: Board private structure
3181  *
3182  * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
3183  * is associated.
3184  */
ice_ptp_clock_index(struct ice_pf * pf)3185 int ice_ptp_clock_index(struct ice_pf *pf)
3186 {
3187 	struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf);
3188 	struct ptp_clock *clock;
3189 
3190 	if (!ctrl_ptp)
3191 		return -1;
3192 	clock = ctrl_ptp->clock;
3193 
3194 	return clock ? ptp_clock_index(clock) : -1;
3195 }
3196 
3197 /**
3198  * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
3199  * @pf: Board private structure
3200  *
3201  * Setup and initialize a PTP clock device that represents the device hardware
3202  * clock. Save the clock index for other functions connected to the same
3203  * hardware resource.
3204  */
ice_ptp_init_owner(struct ice_pf * pf)3205 static int ice_ptp_init_owner(struct ice_pf *pf)
3206 {
3207 	struct ice_hw *hw = &pf->hw;
3208 	struct timespec64 ts;
3209 	int err;
3210 
3211 	err = ice_ptp_init_phc(hw);
3212 	if (err) {
3213 		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
3214 			err);
3215 		return err;
3216 	}
3217 
3218 	/* Acquire the global hardware lock */
3219 	if (!ice_ptp_lock(hw)) {
3220 		err = -EBUSY;
3221 		goto err_exit;
3222 	}
3223 
3224 	/* Write the increment time value to PHY and LAN */
3225 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
3226 	if (err)
3227 		goto err_unlock;
3228 
3229 	ts = ktime_to_timespec64(ktime_get_real());
3230 	/* Write the initial Time value to PHY and LAN */
3231 	err = ice_ptp_write_init(pf, &ts);
3232 	if (err)
3233 		goto err_unlock;
3234 
3235 	/* Release the global hardware lock */
3236 	ice_ptp_unlock(hw);
3237 
3238 	/* Configure PHY interrupt settings */
3239 	err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
3240 	if (err)
3241 		goto err_exit;
3242 
3243 	/* Ensure we have a clock device */
3244 	err = ice_ptp_create_clock(pf);
3245 	if (err)
3246 		goto err_clk;
3247 
3248 	return 0;
3249 err_clk:
3250 	pf->ptp.clock = NULL;
3251 err_exit:
3252 	return err;
3253 
3254 err_unlock:
3255 	ice_ptp_unlock(hw);
3256 	return err;
3257 }
3258 
3259 /**
3260  * ice_ptp_init_work - Initialize PTP work threads
3261  * @pf: Board private structure
3262  * @ptp: PF PTP structure
3263  */
ice_ptp_init_work(struct ice_pf * pf,struct ice_ptp * ptp)3264 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
3265 {
3266 	struct kthread_worker *kworker;
3267 
3268 	/* Initialize work functions */
3269 	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
3270 
3271 	/* Allocate a kworker for handling work required for the ports
3272 	 * connected to the PTP hardware clock.
3273 	 */
3274 	kworker = kthread_run_worker(0, "ice-ptp-%s",
3275 					dev_name(ice_pf_to_dev(pf)));
3276 	if (IS_ERR(kworker))
3277 		return PTR_ERR(kworker);
3278 
3279 	ptp->kworker = kworker;
3280 
3281 	/* Start periodic work going */
3282 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
3283 
3284 	return 0;
3285 }
3286 
3287 /**
3288  * ice_ptp_init_port - Initialize PTP port structure
3289  * @pf: Board private structure
3290  * @ptp_port: PTP port structure
3291  *
3292  * Return: 0 on success, -ENODEV on invalid MAC type, -ENOMEM on failed alloc.
3293  */
ice_ptp_init_port(struct ice_pf * pf,struct ice_ptp_port * ptp_port)3294 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
3295 {
3296 	struct ice_hw *hw = &pf->hw;
3297 
3298 	mutex_init(&ptp_port->ps_lock);
3299 
3300 	switch (hw->mac_type) {
3301 	case ICE_MAC_E810:
3302 	case ICE_MAC_E830:
3303 	case ICE_MAC_GENERIC_3K_E825:
3304 		return ice_ptp_init_tx(pf, &ptp_port->tx, ptp_port->port_num);
3305 	case ICE_MAC_GENERIC:
3306 		kthread_init_delayed_work(&ptp_port->ov_work,
3307 					  ice_ptp_wait_for_offsets);
3308 		return ice_ptp_init_tx_e82x(pf, &ptp_port->tx,
3309 					    ptp_port->port_num);
3310 	default:
3311 		return -ENODEV;
3312 	}
3313 }
3314 
3315 /**
3316  * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
3317  * @pf: Board private structure
3318  *
3319  * Initialize the Tx timestamp interrupt mode for this device. For most device
3320  * types, each PF processes the interrupt and manages its own timestamps. For
3321  * E822-based devices, only the clock owner processes the timestamps. Other
3322  * PFs disable the interrupt and do not process their own timestamps.
3323  */
ice_ptp_init_tx_interrupt_mode(struct ice_pf * pf)3324 static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
3325 {
3326 	switch (pf->hw.mac_type) {
3327 	case ICE_MAC_GENERIC:
3328 		/* E822 based PHY has the clock owner process the interrupt
3329 		 * for all ports.
3330 		 */
3331 		if (ice_pf_src_tmr_owned(pf))
3332 			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
3333 		else
3334 			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
3335 		break;
3336 	default:
3337 		/* other PHY types handle their own Tx interrupt */
3338 		pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
3339 	}
3340 }
3341 
3342 /**
3343  * ice_ptp_init - Initialize PTP hardware clock support
3344  * @pf: Board private structure
3345  *
3346  * Set up the device for interacting with the PTP hardware clock for all
3347  * functions, both the function that owns the clock hardware, and the
3348  * functions connected to the clock hardware.
3349  *
3350  * The clock owner will allocate and register a ptp_clock with the
3351  * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
3352  * items used for asynchronous work such as Tx timestamps and periodic work.
3353  */
ice_ptp_init(struct ice_pf * pf)3354 void ice_ptp_init(struct ice_pf *pf)
3355 {
3356 	struct ice_ptp *ptp = &pf->ptp;
3357 	struct ice_hw *hw = &pf->hw;
3358 	int lane_num, err;
3359 
3360 	ptp->state = ICE_PTP_INITIALIZING;
3361 
3362 	lane_num = ice_get_phy_lane_number(hw);
3363 	if (lane_num < 0) {
3364 		err = lane_num;
3365 		goto err_exit;
3366 	}
3367 
3368 	ptp->port.port_num = (u8)lane_num;
3369 	ice_ptp_init_hw(hw);
3370 
3371 	ice_ptp_init_tx_interrupt_mode(pf);
3372 
3373 	/* If this function owns the clock hardware, it must allocate and
3374 	 * configure the PTP clock device to represent it.
3375 	 */
3376 	if (ice_pf_src_tmr_owned(pf) && ice_is_primary(hw)) {
3377 		err = ice_ptp_setup_adapter(pf);
3378 		if (err)
3379 			goto err_exit;
3380 		err = ice_ptp_init_owner(pf);
3381 		if (err)
3382 			goto err_exit;
3383 	}
3384 
3385 	err = ice_ptp_setup_pf(pf);
3386 	if (err)
3387 		goto err_exit;
3388 
3389 	err = ice_ptp_init_port(pf, &ptp->port);
3390 	if (err)
3391 		goto err_exit;
3392 
3393 	/* Start the PHY timestamping block */
3394 	ice_ptp_reset_phy_timestamping(pf);
3395 
3396 	/* Configure initial Tx interrupt settings */
3397 	ice_ptp_cfg_tx_interrupt(pf);
3398 
3399 	ptp->state = ICE_PTP_READY;
3400 
3401 	err = ice_ptp_init_work(pf, ptp);
3402 	if (err)
3403 		goto err_exit;
3404 
3405 	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
3406 	return;
3407 
3408 err_exit:
3409 	/* If we registered a PTP clock, release it */
3410 	if (pf->ptp.clock) {
3411 		ptp_clock_unregister(ptp->clock);
3412 		pf->ptp.clock = NULL;
3413 	}
3414 	ptp->state = ICE_PTP_ERROR;
3415 	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
3416 }
3417 
3418 /**
3419  * ice_ptp_release - Disable the driver/HW support and unregister the clock
3420  * @pf: Board private structure
3421  *
3422  * This function handles the cleanup work required from the initialization by
3423  * clearing out the important information and unregistering the clock
3424  */
ice_ptp_release(struct ice_pf * pf)3425 void ice_ptp_release(struct ice_pf *pf)
3426 {
3427 	if (pf->ptp.state != ICE_PTP_READY)
3428 		return;
3429 
3430 	pf->ptp.state = ICE_PTP_UNINIT;
3431 
3432 	/* Disable timestamping for both Tx and Rx */
3433 	ice_ptp_disable_timestamp_mode(pf);
3434 
3435 	ice_ptp_cleanup_pf(pf);
3436 
3437 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3438 
3439 	ice_ptp_disable_all_extts(pf);
3440 
3441 	kthread_cancel_delayed_work_sync(&pf->ptp.work);
3442 
3443 	ice_ptp_port_phy_stop(&pf->ptp.port);
3444 	mutex_destroy(&pf->ptp.port.ps_lock);
3445 	if (pf->ptp.kworker) {
3446 		kthread_destroy_worker(pf->ptp.kworker);
3447 		pf->ptp.kworker = NULL;
3448 	}
3449 
3450 	if (!pf->ptp.clock)
3451 		return;
3452 
3453 	/* Disable periodic outputs */
3454 	ice_ptp_disable_all_perout(pf);
3455 
3456 	ptp_clock_unregister(pf->ptp.clock);
3457 	pf->ptp.clock = NULL;
3458 
3459 	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
3460 }
3461