1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (C) 2021, Intel Corporation. */
3
4 #ifndef _ICE_PTP_H_
5 #define _ICE_PTP_H_
6
7 #include <linux/ptp_clock_kernel.h>
8 #include <linux/kthread.h>
9
10 #include "ice_ptp_hw.h"
11
12 enum ice_ptp_pin_e810 {
13 GPIO_20 = 0,
14 GPIO_21,
15 GPIO_22,
16 GPIO_23,
17 NUM_PTP_PIN_E810
18 };
19
20 enum ice_ptp_pin_e810t {
21 GNSS = 0,
22 SMA1,
23 UFL1,
24 SMA2,
25 UFL2,
26 NUM_PTP_PINS_E810T
27 };
28
29 struct ice_perout_channel {
30 bool ena;
31 u32 gpio_pin;
32 u32 flags;
33 u64 period;
34 u64 start_time;
35 };
36
37 struct ice_extts_channel {
38 bool ena;
39 u32 gpio_pin;
40 u32 flags;
41 };
42
43 /* The ice hardware captures Tx hardware timestamps in the PHY. The timestamp
44 * is stored in a buffer of registers. Depending on the specific hardware,
45 * this buffer might be shared across multiple PHY ports.
46 *
47 * On transmit of a packet to be timestamped, software is responsible for
48 * selecting an open index. Hardware makes no attempt to lock or prevent
49 * re-use of an index for multiple packets.
50 *
51 * To handle this, timestamp indexes must be tracked by software to ensure
52 * that an index is not re-used for multiple transmitted packets. The
53 * structures and functions declared in this file track the available Tx
54 * register indexes, as well as provide storage for the SKB pointers.
55 *
56 * To allow multiple ports to access the shared register block independently,
57 * the blocks are split up so that indexes are assigned to each port based on
58 * hardware logical port number.
59 *
60 * The timestamp blocks are handled differently for E810- and E822-based
61 * devices. In E810 devices, each port has its own block of timestamps, while in
62 * E822 there is a need to logically break the block of registers into smaller
63 * chunks based on the port number to avoid collisions.
64 *
65 * Example for port 5 in E810:
66 * +--------+--------+--------+--------+--------+--------+--------+--------+
67 * |register|register|register|register|register|register|register|register|
68 * | block | block | block | block | block | block | block | block |
69 * | for | for | for | for | for | for | for | for |
70 * | port 0 | port 1 | port 2 | port 3 | port 4 | port 5 | port 6 | port 7 |
71 * +--------+--------+--------+--------+--------+--------+--------+--------+
72 * ^^
73 * ||
74 * |--- quad offset is always 0
75 * ---- quad number
76 *
77 * Example for port 5 in E822:
78 * +-----------------------------+-----------------------------+
79 * | register block for quad 0 | register block for quad 1 |
80 * |+------+------+------+------+|+------+------+------+------+|
81 * ||port 0|port 1|port 2|port 3|||port 0|port 1|port 2|port 3||
82 * |+------+------+------+------+|+------+------+------+------+|
83 * +-----------------------------+-------^---------------------+
84 * ^ |
85 * | --- quad offset*
86 * ---- quad number
87 *
88 * * PHY port 5 is port 1 in quad 1
89 *
90 */
91
92 /**
93 * struct ice_tx_tstamp - Tracking for a single Tx timestamp
94 * @skb: pointer to the SKB for this timestamp request
95 * @start: jiffies when the timestamp was first requested
96 * @cached_tstamp: last read timestamp
97 *
98 * This structure tracks a single timestamp request. The SKB pointer is
99 * provided when initiating a request. The start time is used to ensure that
100 * we discard old requests that were not fulfilled within a 2 second time
101 * window.
102 * Timestamp values in the PHY are read only and do not get cleared except at
103 * hardware reset or when a new timestamp value is captured.
104 *
105 * Some PHY types do not provide a "ready" bitmap indicating which timestamp
106 * indexes are valid. In these cases, we use a cached_tstamp to keep track of
107 * the last timestamp we read for a given index. If the current timestamp
108 * value is the same as the cached value, we assume a new timestamp hasn't
109 * been captured. This avoids reporting stale timestamps to the stack. This is
110 * only done if the has_ready_bitmap flag is not set in ice_ptp_tx structure.
111 */
112 struct ice_tx_tstamp {
113 struct sk_buff *skb;
114 unsigned long start;
115 u64 cached_tstamp;
116 };
117
118 /**
119 * enum ice_tx_tstamp_work - Status of Tx timestamp work function
120 * @ICE_TX_TSTAMP_WORK_DONE: Tx timestamp processing is complete
121 * @ICE_TX_TSTAMP_WORK_PENDING: More Tx timestamps are pending
122 */
123 enum ice_tx_tstamp_work {
124 ICE_TX_TSTAMP_WORK_DONE = 0,
125 ICE_TX_TSTAMP_WORK_PENDING,
126 };
127
128 /**
129 * struct ice_ptp_tx - Tracking structure for all Tx timestamp requests on a port
130 * @lock: lock to prevent concurrent access to fields of this struct
131 * @tstamps: array of len to store outstanding requests
132 * @in_use: bitmap of len to indicate which slots are in use
133 * @stale: bitmap of len to indicate slots which have stale timestamps
134 * @block: which memory block (quad or port) the timestamps are captured in
135 * @offset: offset into timestamp block to get the real index
136 * @len: length of the tstamps and in_use fields.
137 * @init: if true, the tracker is initialized;
138 * @calibrating: if true, the PHY is calibrating the Tx offset. During this
139 * window, timestamps are temporarily disabled.
140 * @has_ready_bitmap: if true, the hardware has a valid Tx timestamp ready
141 * bitmap register. If false, fall back to verifying new
142 * timestamp values against previously cached copy.
143 * @last_ll_ts_idx_read: index of the last LL TS read by the FW
144 */
145 struct ice_ptp_tx {
146 spinlock_t lock; /* lock protecting in_use bitmap */
147 struct ice_tx_tstamp *tstamps;
148 unsigned long *in_use;
149 unsigned long *stale;
150 u8 block;
151 u8 offset;
152 u8 len;
153 u8 init : 1;
154 u8 calibrating : 1;
155 u8 has_ready_bitmap : 1;
156 s8 last_ll_ts_idx_read;
157 };
158
159 /* Quad and port information for initializing timestamp blocks */
160 #define INDEX_PER_QUAD 64
161 #define INDEX_PER_PORT_E82X 16
162 #define INDEX_PER_PORT_E810 64
163 #define INDEX_PER_PORT_ETH56G 64
164
165 /**
166 * struct ice_ptp_port - data used to initialize an external port for PTP
167 *
168 * This structure contains data indicating whether a single external port is
169 * ready for PTP functionality. It is used to track the port initialization
170 * and determine when the port's PHY offset is valid.
171 *
172 * @list_member: list member structure of auxiliary device
173 * @tx: Tx timestamp tracking for this port
174 * @aux_dev: auxiliary device associated with this port
175 * @ov_work: delayed work task for tracking when PHY offset is valid
176 * @ps_lock: mutex used to protect the overall PTP PHY start procedure
177 * @link_up: indicates whether the link is up
178 * @tx_fifo_busy_cnt: number of times the Tx FIFO was busy
179 * @port_num: the port number this structure represents
180 */
181 struct ice_ptp_port {
182 struct list_head list_member;
183 struct ice_ptp_tx tx;
184 struct auxiliary_device aux_dev;
185 struct kthread_delayed_work ov_work;
186 struct mutex ps_lock; /* protects overall PTP PHY start procedure */
187 bool link_up;
188 u8 tx_fifo_busy_cnt;
189 u8 port_num;
190 };
191
192 enum ice_ptp_tx_interrupt {
193 ICE_PTP_TX_INTERRUPT_NONE = 0,
194 ICE_PTP_TX_INTERRUPT_SELF,
195 ICE_PTP_TX_INTERRUPT_ALL,
196 };
197
198 /**
199 * struct ice_ptp_port_owner - data used to handle the PTP clock owner info
200 *
201 * This structure contains data necessary for the PTP clock owner to correctly
202 * handle the timestamping feature for all attached ports.
203 *
204 * @aux_driver: the structure carring the auxiliary driver information
205 * @ports: list of porst handled by this port owner
206 * @lock: protect access to ports list
207 */
208 struct ice_ptp_port_owner {
209 struct auxiliary_driver aux_driver;
210 struct list_head ports;
211 struct mutex lock;
212 };
213
214 #define GLTSYN_TGT_H_IDX_MAX 4
215
216 enum ice_ptp_state {
217 ICE_PTP_UNINIT = 0,
218 ICE_PTP_INITIALIZING,
219 ICE_PTP_READY,
220 ICE_PTP_RESETTING,
221 ICE_PTP_ERROR,
222 };
223
224 /**
225 * struct ice_ptp - data used for integrating with CONFIG_PTP_1588_CLOCK
226 * @state: current state of PTP state machine
227 * @tx_interrupt_mode: the TX interrupt mode for the PTP clock
228 * @port: data for the PHY port initialization procedure
229 * @ports_owner: data for the auxiliary driver owner
230 * @work: delayed work function for periodic tasks
231 * @cached_phc_time: a cached copy of the PHC time for timestamp extension
232 * @cached_phc_jiffies: jiffies when cached_phc_time was last updated
233 * @ext_ts_chan: the external timestamp channel in use
234 * @ext_ts_irq: the external timestamp IRQ in use
235 * @kworker: kwork thread for handling periodic work
236 * @perout_channels: periodic output data
237 * @extts_channels: channels for external timestamps
238 * @info: structure defining PTP hardware capabilities
239 * @clock: pointer to registered PTP clock device
240 * @tstamp_config: hardware timestamping configuration
241 * @reset_time: kernel time after clock stop on reset
242 * @tx_hwtstamp_skipped: number of Tx time stamp requests skipped
243 * @tx_hwtstamp_timeouts: number of Tx skbs discarded with no time stamp
244 * @tx_hwtstamp_flushed: number of Tx skbs flushed due to interface closed
245 * @tx_hwtstamp_discarded: number of Tx skbs discarded due to cached PHC time
246 * being too old to correctly extend timestamp
247 * @late_cached_phc_updates: number of times cached PHC update is late
248 */
249 struct ice_ptp {
250 enum ice_ptp_state state;
251 enum ice_ptp_tx_interrupt tx_interrupt_mode;
252 struct ice_ptp_port port;
253 struct ice_ptp_port_owner ports_owner;
254 struct kthread_delayed_work work;
255 u64 cached_phc_time;
256 unsigned long cached_phc_jiffies;
257 u8 ext_ts_chan;
258 u8 ext_ts_irq;
259 struct kthread_worker *kworker;
260 struct ice_perout_channel perout_channels[GLTSYN_TGT_H_IDX_MAX];
261 struct ice_extts_channel extts_channels[GLTSYN_TGT_H_IDX_MAX];
262 struct ptp_clock_info info;
263 struct ptp_clock *clock;
264 struct hwtstamp_config tstamp_config;
265 u64 reset_time;
266 u32 tx_hwtstamp_skipped;
267 u32 tx_hwtstamp_timeouts;
268 u32 tx_hwtstamp_flushed;
269 u32 tx_hwtstamp_discarded;
270 u32 late_cached_phc_updates;
271 };
272
273 #define __ptp_port_to_ptp(p) \
274 container_of((p), struct ice_ptp, port)
275 #define ptp_port_to_pf(p) \
276 container_of(__ptp_port_to_ptp((p)), struct ice_pf, ptp)
277
278 #define __ptp_info_to_ptp(i) \
279 container_of((i), struct ice_ptp, info)
280 #define ptp_info_to_pf(i) \
281 container_of(__ptp_info_to_ptp((i)), struct ice_pf, ptp)
282
283 #define PFTSYN_SEM_BYTES 4
284 #define PTP_SHARED_CLK_IDX_VALID BIT(31)
285 #define TS_CMD_MASK 0xF
286 #define SYNC_EXEC_CMD 0x3
287 #define ICE_PTP_TS_VALID BIT(0)
288
289 #define FIFO_EMPTY BIT(2)
290 #define FIFO_OK 0xFF
291 #define ICE_PTP_FIFO_NUM_CHECKS 5
292 /* Per-channel register definitions */
293 #define GLTSYN_AUX_OUT(_chan, _idx) (GLTSYN_AUX_OUT_0(_idx) + ((_chan) * 8))
294 #define GLTSYN_AUX_IN(_chan, _idx) (GLTSYN_AUX_IN_0(_idx) + ((_chan) * 8))
295 #define GLTSYN_CLKO(_chan, _idx) (GLTSYN_CLKO_0(_idx) + ((_chan) * 8))
296 #define GLTSYN_TGT_L(_chan, _idx) (GLTSYN_TGT_L_0(_idx) + ((_chan) * 16))
297 #define GLTSYN_TGT_H(_chan, _idx) (GLTSYN_TGT_H_0(_idx) + ((_chan) * 16))
298 #define GLTSYN_EVNT_L(_chan, _idx) (GLTSYN_EVNT_L_0(_idx) + ((_chan) * 16))
299 #define GLTSYN_EVNT_H(_chan, _idx) (GLTSYN_EVNT_H_0(_idx) + ((_chan) * 16))
300 #define GLTSYN_EVNT_H_IDX_MAX 3
301
302 /* Pin definitions for PTP PPS out */
303 #define PPS_CLK_GEN_CHAN 3
304 #define PPS_CLK_SRC_CHAN 2
305 #define PPS_PIN_INDEX 5
306 #define TIME_SYNC_PIN_INDEX 4
307 #define N_EXT_TS_E810 3
308 #define N_PER_OUT_E810 4
309 #define N_PER_OUT_E810T 3
310 #define N_PER_OUT_NO_SMA_E810T 2
311 #define N_EXT_TS_NO_SMA_E810T 2
312 #define ETH_GLTSYN_ENA(_i) (0x03000348 + ((_i) * 4))
313
314 #if IS_ENABLED(CONFIG_PTP_1588_CLOCK)
315 int ice_ptp_clock_index(struct ice_pf *pf);
316 struct ice_pf;
317 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr);
318 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr);
319 void ice_ptp_restore_timestamp_mode(struct ice_pf *pf);
320
321 void ice_ptp_extts_event(struct ice_pf *pf);
322 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb);
323 void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx);
324 void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx);
325 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf);
326
327 u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
328 const struct ice_pkt_ctx *pkt_ctx);
329 void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
330 void ice_ptp_prepare_for_reset(struct ice_pf *pf,
331 enum ice_reset_req reset_type);
332 void ice_ptp_init(struct ice_pf *pf);
333 void ice_ptp_release(struct ice_pf *pf);
334 void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup);
335 #else /* IS_ENABLED(CONFIG_PTP_1588_CLOCK) */
ice_ptp_set_ts_config(struct ice_pf * pf,struct ifreq * ifr)336 static inline int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
337 {
338 return -EOPNOTSUPP;
339 }
340
ice_ptp_get_ts_config(struct ice_pf * pf,struct ifreq * ifr)341 static inline int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
342 {
343 return -EOPNOTSUPP;
344 }
345
ice_ptp_restore_timestamp_mode(struct ice_pf * pf)346 static inline void ice_ptp_restore_timestamp_mode(struct ice_pf *pf) { }
ice_ptp_extts_event(struct ice_pf * pf)347 static inline void ice_ptp_extts_event(struct ice_pf *pf) { }
348 static inline s8
ice_ptp_request_ts(struct ice_ptp_tx * tx,struct sk_buff * skb)349 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
350 {
351 return -1;
352 }
353
ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx * tx,u8 idx)354 static inline void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx)
355 { }
356
ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx * tx)357 static inline void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx) { }
358
ice_ptp_process_ts(struct ice_pf * pf)359 static inline bool ice_ptp_process_ts(struct ice_pf *pf)
360 {
361 return true;
362 }
363
364 static inline u64
ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc * rx_desc,const struct ice_pkt_ctx * pkt_ctx)365 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
366 const struct ice_pkt_ctx *pkt_ctx)
367 {
368 return 0;
369 }
370
ice_ptp_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)371 static inline void ice_ptp_rebuild(struct ice_pf *pf,
372 enum ice_reset_req reset_type)
373 {
374 }
375
ice_ptp_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)376 static inline void ice_ptp_prepare_for_reset(struct ice_pf *pf,
377 enum ice_reset_req reset_type)
378 {
379 }
ice_ptp_init(struct ice_pf * pf)380 static inline void ice_ptp_init(struct ice_pf *pf) { }
ice_ptp_release(struct ice_pf * pf)381 static inline void ice_ptp_release(struct ice_pf *pf) { }
ice_ptp_link_change(struct ice_pf * pf,u8 port,bool linkup)382 static inline void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
383 {
384 }
385
ice_ptp_clock_index(struct ice_pf * pf)386 static inline int ice_ptp_clock_index(struct ice_pf *pf)
387 {
388 return -1;
389 }
390 #endif /* IS_ENABLED(CONFIG_PTP_1588_CLOCK) */
391 #endif /* _ICE_PTP_H_ */
392