xref: /linux/drivers/net/ethernet/intel/ice/ice_ptp.c (revision 27605c8c0f69e319df156b471974e4e223035378)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_trace.h"
7 #include "ice_cgu_regs.h"
8 
9 static const char ice_pin_names[][64] = {
10 	"SDP0",
11 	"SDP1",
12 	"SDP2",
13 	"SDP3",
14 	"TIME_SYNC",
15 	"1PPS"
16 };
17 
18 static const struct ice_ptp_pin_desc ice_pin_desc_e82x[] = {
19 	/* name,        gpio,       delay */
20 	{  TIME_SYNC, {  4, -1 }, { 0,  0 }},
21 	{  ONE_PPS,   { -1,  5 }, { 0, 11 }},
22 };
23 
24 static const struct ice_ptp_pin_desc ice_pin_desc_e825c[] = {
25 	/* name,        gpio,       delay */
26 	{  SDP0,      {  0,  0 }, { 15, 14 }},
27 	{  SDP1,      {  1,  1 }, { 15, 14 }},
28 	{  SDP2,      {  2,  2 }, { 15, 14 }},
29 	{  SDP3,      {  3,  3 }, { 15, 14 }},
30 	{  TIME_SYNC, {  4, -1 }, { 11,  0 }},
31 	{  ONE_PPS,   { -1,  5 }, {  0,  9 }},
32 };
33 
34 static const struct ice_ptp_pin_desc ice_pin_desc_e810[] = {
35 	/* name,        gpio,       delay */
36 	{  SDP0,      {  0,  0 }, { 0, 1 }},
37 	{  SDP1,      {  1,  1 }, { 0, 1 }},
38 	{  SDP2,      {  2,  2 }, { 0, 1 }},
39 	{  SDP3,      {  3,  3 }, { 0, 1 }},
40 	{  ONE_PPS,   { -1,  5 }, { 0, 1 }},
41 };
42 
43 static const char ice_pin_names_nvm[][64] = {
44 	"GNSS",
45 	"SMA1",
46 	"U.FL1",
47 	"SMA2",
48 	"U.FL2",
49 };
50 
51 static const struct ice_ptp_pin_desc ice_pin_desc_e810_sma[] = {
52 	/* name,   gpio,       delay */
53 	{  GNSS, {  1, -1 }, { 0, 0 }},
54 	{  SMA1, {  1,  0 }, { 0, 1 }},
55 	{  UFL1, { -1,  0 }, { 0, 1 }},
56 	{  SMA2, {  3,  2 }, { 0, 1 }},
57 	{  UFL2, {  3, -1 }, { 0, 0 }},
58 };
59 
ice_get_ctrl_pf(struct ice_pf * pf)60 static struct ice_pf *ice_get_ctrl_pf(struct ice_pf *pf)
61 {
62 	return !pf->adapter ? NULL : pf->adapter->ctrl_pf;
63 }
64 
ice_get_ctrl_ptp(struct ice_pf * pf)65 static struct ice_ptp *ice_get_ctrl_ptp(struct ice_pf *pf)
66 {
67 	struct ice_pf *ctrl_pf = ice_get_ctrl_pf(pf);
68 
69 	return !ctrl_pf ? NULL : &ctrl_pf->ptp;
70 }
71 
72 /**
73  * ice_ptp_find_pin_idx - Find pin index in ptp_pin_desc
74  * @pf: Board private structure
75  * @func: Pin function
76  * @chan: GPIO channel
77  *
78  * Return: positive pin number when pin is present, -1 otherwise
79  */
ice_ptp_find_pin_idx(struct ice_pf * pf,enum ptp_pin_function func,unsigned int chan)80 static int ice_ptp_find_pin_idx(struct ice_pf *pf, enum ptp_pin_function func,
81 				unsigned int chan)
82 {
83 	const struct ptp_clock_info *info = &pf->ptp.info;
84 	int i;
85 
86 	for (i = 0; i < info->n_pins; i++) {
87 		if (info->pin_config[i].func == func &&
88 		    info->pin_config[i].chan == chan)
89 			return i;
90 	}
91 
92 	return -1;
93 }
94 
95 /**
96  * ice_ptp_update_sma_data - update SMA pins data according to pins setup
97  * @pf: Board private structure
98  * @sma_pins: parsed SMA pins status
99  * @data: SMA data to update
100  */
ice_ptp_update_sma_data(struct ice_pf * pf,unsigned int sma_pins[],u8 * data)101 static void ice_ptp_update_sma_data(struct ice_pf *pf, unsigned int sma_pins[],
102 				    u8 *data)
103 {
104 	const char *state1, *state2;
105 
106 	/* Set the right state based on the desired configuration.
107 	 * When bit is set, functionality is disabled.
108 	 */
109 	*data &= ~ICE_ALL_SMA_MASK;
110 	if (!sma_pins[UFL1 - 1]) {
111 		if (sma_pins[SMA1 - 1] == PTP_PF_EXTTS) {
112 			state1 = "SMA1 Rx, U.FL1 disabled";
113 			*data |= ICE_SMA1_TX_EN;
114 		} else if (sma_pins[SMA1 - 1] == PTP_PF_PEROUT) {
115 			state1 = "SMA1 Tx U.FL1 disabled";
116 			*data |= ICE_SMA1_DIR_EN;
117 		} else {
118 			state1 = "SMA1 disabled, U.FL1 disabled";
119 			*data |= ICE_SMA1_MASK;
120 		}
121 	} else {
122 		/* U.FL1 Tx will always enable SMA1 Rx */
123 		state1 = "SMA1 Rx, U.FL1 Tx";
124 	}
125 
126 	if (!sma_pins[UFL2 - 1]) {
127 		if (sma_pins[SMA2 - 1] == PTP_PF_EXTTS) {
128 			state2 = "SMA2 Rx, U.FL2 disabled";
129 			*data |= ICE_SMA2_TX_EN | ICE_SMA2_UFL2_RX_DIS;
130 		} else if (sma_pins[SMA2 - 1] == PTP_PF_PEROUT) {
131 			state2 = "SMA2 Tx, U.FL2 disabled";
132 			*data |= ICE_SMA2_DIR_EN | ICE_SMA2_UFL2_RX_DIS;
133 		} else {
134 			state2 = "SMA2 disabled, U.FL2 disabled";
135 			*data |= ICE_SMA2_MASK;
136 		}
137 	} else {
138 		if (!sma_pins[SMA2 - 1]) {
139 			state2 = "SMA2 disabled, U.FL2 Rx";
140 			*data |= ICE_SMA2_DIR_EN | ICE_SMA2_TX_EN;
141 		} else {
142 			state2 = "SMA2 Tx, U.FL2 Rx";
143 			*data |= ICE_SMA2_DIR_EN;
144 		}
145 	}
146 
147 	dev_dbg(ice_pf_to_dev(pf), "%s, %s\n", state1, state2);
148 }
149 
150 /**
151  * ice_ptp_set_sma_cfg - set the configuration of the SMA control logic
152  * @pf: Board private structure
153  *
154  * Return: 0 on success, negative error code otherwise
155  */
ice_ptp_set_sma_cfg(struct ice_pf * pf)156 static int ice_ptp_set_sma_cfg(struct ice_pf *pf)
157 {
158 	const struct ice_ptp_pin_desc *ice_pins = pf->ptp.ice_pin_desc;
159 	struct ptp_pin_desc *pins = pf->ptp.pin_desc;
160 	unsigned int sma_pins[ICE_SMA_PINS_NUM] = {};
161 	int err;
162 	u8 data;
163 
164 	/* Read initial pin state value */
165 	err = ice_read_sma_ctrl(&pf->hw, &data);
166 	if (err)
167 		return err;
168 
169 	/* Get SMA/U.FL pins states */
170 	for (int i = 0; i < pf->ptp.info.n_pins; i++)
171 		if (pins[i].func) {
172 			int name_idx = ice_pins[i].name_idx;
173 
174 			switch (name_idx) {
175 			case SMA1:
176 			case UFL1:
177 			case SMA2:
178 			case UFL2:
179 				sma_pins[name_idx - 1] = pins[i].func;
180 				break;
181 			default:
182 				continue;
183 			}
184 		}
185 
186 	ice_ptp_update_sma_data(pf, sma_pins, &data);
187 	return ice_write_sma_ctrl(&pf->hw, data);
188 }
189 
190 /**
191  * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device
192  * @pf: Board private structure
193  *
194  * Program the device to respond appropriately to the Tx timestamp interrupt
195  * cause.
196  */
ice_ptp_cfg_tx_interrupt(struct ice_pf * pf)197 static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf)
198 {
199 	struct ice_hw *hw = &pf->hw;
200 	bool enable;
201 	u32 val;
202 
203 	switch (pf->ptp.tx_interrupt_mode) {
204 	case ICE_PTP_TX_INTERRUPT_ALL:
205 		/* React to interrupts across all quads. */
206 		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
207 		enable = true;
208 		break;
209 	case ICE_PTP_TX_INTERRUPT_NONE:
210 		/* Do not react to interrupts on any quad. */
211 		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
212 		enable = false;
213 		break;
214 	case ICE_PTP_TX_INTERRUPT_SELF:
215 	default:
216 		enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON;
217 		break;
218 	}
219 
220 	/* Configure the Tx timestamp interrupt */
221 	val = rd32(hw, PFINT_OICR_ENA);
222 	if (enable)
223 		val |= PFINT_OICR_TSYN_TX_M;
224 	else
225 		val &= ~PFINT_OICR_TSYN_TX_M;
226 	wr32(hw, PFINT_OICR_ENA, val);
227 }
228 
229 /**
230  * ice_set_rx_tstamp - Enable or disable Rx timestamping
231  * @pf: The PF pointer to search in
232  * @on: bool value for whether timestamps are enabled or disabled
233  */
ice_set_rx_tstamp(struct ice_pf * pf,bool on)234 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
235 {
236 	struct ice_vsi *vsi;
237 	u16 i;
238 
239 	vsi = ice_get_main_vsi(pf);
240 	if (!vsi || !vsi->rx_rings)
241 		return;
242 
243 	/* Set the timestamp flag for all the Rx rings */
244 	ice_for_each_rxq(vsi, i) {
245 		if (!vsi->rx_rings[i])
246 			continue;
247 		vsi->rx_rings[i]->ptp_rx = on;
248 	}
249 }
250 
251 /**
252  * ice_ptp_disable_timestamp_mode - Disable current timestamp mode
253  * @pf: Board private structure
254  *
255  * Called during preparation for reset to temporarily disable timestamping on
256  * the device. Called during remove to disable timestamping while cleaning up
257  * driver resources.
258  */
ice_ptp_disable_timestamp_mode(struct ice_pf * pf)259 static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf)
260 {
261 	struct ice_hw *hw = &pf->hw;
262 	u32 val;
263 
264 	val = rd32(hw, PFINT_OICR_ENA);
265 	val &= ~PFINT_OICR_TSYN_TX_M;
266 	wr32(hw, PFINT_OICR_ENA, val);
267 
268 	ice_set_rx_tstamp(pf, false);
269 }
270 
271 /**
272  * ice_ptp_restore_timestamp_mode - Restore timestamp configuration
273  * @pf: Board private structure
274  *
275  * Called at the end of rebuild to restore timestamp configuration after
276  * a device reset.
277  */
ice_ptp_restore_timestamp_mode(struct ice_pf * pf)278 void ice_ptp_restore_timestamp_mode(struct ice_pf *pf)
279 {
280 	struct ice_hw *hw = &pf->hw;
281 	bool enable_rx;
282 
283 	ice_ptp_cfg_tx_interrupt(pf);
284 
285 	enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL;
286 	ice_set_rx_tstamp(pf, enable_rx);
287 
288 	/* Trigger an immediate software interrupt to ensure that timestamps
289 	 * which occurred during reset are handled now.
290 	 */
291 	wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
292 	ice_flush(hw);
293 }
294 
295 /**
296  * ice_ptp_read_src_clk_reg - Read the source clock register
297  * @pf: Board private structure
298  * @sts: Optional parameter for holding a pair of system timestamps from
299  *       the system clock. Will be ignored if NULL is given.
300  */
ice_ptp_read_src_clk_reg(struct ice_pf * pf,struct ptp_system_timestamp * sts)301 u64 ice_ptp_read_src_clk_reg(struct ice_pf *pf,
302 			     struct ptp_system_timestamp *sts)
303 {
304 	struct ice_hw *hw = &pf->hw;
305 	u32 hi, lo, lo2;
306 	u8 tmr_idx;
307 
308 	if (!ice_is_primary(hw))
309 		hw = ice_get_primary_hw(pf);
310 
311 	tmr_idx = ice_get_ptp_src_clock_index(hw);
312 	guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
313 	/* Read the system timestamp pre PHC read */
314 	ptp_read_system_prets(sts);
315 
316 	if (hw->mac_type == ICE_MAC_E830) {
317 		u64 clk_time = rd64(hw, E830_GLTSYN_TIME_L(tmr_idx));
318 
319 		/* Read the system timestamp post PHC read */
320 		ptp_read_system_postts(sts);
321 
322 		return clk_time;
323 	}
324 
325 	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
326 
327 	/* Read the system timestamp post PHC read */
328 	ptp_read_system_postts(sts);
329 
330 	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
331 	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
332 
333 	if (lo2 < lo) {
334 		/* if TIME_L rolled over read TIME_L again and update
335 		 * system timestamps
336 		 */
337 		ptp_read_system_prets(sts);
338 		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
339 		ptp_read_system_postts(sts);
340 		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
341 	}
342 
343 	return ((u64)hi << 32) | lo;
344 }
345 
346 /**
347  * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
348  * @cached_phc_time: recently cached copy of PHC time
349  * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
350  *
351  * Hardware captures timestamps which contain only 32 bits of nominal
352  * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
353  * Note that the captured timestamp values may be 40 bits, but the lower
354  * 8 bits are sub-nanoseconds and generally discarded.
355  *
356  * Extend the 32bit nanosecond timestamp using the following algorithm and
357  * assumptions:
358  *
359  * 1) have a recently cached copy of the PHC time
360  * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
361  *    seconds) before or after the PHC time was captured.
362  * 3) calculate the delta between the cached time and the timestamp
363  * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
364  *    captured after the PHC time. In this case, the full timestamp is just
365  *    the cached PHC time plus the delta.
366  * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
367  *    timestamp was captured *before* the PHC time, i.e. because the PHC
368  *    cache was updated after the timestamp was captured by hardware. In this
369  *    case, the full timestamp is the cached time minus the inverse delta.
370  *
371  * This algorithm works even if the PHC time was updated after a Tx timestamp
372  * was requested, but before the Tx timestamp event was reported from
373  * hardware.
374  *
375  * This calculation primarily relies on keeping the cached PHC time up to
376  * date. If the timestamp was captured more than 2^31 nanoseconds after the
377  * PHC time, it is possible that the lower 32bits of PHC time have
378  * overflowed more than once, and we might generate an incorrect timestamp.
379  *
380  * This is prevented by (a) periodically updating the cached PHC time once
381  * a second, and (b) discarding any Tx timestamp packet if it has waited for
382  * a timestamp for more than one second.
383  */
ice_ptp_extend_32b_ts(u64 cached_phc_time,u32 in_tstamp)384 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
385 {
386 	u32 delta, phc_time_lo;
387 	u64 ns;
388 
389 	/* Extract the lower 32 bits of the PHC time */
390 	phc_time_lo = (u32)cached_phc_time;
391 
392 	/* Calculate the delta between the lower 32bits of the cached PHC
393 	 * time and the in_tstamp value
394 	 */
395 	delta = (in_tstamp - phc_time_lo);
396 
397 	/* Do not assume that the in_tstamp is always more recent than the
398 	 * cached PHC time. If the delta is large, it indicates that the
399 	 * in_tstamp was taken in the past, and should be converted
400 	 * forward.
401 	 */
402 	if (delta > (U32_MAX / 2)) {
403 		/* reverse the delta calculation here */
404 		delta = (phc_time_lo - in_tstamp);
405 		ns = cached_phc_time - delta;
406 	} else {
407 		ns = cached_phc_time + delta;
408 	}
409 
410 	return ns;
411 }
412 
413 /**
414  * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
415  * @pf: Board private structure
416  * @in_tstamp: Ingress/egress 40b timestamp value
417  *
418  * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
419  * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
420  *
421  *  *--------------------------------------------------------------*
422  *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
423  *  *--------------------------------------------------------------*
424  *
425  * The low bit is an indicator of whether the timestamp is valid. The next
426  * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
427  * and the remaining 32 bits are the lower 32 bits of the PHC timer.
428  *
429  * It is assumed that the caller verifies the timestamp is valid prior to
430  * calling this function.
431  *
432  * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
433  * time stored in the device private PTP structure as the basis for timestamp
434  * extension.
435  *
436  * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
437  * algorithm.
438  */
ice_ptp_extend_40b_ts(struct ice_pf * pf,u64 in_tstamp)439 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
440 {
441 	const u64 mask = GENMASK_ULL(31, 0);
442 	unsigned long discard_time;
443 
444 	/* Discard the hardware timestamp if the cached PHC time is too old */
445 	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
446 	if (time_is_before_jiffies(discard_time)) {
447 		pf->ptp.tx_hwtstamp_discarded++;
448 		return 0;
449 	}
450 
451 	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
452 				     (in_tstamp >> 8) & mask);
453 }
454 
455 /**
456  * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
457  * @tx: the PTP Tx timestamp tracker to check
458  *
459  * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
460  * to accept new timestamp requests.
461  *
462  * Assumes the tx->lock spinlock is already held.
463  */
464 static bool
ice_ptp_is_tx_tracker_up(struct ice_ptp_tx * tx)465 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
466 {
467 	lockdep_assert_held(&tx->lock);
468 
469 	return tx->init && !tx->calibrating;
470 }
471 
472 /**
473  * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW
474  * @tx: the PTP Tx timestamp tracker
475  * @idx: index of the timestamp to request
476  */
ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx * tx,u8 idx)477 void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx)
478 {
479 	struct ice_e810_params *params;
480 	struct ice_ptp_port *ptp_port;
481 	unsigned long flags;
482 	struct sk_buff *skb;
483 	struct ice_pf *pf;
484 
485 	if (!tx->init)
486 		return;
487 
488 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
489 	pf = ptp_port_to_pf(ptp_port);
490 	params = &pf->hw.ptp.phy.e810;
491 
492 	/* Drop packets which have waited for more than 2 seconds */
493 	if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
494 		/* Count the number of Tx timestamps that timed out */
495 		pf->ptp.tx_hwtstamp_timeouts++;
496 
497 		skb = tx->tstamps[idx].skb;
498 		tx->tstamps[idx].skb = NULL;
499 		clear_bit(idx, tx->in_use);
500 
501 		dev_kfree_skb_any(skb);
502 		return;
503 	}
504 
505 	ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
506 
507 	spin_lock_irqsave(&params->atqbal_wq.lock, flags);
508 
509 	params->atqbal_flags |= ATQBAL_FLAGS_INTR_IN_PROGRESS;
510 
511 	/* Write TS index to read to the PF register so the FW can read it */
512 	wr32(&pf->hw, REG_LL_PROXY_H,
513 	     REG_LL_PROXY_H_TS_INTR_ENA | FIELD_PREP(REG_LL_PROXY_H_TS_IDX, idx) |
514 	     REG_LL_PROXY_H_EXEC);
515 	tx->last_ll_ts_idx_read = idx;
516 
517 	spin_unlock_irqrestore(&params->atqbal_wq.lock, flags);
518 }
519 
520 /**
521  * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port
522  * @tx: the PTP Tx timestamp tracker
523  */
ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx * tx)524 void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx)
525 {
526 	struct skb_shared_hwtstamps shhwtstamps = {};
527 	u8 idx = tx->last_ll_ts_idx_read;
528 	struct ice_e810_params *params;
529 	struct ice_ptp_port *ptp_port;
530 	u64 raw_tstamp, tstamp;
531 	bool drop_ts = false;
532 	struct sk_buff *skb;
533 	unsigned long flags;
534 	struct device *dev;
535 	struct ice_pf *pf;
536 	u32 reg_ll_high;
537 
538 	if (!tx->init || tx->last_ll_ts_idx_read < 0)
539 		return;
540 
541 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
542 	pf = ptp_port_to_pf(ptp_port);
543 	dev = ice_pf_to_dev(pf);
544 	params = &pf->hw.ptp.phy.e810;
545 
546 	ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
547 
548 	spin_lock_irqsave(&params->atqbal_wq.lock, flags);
549 
550 	if (!(params->atqbal_flags & ATQBAL_FLAGS_INTR_IN_PROGRESS))
551 		dev_dbg(dev, "%s: low latency interrupt request not in progress?\n",
552 			__func__);
553 
554 	/* Read the low 32 bit value */
555 	raw_tstamp = rd32(&pf->hw, REG_LL_PROXY_L);
556 	/* Read the status together with high TS part */
557 	reg_ll_high = rd32(&pf->hw, REG_LL_PROXY_H);
558 
559 	/* Wake up threads waiting on low latency interface */
560 	params->atqbal_flags &= ~ATQBAL_FLAGS_INTR_IN_PROGRESS;
561 
562 	wake_up_locked(&params->atqbal_wq);
563 
564 	spin_unlock_irqrestore(&params->atqbal_wq.lock, flags);
565 
566 	/* When the bit is cleared, the TS is ready in the register */
567 	if (reg_ll_high & REG_LL_PROXY_H_EXEC) {
568 		dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready");
569 		return;
570 	}
571 
572 	/* High 8 bit value of the TS is on the bits 16:23 */
573 	raw_tstamp |= ((u64)FIELD_GET(REG_LL_PROXY_H_TS_HIGH, reg_ll_high)) << 32;
574 
575 	/* Devices using this interface always verify the timestamp differs
576 	 * relative to the last cached timestamp value.
577 	 */
578 	if (raw_tstamp == tx->tstamps[idx].cached_tstamp)
579 		return;
580 
581 	tx->tstamps[idx].cached_tstamp = raw_tstamp;
582 	clear_bit(idx, tx->in_use);
583 	skb = tx->tstamps[idx].skb;
584 	tx->tstamps[idx].skb = NULL;
585 	if (test_and_clear_bit(idx, tx->stale))
586 		drop_ts = true;
587 
588 	if (!skb)
589 		return;
590 
591 	if (drop_ts) {
592 		dev_kfree_skb_any(skb);
593 		return;
594 	}
595 
596 	/* Extend the timestamp using cached PHC time */
597 	tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
598 	if (tstamp) {
599 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
600 		ice_trace(tx_tstamp_complete, skb, idx);
601 	}
602 
603 	skb_tstamp_tx(skb, &shhwtstamps);
604 	dev_kfree_skb_any(skb);
605 }
606 
607 /**
608  * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
609  * @tx: the PTP Tx timestamp tracker
610  *
611  * Process timestamps captured by the PHY associated with this port. To do
612  * this, loop over each index with a waiting skb.
613  *
614  * If a given index has a valid timestamp, perform the following steps:
615  *
616  * 1) check that the timestamp request is not stale
617  * 2) check that a timestamp is ready and available in the PHY memory bank
618  * 3) read and copy the timestamp out of the PHY register
619  * 4) unlock the index by clearing the associated in_use bit
620  * 5) check if the timestamp is stale, and discard if so
621  * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
622  * 7) send this 64 bit timestamp to the stack
623  *
624  * Note that we do not hold the tracking lock while reading the Tx timestamp.
625  * This is because reading the timestamp requires taking a mutex that might
626  * sleep.
627  *
628  * The only place where we set in_use is when a new timestamp is initiated
629  * with a slot index. This is only called in the hard xmit routine where an
630  * SKB has a request flag set. The only places where we clear this bit is this
631  * function, or during teardown when the Tx timestamp tracker is being
632  * removed. A timestamp index will never be re-used until the in_use bit for
633  * that index is cleared.
634  *
635  * If a Tx thread starts a new timestamp, we might not begin processing it
636  * right away but we will notice it at the end when we re-queue the task.
637  *
638  * If a Tx thread starts a new timestamp just after this function exits, the
639  * interrupt for that timestamp should re-trigger this function once
640  * a timestamp is ready.
641  *
642  * In cases where the PTP hardware clock was directly adjusted, some
643  * timestamps may not be able to safely use the timestamp extension math. In
644  * this case, software will set the stale bit for any outstanding Tx
645  * timestamps when the clock is adjusted. Then this function will discard
646  * those captured timestamps instead of sending them to the stack.
647  *
648  * If a Tx packet has been waiting for more than 2 seconds, it is not possible
649  * to correctly extend the timestamp using the cached PHC time. It is
650  * extremely unlikely that a packet will ever take this long to timestamp. If
651  * we detect a Tx timestamp request that has waited for this long we assume
652  * the packet will never be sent by hardware and discard it without reading
653  * the timestamp register.
654  */
ice_ptp_process_tx_tstamp(struct ice_ptp_tx * tx)655 static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
656 {
657 	struct ice_ptp_port *ptp_port;
658 	unsigned long flags;
659 	struct ice_pf *pf;
660 	struct ice_hw *hw;
661 	u64 tstamp_ready;
662 	bool link_up;
663 	int err;
664 	u8 idx;
665 
666 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
667 	pf = ptp_port_to_pf(ptp_port);
668 	hw = &pf->hw;
669 
670 	/* Read the Tx ready status first */
671 	if (tx->has_ready_bitmap) {
672 		err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
673 		if (err)
674 			return;
675 	}
676 
677 	/* Drop packets if the link went down */
678 	link_up = ptp_port->link_up;
679 
680 	for_each_set_bit(idx, tx->in_use, tx->len) {
681 		struct skb_shared_hwtstamps shhwtstamps = {};
682 		u8 phy_idx = idx + tx->offset;
683 		u64 raw_tstamp = 0, tstamp;
684 		bool drop_ts = !link_up;
685 		struct sk_buff *skb;
686 
687 		/* Drop packets which have waited for more than 2 seconds */
688 		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
689 			drop_ts = true;
690 
691 			/* Count the number of Tx timestamps that timed out */
692 			pf->ptp.tx_hwtstamp_timeouts++;
693 		}
694 
695 		/* Only read a timestamp from the PHY if its marked as ready
696 		 * by the tstamp_ready register. This avoids unnecessary
697 		 * reading of timestamps which are not yet valid. This is
698 		 * important as we must read all timestamps which are valid
699 		 * and only timestamps which are valid during each interrupt.
700 		 * If we do not, the hardware logic for generating a new
701 		 * interrupt can get stuck on some devices.
702 		 */
703 		if (tx->has_ready_bitmap &&
704 		    !(tstamp_ready & BIT_ULL(phy_idx))) {
705 			if (drop_ts)
706 				goto skip_ts_read;
707 
708 			continue;
709 		}
710 
711 		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
712 
713 		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
714 		if (err && !drop_ts)
715 			continue;
716 
717 		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
718 
719 		/* For PHYs which don't implement a proper timestamp ready
720 		 * bitmap, verify that the timestamp value is different
721 		 * from the last cached timestamp. If it is not, skip this for
722 		 * now assuming it hasn't yet been captured by hardware.
723 		 */
724 		if (!drop_ts && !tx->has_ready_bitmap &&
725 		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
726 			continue;
727 
728 		/* Discard any timestamp value without the valid bit set */
729 		if (!(raw_tstamp & ICE_PTP_TS_VALID))
730 			drop_ts = true;
731 
732 skip_ts_read:
733 		spin_lock_irqsave(&tx->lock, flags);
734 		if (!tx->has_ready_bitmap && raw_tstamp)
735 			tx->tstamps[idx].cached_tstamp = raw_tstamp;
736 		clear_bit(idx, tx->in_use);
737 		skb = tx->tstamps[idx].skb;
738 		tx->tstamps[idx].skb = NULL;
739 		if (test_and_clear_bit(idx, tx->stale))
740 			drop_ts = true;
741 		spin_unlock_irqrestore(&tx->lock, flags);
742 
743 		/* It is unlikely but possible that the SKB will have been
744 		 * flushed at this point due to link change or teardown.
745 		 */
746 		if (!skb)
747 			continue;
748 
749 		if (drop_ts) {
750 			dev_kfree_skb_any(skb);
751 			continue;
752 		}
753 
754 		/* Extend the timestamp using cached PHC time */
755 		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
756 		if (tstamp) {
757 			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
758 			ice_trace(tx_tstamp_complete, skb, idx);
759 		}
760 
761 		skb_tstamp_tx(skb, &shhwtstamps);
762 		dev_kfree_skb_any(skb);
763 	}
764 }
765 
766 /**
767  * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
768  * @pf: Board private structure
769  */
ice_ptp_tx_tstamp_owner(struct ice_pf * pf)770 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
771 {
772 	struct ice_ptp_port *port;
773 	unsigned int i;
774 
775 	mutex_lock(&pf->adapter->ports.lock);
776 	list_for_each_entry(port, &pf->adapter->ports.ports, list_node) {
777 		struct ice_ptp_tx *tx = &port->tx;
778 
779 		if (!tx || !tx->init)
780 			continue;
781 
782 		ice_ptp_process_tx_tstamp(tx);
783 	}
784 	mutex_unlock(&pf->adapter->ports.lock);
785 
786 	for (i = 0; i < ICE_GET_QUAD_NUM(pf->hw.ptp.num_lports); i++) {
787 		u64 tstamp_ready;
788 		int err;
789 
790 		/* Read the Tx ready status first */
791 		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
792 		if (err)
793 			break;
794 		else if (tstamp_ready)
795 			return ICE_TX_TSTAMP_WORK_PENDING;
796 	}
797 
798 	return ICE_TX_TSTAMP_WORK_DONE;
799 }
800 
801 /**
802  * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
803  * @tx: Tx tracking structure to initialize
804  *
805  * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
806  * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
807  */
ice_ptp_tx_tstamp(struct ice_ptp_tx * tx)808 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
809 {
810 	bool more_timestamps;
811 	unsigned long flags;
812 
813 	if (!tx->init)
814 		return ICE_TX_TSTAMP_WORK_DONE;
815 
816 	/* Process the Tx timestamp tracker */
817 	ice_ptp_process_tx_tstamp(tx);
818 
819 	/* Check if there are outstanding Tx timestamps */
820 	spin_lock_irqsave(&tx->lock, flags);
821 	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
822 	spin_unlock_irqrestore(&tx->lock, flags);
823 
824 	if (more_timestamps)
825 		return ICE_TX_TSTAMP_WORK_PENDING;
826 
827 	return ICE_TX_TSTAMP_WORK_DONE;
828 }
829 
830 /**
831  * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
832  * @tx: Tx tracking structure to initialize
833  *
834  * Assumes that the length has already been initialized. Do not call directly,
835  * use the ice_ptp_init_tx_* instead.
836  */
837 static int
ice_ptp_alloc_tx_tracker(struct ice_ptp_tx * tx)838 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
839 {
840 	unsigned long *in_use, *stale;
841 	struct ice_tx_tstamp *tstamps;
842 
843 	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
844 	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
845 	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
846 
847 	if (!tstamps || !in_use || !stale) {
848 		kfree(tstamps);
849 		bitmap_free(in_use);
850 		bitmap_free(stale);
851 
852 		return -ENOMEM;
853 	}
854 
855 	tx->tstamps = tstamps;
856 	tx->in_use = in_use;
857 	tx->stale = stale;
858 	tx->init = 1;
859 	tx->last_ll_ts_idx_read = -1;
860 
861 	spin_lock_init(&tx->lock);
862 
863 	return 0;
864 }
865 
866 /**
867  * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
868  * @pf: Board private structure
869  * @tx: the tracker to flush
870  *
871  * Called during teardown when a Tx tracker is being removed.
872  */
873 static void
ice_ptp_flush_tx_tracker(struct ice_pf * pf,struct ice_ptp_tx * tx)874 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
875 {
876 	struct ice_hw *hw = &pf->hw;
877 	unsigned long flags;
878 	u64 tstamp_ready;
879 	int err;
880 	u8 idx;
881 
882 	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
883 	if (err) {
884 		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
885 			tx->block, err);
886 
887 		/* If we fail to read the Tx timestamp ready bitmap just
888 		 * skip clearing the PHY timestamps.
889 		 */
890 		tstamp_ready = 0;
891 	}
892 
893 	for_each_set_bit(idx, tx->in_use, tx->len) {
894 		u8 phy_idx = idx + tx->offset;
895 		struct sk_buff *skb;
896 
897 		/* In case this timestamp is ready, we need to clear it. */
898 		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
899 			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
900 
901 		spin_lock_irqsave(&tx->lock, flags);
902 		skb = tx->tstamps[idx].skb;
903 		tx->tstamps[idx].skb = NULL;
904 		clear_bit(idx, tx->in_use);
905 		clear_bit(idx, tx->stale);
906 		spin_unlock_irqrestore(&tx->lock, flags);
907 
908 		/* Count the number of Tx timestamps flushed */
909 		pf->ptp.tx_hwtstamp_flushed++;
910 
911 		/* Free the SKB after we've cleared the bit */
912 		dev_kfree_skb_any(skb);
913 	}
914 }
915 
916 /**
917  * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
918  * @tx: the tracker to mark
919  *
920  * Mark currently outstanding Tx timestamps as stale. This prevents sending
921  * their timestamp value to the stack. This is required to prevent extending
922  * the 40bit hardware timestamp incorrectly.
923  *
924  * This should be called when the PTP clock is modified such as after a set
925  * time request.
926  */
927 static void
ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx * tx)928 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
929 {
930 	unsigned long flags;
931 
932 	spin_lock_irqsave(&tx->lock, flags);
933 	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
934 	spin_unlock_irqrestore(&tx->lock, flags);
935 }
936 
937 /**
938  * ice_ptp_flush_all_tx_tracker - Flush all timestamp trackers on this clock
939  * @pf: Board private structure
940  *
941  * Called by the clock owner to flush all the Tx timestamp trackers associated
942  * with the clock.
943  */
944 static void
ice_ptp_flush_all_tx_tracker(struct ice_pf * pf)945 ice_ptp_flush_all_tx_tracker(struct ice_pf *pf)
946 {
947 	struct ice_ptp_port *port;
948 
949 	list_for_each_entry(port, &pf->adapter->ports.ports, list_node)
950 		ice_ptp_flush_tx_tracker(ptp_port_to_pf(port), &port->tx);
951 }
952 
953 /**
954  * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
955  * @pf: Board private structure
956  * @tx: Tx tracking structure to release
957  *
958  * Free memory associated with the Tx timestamp tracker.
959  */
960 static void
ice_ptp_release_tx_tracker(struct ice_pf * pf,struct ice_ptp_tx * tx)961 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
962 {
963 	unsigned long flags;
964 
965 	spin_lock_irqsave(&tx->lock, flags);
966 	tx->init = 0;
967 	spin_unlock_irqrestore(&tx->lock, flags);
968 
969 	/* wait for potentially outstanding interrupt to complete */
970 	synchronize_irq(pf->oicr_irq.virq);
971 
972 	ice_ptp_flush_tx_tracker(pf, tx);
973 
974 	kfree(tx->tstamps);
975 	tx->tstamps = NULL;
976 
977 	bitmap_free(tx->in_use);
978 	tx->in_use = NULL;
979 
980 	bitmap_free(tx->stale);
981 	tx->stale = NULL;
982 
983 	tx->len = 0;
984 }
985 
986 /**
987  * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps
988  * @pf: Board private structure
989  * @tx: the Tx tracking structure to initialize
990  * @port: the port this structure tracks
991  *
992  * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
993  * the timestamp block is shared for all ports in the same quad. To avoid
994  * ports using the same timestamp index, logically break the block of
995  * registers into chunks based on the port number.
996  *
997  * Return: 0 on success, -ENOMEM when out of memory
998  */
ice_ptp_init_tx_e82x(struct ice_pf * pf,struct ice_ptp_tx * tx,u8 port)999 static int ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx,
1000 				u8 port)
1001 {
1002 	tx->block = ICE_GET_QUAD_NUM(port);
1003 	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X;
1004 	tx->len = INDEX_PER_PORT_E82X;
1005 	tx->has_ready_bitmap = 1;
1006 
1007 	return ice_ptp_alloc_tx_tracker(tx);
1008 }
1009 
1010 /**
1011  * ice_ptp_init_tx - Initialize tracking for Tx timestamps
1012  * @pf: Board private structure
1013  * @tx: the Tx tracking structure to initialize
1014  * @port: the port this structure tracks
1015  *
1016  * Initialize the Tx timestamp tracker for this PF. For all PHYs except E82X,
1017  * each port has its own block of timestamps, independent of the other ports.
1018  *
1019  * Return: 0 on success, -ENOMEM when out of memory
1020  */
ice_ptp_init_tx(struct ice_pf * pf,struct ice_ptp_tx * tx,u8 port)1021 static int ice_ptp_init_tx(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
1022 {
1023 	tx->block = port;
1024 	tx->offset = 0;
1025 	tx->len = INDEX_PER_PORT;
1026 
1027 	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
1028 	 * verify new timestamps against cached copy of the last read
1029 	 * timestamp.
1030 	 */
1031 	tx->has_ready_bitmap = pf->hw.mac_type != ICE_MAC_E810;
1032 
1033 	return ice_ptp_alloc_tx_tracker(tx);
1034 }
1035 
1036 /**
1037  * ice_ptp_update_cached_phctime - Update the cached PHC time values
1038  * @pf: Board specific private structure
1039  *
1040  * This function updates the system time values which are cached in the PF
1041  * structure and the Rx rings.
1042  *
1043  * This function must be called periodically to ensure that the cached value
1044  * is never more than 2 seconds old.
1045  *
1046  * Note that the cached copy in the PF PTP structure is always updated, even
1047  * if we can't update the copy in the Rx rings.
1048  *
1049  * Return:
1050  * * 0 - OK, successfully updated
1051  * * -EAGAIN - PF was busy, need to reschedule the update
1052  */
ice_ptp_update_cached_phctime(struct ice_pf * pf)1053 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
1054 {
1055 	struct device *dev = ice_pf_to_dev(pf);
1056 	unsigned long update_before;
1057 	u64 systime;
1058 	int i;
1059 
1060 	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1061 	if (pf->ptp.cached_phc_time &&
1062 	    time_is_before_jiffies(update_before)) {
1063 		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1064 
1065 		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1066 			 jiffies_to_msecs(time_taken));
1067 		pf->ptp.late_cached_phc_updates++;
1068 	}
1069 
1070 	/* Read the current PHC time */
1071 	systime = ice_ptp_read_src_clk_reg(pf, NULL);
1072 
1073 	/* Update the cached PHC time stored in the PF structure */
1074 	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1075 	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1076 
1077 	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1078 		return -EAGAIN;
1079 
1080 	ice_for_each_vsi(pf, i) {
1081 		struct ice_vsi *vsi = pf->vsi[i];
1082 		int j;
1083 
1084 		if (!vsi)
1085 			continue;
1086 
1087 		if (vsi->type != ICE_VSI_PF)
1088 			continue;
1089 
1090 		ice_for_each_rxq(vsi, j) {
1091 			if (!vsi->rx_rings[j])
1092 				continue;
1093 			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1094 		}
1095 	}
1096 	clear_bit(ICE_CFG_BUSY, pf->state);
1097 
1098 	return 0;
1099 }
1100 
1101 /**
1102  * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1103  * @pf: Board specific private structure
1104  *
1105  * This function must be called when the cached PHC time is no longer valid,
1106  * such as after a time adjustment. It marks any currently outstanding Tx
1107  * timestamps as stale and updates the cached PHC time for both the PF and Rx
1108  * rings.
1109  *
1110  * If updating the PHC time cannot be done immediately, a warning message is
1111  * logged and the work item is scheduled immediately to minimize the window
1112  * with a wrong cached timestamp.
1113  */
ice_ptp_reset_cached_phctime(struct ice_pf * pf)1114 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1115 {
1116 	struct device *dev = ice_pf_to_dev(pf);
1117 	int err;
1118 
1119 	/* Update the cached PHC time immediately if possible, otherwise
1120 	 * schedule the work item to execute soon.
1121 	 */
1122 	err = ice_ptp_update_cached_phctime(pf);
1123 	if (err) {
1124 		/* If another thread is updating the Rx rings, we won't
1125 		 * properly reset them here. This could lead to reporting of
1126 		 * invalid timestamps, but there isn't much we can do.
1127 		 */
1128 		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1129 			 __func__);
1130 
1131 		/* Queue the work item to update the Rx rings when possible */
1132 		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1133 					   msecs_to_jiffies(10));
1134 	}
1135 
1136 	/* Mark any outstanding timestamps as stale, since they might have
1137 	 * been captured in hardware before the time update. This could lead
1138 	 * to us extending them with the wrong cached value resulting in
1139 	 * incorrect timestamp values.
1140 	 */
1141 	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1142 }
1143 
1144 /**
1145  * ice_ptp_write_init - Set PHC time to provided value
1146  * @pf: Board private structure
1147  * @ts: timespec structure that holds the new time value
1148  *
1149  * Set the PHC time to the specified time provided in the timespec.
1150  */
ice_ptp_write_init(struct ice_pf * pf,struct timespec64 * ts)1151 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1152 {
1153 	u64 ns = timespec64_to_ns(ts);
1154 	struct ice_hw *hw = &pf->hw;
1155 
1156 	return ice_ptp_init_time(hw, ns);
1157 }
1158 
1159 /**
1160  * ice_ptp_write_adj - Adjust PHC clock time atomically
1161  * @pf: Board private structure
1162  * @adj: Adjustment in nanoseconds
1163  *
1164  * Perform an atomic adjustment of the PHC time by the specified number of
1165  * nanoseconds.
1166  */
ice_ptp_write_adj(struct ice_pf * pf,s32 adj)1167 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1168 {
1169 	struct ice_hw *hw = &pf->hw;
1170 
1171 	return ice_ptp_adj_clock(hw, adj);
1172 }
1173 
1174 /**
1175  * ice_base_incval - Get base timer increment value
1176  * @pf: Board private structure
1177  *
1178  * Look up the base timer increment value for this device. The base increment
1179  * value is used to define the nominal clock tick rate. This increment value
1180  * is programmed during device initialization. It is also used as the basis
1181  * for calculating adjustments using scaled_ppm.
1182  */
ice_base_incval(struct ice_pf * pf)1183 static u64 ice_base_incval(struct ice_pf *pf)
1184 {
1185 	struct ice_hw *hw = &pf->hw;
1186 	u64 incval;
1187 
1188 	incval = ice_get_base_incval(hw);
1189 
1190 	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1191 		incval);
1192 
1193 	return incval;
1194 }
1195 
1196 /**
1197  * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1198  * @port: PTP port for which Tx FIFO is checked
1199  */
ice_ptp_check_tx_fifo(struct ice_ptp_port * port)1200 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1201 {
1202 	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1203 	int quad = ICE_GET_QUAD_NUM(port->port_num);
1204 	struct ice_pf *pf;
1205 	struct ice_hw *hw;
1206 	u32 val, phy_sts;
1207 	int err;
1208 
1209 	pf = ptp_port_to_pf(port);
1210 	hw = &pf->hw;
1211 
1212 	if (port->tx_fifo_busy_cnt == FIFO_OK)
1213 		return 0;
1214 
1215 	/* need to read FIFO state */
1216 	if (offs == 0 || offs == 1)
1217 		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS,
1218 					     &val);
1219 	else
1220 		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS,
1221 					     &val);
1222 
1223 	if (err) {
1224 		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1225 			port->port_num, err);
1226 		return err;
1227 	}
1228 
1229 	if (offs & 0x1)
1230 		phy_sts = FIELD_GET(Q_REG_FIFO13_M, val);
1231 	else
1232 		phy_sts = FIELD_GET(Q_REG_FIFO02_M, val);
1233 
1234 	if (phy_sts & FIFO_EMPTY) {
1235 		port->tx_fifo_busy_cnt = FIFO_OK;
1236 		return 0;
1237 	}
1238 
1239 	port->tx_fifo_busy_cnt++;
1240 
1241 	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1242 		port->tx_fifo_busy_cnt, port->port_num);
1243 
1244 	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1245 		dev_dbg(ice_pf_to_dev(pf),
1246 			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1247 			port->port_num, quad);
1248 		ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
1249 		port->tx_fifo_busy_cnt = FIFO_OK;
1250 		return 0;
1251 	}
1252 
1253 	return -EAGAIN;
1254 }
1255 
1256 /**
1257  * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1258  * @work: Pointer to the kthread_work structure for this task
1259  *
1260  * Check whether hardware has completed measuring the Tx and Rx offset values
1261  * used to configure and enable vernier timestamp calibration.
1262  *
1263  * Once the offset in either direction is measured, configure the associated
1264  * registers with the calibrated offset values and enable timestamping. The Tx
1265  * and Rx directions are configured independently as soon as their associated
1266  * offsets are known.
1267  *
1268  * This function reschedules itself until both Tx and Rx calibration have
1269  * completed.
1270  */
ice_ptp_wait_for_offsets(struct kthread_work * work)1271 static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1272 {
1273 	struct ice_ptp_port *port;
1274 	struct ice_pf *pf;
1275 	struct ice_hw *hw;
1276 	int tx_err;
1277 	int rx_err;
1278 
1279 	port = container_of(work, struct ice_ptp_port, ov_work.work);
1280 	pf = ptp_port_to_pf(port);
1281 	hw = &pf->hw;
1282 
1283 	if (ice_is_reset_in_progress(pf->state)) {
1284 		/* wait for device driver to complete reset */
1285 		kthread_queue_delayed_work(pf->ptp.kworker,
1286 					   &port->ov_work,
1287 					   msecs_to_jiffies(100));
1288 		return;
1289 	}
1290 
1291 	tx_err = ice_ptp_check_tx_fifo(port);
1292 	if (!tx_err)
1293 		tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num);
1294 	rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num);
1295 	if (tx_err || rx_err) {
1296 		/* Tx and/or Rx offset not yet configured, try again later */
1297 		kthread_queue_delayed_work(pf->ptp.kworker,
1298 					   &port->ov_work,
1299 					   msecs_to_jiffies(100));
1300 		return;
1301 	}
1302 }
1303 
1304 /**
1305  * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1306  * @ptp_port: PTP port to stop
1307  */
1308 static int
ice_ptp_port_phy_stop(struct ice_ptp_port * ptp_port)1309 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1310 {
1311 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1312 	u8 port = ptp_port->port_num;
1313 	struct ice_hw *hw = &pf->hw;
1314 	int err;
1315 
1316 	mutex_lock(&ptp_port->ps_lock);
1317 
1318 	switch (hw->mac_type) {
1319 	case ICE_MAC_E810:
1320 	case ICE_MAC_E830:
1321 		err = 0;
1322 		break;
1323 	case ICE_MAC_GENERIC:
1324 		kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1325 
1326 		err = ice_stop_phy_timer_e82x(hw, port, true);
1327 		break;
1328 	case ICE_MAC_GENERIC_3K_E825:
1329 		err = ice_stop_phy_timer_eth56g(hw, port, true);
1330 		break;
1331 	default:
1332 		err = -ENODEV;
1333 	}
1334 	if (err && err != -EBUSY)
1335 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1336 			port, err);
1337 
1338 	mutex_unlock(&ptp_port->ps_lock);
1339 
1340 	return err;
1341 }
1342 
1343 /**
1344  * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1345  * @ptp_port: PTP port for which the PHY start is set
1346  *
1347  * Start the PHY timestamping block, and initiate Vernier timestamping
1348  * calibration. If timestamping cannot be calibrated (such as if link is down)
1349  * then disable the timestamping block instead.
1350  */
1351 static int
ice_ptp_port_phy_restart(struct ice_ptp_port * ptp_port)1352 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1353 {
1354 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1355 	u8 port = ptp_port->port_num;
1356 	struct ice_hw *hw = &pf->hw;
1357 	unsigned long flags;
1358 	int err;
1359 
1360 	if (!ptp_port->link_up)
1361 		return ice_ptp_port_phy_stop(ptp_port);
1362 
1363 	mutex_lock(&ptp_port->ps_lock);
1364 
1365 	switch (hw->mac_type) {
1366 	case ICE_MAC_E810:
1367 	case ICE_MAC_E830:
1368 		err = 0;
1369 		break;
1370 	case ICE_MAC_GENERIC:
1371 		/* Start the PHY timer in Vernier mode */
1372 		kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1373 
1374 		/* temporarily disable Tx timestamps while calibrating
1375 		 * PHY offset
1376 		 */
1377 		spin_lock_irqsave(&ptp_port->tx.lock, flags);
1378 		ptp_port->tx.calibrating = true;
1379 		spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1380 		ptp_port->tx_fifo_busy_cnt = 0;
1381 
1382 		/* Start the PHY timer in Vernier mode */
1383 		err = ice_start_phy_timer_e82x(hw, port);
1384 		if (err)
1385 			break;
1386 
1387 		/* Enable Tx timestamps right away */
1388 		spin_lock_irqsave(&ptp_port->tx.lock, flags);
1389 		ptp_port->tx.calibrating = false;
1390 		spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1391 
1392 		kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work,
1393 					   0);
1394 		break;
1395 	case ICE_MAC_GENERIC_3K_E825:
1396 		err = ice_start_phy_timer_eth56g(hw, port);
1397 		break;
1398 	default:
1399 		err = -ENODEV;
1400 	}
1401 
1402 	if (err)
1403 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1404 			port, err);
1405 
1406 	mutex_unlock(&ptp_port->ps_lock);
1407 
1408 	return err;
1409 }
1410 
1411 /**
1412  * ice_ptp_link_change - Reconfigure PTP after link status change
1413  * @pf: Board private structure
1414  * @linkup: Link is up or down
1415  */
ice_ptp_link_change(struct ice_pf * pf,bool linkup)1416 void ice_ptp_link_change(struct ice_pf *pf, bool linkup)
1417 {
1418 	struct ice_ptp_port *ptp_port;
1419 	struct ice_hw *hw = &pf->hw;
1420 
1421 	if (pf->ptp.state != ICE_PTP_READY)
1422 		return;
1423 
1424 	ptp_port = &pf->ptp.port;
1425 
1426 	/* Update cached link status for this port immediately */
1427 	ptp_port->link_up = linkup;
1428 
1429 	/* Skip HW writes if reset is in progress */
1430 	if (pf->hw.reset_ongoing)
1431 		return;
1432 
1433 	switch (hw->mac_type) {
1434 	case ICE_MAC_E810:
1435 	case ICE_MAC_E830:
1436 		/* Do not reconfigure E810 or E830 PHY */
1437 		return;
1438 	case ICE_MAC_GENERIC:
1439 	case ICE_MAC_GENERIC_3K_E825:
1440 		ice_ptp_port_phy_restart(ptp_port);
1441 		return;
1442 	default:
1443 		dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
1444 	}
1445 }
1446 
1447 /**
1448  * ice_ptp_cfg_phy_interrupt - Configure PHY interrupt settings
1449  * @pf: PF private structure
1450  * @ena: bool value to enable or disable interrupt
1451  * @threshold: Minimum number of packets at which intr is triggered
1452  *
1453  * Utility function to configure all the PHY interrupt settings, including
1454  * whether the PHY interrupt is enabled, and what threshold to use. Also
1455  * configures The E82X timestamp owner to react to interrupts from all PHYs.
1456  *
1457  * Return: 0 on success, -EOPNOTSUPP when PHY model incorrect, other error codes
1458  * when failed to configure PHY interrupt for E82X
1459  */
ice_ptp_cfg_phy_interrupt(struct ice_pf * pf,bool ena,u32 threshold)1460 static int ice_ptp_cfg_phy_interrupt(struct ice_pf *pf, bool ena, u32 threshold)
1461 {
1462 	struct device *dev = ice_pf_to_dev(pf);
1463 	struct ice_hw *hw = &pf->hw;
1464 
1465 	ice_ptp_reset_ts_memory(hw);
1466 
1467 	switch (hw->mac_type) {
1468 	case ICE_MAC_E810:
1469 	case ICE_MAC_E830:
1470 		return 0;
1471 	case ICE_MAC_GENERIC: {
1472 		int quad;
1473 
1474 		for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports);
1475 		     quad++) {
1476 			int err;
1477 
1478 			err = ice_phy_cfg_intr_e82x(hw, quad, ena, threshold);
1479 			if (err) {
1480 				dev_err(dev, "Failed to configure PHY interrupt for quad %d, err %d\n",
1481 					quad, err);
1482 				return err;
1483 			}
1484 		}
1485 
1486 		return 0;
1487 	}
1488 	case ICE_MAC_GENERIC_3K_E825: {
1489 		int port;
1490 
1491 		for (port = 0; port < hw->ptp.num_lports; port++) {
1492 			int err;
1493 
1494 			err = ice_phy_cfg_intr_eth56g(hw, port, ena, threshold);
1495 			if (err) {
1496 				dev_err(dev, "Failed to configure PHY interrupt for port %d, err %d\n",
1497 					port, err);
1498 				return err;
1499 			}
1500 		}
1501 
1502 		return 0;
1503 	}
1504 	case ICE_MAC_UNKNOWN:
1505 	default:
1506 		return -EOPNOTSUPP;
1507 	}
1508 }
1509 
1510 /**
1511  * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1512  * @pf: Board private structure
1513  */
ice_ptp_reset_phy_timestamping(struct ice_pf * pf)1514 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1515 {
1516 	ice_ptp_port_phy_restart(&pf->ptp.port);
1517 }
1518 
1519 /**
1520  * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
1521  * @pf: Board private structure
1522  */
ice_ptp_restart_all_phy(struct ice_pf * pf)1523 static void ice_ptp_restart_all_phy(struct ice_pf *pf)
1524 {
1525 	struct list_head *entry;
1526 
1527 	list_for_each(entry, &pf->adapter->ports.ports) {
1528 		struct ice_ptp_port *port = list_entry(entry,
1529 						       struct ice_ptp_port,
1530 						       list_node);
1531 
1532 		if (port->link_up)
1533 			ice_ptp_port_phy_restart(port);
1534 	}
1535 }
1536 
1537 /**
1538  * ice_ptp_adjfine - Adjust clock increment rate
1539  * @info: the driver's PTP info structure
1540  * @scaled_ppm: Parts per million with 16-bit fractional field
1541  *
1542  * Adjust the frequency of the clock by the indicated scaled ppm from the
1543  * base frequency.
1544  */
ice_ptp_adjfine(struct ptp_clock_info * info,long scaled_ppm)1545 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1546 {
1547 	struct ice_pf *pf = ptp_info_to_pf(info);
1548 	struct ice_hw *hw = &pf->hw;
1549 	u64 incval;
1550 	int err;
1551 
1552 	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1553 	err = ice_ptp_write_incval_locked(hw, incval);
1554 	if (err) {
1555 		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1556 			err);
1557 		return -EIO;
1558 	}
1559 
1560 	return 0;
1561 }
1562 
1563 /**
1564  * ice_ptp_extts_event - Process PTP external clock event
1565  * @pf: Board private structure
1566  */
ice_ptp_extts_event(struct ice_pf * pf)1567 void ice_ptp_extts_event(struct ice_pf *pf)
1568 {
1569 	struct ptp_clock_event event;
1570 	struct ice_hw *hw = &pf->hw;
1571 	u8 chan, tmr_idx;
1572 	u32 hi, lo;
1573 
1574 	/* Don't process timestamp events if PTP is not ready */
1575 	if (pf->ptp.state != ICE_PTP_READY)
1576 		return;
1577 
1578 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1579 	/* Event time is captured by one of the two matched registers
1580 	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1581 	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1582 	 * Event is defined in GLTSYN_EVNT_0 register
1583 	 */
1584 	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1585 		int pin_desc_idx;
1586 
1587 		/* Check if channel is enabled */
1588 		if (!(pf->ptp.ext_ts_irq & (1 << chan)))
1589 			continue;
1590 
1591 		lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1592 		hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1593 		event.timestamp = (u64)hi << 32 | lo;
1594 
1595 		/* Add delay compensation */
1596 		pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_EXTTS, chan);
1597 		if (pin_desc_idx >= 0) {
1598 			const struct ice_ptp_pin_desc *desc;
1599 
1600 			desc = &pf->ptp.ice_pin_desc[pin_desc_idx];
1601 			event.timestamp -= desc->delay[0];
1602 		}
1603 
1604 		event.type = PTP_CLOCK_EXTTS;
1605 		event.index = chan;
1606 		pf->ptp.ext_ts_irq &= ~(1 << chan);
1607 		ptp_clock_event(pf->ptp.clock, &event);
1608 	}
1609 }
1610 
1611 /**
1612  * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1613  * @pf: Board private structure
1614  * @rq: External timestamp request
1615  * @on: Enable/disable flag
1616  *
1617  * Configure an external timestamp event on the requested channel.
1618  *
1619  * Return: 0 on success, negative error code otherwise
1620  */
ice_ptp_cfg_extts(struct ice_pf * pf,struct ptp_extts_request * rq,int on)1621 static int ice_ptp_cfg_extts(struct ice_pf *pf, struct ptp_extts_request *rq,
1622 			     int on)
1623 {
1624 	u32 aux_reg, gpio_reg, irq_reg;
1625 	struct ice_hw *hw = &pf->hw;
1626 	unsigned int chan, gpio_pin;
1627 	int pin_desc_idx;
1628 	u8 tmr_idx;
1629 
1630 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1631 	chan = rq->index;
1632 
1633 	pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_EXTTS, chan);
1634 	if (pin_desc_idx < 0)
1635 		return -EIO;
1636 
1637 	gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[0];
1638 	irq_reg = rd32(hw, PFINT_OICR_ENA);
1639 
1640 	if (on) {
1641 		/* Enable the interrupt */
1642 		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1643 		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1644 
1645 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1646 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1647 
1648 		/* set event level to requested edge */
1649 		if (rq->flags & PTP_FALLING_EDGE)
1650 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1651 		if (rq->flags & PTP_RISING_EDGE)
1652 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1653 
1654 		/* Write GPIO CTL reg.
1655 		 * 0x1 is input sampled by EVENT register(channel)
1656 		 * + num_in_channels * tmr_idx
1657 		 */
1658 		gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M,
1659 				      1 + chan + (tmr_idx * 3));
1660 	} else {
1661 		bool last_enabled = true;
1662 
1663 		/* clear the values we set to reset defaults */
1664 		aux_reg = 0;
1665 		gpio_reg = 0;
1666 
1667 		for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts; i++)
1668 			if ((pf->ptp.extts_rqs[i].flags &
1669 			     PTP_ENABLE_FEATURE) &&
1670 			    i != chan) {
1671 				last_enabled = false;
1672 			}
1673 
1674 		if (last_enabled)
1675 			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1676 	}
1677 
1678 	wr32(hw, PFINT_OICR_ENA, irq_reg);
1679 	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1680 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1681 
1682 	return 0;
1683 }
1684 
1685 /**
1686  * ice_ptp_disable_all_extts - Disable all EXTTS channels
1687  * @pf: Board private structure
1688  */
ice_ptp_disable_all_extts(struct ice_pf * pf)1689 static void ice_ptp_disable_all_extts(struct ice_pf *pf)
1690 {
1691 	for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++)
1692 		if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE)
1693 			ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i],
1694 					  false);
1695 
1696 	synchronize_irq(pf->oicr_irq.virq);
1697 }
1698 
1699 /**
1700  * ice_ptp_enable_all_extts - Enable all EXTTS channels
1701  * @pf: Board private structure
1702  *
1703  * Called during reset to restore user configuration.
1704  */
ice_ptp_enable_all_extts(struct ice_pf * pf)1705 static void ice_ptp_enable_all_extts(struct ice_pf *pf)
1706 {
1707 	for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++)
1708 		if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE)
1709 			ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i],
1710 					  true);
1711 }
1712 
1713 /**
1714  * ice_ptp_write_perout - Write periodic wave parameters to HW
1715  * @hw: pointer to the HW struct
1716  * @chan: target channel
1717  * @gpio_pin: target GPIO pin
1718  * @start: target time to start periodic output
1719  * @period: target period
1720  *
1721  * Return: 0 on success, negative error code otherwise
1722  */
ice_ptp_write_perout(struct ice_hw * hw,unsigned int chan,unsigned int gpio_pin,u64 start,u64 period)1723 static int ice_ptp_write_perout(struct ice_hw *hw, unsigned int chan,
1724 				unsigned int gpio_pin, u64 start, u64 period)
1725 {
1726 
1727 	u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1728 	u32 val = 0;
1729 
1730 	/* 0. Reset mode & out_en in AUX_OUT */
1731 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1732 
1733 	if (hw->mac_type == ICE_MAC_GENERIC_3K_E825) {
1734 		int err;
1735 
1736 		/* Enable/disable CGU 1PPS output for E825C */
1737 		err = ice_cgu_cfg_pps_out(hw, !!period);
1738 		if (err)
1739 			return err;
1740 	}
1741 
1742 	/* 1. Write perout with half of required period value.
1743 	 * HW toggles output when source clock hits the TGT and then adds
1744 	 * GLTSYN_CLKO value to the target, so it ends up with 50% duty cycle.
1745 	 */
1746 	period >>= 1;
1747 
1748 	/* For proper operation, GLTSYN_CLKO must be larger than clock tick and
1749 	 * period has to fit in 32 bit register.
1750 	 */
1751 #define MIN_PULSE 3
1752 	if (!!period && (period <= MIN_PULSE || period > U32_MAX)) {
1753 		dev_err(ice_hw_to_dev(hw), "CLK period ticks must be >= %d && <= 2^32",
1754 			MIN_PULSE);
1755 		return -EIO;
1756 	}
1757 
1758 	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1759 
1760 	/* 2. Write TARGET time */
1761 	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start));
1762 	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start));
1763 
1764 	/* 3. Write AUX_OUT register */
1765 	if (!!period)
1766 		val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1767 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1768 
1769 	/* 4. write GPIO CTL reg */
1770 	val = GLGEN_GPIO_CTL_PIN_DIR_M;
1771 	if (!!period)
1772 		val |= FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M,
1773 				  8 + chan + (tmr_idx * 4));
1774 
1775 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1776 	ice_flush(hw);
1777 
1778 	return 0;
1779 }
1780 
1781 /**
1782  * ice_ptp_cfg_perout - Configure clock to generate periodic wave
1783  * @pf: Board private structure
1784  * @rq: Periodic output request
1785  * @on: Enable/disable flag
1786  *
1787  * Configure the internal clock generator modules to generate the clock wave of
1788  * specified period.
1789  *
1790  * Return: 0 on success, negative error code otherwise
1791  */
ice_ptp_cfg_perout(struct ice_pf * pf,struct ptp_perout_request * rq,int on)1792 static int ice_ptp_cfg_perout(struct ice_pf *pf, struct ptp_perout_request *rq,
1793 			      int on)
1794 {
1795 	unsigned int gpio_pin, prop_delay_ns;
1796 	u64 clk, period, start, phase;
1797 	struct ice_hw *hw = &pf->hw;
1798 	int pin_desc_idx;
1799 
1800 	pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_PEROUT, rq->index);
1801 	if (pin_desc_idx < 0)
1802 		return -EIO;
1803 
1804 	gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[1];
1805 	prop_delay_ns = pf->ptp.ice_pin_desc[pin_desc_idx].delay[1];
1806 	period = rq->period.sec * NSEC_PER_SEC + rq->period.nsec;
1807 
1808 	/* If we're disabling the output or period is 0, clear out CLKO and TGT
1809 	 * and keep output level low.
1810 	 */
1811 	if (!on || !period)
1812 		return ice_ptp_write_perout(hw, rq->index, gpio_pin, 0, 0);
1813 
1814 	if (strncmp(pf->ptp.pin_desc[pin_desc_idx].name, "1PPS", 64) == 0 &&
1815 	    period != NSEC_PER_SEC && hw->mac_type == ICE_MAC_GENERIC) {
1816 		dev_err(ice_pf_to_dev(pf), "1PPS pin supports only 1 s period\n");
1817 		return -EOPNOTSUPP;
1818 	}
1819 
1820 	if (period & 0x1) {
1821 		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1822 		return -EIO;
1823 	}
1824 
1825 	start = rq->start.sec * NSEC_PER_SEC + rq->start.nsec;
1826 
1827 	/* If PTP_PEROUT_PHASE is set, rq has phase instead of start time */
1828 	if (rq->flags & PTP_PEROUT_PHASE)
1829 		phase = start;
1830 	else
1831 		div64_u64_rem(start, period, &phase);
1832 
1833 	/* If we have only phase or start time is in the past, start the timer
1834 	 * at the next multiple of period, maintaining phase at least 0.5 second
1835 	 * from now, so we have time to write it to HW.
1836 	 */
1837 	clk = ice_ptp_read_src_clk_reg(pf, NULL) + NSEC_PER_MSEC * 500;
1838 	if (rq->flags & PTP_PEROUT_PHASE || start <= clk - prop_delay_ns)
1839 		start = div64_u64(clk + period - 1, period) * period + phase;
1840 
1841 	/* Compensate for propagation delay from the generator to the pin. */
1842 	start -= prop_delay_ns;
1843 
1844 	return ice_ptp_write_perout(hw, rq->index, gpio_pin, start, period);
1845 }
1846 
1847 /**
1848  * ice_ptp_disable_all_perout - Disable all currently configured outputs
1849  * @pf: Board private structure
1850  *
1851  * Disable all currently configured clock outputs. This is necessary before
1852  * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_perout to
1853  * re-enable the clocks again.
1854  */
ice_ptp_disable_all_perout(struct ice_pf * pf)1855 static void ice_ptp_disable_all_perout(struct ice_pf *pf)
1856 {
1857 	for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++)
1858 		if (pf->ptp.perout_rqs[i].period.sec ||
1859 		    pf->ptp.perout_rqs[i].period.nsec)
1860 			ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i],
1861 					   false);
1862 }
1863 
1864 /**
1865  * ice_ptp_enable_all_perout - Enable all configured periodic clock outputs
1866  * @pf: Board private structure
1867  *
1868  * Enable all currently configured clock outputs. Use this after
1869  * ice_ptp_disable_all_perout to reconfigure the output signals according to
1870  * their configuration.
1871  */
ice_ptp_enable_all_perout(struct ice_pf * pf)1872 static void ice_ptp_enable_all_perout(struct ice_pf *pf)
1873 {
1874 	for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++)
1875 		if (pf->ptp.perout_rqs[i].period.sec ||
1876 		    pf->ptp.perout_rqs[i].period.nsec)
1877 			ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i],
1878 					   true);
1879 }
1880 
1881 /**
1882  * ice_ptp_disable_shared_pin - Disable enabled pin that shares GPIO
1883  * @pf: Board private structure
1884  * @pin: Pin index
1885  * @func: Assigned function
1886  *
1887  * Return: 0 on success, negative error code otherwise
1888  */
ice_ptp_disable_shared_pin(struct ice_pf * pf,unsigned int pin,enum ptp_pin_function func)1889 static int ice_ptp_disable_shared_pin(struct ice_pf *pf, unsigned int pin,
1890 				      enum ptp_pin_function func)
1891 {
1892 	unsigned int gpio_pin;
1893 
1894 	switch (func) {
1895 	case PTP_PF_PEROUT:
1896 		gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[1];
1897 		break;
1898 	case PTP_PF_EXTTS:
1899 		gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[0];
1900 		break;
1901 	default:
1902 		return -EOPNOTSUPP;
1903 	}
1904 
1905 	for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) {
1906 		struct ptp_pin_desc *pin_desc = &pf->ptp.pin_desc[i];
1907 		unsigned int chan = pin_desc->chan;
1908 
1909 		/* Skip pin idx from the request */
1910 		if (i == pin)
1911 			continue;
1912 
1913 		if (pin_desc->func == PTP_PF_PEROUT &&
1914 		    pf->ptp.ice_pin_desc[i].gpio[1] == gpio_pin) {
1915 			pf->ptp.perout_rqs[chan].period.sec = 0;
1916 			pf->ptp.perout_rqs[chan].period.nsec = 0;
1917 			pin_desc->func = PTP_PF_NONE;
1918 			pin_desc->chan = 0;
1919 			dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared output GPIO pin %u\n",
1920 				i, gpio_pin);
1921 			return ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[chan],
1922 						  false);
1923 		} else if (pf->ptp.pin_desc->func == PTP_PF_EXTTS &&
1924 			   pf->ptp.ice_pin_desc[i].gpio[0] == gpio_pin) {
1925 			pf->ptp.extts_rqs[chan].flags &= ~PTP_ENABLE_FEATURE;
1926 			pin_desc->func = PTP_PF_NONE;
1927 			pin_desc->chan = 0;
1928 			dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared input GPIO pin %u\n",
1929 				i, gpio_pin);
1930 			return ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[chan],
1931 						 false);
1932 		}
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 /**
1939  * ice_verify_pin - verify if pin supports requested pin function
1940  * @info: the driver's PTP info structure
1941  * @pin: Pin index
1942  * @func: Assigned function
1943  * @chan: Assigned channel
1944  *
1945  * Return: 0 on success, -EOPNOTSUPP when function is not supported.
1946  */
ice_verify_pin(struct ptp_clock_info * info,unsigned int pin,enum ptp_pin_function func,unsigned int chan)1947 static int ice_verify_pin(struct ptp_clock_info *info, unsigned int pin,
1948 			  enum ptp_pin_function func, unsigned int chan)
1949 {
1950 	struct ice_pf *pf = ptp_info_to_pf(info);
1951 	const struct ice_ptp_pin_desc *pin_desc;
1952 
1953 	pin_desc = &pf->ptp.ice_pin_desc[pin];
1954 
1955 	/* Is assigned function allowed? */
1956 	switch (func) {
1957 	case PTP_PF_EXTTS:
1958 		if (pin_desc->gpio[0] < 0)
1959 			return -EOPNOTSUPP;
1960 		break;
1961 	case PTP_PF_PEROUT:
1962 		if (pin_desc->gpio[1] < 0)
1963 			return -EOPNOTSUPP;
1964 		break;
1965 	case PTP_PF_NONE:
1966 		break;
1967 	case PTP_PF_PHYSYNC:
1968 	default:
1969 		return -EOPNOTSUPP;
1970 	}
1971 
1972 	/* On adapters with SMA_CTRL disable other pins that share same GPIO */
1973 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
1974 		ice_ptp_disable_shared_pin(pf, pin, func);
1975 		pf->ptp.pin_desc[pin].func = func;
1976 		pf->ptp.pin_desc[pin].chan = chan;
1977 		return ice_ptp_set_sma_cfg(pf);
1978 	}
1979 
1980 	return 0;
1981 }
1982 
1983 /**
1984  * ice_ptp_gpio_enable - Enable/disable ancillary features of PHC
1985  * @info: The driver's PTP info structure
1986  * @rq: The requested feature to change
1987  * @on: Enable/disable flag
1988  *
1989  * Return: 0 on success, negative error code otherwise
1990  */
ice_ptp_gpio_enable(struct ptp_clock_info * info,struct ptp_clock_request * rq,int on)1991 static int ice_ptp_gpio_enable(struct ptp_clock_info *info,
1992 			       struct ptp_clock_request *rq, int on)
1993 {
1994 	struct ice_pf *pf = ptp_info_to_pf(info);
1995 	int err;
1996 
1997 	switch (rq->type) {
1998 	case PTP_CLK_REQ_PEROUT:
1999 	{
2000 		struct ptp_perout_request *cached =
2001 			&pf->ptp.perout_rqs[rq->perout.index];
2002 
2003 		err = ice_ptp_cfg_perout(pf, &rq->perout, on);
2004 		if (!err) {
2005 			*cached = rq->perout;
2006 		} else {
2007 			cached->period.sec = 0;
2008 			cached->period.nsec = 0;
2009 		}
2010 		return err;
2011 	}
2012 	case PTP_CLK_REQ_EXTTS:
2013 	{
2014 		struct ptp_extts_request *cached =
2015 			&pf->ptp.extts_rqs[rq->extts.index];
2016 
2017 		err = ice_ptp_cfg_extts(pf, &rq->extts, on);
2018 		if (!err)
2019 			*cached = rq->extts;
2020 		else
2021 			cached->flags &= ~PTP_ENABLE_FEATURE;
2022 		return err;
2023 	}
2024 	default:
2025 		return -EOPNOTSUPP;
2026 	}
2027 }
2028 
2029 /**
2030  * ice_ptp_gettimex64 - Get the time of the clock
2031  * @info: the driver's PTP info structure
2032  * @ts: timespec64 structure to hold the current time value
2033  * @sts: Optional parameter for holding a pair of system timestamps from
2034  *       the system clock. Will be ignored if NULL is given.
2035  *
2036  * Read the device clock and return the correct value on ns, after converting it
2037  * into a timespec struct.
2038  */
2039 static int
ice_ptp_gettimex64(struct ptp_clock_info * info,struct timespec64 * ts,struct ptp_system_timestamp * sts)2040 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
2041 		   struct ptp_system_timestamp *sts)
2042 {
2043 	struct ice_pf *pf = ptp_info_to_pf(info);
2044 	u64 time_ns;
2045 
2046 	time_ns = ice_ptp_read_src_clk_reg(pf, sts);
2047 	*ts = ns_to_timespec64(time_ns);
2048 	return 0;
2049 }
2050 
2051 /**
2052  * ice_ptp_settime64 - Set the time of the clock
2053  * @info: the driver's PTP info structure
2054  * @ts: timespec64 structure that holds the new time value
2055  *
2056  * Set the device clock to the user input value. The conversion from timespec
2057  * to ns happens in the write function.
2058  */
2059 static int
ice_ptp_settime64(struct ptp_clock_info * info,const struct timespec64 * ts)2060 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
2061 {
2062 	struct ice_pf *pf = ptp_info_to_pf(info);
2063 	struct timespec64 ts64 = *ts;
2064 	struct ice_hw *hw = &pf->hw;
2065 	int err;
2066 
2067 	/* For Vernier mode on E82X, we need to recalibrate after new settime.
2068 	 * Start with marking timestamps as invalid.
2069 	 */
2070 	if (hw->mac_type == ICE_MAC_GENERIC) {
2071 		err = ice_ptp_clear_phy_offset_ready_e82x(hw);
2072 		if (err)
2073 			dev_warn(ice_pf_to_dev(pf), "Failed to mark timestamps as invalid before settime\n");
2074 	}
2075 
2076 	if (!ice_ptp_lock(hw)) {
2077 		err = -EBUSY;
2078 		goto exit;
2079 	}
2080 
2081 	/* Disable periodic outputs */
2082 	ice_ptp_disable_all_perout(pf);
2083 
2084 	err = ice_ptp_write_init(pf, &ts64);
2085 	ice_ptp_unlock(hw);
2086 
2087 	if (!err)
2088 		ice_ptp_reset_cached_phctime(pf);
2089 
2090 	/* Reenable periodic outputs */
2091 	ice_ptp_enable_all_perout(pf);
2092 
2093 	/* Recalibrate and re-enable timestamp blocks for E822/E823 */
2094 	if (hw->mac_type == ICE_MAC_GENERIC)
2095 		ice_ptp_restart_all_phy(pf);
2096 exit:
2097 	if (err) {
2098 		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
2099 		return err;
2100 	}
2101 
2102 	return 0;
2103 }
2104 
2105 /**
2106  * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
2107  * @info: the driver's PTP info structure
2108  * @delta: Offset in nanoseconds to adjust the time by
2109  */
ice_ptp_adjtime_nonatomic(struct ptp_clock_info * info,s64 delta)2110 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
2111 {
2112 	struct timespec64 now, then;
2113 	int ret;
2114 
2115 	then = ns_to_timespec64(delta);
2116 	ret = ice_ptp_gettimex64(info, &now, NULL);
2117 	if (ret)
2118 		return ret;
2119 	now = timespec64_add(now, then);
2120 
2121 	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
2122 }
2123 
2124 /**
2125  * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
2126  * @info: the driver's PTP info structure
2127  * @delta: Offset in nanoseconds to adjust the time by
2128  */
ice_ptp_adjtime(struct ptp_clock_info * info,s64 delta)2129 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
2130 {
2131 	struct ice_pf *pf = ptp_info_to_pf(info);
2132 	struct ice_hw *hw = &pf->hw;
2133 	struct device *dev;
2134 	int err;
2135 
2136 	dev = ice_pf_to_dev(pf);
2137 
2138 	/* Hardware only supports atomic adjustments using signed 32-bit
2139 	 * integers. For any adjustment outside this range, perform
2140 	 * a non-atomic get->adjust->set flow.
2141 	 */
2142 	if (delta > S32_MAX || delta < S32_MIN) {
2143 		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
2144 		return ice_ptp_adjtime_nonatomic(info, delta);
2145 	}
2146 
2147 	if (!ice_ptp_lock(hw)) {
2148 		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
2149 		return -EBUSY;
2150 	}
2151 
2152 	/* Disable periodic outputs */
2153 	ice_ptp_disable_all_perout(pf);
2154 
2155 	err = ice_ptp_write_adj(pf, delta);
2156 
2157 	/* Reenable periodic outputs */
2158 	ice_ptp_enable_all_perout(pf);
2159 
2160 	ice_ptp_unlock(hw);
2161 
2162 	if (err) {
2163 		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
2164 		return err;
2165 	}
2166 
2167 	ice_ptp_reset_cached_phctime(pf);
2168 
2169 	return 0;
2170 }
2171 
2172 /**
2173  * struct ice_crosststamp_cfg - Device cross timestamp configuration
2174  * @lock_reg: The hardware semaphore lock to use
2175  * @lock_busy: Bit in the semaphore lock indicating the lock is busy
2176  * @ctl_reg: The hardware register to request cross timestamp
2177  * @ctl_active: Bit in the control register to request cross timestamp
2178  * @art_time_l: Lower 32-bits of ART system time
2179  * @art_time_h: Upper 32-bits of ART system time
2180  * @dev_time_l: Lower 32-bits of device time (per timer index)
2181  * @dev_time_h: Upper 32-bits of device time (per timer index)
2182  */
2183 struct ice_crosststamp_cfg {
2184 	/* HW semaphore lock register */
2185 	u32 lock_reg;
2186 	u32 lock_busy;
2187 
2188 	/* Capture control register */
2189 	u32 ctl_reg;
2190 	u32 ctl_active;
2191 
2192 	/* Time storage */
2193 	u32 art_time_l;
2194 	u32 art_time_h;
2195 	u32 dev_time_l[2];
2196 	u32 dev_time_h[2];
2197 };
2198 
2199 static const struct ice_crosststamp_cfg ice_crosststamp_cfg_e82x = {
2200 	.lock_reg = PFHH_SEM,
2201 	.lock_busy = PFHH_SEM_BUSY_M,
2202 	.ctl_reg = GLHH_ART_CTL,
2203 	.ctl_active = GLHH_ART_CTL_ACTIVE_M,
2204 	.art_time_l = GLHH_ART_TIME_L,
2205 	.art_time_h = GLHH_ART_TIME_H,
2206 	.dev_time_l[0] = GLTSYN_HHTIME_L(0),
2207 	.dev_time_h[0] = GLTSYN_HHTIME_H(0),
2208 	.dev_time_l[1] = GLTSYN_HHTIME_L(1),
2209 	.dev_time_h[1] = GLTSYN_HHTIME_H(1),
2210 };
2211 
2212 #ifdef CONFIG_ICE_HWTS
2213 static const struct ice_crosststamp_cfg ice_crosststamp_cfg_e830 = {
2214 	.lock_reg = E830_PFPTM_SEM,
2215 	.lock_busy = E830_PFPTM_SEM_BUSY_M,
2216 	.ctl_reg = E830_GLPTM_ART_CTL,
2217 	.ctl_active = E830_GLPTM_ART_CTL_ACTIVE_M,
2218 	.art_time_l = E830_GLPTM_ART_TIME_L,
2219 	.art_time_h = E830_GLPTM_ART_TIME_H,
2220 	.dev_time_l[0] = E830_GLTSYN_PTMTIME_L(0),
2221 	.dev_time_h[0] = E830_GLTSYN_PTMTIME_H(0),
2222 	.dev_time_l[1] = E830_GLTSYN_PTMTIME_L(1),
2223 	.dev_time_h[1] = E830_GLTSYN_PTMTIME_H(1),
2224 };
2225 
2226 #endif /* CONFIG_ICE_HWTS */
2227 /**
2228  * struct ice_crosststamp_ctx - Device cross timestamp context
2229  * @snapshot: snapshot of system clocks for historic interpolation
2230  * @pf: pointer to the PF private structure
2231  * @cfg: pointer to hardware configuration for cross timestamp
2232  */
2233 struct ice_crosststamp_ctx {
2234 	struct system_time_snapshot snapshot;
2235 	struct ice_pf *pf;
2236 	const struct ice_crosststamp_cfg *cfg;
2237 };
2238 
2239 /**
2240  * ice_capture_crosststamp - Capture a device/system cross timestamp
2241  * @device: Current device time
2242  * @system: System counter value read synchronously with device time
2243  * @__ctx: Context passed from ice_ptp_getcrosststamp
2244  *
2245  * Read device and system (ART) clock simultaneously and return the corrected
2246  * clock values in ns.
2247  *
2248  * Return: zero on success, or a negative error code on failure.
2249  */
ice_capture_crosststamp(ktime_t * device,struct system_counterval_t * system,void * __ctx)2250 static int ice_capture_crosststamp(ktime_t *device,
2251 				   struct system_counterval_t *system,
2252 				   void *__ctx)
2253 {
2254 	struct ice_crosststamp_ctx *ctx = __ctx;
2255 	const struct ice_crosststamp_cfg *cfg;
2256 	u32 lock, ctl, ts_lo, ts_hi, tmr_idx;
2257 	struct ice_pf *pf;
2258 	struct ice_hw *hw;
2259 	int err;
2260 	u64 ts;
2261 
2262 	cfg = ctx->cfg;
2263 	pf = ctx->pf;
2264 	hw = &pf->hw;
2265 
2266 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
2267 	if (tmr_idx > 1)
2268 		return -EINVAL;
2269 
2270 	/* Poll until we obtain the cross-timestamp hardware semaphore */
2271 	err = rd32_poll_timeout(hw, cfg->lock_reg, lock,
2272 				!(lock & cfg->lock_busy),
2273 				10 * USEC_PER_MSEC, 50 * USEC_PER_MSEC);
2274 	if (err) {
2275 		dev_err(ice_pf_to_dev(pf), "PTP failed to get cross timestamp lock\n");
2276 		return -EBUSY;
2277 	}
2278 
2279 	/* Snapshot system time for historic interpolation */
2280 	ktime_get_snapshot(&ctx->snapshot);
2281 
2282 	/* Program cmd to master timer */
2283 	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2284 
2285 	/* Start the ART and device clock sync sequence */
2286 	ctl = rd32(hw, cfg->ctl_reg);
2287 	ctl |= cfg->ctl_active;
2288 	wr32(hw, cfg->ctl_reg, ctl);
2289 
2290 	/* Poll until hardware completes the capture */
2291 	err = rd32_poll_timeout(hw, cfg->ctl_reg, ctl, !(ctl & cfg->ctl_active),
2292 				5, 20 * USEC_PER_MSEC);
2293 	if (err)
2294 		goto err_timeout;
2295 
2296 	/* Read ART system time */
2297 	ts_lo = rd32(hw, cfg->art_time_l);
2298 	ts_hi = rd32(hw, cfg->art_time_h);
2299 	ts = ((u64)ts_hi << 32) | ts_lo;
2300 	system->cycles = ts;
2301 	system->cs_id = CSID_X86_ART;
2302 	system->use_nsecs = true;
2303 
2304 	/* Read Device source clock time */
2305 	ts_lo = rd32(hw, cfg->dev_time_l[tmr_idx]);
2306 	ts_hi = rd32(hw, cfg->dev_time_h[tmr_idx]);
2307 	ts = ((u64)ts_hi << 32) | ts_lo;
2308 	*device = ns_to_ktime(ts);
2309 
2310 err_timeout:
2311 	/* Clear the master timer */
2312 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2313 
2314 	/* Release HW lock */
2315 	lock = rd32(hw, cfg->lock_reg);
2316 	lock &= ~cfg->lock_busy;
2317 	wr32(hw, cfg->lock_reg, lock);
2318 
2319 	return err;
2320 }
2321 
2322 /**
2323  * ice_ptp_getcrosststamp - Capture a device cross timestamp
2324  * @info: the driver's PTP info structure
2325  * @cts: The memory to fill the cross timestamp info
2326  *
2327  * Capture a cross timestamp between the ART and the device PTP hardware
2328  * clock. Fill the cross timestamp information and report it back to the
2329  * caller.
2330  *
2331  * In order to correctly correlate the ART timestamp back to the TSC time, the
2332  * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2333  *
2334  * Return: zero on success, or a negative error code on failure.
2335  */
ice_ptp_getcrosststamp(struct ptp_clock_info * info,struct system_device_crosststamp * cts)2336 static int ice_ptp_getcrosststamp(struct ptp_clock_info *info,
2337 				  struct system_device_crosststamp *cts)
2338 {
2339 	struct ice_pf *pf = ptp_info_to_pf(info);
2340 	struct ice_crosststamp_ctx ctx = {
2341 		.pf = pf,
2342 	};
2343 
2344 	switch (pf->hw.mac_type) {
2345 	case ICE_MAC_GENERIC:
2346 	case ICE_MAC_GENERIC_3K_E825:
2347 		ctx.cfg = &ice_crosststamp_cfg_e82x;
2348 		break;
2349 #ifdef CONFIG_ICE_HWTS
2350 	case ICE_MAC_E830:
2351 		ctx.cfg = &ice_crosststamp_cfg_e830;
2352 		break;
2353 #endif /* CONFIG_ICE_HWTS */
2354 	default:
2355 		return -EOPNOTSUPP;
2356 	}
2357 
2358 	return get_device_system_crosststamp(ice_capture_crosststamp, &ctx,
2359 					     &ctx.snapshot, cts);
2360 }
2361 
2362 /**
2363  * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2364  * @pf: Board private structure
2365  * @ifr: ioctl data
2366  *
2367  * Copy the timestamping config to user buffer
2368  */
ice_ptp_get_ts_config(struct ice_pf * pf,struct ifreq * ifr)2369 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2370 {
2371 	struct hwtstamp_config *config;
2372 
2373 	if (pf->ptp.state != ICE_PTP_READY)
2374 		return -EIO;
2375 
2376 	config = &pf->ptp.tstamp_config;
2377 
2378 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2379 		-EFAULT : 0;
2380 }
2381 
2382 /**
2383  * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2384  * @pf: Board private structure
2385  * @config: hwtstamp settings requested or saved
2386  */
2387 static int
ice_ptp_set_timestamp_mode(struct ice_pf * pf,struct hwtstamp_config * config)2388 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2389 {
2390 	switch (config->tx_type) {
2391 	case HWTSTAMP_TX_OFF:
2392 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
2393 		break;
2394 	case HWTSTAMP_TX_ON:
2395 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
2396 		break;
2397 	default:
2398 		return -ERANGE;
2399 	}
2400 
2401 	switch (config->rx_filter) {
2402 	case HWTSTAMP_FILTER_NONE:
2403 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2404 		break;
2405 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2406 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2407 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2408 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2409 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2410 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2411 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2412 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2413 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2414 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2415 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2416 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2417 	case HWTSTAMP_FILTER_NTP_ALL:
2418 	case HWTSTAMP_FILTER_ALL:
2419 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
2420 		break;
2421 	default:
2422 		return -ERANGE;
2423 	}
2424 
2425 	/* Immediately update the device timestamping mode */
2426 	ice_ptp_restore_timestamp_mode(pf);
2427 
2428 	return 0;
2429 }
2430 
2431 /**
2432  * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2433  * @pf: Board private structure
2434  * @ifr: ioctl data
2435  *
2436  * Get the user config and store it
2437  */
ice_ptp_set_ts_config(struct ice_pf * pf,struct ifreq * ifr)2438 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2439 {
2440 	struct hwtstamp_config config;
2441 	int err;
2442 
2443 	if (pf->ptp.state != ICE_PTP_READY)
2444 		return -EAGAIN;
2445 
2446 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2447 		return -EFAULT;
2448 
2449 	err = ice_ptp_set_timestamp_mode(pf, &config);
2450 	if (err)
2451 		return err;
2452 
2453 	/* Return the actual configuration set */
2454 	config = pf->ptp.tstamp_config;
2455 
2456 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2457 		-EFAULT : 0;
2458 }
2459 
2460 /**
2461  * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns
2462  * @rx_desc: Receive descriptor
2463  * @pkt_ctx: Packet context to get the cached time
2464  *
2465  * The driver receives a notification in the receive descriptor with timestamp.
2466  */
ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc * rx_desc,const struct ice_pkt_ctx * pkt_ctx)2467 u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
2468 			const struct ice_pkt_ctx *pkt_ctx)
2469 {
2470 	u64 ts_ns, cached_time;
2471 	u32 ts_high;
2472 
2473 	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2474 		return 0;
2475 
2476 	cached_time = READ_ONCE(pkt_ctx->cached_phctime);
2477 
2478 	/* Do not report a timestamp if we don't have a cached PHC time */
2479 	if (!cached_time)
2480 		return 0;
2481 
2482 	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2483 	 * PHC value, rather than accessing the PF. This also allows us to
2484 	 * simply pass the upper 32bits of nanoseconds directly. Calling
2485 	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2486 	 * bits itself.
2487 	 */
2488 	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2489 	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2490 
2491 	return ts_ns;
2492 }
2493 
2494 /**
2495  * ice_ptp_setup_pin_cfg - setup PTP pin_config structure
2496  * @pf: Board private structure
2497  */
ice_ptp_setup_pin_cfg(struct ice_pf * pf)2498 static void ice_ptp_setup_pin_cfg(struct ice_pf *pf)
2499 {
2500 	for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) {
2501 		const struct ice_ptp_pin_desc *desc = &pf->ptp.ice_pin_desc[i];
2502 		struct ptp_pin_desc *pin = &pf->ptp.pin_desc[i];
2503 		const char *name = NULL;
2504 
2505 		if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
2506 			name = ice_pin_names[desc->name_idx];
2507 		else if (desc->name_idx != GPIO_NA)
2508 			name = ice_pin_names_nvm[desc->name_idx];
2509 		if (name)
2510 			strscpy(pin->name, name, sizeof(pin->name));
2511 
2512 		pin->index = i;
2513 	}
2514 
2515 	pf->ptp.info.pin_config = pf->ptp.pin_desc;
2516 }
2517 
2518 /**
2519  * ice_ptp_disable_pins - Disable PTP pins
2520  * @pf: pointer to the PF structure
2521  *
2522  * Disable the OS access to the SMA pins. Called to clear out the OS
2523  * indications of pin support when we fail to setup the SMA control register.
2524  */
ice_ptp_disable_pins(struct ice_pf * pf)2525 static void ice_ptp_disable_pins(struct ice_pf *pf)
2526 {
2527 	struct ptp_clock_info *info = &pf->ptp.info;
2528 
2529 	dev_warn(ice_pf_to_dev(pf), "Failed to configure PTP pin control\n");
2530 
2531 	info->enable = NULL;
2532 	info->verify = NULL;
2533 	info->n_pins = 0;
2534 	info->n_ext_ts = 0;
2535 	info->n_per_out = 0;
2536 }
2537 
2538 /**
2539  * ice_ptp_parse_sdp_entries - update ice_ptp_pin_desc structure from NVM
2540  * @pf: pointer to the PF structure
2541  * @entries: SDP connection section from NVM
2542  * @num_entries: number of valid entries in sdp_entries
2543  * @pins: PTP pins array to update
2544  *
2545  * Return: 0 on success, negative error code otherwise.
2546  */
ice_ptp_parse_sdp_entries(struct ice_pf * pf,__le16 * entries,unsigned int num_entries,struct ice_ptp_pin_desc * pins)2547 static int ice_ptp_parse_sdp_entries(struct ice_pf *pf, __le16 *entries,
2548 				     unsigned int num_entries,
2549 				     struct ice_ptp_pin_desc *pins)
2550 {
2551 	unsigned int n_pins = 0;
2552 	unsigned int i;
2553 
2554 	/* Setup ice_pin_desc array */
2555 	for (i = 0; i < ICE_N_PINS_MAX; i++) {
2556 		pins[i].name_idx = -1;
2557 		pins[i].gpio[0] = -1;
2558 		pins[i].gpio[1] = -1;
2559 	}
2560 
2561 	for (i = 0; i < num_entries; i++) {
2562 		u16 entry = le16_to_cpu(entries[i]);
2563 		DECLARE_BITMAP(bitmap, GPIO_NA);
2564 		unsigned int bitmap_idx;
2565 		bool dir;
2566 		u16 gpio;
2567 
2568 		*bitmap = FIELD_GET(ICE_AQC_NVM_SDP_AC_PIN_M, entry);
2569 		dir = !!FIELD_GET(ICE_AQC_NVM_SDP_AC_DIR_M, entry);
2570 		gpio = FIELD_GET(ICE_AQC_NVM_SDP_AC_SDP_NUM_M, entry);
2571 		for_each_set_bit(bitmap_idx, bitmap, GPIO_NA + 1) {
2572 			unsigned int idx;
2573 
2574 			/* Check if entry's pin bit is valid */
2575 			if (bitmap_idx >= NUM_PTP_PINS_NVM &&
2576 			    bitmap_idx != GPIO_NA)
2577 				continue;
2578 
2579 			/* Check if pin already exists */
2580 			for (idx = 0; idx < ICE_N_PINS_MAX; idx++)
2581 				if (pins[idx].name_idx == bitmap_idx)
2582 					break;
2583 
2584 			if (idx == ICE_N_PINS_MAX) {
2585 				/* Pin not found, setup its entry and name */
2586 				idx = n_pins++;
2587 				pins[idx].name_idx = bitmap_idx;
2588 				if (bitmap_idx == GPIO_NA)
2589 					strscpy(pf->ptp.pin_desc[idx].name,
2590 						ice_pin_names[gpio],
2591 						sizeof(pf->ptp.pin_desc[idx]
2592 							       .name));
2593 			}
2594 
2595 			/* Setup in/out GPIO number */
2596 			pins[idx].gpio[dir] = gpio;
2597 		}
2598 	}
2599 
2600 	for (i = 0; i < n_pins; i++) {
2601 		dev_dbg(ice_pf_to_dev(pf),
2602 			"NVM pin entry[%d] : name_idx %d gpio_out %d gpio_in %d\n",
2603 			i, pins[i].name_idx, pins[i].gpio[1], pins[i].gpio[0]);
2604 	}
2605 
2606 	pf->ptp.info.n_pins = n_pins;
2607 	return 0;
2608 }
2609 
2610 /**
2611  * ice_ptp_set_funcs_e82x - Set specialized functions for E82X support
2612  * @pf: Board private structure
2613  *
2614  * Assign functions to the PTP capabilities structure for E82X devices.
2615  * Functions which operate across all device families should be set directly
2616  * in ice_ptp_set_caps. Only add functions here which are distinct for E82X
2617  * devices.
2618  */
ice_ptp_set_funcs_e82x(struct ice_pf * pf)2619 static void ice_ptp_set_funcs_e82x(struct ice_pf *pf)
2620 {
2621 	pf->ptp.info.getcrosststamp = ice_ptp_getcrosststamp;
2622 
2623 	if (pf->hw.mac_type == ICE_MAC_GENERIC_3K_E825) {
2624 		pf->ptp.ice_pin_desc = ice_pin_desc_e825c;
2625 		pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e825c);
2626 	} else {
2627 		pf->ptp.ice_pin_desc = ice_pin_desc_e82x;
2628 		pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e82x);
2629 	}
2630 	ice_ptp_setup_pin_cfg(pf);
2631 }
2632 
2633 /**
2634  * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2635  * @pf: Board private structure
2636  *
2637  * Assign functions to the PTP capabiltiies structure for E810 devices.
2638  * Functions which operate across all device families should be set directly
2639  * in ice_ptp_set_caps. Only add functions here which are distinct for E810
2640  * devices.
2641  */
ice_ptp_set_funcs_e810(struct ice_pf * pf)2642 static void ice_ptp_set_funcs_e810(struct ice_pf *pf)
2643 {
2644 	__le16 entries[ICE_AQC_NVM_SDP_AC_MAX_SIZE];
2645 	struct ice_ptp_pin_desc *desc = NULL;
2646 	struct ice_ptp *ptp = &pf->ptp;
2647 	unsigned int num_entries;
2648 	int err;
2649 
2650 	err = ice_ptp_read_sdp_ac(&pf->hw, entries, &num_entries);
2651 	if (err) {
2652 		/* SDP section does not exist in NVM or is corrupted */
2653 		if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2654 			ptp->ice_pin_desc = ice_pin_desc_e810_sma;
2655 			ptp->info.n_pins =
2656 				ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810_sma);
2657 		} else {
2658 			pf->ptp.ice_pin_desc = ice_pin_desc_e810;
2659 			pf->ptp.info.n_pins =
2660 				ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810);
2661 			err = 0;
2662 		}
2663 	} else {
2664 		desc = devm_kcalloc(ice_pf_to_dev(pf), ICE_N_PINS_MAX,
2665 				    sizeof(struct ice_ptp_pin_desc),
2666 				    GFP_KERNEL);
2667 		if (!desc)
2668 			goto err;
2669 
2670 		err = ice_ptp_parse_sdp_entries(pf, entries, num_entries, desc);
2671 		if (err)
2672 			goto err;
2673 
2674 		ptp->ice_pin_desc = (const struct ice_ptp_pin_desc *)desc;
2675 	}
2676 
2677 	ptp->info.pin_config = ptp->pin_desc;
2678 	ice_ptp_setup_pin_cfg(pf);
2679 
2680 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
2681 		err = ice_ptp_set_sma_cfg(pf);
2682 err:
2683 	if (err) {
2684 		devm_kfree(ice_pf_to_dev(pf), desc);
2685 		ice_ptp_disable_pins(pf);
2686 	}
2687 }
2688 
2689 /**
2690  * ice_ptp_set_funcs_e830 - Set specialized functions for E830 support
2691  * @pf: Board private structure
2692  *
2693  * Assign functions to the PTP capabiltiies structure for E830 devices.
2694  * Functions which operate across all device families should be set directly
2695  * in ice_ptp_set_caps. Only add functions here which are distinct for E830
2696  * devices.
2697  */
ice_ptp_set_funcs_e830(struct ice_pf * pf)2698 static void ice_ptp_set_funcs_e830(struct ice_pf *pf)
2699 {
2700 #ifdef CONFIG_ICE_HWTS
2701 	if (pcie_ptm_enabled(pf->pdev) && boot_cpu_has(X86_FEATURE_ART))
2702 		pf->ptp.info.getcrosststamp = ice_ptp_getcrosststamp;
2703 
2704 #endif /* CONFIG_ICE_HWTS */
2705 	/* Rest of the config is the same as base E810 */
2706 	pf->ptp.ice_pin_desc = ice_pin_desc_e810;
2707 	pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810);
2708 	ice_ptp_setup_pin_cfg(pf);
2709 }
2710 
2711 /**
2712  * ice_ptp_set_caps - Set PTP capabilities
2713  * @pf: Board private structure
2714  */
ice_ptp_set_caps(struct ice_pf * pf)2715 static void ice_ptp_set_caps(struct ice_pf *pf)
2716 {
2717 	struct ptp_clock_info *info = &pf->ptp.info;
2718 	struct device *dev = ice_pf_to_dev(pf);
2719 
2720 	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2721 		 dev_driver_string(dev), dev_name(dev));
2722 	info->owner = THIS_MODULE;
2723 	info->max_adj = 100000000;
2724 	info->adjtime = ice_ptp_adjtime;
2725 	info->adjfine = ice_ptp_adjfine;
2726 	info->gettimex64 = ice_ptp_gettimex64;
2727 	info->settime64 = ice_ptp_settime64;
2728 	info->n_per_out = GLTSYN_TGT_H_IDX_MAX;
2729 	info->n_ext_ts = GLTSYN_EVNT_H_IDX_MAX;
2730 	info->enable = ice_ptp_gpio_enable;
2731 	info->verify = ice_verify_pin;
2732 
2733 	info->supported_extts_flags = PTP_RISING_EDGE |
2734 				      PTP_FALLING_EDGE |
2735 				      PTP_STRICT_FLAGS;
2736 	info->supported_perout_flags = PTP_PEROUT_PHASE;
2737 
2738 	switch (pf->hw.mac_type) {
2739 	case ICE_MAC_E810:
2740 		ice_ptp_set_funcs_e810(pf);
2741 		return;
2742 	case ICE_MAC_E830:
2743 		ice_ptp_set_funcs_e830(pf);
2744 		return;
2745 	case ICE_MAC_GENERIC:
2746 	case ICE_MAC_GENERIC_3K_E825:
2747 		ice_ptp_set_funcs_e82x(pf);
2748 		return;
2749 	default:
2750 		return;
2751 	}
2752 }
2753 
2754 /**
2755  * ice_ptp_create_clock - Create PTP clock device for userspace
2756  * @pf: Board private structure
2757  *
2758  * This function creates a new PTP clock device. It only creates one if we
2759  * don't already have one. Will return error if it can't create one, but success
2760  * if we already have a device. Should be used by ice_ptp_init to create clock
2761  * initially, and prevent global resets from creating new clock devices.
2762  */
ice_ptp_create_clock(struct ice_pf * pf)2763 static long ice_ptp_create_clock(struct ice_pf *pf)
2764 {
2765 	struct ptp_clock_info *info;
2766 	struct device *dev;
2767 
2768 	/* No need to create a clock device if we already have one */
2769 	if (pf->ptp.clock)
2770 		return 0;
2771 
2772 	ice_ptp_set_caps(pf);
2773 
2774 	info = &pf->ptp.info;
2775 	dev = ice_pf_to_dev(pf);
2776 
2777 	/* Attempt to register the clock before enabling the hardware. */
2778 	pf->ptp.clock = ptp_clock_register(info, dev);
2779 	if (IS_ERR(pf->ptp.clock)) {
2780 		dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
2781 		return PTR_ERR(pf->ptp.clock);
2782 	}
2783 
2784 	return 0;
2785 }
2786 
2787 /**
2788  * ice_ptp_request_ts - Request an available Tx timestamp index
2789  * @tx: the PTP Tx timestamp tracker to request from
2790  * @skb: the SKB to associate with this timestamp request
2791  */
ice_ptp_request_ts(struct ice_ptp_tx * tx,struct sk_buff * skb)2792 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2793 {
2794 	unsigned long flags;
2795 	u8 idx;
2796 
2797 	spin_lock_irqsave(&tx->lock, flags);
2798 
2799 	/* Check that this tracker is accepting new timestamp requests */
2800 	if (!ice_ptp_is_tx_tracker_up(tx)) {
2801 		spin_unlock_irqrestore(&tx->lock, flags);
2802 		return -1;
2803 	}
2804 
2805 	/* Find and set the first available index */
2806 	idx = find_next_zero_bit(tx->in_use, tx->len,
2807 				 tx->last_ll_ts_idx_read + 1);
2808 	if (idx == tx->len)
2809 		idx = find_first_zero_bit(tx->in_use, tx->len);
2810 
2811 	if (idx < tx->len) {
2812 		/* We got a valid index that no other thread could have set. Store
2813 		 * a reference to the skb and the start time to allow discarding old
2814 		 * requests.
2815 		 */
2816 		set_bit(idx, tx->in_use);
2817 		clear_bit(idx, tx->stale);
2818 		tx->tstamps[idx].start = jiffies;
2819 		tx->tstamps[idx].skb = skb_get(skb);
2820 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2821 		ice_trace(tx_tstamp_request, skb, idx);
2822 	}
2823 
2824 	spin_unlock_irqrestore(&tx->lock, flags);
2825 
2826 	/* return the appropriate PHY timestamp register index, -1 if no
2827 	 * indexes were available.
2828 	 */
2829 	if (idx >= tx->len)
2830 		return -1;
2831 	else
2832 		return idx + tx->offset;
2833 }
2834 
2835 /**
2836  * ice_ptp_process_ts - Process the PTP Tx timestamps
2837  * @pf: Board private structure
2838  *
2839  * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2840  * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2841  */
ice_ptp_process_ts(struct ice_pf * pf)2842 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2843 {
2844 	switch (pf->ptp.tx_interrupt_mode) {
2845 	case ICE_PTP_TX_INTERRUPT_NONE:
2846 		/* This device has the clock owner handle timestamps for it */
2847 		return ICE_TX_TSTAMP_WORK_DONE;
2848 	case ICE_PTP_TX_INTERRUPT_SELF:
2849 		/* This device handles its own timestamps */
2850 		return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2851 	case ICE_PTP_TX_INTERRUPT_ALL:
2852 		/* This device handles timestamps for all ports */
2853 		return ice_ptp_tx_tstamp_owner(pf);
2854 	default:
2855 		WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
2856 			  pf->ptp.tx_interrupt_mode);
2857 		return ICE_TX_TSTAMP_WORK_DONE;
2858 	}
2859 }
2860 
2861 /**
2862  * ice_ptp_ts_irq - Process the PTP Tx timestamps in IRQ context
2863  * @pf: Board private structure
2864  *
2865  * Return: IRQ_WAKE_THREAD if Tx timestamp read has to be handled in the bottom
2866  *         half of the interrupt and IRQ_HANDLED otherwise.
2867  */
ice_ptp_ts_irq(struct ice_pf * pf)2868 irqreturn_t ice_ptp_ts_irq(struct ice_pf *pf)
2869 {
2870 	struct ice_hw *hw = &pf->hw;
2871 
2872 	switch (hw->mac_type) {
2873 	case ICE_MAC_E810:
2874 		/* E810 capable of low latency timestamping with interrupt can
2875 		 * request a single timestamp in the top half and wait for
2876 		 * a second LL TS interrupt from the FW when it's ready.
2877 		 */
2878 		if (hw->dev_caps.ts_dev_info.ts_ll_int_read) {
2879 			struct ice_ptp_tx *tx = &pf->ptp.port.tx;
2880 			u8 idx;
2881 
2882 			if (!ice_pf_state_is_nominal(pf))
2883 				return IRQ_HANDLED;
2884 
2885 			spin_lock(&tx->lock);
2886 			idx = find_next_bit_wrap(tx->in_use, tx->len,
2887 						 tx->last_ll_ts_idx_read + 1);
2888 			if (idx != tx->len)
2889 				ice_ptp_req_tx_single_tstamp(tx, idx);
2890 			spin_unlock(&tx->lock);
2891 
2892 			return IRQ_HANDLED;
2893 		}
2894 		fallthrough; /* non-LL_TS E810 */
2895 	case ICE_MAC_GENERIC:
2896 	case ICE_MAC_GENERIC_3K_E825:
2897 		/* All other devices process timestamps in the bottom half due
2898 		 * to sleeping or polling.
2899 		 */
2900 		if (!ice_ptp_pf_handles_tx_interrupt(pf))
2901 			return IRQ_HANDLED;
2902 
2903 		set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
2904 		return IRQ_WAKE_THREAD;
2905 	case ICE_MAC_E830:
2906 		/* E830 can read timestamps in the top half using rd32() */
2907 		if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
2908 			/* Process outstanding Tx timestamps. If there
2909 			 * is more work, re-arm the interrupt to trigger again.
2910 			 */
2911 			wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
2912 			ice_flush(hw);
2913 		}
2914 		return IRQ_HANDLED;
2915 	default:
2916 		return IRQ_HANDLED;
2917 	}
2918 }
2919 
2920 /**
2921  * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt
2922  * @pf: Board private structure
2923  *
2924  * The device PHY issues Tx timestamp interrupts to the driver for processing
2925  * timestamp data from the PHY. It will not interrupt again until all
2926  * current timestamp data is read. In rare circumstances, it is possible that
2927  * the driver fails to read all outstanding data.
2928  *
2929  * To avoid getting permanently stuck, periodically check if the PHY has
2930  * outstanding timestamp data. If so, trigger an interrupt from software to
2931  * process this data.
2932  */
ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf * pf)2933 static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf)
2934 {
2935 	struct device *dev = ice_pf_to_dev(pf);
2936 	struct ice_hw *hw = &pf->hw;
2937 	bool trigger_oicr = false;
2938 	unsigned int i;
2939 
2940 	if (!pf->ptp.port.tx.has_ready_bitmap)
2941 		return;
2942 
2943 	if (!ice_pf_src_tmr_owned(pf))
2944 		return;
2945 
2946 	for (i = 0; i < ICE_GET_QUAD_NUM(hw->ptp.num_lports); i++) {
2947 		u64 tstamp_ready;
2948 		int err;
2949 
2950 		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
2951 		if (!err && tstamp_ready) {
2952 			trigger_oicr = true;
2953 			break;
2954 		}
2955 	}
2956 
2957 	if (trigger_oicr) {
2958 		/* Trigger a software interrupt, to ensure this data
2959 		 * gets processed.
2960 		 */
2961 		dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n");
2962 
2963 		wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
2964 		ice_flush(hw);
2965 	}
2966 }
2967 
ice_ptp_periodic_work(struct kthread_work * work)2968 static void ice_ptp_periodic_work(struct kthread_work *work)
2969 {
2970 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2971 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2972 	int err;
2973 
2974 	if (pf->ptp.state != ICE_PTP_READY)
2975 		return;
2976 
2977 	err = ice_ptp_update_cached_phctime(pf);
2978 
2979 	ice_ptp_maybe_trigger_tx_interrupt(pf);
2980 
2981 	/* Run twice a second or reschedule if phc update failed */
2982 	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2983 				   msecs_to_jiffies(err ? 10 : 500));
2984 }
2985 
2986 /**
2987  * ice_ptp_prepare_rebuild_sec - Prepare second NAC for PTP reset or rebuild
2988  * @pf: Board private structure
2989  * @rebuild: rebuild if true, prepare if false
2990  * @reset_type: the reset type being performed
2991  */
ice_ptp_prepare_rebuild_sec(struct ice_pf * pf,bool rebuild,enum ice_reset_req reset_type)2992 static void ice_ptp_prepare_rebuild_sec(struct ice_pf *pf, bool rebuild,
2993 					enum ice_reset_req reset_type)
2994 {
2995 	struct list_head *entry;
2996 
2997 	list_for_each(entry, &pf->adapter->ports.ports) {
2998 		struct ice_ptp_port *port = list_entry(entry,
2999 						       struct ice_ptp_port,
3000 						       list_node);
3001 		struct ice_pf *peer_pf = ptp_port_to_pf(port);
3002 
3003 		if (!ice_is_primary(&peer_pf->hw)) {
3004 			if (rebuild)
3005 				ice_ptp_rebuild(peer_pf, reset_type);
3006 			else
3007 				ice_ptp_prepare_for_reset(peer_pf, reset_type);
3008 		}
3009 	}
3010 }
3011 
3012 /**
3013  * ice_ptp_prepare_for_reset - Prepare PTP for reset
3014  * @pf: Board private structure
3015  * @reset_type: the reset type being performed
3016  */
ice_ptp_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)3017 void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
3018 {
3019 	struct ice_ptp *ptp = &pf->ptp;
3020 	struct ice_hw *hw = &pf->hw;
3021 	u8 src_tmr;
3022 
3023 	if (ptp->state != ICE_PTP_READY)
3024 		return;
3025 
3026 	ptp->state = ICE_PTP_RESETTING;
3027 
3028 	/* Disable timestamping for both Tx and Rx */
3029 	ice_ptp_disable_timestamp_mode(pf);
3030 
3031 	kthread_cancel_delayed_work_sync(&ptp->work);
3032 
3033 	if (reset_type == ICE_RESET_PFR)
3034 		return;
3035 
3036 	if (ice_pf_src_tmr_owned(pf) && hw->mac_type == ICE_MAC_GENERIC_3K_E825)
3037 		ice_ptp_prepare_rebuild_sec(pf, false, reset_type);
3038 
3039 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3040 
3041 	/* Disable periodic outputs */
3042 	ice_ptp_disable_all_perout(pf);
3043 
3044 	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
3045 
3046 	/* Disable source clock */
3047 	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
3048 
3049 	/* Acquire PHC and system timer to restore after reset */
3050 	ptp->reset_time = ktime_get_real_ns();
3051 }
3052 
3053 /**
3054  * ice_ptp_rebuild_owner - Initialize PTP clock owner after reset
3055  * @pf: Board private structure
3056  *
3057  * Companion function for ice_ptp_rebuild() which handles tasks that only the
3058  * PTP clock owner instance should perform.
3059  */
ice_ptp_rebuild_owner(struct ice_pf * pf)3060 static int ice_ptp_rebuild_owner(struct ice_pf *pf)
3061 {
3062 	struct ice_ptp *ptp = &pf->ptp;
3063 	struct ice_hw *hw = &pf->hw;
3064 	struct timespec64 ts;
3065 	u64 time_diff;
3066 	int err;
3067 
3068 	err = ice_ptp_init_phc(hw);
3069 	if (err)
3070 		return err;
3071 
3072 	/* Acquire the global hardware lock */
3073 	if (!ice_ptp_lock(hw)) {
3074 		err = -EBUSY;
3075 		return err;
3076 	}
3077 
3078 	/* Write the increment time value to PHY and LAN */
3079 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
3080 	if (err)
3081 		goto err_unlock;
3082 
3083 	/* Write the initial Time value to PHY and LAN using the cached PHC
3084 	 * time before the reset and time difference between stopping and
3085 	 * starting the clock.
3086 	 */
3087 	if (ptp->cached_phc_time) {
3088 		time_diff = ktime_get_real_ns() - ptp->reset_time;
3089 		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
3090 	} else {
3091 		ts = ktime_to_timespec64(ktime_get_real());
3092 	}
3093 	err = ice_ptp_write_init(pf, &ts);
3094 	if (err)
3095 		goto err_unlock;
3096 
3097 	/* Release the global hardware lock */
3098 	ice_ptp_unlock(hw);
3099 
3100 	/* Flush software tracking of any outstanding timestamps since we're
3101 	 * about to flush the PHY timestamp block.
3102 	 */
3103 	ice_ptp_flush_all_tx_tracker(pf);
3104 
3105 	/* Enable quad interrupts */
3106 	err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
3107 	if (err)
3108 		return err;
3109 
3110 	ice_ptp_restart_all_phy(pf);
3111 
3112 	/* Re-enable all periodic outputs and external timestamp events */
3113 	ice_ptp_enable_all_perout(pf);
3114 	ice_ptp_enable_all_extts(pf);
3115 
3116 	return 0;
3117 
3118 err_unlock:
3119 	ice_ptp_unlock(hw);
3120 	return err;
3121 }
3122 
3123 /**
3124  * ice_ptp_rebuild - Initialize PTP hardware clock support after reset
3125  * @pf: Board private structure
3126  * @reset_type: the reset type being performed
3127  */
ice_ptp_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)3128 void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
3129 {
3130 	struct ice_ptp *ptp = &pf->ptp;
3131 	int err;
3132 
3133 	if (ptp->state == ICE_PTP_READY) {
3134 		ice_ptp_prepare_for_reset(pf, reset_type);
3135 	} else if (ptp->state != ICE_PTP_RESETTING) {
3136 		err = -EINVAL;
3137 		dev_err(ice_pf_to_dev(pf), "PTP was not initialized\n");
3138 		goto err;
3139 	}
3140 
3141 	if (ice_pf_src_tmr_owned(pf) && reset_type != ICE_RESET_PFR) {
3142 		err = ice_ptp_rebuild_owner(pf);
3143 		if (err)
3144 			goto err;
3145 	}
3146 
3147 	ptp->state = ICE_PTP_READY;
3148 
3149 	/* Start periodic work going */
3150 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
3151 
3152 	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
3153 	return;
3154 
3155 err:
3156 	ptp->state = ICE_PTP_ERROR;
3157 	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
3158 }
3159 
ice_ptp_setup_adapter(struct ice_pf * pf)3160 static int ice_ptp_setup_adapter(struct ice_pf *pf)
3161 {
3162 	if (!ice_pf_src_tmr_owned(pf) || !ice_is_primary(&pf->hw))
3163 		return -EPERM;
3164 
3165 	pf->adapter->ctrl_pf = pf;
3166 
3167 	return 0;
3168 }
3169 
ice_ptp_setup_pf(struct ice_pf * pf)3170 static int ice_ptp_setup_pf(struct ice_pf *pf)
3171 {
3172 	struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf);
3173 	struct ice_ptp *ptp = &pf->ptp;
3174 
3175 	if (WARN_ON(!ctrl_ptp) || pf->hw.mac_type == ICE_MAC_UNKNOWN)
3176 		return -ENODEV;
3177 
3178 	INIT_LIST_HEAD(&ptp->port.list_node);
3179 	mutex_lock(&pf->adapter->ports.lock);
3180 
3181 	list_add(&ptp->port.list_node,
3182 		 &pf->adapter->ports.ports);
3183 	mutex_unlock(&pf->adapter->ports.lock);
3184 
3185 	return 0;
3186 }
3187 
ice_ptp_cleanup_pf(struct ice_pf * pf)3188 static void ice_ptp_cleanup_pf(struct ice_pf *pf)
3189 {
3190 	struct ice_ptp *ptp = &pf->ptp;
3191 
3192 	if (pf->hw.mac_type != ICE_MAC_UNKNOWN) {
3193 		mutex_lock(&pf->adapter->ports.lock);
3194 		list_del(&ptp->port.list_node);
3195 		mutex_unlock(&pf->adapter->ports.lock);
3196 	}
3197 }
3198 
3199 /**
3200  * ice_ptp_clock_index - Get the PTP clock index for this device
3201  * @pf: Board private structure
3202  *
3203  * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
3204  * is associated.
3205  */
ice_ptp_clock_index(struct ice_pf * pf)3206 int ice_ptp_clock_index(struct ice_pf *pf)
3207 {
3208 	struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf);
3209 	struct ptp_clock *clock;
3210 
3211 	if (!ctrl_ptp)
3212 		return -1;
3213 	clock = ctrl_ptp->clock;
3214 
3215 	return clock ? ptp_clock_index(clock) : -1;
3216 }
3217 
3218 /**
3219  * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
3220  * @pf: Board private structure
3221  *
3222  * Setup and initialize a PTP clock device that represents the device hardware
3223  * clock. Save the clock index for other functions connected to the same
3224  * hardware resource.
3225  */
ice_ptp_init_owner(struct ice_pf * pf)3226 static int ice_ptp_init_owner(struct ice_pf *pf)
3227 {
3228 	struct ice_hw *hw = &pf->hw;
3229 	struct timespec64 ts;
3230 	int err;
3231 
3232 	err = ice_ptp_init_phc(hw);
3233 	if (err) {
3234 		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
3235 			err);
3236 		return err;
3237 	}
3238 
3239 	/* Acquire the global hardware lock */
3240 	if (!ice_ptp_lock(hw)) {
3241 		err = -EBUSY;
3242 		goto err_exit;
3243 	}
3244 
3245 	/* Write the increment time value to PHY and LAN */
3246 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
3247 	if (err)
3248 		goto err_unlock;
3249 
3250 	ts = ktime_to_timespec64(ktime_get_real());
3251 	/* Write the initial Time value to PHY and LAN */
3252 	err = ice_ptp_write_init(pf, &ts);
3253 	if (err)
3254 		goto err_unlock;
3255 
3256 	/* Release the global hardware lock */
3257 	ice_ptp_unlock(hw);
3258 
3259 	/* Configure PHY interrupt settings */
3260 	err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
3261 	if (err)
3262 		goto err_exit;
3263 
3264 	/* Ensure we have a clock device */
3265 	err = ice_ptp_create_clock(pf);
3266 	if (err)
3267 		goto err_clk;
3268 
3269 	return 0;
3270 err_clk:
3271 	pf->ptp.clock = NULL;
3272 err_exit:
3273 	return err;
3274 
3275 err_unlock:
3276 	ice_ptp_unlock(hw);
3277 	return err;
3278 }
3279 
3280 /**
3281  * ice_ptp_init_work - Initialize PTP work threads
3282  * @pf: Board private structure
3283  * @ptp: PF PTP structure
3284  */
ice_ptp_init_work(struct ice_pf * pf,struct ice_ptp * ptp)3285 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
3286 {
3287 	struct kthread_worker *kworker;
3288 
3289 	/* Initialize work functions */
3290 	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
3291 
3292 	/* Allocate a kworker for handling work required for the ports
3293 	 * connected to the PTP hardware clock.
3294 	 */
3295 	kworker = kthread_run_worker(0, "ice-ptp-%s",
3296 					dev_name(ice_pf_to_dev(pf)));
3297 	if (IS_ERR(kworker))
3298 		return PTR_ERR(kworker);
3299 
3300 	ptp->kworker = kworker;
3301 
3302 	/* Start periodic work going */
3303 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
3304 
3305 	return 0;
3306 }
3307 
3308 /**
3309  * ice_ptp_init_port - Initialize PTP port structure
3310  * @pf: Board private structure
3311  * @ptp_port: PTP port structure
3312  *
3313  * Return: 0 on success, -ENODEV on invalid MAC type, -ENOMEM on failed alloc.
3314  */
ice_ptp_init_port(struct ice_pf * pf,struct ice_ptp_port * ptp_port)3315 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
3316 {
3317 	struct ice_hw *hw = &pf->hw;
3318 
3319 	mutex_init(&ptp_port->ps_lock);
3320 
3321 	switch (hw->mac_type) {
3322 	case ICE_MAC_E810:
3323 	case ICE_MAC_E830:
3324 	case ICE_MAC_GENERIC_3K_E825:
3325 		return ice_ptp_init_tx(pf, &ptp_port->tx, ptp_port->port_num);
3326 	case ICE_MAC_GENERIC:
3327 		kthread_init_delayed_work(&ptp_port->ov_work,
3328 					  ice_ptp_wait_for_offsets);
3329 		return ice_ptp_init_tx_e82x(pf, &ptp_port->tx,
3330 					    ptp_port->port_num);
3331 	default:
3332 		return -ENODEV;
3333 	}
3334 }
3335 
3336 /**
3337  * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
3338  * @pf: Board private structure
3339  *
3340  * Initialize the Tx timestamp interrupt mode for this device. For most device
3341  * types, each PF processes the interrupt and manages its own timestamps. For
3342  * E822-based devices, only the clock owner processes the timestamps. Other
3343  * PFs disable the interrupt and do not process their own timestamps.
3344  */
ice_ptp_init_tx_interrupt_mode(struct ice_pf * pf)3345 static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
3346 {
3347 	switch (pf->hw.mac_type) {
3348 	case ICE_MAC_GENERIC:
3349 		/* E822 based PHY has the clock owner process the interrupt
3350 		 * for all ports.
3351 		 */
3352 		if (ice_pf_src_tmr_owned(pf))
3353 			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
3354 		else
3355 			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
3356 		break;
3357 	default:
3358 		/* other PHY types handle their own Tx interrupt */
3359 		pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
3360 	}
3361 }
3362 
3363 /**
3364  * ice_ptp_init - Initialize PTP hardware clock support
3365  * @pf: Board private structure
3366  *
3367  * Set up the device for interacting with the PTP hardware clock for all
3368  * functions, both the function that owns the clock hardware, and the
3369  * functions connected to the clock hardware.
3370  *
3371  * The clock owner will allocate and register a ptp_clock with the
3372  * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
3373  * items used for asynchronous work such as Tx timestamps and periodic work.
3374  */
ice_ptp_init(struct ice_pf * pf)3375 void ice_ptp_init(struct ice_pf *pf)
3376 {
3377 	struct ice_ptp *ptp = &pf->ptp;
3378 	struct ice_hw *hw = &pf->hw;
3379 	int err;
3380 
3381 	ptp->state = ICE_PTP_INITIALIZING;
3382 
3383 	if (hw->lane_num < 0) {
3384 		err = hw->lane_num;
3385 		goto err_exit;
3386 	}
3387 	ptp->port.port_num = hw->lane_num;
3388 
3389 	ice_ptp_init_hw(hw);
3390 
3391 	ice_ptp_init_tx_interrupt_mode(pf);
3392 
3393 	/* If this function owns the clock hardware, it must allocate and
3394 	 * configure the PTP clock device to represent it.
3395 	 */
3396 	if (ice_pf_src_tmr_owned(pf) && ice_is_primary(hw)) {
3397 		err = ice_ptp_setup_adapter(pf);
3398 		if (err)
3399 			goto err_exit;
3400 		err = ice_ptp_init_owner(pf);
3401 		if (err)
3402 			goto err_exit;
3403 	}
3404 
3405 	err = ice_ptp_setup_pf(pf);
3406 	if (err)
3407 		goto err_exit;
3408 
3409 	err = ice_ptp_init_port(pf, &ptp->port);
3410 	if (err)
3411 		goto err_exit;
3412 
3413 	/* Start the PHY timestamping block */
3414 	ice_ptp_reset_phy_timestamping(pf);
3415 
3416 	/* Configure initial Tx interrupt settings */
3417 	ice_ptp_cfg_tx_interrupt(pf);
3418 
3419 	ptp->state = ICE_PTP_READY;
3420 
3421 	err = ice_ptp_init_work(pf, ptp);
3422 	if (err)
3423 		goto err_exit;
3424 
3425 	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
3426 	return;
3427 
3428 err_exit:
3429 	/* If we registered a PTP clock, release it */
3430 	if (pf->ptp.clock) {
3431 		ptp_clock_unregister(ptp->clock);
3432 		pf->ptp.clock = NULL;
3433 	}
3434 	ptp->state = ICE_PTP_ERROR;
3435 	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
3436 }
3437 
3438 /**
3439  * ice_ptp_release - Disable the driver/HW support and unregister the clock
3440  * @pf: Board private structure
3441  *
3442  * This function handles the cleanup work required from the initialization by
3443  * clearing out the important information and unregistering the clock
3444  */
ice_ptp_release(struct ice_pf * pf)3445 void ice_ptp_release(struct ice_pf *pf)
3446 {
3447 	if (pf->ptp.state != ICE_PTP_READY)
3448 		return;
3449 
3450 	pf->ptp.state = ICE_PTP_UNINIT;
3451 
3452 	/* Disable timestamping for both Tx and Rx */
3453 	ice_ptp_disable_timestamp_mode(pf);
3454 
3455 	ice_ptp_cleanup_pf(pf);
3456 
3457 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3458 
3459 	ice_ptp_disable_all_extts(pf);
3460 
3461 	kthread_cancel_delayed_work_sync(&pf->ptp.work);
3462 
3463 	ice_ptp_port_phy_stop(&pf->ptp.port);
3464 	mutex_destroy(&pf->ptp.port.ps_lock);
3465 	if (pf->ptp.kworker) {
3466 		kthread_destroy_worker(pf->ptp.kworker);
3467 		pf->ptp.kworker = NULL;
3468 	}
3469 
3470 	if (!pf->ptp.clock)
3471 		return;
3472 
3473 	/* Disable periodic outputs */
3474 	ice_ptp_disable_all_perout(pf);
3475 
3476 	ptp_clock_unregister(pf->ptp.clock);
3477 	pf->ptp.clock = NULL;
3478 
3479 	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
3480 }
3481