1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "devlink/devlink.h"
17 #include "devlink/devlink_port.h"
18 #include "ice_sf_eth.h"
19 #include "ice_hwmon.h"
20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
21 * ice tracepoint functions. This must be done exactly once across the
22 * ice driver.
23 */
24 #define CREATE_TRACE_POINTS
25 #include "ice_trace.h"
26 #include "ice_eswitch.h"
27 #include "ice_tc_lib.h"
28 #include "ice_vsi_vlan_ops.h"
29 #include <net/xdp_sock_drv.h>
30
31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
32 static const char ice_driver_string[] = DRV_SUMMARY;
33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
34
35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
38
39 MODULE_DESCRIPTION(DRV_SUMMARY);
40 MODULE_IMPORT_NS(LIBIE);
41 MODULE_LICENSE("GPL v2");
42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
43
44 static int debug = -1;
45 module_param(debug, int, 0644);
46 #ifndef CONFIG_DYNAMIC_DEBUG
47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
48 #else
49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
50 #endif /* !CONFIG_DYNAMIC_DEBUG */
51
52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
53 EXPORT_SYMBOL(ice_xdp_locking_key);
54
55 /**
56 * ice_hw_to_dev - Get device pointer from the hardware structure
57 * @hw: pointer to the device HW structure
58 *
59 * Used to access the device pointer from compilation units which can't easily
60 * include the definition of struct ice_pf without leading to circular header
61 * dependencies.
62 */
ice_hw_to_dev(struct ice_hw * hw)63 struct device *ice_hw_to_dev(struct ice_hw *hw)
64 {
65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
66
67 return &pf->pdev->dev;
68 }
69
70 static struct workqueue_struct *ice_wq;
71 struct workqueue_struct *ice_lag_wq;
72 static const struct net_device_ops ice_netdev_safe_mode_ops;
73 static const struct net_device_ops ice_netdev_ops;
74
75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
76
77 static void ice_vsi_release_all(struct ice_pf *pf);
78
79 static int ice_rebuild_channels(struct ice_pf *pf);
80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
81
82 static int
83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
84 void *cb_priv, enum tc_setup_type type, void *type_data,
85 void *data,
86 void (*cleanup)(struct flow_block_cb *block_cb));
87
netif_is_ice(const struct net_device * dev)88 bool netif_is_ice(const struct net_device *dev)
89 {
90 return dev && (dev->netdev_ops == &ice_netdev_ops ||
91 dev->netdev_ops == &ice_netdev_safe_mode_ops);
92 }
93
94 /**
95 * ice_get_tx_pending - returns number of Tx descriptors not processed
96 * @ring: the ring of descriptors
97 */
ice_get_tx_pending(struct ice_tx_ring * ring)98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
99 {
100 u16 head, tail;
101
102 head = ring->next_to_clean;
103 tail = ring->next_to_use;
104
105 if (head != tail)
106 return (head < tail) ?
107 tail - head : (tail + ring->count - head);
108 return 0;
109 }
110
111 /**
112 * ice_check_for_hang_subtask - check for and recover hung queues
113 * @pf: pointer to PF struct
114 */
ice_check_for_hang_subtask(struct ice_pf * pf)115 static void ice_check_for_hang_subtask(struct ice_pf *pf)
116 {
117 struct ice_vsi *vsi = NULL;
118 struct ice_hw *hw;
119 unsigned int i;
120 int packets;
121 u32 v;
122
123 ice_for_each_vsi(pf, v)
124 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
125 vsi = pf->vsi[v];
126 break;
127 }
128
129 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
130 return;
131
132 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
133 return;
134
135 hw = &vsi->back->hw;
136
137 ice_for_each_txq(vsi, i) {
138 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
139 struct ice_ring_stats *ring_stats;
140
141 if (!tx_ring)
142 continue;
143 if (ice_ring_ch_enabled(tx_ring))
144 continue;
145
146 ring_stats = tx_ring->ring_stats;
147 if (!ring_stats)
148 continue;
149
150 if (tx_ring->desc) {
151 /* If packet counter has not changed the queue is
152 * likely stalled, so force an interrupt for this
153 * queue.
154 *
155 * prev_pkt would be negative if there was no
156 * pending work.
157 */
158 packets = ring_stats->stats.pkts & INT_MAX;
159 if (ring_stats->tx_stats.prev_pkt == packets) {
160 /* Trigger sw interrupt to revive the queue */
161 ice_trigger_sw_intr(hw, tx_ring->q_vector);
162 continue;
163 }
164
165 /* Memory barrier between read of packet count and call
166 * to ice_get_tx_pending()
167 */
168 smp_rmb();
169 ring_stats->tx_stats.prev_pkt =
170 ice_get_tx_pending(tx_ring) ? packets : -1;
171 }
172 }
173 }
174
175 /**
176 * ice_init_mac_fltr - Set initial MAC filters
177 * @pf: board private structure
178 *
179 * Set initial set of MAC filters for PF VSI; configure filters for permanent
180 * address and broadcast address. If an error is encountered, netdevice will be
181 * unregistered.
182 */
ice_init_mac_fltr(struct ice_pf * pf)183 static int ice_init_mac_fltr(struct ice_pf *pf)
184 {
185 struct ice_vsi *vsi;
186 u8 *perm_addr;
187
188 vsi = ice_get_main_vsi(pf);
189 if (!vsi)
190 return -EINVAL;
191
192 perm_addr = vsi->port_info->mac.perm_addr;
193 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
194 }
195
196 /**
197 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
198 * @netdev: the net device on which the sync is happening
199 * @addr: MAC address to sync
200 *
201 * This is a callback function which is called by the in kernel device sync
202 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
203 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
204 * MAC filters from the hardware.
205 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
207 {
208 struct ice_netdev_priv *np = netdev_priv(netdev);
209 struct ice_vsi *vsi = np->vsi;
210
211 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
212 ICE_FWD_TO_VSI))
213 return -EINVAL;
214
215 return 0;
216 }
217
218 /**
219 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
220 * @netdev: the net device on which the unsync is happening
221 * @addr: MAC address to unsync
222 *
223 * This is a callback function which is called by the in kernel device unsync
224 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
225 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
226 * delete the MAC filters from the hardware.
227 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
229 {
230 struct ice_netdev_priv *np = netdev_priv(netdev);
231 struct ice_vsi *vsi = np->vsi;
232
233 /* Under some circumstances, we might receive a request to delete our
234 * own device address from our uc list. Because we store the device
235 * address in the VSI's MAC filter list, we need to ignore such
236 * requests and not delete our device address from this list.
237 */
238 if (ether_addr_equal(addr, netdev->dev_addr))
239 return 0;
240
241 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
242 ICE_FWD_TO_VSI))
243 return -EINVAL;
244
245 return 0;
246 }
247
248 /**
249 * ice_vsi_fltr_changed - check if filter state changed
250 * @vsi: VSI to be checked
251 *
252 * returns true if filter state has changed, false otherwise.
253 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
255 {
256 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
257 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
258 }
259
260 /**
261 * ice_set_promisc - Enable promiscuous mode for a given PF
262 * @vsi: the VSI being configured
263 * @promisc_m: mask of promiscuous config bits
264 *
265 */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
267 {
268 int status;
269
270 if (vsi->type != ICE_VSI_PF)
271 return 0;
272
273 if (ice_vsi_has_non_zero_vlans(vsi)) {
274 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
275 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
276 promisc_m);
277 } else {
278 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
279 promisc_m, 0);
280 }
281 if (status && status != -EEXIST)
282 return status;
283
284 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
285 vsi->vsi_num, promisc_m);
286 return 0;
287 }
288
289 /**
290 * ice_clear_promisc - Disable promiscuous mode for a given PF
291 * @vsi: the VSI being configured
292 * @promisc_m: mask of promiscuous config bits
293 *
294 */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
296 {
297 int status;
298
299 if (vsi->type != ICE_VSI_PF)
300 return 0;
301
302 if (ice_vsi_has_non_zero_vlans(vsi)) {
303 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
304 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
305 promisc_m);
306 } else {
307 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
308 promisc_m, 0);
309 }
310
311 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
312 vsi->vsi_num, promisc_m);
313 return status;
314 }
315
316 /**
317 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
318 * @vsi: ptr to the VSI
319 *
320 * Push any outstanding VSI filter changes through the AdminQ.
321 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
323 {
324 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
325 struct device *dev = ice_pf_to_dev(vsi->back);
326 struct net_device *netdev = vsi->netdev;
327 bool promisc_forced_on = false;
328 struct ice_pf *pf = vsi->back;
329 struct ice_hw *hw = &pf->hw;
330 u32 changed_flags = 0;
331 int err;
332
333 if (!vsi->netdev)
334 return -EINVAL;
335
336 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
337 usleep_range(1000, 2000);
338
339 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
340 vsi->current_netdev_flags = vsi->netdev->flags;
341
342 INIT_LIST_HEAD(&vsi->tmp_sync_list);
343 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
344
345 if (ice_vsi_fltr_changed(vsi)) {
346 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
347 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
348
349 /* grab the netdev's addr_list_lock */
350 netif_addr_lock_bh(netdev);
351 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
352 ice_add_mac_to_unsync_list);
353 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
354 ice_add_mac_to_unsync_list);
355 /* our temp lists are populated. release lock */
356 netif_addr_unlock_bh(netdev);
357 }
358
359 /* Remove MAC addresses in the unsync list */
360 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
361 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
362 if (err) {
363 netdev_err(netdev, "Failed to delete MAC filters\n");
364 /* if we failed because of alloc failures, just bail */
365 if (err == -ENOMEM)
366 goto out;
367 }
368
369 /* Add MAC addresses in the sync list */
370 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
371 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
372 /* If filter is added successfully or already exists, do not go into
373 * 'if' condition and report it as error. Instead continue processing
374 * rest of the function.
375 */
376 if (err && err != -EEXIST) {
377 netdev_err(netdev, "Failed to add MAC filters\n");
378 /* If there is no more space for new umac filters, VSI
379 * should go into promiscuous mode. There should be some
380 * space reserved for promiscuous filters.
381 */
382 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
383 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
384 vsi->state)) {
385 promisc_forced_on = true;
386 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
387 vsi->vsi_num);
388 } else {
389 goto out;
390 }
391 }
392 err = 0;
393 /* check for changes in promiscuous modes */
394 if (changed_flags & IFF_ALLMULTI) {
395 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
396 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
397 if (err) {
398 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
399 goto out_promisc;
400 }
401 } else {
402 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
403 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
404 if (err) {
405 vsi->current_netdev_flags |= IFF_ALLMULTI;
406 goto out_promisc;
407 }
408 }
409 }
410
411 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
412 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
413 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
414 if (vsi->current_netdev_flags & IFF_PROMISC) {
415 /* Apply Rx filter rule to get traffic from wire */
416 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
417 err = ice_set_dflt_vsi(vsi);
418 if (err && err != -EEXIST) {
419 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
420 err, vsi->vsi_num);
421 vsi->current_netdev_flags &=
422 ~IFF_PROMISC;
423 goto out_promisc;
424 }
425 err = 0;
426 vlan_ops->dis_rx_filtering(vsi);
427
428 /* promiscuous mode implies allmulticast so
429 * that VSIs that are in promiscuous mode are
430 * subscribed to multicast packets coming to
431 * the port
432 */
433 err = ice_set_promisc(vsi,
434 ICE_MCAST_PROMISC_BITS);
435 if (err)
436 goto out_promisc;
437 }
438 } else {
439 /* Clear Rx filter to remove traffic from wire */
440 if (ice_is_vsi_dflt_vsi(vsi)) {
441 err = ice_clear_dflt_vsi(vsi);
442 if (err) {
443 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
444 err, vsi->vsi_num);
445 vsi->current_netdev_flags |=
446 IFF_PROMISC;
447 goto out_promisc;
448 }
449 if (vsi->netdev->features &
450 NETIF_F_HW_VLAN_CTAG_FILTER)
451 vlan_ops->ena_rx_filtering(vsi);
452 }
453
454 /* disable allmulti here, but only if allmulti is not
455 * still enabled for the netdev
456 */
457 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
458 err = ice_clear_promisc(vsi,
459 ICE_MCAST_PROMISC_BITS);
460 if (err) {
461 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
462 err, vsi->vsi_num);
463 }
464 }
465 }
466 }
467 goto exit;
468
469 out_promisc:
470 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
471 goto exit;
472 out:
473 /* if something went wrong then set the changed flag so we try again */
474 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
475 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
476 exit:
477 clear_bit(ICE_CFG_BUSY, vsi->state);
478 return err;
479 }
480
481 /**
482 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
483 * @pf: board private structure
484 */
ice_sync_fltr_subtask(struct ice_pf * pf)485 static void ice_sync_fltr_subtask(struct ice_pf *pf)
486 {
487 int v;
488
489 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
490 return;
491
492 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
493
494 ice_for_each_vsi(pf, v)
495 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
496 ice_vsi_sync_fltr(pf->vsi[v])) {
497 /* come back and try again later */
498 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
499 break;
500 }
501 }
502
503 /**
504 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
505 * @pf: the PF
506 * @locked: is the rtnl_lock already held
507 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
509 {
510 int node;
511 int v;
512
513 ice_for_each_vsi(pf, v)
514 if (pf->vsi[v])
515 ice_dis_vsi(pf->vsi[v], locked);
516
517 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
518 pf->pf_agg_node[node].num_vsis = 0;
519
520 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
521 pf->vf_agg_node[node].num_vsis = 0;
522 }
523
524 /**
525 * ice_prepare_for_reset - prep for reset
526 * @pf: board private structure
527 * @reset_type: reset type requested
528 *
529 * Inform or close all dependent features in prep for reset.
530 */
531 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
533 {
534 struct ice_hw *hw = &pf->hw;
535 struct ice_vsi *vsi;
536 struct ice_vf *vf;
537 unsigned int bkt;
538
539 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
540
541 /* already prepared for reset */
542 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
543 return;
544
545 synchronize_irq(pf->oicr_irq.virq);
546
547 ice_unplug_aux_dev(pf);
548
549 /* Notify VFs of impending reset */
550 if (ice_check_sq_alive(hw, &hw->mailboxq))
551 ice_vc_notify_reset(pf);
552
553 /* Disable VFs until reset is completed */
554 mutex_lock(&pf->vfs.table_lock);
555 ice_for_each_vf(pf, bkt, vf)
556 ice_set_vf_state_dis(vf);
557 mutex_unlock(&pf->vfs.table_lock);
558
559 if (ice_is_eswitch_mode_switchdev(pf)) {
560 rtnl_lock();
561 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
562 rtnl_unlock();
563 }
564
565 /* release ADQ specific HW and SW resources */
566 vsi = ice_get_main_vsi(pf);
567 if (!vsi)
568 goto skip;
569
570 /* to be on safe side, reset orig_rss_size so that normal flow
571 * of deciding rss_size can take precedence
572 */
573 vsi->orig_rss_size = 0;
574
575 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
576 if (reset_type == ICE_RESET_PFR) {
577 vsi->old_ena_tc = vsi->all_enatc;
578 vsi->old_numtc = vsi->all_numtc;
579 } else {
580 ice_remove_q_channels(vsi, true);
581
582 /* for other reset type, do not support channel rebuild
583 * hence reset needed info
584 */
585 vsi->old_ena_tc = 0;
586 vsi->all_enatc = 0;
587 vsi->old_numtc = 0;
588 vsi->all_numtc = 0;
589 vsi->req_txq = 0;
590 vsi->req_rxq = 0;
591 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
592 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
593 }
594 }
595
596 if (vsi->netdev)
597 netif_device_detach(vsi->netdev);
598 skip:
599
600 /* clear SW filtering DB */
601 ice_clear_hw_tbls(hw);
602 /* disable the VSIs and their queues that are not already DOWN */
603 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
604 ice_pf_dis_all_vsi(pf, false);
605
606 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
607 ice_ptp_prepare_for_reset(pf, reset_type);
608
609 if (ice_is_feature_supported(pf, ICE_F_GNSS))
610 ice_gnss_exit(pf);
611
612 if (hw->port_info)
613 ice_sched_clear_port(hw->port_info);
614
615 ice_shutdown_all_ctrlq(hw, false);
616
617 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
618 }
619
620 /**
621 * ice_do_reset - Initiate one of many types of resets
622 * @pf: board private structure
623 * @reset_type: reset type requested before this function was called.
624 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
626 {
627 struct device *dev = ice_pf_to_dev(pf);
628 struct ice_hw *hw = &pf->hw;
629
630 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
631
632 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
633 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
634 reset_type = ICE_RESET_CORER;
635 }
636
637 ice_prepare_for_reset(pf, reset_type);
638
639 /* trigger the reset */
640 if (ice_reset(hw, reset_type)) {
641 dev_err(dev, "reset %d failed\n", reset_type);
642 set_bit(ICE_RESET_FAILED, pf->state);
643 clear_bit(ICE_RESET_OICR_RECV, pf->state);
644 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
645 clear_bit(ICE_PFR_REQ, pf->state);
646 clear_bit(ICE_CORER_REQ, pf->state);
647 clear_bit(ICE_GLOBR_REQ, pf->state);
648 wake_up(&pf->reset_wait_queue);
649 return;
650 }
651
652 /* PFR is a bit of a special case because it doesn't result in an OICR
653 * interrupt. So for PFR, rebuild after the reset and clear the reset-
654 * associated state bits.
655 */
656 if (reset_type == ICE_RESET_PFR) {
657 pf->pfr_count++;
658 ice_rebuild(pf, reset_type);
659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
660 clear_bit(ICE_PFR_REQ, pf->state);
661 wake_up(&pf->reset_wait_queue);
662 ice_reset_all_vfs(pf);
663 }
664 }
665
666 /**
667 * ice_reset_subtask - Set up for resetting the device and driver
668 * @pf: board private structure
669 */
ice_reset_subtask(struct ice_pf * pf)670 static void ice_reset_subtask(struct ice_pf *pf)
671 {
672 enum ice_reset_req reset_type = ICE_RESET_INVAL;
673
674 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
675 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
676 * of reset is pending and sets bits in pf->state indicating the reset
677 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
678 * prepare for pending reset if not already (for PF software-initiated
679 * global resets the software should already be prepared for it as
680 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
681 * by firmware or software on other PFs, that bit is not set so prepare
682 * for the reset now), poll for reset done, rebuild and return.
683 */
684 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
685 /* Perform the largest reset requested */
686 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
687 reset_type = ICE_RESET_CORER;
688 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
689 reset_type = ICE_RESET_GLOBR;
690 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
691 reset_type = ICE_RESET_EMPR;
692 /* return if no valid reset type requested */
693 if (reset_type == ICE_RESET_INVAL)
694 return;
695 ice_prepare_for_reset(pf, reset_type);
696
697 /* make sure we are ready to rebuild */
698 if (ice_check_reset(&pf->hw)) {
699 set_bit(ICE_RESET_FAILED, pf->state);
700 } else {
701 /* done with reset. start rebuild */
702 pf->hw.reset_ongoing = false;
703 ice_rebuild(pf, reset_type);
704 /* clear bit to resume normal operations, but
705 * ICE_NEEDS_RESTART bit is set in case rebuild failed
706 */
707 clear_bit(ICE_RESET_OICR_RECV, pf->state);
708 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
709 clear_bit(ICE_PFR_REQ, pf->state);
710 clear_bit(ICE_CORER_REQ, pf->state);
711 clear_bit(ICE_GLOBR_REQ, pf->state);
712 wake_up(&pf->reset_wait_queue);
713 ice_reset_all_vfs(pf);
714 }
715
716 return;
717 }
718
719 /* No pending resets to finish processing. Check for new resets */
720 if (test_bit(ICE_PFR_REQ, pf->state)) {
721 reset_type = ICE_RESET_PFR;
722 if (pf->lag && pf->lag->bonded) {
723 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
724 reset_type = ICE_RESET_CORER;
725 }
726 }
727 if (test_bit(ICE_CORER_REQ, pf->state))
728 reset_type = ICE_RESET_CORER;
729 if (test_bit(ICE_GLOBR_REQ, pf->state))
730 reset_type = ICE_RESET_GLOBR;
731 /* If no valid reset type requested just return */
732 if (reset_type == ICE_RESET_INVAL)
733 return;
734
735 /* reset if not already down or busy */
736 if (!test_bit(ICE_DOWN, pf->state) &&
737 !test_bit(ICE_CFG_BUSY, pf->state)) {
738 ice_do_reset(pf, reset_type);
739 }
740 }
741
742 /**
743 * ice_print_topo_conflict - print topology conflict message
744 * @vsi: the VSI whose topology status is being checked
745 */
ice_print_topo_conflict(struct ice_vsi * vsi)746 static void ice_print_topo_conflict(struct ice_vsi *vsi)
747 {
748 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
749 case ICE_AQ_LINK_TOPO_CONFLICT:
750 case ICE_AQ_LINK_MEDIA_CONFLICT:
751 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
752 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
753 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
754 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
755 break;
756 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
757 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
758 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
759 else
760 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
761 break;
762 default:
763 break;
764 }
765 }
766
767 /**
768 * ice_print_link_msg - print link up or down message
769 * @vsi: the VSI whose link status is being queried
770 * @isup: boolean for if the link is now up or down
771 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
773 {
774 struct ice_aqc_get_phy_caps_data *caps;
775 const char *an_advertised;
776 const char *fec_req;
777 const char *speed;
778 const char *fec;
779 const char *fc;
780 const char *an;
781 int status;
782
783 if (!vsi)
784 return;
785
786 if (vsi->current_isup == isup)
787 return;
788
789 vsi->current_isup = isup;
790
791 if (!isup) {
792 netdev_info(vsi->netdev, "NIC Link is Down\n");
793 return;
794 }
795
796 switch (vsi->port_info->phy.link_info.link_speed) {
797 case ICE_AQ_LINK_SPEED_200GB:
798 speed = "200 G";
799 break;
800 case ICE_AQ_LINK_SPEED_100GB:
801 speed = "100 G";
802 break;
803 case ICE_AQ_LINK_SPEED_50GB:
804 speed = "50 G";
805 break;
806 case ICE_AQ_LINK_SPEED_40GB:
807 speed = "40 G";
808 break;
809 case ICE_AQ_LINK_SPEED_25GB:
810 speed = "25 G";
811 break;
812 case ICE_AQ_LINK_SPEED_20GB:
813 speed = "20 G";
814 break;
815 case ICE_AQ_LINK_SPEED_10GB:
816 speed = "10 G";
817 break;
818 case ICE_AQ_LINK_SPEED_5GB:
819 speed = "5 G";
820 break;
821 case ICE_AQ_LINK_SPEED_2500MB:
822 speed = "2.5 G";
823 break;
824 case ICE_AQ_LINK_SPEED_1000MB:
825 speed = "1 G";
826 break;
827 case ICE_AQ_LINK_SPEED_100MB:
828 speed = "100 M";
829 break;
830 default:
831 speed = "Unknown ";
832 break;
833 }
834
835 switch (vsi->port_info->fc.current_mode) {
836 case ICE_FC_FULL:
837 fc = "Rx/Tx";
838 break;
839 case ICE_FC_TX_PAUSE:
840 fc = "Tx";
841 break;
842 case ICE_FC_RX_PAUSE:
843 fc = "Rx";
844 break;
845 case ICE_FC_NONE:
846 fc = "None";
847 break;
848 default:
849 fc = "Unknown";
850 break;
851 }
852
853 /* Get FEC mode based on negotiated link info */
854 switch (vsi->port_info->phy.link_info.fec_info) {
855 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
856 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
857 fec = "RS-FEC";
858 break;
859 case ICE_AQ_LINK_25G_KR_FEC_EN:
860 fec = "FC-FEC/BASE-R";
861 break;
862 default:
863 fec = "NONE";
864 break;
865 }
866
867 /* check if autoneg completed, might be false due to not supported */
868 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
869 an = "True";
870 else
871 an = "False";
872
873 /* Get FEC mode requested based on PHY caps last SW configuration */
874 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
875 if (!caps) {
876 fec_req = "Unknown";
877 an_advertised = "Unknown";
878 goto done;
879 }
880
881 status = ice_aq_get_phy_caps(vsi->port_info, false,
882 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
883 if (status)
884 netdev_info(vsi->netdev, "Get phy capability failed.\n");
885
886 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
887
888 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
889 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
890 fec_req = "RS-FEC";
891 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
892 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
893 fec_req = "FC-FEC/BASE-R";
894 else
895 fec_req = "NONE";
896
897 kfree(caps);
898
899 done:
900 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
901 speed, fec_req, fec, an_advertised, an, fc);
902 ice_print_topo_conflict(vsi);
903 }
904
905 /**
906 * ice_vsi_link_event - update the VSI's netdev
907 * @vsi: the VSI on which the link event occurred
908 * @link_up: whether or not the VSI needs to be set up or down
909 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
911 {
912 if (!vsi)
913 return;
914
915 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
916 return;
917
918 if (vsi->type == ICE_VSI_PF) {
919 if (link_up == netif_carrier_ok(vsi->netdev))
920 return;
921
922 if (link_up) {
923 netif_carrier_on(vsi->netdev);
924 netif_tx_wake_all_queues(vsi->netdev);
925 } else {
926 netif_carrier_off(vsi->netdev);
927 netif_tx_stop_all_queues(vsi->netdev);
928 }
929 }
930 }
931
932 /**
933 * ice_set_dflt_mib - send a default config MIB to the FW
934 * @pf: private PF struct
935 *
936 * This function sends a default configuration MIB to the FW.
937 *
938 * If this function errors out at any point, the driver is still able to
939 * function. The main impact is that LFC may not operate as expected.
940 * Therefore an error state in this function should be treated with a DBG
941 * message and continue on with driver rebuild/reenable.
942 */
ice_set_dflt_mib(struct ice_pf * pf)943 static void ice_set_dflt_mib(struct ice_pf *pf)
944 {
945 struct device *dev = ice_pf_to_dev(pf);
946 u8 mib_type, *buf, *lldpmib = NULL;
947 u16 len, typelen, offset = 0;
948 struct ice_lldp_org_tlv *tlv;
949 struct ice_hw *hw = &pf->hw;
950 u32 ouisubtype;
951
952 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
953 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
954 if (!lldpmib) {
955 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
956 __func__);
957 return;
958 }
959
960 /* Add ETS CFG TLV */
961 tlv = (struct ice_lldp_org_tlv *)lldpmib;
962 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
963 ICE_IEEE_ETS_TLV_LEN);
964 tlv->typelen = htons(typelen);
965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
966 ICE_IEEE_SUBTYPE_ETS_CFG);
967 tlv->ouisubtype = htonl(ouisubtype);
968
969 buf = tlv->tlvinfo;
970 buf[0] = 0;
971
972 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
973 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
974 * Octets 13 - 20 are TSA values - leave as zeros
975 */
976 buf[5] = 0x64;
977 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
978 offset += len + 2;
979 tlv = (struct ice_lldp_org_tlv *)
980 ((char *)tlv + sizeof(tlv->typelen) + len);
981
982 /* Add ETS REC TLV */
983 buf = tlv->tlvinfo;
984 tlv->typelen = htons(typelen);
985
986 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
987 ICE_IEEE_SUBTYPE_ETS_REC);
988 tlv->ouisubtype = htonl(ouisubtype);
989
990 /* First octet of buf is reserved
991 * Octets 1 - 4 map UP to TC - all UPs map to zero
992 * Octets 5 - 12 are BW values - set TC 0 to 100%.
993 * Octets 13 - 20 are TSA value - leave as zeros
994 */
995 buf[5] = 0x64;
996 offset += len + 2;
997 tlv = (struct ice_lldp_org_tlv *)
998 ((char *)tlv + sizeof(tlv->typelen) + len);
999
1000 /* Add PFC CFG TLV */
1001 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1002 ICE_IEEE_PFC_TLV_LEN);
1003 tlv->typelen = htons(typelen);
1004
1005 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1006 ICE_IEEE_SUBTYPE_PFC_CFG);
1007 tlv->ouisubtype = htonl(ouisubtype);
1008
1009 /* Octet 1 left as all zeros - PFC disabled */
1010 buf[0] = 0x08;
1011 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1012 offset += len + 2;
1013
1014 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1015 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1016
1017 kfree(lldpmib);
1018 }
1019
1020 /**
1021 * ice_check_phy_fw_load - check if PHY FW load failed
1022 * @pf: pointer to PF struct
1023 * @link_cfg_err: bitmap from the link info structure
1024 *
1025 * check if external PHY FW load failed and print an error message if it did
1026 */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1028 {
1029 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1030 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1031 return;
1032 }
1033
1034 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1035 return;
1036
1037 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1038 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1039 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1040 }
1041 }
1042
1043 /**
1044 * ice_check_module_power
1045 * @pf: pointer to PF struct
1046 * @link_cfg_err: bitmap from the link info structure
1047 *
1048 * check module power level returned by a previous call to aq_get_link_info
1049 * and print error messages if module power level is not supported
1050 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1052 {
1053 /* if module power level is supported, clear the flag */
1054 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1055 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1056 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1057 return;
1058 }
1059
1060 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1061 * above block didn't clear this bit, there's nothing to do
1062 */
1063 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1064 return;
1065
1066 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1067 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1068 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1069 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1070 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1071 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1072 }
1073 }
1074
1075 /**
1076 * ice_check_link_cfg_err - check if link configuration failed
1077 * @pf: pointer to the PF struct
1078 * @link_cfg_err: bitmap from the link info structure
1079 *
1080 * print if any link configuration failure happens due to the value in the
1081 * link_cfg_err parameter in the link info structure
1082 */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1084 {
1085 ice_check_module_power(pf, link_cfg_err);
1086 ice_check_phy_fw_load(pf, link_cfg_err);
1087 }
1088
1089 /**
1090 * ice_link_event - process the link event
1091 * @pf: PF that the link event is associated with
1092 * @pi: port_info for the port that the link event is associated with
1093 * @link_up: true if the physical link is up and false if it is down
1094 * @link_speed: current link speed received from the link event
1095 *
1096 * Returns 0 on success and negative on failure
1097 */
1098 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1100 u16 link_speed)
1101 {
1102 struct device *dev = ice_pf_to_dev(pf);
1103 struct ice_phy_info *phy_info;
1104 struct ice_vsi *vsi;
1105 u16 old_link_speed;
1106 bool old_link;
1107 int status;
1108
1109 phy_info = &pi->phy;
1110 phy_info->link_info_old = phy_info->link_info;
1111
1112 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1113 old_link_speed = phy_info->link_info_old.link_speed;
1114
1115 /* update the link info structures and re-enable link events,
1116 * don't bail on failure due to other book keeping needed
1117 */
1118 status = ice_update_link_info(pi);
1119 if (status)
1120 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1121 pi->lport, status,
1122 ice_aq_str(pi->hw->adminq.sq_last_status));
1123
1124 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1125
1126 /* Check if the link state is up after updating link info, and treat
1127 * this event as an UP event since the link is actually UP now.
1128 */
1129 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1130 link_up = true;
1131
1132 vsi = ice_get_main_vsi(pf);
1133 if (!vsi || !vsi->port_info)
1134 return -EINVAL;
1135
1136 /* turn off PHY if media was removed */
1137 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1138 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1139 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1140 ice_set_link(vsi, false);
1141 }
1142
1143 /* if the old link up/down and speed is the same as the new */
1144 if (link_up == old_link && link_speed == old_link_speed)
1145 return 0;
1146
1147 ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1148
1149 if (ice_is_dcb_active(pf)) {
1150 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1151 ice_dcb_rebuild(pf);
1152 } else {
1153 if (link_up)
1154 ice_set_dflt_mib(pf);
1155 }
1156 ice_vsi_link_event(vsi, link_up);
1157 ice_print_link_msg(vsi, link_up);
1158
1159 ice_vc_notify_link_state(pf);
1160
1161 return 0;
1162 }
1163
1164 /**
1165 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1166 * @pf: board private structure
1167 */
ice_watchdog_subtask(struct ice_pf * pf)1168 static void ice_watchdog_subtask(struct ice_pf *pf)
1169 {
1170 int i;
1171
1172 /* if interface is down do nothing */
1173 if (test_bit(ICE_DOWN, pf->state) ||
1174 test_bit(ICE_CFG_BUSY, pf->state))
1175 return;
1176
1177 /* make sure we don't do these things too often */
1178 if (time_before(jiffies,
1179 pf->serv_tmr_prev + pf->serv_tmr_period))
1180 return;
1181
1182 pf->serv_tmr_prev = jiffies;
1183
1184 /* Update the stats for active netdevs so the network stack
1185 * can look at updated numbers whenever it cares to
1186 */
1187 ice_update_pf_stats(pf);
1188 ice_for_each_vsi(pf, i)
1189 if (pf->vsi[i] && pf->vsi[i]->netdev)
1190 ice_update_vsi_stats(pf->vsi[i]);
1191 }
1192
1193 /**
1194 * ice_init_link_events - enable/initialize link events
1195 * @pi: pointer to the port_info instance
1196 *
1197 * Returns -EIO on failure, 0 on success
1198 */
ice_init_link_events(struct ice_port_info * pi)1199 static int ice_init_link_events(struct ice_port_info *pi)
1200 {
1201 u16 mask;
1202
1203 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1204 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1205 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1206
1207 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1209 pi->lport);
1210 return -EIO;
1211 }
1212
1213 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1215 pi->lport);
1216 return -EIO;
1217 }
1218
1219 return 0;
1220 }
1221
1222 /**
1223 * ice_handle_link_event - handle link event via ARQ
1224 * @pf: PF that the link event is associated with
1225 * @event: event structure containing link status info
1226 */
1227 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1228 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1229 {
1230 struct ice_aqc_get_link_status_data *link_data;
1231 struct ice_port_info *port_info;
1232 int status;
1233
1234 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1235 port_info = pf->hw.port_info;
1236 if (!port_info)
1237 return -EINVAL;
1238
1239 status = ice_link_event(pf, port_info,
1240 !!(link_data->link_info & ICE_AQ_LINK_UP),
1241 le16_to_cpu(link_data->link_speed));
1242 if (status)
1243 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1244 status);
1245
1246 return status;
1247 }
1248
1249 /**
1250 * ice_get_fwlog_data - copy the FW log data from ARQ event
1251 * @pf: PF that the FW log event is associated with
1252 * @event: event structure containing FW log data
1253 */
1254 static void
ice_get_fwlog_data(struct ice_pf * pf,struct ice_rq_event_info * event)1255 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1256 {
1257 struct ice_fwlog_data *fwlog;
1258 struct ice_hw *hw = &pf->hw;
1259
1260 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1261
1262 memset(fwlog->data, 0, PAGE_SIZE);
1263 fwlog->data_size = le16_to_cpu(event->desc.datalen);
1264
1265 memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1266 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1267
1268 if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1269 /* the rings are full so bump the head to create room */
1270 ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1271 hw->fwlog_ring.size);
1272 }
1273 }
1274
1275 /**
1276 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1277 * @pf: pointer to the PF private structure
1278 * @task: intermediate helper storage and identifier for waiting
1279 * @opcode: the opcode to wait for
1280 *
1281 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1282 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1283 *
1284 * Calls are separated to allow caller registering for event before sending
1285 * the command, which mitigates a race between registering and FW responding.
1286 *
1287 * To obtain only the descriptor contents, pass an task->event with null
1288 * msg_buf. If the complete data buffer is desired, allocate the
1289 * task->event.msg_buf with enough space ahead of time.
1290 */
ice_aq_prep_for_event(struct ice_pf * pf,struct ice_aq_task * task,u16 opcode)1291 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1292 u16 opcode)
1293 {
1294 INIT_HLIST_NODE(&task->entry);
1295 task->opcode = opcode;
1296 task->state = ICE_AQ_TASK_WAITING;
1297
1298 spin_lock_bh(&pf->aq_wait_lock);
1299 hlist_add_head(&task->entry, &pf->aq_wait_list);
1300 spin_unlock_bh(&pf->aq_wait_lock);
1301 }
1302
1303 /**
1304 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1305 * @pf: pointer to the PF private structure
1306 * @task: ptr prepared by ice_aq_prep_for_event()
1307 * @timeout: how long to wait, in jiffies
1308 *
1309 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1310 * current thread will be put to sleep until the specified event occurs or
1311 * until the given timeout is reached.
1312 *
1313 * Returns: zero on success, or a negative error code on failure.
1314 */
ice_aq_wait_for_event(struct ice_pf * pf,struct ice_aq_task * task,unsigned long timeout)1315 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1316 unsigned long timeout)
1317 {
1318 enum ice_aq_task_state *state = &task->state;
1319 struct device *dev = ice_pf_to_dev(pf);
1320 unsigned long start = jiffies;
1321 long ret;
1322 int err;
1323
1324 ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1325 *state != ICE_AQ_TASK_WAITING,
1326 timeout);
1327 switch (*state) {
1328 case ICE_AQ_TASK_NOT_PREPARED:
1329 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1330 err = -EINVAL;
1331 break;
1332 case ICE_AQ_TASK_WAITING:
1333 err = ret < 0 ? ret : -ETIMEDOUT;
1334 break;
1335 case ICE_AQ_TASK_CANCELED:
1336 err = ret < 0 ? ret : -ECANCELED;
1337 break;
1338 case ICE_AQ_TASK_COMPLETE:
1339 err = ret < 0 ? ret : 0;
1340 break;
1341 default:
1342 WARN(1, "Unexpected AdminQ wait task state %u", *state);
1343 err = -EINVAL;
1344 break;
1345 }
1346
1347 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1348 jiffies_to_msecs(jiffies - start),
1349 jiffies_to_msecs(timeout),
1350 task->opcode);
1351
1352 spin_lock_bh(&pf->aq_wait_lock);
1353 hlist_del(&task->entry);
1354 spin_unlock_bh(&pf->aq_wait_lock);
1355
1356 return err;
1357 }
1358
1359 /**
1360 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1361 * @pf: pointer to the PF private structure
1362 * @opcode: the opcode of the event
1363 * @event: the event to check
1364 *
1365 * Loops over the current list of pending threads waiting for an AdminQ event.
1366 * For each matching task, copy the contents of the event into the task
1367 * structure and wake up the thread.
1368 *
1369 * If multiple threads wait for the same opcode, they will all be woken up.
1370 *
1371 * Note that event->msg_buf will only be duplicated if the event has a buffer
1372 * with enough space already allocated. Otherwise, only the descriptor and
1373 * message length will be copied.
1374 *
1375 * Returns: true if an event was found, false otherwise
1376 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1377 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1378 struct ice_rq_event_info *event)
1379 {
1380 struct ice_rq_event_info *task_ev;
1381 struct ice_aq_task *task;
1382 bool found = false;
1383
1384 spin_lock_bh(&pf->aq_wait_lock);
1385 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1386 if (task->state != ICE_AQ_TASK_WAITING)
1387 continue;
1388 if (task->opcode != opcode)
1389 continue;
1390
1391 task_ev = &task->event;
1392 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1393 task_ev->msg_len = event->msg_len;
1394
1395 /* Only copy the data buffer if a destination was set */
1396 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1397 memcpy(task_ev->msg_buf, event->msg_buf,
1398 event->buf_len);
1399 task_ev->buf_len = event->buf_len;
1400 }
1401
1402 task->state = ICE_AQ_TASK_COMPLETE;
1403 found = true;
1404 }
1405 spin_unlock_bh(&pf->aq_wait_lock);
1406
1407 if (found)
1408 wake_up(&pf->aq_wait_queue);
1409 }
1410
1411 /**
1412 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1413 * @pf: the PF private structure
1414 *
1415 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1416 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1417 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1418 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1419 {
1420 struct ice_aq_task *task;
1421
1422 spin_lock_bh(&pf->aq_wait_lock);
1423 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1424 task->state = ICE_AQ_TASK_CANCELED;
1425 spin_unlock_bh(&pf->aq_wait_lock);
1426
1427 wake_up(&pf->aq_wait_queue);
1428 }
1429
1430 #define ICE_MBX_OVERFLOW_WATERMARK 64
1431
1432 /**
1433 * __ice_clean_ctrlq - helper function to clean controlq rings
1434 * @pf: ptr to struct ice_pf
1435 * @q_type: specific Control queue type
1436 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1437 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1438 {
1439 struct device *dev = ice_pf_to_dev(pf);
1440 struct ice_rq_event_info event;
1441 struct ice_hw *hw = &pf->hw;
1442 struct ice_ctl_q_info *cq;
1443 u16 pending, i = 0;
1444 const char *qtype;
1445 u32 oldval, val;
1446
1447 /* Do not clean control queue if/when PF reset fails */
1448 if (test_bit(ICE_RESET_FAILED, pf->state))
1449 return 0;
1450
1451 switch (q_type) {
1452 case ICE_CTL_Q_ADMIN:
1453 cq = &hw->adminq;
1454 qtype = "Admin";
1455 break;
1456 case ICE_CTL_Q_SB:
1457 cq = &hw->sbq;
1458 qtype = "Sideband";
1459 break;
1460 case ICE_CTL_Q_MAILBOX:
1461 cq = &hw->mailboxq;
1462 qtype = "Mailbox";
1463 /* we are going to try to detect a malicious VF, so set the
1464 * state to begin detection
1465 */
1466 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1467 break;
1468 default:
1469 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1470 return 0;
1471 }
1472
1473 /* check for error indications - PF_xx_AxQLEN register layout for
1474 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1475 */
1476 val = rd32(hw, cq->rq.len);
1477 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1478 PF_FW_ARQLEN_ARQCRIT_M)) {
1479 oldval = val;
1480 if (val & PF_FW_ARQLEN_ARQVFE_M)
1481 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1482 qtype);
1483 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1484 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1485 qtype);
1486 }
1487 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1488 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1489 qtype);
1490 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1491 PF_FW_ARQLEN_ARQCRIT_M);
1492 if (oldval != val)
1493 wr32(hw, cq->rq.len, val);
1494 }
1495
1496 val = rd32(hw, cq->sq.len);
1497 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1498 PF_FW_ATQLEN_ATQCRIT_M)) {
1499 oldval = val;
1500 if (val & PF_FW_ATQLEN_ATQVFE_M)
1501 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1502 qtype);
1503 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1504 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1505 qtype);
1506 }
1507 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1508 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1509 qtype);
1510 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1511 PF_FW_ATQLEN_ATQCRIT_M);
1512 if (oldval != val)
1513 wr32(hw, cq->sq.len, val);
1514 }
1515
1516 event.buf_len = cq->rq_buf_size;
1517 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1518 if (!event.msg_buf)
1519 return 0;
1520
1521 do {
1522 struct ice_mbx_data data = {};
1523 u16 opcode;
1524 int ret;
1525
1526 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1527 if (ret == -EALREADY)
1528 break;
1529 if (ret) {
1530 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1531 ret);
1532 break;
1533 }
1534
1535 opcode = le16_to_cpu(event.desc.opcode);
1536
1537 /* Notify any thread that might be waiting for this event */
1538 ice_aq_check_events(pf, opcode, &event);
1539
1540 switch (opcode) {
1541 case ice_aqc_opc_get_link_status:
1542 if (ice_handle_link_event(pf, &event))
1543 dev_err(dev, "Could not handle link event\n");
1544 break;
1545 case ice_aqc_opc_event_lan_overflow:
1546 ice_vf_lan_overflow_event(pf, &event);
1547 break;
1548 case ice_mbx_opc_send_msg_to_pf:
1549 data.num_msg_proc = i;
1550 data.num_pending_arq = pending;
1551 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries;
1552 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1553
1554 ice_vc_process_vf_msg(pf, &event, &data);
1555 break;
1556 case ice_aqc_opc_fw_logs_event:
1557 ice_get_fwlog_data(pf, &event);
1558 break;
1559 case ice_aqc_opc_lldp_set_mib_change:
1560 ice_dcb_process_lldp_set_mib_change(pf, &event);
1561 break;
1562 default:
1563 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1564 qtype, opcode);
1565 break;
1566 }
1567 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1568
1569 kfree(event.msg_buf);
1570
1571 return pending && (i == ICE_DFLT_IRQ_WORK);
1572 }
1573
1574 /**
1575 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1576 * @hw: pointer to hardware info
1577 * @cq: control queue information
1578 *
1579 * returns true if there are pending messages in a queue, false if there aren't
1580 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1581 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1582 {
1583 u16 ntu;
1584
1585 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1586 return cq->rq.next_to_clean != ntu;
1587 }
1588
1589 /**
1590 * ice_clean_adminq_subtask - clean the AdminQ rings
1591 * @pf: board private structure
1592 */
ice_clean_adminq_subtask(struct ice_pf * pf)1593 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1594 {
1595 struct ice_hw *hw = &pf->hw;
1596
1597 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1598 return;
1599
1600 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1601 return;
1602
1603 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1604
1605 /* There might be a situation where new messages arrive to a control
1606 * queue between processing the last message and clearing the
1607 * EVENT_PENDING bit. So before exiting, check queue head again (using
1608 * ice_ctrlq_pending) and process new messages if any.
1609 */
1610 if (ice_ctrlq_pending(hw, &hw->adminq))
1611 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1612
1613 ice_flush(hw);
1614 }
1615
1616 /**
1617 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1618 * @pf: board private structure
1619 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1620 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1621 {
1622 struct ice_hw *hw = &pf->hw;
1623
1624 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1625 return;
1626
1627 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1628 return;
1629
1630 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1631
1632 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1633 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1634
1635 ice_flush(hw);
1636 }
1637
1638 /**
1639 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1640 * @pf: board private structure
1641 */
ice_clean_sbq_subtask(struct ice_pf * pf)1642 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1643 {
1644 struct ice_hw *hw = &pf->hw;
1645
1646 /* if mac_type is not generic, sideband is not supported
1647 * and there's nothing to do here
1648 */
1649 if (!ice_is_generic_mac(hw)) {
1650 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1651 return;
1652 }
1653
1654 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1655 return;
1656
1657 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1658 return;
1659
1660 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1661
1662 if (ice_ctrlq_pending(hw, &hw->sbq))
1663 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1664
1665 ice_flush(hw);
1666 }
1667
1668 /**
1669 * ice_service_task_schedule - schedule the service task to wake up
1670 * @pf: board private structure
1671 *
1672 * If not already scheduled, this puts the task into the work queue.
1673 */
ice_service_task_schedule(struct ice_pf * pf)1674 void ice_service_task_schedule(struct ice_pf *pf)
1675 {
1676 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1677 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1678 !test_bit(ICE_NEEDS_RESTART, pf->state))
1679 queue_work(ice_wq, &pf->serv_task);
1680 }
1681
1682 /**
1683 * ice_service_task_complete - finish up the service task
1684 * @pf: board private structure
1685 */
ice_service_task_complete(struct ice_pf * pf)1686 static void ice_service_task_complete(struct ice_pf *pf)
1687 {
1688 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1689
1690 /* force memory (pf->state) to sync before next service task */
1691 smp_mb__before_atomic();
1692 clear_bit(ICE_SERVICE_SCHED, pf->state);
1693 }
1694
1695 /**
1696 * ice_service_task_stop - stop service task and cancel works
1697 * @pf: board private structure
1698 *
1699 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1700 * 1 otherwise.
1701 */
ice_service_task_stop(struct ice_pf * pf)1702 static int ice_service_task_stop(struct ice_pf *pf)
1703 {
1704 int ret;
1705
1706 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1707
1708 if (pf->serv_tmr.function)
1709 del_timer_sync(&pf->serv_tmr);
1710 if (pf->serv_task.func)
1711 cancel_work_sync(&pf->serv_task);
1712
1713 clear_bit(ICE_SERVICE_SCHED, pf->state);
1714 return ret;
1715 }
1716
1717 /**
1718 * ice_service_task_restart - restart service task and schedule works
1719 * @pf: board private structure
1720 *
1721 * This function is needed for suspend and resume works (e.g WoL scenario)
1722 */
ice_service_task_restart(struct ice_pf * pf)1723 static void ice_service_task_restart(struct ice_pf *pf)
1724 {
1725 clear_bit(ICE_SERVICE_DIS, pf->state);
1726 ice_service_task_schedule(pf);
1727 }
1728
1729 /**
1730 * ice_service_timer - timer callback to schedule service task
1731 * @t: pointer to timer_list
1732 */
ice_service_timer(struct timer_list * t)1733 static void ice_service_timer(struct timer_list *t)
1734 {
1735 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1736
1737 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1738 ice_service_task_schedule(pf);
1739 }
1740
1741 /**
1742 * ice_mdd_maybe_reset_vf - reset VF after MDD event
1743 * @pf: pointer to the PF structure
1744 * @vf: pointer to the VF structure
1745 * @reset_vf_tx: whether Tx MDD has occurred
1746 * @reset_vf_rx: whether Rx MDD has occurred
1747 *
1748 * Since the queue can get stuck on VF MDD events, the PF can be configured to
1749 * automatically reset the VF by enabling the private ethtool flag
1750 * mdd-auto-reset-vf.
1751 */
ice_mdd_maybe_reset_vf(struct ice_pf * pf,struct ice_vf * vf,bool reset_vf_tx,bool reset_vf_rx)1752 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf,
1753 bool reset_vf_tx, bool reset_vf_rx)
1754 {
1755 struct device *dev = ice_pf_to_dev(pf);
1756
1757 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1758 return;
1759
1760 /* VF MDD event counters will be cleared by reset, so print the event
1761 * prior to reset.
1762 */
1763 if (reset_vf_tx)
1764 ice_print_vf_tx_mdd_event(vf);
1765
1766 if (reset_vf_rx)
1767 ice_print_vf_rx_mdd_event(vf);
1768
1769 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n",
1770 pf->hw.pf_id, vf->vf_id);
1771 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1772 }
1773
1774 /**
1775 * ice_handle_mdd_event - handle malicious driver detect event
1776 * @pf: pointer to the PF structure
1777 *
1778 * Called from service task. OICR interrupt handler indicates MDD event.
1779 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1780 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1781 * disable the queue, the PF can be configured to reset the VF using ethtool
1782 * private flag mdd-auto-reset-vf.
1783 */
ice_handle_mdd_event(struct ice_pf * pf)1784 static void ice_handle_mdd_event(struct ice_pf *pf)
1785 {
1786 struct device *dev = ice_pf_to_dev(pf);
1787 struct ice_hw *hw = &pf->hw;
1788 struct ice_vf *vf;
1789 unsigned int bkt;
1790 u32 reg;
1791
1792 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1793 /* Since the VF MDD event logging is rate limited, check if
1794 * there are pending MDD events.
1795 */
1796 ice_print_vfs_mdd_events(pf);
1797 return;
1798 }
1799
1800 /* find what triggered an MDD event */
1801 reg = rd32(hw, GL_MDET_TX_PQM);
1802 if (reg & GL_MDET_TX_PQM_VALID_M) {
1803 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1804 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1805 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1806 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1807
1808 if (netif_msg_tx_err(pf))
1809 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1810 event, queue, pf_num, vf_num);
1811 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1812 }
1813
1814 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1815 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1816 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1817 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1818 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1819 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1820
1821 if (netif_msg_tx_err(pf))
1822 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1823 event, queue, pf_num, vf_num);
1824 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1825 }
1826
1827 reg = rd32(hw, GL_MDET_RX);
1828 if (reg & GL_MDET_RX_VALID_M) {
1829 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1830 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1831 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1832 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1833
1834 if (netif_msg_rx_err(pf))
1835 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1836 event, queue, pf_num, vf_num);
1837 wr32(hw, GL_MDET_RX, 0xffffffff);
1838 }
1839
1840 /* check to see if this PF caused an MDD event */
1841 reg = rd32(hw, PF_MDET_TX_PQM);
1842 if (reg & PF_MDET_TX_PQM_VALID_M) {
1843 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1844 if (netif_msg_tx_err(pf))
1845 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1846 }
1847
1848 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1849 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1850 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1851 if (netif_msg_tx_err(pf))
1852 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1853 }
1854
1855 reg = rd32(hw, PF_MDET_RX);
1856 if (reg & PF_MDET_RX_VALID_M) {
1857 wr32(hw, PF_MDET_RX, 0xFFFF);
1858 if (netif_msg_rx_err(pf))
1859 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1860 }
1861
1862 /* Check to see if one of the VFs caused an MDD event, and then
1863 * increment counters and set print pending
1864 */
1865 mutex_lock(&pf->vfs.table_lock);
1866 ice_for_each_vf(pf, bkt, vf) {
1867 bool reset_vf_tx = false, reset_vf_rx = false;
1868
1869 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1870 if (reg & VP_MDET_TX_PQM_VALID_M) {
1871 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1872 vf->mdd_tx_events.count++;
1873 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1874 if (netif_msg_tx_err(pf))
1875 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1876 vf->vf_id);
1877
1878 reset_vf_tx = true;
1879 }
1880
1881 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1882 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1883 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1884 vf->mdd_tx_events.count++;
1885 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1886 if (netif_msg_tx_err(pf))
1887 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1888 vf->vf_id);
1889
1890 reset_vf_tx = true;
1891 }
1892
1893 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1894 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1895 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1896 vf->mdd_tx_events.count++;
1897 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1898 if (netif_msg_tx_err(pf))
1899 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1900 vf->vf_id);
1901
1902 reset_vf_tx = true;
1903 }
1904
1905 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1906 if (reg & VP_MDET_RX_VALID_M) {
1907 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1908 vf->mdd_rx_events.count++;
1909 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1910 if (netif_msg_rx_err(pf))
1911 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1912 vf->vf_id);
1913
1914 reset_vf_rx = true;
1915 }
1916
1917 if (reset_vf_tx || reset_vf_rx)
1918 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx,
1919 reset_vf_rx);
1920 }
1921 mutex_unlock(&pf->vfs.table_lock);
1922
1923 ice_print_vfs_mdd_events(pf);
1924 }
1925
1926 /**
1927 * ice_force_phys_link_state - Force the physical link state
1928 * @vsi: VSI to force the physical link state to up/down
1929 * @link_up: true/false indicates to set the physical link to up/down
1930 *
1931 * Force the physical link state by getting the current PHY capabilities from
1932 * hardware and setting the PHY config based on the determined capabilities. If
1933 * link changes a link event will be triggered because both the Enable Automatic
1934 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1935 *
1936 * Returns 0 on success, negative on failure
1937 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1938 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1939 {
1940 struct ice_aqc_get_phy_caps_data *pcaps;
1941 struct ice_aqc_set_phy_cfg_data *cfg;
1942 struct ice_port_info *pi;
1943 struct device *dev;
1944 int retcode;
1945
1946 if (!vsi || !vsi->port_info || !vsi->back)
1947 return -EINVAL;
1948 if (vsi->type != ICE_VSI_PF)
1949 return 0;
1950
1951 dev = ice_pf_to_dev(vsi->back);
1952
1953 pi = vsi->port_info;
1954
1955 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1956 if (!pcaps)
1957 return -ENOMEM;
1958
1959 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1960 NULL);
1961 if (retcode) {
1962 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1963 vsi->vsi_num, retcode);
1964 retcode = -EIO;
1965 goto out;
1966 }
1967
1968 /* No change in link */
1969 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1970 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1971 goto out;
1972
1973 /* Use the current user PHY configuration. The current user PHY
1974 * configuration is initialized during probe from PHY capabilities
1975 * software mode, and updated on set PHY configuration.
1976 */
1977 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1978 if (!cfg) {
1979 retcode = -ENOMEM;
1980 goto out;
1981 }
1982
1983 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1984 if (link_up)
1985 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1986 else
1987 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1988
1989 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1990 if (retcode) {
1991 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1992 vsi->vsi_num, retcode);
1993 retcode = -EIO;
1994 }
1995
1996 kfree(cfg);
1997 out:
1998 kfree(pcaps);
1999 return retcode;
2000 }
2001
2002 /**
2003 * ice_init_nvm_phy_type - Initialize the NVM PHY type
2004 * @pi: port info structure
2005 *
2006 * Initialize nvm_phy_type_[low|high] for link lenient mode support
2007 */
ice_init_nvm_phy_type(struct ice_port_info * pi)2008 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
2009 {
2010 struct ice_aqc_get_phy_caps_data *pcaps;
2011 struct ice_pf *pf = pi->hw->back;
2012 int err;
2013
2014 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2015 if (!pcaps)
2016 return -ENOMEM;
2017
2018 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
2019 pcaps, NULL);
2020
2021 if (err) {
2022 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2023 goto out;
2024 }
2025
2026 pf->nvm_phy_type_hi = pcaps->phy_type_high;
2027 pf->nvm_phy_type_lo = pcaps->phy_type_low;
2028
2029 out:
2030 kfree(pcaps);
2031 return err;
2032 }
2033
2034 /**
2035 * ice_init_link_dflt_override - Initialize link default override
2036 * @pi: port info structure
2037 *
2038 * Initialize link default override and PHY total port shutdown during probe
2039 */
ice_init_link_dflt_override(struct ice_port_info * pi)2040 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2041 {
2042 struct ice_link_default_override_tlv *ldo;
2043 struct ice_pf *pf = pi->hw->back;
2044
2045 ldo = &pf->link_dflt_override;
2046 if (ice_get_link_default_override(ldo, pi))
2047 return;
2048
2049 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2050 return;
2051
2052 /* Enable Total Port Shutdown (override/replace link-down-on-close
2053 * ethtool private flag) for ports with Port Disable bit set.
2054 */
2055 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2056 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2057 }
2058
2059 /**
2060 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2061 * @pi: port info structure
2062 *
2063 * If default override is enabled, initialize the user PHY cfg speed and FEC
2064 * settings using the default override mask from the NVM.
2065 *
2066 * The PHY should only be configured with the default override settings the
2067 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2068 * is used to indicate that the user PHY cfg default override is initialized
2069 * and the PHY has not been configured with the default override settings. The
2070 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2071 * configured.
2072 *
2073 * This function should be called only if the FW doesn't support default
2074 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2075 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)2076 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2077 {
2078 struct ice_link_default_override_tlv *ldo;
2079 struct ice_aqc_set_phy_cfg_data *cfg;
2080 struct ice_phy_info *phy = &pi->phy;
2081 struct ice_pf *pf = pi->hw->back;
2082
2083 ldo = &pf->link_dflt_override;
2084
2085 /* If link default override is enabled, use to mask NVM PHY capabilities
2086 * for speed and FEC default configuration.
2087 */
2088 cfg = &phy->curr_user_phy_cfg;
2089
2090 if (ldo->phy_type_low || ldo->phy_type_high) {
2091 cfg->phy_type_low = pf->nvm_phy_type_lo &
2092 cpu_to_le64(ldo->phy_type_low);
2093 cfg->phy_type_high = pf->nvm_phy_type_hi &
2094 cpu_to_le64(ldo->phy_type_high);
2095 }
2096 cfg->link_fec_opt = ldo->fec_options;
2097 phy->curr_user_fec_req = ICE_FEC_AUTO;
2098
2099 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2100 }
2101
2102 /**
2103 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2104 * @pi: port info structure
2105 *
2106 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2107 * mode to default. The PHY defaults are from get PHY capabilities topology
2108 * with media so call when media is first available. An error is returned if
2109 * called when media is not available. The PHY initialization completed state is
2110 * set here.
2111 *
2112 * These configurations are used when setting PHY
2113 * configuration. The user PHY configuration is updated on set PHY
2114 * configuration. Returns 0 on success, negative on failure
2115 */
ice_init_phy_user_cfg(struct ice_port_info * pi)2116 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2117 {
2118 struct ice_aqc_get_phy_caps_data *pcaps;
2119 struct ice_phy_info *phy = &pi->phy;
2120 struct ice_pf *pf = pi->hw->back;
2121 int err;
2122
2123 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2124 return -EIO;
2125
2126 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2127 if (!pcaps)
2128 return -ENOMEM;
2129
2130 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2131 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2132 pcaps, NULL);
2133 else
2134 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2135 pcaps, NULL);
2136 if (err) {
2137 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2138 goto err_out;
2139 }
2140
2141 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2142
2143 /* check if lenient mode is supported and enabled */
2144 if (ice_fw_supports_link_override(pi->hw) &&
2145 !(pcaps->module_compliance_enforcement &
2146 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2147 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2148
2149 /* if the FW supports default PHY configuration mode, then the driver
2150 * does not have to apply link override settings. If not,
2151 * initialize user PHY configuration with link override values
2152 */
2153 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2154 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2155 ice_init_phy_cfg_dflt_override(pi);
2156 goto out;
2157 }
2158 }
2159
2160 /* if link default override is not enabled, set user flow control and
2161 * FEC settings based on what get_phy_caps returned
2162 */
2163 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2164 pcaps->link_fec_options);
2165 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2166
2167 out:
2168 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2169 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2170 err_out:
2171 kfree(pcaps);
2172 return err;
2173 }
2174
2175 /**
2176 * ice_configure_phy - configure PHY
2177 * @vsi: VSI of PHY
2178 *
2179 * Set the PHY configuration. If the current PHY configuration is the same as
2180 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2181 * configure the based get PHY capabilities for topology with media.
2182 */
ice_configure_phy(struct ice_vsi * vsi)2183 static int ice_configure_phy(struct ice_vsi *vsi)
2184 {
2185 struct device *dev = ice_pf_to_dev(vsi->back);
2186 struct ice_port_info *pi = vsi->port_info;
2187 struct ice_aqc_get_phy_caps_data *pcaps;
2188 struct ice_aqc_set_phy_cfg_data *cfg;
2189 struct ice_phy_info *phy = &pi->phy;
2190 struct ice_pf *pf = vsi->back;
2191 int err;
2192
2193 /* Ensure we have media as we cannot configure a medialess port */
2194 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2195 return -ENOMEDIUM;
2196
2197 ice_print_topo_conflict(vsi);
2198
2199 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2200 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2201 return -EPERM;
2202
2203 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2204 return ice_force_phys_link_state(vsi, true);
2205
2206 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2207 if (!pcaps)
2208 return -ENOMEM;
2209
2210 /* Get current PHY config */
2211 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2212 NULL);
2213 if (err) {
2214 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2215 vsi->vsi_num, err);
2216 goto done;
2217 }
2218
2219 /* If PHY enable link is configured and configuration has not changed,
2220 * there's nothing to do
2221 */
2222 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2223 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2224 goto done;
2225
2226 /* Use PHY topology as baseline for configuration */
2227 memset(pcaps, 0, sizeof(*pcaps));
2228 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2229 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2230 pcaps, NULL);
2231 else
2232 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2233 pcaps, NULL);
2234 if (err) {
2235 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2236 vsi->vsi_num, err);
2237 goto done;
2238 }
2239
2240 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2241 if (!cfg) {
2242 err = -ENOMEM;
2243 goto done;
2244 }
2245
2246 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2247
2248 /* Speed - If default override pending, use curr_user_phy_cfg set in
2249 * ice_init_phy_user_cfg_ldo.
2250 */
2251 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2252 vsi->back->state)) {
2253 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2254 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2255 } else {
2256 u64 phy_low = 0, phy_high = 0;
2257
2258 ice_update_phy_type(&phy_low, &phy_high,
2259 pi->phy.curr_user_speed_req);
2260 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2261 cfg->phy_type_high = pcaps->phy_type_high &
2262 cpu_to_le64(phy_high);
2263 }
2264
2265 /* Can't provide what was requested; use PHY capabilities */
2266 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2267 cfg->phy_type_low = pcaps->phy_type_low;
2268 cfg->phy_type_high = pcaps->phy_type_high;
2269 }
2270
2271 /* FEC */
2272 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2273
2274 /* Can't provide what was requested; use PHY capabilities */
2275 if (cfg->link_fec_opt !=
2276 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2277 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2278 cfg->link_fec_opt = pcaps->link_fec_options;
2279 }
2280
2281 /* Flow Control - always supported; no need to check against
2282 * capabilities
2283 */
2284 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2285
2286 /* Enable link and link update */
2287 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2288
2289 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2290 if (err)
2291 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2292 vsi->vsi_num, err);
2293
2294 kfree(cfg);
2295 done:
2296 kfree(pcaps);
2297 return err;
2298 }
2299
2300 /**
2301 * ice_check_media_subtask - Check for media
2302 * @pf: pointer to PF struct
2303 *
2304 * If media is available, then initialize PHY user configuration if it is not
2305 * been, and configure the PHY if the interface is up.
2306 */
ice_check_media_subtask(struct ice_pf * pf)2307 static void ice_check_media_subtask(struct ice_pf *pf)
2308 {
2309 struct ice_port_info *pi;
2310 struct ice_vsi *vsi;
2311 int err;
2312
2313 /* No need to check for media if it's already present */
2314 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2315 return;
2316
2317 vsi = ice_get_main_vsi(pf);
2318 if (!vsi)
2319 return;
2320
2321 /* Refresh link info and check if media is present */
2322 pi = vsi->port_info;
2323 err = ice_update_link_info(pi);
2324 if (err)
2325 return;
2326
2327 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2328
2329 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2330 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2331 ice_init_phy_user_cfg(pi);
2332
2333 /* PHY settings are reset on media insertion, reconfigure
2334 * PHY to preserve settings.
2335 */
2336 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2337 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2338 return;
2339
2340 err = ice_configure_phy(vsi);
2341 if (!err)
2342 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2343
2344 /* A Link Status Event will be generated; the event handler
2345 * will complete bringing the interface up
2346 */
2347 }
2348 }
2349
2350 /**
2351 * ice_service_task - manage and run subtasks
2352 * @work: pointer to work_struct contained by the PF struct
2353 */
ice_service_task(struct work_struct * work)2354 static void ice_service_task(struct work_struct *work)
2355 {
2356 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2357 unsigned long start_time = jiffies;
2358
2359 /* subtasks */
2360
2361 /* process reset requests first */
2362 ice_reset_subtask(pf);
2363
2364 /* bail if a reset/recovery cycle is pending or rebuild failed */
2365 if (ice_is_reset_in_progress(pf->state) ||
2366 test_bit(ICE_SUSPENDED, pf->state) ||
2367 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2368 ice_service_task_complete(pf);
2369 return;
2370 }
2371
2372 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2373 struct iidc_event *event;
2374
2375 event = kzalloc(sizeof(*event), GFP_KERNEL);
2376 if (event) {
2377 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2378 /* report the entire OICR value to AUX driver */
2379 swap(event->reg, pf->oicr_err_reg);
2380 ice_send_event_to_aux(pf, event);
2381 kfree(event);
2382 }
2383 }
2384
2385 /* unplug aux dev per request, if an unplug request came in
2386 * while processing a plug request, this will handle it
2387 */
2388 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2389 ice_unplug_aux_dev(pf);
2390
2391 /* Plug aux device per request */
2392 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2393 ice_plug_aux_dev(pf);
2394
2395 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2396 struct iidc_event *event;
2397
2398 event = kzalloc(sizeof(*event), GFP_KERNEL);
2399 if (event) {
2400 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2401 ice_send_event_to_aux(pf, event);
2402 kfree(event);
2403 }
2404 }
2405
2406 ice_clean_adminq_subtask(pf);
2407 ice_check_media_subtask(pf);
2408 ice_check_for_hang_subtask(pf);
2409 ice_sync_fltr_subtask(pf);
2410 ice_handle_mdd_event(pf);
2411 ice_watchdog_subtask(pf);
2412
2413 if (ice_is_safe_mode(pf)) {
2414 ice_service_task_complete(pf);
2415 return;
2416 }
2417
2418 ice_process_vflr_event(pf);
2419 ice_clean_mailboxq_subtask(pf);
2420 ice_clean_sbq_subtask(pf);
2421 ice_sync_arfs_fltrs(pf);
2422 ice_flush_fdir_ctx(pf);
2423
2424 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2425 ice_service_task_complete(pf);
2426
2427 /* If the tasks have taken longer than one service timer period
2428 * or there is more work to be done, reset the service timer to
2429 * schedule the service task now.
2430 */
2431 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2432 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2433 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2434 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2435 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2436 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2437 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2438 mod_timer(&pf->serv_tmr, jiffies);
2439 }
2440
2441 /**
2442 * ice_set_ctrlq_len - helper function to set controlq length
2443 * @hw: pointer to the HW instance
2444 */
ice_set_ctrlq_len(struct ice_hw * hw)2445 static void ice_set_ctrlq_len(struct ice_hw *hw)
2446 {
2447 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2448 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2449 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2450 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2451 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2452 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2453 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2454 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2455 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2456 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2457 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2458 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2459 }
2460
2461 /**
2462 * ice_schedule_reset - schedule a reset
2463 * @pf: board private structure
2464 * @reset: reset being requested
2465 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2466 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2467 {
2468 struct device *dev = ice_pf_to_dev(pf);
2469
2470 /* bail out if earlier reset has failed */
2471 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2472 dev_dbg(dev, "earlier reset has failed\n");
2473 return -EIO;
2474 }
2475 /* bail if reset/recovery already in progress */
2476 if (ice_is_reset_in_progress(pf->state)) {
2477 dev_dbg(dev, "Reset already in progress\n");
2478 return -EBUSY;
2479 }
2480
2481 switch (reset) {
2482 case ICE_RESET_PFR:
2483 set_bit(ICE_PFR_REQ, pf->state);
2484 break;
2485 case ICE_RESET_CORER:
2486 set_bit(ICE_CORER_REQ, pf->state);
2487 break;
2488 case ICE_RESET_GLOBR:
2489 set_bit(ICE_GLOBR_REQ, pf->state);
2490 break;
2491 default:
2492 return -EINVAL;
2493 }
2494
2495 ice_service_task_schedule(pf);
2496 return 0;
2497 }
2498
2499 /**
2500 * ice_irq_affinity_notify - Callback for affinity changes
2501 * @notify: context as to what irq was changed
2502 * @mask: the new affinity mask
2503 *
2504 * This is a callback function used by the irq_set_affinity_notifier function
2505 * so that we may register to receive changes to the irq affinity masks.
2506 */
2507 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2508 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2509 const cpumask_t *mask)
2510 {
2511 struct ice_q_vector *q_vector =
2512 container_of(notify, struct ice_q_vector, affinity_notify);
2513
2514 cpumask_copy(&q_vector->affinity_mask, mask);
2515 }
2516
2517 /**
2518 * ice_irq_affinity_release - Callback for affinity notifier release
2519 * @ref: internal core kernel usage
2520 *
2521 * This is a callback function used by the irq_set_affinity_notifier function
2522 * to inform the current notification subscriber that they will no longer
2523 * receive notifications.
2524 */
ice_irq_affinity_release(struct kref __always_unused * ref)2525 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2526
2527 /**
2528 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2529 * @vsi: the VSI being configured
2530 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2531 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2532 {
2533 struct ice_hw *hw = &vsi->back->hw;
2534 int i;
2535
2536 ice_for_each_q_vector(vsi, i)
2537 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2538
2539 ice_flush(hw);
2540 return 0;
2541 }
2542
2543 /**
2544 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2545 * @vsi: the VSI being configured
2546 * @basename: name for the vector
2547 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2548 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2549 {
2550 int q_vectors = vsi->num_q_vectors;
2551 struct ice_pf *pf = vsi->back;
2552 struct device *dev;
2553 int rx_int_idx = 0;
2554 int tx_int_idx = 0;
2555 int vector, err;
2556 int irq_num;
2557
2558 dev = ice_pf_to_dev(pf);
2559 for (vector = 0; vector < q_vectors; vector++) {
2560 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2561
2562 irq_num = q_vector->irq.virq;
2563
2564 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2565 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2566 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2567 tx_int_idx++;
2568 } else if (q_vector->rx.rx_ring) {
2569 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2570 "%s-%s-%d", basename, "rx", rx_int_idx++);
2571 } else if (q_vector->tx.tx_ring) {
2572 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2573 "%s-%s-%d", basename, "tx", tx_int_idx++);
2574 } else {
2575 /* skip this unused q_vector */
2576 continue;
2577 }
2578 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2579 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2580 IRQF_SHARED, q_vector->name,
2581 q_vector);
2582 else
2583 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2584 0, q_vector->name, q_vector);
2585 if (err) {
2586 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2587 err);
2588 goto free_q_irqs;
2589 }
2590
2591 /* register for affinity change notifications */
2592 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2593 struct irq_affinity_notify *affinity_notify;
2594
2595 affinity_notify = &q_vector->affinity_notify;
2596 affinity_notify->notify = ice_irq_affinity_notify;
2597 affinity_notify->release = ice_irq_affinity_release;
2598 irq_set_affinity_notifier(irq_num, affinity_notify);
2599 }
2600
2601 /* assign the mask for this irq */
2602 irq_update_affinity_hint(irq_num, &q_vector->affinity_mask);
2603 }
2604
2605 err = ice_set_cpu_rx_rmap(vsi);
2606 if (err) {
2607 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2608 vsi->vsi_num, ERR_PTR(err));
2609 goto free_q_irqs;
2610 }
2611
2612 vsi->irqs_ready = true;
2613 return 0;
2614
2615 free_q_irqs:
2616 while (vector--) {
2617 irq_num = vsi->q_vectors[vector]->irq.virq;
2618 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2619 irq_set_affinity_notifier(irq_num, NULL);
2620 irq_update_affinity_hint(irq_num, NULL);
2621 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2622 }
2623 return err;
2624 }
2625
2626 /**
2627 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2628 * @vsi: VSI to setup Tx rings used by XDP
2629 *
2630 * Return 0 on success and negative value on error
2631 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2632 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2633 {
2634 struct device *dev = ice_pf_to_dev(vsi->back);
2635 struct ice_tx_desc *tx_desc;
2636 int i, j;
2637
2638 ice_for_each_xdp_txq(vsi, i) {
2639 u16 xdp_q_idx = vsi->alloc_txq + i;
2640 struct ice_ring_stats *ring_stats;
2641 struct ice_tx_ring *xdp_ring;
2642
2643 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2644 if (!xdp_ring)
2645 goto free_xdp_rings;
2646
2647 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2648 if (!ring_stats) {
2649 ice_free_tx_ring(xdp_ring);
2650 goto free_xdp_rings;
2651 }
2652
2653 xdp_ring->ring_stats = ring_stats;
2654 xdp_ring->q_index = xdp_q_idx;
2655 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2656 xdp_ring->vsi = vsi;
2657 xdp_ring->netdev = NULL;
2658 xdp_ring->dev = dev;
2659 xdp_ring->count = vsi->num_tx_desc;
2660 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2661 if (ice_setup_tx_ring(xdp_ring))
2662 goto free_xdp_rings;
2663 ice_set_ring_xdp(xdp_ring);
2664 spin_lock_init(&xdp_ring->tx_lock);
2665 for (j = 0; j < xdp_ring->count; j++) {
2666 tx_desc = ICE_TX_DESC(xdp_ring, j);
2667 tx_desc->cmd_type_offset_bsz = 0;
2668 }
2669 }
2670
2671 return 0;
2672
2673 free_xdp_rings:
2674 for (; i >= 0; i--) {
2675 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2676 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2677 vsi->xdp_rings[i]->ring_stats = NULL;
2678 ice_free_tx_ring(vsi->xdp_rings[i]);
2679 }
2680 }
2681 return -ENOMEM;
2682 }
2683
2684 /**
2685 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2686 * @vsi: VSI to set the bpf prog on
2687 * @prog: the bpf prog pointer
2688 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2689 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2690 {
2691 struct bpf_prog *old_prog;
2692 int i;
2693
2694 old_prog = xchg(&vsi->xdp_prog, prog);
2695 ice_for_each_rxq(vsi, i)
2696 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2697
2698 if (old_prog)
2699 bpf_prog_put(old_prog);
2700 }
2701
ice_xdp_ring_from_qid(struct ice_vsi * vsi,int qid)2702 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid)
2703 {
2704 struct ice_q_vector *q_vector;
2705 struct ice_tx_ring *ring;
2706
2707 if (static_key_enabled(&ice_xdp_locking_key))
2708 return vsi->xdp_rings[qid % vsi->num_xdp_txq];
2709
2710 q_vector = vsi->rx_rings[qid]->q_vector;
2711 ice_for_each_tx_ring(ring, q_vector->tx)
2712 if (ice_ring_is_xdp(ring))
2713 return ring;
2714
2715 return NULL;
2716 }
2717
2718 /**
2719 * ice_map_xdp_rings - Map XDP rings to interrupt vectors
2720 * @vsi: the VSI with XDP rings being configured
2721 *
2722 * Map XDP rings to interrupt vectors and perform the configuration steps
2723 * dependent on the mapping.
2724 */
ice_map_xdp_rings(struct ice_vsi * vsi)2725 void ice_map_xdp_rings(struct ice_vsi *vsi)
2726 {
2727 int xdp_rings_rem = vsi->num_xdp_txq;
2728 int v_idx, q_idx;
2729
2730 /* follow the logic from ice_vsi_map_rings_to_vectors */
2731 ice_for_each_q_vector(vsi, v_idx) {
2732 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2733 int xdp_rings_per_v, q_id, q_base;
2734
2735 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2736 vsi->num_q_vectors - v_idx);
2737 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2738
2739 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2740 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2741
2742 xdp_ring->q_vector = q_vector;
2743 xdp_ring->next = q_vector->tx.tx_ring;
2744 q_vector->tx.tx_ring = xdp_ring;
2745 }
2746 xdp_rings_rem -= xdp_rings_per_v;
2747 }
2748
2749 ice_for_each_rxq(vsi, q_idx) {
2750 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi,
2751 q_idx);
2752 ice_tx_xsk_pool(vsi, q_idx);
2753 }
2754 }
2755
2756 /**
2757 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2758 * @vsi: VSI to bring up Tx rings used by XDP
2759 * @prog: bpf program that will be assigned to VSI
2760 * @cfg_type: create from scratch or restore the existing configuration
2761 *
2762 * Return 0 on success and negative value on error
2763 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog,enum ice_xdp_cfg cfg_type)2764 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2765 enum ice_xdp_cfg cfg_type)
2766 {
2767 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2768 struct ice_pf *pf = vsi->back;
2769 struct ice_qs_cfg xdp_qs_cfg = {
2770 .qs_mutex = &pf->avail_q_mutex,
2771 .pf_map = pf->avail_txqs,
2772 .pf_map_size = pf->max_pf_txqs,
2773 .q_count = vsi->num_xdp_txq,
2774 .scatter_count = ICE_MAX_SCATTER_TXQS,
2775 .vsi_map = vsi->txq_map,
2776 .vsi_map_offset = vsi->alloc_txq,
2777 .mapping_mode = ICE_VSI_MAP_CONTIG
2778 };
2779 struct device *dev;
2780 int status, i;
2781
2782 dev = ice_pf_to_dev(pf);
2783 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2784 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2785 if (!vsi->xdp_rings)
2786 return -ENOMEM;
2787
2788 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2789 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2790 goto err_map_xdp;
2791
2792 if (static_key_enabled(&ice_xdp_locking_key))
2793 netdev_warn(vsi->netdev,
2794 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2795
2796 if (ice_xdp_alloc_setup_rings(vsi))
2797 goto clear_xdp_rings;
2798
2799 /* omit the scheduler update if in reset path; XDP queues will be
2800 * taken into account at the end of ice_vsi_rebuild, where
2801 * ice_cfg_vsi_lan is being called
2802 */
2803 if (cfg_type == ICE_XDP_CFG_PART)
2804 return 0;
2805
2806 ice_map_xdp_rings(vsi);
2807
2808 /* tell the Tx scheduler that right now we have
2809 * additional queues
2810 */
2811 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2812 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2813
2814 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2815 max_txqs);
2816 if (status) {
2817 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2818 status);
2819 goto clear_xdp_rings;
2820 }
2821
2822 /* assign the prog only when it's not already present on VSI;
2823 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2824 * VSI rebuild that happens under ethtool -L can expose us to
2825 * the bpf_prog refcount issues as we would be swapping same
2826 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2827 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2828 * this is not harmful as dev_xdp_install bumps the refcount
2829 * before calling the op exposed by the driver;
2830 */
2831 if (!ice_is_xdp_ena_vsi(vsi))
2832 ice_vsi_assign_bpf_prog(vsi, prog);
2833
2834 return 0;
2835 clear_xdp_rings:
2836 ice_for_each_xdp_txq(vsi, i)
2837 if (vsi->xdp_rings[i]) {
2838 kfree_rcu(vsi->xdp_rings[i], rcu);
2839 vsi->xdp_rings[i] = NULL;
2840 }
2841
2842 err_map_xdp:
2843 mutex_lock(&pf->avail_q_mutex);
2844 ice_for_each_xdp_txq(vsi, i) {
2845 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2846 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2847 }
2848 mutex_unlock(&pf->avail_q_mutex);
2849
2850 devm_kfree(dev, vsi->xdp_rings);
2851 return -ENOMEM;
2852 }
2853
2854 /**
2855 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2856 * @vsi: VSI to remove XDP rings
2857 * @cfg_type: disable XDP permanently or allow it to be restored later
2858 *
2859 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2860 * resources
2861 */
ice_destroy_xdp_rings(struct ice_vsi * vsi,enum ice_xdp_cfg cfg_type)2862 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2863 {
2864 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2865 struct ice_pf *pf = vsi->back;
2866 int i, v_idx;
2867
2868 /* q_vectors are freed in reset path so there's no point in detaching
2869 * rings
2870 */
2871 if (cfg_type == ICE_XDP_CFG_PART)
2872 goto free_qmap;
2873
2874 ice_for_each_q_vector(vsi, v_idx) {
2875 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2876 struct ice_tx_ring *ring;
2877
2878 ice_for_each_tx_ring(ring, q_vector->tx)
2879 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2880 break;
2881
2882 /* restore the value of last node prior to XDP setup */
2883 q_vector->tx.tx_ring = ring;
2884 }
2885
2886 free_qmap:
2887 mutex_lock(&pf->avail_q_mutex);
2888 ice_for_each_xdp_txq(vsi, i) {
2889 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2890 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2891 }
2892 mutex_unlock(&pf->avail_q_mutex);
2893
2894 ice_for_each_xdp_txq(vsi, i)
2895 if (vsi->xdp_rings[i]) {
2896 if (vsi->xdp_rings[i]->desc) {
2897 synchronize_rcu();
2898 ice_free_tx_ring(vsi->xdp_rings[i]);
2899 }
2900 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2901 vsi->xdp_rings[i]->ring_stats = NULL;
2902 kfree_rcu(vsi->xdp_rings[i], rcu);
2903 vsi->xdp_rings[i] = NULL;
2904 }
2905
2906 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2907 vsi->xdp_rings = NULL;
2908
2909 if (static_key_enabled(&ice_xdp_locking_key))
2910 static_branch_dec(&ice_xdp_locking_key);
2911
2912 if (cfg_type == ICE_XDP_CFG_PART)
2913 return 0;
2914
2915 ice_vsi_assign_bpf_prog(vsi, NULL);
2916
2917 /* notify Tx scheduler that we destroyed XDP queues and bring
2918 * back the old number of child nodes
2919 */
2920 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2921 max_txqs[i] = vsi->num_txq;
2922
2923 /* change number of XDP Tx queues to 0 */
2924 vsi->num_xdp_txq = 0;
2925
2926 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2927 max_txqs);
2928 }
2929
2930 /**
2931 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2932 * @vsi: VSI to schedule napi on
2933 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2934 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2935 {
2936 int i;
2937
2938 ice_for_each_rxq(vsi, i) {
2939 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2940
2941 if (READ_ONCE(rx_ring->xsk_pool))
2942 napi_schedule(&rx_ring->q_vector->napi);
2943 }
2944 }
2945
2946 /**
2947 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2948 * @vsi: VSI to determine the count of XDP Tx qs
2949 *
2950 * returns 0 if Tx qs count is higher than at least half of CPU count,
2951 * -ENOMEM otherwise
2952 */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2953 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2954 {
2955 u16 avail = ice_get_avail_txq_count(vsi->back);
2956 u16 cpus = num_possible_cpus();
2957
2958 if (avail < cpus / 2)
2959 return -ENOMEM;
2960
2961 if (vsi->type == ICE_VSI_SF)
2962 avail = vsi->alloc_txq;
2963
2964 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2965
2966 if (vsi->num_xdp_txq < cpus)
2967 static_branch_inc(&ice_xdp_locking_key);
2968
2969 return 0;
2970 }
2971
2972 /**
2973 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2974 * @vsi: Pointer to VSI structure
2975 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)2976 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2977 {
2978 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2979 return ICE_RXBUF_1664;
2980 else
2981 return ICE_RXBUF_3072;
2982 }
2983
2984 /**
2985 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2986 * @vsi: VSI to setup XDP for
2987 * @prog: XDP program
2988 * @extack: netlink extended ack
2989 */
2990 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2991 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2992 struct netlink_ext_ack *extack)
2993 {
2994 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2995 int ret = 0, xdp_ring_err = 0;
2996 bool if_running;
2997
2998 if (prog && !prog->aux->xdp_has_frags) {
2999 if (frame_size > ice_max_xdp_frame_size(vsi)) {
3000 NL_SET_ERR_MSG_MOD(extack,
3001 "MTU is too large for linear frames and XDP prog does not support frags");
3002 return -EOPNOTSUPP;
3003 }
3004 }
3005
3006 /* hot swap progs and avoid toggling link */
3007 if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
3008 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
3009 ice_vsi_assign_bpf_prog(vsi, prog);
3010 return 0;
3011 }
3012
3013 if_running = netif_running(vsi->netdev) &&
3014 !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
3015
3016 /* need to stop netdev while setting up the program for Rx rings */
3017 if (if_running) {
3018 ret = ice_down(vsi);
3019 if (ret) {
3020 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
3021 return ret;
3022 }
3023 }
3024
3025 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
3026 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
3027 if (xdp_ring_err) {
3028 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
3029 } else {
3030 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
3031 ICE_XDP_CFG_FULL);
3032 if (xdp_ring_err)
3033 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
3034 }
3035 xdp_features_set_redirect_target(vsi->netdev, true);
3036 /* reallocate Rx queues that are used for zero-copy */
3037 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
3038 if (xdp_ring_err)
3039 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
3040 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
3041 xdp_features_clear_redirect_target(vsi->netdev);
3042 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
3043 if (xdp_ring_err)
3044 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
3045 /* reallocate Rx queues that were used for zero-copy */
3046 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
3047 if (xdp_ring_err)
3048 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
3049 }
3050
3051 if (if_running)
3052 ret = ice_up(vsi);
3053
3054 if (!ret && prog)
3055 ice_vsi_rx_napi_schedule(vsi);
3056
3057 return (ret || xdp_ring_err) ? -ENOMEM : 0;
3058 }
3059
3060 /**
3061 * ice_xdp_safe_mode - XDP handler for safe mode
3062 * @dev: netdevice
3063 * @xdp: XDP command
3064 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)3065 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3066 struct netdev_bpf *xdp)
3067 {
3068 NL_SET_ERR_MSG_MOD(xdp->extack,
3069 "Please provide working DDP firmware package in order to use XDP\n"
3070 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3071 return -EOPNOTSUPP;
3072 }
3073
3074 /**
3075 * ice_xdp - implements XDP handler
3076 * @dev: netdevice
3077 * @xdp: XDP command
3078 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)3079 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3080 {
3081 struct ice_netdev_priv *np = netdev_priv(dev);
3082 struct ice_vsi *vsi = np->vsi;
3083 int ret;
3084
3085 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) {
3086 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI");
3087 return -EINVAL;
3088 }
3089
3090 mutex_lock(&vsi->xdp_state_lock);
3091
3092 switch (xdp->command) {
3093 case XDP_SETUP_PROG:
3094 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3095 break;
3096 case XDP_SETUP_XSK_POOL:
3097 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3098 break;
3099 default:
3100 ret = -EINVAL;
3101 }
3102
3103 mutex_unlock(&vsi->xdp_state_lock);
3104 return ret;
3105 }
3106
3107 /**
3108 * ice_ena_misc_vector - enable the non-queue interrupts
3109 * @pf: board private structure
3110 */
ice_ena_misc_vector(struct ice_pf * pf)3111 static void ice_ena_misc_vector(struct ice_pf *pf)
3112 {
3113 struct ice_hw *hw = &pf->hw;
3114 u32 pf_intr_start_offset;
3115 u32 val;
3116
3117 /* Disable anti-spoof detection interrupt to prevent spurious event
3118 * interrupts during a function reset. Anti-spoof functionally is
3119 * still supported.
3120 */
3121 val = rd32(hw, GL_MDCK_TX_TDPU);
3122 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3123 wr32(hw, GL_MDCK_TX_TDPU, val);
3124
3125 /* clear things first */
3126 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3127 rd32(hw, PFINT_OICR); /* read to clear */
3128
3129 val = (PFINT_OICR_ECC_ERR_M |
3130 PFINT_OICR_MAL_DETECT_M |
3131 PFINT_OICR_GRST_M |
3132 PFINT_OICR_PCI_EXCEPTION_M |
3133 PFINT_OICR_VFLR_M |
3134 PFINT_OICR_HMC_ERR_M |
3135 PFINT_OICR_PE_PUSH_M |
3136 PFINT_OICR_PE_CRITERR_M);
3137
3138 wr32(hw, PFINT_OICR_ENA, val);
3139
3140 /* SW_ITR_IDX = 0, but don't change INTENA */
3141 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3142 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3143
3144 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3145 return;
3146 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3147 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3148 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3149 }
3150
3151 /**
3152 * ice_ll_ts_intr - ll_ts interrupt handler
3153 * @irq: interrupt number
3154 * @data: pointer to a q_vector
3155 */
ice_ll_ts_intr(int __always_unused irq,void * data)3156 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3157 {
3158 struct ice_pf *pf = data;
3159 u32 pf_intr_start_offset;
3160 struct ice_ptp_tx *tx;
3161 unsigned long flags;
3162 struct ice_hw *hw;
3163 u32 val;
3164 u8 idx;
3165
3166 hw = &pf->hw;
3167 tx = &pf->ptp.port.tx;
3168 spin_lock_irqsave(&tx->lock, flags);
3169 ice_ptp_complete_tx_single_tstamp(tx);
3170
3171 idx = find_next_bit_wrap(tx->in_use, tx->len,
3172 tx->last_ll_ts_idx_read + 1);
3173 if (idx != tx->len)
3174 ice_ptp_req_tx_single_tstamp(tx, idx);
3175 spin_unlock_irqrestore(&tx->lock, flags);
3176
3177 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3178 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3179 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3180 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3181 val);
3182
3183 return IRQ_HANDLED;
3184 }
3185
3186 /**
3187 * ice_misc_intr - misc interrupt handler
3188 * @irq: interrupt number
3189 * @data: pointer to a q_vector
3190 */
ice_misc_intr(int __always_unused irq,void * data)3191 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3192 {
3193 struct ice_pf *pf = (struct ice_pf *)data;
3194 irqreturn_t ret = IRQ_HANDLED;
3195 struct ice_hw *hw = &pf->hw;
3196 struct device *dev;
3197 u32 oicr, ena_mask;
3198
3199 dev = ice_pf_to_dev(pf);
3200 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3201 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3202 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3203
3204 oicr = rd32(hw, PFINT_OICR);
3205 ena_mask = rd32(hw, PFINT_OICR_ENA);
3206
3207 if (oicr & PFINT_OICR_SWINT_M) {
3208 ena_mask &= ~PFINT_OICR_SWINT_M;
3209 pf->sw_int_count++;
3210 }
3211
3212 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3213 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3214 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3215 }
3216 if (oicr & PFINT_OICR_VFLR_M) {
3217 /* disable any further VFLR event notifications */
3218 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3219 u32 reg = rd32(hw, PFINT_OICR_ENA);
3220
3221 reg &= ~PFINT_OICR_VFLR_M;
3222 wr32(hw, PFINT_OICR_ENA, reg);
3223 } else {
3224 ena_mask &= ~PFINT_OICR_VFLR_M;
3225 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3226 }
3227 }
3228
3229 if (oicr & PFINT_OICR_GRST_M) {
3230 u32 reset;
3231
3232 /* we have a reset warning */
3233 ena_mask &= ~PFINT_OICR_GRST_M;
3234 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3235 rd32(hw, GLGEN_RSTAT));
3236
3237 if (reset == ICE_RESET_CORER)
3238 pf->corer_count++;
3239 else if (reset == ICE_RESET_GLOBR)
3240 pf->globr_count++;
3241 else if (reset == ICE_RESET_EMPR)
3242 pf->empr_count++;
3243 else
3244 dev_dbg(dev, "Invalid reset type %d\n", reset);
3245
3246 /* If a reset cycle isn't already in progress, we set a bit in
3247 * pf->state so that the service task can start a reset/rebuild.
3248 */
3249 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3250 if (reset == ICE_RESET_CORER)
3251 set_bit(ICE_CORER_RECV, pf->state);
3252 else if (reset == ICE_RESET_GLOBR)
3253 set_bit(ICE_GLOBR_RECV, pf->state);
3254 else
3255 set_bit(ICE_EMPR_RECV, pf->state);
3256
3257 /* There are couple of different bits at play here.
3258 * hw->reset_ongoing indicates whether the hardware is
3259 * in reset. This is set to true when a reset interrupt
3260 * is received and set back to false after the driver
3261 * has determined that the hardware is out of reset.
3262 *
3263 * ICE_RESET_OICR_RECV in pf->state indicates
3264 * that a post reset rebuild is required before the
3265 * driver is operational again. This is set above.
3266 *
3267 * As this is the start of the reset/rebuild cycle, set
3268 * both to indicate that.
3269 */
3270 hw->reset_ongoing = true;
3271 }
3272 }
3273
3274 if (oicr & PFINT_OICR_TSYN_TX_M) {
3275 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3276 if (ice_pf_state_is_nominal(pf) &&
3277 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) {
3278 struct ice_ptp_tx *tx = &pf->ptp.port.tx;
3279 unsigned long flags;
3280 u8 idx;
3281
3282 spin_lock_irqsave(&tx->lock, flags);
3283 idx = find_next_bit_wrap(tx->in_use, tx->len,
3284 tx->last_ll_ts_idx_read + 1);
3285 if (idx != tx->len)
3286 ice_ptp_req_tx_single_tstamp(tx, idx);
3287 spin_unlock_irqrestore(&tx->lock, flags);
3288 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) {
3289 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3290 ret = IRQ_WAKE_THREAD;
3291 }
3292 }
3293
3294 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3295 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3296 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3297
3298 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3299
3300 if (ice_pf_src_tmr_owned(pf)) {
3301 /* Save EVENTs from GLTSYN register */
3302 pf->ptp.ext_ts_irq |= gltsyn_stat &
3303 (GLTSYN_STAT_EVENT0_M |
3304 GLTSYN_STAT_EVENT1_M |
3305 GLTSYN_STAT_EVENT2_M);
3306
3307 ice_ptp_extts_event(pf);
3308 }
3309 }
3310
3311 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3312 if (oicr & ICE_AUX_CRIT_ERR) {
3313 pf->oicr_err_reg |= oicr;
3314 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3315 ena_mask &= ~ICE_AUX_CRIT_ERR;
3316 }
3317
3318 /* Report any remaining unexpected interrupts */
3319 oicr &= ena_mask;
3320 if (oicr) {
3321 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3322 /* If a critical error is pending there is no choice but to
3323 * reset the device.
3324 */
3325 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3326 PFINT_OICR_ECC_ERR_M)) {
3327 set_bit(ICE_PFR_REQ, pf->state);
3328 }
3329 }
3330 ice_service_task_schedule(pf);
3331 if (ret == IRQ_HANDLED)
3332 ice_irq_dynamic_ena(hw, NULL, NULL);
3333
3334 return ret;
3335 }
3336
3337 /**
3338 * ice_misc_intr_thread_fn - misc interrupt thread function
3339 * @irq: interrupt number
3340 * @data: pointer to a q_vector
3341 */
ice_misc_intr_thread_fn(int __always_unused irq,void * data)3342 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3343 {
3344 struct ice_pf *pf = data;
3345 struct ice_hw *hw;
3346
3347 hw = &pf->hw;
3348
3349 if (ice_is_reset_in_progress(pf->state))
3350 goto skip_irq;
3351
3352 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3353 /* Process outstanding Tx timestamps. If there is more work,
3354 * re-arm the interrupt to trigger again.
3355 */
3356 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3357 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3358 ice_flush(hw);
3359 }
3360 }
3361
3362 skip_irq:
3363 ice_irq_dynamic_ena(hw, NULL, NULL);
3364
3365 return IRQ_HANDLED;
3366 }
3367
3368 /**
3369 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3370 * @hw: pointer to HW structure
3371 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3372 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3373 {
3374 /* disable Admin queue Interrupt causes */
3375 wr32(hw, PFINT_FW_CTL,
3376 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3377
3378 /* disable Mailbox queue Interrupt causes */
3379 wr32(hw, PFINT_MBX_CTL,
3380 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3381
3382 wr32(hw, PFINT_SB_CTL,
3383 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3384
3385 /* disable Control queue Interrupt causes */
3386 wr32(hw, PFINT_OICR_CTL,
3387 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3388
3389 ice_flush(hw);
3390 }
3391
3392 /**
3393 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3394 * @pf: board private structure
3395 */
ice_free_irq_msix_ll_ts(struct ice_pf * pf)3396 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3397 {
3398 int irq_num = pf->ll_ts_irq.virq;
3399
3400 synchronize_irq(irq_num);
3401 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3402
3403 ice_free_irq(pf, pf->ll_ts_irq);
3404 }
3405
3406 /**
3407 * ice_free_irq_msix_misc - Unroll misc vector setup
3408 * @pf: board private structure
3409 */
ice_free_irq_msix_misc(struct ice_pf * pf)3410 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3411 {
3412 int misc_irq_num = pf->oicr_irq.virq;
3413 struct ice_hw *hw = &pf->hw;
3414
3415 ice_dis_ctrlq_interrupts(hw);
3416
3417 /* disable OICR interrupt */
3418 wr32(hw, PFINT_OICR_ENA, 0);
3419 ice_flush(hw);
3420
3421 synchronize_irq(misc_irq_num);
3422 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3423
3424 ice_free_irq(pf, pf->oicr_irq);
3425 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3426 ice_free_irq_msix_ll_ts(pf);
3427 }
3428
3429 /**
3430 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3431 * @hw: pointer to HW structure
3432 * @reg_idx: HW vector index to associate the control queue interrupts with
3433 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3434 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3435 {
3436 u32 val;
3437
3438 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3439 PFINT_OICR_CTL_CAUSE_ENA_M);
3440 wr32(hw, PFINT_OICR_CTL, val);
3441
3442 /* enable Admin queue Interrupt causes */
3443 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3444 PFINT_FW_CTL_CAUSE_ENA_M);
3445 wr32(hw, PFINT_FW_CTL, val);
3446
3447 /* enable Mailbox queue Interrupt causes */
3448 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3449 PFINT_MBX_CTL_CAUSE_ENA_M);
3450 wr32(hw, PFINT_MBX_CTL, val);
3451
3452 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3453 /* enable Sideband queue Interrupt causes */
3454 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3455 PFINT_SB_CTL_CAUSE_ENA_M);
3456 wr32(hw, PFINT_SB_CTL, val);
3457 }
3458
3459 ice_flush(hw);
3460 }
3461
3462 /**
3463 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3464 * @pf: board private structure
3465 *
3466 * This sets up the handler for MSIX 0, which is used to manage the
3467 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3468 * when in MSI or Legacy interrupt mode.
3469 */
ice_req_irq_msix_misc(struct ice_pf * pf)3470 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3471 {
3472 struct device *dev = ice_pf_to_dev(pf);
3473 struct ice_hw *hw = &pf->hw;
3474 u32 pf_intr_start_offset;
3475 struct msi_map irq;
3476 int err = 0;
3477
3478 if (!pf->int_name[0])
3479 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3480 dev_driver_string(dev), dev_name(dev));
3481
3482 if (!pf->int_name_ll_ts[0])
3483 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3484 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3485 /* Do not request IRQ but do enable OICR interrupt since settings are
3486 * lost during reset. Note that this function is called only during
3487 * rebuild path and not while reset is in progress.
3488 */
3489 if (ice_is_reset_in_progress(pf->state))
3490 goto skip_req_irq;
3491
3492 /* reserve one vector in irq_tracker for misc interrupts */
3493 irq = ice_alloc_irq(pf, false);
3494 if (irq.index < 0)
3495 return irq.index;
3496
3497 pf->oicr_irq = irq;
3498 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3499 ice_misc_intr_thread_fn, 0,
3500 pf->int_name, pf);
3501 if (err) {
3502 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3503 pf->int_name, err);
3504 ice_free_irq(pf, pf->oicr_irq);
3505 return err;
3506 }
3507
3508 /* reserve one vector in irq_tracker for ll_ts interrupt */
3509 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3510 goto skip_req_irq;
3511
3512 irq = ice_alloc_irq(pf, false);
3513 if (irq.index < 0)
3514 return irq.index;
3515
3516 pf->ll_ts_irq = irq;
3517 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3518 pf->int_name_ll_ts, pf);
3519 if (err) {
3520 dev_err(dev, "devm_request_irq for %s failed: %d\n",
3521 pf->int_name_ll_ts, err);
3522 ice_free_irq(pf, pf->ll_ts_irq);
3523 return err;
3524 }
3525
3526 skip_req_irq:
3527 ice_ena_misc_vector(pf);
3528
3529 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3530 /* This enables LL TS interrupt */
3531 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3532 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3533 wr32(hw, PFINT_SB_CTL,
3534 ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3535 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3536 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3537 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3538
3539 ice_flush(hw);
3540 ice_irq_dynamic_ena(hw, NULL, NULL);
3541
3542 return 0;
3543 }
3544
3545 /**
3546 * ice_set_ops - set netdev and ethtools ops for the given netdev
3547 * @vsi: the VSI associated with the new netdev
3548 */
ice_set_ops(struct ice_vsi * vsi)3549 static void ice_set_ops(struct ice_vsi *vsi)
3550 {
3551 struct net_device *netdev = vsi->netdev;
3552 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3553
3554 if (ice_is_safe_mode(pf)) {
3555 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3556 ice_set_ethtool_safe_mode_ops(netdev);
3557 return;
3558 }
3559
3560 netdev->netdev_ops = &ice_netdev_ops;
3561 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3562 netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3563 ice_set_ethtool_ops(netdev);
3564
3565 if (vsi->type != ICE_VSI_PF)
3566 return;
3567
3568 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3569 NETDEV_XDP_ACT_XSK_ZEROCOPY |
3570 NETDEV_XDP_ACT_RX_SG;
3571 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3572 }
3573
3574 /**
3575 * ice_set_netdev_features - set features for the given netdev
3576 * @netdev: netdev instance
3577 */
ice_set_netdev_features(struct net_device * netdev)3578 void ice_set_netdev_features(struct net_device *netdev)
3579 {
3580 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3581 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3582 netdev_features_t csumo_features;
3583 netdev_features_t vlano_features;
3584 netdev_features_t dflt_features;
3585 netdev_features_t tso_features;
3586
3587 if (ice_is_safe_mode(pf)) {
3588 /* safe mode */
3589 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3590 netdev->hw_features = netdev->features;
3591 return;
3592 }
3593
3594 dflt_features = NETIF_F_SG |
3595 NETIF_F_HIGHDMA |
3596 NETIF_F_NTUPLE |
3597 NETIF_F_RXHASH;
3598
3599 csumo_features = NETIF_F_RXCSUM |
3600 NETIF_F_IP_CSUM |
3601 NETIF_F_SCTP_CRC |
3602 NETIF_F_IPV6_CSUM;
3603
3604 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3605 NETIF_F_HW_VLAN_CTAG_TX |
3606 NETIF_F_HW_VLAN_CTAG_RX;
3607
3608 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3609 if (is_dvm_ena)
3610 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3611
3612 tso_features = NETIF_F_TSO |
3613 NETIF_F_TSO_ECN |
3614 NETIF_F_TSO6 |
3615 NETIF_F_GSO_GRE |
3616 NETIF_F_GSO_UDP_TUNNEL |
3617 NETIF_F_GSO_GRE_CSUM |
3618 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3619 NETIF_F_GSO_PARTIAL |
3620 NETIF_F_GSO_IPXIP4 |
3621 NETIF_F_GSO_IPXIP6 |
3622 NETIF_F_GSO_UDP_L4;
3623
3624 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3625 NETIF_F_GSO_GRE_CSUM;
3626 /* set features that user can change */
3627 netdev->hw_features = dflt_features | csumo_features |
3628 vlano_features | tso_features;
3629
3630 /* add support for HW_CSUM on packets with MPLS header */
3631 netdev->mpls_features = NETIF_F_HW_CSUM |
3632 NETIF_F_TSO |
3633 NETIF_F_TSO6;
3634
3635 /* enable features */
3636 netdev->features |= netdev->hw_features;
3637
3638 netdev->hw_features |= NETIF_F_HW_TC;
3639 netdev->hw_features |= NETIF_F_LOOPBACK;
3640
3641 /* encap and VLAN devices inherit default, csumo and tso features */
3642 netdev->hw_enc_features |= dflt_features | csumo_features |
3643 tso_features;
3644 netdev->vlan_features |= dflt_features | csumo_features |
3645 tso_features;
3646
3647 /* advertise support but don't enable by default since only one type of
3648 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3649 * type turns on the other has to be turned off. This is enforced by the
3650 * ice_fix_features() ndo callback.
3651 */
3652 if (is_dvm_ena)
3653 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3654 NETIF_F_HW_VLAN_STAG_TX;
3655
3656 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3657 * be changed at runtime
3658 */
3659 netdev->hw_features |= NETIF_F_RXFCS;
3660
3661 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3662 }
3663
3664 /**
3665 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3666 * @lut: Lookup table
3667 * @rss_table_size: Lookup table size
3668 * @rss_size: Range of queue number for hashing
3669 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3670 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3671 {
3672 u16 i;
3673
3674 for (i = 0; i < rss_table_size; i++)
3675 lut[i] = i % rss_size;
3676 }
3677
3678 /**
3679 * ice_pf_vsi_setup - Set up a PF VSI
3680 * @pf: board private structure
3681 * @pi: pointer to the port_info instance
3682 *
3683 * Returns pointer to the successfully allocated VSI software struct
3684 * on success, otherwise returns NULL on failure.
3685 */
3686 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3687 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3688 {
3689 struct ice_vsi_cfg_params params = {};
3690
3691 params.type = ICE_VSI_PF;
3692 params.port_info = pi;
3693 params.flags = ICE_VSI_FLAG_INIT;
3694
3695 return ice_vsi_setup(pf, ¶ms);
3696 }
3697
3698 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3699 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3700 struct ice_channel *ch)
3701 {
3702 struct ice_vsi_cfg_params params = {};
3703
3704 params.type = ICE_VSI_CHNL;
3705 params.port_info = pi;
3706 params.ch = ch;
3707 params.flags = ICE_VSI_FLAG_INIT;
3708
3709 return ice_vsi_setup(pf, ¶ms);
3710 }
3711
3712 /**
3713 * ice_ctrl_vsi_setup - Set up a control VSI
3714 * @pf: board private structure
3715 * @pi: pointer to the port_info instance
3716 *
3717 * Returns pointer to the successfully allocated VSI software struct
3718 * on success, otherwise returns NULL on failure.
3719 */
3720 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3721 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3722 {
3723 struct ice_vsi_cfg_params params = {};
3724
3725 params.type = ICE_VSI_CTRL;
3726 params.port_info = pi;
3727 params.flags = ICE_VSI_FLAG_INIT;
3728
3729 return ice_vsi_setup(pf, ¶ms);
3730 }
3731
3732 /**
3733 * ice_lb_vsi_setup - Set up a loopback VSI
3734 * @pf: board private structure
3735 * @pi: pointer to the port_info instance
3736 *
3737 * Returns pointer to the successfully allocated VSI software struct
3738 * on success, otherwise returns NULL on failure.
3739 */
3740 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3741 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3742 {
3743 struct ice_vsi_cfg_params params = {};
3744
3745 params.type = ICE_VSI_LB;
3746 params.port_info = pi;
3747 params.flags = ICE_VSI_FLAG_INIT;
3748
3749 return ice_vsi_setup(pf, ¶ms);
3750 }
3751
3752 /**
3753 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3754 * @netdev: network interface to be adjusted
3755 * @proto: VLAN TPID
3756 * @vid: VLAN ID to be added
3757 *
3758 * net_device_ops implementation for adding VLAN IDs
3759 */
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3760 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3761 {
3762 struct ice_netdev_priv *np = netdev_priv(netdev);
3763 struct ice_vsi_vlan_ops *vlan_ops;
3764 struct ice_vsi *vsi = np->vsi;
3765 struct ice_vlan vlan;
3766 int ret;
3767
3768 /* VLAN 0 is added by default during load/reset */
3769 if (!vid)
3770 return 0;
3771
3772 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3773 usleep_range(1000, 2000);
3774
3775 /* Add multicast promisc rule for the VLAN ID to be added if
3776 * all-multicast is currently enabled.
3777 */
3778 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3779 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3780 ICE_MCAST_VLAN_PROMISC_BITS,
3781 vid);
3782 if (ret)
3783 goto finish;
3784 }
3785
3786 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3787
3788 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3789 * packets aren't pruned by the device's internal switch on Rx
3790 */
3791 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3792 ret = vlan_ops->add_vlan(vsi, &vlan);
3793 if (ret)
3794 goto finish;
3795
3796 /* If all-multicast is currently enabled and this VLAN ID is only one
3797 * besides VLAN-0 we have to update look-up type of multicast promisc
3798 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3799 */
3800 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3801 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3802 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3803 ICE_MCAST_PROMISC_BITS, 0);
3804 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3805 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3806 }
3807
3808 finish:
3809 clear_bit(ICE_CFG_BUSY, vsi->state);
3810
3811 return ret;
3812 }
3813
3814 /**
3815 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3816 * @netdev: network interface to be adjusted
3817 * @proto: VLAN TPID
3818 * @vid: VLAN ID to be removed
3819 *
3820 * net_device_ops implementation for removing VLAN IDs
3821 */
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3822 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3823 {
3824 struct ice_netdev_priv *np = netdev_priv(netdev);
3825 struct ice_vsi_vlan_ops *vlan_ops;
3826 struct ice_vsi *vsi = np->vsi;
3827 struct ice_vlan vlan;
3828 int ret;
3829
3830 /* don't allow removal of VLAN 0 */
3831 if (!vid)
3832 return 0;
3833
3834 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3835 usleep_range(1000, 2000);
3836
3837 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3838 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3839 if (ret) {
3840 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3841 vsi->vsi_num);
3842 vsi->current_netdev_flags |= IFF_ALLMULTI;
3843 }
3844
3845 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3846
3847 /* Make sure VLAN delete is successful before updating VLAN
3848 * information
3849 */
3850 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3851 ret = vlan_ops->del_vlan(vsi, &vlan);
3852 if (ret)
3853 goto finish;
3854
3855 /* Remove multicast promisc rule for the removed VLAN ID if
3856 * all-multicast is enabled.
3857 */
3858 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3859 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3860 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3861
3862 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3863 /* Update look-up type of multicast promisc rule for VLAN 0
3864 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3865 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3866 */
3867 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3868 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3869 ICE_MCAST_VLAN_PROMISC_BITS,
3870 0);
3871 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3872 ICE_MCAST_PROMISC_BITS, 0);
3873 }
3874 }
3875
3876 finish:
3877 clear_bit(ICE_CFG_BUSY, vsi->state);
3878
3879 return ret;
3880 }
3881
3882 /**
3883 * ice_rep_indr_tc_block_unbind
3884 * @cb_priv: indirection block private data
3885 */
ice_rep_indr_tc_block_unbind(void * cb_priv)3886 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3887 {
3888 struct ice_indr_block_priv *indr_priv = cb_priv;
3889
3890 list_del(&indr_priv->list);
3891 kfree(indr_priv);
3892 }
3893
3894 /**
3895 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3896 * @vsi: VSI struct which has the netdev
3897 */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3898 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3899 {
3900 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3901
3902 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3903 ice_rep_indr_tc_block_unbind);
3904 }
3905
3906 /**
3907 * ice_tc_indir_block_register - Register TC indirect block notifications
3908 * @vsi: VSI struct which has the netdev
3909 *
3910 * Returns 0 on success, negative value on failure
3911 */
ice_tc_indir_block_register(struct ice_vsi * vsi)3912 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3913 {
3914 struct ice_netdev_priv *np;
3915
3916 if (!vsi || !vsi->netdev)
3917 return -EINVAL;
3918
3919 np = netdev_priv(vsi->netdev);
3920
3921 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3922 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3923 }
3924
3925 /**
3926 * ice_get_avail_q_count - Get count of queues in use
3927 * @pf_qmap: bitmap to get queue use count from
3928 * @lock: pointer to a mutex that protects access to pf_qmap
3929 * @size: size of the bitmap
3930 */
3931 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3932 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3933 {
3934 unsigned long bit;
3935 u16 count = 0;
3936
3937 mutex_lock(lock);
3938 for_each_clear_bit(bit, pf_qmap, size)
3939 count++;
3940 mutex_unlock(lock);
3941
3942 return count;
3943 }
3944
3945 /**
3946 * ice_get_avail_txq_count - Get count of Tx queues in use
3947 * @pf: pointer to an ice_pf instance
3948 */
ice_get_avail_txq_count(struct ice_pf * pf)3949 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3950 {
3951 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3952 pf->max_pf_txqs);
3953 }
3954
3955 /**
3956 * ice_get_avail_rxq_count - Get count of Rx queues in use
3957 * @pf: pointer to an ice_pf instance
3958 */
ice_get_avail_rxq_count(struct ice_pf * pf)3959 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3960 {
3961 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3962 pf->max_pf_rxqs);
3963 }
3964
3965 /**
3966 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3967 * @pf: board private structure to initialize
3968 */
ice_deinit_pf(struct ice_pf * pf)3969 static void ice_deinit_pf(struct ice_pf *pf)
3970 {
3971 ice_service_task_stop(pf);
3972 mutex_destroy(&pf->lag_mutex);
3973 mutex_destroy(&pf->adev_mutex);
3974 mutex_destroy(&pf->sw_mutex);
3975 mutex_destroy(&pf->tc_mutex);
3976 mutex_destroy(&pf->avail_q_mutex);
3977 mutex_destroy(&pf->vfs.table_lock);
3978
3979 if (pf->avail_txqs) {
3980 bitmap_free(pf->avail_txqs);
3981 pf->avail_txqs = NULL;
3982 }
3983
3984 if (pf->avail_rxqs) {
3985 bitmap_free(pf->avail_rxqs);
3986 pf->avail_rxqs = NULL;
3987 }
3988
3989 if (pf->ptp.clock)
3990 ptp_clock_unregister(pf->ptp.clock);
3991
3992 xa_destroy(&pf->dyn_ports);
3993 xa_destroy(&pf->sf_nums);
3994 }
3995
3996 /**
3997 * ice_set_pf_caps - set PFs capability flags
3998 * @pf: pointer to the PF instance
3999 */
ice_set_pf_caps(struct ice_pf * pf)4000 static void ice_set_pf_caps(struct ice_pf *pf)
4001 {
4002 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
4003
4004 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4005 if (func_caps->common_cap.rdma)
4006 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4007 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4008 if (func_caps->common_cap.dcb)
4009 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4010 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4011 if (func_caps->common_cap.sr_iov_1_1) {
4012 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4013 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
4014 ICE_MAX_SRIOV_VFS);
4015 }
4016 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
4017 if (func_caps->common_cap.rss_table_size)
4018 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
4019
4020 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
4021 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
4022 u16 unused;
4023
4024 /* ctrl_vsi_idx will be set to a valid value when flow director
4025 * is setup by ice_init_fdir
4026 */
4027 pf->ctrl_vsi_idx = ICE_NO_VSI;
4028 set_bit(ICE_FLAG_FD_ENA, pf->flags);
4029 /* force guaranteed filter pool for PF */
4030 ice_alloc_fd_guar_item(&pf->hw, &unused,
4031 func_caps->fd_fltr_guar);
4032 /* force shared filter pool for PF */
4033 ice_alloc_fd_shrd_item(&pf->hw, &unused,
4034 func_caps->fd_fltr_best_effort);
4035 }
4036
4037 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4038 if (func_caps->common_cap.ieee_1588 &&
4039 !(pf->hw.mac_type == ICE_MAC_E830))
4040 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4041
4042 pf->max_pf_txqs = func_caps->common_cap.num_txq;
4043 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4044 }
4045
4046 /**
4047 * ice_init_pf - Initialize general software structures (struct ice_pf)
4048 * @pf: board private structure to initialize
4049 */
ice_init_pf(struct ice_pf * pf)4050 static int ice_init_pf(struct ice_pf *pf)
4051 {
4052 ice_set_pf_caps(pf);
4053
4054 mutex_init(&pf->sw_mutex);
4055 mutex_init(&pf->tc_mutex);
4056 mutex_init(&pf->adev_mutex);
4057 mutex_init(&pf->lag_mutex);
4058
4059 INIT_HLIST_HEAD(&pf->aq_wait_list);
4060 spin_lock_init(&pf->aq_wait_lock);
4061 init_waitqueue_head(&pf->aq_wait_queue);
4062
4063 init_waitqueue_head(&pf->reset_wait_queue);
4064
4065 /* setup service timer and periodic service task */
4066 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4067 pf->serv_tmr_period = HZ;
4068 INIT_WORK(&pf->serv_task, ice_service_task);
4069 clear_bit(ICE_SERVICE_SCHED, pf->state);
4070
4071 mutex_init(&pf->avail_q_mutex);
4072 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4073 if (!pf->avail_txqs)
4074 return -ENOMEM;
4075
4076 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4077 if (!pf->avail_rxqs) {
4078 bitmap_free(pf->avail_txqs);
4079 pf->avail_txqs = NULL;
4080 return -ENOMEM;
4081 }
4082
4083 mutex_init(&pf->vfs.table_lock);
4084 hash_init(pf->vfs.table);
4085 ice_mbx_init_snapshot(&pf->hw);
4086
4087 xa_init(&pf->dyn_ports);
4088 xa_init(&pf->sf_nums);
4089
4090 return 0;
4091 }
4092
4093 /**
4094 * ice_is_wol_supported - check if WoL is supported
4095 * @hw: pointer to hardware info
4096 *
4097 * Check if WoL is supported based on the HW configuration.
4098 * Returns true if NVM supports and enables WoL for this port, false otherwise
4099 */
ice_is_wol_supported(struct ice_hw * hw)4100 bool ice_is_wol_supported(struct ice_hw *hw)
4101 {
4102 u16 wol_ctrl;
4103
4104 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4105 * word) indicates WoL is not supported on the corresponding PF ID.
4106 */
4107 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4108 return false;
4109
4110 return !(BIT(hw->port_info->lport) & wol_ctrl);
4111 }
4112
4113 /**
4114 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4115 * @vsi: VSI being changed
4116 * @new_rx: new number of Rx queues
4117 * @new_tx: new number of Tx queues
4118 * @locked: is adev device_lock held
4119 *
4120 * Only change the number of queues if new_tx, or new_rx is non-0.
4121 *
4122 * Returns 0 on success.
4123 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx,bool locked)4124 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4125 {
4126 struct ice_pf *pf = vsi->back;
4127 int i, err = 0, timeout = 50;
4128
4129 if (!new_rx && !new_tx)
4130 return -EINVAL;
4131
4132 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4133 timeout--;
4134 if (!timeout)
4135 return -EBUSY;
4136 usleep_range(1000, 2000);
4137 }
4138
4139 if (new_tx)
4140 vsi->req_txq = (u16)new_tx;
4141 if (new_rx)
4142 vsi->req_rxq = (u16)new_rx;
4143
4144 /* set for the next time the netdev is started */
4145 if (!netif_running(vsi->netdev)) {
4146 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4147 if (err)
4148 goto rebuild_err;
4149 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4150 goto done;
4151 }
4152
4153 ice_vsi_close(vsi);
4154 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4155 if (err)
4156 goto rebuild_err;
4157
4158 ice_for_each_traffic_class(i) {
4159 if (vsi->tc_cfg.ena_tc & BIT(i))
4160 netdev_set_tc_queue(vsi->netdev,
4161 vsi->tc_cfg.tc_info[i].netdev_tc,
4162 vsi->tc_cfg.tc_info[i].qcount_tx,
4163 vsi->tc_cfg.tc_info[i].qoffset);
4164 }
4165 ice_pf_dcb_recfg(pf, locked);
4166 ice_vsi_open(vsi);
4167 goto done;
4168
4169 rebuild_err:
4170 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4171 err);
4172 done:
4173 clear_bit(ICE_CFG_BUSY, pf->state);
4174 return err;
4175 }
4176
4177 /**
4178 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4179 * @pf: PF to configure
4180 *
4181 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4182 * VSI can still Tx/Rx VLAN tagged packets.
4183 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4184 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4185 {
4186 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4187 struct ice_vsi_ctx *ctxt;
4188 struct ice_hw *hw;
4189 int status;
4190
4191 if (!vsi)
4192 return;
4193
4194 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4195 if (!ctxt)
4196 return;
4197
4198 hw = &pf->hw;
4199 ctxt->info = vsi->info;
4200
4201 ctxt->info.valid_sections =
4202 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4203 ICE_AQ_VSI_PROP_SECURITY_VALID |
4204 ICE_AQ_VSI_PROP_SW_VALID);
4205
4206 /* disable VLAN anti-spoof */
4207 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4208 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4209
4210 /* disable VLAN pruning and keep all other settings */
4211 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4212
4213 /* allow all VLANs on Tx and don't strip on Rx */
4214 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4215 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4216
4217 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4218 if (status) {
4219 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4220 status, ice_aq_str(hw->adminq.sq_last_status));
4221 } else {
4222 vsi->info.sec_flags = ctxt->info.sec_flags;
4223 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4224 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4225 }
4226
4227 kfree(ctxt);
4228 }
4229
4230 /**
4231 * ice_log_pkg_init - log result of DDP package load
4232 * @hw: pointer to hardware info
4233 * @state: state of package load
4234 */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4235 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4236 {
4237 struct ice_pf *pf = hw->back;
4238 struct device *dev;
4239
4240 dev = ice_pf_to_dev(pf);
4241
4242 switch (state) {
4243 case ICE_DDP_PKG_SUCCESS:
4244 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4245 hw->active_pkg_name,
4246 hw->active_pkg_ver.major,
4247 hw->active_pkg_ver.minor,
4248 hw->active_pkg_ver.update,
4249 hw->active_pkg_ver.draft);
4250 break;
4251 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4252 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4253 hw->active_pkg_name,
4254 hw->active_pkg_ver.major,
4255 hw->active_pkg_ver.minor,
4256 hw->active_pkg_ver.update,
4257 hw->active_pkg_ver.draft);
4258 break;
4259 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4260 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4261 hw->active_pkg_name,
4262 hw->active_pkg_ver.major,
4263 hw->active_pkg_ver.minor,
4264 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4265 break;
4266 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4267 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4268 hw->active_pkg_name,
4269 hw->active_pkg_ver.major,
4270 hw->active_pkg_ver.minor,
4271 hw->active_pkg_ver.update,
4272 hw->active_pkg_ver.draft,
4273 hw->pkg_name,
4274 hw->pkg_ver.major,
4275 hw->pkg_ver.minor,
4276 hw->pkg_ver.update,
4277 hw->pkg_ver.draft);
4278 break;
4279 case ICE_DDP_PKG_FW_MISMATCH:
4280 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4281 break;
4282 case ICE_DDP_PKG_INVALID_FILE:
4283 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4284 break;
4285 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4286 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4287 break;
4288 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4289 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4290 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4291 break;
4292 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4293 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4294 break;
4295 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4296 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4297 break;
4298 case ICE_DDP_PKG_LOAD_ERROR:
4299 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4300 /* poll for reset to complete */
4301 if (ice_check_reset(hw))
4302 dev_err(dev, "Error resetting device. Please reload the driver\n");
4303 break;
4304 case ICE_DDP_PKG_ERR:
4305 default:
4306 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4307 break;
4308 }
4309 }
4310
4311 /**
4312 * ice_load_pkg - load/reload the DDP Package file
4313 * @firmware: firmware structure when firmware requested or NULL for reload
4314 * @pf: pointer to the PF instance
4315 *
4316 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4317 * initialize HW tables.
4318 */
4319 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4320 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4321 {
4322 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4323 struct device *dev = ice_pf_to_dev(pf);
4324 struct ice_hw *hw = &pf->hw;
4325
4326 /* Load DDP Package */
4327 if (firmware && !hw->pkg_copy) {
4328 state = ice_copy_and_init_pkg(hw, firmware->data,
4329 firmware->size);
4330 ice_log_pkg_init(hw, state);
4331 } else if (!firmware && hw->pkg_copy) {
4332 /* Reload package during rebuild after CORER/GLOBR reset */
4333 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4334 ice_log_pkg_init(hw, state);
4335 } else {
4336 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4337 }
4338
4339 if (!ice_is_init_pkg_successful(state)) {
4340 /* Safe Mode */
4341 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4342 return;
4343 }
4344
4345 /* Successful download package is the precondition for advanced
4346 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4347 */
4348 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4349 }
4350
4351 /**
4352 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4353 * @pf: pointer to the PF structure
4354 *
4355 * There is no error returned here because the driver should be able to handle
4356 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4357 * specifically with Tx.
4358 */
ice_verify_cacheline_size(struct ice_pf * pf)4359 static void ice_verify_cacheline_size(struct ice_pf *pf)
4360 {
4361 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4362 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4363 ICE_CACHE_LINE_BYTES);
4364 }
4365
4366 /**
4367 * ice_send_version - update firmware with driver version
4368 * @pf: PF struct
4369 *
4370 * Returns 0 on success, else error code
4371 */
ice_send_version(struct ice_pf * pf)4372 static int ice_send_version(struct ice_pf *pf)
4373 {
4374 struct ice_driver_ver dv;
4375
4376 dv.major_ver = 0xff;
4377 dv.minor_ver = 0xff;
4378 dv.build_ver = 0xff;
4379 dv.subbuild_ver = 0;
4380 strscpy((char *)dv.driver_string, UTS_RELEASE,
4381 sizeof(dv.driver_string));
4382 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4383 }
4384
4385 /**
4386 * ice_init_fdir - Initialize flow director VSI and configuration
4387 * @pf: pointer to the PF instance
4388 *
4389 * returns 0 on success, negative on error
4390 */
ice_init_fdir(struct ice_pf * pf)4391 static int ice_init_fdir(struct ice_pf *pf)
4392 {
4393 struct device *dev = ice_pf_to_dev(pf);
4394 struct ice_vsi *ctrl_vsi;
4395 int err;
4396
4397 /* Side Band Flow Director needs to have a control VSI.
4398 * Allocate it and store it in the PF.
4399 */
4400 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4401 if (!ctrl_vsi) {
4402 dev_dbg(dev, "could not create control VSI\n");
4403 return -ENOMEM;
4404 }
4405
4406 err = ice_vsi_open_ctrl(ctrl_vsi);
4407 if (err) {
4408 dev_dbg(dev, "could not open control VSI\n");
4409 goto err_vsi_open;
4410 }
4411
4412 mutex_init(&pf->hw.fdir_fltr_lock);
4413
4414 err = ice_fdir_create_dflt_rules(pf);
4415 if (err)
4416 goto err_fdir_rule;
4417
4418 return 0;
4419
4420 err_fdir_rule:
4421 ice_fdir_release_flows(&pf->hw);
4422 ice_vsi_close(ctrl_vsi);
4423 err_vsi_open:
4424 ice_vsi_release(ctrl_vsi);
4425 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4426 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4427 pf->ctrl_vsi_idx = ICE_NO_VSI;
4428 }
4429 return err;
4430 }
4431
ice_deinit_fdir(struct ice_pf * pf)4432 static void ice_deinit_fdir(struct ice_pf *pf)
4433 {
4434 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4435
4436 if (!vsi)
4437 return;
4438
4439 ice_vsi_manage_fdir(vsi, false);
4440 ice_vsi_release(vsi);
4441 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4442 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4443 pf->ctrl_vsi_idx = ICE_NO_VSI;
4444 }
4445
4446 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4447 }
4448
4449 /**
4450 * ice_get_opt_fw_name - return optional firmware file name or NULL
4451 * @pf: pointer to the PF instance
4452 */
ice_get_opt_fw_name(struct ice_pf * pf)4453 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4454 {
4455 /* Optional firmware name same as default with additional dash
4456 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4457 */
4458 struct pci_dev *pdev = pf->pdev;
4459 char *opt_fw_filename;
4460 u64 dsn;
4461
4462 /* Determine the name of the optional file using the DSN (two
4463 * dwords following the start of the DSN Capability).
4464 */
4465 dsn = pci_get_dsn(pdev);
4466 if (!dsn)
4467 return NULL;
4468
4469 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4470 if (!opt_fw_filename)
4471 return NULL;
4472
4473 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4474 ICE_DDP_PKG_PATH, dsn);
4475
4476 return opt_fw_filename;
4477 }
4478
4479 /**
4480 * ice_request_fw - Device initialization routine
4481 * @pf: pointer to the PF instance
4482 * @firmware: double pointer to firmware struct
4483 *
4484 * Return: zero when successful, negative values otherwise.
4485 */
ice_request_fw(struct ice_pf * pf,const struct firmware ** firmware)4486 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware)
4487 {
4488 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4489 struct device *dev = ice_pf_to_dev(pf);
4490 int err = 0;
4491
4492 /* optional device-specific DDP (if present) overrides the default DDP
4493 * package file. kernel logs a debug message if the file doesn't exist,
4494 * and warning messages for other errors.
4495 */
4496 if (opt_fw_filename) {
4497 err = firmware_request_nowarn(firmware, opt_fw_filename, dev);
4498 kfree(opt_fw_filename);
4499 if (!err)
4500 return err;
4501 }
4502 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev);
4503 if (err)
4504 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4505
4506 return err;
4507 }
4508
4509 /**
4510 * ice_init_tx_topology - performs Tx topology initialization
4511 * @hw: pointer to the hardware structure
4512 * @firmware: pointer to firmware structure
4513 *
4514 * Return: zero when init was successful, negative values otherwise.
4515 */
4516 static int
ice_init_tx_topology(struct ice_hw * hw,const struct firmware * firmware)4517 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware)
4518 {
4519 u8 num_tx_sched_layers = hw->num_tx_sched_layers;
4520 struct ice_pf *pf = hw->back;
4521 struct device *dev;
4522 int err;
4523
4524 dev = ice_pf_to_dev(pf);
4525 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size);
4526 if (!err) {
4527 if (hw->num_tx_sched_layers > num_tx_sched_layers)
4528 dev_info(dev, "Tx scheduling layers switching feature disabled\n");
4529 else
4530 dev_info(dev, "Tx scheduling layers switching feature enabled\n");
4531 /* if there was a change in topology ice_cfg_tx_topo triggered
4532 * a CORER and we need to re-init hw
4533 */
4534 ice_deinit_hw(hw);
4535 err = ice_init_hw(hw);
4536
4537 return err;
4538 } else if (err == -EIO) {
4539 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n");
4540 }
4541
4542 return 0;
4543 }
4544
4545 /**
4546 * ice_init_ddp_config - DDP related configuration
4547 * @hw: pointer to the hardware structure
4548 * @pf: pointer to pf structure
4549 *
4550 * This function loads DDP file from the disk, then initializes Tx
4551 * topology. At the end DDP package is loaded on the card.
4552 *
4553 * Return: zero when init was successful, negative values otherwise.
4554 */
ice_init_ddp_config(struct ice_hw * hw,struct ice_pf * pf)4555 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf)
4556 {
4557 struct device *dev = ice_pf_to_dev(pf);
4558 const struct firmware *firmware = NULL;
4559 int err;
4560
4561 err = ice_request_fw(pf, &firmware);
4562 if (err) {
4563 dev_err(dev, "Fail during requesting FW: %d\n", err);
4564 return err;
4565 }
4566
4567 err = ice_init_tx_topology(hw, firmware);
4568 if (err) {
4569 dev_err(dev, "Fail during initialization of Tx topology: %d\n",
4570 err);
4571 release_firmware(firmware);
4572 return err;
4573 }
4574
4575 /* Download firmware to device */
4576 ice_load_pkg(firmware, pf);
4577 release_firmware(firmware);
4578
4579 return 0;
4580 }
4581
4582 /**
4583 * ice_print_wake_reason - show the wake up cause in the log
4584 * @pf: pointer to the PF struct
4585 */
ice_print_wake_reason(struct ice_pf * pf)4586 static void ice_print_wake_reason(struct ice_pf *pf)
4587 {
4588 u32 wus = pf->wakeup_reason;
4589 const char *wake_str;
4590
4591 /* if no wake event, nothing to print */
4592 if (!wus)
4593 return;
4594
4595 if (wus & PFPM_WUS_LNKC_M)
4596 wake_str = "Link\n";
4597 else if (wus & PFPM_WUS_MAG_M)
4598 wake_str = "Magic Packet\n";
4599 else if (wus & PFPM_WUS_MNG_M)
4600 wake_str = "Management\n";
4601 else if (wus & PFPM_WUS_FW_RST_WK_M)
4602 wake_str = "Firmware Reset\n";
4603 else
4604 wake_str = "Unknown\n";
4605
4606 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4607 }
4608
4609 /**
4610 * ice_pf_fwlog_update_module - update 1 module
4611 * @pf: pointer to the PF struct
4612 * @log_level: log_level to use for the @module
4613 * @module: module to update
4614 */
ice_pf_fwlog_update_module(struct ice_pf * pf,int log_level,int module)4615 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4616 {
4617 struct ice_hw *hw = &pf->hw;
4618
4619 hw->fwlog_cfg.module_entries[module].log_level = log_level;
4620 }
4621
4622 /**
4623 * ice_register_netdev - register netdev
4624 * @vsi: pointer to the VSI struct
4625 */
ice_register_netdev(struct ice_vsi * vsi)4626 static int ice_register_netdev(struct ice_vsi *vsi)
4627 {
4628 int err;
4629
4630 if (!vsi || !vsi->netdev)
4631 return -EIO;
4632
4633 err = register_netdev(vsi->netdev);
4634 if (err)
4635 return err;
4636
4637 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4638 netif_carrier_off(vsi->netdev);
4639 netif_tx_stop_all_queues(vsi->netdev);
4640
4641 return 0;
4642 }
4643
ice_unregister_netdev(struct ice_vsi * vsi)4644 static void ice_unregister_netdev(struct ice_vsi *vsi)
4645 {
4646 if (!vsi || !vsi->netdev)
4647 return;
4648
4649 unregister_netdev(vsi->netdev);
4650 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4651 }
4652
4653 /**
4654 * ice_cfg_netdev - Allocate, configure and register a netdev
4655 * @vsi: the VSI associated with the new netdev
4656 *
4657 * Returns 0 on success, negative value on failure
4658 */
ice_cfg_netdev(struct ice_vsi * vsi)4659 static int ice_cfg_netdev(struct ice_vsi *vsi)
4660 {
4661 struct ice_netdev_priv *np;
4662 struct net_device *netdev;
4663 u8 mac_addr[ETH_ALEN];
4664
4665 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4666 vsi->alloc_rxq);
4667 if (!netdev)
4668 return -ENOMEM;
4669
4670 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4671 vsi->netdev = netdev;
4672 np = netdev_priv(netdev);
4673 np->vsi = vsi;
4674
4675 ice_set_netdev_features(netdev);
4676 ice_set_ops(vsi);
4677
4678 if (vsi->type == ICE_VSI_PF) {
4679 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4680 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4681 eth_hw_addr_set(netdev, mac_addr);
4682 }
4683
4684 netdev->priv_flags |= IFF_UNICAST_FLT;
4685
4686 /* Setup netdev TC information */
4687 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4688
4689 netdev->max_mtu = ICE_MAX_MTU;
4690
4691 return 0;
4692 }
4693
ice_decfg_netdev(struct ice_vsi * vsi)4694 static void ice_decfg_netdev(struct ice_vsi *vsi)
4695 {
4696 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4697 free_netdev(vsi->netdev);
4698 vsi->netdev = NULL;
4699 }
4700
4701 /**
4702 * ice_wait_for_fw - wait for full FW readiness
4703 * @hw: pointer to the hardware structure
4704 * @timeout: milliseconds that can elapse before timing out
4705 */
ice_wait_for_fw(struct ice_hw * hw,u32 timeout)4706 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4707 {
4708 int fw_loading;
4709 u32 elapsed = 0;
4710
4711 while (elapsed <= timeout) {
4712 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4713
4714 /* firmware was not yet loaded, we have to wait more */
4715 if (fw_loading) {
4716 elapsed += 100;
4717 msleep(100);
4718 continue;
4719 }
4720 return 0;
4721 }
4722
4723 return -ETIMEDOUT;
4724 }
4725
ice_init_dev(struct ice_pf * pf)4726 int ice_init_dev(struct ice_pf *pf)
4727 {
4728 struct device *dev = ice_pf_to_dev(pf);
4729 struct ice_hw *hw = &pf->hw;
4730 int err;
4731
4732 err = ice_init_hw(hw);
4733 if (err) {
4734 dev_err(dev, "ice_init_hw failed: %d\n", err);
4735 return err;
4736 }
4737
4738 /* Some cards require longer initialization times
4739 * due to necessity of loading FW from an external source.
4740 * This can take even half a minute.
4741 */
4742 if (ice_is_pf_c827(hw)) {
4743 err = ice_wait_for_fw(hw, 30000);
4744 if (err) {
4745 dev_err(dev, "ice_wait_for_fw timed out");
4746 return err;
4747 }
4748 }
4749
4750 ice_init_feature_support(pf);
4751
4752 err = ice_init_ddp_config(hw, pf);
4753
4754 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be
4755 * set in pf->state, which will cause ice_is_safe_mode to return
4756 * true
4757 */
4758 if (err || ice_is_safe_mode(pf)) {
4759 /* we already got function/device capabilities but these don't
4760 * reflect what the driver needs to do in safe mode. Instead of
4761 * adding conditional logic everywhere to ignore these
4762 * device/function capabilities, override them.
4763 */
4764 ice_set_safe_mode_caps(hw);
4765 }
4766
4767 err = ice_init_pf(pf);
4768 if (err) {
4769 dev_err(dev, "ice_init_pf failed: %d\n", err);
4770 goto err_init_pf;
4771 }
4772
4773 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4774 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4775 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4776 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4777 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4778 pf->hw.udp_tunnel_nic.tables[0].n_entries =
4779 pf->hw.tnl.valid_count[TNL_VXLAN];
4780 pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4781 UDP_TUNNEL_TYPE_VXLAN;
4782 }
4783 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4784 pf->hw.udp_tunnel_nic.tables[1].n_entries =
4785 pf->hw.tnl.valid_count[TNL_GENEVE];
4786 pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4787 UDP_TUNNEL_TYPE_GENEVE;
4788 }
4789
4790 err = ice_init_interrupt_scheme(pf);
4791 if (err) {
4792 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4793 err = -EIO;
4794 goto err_init_interrupt_scheme;
4795 }
4796
4797 /* In case of MSIX we are going to setup the misc vector right here
4798 * to handle admin queue events etc. In case of legacy and MSI
4799 * the misc functionality and queue processing is combined in
4800 * the same vector and that gets setup at open.
4801 */
4802 err = ice_req_irq_msix_misc(pf);
4803 if (err) {
4804 dev_err(dev, "setup of misc vector failed: %d\n", err);
4805 goto err_req_irq_msix_misc;
4806 }
4807
4808 return 0;
4809
4810 err_req_irq_msix_misc:
4811 ice_clear_interrupt_scheme(pf);
4812 err_init_interrupt_scheme:
4813 ice_deinit_pf(pf);
4814 err_init_pf:
4815 ice_deinit_hw(hw);
4816 return err;
4817 }
4818
ice_deinit_dev(struct ice_pf * pf)4819 void ice_deinit_dev(struct ice_pf *pf)
4820 {
4821 ice_free_irq_msix_misc(pf);
4822 ice_deinit_pf(pf);
4823 ice_deinit_hw(&pf->hw);
4824
4825 /* Service task is already stopped, so call reset directly. */
4826 ice_reset(&pf->hw, ICE_RESET_PFR);
4827 pci_wait_for_pending_transaction(pf->pdev);
4828 ice_clear_interrupt_scheme(pf);
4829 }
4830
ice_init_features(struct ice_pf * pf)4831 static void ice_init_features(struct ice_pf *pf)
4832 {
4833 struct device *dev = ice_pf_to_dev(pf);
4834
4835 if (ice_is_safe_mode(pf))
4836 return;
4837
4838 /* initialize DDP driven features */
4839 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4840 ice_ptp_init(pf);
4841
4842 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4843 ice_gnss_init(pf);
4844
4845 if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4846 ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4847 ice_dpll_init(pf);
4848
4849 /* Note: Flow director init failure is non-fatal to load */
4850 if (ice_init_fdir(pf))
4851 dev_err(dev, "could not initialize flow director\n");
4852
4853 /* Note: DCB init failure is non-fatal to load */
4854 if (ice_init_pf_dcb(pf, false)) {
4855 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4856 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4857 } else {
4858 ice_cfg_lldp_mib_change(&pf->hw, true);
4859 }
4860
4861 if (ice_init_lag(pf))
4862 dev_warn(dev, "Failed to init link aggregation support\n");
4863
4864 ice_hwmon_init(pf);
4865 }
4866
ice_deinit_features(struct ice_pf * pf)4867 static void ice_deinit_features(struct ice_pf *pf)
4868 {
4869 if (ice_is_safe_mode(pf))
4870 return;
4871
4872 ice_deinit_lag(pf);
4873 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4874 ice_cfg_lldp_mib_change(&pf->hw, false);
4875 ice_deinit_fdir(pf);
4876 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4877 ice_gnss_exit(pf);
4878 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4879 ice_ptp_release(pf);
4880 if (test_bit(ICE_FLAG_DPLL, pf->flags))
4881 ice_dpll_deinit(pf);
4882 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4883 xa_destroy(&pf->eswitch.reprs);
4884 }
4885
ice_init_wakeup(struct ice_pf * pf)4886 static void ice_init_wakeup(struct ice_pf *pf)
4887 {
4888 /* Save wakeup reason register for later use */
4889 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4890
4891 /* check for a power management event */
4892 ice_print_wake_reason(pf);
4893
4894 /* clear wake status, all bits */
4895 wr32(&pf->hw, PFPM_WUS, U32_MAX);
4896
4897 /* Disable WoL at init, wait for user to enable */
4898 device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4899 }
4900
ice_init_link(struct ice_pf * pf)4901 static int ice_init_link(struct ice_pf *pf)
4902 {
4903 struct device *dev = ice_pf_to_dev(pf);
4904 int err;
4905
4906 err = ice_init_link_events(pf->hw.port_info);
4907 if (err) {
4908 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4909 return err;
4910 }
4911
4912 /* not a fatal error if this fails */
4913 err = ice_init_nvm_phy_type(pf->hw.port_info);
4914 if (err)
4915 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4916
4917 /* not a fatal error if this fails */
4918 err = ice_update_link_info(pf->hw.port_info);
4919 if (err)
4920 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4921
4922 ice_init_link_dflt_override(pf->hw.port_info);
4923
4924 ice_check_link_cfg_err(pf,
4925 pf->hw.port_info->phy.link_info.link_cfg_err);
4926
4927 /* if media available, initialize PHY settings */
4928 if (pf->hw.port_info->phy.link_info.link_info &
4929 ICE_AQ_MEDIA_AVAILABLE) {
4930 /* not a fatal error if this fails */
4931 err = ice_init_phy_user_cfg(pf->hw.port_info);
4932 if (err)
4933 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4934
4935 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4936 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4937
4938 if (vsi)
4939 ice_configure_phy(vsi);
4940 }
4941 } else {
4942 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4943 }
4944
4945 return err;
4946 }
4947
ice_init_pf_sw(struct ice_pf * pf)4948 static int ice_init_pf_sw(struct ice_pf *pf)
4949 {
4950 bool dvm = ice_is_dvm_ena(&pf->hw);
4951 struct ice_vsi *vsi;
4952 int err;
4953
4954 /* create switch struct for the switch element created by FW on boot */
4955 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4956 if (!pf->first_sw)
4957 return -ENOMEM;
4958
4959 if (pf->hw.evb_veb)
4960 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4961 else
4962 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4963
4964 pf->first_sw->pf = pf;
4965
4966 /* record the sw_id available for later use */
4967 pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4968
4969 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4970 if (err)
4971 goto err_aq_set_port_params;
4972
4973 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4974 if (!vsi) {
4975 err = -ENOMEM;
4976 goto err_pf_vsi_setup;
4977 }
4978
4979 return 0;
4980
4981 err_pf_vsi_setup:
4982 err_aq_set_port_params:
4983 kfree(pf->first_sw);
4984 return err;
4985 }
4986
ice_deinit_pf_sw(struct ice_pf * pf)4987 static void ice_deinit_pf_sw(struct ice_pf *pf)
4988 {
4989 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4990
4991 if (!vsi)
4992 return;
4993
4994 ice_vsi_release(vsi);
4995 kfree(pf->first_sw);
4996 }
4997
ice_alloc_vsis(struct ice_pf * pf)4998 static int ice_alloc_vsis(struct ice_pf *pf)
4999 {
5000 struct device *dev = ice_pf_to_dev(pf);
5001
5002 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
5003 if (!pf->num_alloc_vsi)
5004 return -EIO;
5005
5006 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
5007 dev_warn(dev,
5008 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
5009 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
5010 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
5011 }
5012
5013 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
5014 GFP_KERNEL);
5015 if (!pf->vsi)
5016 return -ENOMEM;
5017
5018 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
5019 sizeof(*pf->vsi_stats), GFP_KERNEL);
5020 if (!pf->vsi_stats) {
5021 devm_kfree(dev, pf->vsi);
5022 return -ENOMEM;
5023 }
5024
5025 return 0;
5026 }
5027
ice_dealloc_vsis(struct ice_pf * pf)5028 static void ice_dealloc_vsis(struct ice_pf *pf)
5029 {
5030 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
5031 pf->vsi_stats = NULL;
5032
5033 pf->num_alloc_vsi = 0;
5034 devm_kfree(ice_pf_to_dev(pf), pf->vsi);
5035 pf->vsi = NULL;
5036 }
5037
ice_init_devlink(struct ice_pf * pf)5038 static int ice_init_devlink(struct ice_pf *pf)
5039 {
5040 int err;
5041
5042 err = ice_devlink_register_params(pf);
5043 if (err)
5044 return err;
5045
5046 ice_devlink_init_regions(pf);
5047 ice_devlink_register(pf);
5048
5049 return 0;
5050 }
5051
ice_deinit_devlink(struct ice_pf * pf)5052 static void ice_deinit_devlink(struct ice_pf *pf)
5053 {
5054 ice_devlink_unregister(pf);
5055 ice_devlink_destroy_regions(pf);
5056 ice_devlink_unregister_params(pf);
5057 }
5058
ice_init(struct ice_pf * pf)5059 static int ice_init(struct ice_pf *pf)
5060 {
5061 int err;
5062
5063 err = ice_init_dev(pf);
5064 if (err)
5065 return err;
5066
5067 err = ice_alloc_vsis(pf);
5068 if (err)
5069 goto err_alloc_vsis;
5070
5071 err = ice_init_pf_sw(pf);
5072 if (err)
5073 goto err_init_pf_sw;
5074
5075 ice_init_wakeup(pf);
5076
5077 err = ice_init_link(pf);
5078 if (err)
5079 goto err_init_link;
5080
5081 err = ice_send_version(pf);
5082 if (err)
5083 goto err_init_link;
5084
5085 ice_verify_cacheline_size(pf);
5086
5087 if (ice_is_safe_mode(pf))
5088 ice_set_safe_mode_vlan_cfg(pf);
5089 else
5090 /* print PCI link speed and width */
5091 pcie_print_link_status(pf->pdev);
5092
5093 /* ready to go, so clear down state bit */
5094 clear_bit(ICE_DOWN, pf->state);
5095 clear_bit(ICE_SERVICE_DIS, pf->state);
5096
5097 /* since everything is good, start the service timer */
5098 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5099
5100 return 0;
5101
5102 err_init_link:
5103 ice_deinit_pf_sw(pf);
5104 err_init_pf_sw:
5105 ice_dealloc_vsis(pf);
5106 err_alloc_vsis:
5107 ice_deinit_dev(pf);
5108 return err;
5109 }
5110
ice_deinit(struct ice_pf * pf)5111 static void ice_deinit(struct ice_pf *pf)
5112 {
5113 set_bit(ICE_SERVICE_DIS, pf->state);
5114 set_bit(ICE_DOWN, pf->state);
5115
5116 ice_deinit_pf_sw(pf);
5117 ice_dealloc_vsis(pf);
5118 ice_deinit_dev(pf);
5119 }
5120
5121 /**
5122 * ice_load - load pf by init hw and starting VSI
5123 * @pf: pointer to the pf instance
5124 *
5125 * This function has to be called under devl_lock.
5126 */
ice_load(struct ice_pf * pf)5127 int ice_load(struct ice_pf *pf)
5128 {
5129 struct ice_vsi *vsi;
5130 int err;
5131
5132 devl_assert_locked(priv_to_devlink(pf));
5133
5134 vsi = ice_get_main_vsi(pf);
5135
5136 /* init channel list */
5137 INIT_LIST_HEAD(&vsi->ch_list);
5138
5139 err = ice_cfg_netdev(vsi);
5140 if (err)
5141 return err;
5142
5143 /* Setup DCB netlink interface */
5144 ice_dcbnl_setup(vsi);
5145
5146 err = ice_init_mac_fltr(pf);
5147 if (err)
5148 goto err_init_mac_fltr;
5149
5150 err = ice_devlink_create_pf_port(pf);
5151 if (err)
5152 goto err_devlink_create_pf_port;
5153
5154 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
5155
5156 err = ice_register_netdev(vsi);
5157 if (err)
5158 goto err_register_netdev;
5159
5160 err = ice_tc_indir_block_register(vsi);
5161 if (err)
5162 goto err_tc_indir_block_register;
5163
5164 ice_napi_add(vsi);
5165
5166 err = ice_init_rdma(pf);
5167 if (err)
5168 goto err_init_rdma;
5169
5170 ice_init_features(pf);
5171 ice_service_task_restart(pf);
5172
5173 clear_bit(ICE_DOWN, pf->state);
5174
5175 return 0;
5176
5177 err_init_rdma:
5178 ice_tc_indir_block_unregister(vsi);
5179 err_tc_indir_block_register:
5180 ice_unregister_netdev(vsi);
5181 err_register_netdev:
5182 ice_devlink_destroy_pf_port(pf);
5183 err_devlink_create_pf_port:
5184 err_init_mac_fltr:
5185 ice_decfg_netdev(vsi);
5186 return err;
5187 }
5188
5189 /**
5190 * ice_unload - unload pf by stopping VSI and deinit hw
5191 * @pf: pointer to the pf instance
5192 *
5193 * This function has to be called under devl_lock.
5194 */
ice_unload(struct ice_pf * pf)5195 void ice_unload(struct ice_pf *pf)
5196 {
5197 struct ice_vsi *vsi = ice_get_main_vsi(pf);
5198
5199 devl_assert_locked(priv_to_devlink(pf));
5200
5201 ice_deinit_features(pf);
5202 ice_deinit_rdma(pf);
5203 ice_tc_indir_block_unregister(vsi);
5204 ice_unregister_netdev(vsi);
5205 ice_devlink_destroy_pf_port(pf);
5206 ice_decfg_netdev(vsi);
5207 }
5208
5209 /**
5210 * ice_probe - Device initialization routine
5211 * @pdev: PCI device information struct
5212 * @ent: entry in ice_pci_tbl
5213 *
5214 * Returns 0 on success, negative on failure
5215 */
5216 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)5217 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5218 {
5219 struct device *dev = &pdev->dev;
5220 struct ice_adapter *adapter;
5221 struct ice_pf *pf;
5222 struct ice_hw *hw;
5223 int err;
5224
5225 if (pdev->is_virtfn) {
5226 dev_err(dev, "can't probe a virtual function\n");
5227 return -EINVAL;
5228 }
5229
5230 /* when under a kdump kernel initiate a reset before enabling the
5231 * device in order to clear out any pending DMA transactions. These
5232 * transactions can cause some systems to machine check when doing
5233 * the pcim_enable_device() below.
5234 */
5235 if (is_kdump_kernel()) {
5236 pci_save_state(pdev);
5237 pci_clear_master(pdev);
5238 err = pcie_flr(pdev);
5239 if (err)
5240 return err;
5241 pci_restore_state(pdev);
5242 }
5243
5244 /* this driver uses devres, see
5245 * Documentation/driver-api/driver-model/devres.rst
5246 */
5247 err = pcim_enable_device(pdev);
5248 if (err)
5249 return err;
5250
5251 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5252 if (err) {
5253 dev_err(dev, "BAR0 I/O map error %d\n", err);
5254 return err;
5255 }
5256
5257 pf = ice_allocate_pf(dev);
5258 if (!pf)
5259 return -ENOMEM;
5260
5261 /* initialize Auxiliary index to invalid value */
5262 pf->aux_idx = -1;
5263
5264 /* set up for high or low DMA */
5265 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5266 if (err) {
5267 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5268 return err;
5269 }
5270
5271 pci_set_master(pdev);
5272
5273 adapter = ice_adapter_get(pdev);
5274 if (IS_ERR(adapter))
5275 return PTR_ERR(adapter);
5276
5277 pf->pdev = pdev;
5278 pf->adapter = adapter;
5279 pci_set_drvdata(pdev, pf);
5280 set_bit(ICE_DOWN, pf->state);
5281 /* Disable service task until DOWN bit is cleared */
5282 set_bit(ICE_SERVICE_DIS, pf->state);
5283
5284 hw = &pf->hw;
5285 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5286 pci_save_state(pdev);
5287
5288 hw->back = pf;
5289 hw->port_info = NULL;
5290 hw->vendor_id = pdev->vendor;
5291 hw->device_id = pdev->device;
5292 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5293 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5294 hw->subsystem_device_id = pdev->subsystem_device;
5295 hw->bus.device = PCI_SLOT(pdev->devfn);
5296 hw->bus.func = PCI_FUNC(pdev->devfn);
5297 ice_set_ctrlq_len(hw);
5298
5299 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5300
5301 #ifndef CONFIG_DYNAMIC_DEBUG
5302 if (debug < -1)
5303 hw->debug_mask = debug;
5304 #endif
5305
5306 err = ice_init(pf);
5307 if (err)
5308 goto err_init;
5309
5310 devl_lock(priv_to_devlink(pf));
5311 err = ice_load(pf);
5312 if (err)
5313 goto err_load;
5314
5315 err = ice_init_devlink(pf);
5316 if (err)
5317 goto err_init_devlink;
5318 devl_unlock(priv_to_devlink(pf));
5319
5320 return 0;
5321
5322 err_init_devlink:
5323 ice_unload(pf);
5324 err_load:
5325 devl_unlock(priv_to_devlink(pf));
5326 ice_deinit(pf);
5327 err_init:
5328 ice_adapter_put(pdev);
5329 return err;
5330 }
5331
5332 /**
5333 * ice_set_wake - enable or disable Wake on LAN
5334 * @pf: pointer to the PF struct
5335 *
5336 * Simple helper for WoL control
5337 */
ice_set_wake(struct ice_pf * pf)5338 static void ice_set_wake(struct ice_pf *pf)
5339 {
5340 struct ice_hw *hw = &pf->hw;
5341 bool wol = pf->wol_ena;
5342
5343 /* clear wake state, otherwise new wake events won't fire */
5344 wr32(hw, PFPM_WUS, U32_MAX);
5345
5346 /* enable / disable APM wake up, no RMW needed */
5347 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5348
5349 /* set magic packet filter enabled */
5350 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5351 }
5352
5353 /**
5354 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5355 * @pf: pointer to the PF struct
5356 *
5357 * Issue firmware command to enable multicast magic wake, making
5358 * sure that any locally administered address (LAA) is used for
5359 * wake, and that PF reset doesn't undo the LAA.
5360 */
ice_setup_mc_magic_wake(struct ice_pf * pf)5361 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5362 {
5363 struct device *dev = ice_pf_to_dev(pf);
5364 struct ice_hw *hw = &pf->hw;
5365 u8 mac_addr[ETH_ALEN];
5366 struct ice_vsi *vsi;
5367 int status;
5368 u8 flags;
5369
5370 if (!pf->wol_ena)
5371 return;
5372
5373 vsi = ice_get_main_vsi(pf);
5374 if (!vsi)
5375 return;
5376
5377 /* Get current MAC address in case it's an LAA */
5378 if (vsi->netdev)
5379 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5380 else
5381 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5382
5383 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5384 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5385 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5386
5387 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5388 if (status)
5389 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5390 status, ice_aq_str(hw->adminq.sq_last_status));
5391 }
5392
5393 /**
5394 * ice_remove - Device removal routine
5395 * @pdev: PCI device information struct
5396 */
ice_remove(struct pci_dev * pdev)5397 static void ice_remove(struct pci_dev *pdev)
5398 {
5399 struct ice_pf *pf = pci_get_drvdata(pdev);
5400 int i;
5401
5402 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5403 if (!ice_is_reset_in_progress(pf->state))
5404 break;
5405 msleep(100);
5406 }
5407
5408 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5409 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5410 ice_free_vfs(pf);
5411 }
5412
5413 ice_hwmon_exit(pf);
5414
5415 ice_service_task_stop(pf);
5416 ice_aq_cancel_waiting_tasks(pf);
5417 set_bit(ICE_DOWN, pf->state);
5418
5419 if (!ice_is_safe_mode(pf))
5420 ice_remove_arfs(pf);
5421
5422 devl_lock(priv_to_devlink(pf));
5423 ice_dealloc_all_dynamic_ports(pf);
5424 ice_deinit_devlink(pf);
5425
5426 ice_unload(pf);
5427 devl_unlock(priv_to_devlink(pf));
5428
5429 ice_deinit(pf);
5430 ice_vsi_release_all(pf);
5431
5432 ice_setup_mc_magic_wake(pf);
5433 ice_set_wake(pf);
5434
5435 ice_adapter_put(pdev);
5436 }
5437
5438 /**
5439 * ice_shutdown - PCI callback for shutting down device
5440 * @pdev: PCI device information struct
5441 */
ice_shutdown(struct pci_dev * pdev)5442 static void ice_shutdown(struct pci_dev *pdev)
5443 {
5444 struct ice_pf *pf = pci_get_drvdata(pdev);
5445
5446 ice_remove(pdev);
5447
5448 if (system_state == SYSTEM_POWER_OFF) {
5449 pci_wake_from_d3(pdev, pf->wol_ena);
5450 pci_set_power_state(pdev, PCI_D3hot);
5451 }
5452 }
5453
5454 /**
5455 * ice_prepare_for_shutdown - prep for PCI shutdown
5456 * @pf: board private structure
5457 *
5458 * Inform or close all dependent features in prep for PCI device shutdown
5459 */
ice_prepare_for_shutdown(struct ice_pf * pf)5460 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5461 {
5462 struct ice_hw *hw = &pf->hw;
5463 u32 v;
5464
5465 /* Notify VFs of impending reset */
5466 if (ice_check_sq_alive(hw, &hw->mailboxq))
5467 ice_vc_notify_reset(pf);
5468
5469 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5470
5471 /* disable the VSIs and their queues that are not already DOWN */
5472 ice_pf_dis_all_vsi(pf, false);
5473
5474 ice_for_each_vsi(pf, v)
5475 if (pf->vsi[v])
5476 pf->vsi[v]->vsi_num = 0;
5477
5478 ice_shutdown_all_ctrlq(hw, true);
5479 }
5480
5481 /**
5482 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5483 * @pf: board private structure to reinitialize
5484 *
5485 * This routine reinitialize interrupt scheme that was cleared during
5486 * power management suspend callback.
5487 *
5488 * This should be called during resume routine to re-allocate the q_vectors
5489 * and reacquire interrupts.
5490 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5491 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5492 {
5493 struct device *dev = ice_pf_to_dev(pf);
5494 int ret, v;
5495
5496 /* Since we clear MSIX flag during suspend, we need to
5497 * set it back during resume...
5498 */
5499
5500 ret = ice_init_interrupt_scheme(pf);
5501 if (ret) {
5502 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5503 return ret;
5504 }
5505
5506 /* Remap vectors and rings, after successful re-init interrupts */
5507 ice_for_each_vsi(pf, v) {
5508 if (!pf->vsi[v])
5509 continue;
5510
5511 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5512 if (ret)
5513 goto err_reinit;
5514 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5515 rtnl_lock();
5516 ice_vsi_set_napi_queues(pf->vsi[v]);
5517 rtnl_unlock();
5518 }
5519
5520 ret = ice_req_irq_msix_misc(pf);
5521 if (ret) {
5522 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5523 ret);
5524 goto err_reinit;
5525 }
5526
5527 return 0;
5528
5529 err_reinit:
5530 while (v--)
5531 if (pf->vsi[v]) {
5532 rtnl_lock();
5533 ice_vsi_clear_napi_queues(pf->vsi[v]);
5534 rtnl_unlock();
5535 ice_vsi_free_q_vectors(pf->vsi[v]);
5536 }
5537
5538 return ret;
5539 }
5540
5541 /**
5542 * ice_suspend
5543 * @dev: generic device information structure
5544 *
5545 * Power Management callback to quiesce the device and prepare
5546 * for D3 transition.
5547 */
ice_suspend(struct device * dev)5548 static int ice_suspend(struct device *dev)
5549 {
5550 struct pci_dev *pdev = to_pci_dev(dev);
5551 struct ice_pf *pf;
5552 int disabled, v;
5553
5554 pf = pci_get_drvdata(pdev);
5555
5556 if (!ice_pf_state_is_nominal(pf)) {
5557 dev_err(dev, "Device is not ready, no need to suspend it\n");
5558 return -EBUSY;
5559 }
5560
5561 /* Stop watchdog tasks until resume completion.
5562 * Even though it is most likely that the service task is
5563 * disabled if the device is suspended or down, the service task's
5564 * state is controlled by a different state bit, and we should
5565 * store and honor whatever state that bit is in at this point.
5566 */
5567 disabled = ice_service_task_stop(pf);
5568
5569 ice_deinit_rdma(pf);
5570
5571 /* Already suspended?, then there is nothing to do */
5572 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5573 if (!disabled)
5574 ice_service_task_restart(pf);
5575 return 0;
5576 }
5577
5578 if (test_bit(ICE_DOWN, pf->state) ||
5579 ice_is_reset_in_progress(pf->state)) {
5580 dev_err(dev, "can't suspend device in reset or already down\n");
5581 if (!disabled)
5582 ice_service_task_restart(pf);
5583 return 0;
5584 }
5585
5586 ice_setup_mc_magic_wake(pf);
5587
5588 ice_prepare_for_shutdown(pf);
5589
5590 ice_set_wake(pf);
5591
5592 /* Free vectors, clear the interrupt scheme and release IRQs
5593 * for proper hibernation, especially with large number of CPUs.
5594 * Otherwise hibernation might fail when mapping all the vectors back
5595 * to CPU0.
5596 */
5597 ice_free_irq_msix_misc(pf);
5598 ice_for_each_vsi(pf, v) {
5599 if (!pf->vsi[v])
5600 continue;
5601 rtnl_lock();
5602 ice_vsi_clear_napi_queues(pf->vsi[v]);
5603 rtnl_unlock();
5604 ice_vsi_free_q_vectors(pf->vsi[v]);
5605 }
5606 ice_clear_interrupt_scheme(pf);
5607
5608 pci_save_state(pdev);
5609 pci_wake_from_d3(pdev, pf->wol_ena);
5610 pci_set_power_state(pdev, PCI_D3hot);
5611 return 0;
5612 }
5613
5614 /**
5615 * ice_resume - PM callback for waking up from D3
5616 * @dev: generic device information structure
5617 */
ice_resume(struct device * dev)5618 static int ice_resume(struct device *dev)
5619 {
5620 struct pci_dev *pdev = to_pci_dev(dev);
5621 enum ice_reset_req reset_type;
5622 struct ice_pf *pf;
5623 struct ice_hw *hw;
5624 int ret;
5625
5626 pci_set_power_state(pdev, PCI_D0);
5627 pci_restore_state(pdev);
5628 pci_save_state(pdev);
5629
5630 if (!pci_device_is_present(pdev))
5631 return -ENODEV;
5632
5633 ret = pci_enable_device_mem(pdev);
5634 if (ret) {
5635 dev_err(dev, "Cannot enable device after suspend\n");
5636 return ret;
5637 }
5638
5639 pf = pci_get_drvdata(pdev);
5640 hw = &pf->hw;
5641
5642 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5643 ice_print_wake_reason(pf);
5644
5645 /* We cleared the interrupt scheme when we suspended, so we need to
5646 * restore it now to resume device functionality.
5647 */
5648 ret = ice_reinit_interrupt_scheme(pf);
5649 if (ret)
5650 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5651
5652 ret = ice_init_rdma(pf);
5653 if (ret)
5654 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5655 ret);
5656
5657 clear_bit(ICE_DOWN, pf->state);
5658 /* Now perform PF reset and rebuild */
5659 reset_type = ICE_RESET_PFR;
5660 /* re-enable service task for reset, but allow reset to schedule it */
5661 clear_bit(ICE_SERVICE_DIS, pf->state);
5662
5663 if (ice_schedule_reset(pf, reset_type))
5664 dev_err(dev, "Reset during resume failed.\n");
5665
5666 clear_bit(ICE_SUSPENDED, pf->state);
5667 ice_service_task_restart(pf);
5668
5669 /* Restart the service task */
5670 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5671
5672 return 0;
5673 }
5674
5675 /**
5676 * ice_pci_err_detected - warning that PCI error has been detected
5677 * @pdev: PCI device information struct
5678 * @err: the type of PCI error
5679 *
5680 * Called to warn that something happened on the PCI bus and the error handling
5681 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5682 */
5683 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5684 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5685 {
5686 struct ice_pf *pf = pci_get_drvdata(pdev);
5687
5688 if (!pf) {
5689 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5690 __func__, err);
5691 return PCI_ERS_RESULT_DISCONNECT;
5692 }
5693
5694 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5695 ice_service_task_stop(pf);
5696
5697 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5698 set_bit(ICE_PFR_REQ, pf->state);
5699 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5700 }
5701 }
5702
5703 return PCI_ERS_RESULT_NEED_RESET;
5704 }
5705
5706 /**
5707 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5708 * @pdev: PCI device information struct
5709 *
5710 * Called to determine if the driver can recover from the PCI slot reset by
5711 * using a register read to determine if the device is recoverable.
5712 */
ice_pci_err_slot_reset(struct pci_dev * pdev)5713 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5714 {
5715 struct ice_pf *pf = pci_get_drvdata(pdev);
5716 pci_ers_result_t result;
5717 int err;
5718 u32 reg;
5719
5720 err = pci_enable_device_mem(pdev);
5721 if (err) {
5722 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5723 err);
5724 result = PCI_ERS_RESULT_DISCONNECT;
5725 } else {
5726 pci_set_master(pdev);
5727 pci_restore_state(pdev);
5728 pci_save_state(pdev);
5729 pci_wake_from_d3(pdev, false);
5730
5731 /* Check for life */
5732 reg = rd32(&pf->hw, GLGEN_RTRIG);
5733 if (!reg)
5734 result = PCI_ERS_RESULT_RECOVERED;
5735 else
5736 result = PCI_ERS_RESULT_DISCONNECT;
5737 }
5738
5739 return result;
5740 }
5741
5742 /**
5743 * ice_pci_err_resume - restart operations after PCI error recovery
5744 * @pdev: PCI device information struct
5745 *
5746 * Called to allow the driver to bring things back up after PCI error and/or
5747 * reset recovery have finished
5748 */
ice_pci_err_resume(struct pci_dev * pdev)5749 static void ice_pci_err_resume(struct pci_dev *pdev)
5750 {
5751 struct ice_pf *pf = pci_get_drvdata(pdev);
5752
5753 if (!pf) {
5754 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5755 __func__);
5756 return;
5757 }
5758
5759 if (test_bit(ICE_SUSPENDED, pf->state)) {
5760 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5761 __func__);
5762 return;
5763 }
5764
5765 ice_restore_all_vfs_msi_state(pf);
5766
5767 ice_do_reset(pf, ICE_RESET_PFR);
5768 ice_service_task_restart(pf);
5769 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5770 }
5771
5772 /**
5773 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5774 * @pdev: PCI device information struct
5775 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5776 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5777 {
5778 struct ice_pf *pf = pci_get_drvdata(pdev);
5779
5780 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5781 ice_service_task_stop(pf);
5782
5783 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5784 set_bit(ICE_PFR_REQ, pf->state);
5785 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5786 }
5787 }
5788 }
5789
5790 /**
5791 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5792 * @pdev: PCI device information struct
5793 */
ice_pci_err_reset_done(struct pci_dev * pdev)5794 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5795 {
5796 ice_pci_err_resume(pdev);
5797 }
5798
5799 /* ice_pci_tbl - PCI Device ID Table
5800 *
5801 * Wildcard entries (PCI_ANY_ID) should come last
5802 * Last entry must be all 0s
5803 *
5804 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5805 * Class, Class Mask, private data (not used) }
5806 */
5807 static const struct pci_device_id ice_pci_tbl[] = {
5808 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5809 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5810 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5811 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5812 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5813 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5814 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5815 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5816 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5817 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5818 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5819 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5820 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5821 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5822 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5823 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5824 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5825 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5826 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5827 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5828 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5829 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5830 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5831 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5832 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5833 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5834 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
5835 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
5836 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
5837 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
5838 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) },
5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) },
5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) },
5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) },
5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), },
5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), },
5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), },
5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), },
5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), },
5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), },
5848 /* required last entry */
5849 {}
5850 };
5851 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5852
5853 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5854
5855 static const struct pci_error_handlers ice_pci_err_handler = {
5856 .error_detected = ice_pci_err_detected,
5857 .slot_reset = ice_pci_err_slot_reset,
5858 .reset_prepare = ice_pci_err_reset_prepare,
5859 .reset_done = ice_pci_err_reset_done,
5860 .resume = ice_pci_err_resume
5861 };
5862
5863 static struct pci_driver ice_driver = {
5864 .name = KBUILD_MODNAME,
5865 .id_table = ice_pci_tbl,
5866 .probe = ice_probe,
5867 .remove = ice_remove,
5868 .driver.pm = pm_sleep_ptr(&ice_pm_ops),
5869 .shutdown = ice_shutdown,
5870 .sriov_configure = ice_sriov_configure,
5871 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5872 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5873 .err_handler = &ice_pci_err_handler
5874 };
5875
5876 /**
5877 * ice_module_init - Driver registration routine
5878 *
5879 * ice_module_init is the first routine called when the driver is
5880 * loaded. All it does is register with the PCI subsystem.
5881 */
ice_module_init(void)5882 static int __init ice_module_init(void)
5883 {
5884 int status = -ENOMEM;
5885
5886 pr_info("%s\n", ice_driver_string);
5887 pr_info("%s\n", ice_copyright);
5888
5889 ice_adv_lnk_speed_maps_init();
5890
5891 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5892 if (!ice_wq) {
5893 pr_err("Failed to create workqueue\n");
5894 return status;
5895 }
5896
5897 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5898 if (!ice_lag_wq) {
5899 pr_err("Failed to create LAG workqueue\n");
5900 goto err_dest_wq;
5901 }
5902
5903 ice_debugfs_init();
5904
5905 status = pci_register_driver(&ice_driver);
5906 if (status) {
5907 pr_err("failed to register PCI driver, err %d\n", status);
5908 goto err_dest_lag_wq;
5909 }
5910
5911 status = ice_sf_driver_register();
5912 if (status) {
5913 pr_err("Failed to register SF driver, err %d\n", status);
5914 goto err_sf_driver;
5915 }
5916
5917 return 0;
5918
5919 err_sf_driver:
5920 pci_unregister_driver(&ice_driver);
5921 err_dest_lag_wq:
5922 destroy_workqueue(ice_lag_wq);
5923 ice_debugfs_exit();
5924 err_dest_wq:
5925 destroy_workqueue(ice_wq);
5926 return status;
5927 }
5928 module_init(ice_module_init);
5929
5930 /**
5931 * ice_module_exit - Driver exit cleanup routine
5932 *
5933 * ice_module_exit is called just before the driver is removed
5934 * from memory.
5935 */
ice_module_exit(void)5936 static void __exit ice_module_exit(void)
5937 {
5938 ice_sf_driver_unregister();
5939 pci_unregister_driver(&ice_driver);
5940 ice_debugfs_exit();
5941 destroy_workqueue(ice_wq);
5942 destroy_workqueue(ice_lag_wq);
5943 pr_info("module unloaded\n");
5944 }
5945 module_exit(ice_module_exit);
5946
5947 /**
5948 * ice_set_mac_address - NDO callback to set MAC address
5949 * @netdev: network interface device structure
5950 * @pi: pointer to an address structure
5951 *
5952 * Returns 0 on success, negative on failure
5953 */
ice_set_mac_address(struct net_device * netdev,void * pi)5954 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5955 {
5956 struct ice_netdev_priv *np = netdev_priv(netdev);
5957 struct ice_vsi *vsi = np->vsi;
5958 struct ice_pf *pf = vsi->back;
5959 struct ice_hw *hw = &pf->hw;
5960 struct sockaddr *addr = pi;
5961 u8 old_mac[ETH_ALEN];
5962 u8 flags = 0;
5963 u8 *mac;
5964 int err;
5965
5966 mac = (u8 *)addr->sa_data;
5967
5968 if (!is_valid_ether_addr(mac))
5969 return -EADDRNOTAVAIL;
5970
5971 if (test_bit(ICE_DOWN, pf->state) ||
5972 ice_is_reset_in_progress(pf->state)) {
5973 netdev_err(netdev, "can't set mac %pM. device not ready\n",
5974 mac);
5975 return -EBUSY;
5976 }
5977
5978 if (ice_chnl_dmac_fltr_cnt(pf)) {
5979 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5980 mac);
5981 return -EAGAIN;
5982 }
5983
5984 netif_addr_lock_bh(netdev);
5985 ether_addr_copy(old_mac, netdev->dev_addr);
5986 /* change the netdev's MAC address */
5987 eth_hw_addr_set(netdev, mac);
5988 netif_addr_unlock_bh(netdev);
5989
5990 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
5991 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5992 if (err && err != -ENOENT) {
5993 err = -EADDRNOTAVAIL;
5994 goto err_update_filters;
5995 }
5996
5997 /* Add filter for new MAC. If filter exists, return success */
5998 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5999 if (err == -EEXIST) {
6000 /* Although this MAC filter is already present in hardware it's
6001 * possible in some cases (e.g. bonding) that dev_addr was
6002 * modified outside of the driver and needs to be restored back
6003 * to this value.
6004 */
6005 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
6006
6007 return 0;
6008 } else if (err) {
6009 /* error if the new filter addition failed */
6010 err = -EADDRNOTAVAIL;
6011 }
6012
6013 err_update_filters:
6014 if (err) {
6015 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
6016 mac);
6017 netif_addr_lock_bh(netdev);
6018 eth_hw_addr_set(netdev, old_mac);
6019 netif_addr_unlock_bh(netdev);
6020 return err;
6021 }
6022
6023 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
6024 netdev->dev_addr);
6025
6026 /* write new MAC address to the firmware */
6027 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
6028 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
6029 if (err) {
6030 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
6031 mac, err);
6032 }
6033 return 0;
6034 }
6035
6036 /**
6037 * ice_set_rx_mode - NDO callback to set the netdev filters
6038 * @netdev: network interface device structure
6039 */
ice_set_rx_mode(struct net_device * netdev)6040 static void ice_set_rx_mode(struct net_device *netdev)
6041 {
6042 struct ice_netdev_priv *np = netdev_priv(netdev);
6043 struct ice_vsi *vsi = np->vsi;
6044
6045 if (!vsi || ice_is_switchdev_running(vsi->back))
6046 return;
6047
6048 /* Set the flags to synchronize filters
6049 * ndo_set_rx_mode may be triggered even without a change in netdev
6050 * flags
6051 */
6052 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
6053 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
6054 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
6055
6056 /* schedule our worker thread which will take care of
6057 * applying the new filter changes
6058 */
6059 ice_service_task_schedule(vsi->back);
6060 }
6061
6062 /**
6063 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
6064 * @netdev: network interface device structure
6065 * @queue_index: Queue ID
6066 * @maxrate: maximum bandwidth in Mbps
6067 */
6068 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)6069 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
6070 {
6071 struct ice_netdev_priv *np = netdev_priv(netdev);
6072 struct ice_vsi *vsi = np->vsi;
6073 u16 q_handle;
6074 int status;
6075 u8 tc;
6076
6077 /* Validate maxrate requested is within permitted range */
6078 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
6079 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
6080 maxrate, queue_index);
6081 return -EINVAL;
6082 }
6083
6084 q_handle = vsi->tx_rings[queue_index]->q_handle;
6085 tc = ice_dcb_get_tc(vsi, queue_index);
6086
6087 vsi = ice_locate_vsi_using_queue(vsi, queue_index);
6088 if (!vsi) {
6089 netdev_err(netdev, "Invalid VSI for given queue %d\n",
6090 queue_index);
6091 return -EINVAL;
6092 }
6093
6094 /* Set BW back to default, when user set maxrate to 0 */
6095 if (!maxrate)
6096 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6097 q_handle, ICE_MAX_BW);
6098 else
6099 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6100 q_handle, ICE_MAX_BW, maxrate * 1000);
6101 if (status)
6102 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6103 status);
6104
6105 return status;
6106 }
6107
6108 /**
6109 * ice_fdb_add - add an entry to the hardware database
6110 * @ndm: the input from the stack
6111 * @tb: pointer to array of nladdr (unused)
6112 * @dev: the net device pointer
6113 * @addr: the MAC address entry being added
6114 * @vid: VLAN ID
6115 * @flags: instructions from stack about fdb operation
6116 * @extack: netlink extended ack
6117 */
6118 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)6119 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6120 struct net_device *dev, const unsigned char *addr, u16 vid,
6121 u16 flags, struct netlink_ext_ack __always_unused *extack)
6122 {
6123 int err;
6124
6125 if (vid) {
6126 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6127 return -EINVAL;
6128 }
6129 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6130 netdev_err(dev, "FDB only supports static addresses\n");
6131 return -EINVAL;
6132 }
6133
6134 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6135 err = dev_uc_add_excl(dev, addr);
6136 else if (is_multicast_ether_addr(addr))
6137 err = dev_mc_add_excl(dev, addr);
6138 else
6139 err = -EINVAL;
6140
6141 /* Only return duplicate errors if NLM_F_EXCL is set */
6142 if (err == -EEXIST && !(flags & NLM_F_EXCL))
6143 err = 0;
6144
6145 return err;
6146 }
6147
6148 /**
6149 * ice_fdb_del - delete an entry from the hardware database
6150 * @ndm: the input from the stack
6151 * @tb: pointer to array of nladdr (unused)
6152 * @dev: the net device pointer
6153 * @addr: the MAC address entry being added
6154 * @vid: VLAN ID
6155 * @extack: netlink extended ack
6156 */
6157 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,struct netlink_ext_ack * extack)6158 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6159 struct net_device *dev, const unsigned char *addr,
6160 __always_unused u16 vid, struct netlink_ext_ack *extack)
6161 {
6162 int err;
6163
6164 if (ndm->ndm_state & NUD_PERMANENT) {
6165 netdev_err(dev, "FDB only supports static addresses\n");
6166 return -EINVAL;
6167 }
6168
6169 if (is_unicast_ether_addr(addr))
6170 err = dev_uc_del(dev, addr);
6171 else if (is_multicast_ether_addr(addr))
6172 err = dev_mc_del(dev, addr);
6173 else
6174 err = -EINVAL;
6175
6176 return err;
6177 }
6178
6179 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6180 NETIF_F_HW_VLAN_CTAG_TX | \
6181 NETIF_F_HW_VLAN_STAG_RX | \
6182 NETIF_F_HW_VLAN_STAG_TX)
6183
6184 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6185 NETIF_F_HW_VLAN_STAG_RX)
6186
6187 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
6188 NETIF_F_HW_VLAN_STAG_FILTER)
6189
6190 /**
6191 * ice_fix_features - fix the netdev features flags based on device limitations
6192 * @netdev: ptr to the netdev that flags are being fixed on
6193 * @features: features that need to be checked and possibly fixed
6194 *
6195 * Make sure any fixups are made to features in this callback. This enables the
6196 * driver to not have to check unsupported configurations throughout the driver
6197 * because that's the responsiblity of this callback.
6198 *
6199 * Single VLAN Mode (SVM) Supported Features:
6200 * NETIF_F_HW_VLAN_CTAG_FILTER
6201 * NETIF_F_HW_VLAN_CTAG_RX
6202 * NETIF_F_HW_VLAN_CTAG_TX
6203 *
6204 * Double VLAN Mode (DVM) Supported Features:
6205 * NETIF_F_HW_VLAN_CTAG_FILTER
6206 * NETIF_F_HW_VLAN_CTAG_RX
6207 * NETIF_F_HW_VLAN_CTAG_TX
6208 *
6209 * NETIF_F_HW_VLAN_STAG_FILTER
6210 * NETIF_HW_VLAN_STAG_RX
6211 * NETIF_HW_VLAN_STAG_TX
6212 *
6213 * Features that need fixing:
6214 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6215 * These are mutually exlusive as the VSI context cannot support multiple
6216 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
6217 * is not done, then default to clearing the requested STAG offload
6218 * settings.
6219 *
6220 * All supported filtering has to be enabled or disabled together. For
6221 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6222 * together. If this is not done, then default to VLAN filtering disabled.
6223 * These are mutually exclusive as there is currently no way to
6224 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6225 * prune rules.
6226 */
6227 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)6228 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6229 {
6230 struct ice_netdev_priv *np = netdev_priv(netdev);
6231 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6232 bool cur_ctag, cur_stag, req_ctag, req_stag;
6233
6234 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6235 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6236 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6237
6238 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6239 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6240 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6241
6242 if (req_vlan_fltr != cur_vlan_fltr) {
6243 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6244 if (req_ctag && req_stag) {
6245 features |= NETIF_VLAN_FILTERING_FEATURES;
6246 } else if (!req_ctag && !req_stag) {
6247 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6248 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
6249 (!cur_stag && req_stag && !cur_ctag)) {
6250 features |= NETIF_VLAN_FILTERING_FEATURES;
6251 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6252 } else if ((cur_ctag && !req_ctag && cur_stag) ||
6253 (cur_stag && !req_stag && cur_ctag)) {
6254 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6255 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6256 }
6257 } else {
6258 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6259 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6260
6261 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6262 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6263 }
6264 }
6265
6266 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6267 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6268 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6269 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6270 NETIF_F_HW_VLAN_STAG_TX);
6271 }
6272
6273 if (!(netdev->features & NETIF_F_RXFCS) &&
6274 (features & NETIF_F_RXFCS) &&
6275 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6276 !ice_vsi_has_non_zero_vlans(np->vsi)) {
6277 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6278 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6279 }
6280
6281 return features;
6282 }
6283
6284 /**
6285 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6286 * @vsi: PF's VSI
6287 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6288 *
6289 * Store current stripped VLAN proto in ring packet context,
6290 * so it can be accessed more efficiently by packet processing code.
6291 */
6292 static void
ice_set_rx_rings_vlan_proto(struct ice_vsi * vsi,__be16 vlan_ethertype)6293 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6294 {
6295 u16 i;
6296
6297 ice_for_each_alloc_rxq(vsi, i)
6298 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6299 }
6300
6301 /**
6302 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6303 * @vsi: PF's VSI
6304 * @features: features used to determine VLAN offload settings
6305 *
6306 * First, determine the vlan_ethertype based on the VLAN offload bits in
6307 * features. Then determine if stripping and insertion should be enabled or
6308 * disabled. Finally enable or disable VLAN stripping and insertion.
6309 */
6310 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)6311 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6312 {
6313 bool enable_stripping = true, enable_insertion = true;
6314 struct ice_vsi_vlan_ops *vlan_ops;
6315 int strip_err = 0, insert_err = 0;
6316 u16 vlan_ethertype = 0;
6317
6318 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6319
6320 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6321 vlan_ethertype = ETH_P_8021AD;
6322 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6323 vlan_ethertype = ETH_P_8021Q;
6324
6325 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6326 enable_stripping = false;
6327 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6328 enable_insertion = false;
6329
6330 if (enable_stripping)
6331 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6332 else
6333 strip_err = vlan_ops->dis_stripping(vsi);
6334
6335 if (enable_insertion)
6336 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6337 else
6338 insert_err = vlan_ops->dis_insertion(vsi);
6339
6340 if (strip_err || insert_err)
6341 return -EIO;
6342
6343 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6344 htons(vlan_ethertype) : 0);
6345
6346 return 0;
6347 }
6348
6349 /**
6350 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6351 * @vsi: PF's VSI
6352 * @features: features used to determine VLAN filtering settings
6353 *
6354 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6355 * features.
6356 */
6357 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)6358 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6359 {
6360 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6361 int err = 0;
6362
6363 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6364 * if either bit is set
6365 */
6366 if (features &
6367 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
6368 err = vlan_ops->ena_rx_filtering(vsi);
6369 else
6370 err = vlan_ops->dis_rx_filtering(vsi);
6371
6372 return err;
6373 }
6374
6375 /**
6376 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6377 * @netdev: ptr to the netdev being adjusted
6378 * @features: the feature set that the stack is suggesting
6379 *
6380 * Only update VLAN settings if the requested_vlan_features are different than
6381 * the current_vlan_features.
6382 */
6383 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)6384 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6385 {
6386 netdev_features_t current_vlan_features, requested_vlan_features;
6387 struct ice_netdev_priv *np = netdev_priv(netdev);
6388 struct ice_vsi *vsi = np->vsi;
6389 int err;
6390
6391 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6392 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6393 if (current_vlan_features ^ requested_vlan_features) {
6394 if ((features & NETIF_F_RXFCS) &&
6395 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6396 dev_err(ice_pf_to_dev(vsi->back),
6397 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6398 return -EIO;
6399 }
6400
6401 err = ice_set_vlan_offload_features(vsi, features);
6402 if (err)
6403 return err;
6404 }
6405
6406 current_vlan_features = netdev->features &
6407 NETIF_VLAN_FILTERING_FEATURES;
6408 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6409 if (current_vlan_features ^ requested_vlan_features) {
6410 err = ice_set_vlan_filtering_features(vsi, features);
6411 if (err)
6412 return err;
6413 }
6414
6415 return 0;
6416 }
6417
6418 /**
6419 * ice_set_loopback - turn on/off loopback mode on underlying PF
6420 * @vsi: ptr to VSI
6421 * @ena: flag to indicate the on/off setting
6422 */
ice_set_loopback(struct ice_vsi * vsi,bool ena)6423 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6424 {
6425 bool if_running = netif_running(vsi->netdev);
6426 int ret;
6427
6428 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6429 ret = ice_down(vsi);
6430 if (ret) {
6431 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6432 return ret;
6433 }
6434 }
6435 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6436 if (ret)
6437 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6438 if (if_running)
6439 ret = ice_up(vsi);
6440
6441 return ret;
6442 }
6443
6444 /**
6445 * ice_set_features - set the netdev feature flags
6446 * @netdev: ptr to the netdev being adjusted
6447 * @features: the feature set that the stack is suggesting
6448 */
6449 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)6450 ice_set_features(struct net_device *netdev, netdev_features_t features)
6451 {
6452 netdev_features_t changed = netdev->features ^ features;
6453 struct ice_netdev_priv *np = netdev_priv(netdev);
6454 struct ice_vsi *vsi = np->vsi;
6455 struct ice_pf *pf = vsi->back;
6456 int ret = 0;
6457
6458 /* Don't set any netdev advanced features with device in Safe Mode */
6459 if (ice_is_safe_mode(pf)) {
6460 dev_err(ice_pf_to_dev(pf),
6461 "Device is in Safe Mode - not enabling advanced netdev features\n");
6462 return ret;
6463 }
6464
6465 /* Do not change setting during reset */
6466 if (ice_is_reset_in_progress(pf->state)) {
6467 dev_err(ice_pf_to_dev(pf),
6468 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6469 return -EBUSY;
6470 }
6471
6472 /* Multiple features can be changed in one call so keep features in
6473 * separate if/else statements to guarantee each feature is checked
6474 */
6475 if (changed & NETIF_F_RXHASH)
6476 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6477
6478 ret = ice_set_vlan_features(netdev, features);
6479 if (ret)
6480 return ret;
6481
6482 /* Turn on receive of FCS aka CRC, and after setting this
6483 * flag the packet data will have the 4 byte CRC appended
6484 */
6485 if (changed & NETIF_F_RXFCS) {
6486 if ((features & NETIF_F_RXFCS) &&
6487 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6488 dev_err(ice_pf_to_dev(vsi->back),
6489 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6490 return -EIO;
6491 }
6492
6493 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6494 ret = ice_down_up(vsi);
6495 if (ret)
6496 return ret;
6497 }
6498
6499 if (changed & NETIF_F_NTUPLE) {
6500 bool ena = !!(features & NETIF_F_NTUPLE);
6501
6502 ice_vsi_manage_fdir(vsi, ena);
6503 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6504 }
6505
6506 /* don't turn off hw_tc_offload when ADQ is already enabled */
6507 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6508 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6509 return -EACCES;
6510 }
6511
6512 if (changed & NETIF_F_HW_TC) {
6513 bool ena = !!(features & NETIF_F_HW_TC);
6514
6515 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6516 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6517 }
6518
6519 if (changed & NETIF_F_LOOPBACK)
6520 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6521
6522 return ret;
6523 }
6524
6525 /**
6526 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6527 * @vsi: VSI to setup VLAN properties for
6528 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6529 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6530 {
6531 int err;
6532
6533 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6534 if (err)
6535 return err;
6536
6537 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6538 if (err)
6539 return err;
6540
6541 return ice_vsi_add_vlan_zero(vsi);
6542 }
6543
6544 /**
6545 * ice_vsi_cfg_lan - Setup the VSI lan related config
6546 * @vsi: the VSI being configured
6547 *
6548 * Return 0 on success and negative value on error
6549 */
ice_vsi_cfg_lan(struct ice_vsi * vsi)6550 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6551 {
6552 int err;
6553
6554 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6555 ice_set_rx_mode(vsi->netdev);
6556
6557 err = ice_vsi_vlan_setup(vsi);
6558 if (err)
6559 return err;
6560 }
6561 ice_vsi_cfg_dcb_rings(vsi);
6562
6563 err = ice_vsi_cfg_lan_txqs(vsi);
6564 if (!err && ice_is_xdp_ena_vsi(vsi))
6565 err = ice_vsi_cfg_xdp_txqs(vsi);
6566 if (!err)
6567 err = ice_vsi_cfg_rxqs(vsi);
6568
6569 return err;
6570 }
6571
6572 /* THEORY OF MODERATION:
6573 * The ice driver hardware works differently than the hardware that DIMLIB was
6574 * originally made for. ice hardware doesn't have packet count limits that
6575 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6576 * which is hard-coded to a limit of 250,000 ints/second.
6577 * If not using dynamic moderation, the INTRL value can be modified
6578 * by ethtool rx-usecs-high.
6579 */
6580 struct ice_dim {
6581 /* the throttle rate for interrupts, basically worst case delay before
6582 * an initial interrupt fires, value is stored in microseconds.
6583 */
6584 u16 itr;
6585 };
6586
6587 /* Make a different profile for Rx that doesn't allow quite so aggressive
6588 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6589 * second.
6590 */
6591 static const struct ice_dim rx_profile[] = {
6592 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6593 {8}, /* 125,000 ints/s */
6594 {16}, /* 62,500 ints/s */
6595 {62}, /* 16,129 ints/s */
6596 {126} /* 7,936 ints/s */
6597 };
6598
6599 /* The transmit profile, which has the same sorts of values
6600 * as the previous struct
6601 */
6602 static const struct ice_dim tx_profile[] = {
6603 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6604 {8}, /* 125,000 ints/s */
6605 {40}, /* 16,125 ints/s */
6606 {128}, /* 7,812 ints/s */
6607 {256} /* 3,906 ints/s */
6608 };
6609
ice_tx_dim_work(struct work_struct * work)6610 static void ice_tx_dim_work(struct work_struct *work)
6611 {
6612 struct ice_ring_container *rc;
6613 struct dim *dim;
6614 u16 itr;
6615
6616 dim = container_of(work, struct dim, work);
6617 rc = dim->priv;
6618
6619 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6620
6621 /* look up the values in our local table */
6622 itr = tx_profile[dim->profile_ix].itr;
6623
6624 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6625 ice_write_itr(rc, itr);
6626
6627 dim->state = DIM_START_MEASURE;
6628 }
6629
ice_rx_dim_work(struct work_struct * work)6630 static void ice_rx_dim_work(struct work_struct *work)
6631 {
6632 struct ice_ring_container *rc;
6633 struct dim *dim;
6634 u16 itr;
6635
6636 dim = container_of(work, struct dim, work);
6637 rc = dim->priv;
6638
6639 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6640
6641 /* look up the values in our local table */
6642 itr = rx_profile[dim->profile_ix].itr;
6643
6644 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6645 ice_write_itr(rc, itr);
6646
6647 dim->state = DIM_START_MEASURE;
6648 }
6649
6650 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6651
6652 /**
6653 * ice_init_moderation - set up interrupt moderation
6654 * @q_vector: the vector containing rings to be configured
6655 *
6656 * Set up interrupt moderation registers, with the intent to do the right thing
6657 * when called from reset or from probe, and whether or not dynamic moderation
6658 * is enabled or not. Take special care to write all the registers in both
6659 * dynamic moderation mode or not in order to make sure hardware is in a known
6660 * state.
6661 */
ice_init_moderation(struct ice_q_vector * q_vector)6662 static void ice_init_moderation(struct ice_q_vector *q_vector)
6663 {
6664 struct ice_ring_container *rc;
6665 bool tx_dynamic, rx_dynamic;
6666
6667 rc = &q_vector->tx;
6668 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6669 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6670 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6671 rc->dim.priv = rc;
6672 tx_dynamic = ITR_IS_DYNAMIC(rc);
6673
6674 /* set the initial TX ITR to match the above */
6675 ice_write_itr(rc, tx_dynamic ?
6676 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6677
6678 rc = &q_vector->rx;
6679 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6680 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6681 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6682 rc->dim.priv = rc;
6683 rx_dynamic = ITR_IS_DYNAMIC(rc);
6684
6685 /* set the initial RX ITR to match the above */
6686 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6687 rc->itr_setting);
6688
6689 ice_set_q_vector_intrl(q_vector);
6690 }
6691
6692 /**
6693 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6694 * @vsi: the VSI being configured
6695 */
ice_napi_enable_all(struct ice_vsi * vsi)6696 static void ice_napi_enable_all(struct ice_vsi *vsi)
6697 {
6698 int q_idx;
6699
6700 if (!vsi->netdev)
6701 return;
6702
6703 ice_for_each_q_vector(vsi, q_idx) {
6704 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6705
6706 ice_init_moderation(q_vector);
6707
6708 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6709 napi_enable(&q_vector->napi);
6710 }
6711 }
6712
6713 /**
6714 * ice_up_complete - Finish the last steps of bringing up a connection
6715 * @vsi: The VSI being configured
6716 *
6717 * Return 0 on success and negative value on error
6718 */
ice_up_complete(struct ice_vsi * vsi)6719 static int ice_up_complete(struct ice_vsi *vsi)
6720 {
6721 struct ice_pf *pf = vsi->back;
6722 int err;
6723
6724 ice_vsi_cfg_msix(vsi);
6725
6726 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6727 * Tx queue group list was configured and the context bits were
6728 * programmed using ice_vsi_cfg_txqs
6729 */
6730 err = ice_vsi_start_all_rx_rings(vsi);
6731 if (err)
6732 return err;
6733
6734 clear_bit(ICE_VSI_DOWN, vsi->state);
6735 ice_napi_enable_all(vsi);
6736 ice_vsi_ena_irq(vsi);
6737
6738 if (vsi->port_info &&
6739 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6740 ((vsi->netdev && (vsi->type == ICE_VSI_PF ||
6741 vsi->type == ICE_VSI_SF)))) {
6742 ice_print_link_msg(vsi, true);
6743 netif_tx_start_all_queues(vsi->netdev);
6744 netif_carrier_on(vsi->netdev);
6745 ice_ptp_link_change(pf, pf->hw.pf_id, true);
6746 }
6747
6748 /* Perform an initial read of the statistics registers now to
6749 * set the baseline so counters are ready when interface is up
6750 */
6751 ice_update_eth_stats(vsi);
6752
6753 if (vsi->type == ICE_VSI_PF)
6754 ice_service_task_schedule(pf);
6755
6756 return 0;
6757 }
6758
6759 /**
6760 * ice_up - Bring the connection back up after being down
6761 * @vsi: VSI being configured
6762 */
ice_up(struct ice_vsi * vsi)6763 int ice_up(struct ice_vsi *vsi)
6764 {
6765 int err;
6766
6767 err = ice_vsi_cfg_lan(vsi);
6768 if (!err)
6769 err = ice_up_complete(vsi);
6770
6771 return err;
6772 }
6773
6774 /**
6775 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6776 * @syncp: pointer to u64_stats_sync
6777 * @stats: stats that pkts and bytes count will be taken from
6778 * @pkts: packets stats counter
6779 * @bytes: bytes stats counter
6780 *
6781 * This function fetches stats from the ring considering the atomic operations
6782 * that needs to be performed to read u64 values in 32 bit machine.
6783 */
6784 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6785 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6786 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6787 {
6788 unsigned int start;
6789
6790 do {
6791 start = u64_stats_fetch_begin(syncp);
6792 *pkts = stats.pkts;
6793 *bytes = stats.bytes;
6794 } while (u64_stats_fetch_retry(syncp, start));
6795 }
6796
6797 /**
6798 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6799 * @vsi: the VSI to be updated
6800 * @vsi_stats: the stats struct to be updated
6801 * @rings: rings to work on
6802 * @count: number of rings
6803 */
6804 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6805 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6806 struct rtnl_link_stats64 *vsi_stats,
6807 struct ice_tx_ring **rings, u16 count)
6808 {
6809 u16 i;
6810
6811 for (i = 0; i < count; i++) {
6812 struct ice_tx_ring *ring;
6813 u64 pkts = 0, bytes = 0;
6814
6815 ring = READ_ONCE(rings[i]);
6816 if (!ring || !ring->ring_stats)
6817 continue;
6818 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6819 ring->ring_stats->stats, &pkts,
6820 &bytes);
6821 vsi_stats->tx_packets += pkts;
6822 vsi_stats->tx_bytes += bytes;
6823 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6824 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6825 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6826 }
6827 }
6828
6829 /**
6830 * ice_update_vsi_ring_stats - Update VSI stats counters
6831 * @vsi: the VSI to be updated
6832 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6833 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6834 {
6835 struct rtnl_link_stats64 *net_stats, *stats_prev;
6836 struct rtnl_link_stats64 *vsi_stats;
6837 struct ice_pf *pf = vsi->back;
6838 u64 pkts, bytes;
6839 int i;
6840
6841 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6842 if (!vsi_stats)
6843 return;
6844
6845 /* reset non-netdev (extended) stats */
6846 vsi->tx_restart = 0;
6847 vsi->tx_busy = 0;
6848 vsi->tx_linearize = 0;
6849 vsi->rx_buf_failed = 0;
6850 vsi->rx_page_failed = 0;
6851
6852 rcu_read_lock();
6853
6854 /* update Tx rings counters */
6855 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6856 vsi->num_txq);
6857
6858 /* update Rx rings counters */
6859 ice_for_each_rxq(vsi, i) {
6860 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6861 struct ice_ring_stats *ring_stats;
6862
6863 ring_stats = ring->ring_stats;
6864 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6865 ring_stats->stats, &pkts,
6866 &bytes);
6867 vsi_stats->rx_packets += pkts;
6868 vsi_stats->rx_bytes += bytes;
6869 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6870 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6871 }
6872
6873 /* update XDP Tx rings counters */
6874 if (ice_is_xdp_ena_vsi(vsi))
6875 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6876 vsi->num_xdp_txq);
6877
6878 rcu_read_unlock();
6879
6880 net_stats = &vsi->net_stats;
6881 stats_prev = &vsi->net_stats_prev;
6882
6883 /* Update netdev counters, but keep in mind that values could start at
6884 * random value after PF reset. And as we increase the reported stat by
6885 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6886 * let's skip this round.
6887 */
6888 if (likely(pf->stat_prev_loaded)) {
6889 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6890 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6891 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6892 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6893 }
6894
6895 stats_prev->tx_packets = vsi_stats->tx_packets;
6896 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6897 stats_prev->rx_packets = vsi_stats->rx_packets;
6898 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6899
6900 kfree(vsi_stats);
6901 }
6902
6903 /**
6904 * ice_update_vsi_stats - Update VSI stats counters
6905 * @vsi: the VSI to be updated
6906 */
ice_update_vsi_stats(struct ice_vsi * vsi)6907 void ice_update_vsi_stats(struct ice_vsi *vsi)
6908 {
6909 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6910 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6911 struct ice_pf *pf = vsi->back;
6912
6913 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6914 test_bit(ICE_CFG_BUSY, pf->state))
6915 return;
6916
6917 /* get stats as recorded by Tx/Rx rings */
6918 ice_update_vsi_ring_stats(vsi);
6919
6920 /* get VSI stats as recorded by the hardware */
6921 ice_update_eth_stats(vsi);
6922
6923 cur_ns->tx_errors = cur_es->tx_errors;
6924 cur_ns->rx_dropped = cur_es->rx_discards;
6925 cur_ns->tx_dropped = cur_es->tx_discards;
6926 cur_ns->multicast = cur_es->rx_multicast;
6927
6928 /* update some more netdev stats if this is main VSI */
6929 if (vsi->type == ICE_VSI_PF) {
6930 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6931 cur_ns->rx_errors = pf->stats.crc_errors +
6932 pf->stats.illegal_bytes +
6933 pf->stats.rx_undersize +
6934 pf->hw_csum_rx_error +
6935 pf->stats.rx_jabber +
6936 pf->stats.rx_fragments +
6937 pf->stats.rx_oversize;
6938 /* record drops from the port level */
6939 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6940 }
6941 }
6942
6943 /**
6944 * ice_update_pf_stats - Update PF port stats counters
6945 * @pf: PF whose stats needs to be updated
6946 */
ice_update_pf_stats(struct ice_pf * pf)6947 void ice_update_pf_stats(struct ice_pf *pf)
6948 {
6949 struct ice_hw_port_stats *prev_ps, *cur_ps;
6950 struct ice_hw *hw = &pf->hw;
6951 u16 fd_ctr_base;
6952 u8 port;
6953
6954 port = hw->port_info->lport;
6955 prev_ps = &pf->stats_prev;
6956 cur_ps = &pf->stats;
6957
6958 if (ice_is_reset_in_progress(pf->state))
6959 pf->stat_prev_loaded = false;
6960
6961 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6962 &prev_ps->eth.rx_bytes,
6963 &cur_ps->eth.rx_bytes);
6964
6965 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6966 &prev_ps->eth.rx_unicast,
6967 &cur_ps->eth.rx_unicast);
6968
6969 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6970 &prev_ps->eth.rx_multicast,
6971 &cur_ps->eth.rx_multicast);
6972
6973 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6974 &prev_ps->eth.rx_broadcast,
6975 &cur_ps->eth.rx_broadcast);
6976
6977 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6978 &prev_ps->eth.rx_discards,
6979 &cur_ps->eth.rx_discards);
6980
6981 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6982 &prev_ps->eth.tx_bytes,
6983 &cur_ps->eth.tx_bytes);
6984
6985 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6986 &prev_ps->eth.tx_unicast,
6987 &cur_ps->eth.tx_unicast);
6988
6989 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6990 &prev_ps->eth.tx_multicast,
6991 &cur_ps->eth.tx_multicast);
6992
6993 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6994 &prev_ps->eth.tx_broadcast,
6995 &cur_ps->eth.tx_broadcast);
6996
6997 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6998 &prev_ps->tx_dropped_link_down,
6999 &cur_ps->tx_dropped_link_down);
7000
7001 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
7002 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
7003
7004 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
7005 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
7006
7007 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
7008 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
7009
7010 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
7011 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
7012
7013 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
7014 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
7015
7016 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
7017 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
7018
7019 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
7020 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
7021
7022 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
7023 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
7024
7025 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
7026 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
7027
7028 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
7029 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
7030
7031 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
7032 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
7033
7034 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
7035 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
7036
7037 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
7038 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
7039
7040 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
7041 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
7042
7043 fd_ctr_base = hw->fd_ctr_base;
7044
7045 ice_stat_update40(hw,
7046 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
7047 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
7048 &cur_ps->fd_sb_match);
7049 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
7050 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
7051
7052 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
7053 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
7054
7055 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
7056 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
7057
7058 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
7059 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
7060
7061 ice_update_dcb_stats(pf);
7062
7063 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
7064 &prev_ps->crc_errors, &cur_ps->crc_errors);
7065
7066 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
7067 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
7068
7069 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
7070 &prev_ps->mac_local_faults,
7071 &cur_ps->mac_local_faults);
7072
7073 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
7074 &prev_ps->mac_remote_faults,
7075 &cur_ps->mac_remote_faults);
7076
7077 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
7078 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
7079
7080 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
7081 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
7082
7083 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
7084 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
7085
7086 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
7087 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
7088
7089 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
7090
7091 pf->stat_prev_loaded = true;
7092 }
7093
7094 /**
7095 * ice_get_stats64 - get statistics for network device structure
7096 * @netdev: network interface device structure
7097 * @stats: main device statistics structure
7098 */
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)7099 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7100 {
7101 struct ice_netdev_priv *np = netdev_priv(netdev);
7102 struct rtnl_link_stats64 *vsi_stats;
7103 struct ice_vsi *vsi = np->vsi;
7104
7105 vsi_stats = &vsi->net_stats;
7106
7107 if (!vsi->num_txq || !vsi->num_rxq)
7108 return;
7109
7110 /* netdev packet/byte stats come from ring counter. These are obtained
7111 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7112 * But, only call the update routine and read the registers if VSI is
7113 * not down.
7114 */
7115 if (!test_bit(ICE_VSI_DOWN, vsi->state))
7116 ice_update_vsi_ring_stats(vsi);
7117 stats->tx_packets = vsi_stats->tx_packets;
7118 stats->tx_bytes = vsi_stats->tx_bytes;
7119 stats->rx_packets = vsi_stats->rx_packets;
7120 stats->rx_bytes = vsi_stats->rx_bytes;
7121
7122 /* The rest of the stats can be read from the hardware but instead we
7123 * just return values that the watchdog task has already obtained from
7124 * the hardware.
7125 */
7126 stats->multicast = vsi_stats->multicast;
7127 stats->tx_errors = vsi_stats->tx_errors;
7128 stats->tx_dropped = vsi_stats->tx_dropped;
7129 stats->rx_errors = vsi_stats->rx_errors;
7130 stats->rx_dropped = vsi_stats->rx_dropped;
7131 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7132 stats->rx_length_errors = vsi_stats->rx_length_errors;
7133 }
7134
7135 /**
7136 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7137 * @vsi: VSI having NAPI disabled
7138 */
ice_napi_disable_all(struct ice_vsi * vsi)7139 static void ice_napi_disable_all(struct ice_vsi *vsi)
7140 {
7141 int q_idx;
7142
7143 if (!vsi->netdev)
7144 return;
7145
7146 ice_for_each_q_vector(vsi, q_idx) {
7147 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7148
7149 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7150 napi_disable(&q_vector->napi);
7151
7152 cancel_work_sync(&q_vector->tx.dim.work);
7153 cancel_work_sync(&q_vector->rx.dim.work);
7154 }
7155 }
7156
7157 /**
7158 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
7159 * @vsi: the VSI being un-configured
7160 */
ice_vsi_dis_irq(struct ice_vsi * vsi)7161 static void ice_vsi_dis_irq(struct ice_vsi *vsi)
7162 {
7163 struct ice_pf *pf = vsi->back;
7164 struct ice_hw *hw = &pf->hw;
7165 u32 val;
7166 int i;
7167
7168 /* disable interrupt causation from each Rx queue; Tx queues are
7169 * handled in ice_vsi_stop_tx_ring()
7170 */
7171 if (vsi->rx_rings) {
7172 ice_for_each_rxq(vsi, i) {
7173 if (vsi->rx_rings[i]) {
7174 u16 reg;
7175
7176 reg = vsi->rx_rings[i]->reg_idx;
7177 val = rd32(hw, QINT_RQCTL(reg));
7178 val &= ~QINT_RQCTL_CAUSE_ENA_M;
7179 wr32(hw, QINT_RQCTL(reg), val);
7180 }
7181 }
7182 }
7183
7184 /* disable each interrupt */
7185 ice_for_each_q_vector(vsi, i) {
7186 if (!vsi->q_vectors[i])
7187 continue;
7188 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
7189 }
7190
7191 ice_flush(hw);
7192
7193 /* don't call synchronize_irq() for VF's from the host */
7194 if (vsi->type == ICE_VSI_VF)
7195 return;
7196
7197 ice_for_each_q_vector(vsi, i)
7198 synchronize_irq(vsi->q_vectors[i]->irq.virq);
7199 }
7200
7201 /**
7202 * ice_down - Shutdown the connection
7203 * @vsi: The VSI being stopped
7204 *
7205 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7206 */
ice_down(struct ice_vsi * vsi)7207 int ice_down(struct ice_vsi *vsi)
7208 {
7209 int i, tx_err, rx_err, vlan_err = 0;
7210
7211 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7212
7213 if (vsi->netdev) {
7214 vlan_err = ice_vsi_del_vlan_zero(vsi);
7215 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
7216 netif_carrier_off(vsi->netdev);
7217 netif_tx_disable(vsi->netdev);
7218 }
7219
7220 ice_vsi_dis_irq(vsi);
7221
7222 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7223 if (tx_err)
7224 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7225 vsi->vsi_num, tx_err);
7226 if (!tx_err && vsi->xdp_rings) {
7227 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7228 if (tx_err)
7229 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7230 vsi->vsi_num, tx_err);
7231 }
7232
7233 rx_err = ice_vsi_stop_all_rx_rings(vsi);
7234 if (rx_err)
7235 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7236 vsi->vsi_num, rx_err);
7237
7238 ice_napi_disable_all(vsi);
7239
7240 ice_for_each_txq(vsi, i)
7241 ice_clean_tx_ring(vsi->tx_rings[i]);
7242
7243 if (vsi->xdp_rings)
7244 ice_for_each_xdp_txq(vsi, i)
7245 ice_clean_tx_ring(vsi->xdp_rings[i]);
7246
7247 ice_for_each_rxq(vsi, i)
7248 ice_clean_rx_ring(vsi->rx_rings[i]);
7249
7250 if (tx_err || rx_err || vlan_err) {
7251 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7252 vsi->vsi_num, vsi->vsw->sw_id);
7253 return -EIO;
7254 }
7255
7256 return 0;
7257 }
7258
7259 /**
7260 * ice_down_up - shutdown the VSI connection and bring it up
7261 * @vsi: the VSI to be reconnected
7262 */
ice_down_up(struct ice_vsi * vsi)7263 int ice_down_up(struct ice_vsi *vsi)
7264 {
7265 int ret;
7266
7267 /* if DOWN already set, nothing to do */
7268 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7269 return 0;
7270
7271 ret = ice_down(vsi);
7272 if (ret)
7273 return ret;
7274
7275 ret = ice_up(vsi);
7276 if (ret) {
7277 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7278 return ret;
7279 }
7280
7281 return 0;
7282 }
7283
7284 /**
7285 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7286 * @vsi: VSI having resources allocated
7287 *
7288 * Return 0 on success, negative on failure
7289 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)7290 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7291 {
7292 int i, err = 0;
7293
7294 if (!vsi->num_txq) {
7295 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7296 vsi->vsi_num);
7297 return -EINVAL;
7298 }
7299
7300 ice_for_each_txq(vsi, i) {
7301 struct ice_tx_ring *ring = vsi->tx_rings[i];
7302
7303 if (!ring)
7304 return -EINVAL;
7305
7306 if (vsi->netdev)
7307 ring->netdev = vsi->netdev;
7308 err = ice_setup_tx_ring(ring);
7309 if (err)
7310 break;
7311 }
7312
7313 return err;
7314 }
7315
7316 /**
7317 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7318 * @vsi: VSI having resources allocated
7319 *
7320 * Return 0 on success, negative on failure
7321 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)7322 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7323 {
7324 int i, err = 0;
7325
7326 if (!vsi->num_rxq) {
7327 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7328 vsi->vsi_num);
7329 return -EINVAL;
7330 }
7331
7332 ice_for_each_rxq(vsi, i) {
7333 struct ice_rx_ring *ring = vsi->rx_rings[i];
7334
7335 if (!ring)
7336 return -EINVAL;
7337
7338 if (vsi->netdev)
7339 ring->netdev = vsi->netdev;
7340 err = ice_setup_rx_ring(ring);
7341 if (err)
7342 break;
7343 }
7344
7345 return err;
7346 }
7347
7348 /**
7349 * ice_vsi_open_ctrl - open control VSI for use
7350 * @vsi: the VSI to open
7351 *
7352 * Initialization of the Control VSI
7353 *
7354 * Returns 0 on success, negative value on error
7355 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)7356 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7357 {
7358 char int_name[ICE_INT_NAME_STR_LEN];
7359 struct ice_pf *pf = vsi->back;
7360 struct device *dev;
7361 int err;
7362
7363 dev = ice_pf_to_dev(pf);
7364 /* allocate descriptors */
7365 err = ice_vsi_setup_tx_rings(vsi);
7366 if (err)
7367 goto err_setup_tx;
7368
7369 err = ice_vsi_setup_rx_rings(vsi);
7370 if (err)
7371 goto err_setup_rx;
7372
7373 err = ice_vsi_cfg_lan(vsi);
7374 if (err)
7375 goto err_setup_rx;
7376
7377 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7378 dev_driver_string(dev), dev_name(dev));
7379 err = ice_vsi_req_irq_msix(vsi, int_name);
7380 if (err)
7381 goto err_setup_rx;
7382
7383 ice_vsi_cfg_msix(vsi);
7384
7385 err = ice_vsi_start_all_rx_rings(vsi);
7386 if (err)
7387 goto err_up_complete;
7388
7389 clear_bit(ICE_VSI_DOWN, vsi->state);
7390 ice_vsi_ena_irq(vsi);
7391
7392 return 0;
7393
7394 err_up_complete:
7395 ice_down(vsi);
7396 err_setup_rx:
7397 ice_vsi_free_rx_rings(vsi);
7398 err_setup_tx:
7399 ice_vsi_free_tx_rings(vsi);
7400
7401 return err;
7402 }
7403
7404 /**
7405 * ice_vsi_open - Called when a network interface is made active
7406 * @vsi: the VSI to open
7407 *
7408 * Initialization of the VSI
7409 *
7410 * Returns 0 on success, negative value on error
7411 */
ice_vsi_open(struct ice_vsi * vsi)7412 int ice_vsi_open(struct ice_vsi *vsi)
7413 {
7414 char int_name[ICE_INT_NAME_STR_LEN];
7415 struct ice_pf *pf = vsi->back;
7416 int err;
7417
7418 /* allocate descriptors */
7419 err = ice_vsi_setup_tx_rings(vsi);
7420 if (err)
7421 goto err_setup_tx;
7422
7423 err = ice_vsi_setup_rx_rings(vsi);
7424 if (err)
7425 goto err_setup_rx;
7426
7427 err = ice_vsi_cfg_lan(vsi);
7428 if (err)
7429 goto err_setup_rx;
7430
7431 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7432 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7433 err = ice_vsi_req_irq_msix(vsi, int_name);
7434 if (err)
7435 goto err_setup_rx;
7436
7437 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7438
7439 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) {
7440 /* Notify the stack of the actual queue counts. */
7441 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7442 if (err)
7443 goto err_set_qs;
7444
7445 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7446 if (err)
7447 goto err_set_qs;
7448
7449 ice_vsi_set_napi_queues(vsi);
7450 }
7451
7452 err = ice_up_complete(vsi);
7453 if (err)
7454 goto err_up_complete;
7455
7456 return 0;
7457
7458 err_up_complete:
7459 ice_down(vsi);
7460 err_set_qs:
7461 ice_vsi_free_irq(vsi);
7462 err_setup_rx:
7463 ice_vsi_free_rx_rings(vsi);
7464 err_setup_tx:
7465 ice_vsi_free_tx_rings(vsi);
7466
7467 return err;
7468 }
7469
7470 /**
7471 * ice_vsi_release_all - Delete all VSIs
7472 * @pf: PF from which all VSIs are being removed
7473 */
ice_vsi_release_all(struct ice_pf * pf)7474 static void ice_vsi_release_all(struct ice_pf *pf)
7475 {
7476 int err, i;
7477
7478 if (!pf->vsi)
7479 return;
7480
7481 ice_for_each_vsi(pf, i) {
7482 if (!pf->vsi[i])
7483 continue;
7484
7485 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7486 continue;
7487
7488 err = ice_vsi_release(pf->vsi[i]);
7489 if (err)
7490 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7491 i, err, pf->vsi[i]->vsi_num);
7492 }
7493 }
7494
7495 /**
7496 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7497 * @pf: pointer to the PF instance
7498 * @type: VSI type to rebuild
7499 *
7500 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7501 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)7502 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7503 {
7504 struct device *dev = ice_pf_to_dev(pf);
7505 int i, err;
7506
7507 ice_for_each_vsi(pf, i) {
7508 struct ice_vsi *vsi = pf->vsi[i];
7509
7510 if (!vsi || vsi->type != type)
7511 continue;
7512
7513 /* rebuild the VSI */
7514 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7515 if (err) {
7516 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7517 err, vsi->idx, ice_vsi_type_str(type));
7518 return err;
7519 }
7520
7521 /* replay filters for the VSI */
7522 err = ice_replay_vsi(&pf->hw, vsi->idx);
7523 if (err) {
7524 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7525 err, vsi->idx, ice_vsi_type_str(type));
7526 return err;
7527 }
7528
7529 /* Re-map HW VSI number, using VSI handle that has been
7530 * previously validated in ice_replay_vsi() call above
7531 */
7532 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7533
7534 /* enable the VSI */
7535 err = ice_ena_vsi(vsi, false);
7536 if (err) {
7537 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7538 err, vsi->idx, ice_vsi_type_str(type));
7539 return err;
7540 }
7541
7542 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7543 ice_vsi_type_str(type));
7544 }
7545
7546 return 0;
7547 }
7548
7549 /**
7550 * ice_update_pf_netdev_link - Update PF netdev link status
7551 * @pf: pointer to the PF instance
7552 */
ice_update_pf_netdev_link(struct ice_pf * pf)7553 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7554 {
7555 bool link_up;
7556 int i;
7557
7558 ice_for_each_vsi(pf, i) {
7559 struct ice_vsi *vsi = pf->vsi[i];
7560
7561 if (!vsi || vsi->type != ICE_VSI_PF)
7562 return;
7563
7564 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7565 if (link_up) {
7566 netif_carrier_on(pf->vsi[i]->netdev);
7567 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7568 } else {
7569 netif_carrier_off(pf->vsi[i]->netdev);
7570 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7571 }
7572 }
7573 }
7574
7575 /**
7576 * ice_rebuild - rebuild after reset
7577 * @pf: PF to rebuild
7578 * @reset_type: type of reset
7579 *
7580 * Do not rebuild VF VSI in this flow because that is already handled via
7581 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7582 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7583 * to reset/rebuild all the VF VSI twice.
7584 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)7585 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7586 {
7587 struct ice_vsi *vsi = ice_get_main_vsi(pf);
7588 struct device *dev = ice_pf_to_dev(pf);
7589 struct ice_hw *hw = &pf->hw;
7590 bool dvm;
7591 int err;
7592
7593 if (test_bit(ICE_DOWN, pf->state))
7594 goto clear_recovery;
7595
7596 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7597
7598 #define ICE_EMP_RESET_SLEEP_MS 5000
7599 if (reset_type == ICE_RESET_EMPR) {
7600 /* If an EMP reset has occurred, any previously pending flash
7601 * update will have completed. We no longer know whether or
7602 * not the NVM update EMP reset is restricted.
7603 */
7604 pf->fw_emp_reset_disabled = false;
7605
7606 msleep(ICE_EMP_RESET_SLEEP_MS);
7607 }
7608
7609 err = ice_init_all_ctrlq(hw);
7610 if (err) {
7611 dev_err(dev, "control queues init failed %d\n", err);
7612 goto err_init_ctrlq;
7613 }
7614
7615 /* if DDP was previously loaded successfully */
7616 if (!ice_is_safe_mode(pf)) {
7617 /* reload the SW DB of filter tables */
7618 if (reset_type == ICE_RESET_PFR)
7619 ice_fill_blk_tbls(hw);
7620 else
7621 /* Reload DDP Package after CORER/GLOBR reset */
7622 ice_load_pkg(NULL, pf);
7623 }
7624
7625 err = ice_clear_pf_cfg(hw);
7626 if (err) {
7627 dev_err(dev, "clear PF configuration failed %d\n", err);
7628 goto err_init_ctrlq;
7629 }
7630
7631 ice_clear_pxe_mode(hw);
7632
7633 err = ice_init_nvm(hw);
7634 if (err) {
7635 dev_err(dev, "ice_init_nvm failed %d\n", err);
7636 goto err_init_ctrlq;
7637 }
7638
7639 err = ice_get_caps(hw);
7640 if (err) {
7641 dev_err(dev, "ice_get_caps failed %d\n", err);
7642 goto err_init_ctrlq;
7643 }
7644
7645 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7646 if (err) {
7647 dev_err(dev, "set_mac_cfg failed %d\n", err);
7648 goto err_init_ctrlq;
7649 }
7650
7651 dvm = ice_is_dvm_ena(hw);
7652
7653 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7654 if (err)
7655 goto err_init_ctrlq;
7656
7657 err = ice_sched_init_port(hw->port_info);
7658 if (err)
7659 goto err_sched_init_port;
7660
7661 /* start misc vector */
7662 err = ice_req_irq_msix_misc(pf);
7663 if (err) {
7664 dev_err(dev, "misc vector setup failed: %d\n", err);
7665 goto err_sched_init_port;
7666 }
7667
7668 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7669 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7670 if (!rd32(hw, PFQF_FD_SIZE)) {
7671 u16 unused, guar, b_effort;
7672
7673 guar = hw->func_caps.fd_fltr_guar;
7674 b_effort = hw->func_caps.fd_fltr_best_effort;
7675
7676 /* force guaranteed filter pool for PF */
7677 ice_alloc_fd_guar_item(hw, &unused, guar);
7678 /* force shared filter pool for PF */
7679 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7680 }
7681 }
7682
7683 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7684 ice_dcb_rebuild(pf);
7685
7686 /* If the PF previously had enabled PTP, PTP init needs to happen before
7687 * the VSI rebuild. If not, this causes the PTP link status events to
7688 * fail.
7689 */
7690 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7691 ice_ptp_rebuild(pf, reset_type);
7692
7693 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7694 ice_gnss_init(pf);
7695
7696 /* rebuild PF VSI */
7697 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7698 if (err) {
7699 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7700 goto err_vsi_rebuild;
7701 }
7702
7703 if (reset_type == ICE_RESET_PFR) {
7704 err = ice_rebuild_channels(pf);
7705 if (err) {
7706 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7707 err);
7708 goto err_vsi_rebuild;
7709 }
7710 }
7711
7712 /* If Flow Director is active */
7713 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7714 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7715 if (err) {
7716 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7717 goto err_vsi_rebuild;
7718 }
7719
7720 /* replay HW Flow Director recipes */
7721 if (hw->fdir_prof)
7722 ice_fdir_replay_flows(hw);
7723
7724 /* replay Flow Director filters */
7725 ice_fdir_replay_fltrs(pf);
7726
7727 ice_rebuild_arfs(pf);
7728 }
7729
7730 if (vsi && vsi->netdev)
7731 netif_device_attach(vsi->netdev);
7732
7733 ice_update_pf_netdev_link(pf);
7734
7735 /* tell the firmware we are up */
7736 err = ice_send_version(pf);
7737 if (err) {
7738 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7739 err);
7740 goto err_vsi_rebuild;
7741 }
7742
7743 ice_replay_post(hw);
7744
7745 /* if we get here, reset flow is successful */
7746 clear_bit(ICE_RESET_FAILED, pf->state);
7747
7748 ice_plug_aux_dev(pf);
7749 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7750 ice_lag_rebuild(pf);
7751
7752 /* Restore timestamp mode settings after VSI rebuild */
7753 ice_ptp_restore_timestamp_mode(pf);
7754 return;
7755
7756 err_vsi_rebuild:
7757 err_sched_init_port:
7758 ice_sched_cleanup_all(hw);
7759 err_init_ctrlq:
7760 ice_shutdown_all_ctrlq(hw, false);
7761 set_bit(ICE_RESET_FAILED, pf->state);
7762 clear_recovery:
7763 /* set this bit in PF state to control service task scheduling */
7764 set_bit(ICE_NEEDS_RESTART, pf->state);
7765 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7766 }
7767
7768 /**
7769 * ice_change_mtu - NDO callback to change the MTU
7770 * @netdev: network interface device structure
7771 * @new_mtu: new value for maximum frame size
7772 *
7773 * Returns 0 on success, negative on failure
7774 */
ice_change_mtu(struct net_device * netdev,int new_mtu)7775 int ice_change_mtu(struct net_device *netdev, int new_mtu)
7776 {
7777 struct ice_netdev_priv *np = netdev_priv(netdev);
7778 struct ice_vsi *vsi = np->vsi;
7779 struct ice_pf *pf = vsi->back;
7780 struct bpf_prog *prog;
7781 u8 count = 0;
7782 int err = 0;
7783
7784 if (new_mtu == (int)netdev->mtu) {
7785 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7786 return 0;
7787 }
7788
7789 prog = vsi->xdp_prog;
7790 if (prog && !prog->aux->xdp_has_frags) {
7791 int frame_size = ice_max_xdp_frame_size(vsi);
7792
7793 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7794 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7795 frame_size - ICE_ETH_PKT_HDR_PAD);
7796 return -EINVAL;
7797 }
7798 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7799 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7800 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7801 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7802 return -EINVAL;
7803 }
7804 }
7805
7806 /* if a reset is in progress, wait for some time for it to complete */
7807 do {
7808 if (ice_is_reset_in_progress(pf->state)) {
7809 count++;
7810 usleep_range(1000, 2000);
7811 } else {
7812 break;
7813 }
7814
7815 } while (count < 100);
7816
7817 if (count == 100) {
7818 netdev_err(netdev, "can't change MTU. Device is busy\n");
7819 return -EBUSY;
7820 }
7821
7822 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu);
7823 err = ice_down_up(vsi);
7824 if (err)
7825 return err;
7826
7827 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7828 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7829
7830 return err;
7831 }
7832
7833 /**
7834 * ice_eth_ioctl - Access the hwtstamp interface
7835 * @netdev: network interface device structure
7836 * @ifr: interface request data
7837 * @cmd: ioctl command
7838 */
ice_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)7839 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7840 {
7841 struct ice_netdev_priv *np = netdev_priv(netdev);
7842 struct ice_pf *pf = np->vsi->back;
7843
7844 switch (cmd) {
7845 case SIOCGHWTSTAMP:
7846 return ice_ptp_get_ts_config(pf, ifr);
7847 case SIOCSHWTSTAMP:
7848 return ice_ptp_set_ts_config(pf, ifr);
7849 default:
7850 return -EOPNOTSUPP;
7851 }
7852 }
7853
7854 /**
7855 * ice_aq_str - convert AQ err code to a string
7856 * @aq_err: the AQ error code to convert
7857 */
ice_aq_str(enum ice_aq_err aq_err)7858 const char *ice_aq_str(enum ice_aq_err aq_err)
7859 {
7860 switch (aq_err) {
7861 case ICE_AQ_RC_OK:
7862 return "OK";
7863 case ICE_AQ_RC_EPERM:
7864 return "ICE_AQ_RC_EPERM";
7865 case ICE_AQ_RC_ENOENT:
7866 return "ICE_AQ_RC_ENOENT";
7867 case ICE_AQ_RC_ENOMEM:
7868 return "ICE_AQ_RC_ENOMEM";
7869 case ICE_AQ_RC_EBUSY:
7870 return "ICE_AQ_RC_EBUSY";
7871 case ICE_AQ_RC_EEXIST:
7872 return "ICE_AQ_RC_EEXIST";
7873 case ICE_AQ_RC_EINVAL:
7874 return "ICE_AQ_RC_EINVAL";
7875 case ICE_AQ_RC_ENOSPC:
7876 return "ICE_AQ_RC_ENOSPC";
7877 case ICE_AQ_RC_ENOSYS:
7878 return "ICE_AQ_RC_ENOSYS";
7879 case ICE_AQ_RC_EMODE:
7880 return "ICE_AQ_RC_EMODE";
7881 case ICE_AQ_RC_ENOSEC:
7882 return "ICE_AQ_RC_ENOSEC";
7883 case ICE_AQ_RC_EBADSIG:
7884 return "ICE_AQ_RC_EBADSIG";
7885 case ICE_AQ_RC_ESVN:
7886 return "ICE_AQ_RC_ESVN";
7887 case ICE_AQ_RC_EBADMAN:
7888 return "ICE_AQ_RC_EBADMAN";
7889 case ICE_AQ_RC_EBADBUF:
7890 return "ICE_AQ_RC_EBADBUF";
7891 }
7892
7893 return "ICE_AQ_RC_UNKNOWN";
7894 }
7895
7896 /**
7897 * ice_set_rss_lut - Set RSS LUT
7898 * @vsi: Pointer to VSI structure
7899 * @lut: Lookup table
7900 * @lut_size: Lookup table size
7901 *
7902 * Returns 0 on success, negative on failure
7903 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7904 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7905 {
7906 struct ice_aq_get_set_rss_lut_params params = {};
7907 struct ice_hw *hw = &vsi->back->hw;
7908 int status;
7909
7910 if (!lut)
7911 return -EINVAL;
7912
7913 params.vsi_handle = vsi->idx;
7914 params.lut_size = lut_size;
7915 params.lut_type = vsi->rss_lut_type;
7916 params.lut = lut;
7917
7918 status = ice_aq_set_rss_lut(hw, ¶ms);
7919 if (status)
7920 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7921 status, ice_aq_str(hw->adminq.sq_last_status));
7922
7923 return status;
7924 }
7925
7926 /**
7927 * ice_set_rss_key - Set RSS key
7928 * @vsi: Pointer to the VSI structure
7929 * @seed: RSS hash seed
7930 *
7931 * Returns 0 on success, negative on failure
7932 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)7933 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7934 {
7935 struct ice_hw *hw = &vsi->back->hw;
7936 int status;
7937
7938 if (!seed)
7939 return -EINVAL;
7940
7941 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7942 if (status)
7943 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7944 status, ice_aq_str(hw->adminq.sq_last_status));
7945
7946 return status;
7947 }
7948
7949 /**
7950 * ice_get_rss_lut - Get RSS LUT
7951 * @vsi: Pointer to VSI structure
7952 * @lut: Buffer to store the lookup table entries
7953 * @lut_size: Size of buffer to store the lookup table entries
7954 *
7955 * Returns 0 on success, negative on failure
7956 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7957 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7958 {
7959 struct ice_aq_get_set_rss_lut_params params = {};
7960 struct ice_hw *hw = &vsi->back->hw;
7961 int status;
7962
7963 if (!lut)
7964 return -EINVAL;
7965
7966 params.vsi_handle = vsi->idx;
7967 params.lut_size = lut_size;
7968 params.lut_type = vsi->rss_lut_type;
7969 params.lut = lut;
7970
7971 status = ice_aq_get_rss_lut(hw, ¶ms);
7972 if (status)
7973 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7974 status, ice_aq_str(hw->adminq.sq_last_status));
7975
7976 return status;
7977 }
7978
7979 /**
7980 * ice_get_rss_key - Get RSS key
7981 * @vsi: Pointer to VSI structure
7982 * @seed: Buffer to store the key in
7983 *
7984 * Returns 0 on success, negative on failure
7985 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)7986 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7987 {
7988 struct ice_hw *hw = &vsi->back->hw;
7989 int status;
7990
7991 if (!seed)
7992 return -EINVAL;
7993
7994 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7995 if (status)
7996 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7997 status, ice_aq_str(hw->adminq.sq_last_status));
7998
7999 return status;
8000 }
8001
8002 /**
8003 * ice_set_rss_hfunc - Set RSS HASH function
8004 * @vsi: Pointer to VSI structure
8005 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
8006 *
8007 * Returns 0 on success, negative on failure
8008 */
ice_set_rss_hfunc(struct ice_vsi * vsi,u8 hfunc)8009 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
8010 {
8011 struct ice_hw *hw = &vsi->back->hw;
8012 struct ice_vsi_ctx *ctx;
8013 bool symm;
8014 int err;
8015
8016 if (hfunc == vsi->rss_hfunc)
8017 return 0;
8018
8019 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
8020 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
8021 return -EOPNOTSUPP;
8022
8023 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8024 if (!ctx)
8025 return -ENOMEM;
8026
8027 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
8028 ctx->info.q_opt_rss = vsi->info.q_opt_rss;
8029 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
8030 ctx->info.q_opt_rss |=
8031 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
8032 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
8033 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
8034
8035 err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
8036 if (err) {
8037 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
8038 vsi->vsi_num, err);
8039 } else {
8040 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
8041 vsi->rss_hfunc = hfunc;
8042 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
8043 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
8044 "Symmetric " : "");
8045 }
8046 kfree(ctx);
8047 if (err)
8048 return err;
8049
8050 /* Fix the symmetry setting for all existing RSS configurations */
8051 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
8052 return ice_set_rss_cfg_symm(hw, vsi, symm);
8053 }
8054
8055 /**
8056 * ice_bridge_getlink - Get the hardware bridge mode
8057 * @skb: skb buff
8058 * @pid: process ID
8059 * @seq: RTNL message seq
8060 * @dev: the netdev being configured
8061 * @filter_mask: filter mask passed in
8062 * @nlflags: netlink flags passed in
8063 *
8064 * Return the bridge mode (VEB/VEPA)
8065 */
8066 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)8067 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8068 struct net_device *dev, u32 filter_mask, int nlflags)
8069 {
8070 struct ice_netdev_priv *np = netdev_priv(dev);
8071 struct ice_vsi *vsi = np->vsi;
8072 struct ice_pf *pf = vsi->back;
8073 u16 bmode;
8074
8075 bmode = pf->first_sw->bridge_mode;
8076
8077 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
8078 filter_mask, NULL);
8079 }
8080
8081 /**
8082 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
8083 * @vsi: Pointer to VSI structure
8084 * @bmode: Hardware bridge mode (VEB/VEPA)
8085 *
8086 * Returns 0 on success, negative on failure
8087 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)8088 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
8089 {
8090 struct ice_aqc_vsi_props *vsi_props;
8091 struct ice_hw *hw = &vsi->back->hw;
8092 struct ice_vsi_ctx *ctxt;
8093 int ret;
8094
8095 vsi_props = &vsi->info;
8096
8097 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
8098 if (!ctxt)
8099 return -ENOMEM;
8100
8101 ctxt->info = vsi->info;
8102
8103 if (bmode == BRIDGE_MODE_VEB)
8104 /* change from VEPA to VEB mode */
8105 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8106 else
8107 /* change from VEB to VEPA mode */
8108 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8109 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
8110
8111 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
8112 if (ret) {
8113 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
8114 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
8115 goto out;
8116 }
8117 /* Update sw flags for book keeping */
8118 vsi_props->sw_flags = ctxt->info.sw_flags;
8119
8120 out:
8121 kfree(ctxt);
8122 return ret;
8123 }
8124
8125 /**
8126 * ice_bridge_setlink - Set the hardware bridge mode
8127 * @dev: the netdev being configured
8128 * @nlh: RTNL message
8129 * @flags: bridge setlink flags
8130 * @extack: netlink extended ack
8131 *
8132 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
8133 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
8134 * not already set for all VSIs connected to this switch. And also update the
8135 * unicast switch filter rules for the corresponding switch of the netdev.
8136 */
8137 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)8138 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8139 u16 __always_unused flags,
8140 struct netlink_ext_ack __always_unused *extack)
8141 {
8142 struct ice_netdev_priv *np = netdev_priv(dev);
8143 struct ice_pf *pf = np->vsi->back;
8144 struct nlattr *attr, *br_spec;
8145 struct ice_hw *hw = &pf->hw;
8146 struct ice_sw *pf_sw;
8147 int rem, v, err = 0;
8148
8149 pf_sw = pf->first_sw;
8150 /* find the attribute in the netlink message */
8151 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8152 if (!br_spec)
8153 return -EINVAL;
8154
8155 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
8156 __u16 mode = nla_get_u16(attr);
8157
8158 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8159 return -EINVAL;
8160 /* Continue if bridge mode is not being flipped */
8161 if (mode == pf_sw->bridge_mode)
8162 continue;
8163 /* Iterates through the PF VSI list and update the loopback
8164 * mode of the VSI
8165 */
8166 ice_for_each_vsi(pf, v) {
8167 if (!pf->vsi[v])
8168 continue;
8169 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8170 if (err)
8171 return err;
8172 }
8173
8174 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8175 /* Update the unicast switch filter rules for the corresponding
8176 * switch of the netdev
8177 */
8178 err = ice_update_sw_rule_bridge_mode(hw);
8179 if (err) {
8180 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8181 mode, err,
8182 ice_aq_str(hw->adminq.sq_last_status));
8183 /* revert hw->evb_veb */
8184 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8185 return err;
8186 }
8187
8188 pf_sw->bridge_mode = mode;
8189 }
8190
8191 return 0;
8192 }
8193
8194 /**
8195 * ice_tx_timeout - Respond to a Tx Hang
8196 * @netdev: network interface device structure
8197 * @txqueue: Tx queue
8198 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)8199 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8200 {
8201 struct ice_netdev_priv *np = netdev_priv(netdev);
8202 struct ice_tx_ring *tx_ring = NULL;
8203 struct ice_vsi *vsi = np->vsi;
8204 struct ice_pf *pf = vsi->back;
8205 u32 i;
8206
8207 pf->tx_timeout_count++;
8208
8209 /* Check if PFC is enabled for the TC to which the queue belongs
8210 * to. If yes then Tx timeout is not caused by a hung queue, no
8211 * need to reset and rebuild
8212 */
8213 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8214 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8215 txqueue);
8216 return;
8217 }
8218
8219 /* now that we have an index, find the tx_ring struct */
8220 ice_for_each_txq(vsi, i)
8221 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8222 if (txqueue == vsi->tx_rings[i]->q_index) {
8223 tx_ring = vsi->tx_rings[i];
8224 break;
8225 }
8226
8227 /* Reset recovery level if enough time has elapsed after last timeout.
8228 * Also ensure no new reset action happens before next timeout period.
8229 */
8230 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8231 pf->tx_timeout_recovery_level = 1;
8232 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8233 netdev->watchdog_timeo)))
8234 return;
8235
8236 if (tx_ring) {
8237 struct ice_hw *hw = &pf->hw;
8238 u32 head, val = 0;
8239
8240 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8241 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8242 /* Read interrupt register */
8243 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8244
8245 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8246 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8247 head, tx_ring->next_to_use, val);
8248 }
8249
8250 pf->tx_timeout_last_recovery = jiffies;
8251 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8252 pf->tx_timeout_recovery_level, txqueue);
8253
8254 switch (pf->tx_timeout_recovery_level) {
8255 case 1:
8256 set_bit(ICE_PFR_REQ, pf->state);
8257 break;
8258 case 2:
8259 set_bit(ICE_CORER_REQ, pf->state);
8260 break;
8261 case 3:
8262 set_bit(ICE_GLOBR_REQ, pf->state);
8263 break;
8264 default:
8265 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8266 set_bit(ICE_DOWN, pf->state);
8267 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8268 set_bit(ICE_SERVICE_DIS, pf->state);
8269 break;
8270 }
8271
8272 ice_service_task_schedule(pf);
8273 pf->tx_timeout_recovery_level++;
8274 }
8275
8276 /**
8277 * ice_setup_tc_cls_flower - flower classifier offloads
8278 * @np: net device to configure
8279 * @filter_dev: device on which filter is added
8280 * @cls_flower: offload data
8281 */
8282 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower)8283 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8284 struct net_device *filter_dev,
8285 struct flow_cls_offload *cls_flower)
8286 {
8287 struct ice_vsi *vsi = np->vsi;
8288
8289 if (cls_flower->common.chain_index)
8290 return -EOPNOTSUPP;
8291
8292 switch (cls_flower->command) {
8293 case FLOW_CLS_REPLACE:
8294 return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8295 case FLOW_CLS_DESTROY:
8296 return ice_del_cls_flower(vsi, cls_flower);
8297 default:
8298 return -EINVAL;
8299 }
8300 }
8301
8302 /**
8303 * ice_setup_tc_block_cb - callback handler registered for TC block
8304 * @type: TC SETUP type
8305 * @type_data: TC flower offload data that contains user input
8306 * @cb_priv: netdev private data
8307 */
8308 static int
ice_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)8309 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8310 {
8311 struct ice_netdev_priv *np = cb_priv;
8312
8313 switch (type) {
8314 case TC_SETUP_CLSFLOWER:
8315 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8316 type_data);
8317 default:
8318 return -EOPNOTSUPP;
8319 }
8320 }
8321
8322 /**
8323 * ice_validate_mqprio_qopt - Validate TCF input parameters
8324 * @vsi: Pointer to VSI
8325 * @mqprio_qopt: input parameters for mqprio queue configuration
8326 *
8327 * This function validates MQPRIO params, such as qcount (power of 2 wherever
8328 * needed), and make sure user doesn't specify qcount and BW rate limit
8329 * for TCs, which are more than "num_tc"
8330 */
8331 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)8332 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8333 struct tc_mqprio_qopt_offload *mqprio_qopt)
8334 {
8335 int non_power_of_2_qcount = 0;
8336 struct ice_pf *pf = vsi->back;
8337 int max_rss_q_cnt = 0;
8338 u64 sum_min_rate = 0;
8339 struct device *dev;
8340 int i, speed;
8341 u8 num_tc;
8342
8343 if (vsi->type != ICE_VSI_PF)
8344 return -EINVAL;
8345
8346 if (mqprio_qopt->qopt.offset[0] != 0 ||
8347 mqprio_qopt->qopt.num_tc < 1 ||
8348 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8349 return -EINVAL;
8350
8351 dev = ice_pf_to_dev(pf);
8352 vsi->ch_rss_size = 0;
8353 num_tc = mqprio_qopt->qopt.num_tc;
8354 speed = ice_get_link_speed_kbps(vsi);
8355
8356 for (i = 0; num_tc; i++) {
8357 int qcount = mqprio_qopt->qopt.count[i];
8358 u64 max_rate, min_rate, rem;
8359
8360 if (!qcount)
8361 return -EINVAL;
8362
8363 if (is_power_of_2(qcount)) {
8364 if (non_power_of_2_qcount &&
8365 qcount > non_power_of_2_qcount) {
8366 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8367 qcount, non_power_of_2_qcount);
8368 return -EINVAL;
8369 }
8370 if (qcount > max_rss_q_cnt)
8371 max_rss_q_cnt = qcount;
8372 } else {
8373 if (non_power_of_2_qcount &&
8374 qcount != non_power_of_2_qcount) {
8375 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8376 qcount, non_power_of_2_qcount);
8377 return -EINVAL;
8378 }
8379 if (qcount < max_rss_q_cnt) {
8380 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8381 qcount, max_rss_q_cnt);
8382 return -EINVAL;
8383 }
8384 max_rss_q_cnt = qcount;
8385 non_power_of_2_qcount = qcount;
8386 }
8387
8388 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8389 * converts the bandwidth rate limit into Bytes/s when
8390 * passing it down to the driver. So convert input bandwidth
8391 * from Bytes/s to Kbps
8392 */
8393 max_rate = mqprio_qopt->max_rate[i];
8394 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8395
8396 /* min_rate is minimum guaranteed rate and it can't be zero */
8397 min_rate = mqprio_qopt->min_rate[i];
8398 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8399 sum_min_rate += min_rate;
8400
8401 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8402 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8403 min_rate, ICE_MIN_BW_LIMIT);
8404 return -EINVAL;
8405 }
8406
8407 if (max_rate && max_rate > speed) {
8408 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8409 i, max_rate, speed);
8410 return -EINVAL;
8411 }
8412
8413 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8414 if (rem) {
8415 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8416 i, ICE_MIN_BW_LIMIT);
8417 return -EINVAL;
8418 }
8419
8420 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8421 if (rem) {
8422 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8423 i, ICE_MIN_BW_LIMIT);
8424 return -EINVAL;
8425 }
8426
8427 /* min_rate can't be more than max_rate, except when max_rate
8428 * is zero (implies max_rate sought is max line rate). In such
8429 * a case min_rate can be more than max.
8430 */
8431 if (max_rate && min_rate > max_rate) {
8432 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8433 min_rate, max_rate);
8434 return -EINVAL;
8435 }
8436
8437 if (i >= mqprio_qopt->qopt.num_tc - 1)
8438 break;
8439 if (mqprio_qopt->qopt.offset[i + 1] !=
8440 (mqprio_qopt->qopt.offset[i] + qcount))
8441 return -EINVAL;
8442 }
8443 if (vsi->num_rxq <
8444 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8445 return -EINVAL;
8446 if (vsi->num_txq <
8447 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8448 return -EINVAL;
8449
8450 if (sum_min_rate && sum_min_rate > (u64)speed) {
8451 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8452 sum_min_rate, speed);
8453 return -EINVAL;
8454 }
8455
8456 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8457 vsi->ch_rss_size = max_rss_q_cnt;
8458
8459 return 0;
8460 }
8461
8462 /**
8463 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8464 * @pf: ptr to PF device
8465 * @vsi: ptr to VSI
8466 */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)8467 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8468 {
8469 struct device *dev = ice_pf_to_dev(pf);
8470 bool added = false;
8471 struct ice_hw *hw;
8472 int flow;
8473
8474 if (!(vsi->num_gfltr || vsi->num_bfltr))
8475 return -EINVAL;
8476
8477 hw = &pf->hw;
8478 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8479 struct ice_fd_hw_prof *prof;
8480 int tun, status;
8481 u64 entry_h;
8482
8483 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8484 hw->fdir_prof[flow]->cnt))
8485 continue;
8486
8487 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8488 enum ice_flow_priority prio;
8489
8490 /* add this VSI to FDir profile for this flow */
8491 prio = ICE_FLOW_PRIO_NORMAL;
8492 prof = hw->fdir_prof[flow];
8493 status = ice_flow_add_entry(hw, ICE_BLK_FD,
8494 prof->prof_id[tun],
8495 prof->vsi_h[0], vsi->idx,
8496 prio, prof->fdir_seg[tun],
8497 &entry_h);
8498 if (status) {
8499 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8500 vsi->idx, flow);
8501 continue;
8502 }
8503
8504 prof->entry_h[prof->cnt][tun] = entry_h;
8505 }
8506
8507 /* store VSI for filter replay and delete */
8508 prof->vsi_h[prof->cnt] = vsi->idx;
8509 prof->cnt++;
8510
8511 added = true;
8512 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8513 flow);
8514 }
8515
8516 if (!added)
8517 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8518
8519 return 0;
8520 }
8521
8522 /**
8523 * ice_add_channel - add a channel by adding VSI
8524 * @pf: ptr to PF device
8525 * @sw_id: underlying HW switching element ID
8526 * @ch: ptr to channel structure
8527 *
8528 * Add a channel (VSI) using add_vsi and queue_map
8529 */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)8530 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8531 {
8532 struct device *dev = ice_pf_to_dev(pf);
8533 struct ice_vsi *vsi;
8534
8535 if (ch->type != ICE_VSI_CHNL) {
8536 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8537 return -EINVAL;
8538 }
8539
8540 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8541 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8542 dev_err(dev, "create chnl VSI failure\n");
8543 return -EINVAL;
8544 }
8545
8546 ice_add_vsi_to_fdir(pf, vsi);
8547
8548 ch->sw_id = sw_id;
8549 ch->vsi_num = vsi->vsi_num;
8550 ch->info.mapping_flags = vsi->info.mapping_flags;
8551 ch->ch_vsi = vsi;
8552 /* set the back pointer of channel for newly created VSI */
8553 vsi->ch = ch;
8554
8555 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8556 sizeof(vsi->info.q_mapping));
8557 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8558 sizeof(vsi->info.tc_mapping));
8559
8560 return 0;
8561 }
8562
8563 /**
8564 * ice_chnl_cfg_res
8565 * @vsi: the VSI being setup
8566 * @ch: ptr to channel structure
8567 *
8568 * Configure channel specific resources such as rings, vector.
8569 */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)8570 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8571 {
8572 int i;
8573
8574 for (i = 0; i < ch->num_txq; i++) {
8575 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8576 struct ice_ring_container *rc;
8577 struct ice_tx_ring *tx_ring;
8578 struct ice_rx_ring *rx_ring;
8579
8580 tx_ring = vsi->tx_rings[ch->base_q + i];
8581 rx_ring = vsi->rx_rings[ch->base_q + i];
8582 if (!tx_ring || !rx_ring)
8583 continue;
8584
8585 /* setup ring being channel enabled */
8586 tx_ring->ch = ch;
8587 rx_ring->ch = ch;
8588
8589 /* following code block sets up vector specific attributes */
8590 tx_q_vector = tx_ring->q_vector;
8591 rx_q_vector = rx_ring->q_vector;
8592 if (!tx_q_vector && !rx_q_vector)
8593 continue;
8594
8595 if (tx_q_vector) {
8596 tx_q_vector->ch = ch;
8597 /* setup Tx and Rx ITR setting if DIM is off */
8598 rc = &tx_q_vector->tx;
8599 if (!ITR_IS_DYNAMIC(rc))
8600 ice_write_itr(rc, rc->itr_setting);
8601 }
8602 if (rx_q_vector) {
8603 rx_q_vector->ch = ch;
8604 /* setup Tx and Rx ITR setting if DIM is off */
8605 rc = &rx_q_vector->rx;
8606 if (!ITR_IS_DYNAMIC(rc))
8607 ice_write_itr(rc, rc->itr_setting);
8608 }
8609 }
8610
8611 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8612 * GLINT_ITR register would have written to perform in-context
8613 * update, hence perform flush
8614 */
8615 if (ch->num_txq || ch->num_rxq)
8616 ice_flush(&vsi->back->hw);
8617 }
8618
8619 /**
8620 * ice_cfg_chnl_all_res - configure channel resources
8621 * @vsi: pte to main_vsi
8622 * @ch: ptr to channel structure
8623 *
8624 * This function configures channel specific resources such as flow-director
8625 * counter index, and other resources such as queues, vectors, ITR settings
8626 */
8627 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8628 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8629 {
8630 /* configure channel (aka ADQ) resources such as queues, vectors,
8631 * ITR settings for channel specific vectors and anything else
8632 */
8633 ice_chnl_cfg_res(vsi, ch);
8634 }
8635
8636 /**
8637 * ice_setup_hw_channel - setup new channel
8638 * @pf: ptr to PF device
8639 * @vsi: the VSI being setup
8640 * @ch: ptr to channel structure
8641 * @sw_id: underlying HW switching element ID
8642 * @type: type of channel to be created (VMDq2/VF)
8643 *
8644 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8645 * and configures Tx rings accordingly
8646 */
8647 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8648 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8649 struct ice_channel *ch, u16 sw_id, u8 type)
8650 {
8651 struct device *dev = ice_pf_to_dev(pf);
8652 int ret;
8653
8654 ch->base_q = vsi->next_base_q;
8655 ch->type = type;
8656
8657 ret = ice_add_channel(pf, sw_id, ch);
8658 if (ret) {
8659 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8660 return ret;
8661 }
8662
8663 /* configure/setup ADQ specific resources */
8664 ice_cfg_chnl_all_res(vsi, ch);
8665
8666 /* make sure to update the next_base_q so that subsequent channel's
8667 * (aka ADQ) VSI queue map is correct
8668 */
8669 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8670 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8671 ch->num_rxq);
8672
8673 return 0;
8674 }
8675
8676 /**
8677 * ice_setup_channel - setup new channel using uplink element
8678 * @pf: ptr to PF device
8679 * @vsi: the VSI being setup
8680 * @ch: ptr to channel structure
8681 *
8682 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8683 * and uplink switching element
8684 */
8685 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8686 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8687 struct ice_channel *ch)
8688 {
8689 struct device *dev = ice_pf_to_dev(pf);
8690 u16 sw_id;
8691 int ret;
8692
8693 if (vsi->type != ICE_VSI_PF) {
8694 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8695 return false;
8696 }
8697
8698 sw_id = pf->first_sw->sw_id;
8699
8700 /* create channel (VSI) */
8701 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8702 if (ret) {
8703 dev_err(dev, "failed to setup hw_channel\n");
8704 return false;
8705 }
8706 dev_dbg(dev, "successfully created channel()\n");
8707
8708 return ch->ch_vsi ? true : false;
8709 }
8710
8711 /**
8712 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8713 * @vsi: VSI to be configured
8714 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8715 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8716 */
8717 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8718 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8719 {
8720 int err;
8721
8722 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8723 if (err)
8724 return err;
8725
8726 return ice_set_max_bw_limit(vsi, max_tx_rate);
8727 }
8728
8729 /**
8730 * ice_create_q_channel - function to create channel
8731 * @vsi: VSI to be configured
8732 * @ch: ptr to channel (it contains channel specific params)
8733 *
8734 * This function creates channel (VSI) using num_queues specified by user,
8735 * reconfigs RSS if needed.
8736 */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8737 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8738 {
8739 struct ice_pf *pf = vsi->back;
8740 struct device *dev;
8741
8742 if (!ch)
8743 return -EINVAL;
8744
8745 dev = ice_pf_to_dev(pf);
8746 if (!ch->num_txq || !ch->num_rxq) {
8747 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8748 return -EINVAL;
8749 }
8750
8751 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8752 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8753 vsi->cnt_q_avail, ch->num_txq);
8754 return -EINVAL;
8755 }
8756
8757 if (!ice_setup_channel(pf, vsi, ch)) {
8758 dev_info(dev, "Failed to setup channel\n");
8759 return -EINVAL;
8760 }
8761 /* configure BW rate limit */
8762 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8763 int ret;
8764
8765 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8766 ch->min_tx_rate);
8767 if (ret)
8768 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8769 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8770 else
8771 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8772 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8773 }
8774
8775 vsi->cnt_q_avail -= ch->num_txq;
8776
8777 return 0;
8778 }
8779
8780 /**
8781 * ice_rem_all_chnl_fltrs - removes all channel filters
8782 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8783 *
8784 * Remove all advanced switch filters only if they are channel specific
8785 * tc-flower based filter
8786 */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8787 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8788 {
8789 struct ice_tc_flower_fltr *fltr;
8790 struct hlist_node *node;
8791
8792 /* to remove all channel filters, iterate an ordered list of filters */
8793 hlist_for_each_entry_safe(fltr, node,
8794 &pf->tc_flower_fltr_list,
8795 tc_flower_node) {
8796 struct ice_rule_query_data rule;
8797 int status;
8798
8799 /* for now process only channel specific filters */
8800 if (!ice_is_chnl_fltr(fltr))
8801 continue;
8802
8803 rule.rid = fltr->rid;
8804 rule.rule_id = fltr->rule_id;
8805 rule.vsi_handle = fltr->dest_vsi_handle;
8806 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8807 if (status) {
8808 if (status == -ENOENT)
8809 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8810 rule.rule_id);
8811 else
8812 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8813 status);
8814 } else if (fltr->dest_vsi) {
8815 /* update advanced switch filter count */
8816 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8817 u32 flags = fltr->flags;
8818
8819 fltr->dest_vsi->num_chnl_fltr--;
8820 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8821 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8822 pf->num_dmac_chnl_fltrs--;
8823 }
8824 }
8825
8826 hlist_del(&fltr->tc_flower_node);
8827 kfree(fltr);
8828 }
8829 }
8830
8831 /**
8832 * ice_remove_q_channels - Remove queue channels for the TCs
8833 * @vsi: VSI to be configured
8834 * @rem_fltr: delete advanced switch filter or not
8835 *
8836 * Remove queue channels for the TCs
8837 */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8838 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8839 {
8840 struct ice_channel *ch, *ch_tmp;
8841 struct ice_pf *pf = vsi->back;
8842 int i;
8843
8844 /* remove all tc-flower based filter if they are channel filters only */
8845 if (rem_fltr)
8846 ice_rem_all_chnl_fltrs(pf);
8847
8848 /* remove ntuple filters since queue configuration is being changed */
8849 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8850 struct ice_hw *hw = &pf->hw;
8851
8852 mutex_lock(&hw->fdir_fltr_lock);
8853 ice_fdir_del_all_fltrs(vsi);
8854 mutex_unlock(&hw->fdir_fltr_lock);
8855 }
8856
8857 /* perform cleanup for channels if they exist */
8858 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8859 struct ice_vsi *ch_vsi;
8860
8861 list_del(&ch->list);
8862 ch_vsi = ch->ch_vsi;
8863 if (!ch_vsi) {
8864 kfree(ch);
8865 continue;
8866 }
8867
8868 /* Reset queue contexts */
8869 for (i = 0; i < ch->num_rxq; i++) {
8870 struct ice_tx_ring *tx_ring;
8871 struct ice_rx_ring *rx_ring;
8872
8873 tx_ring = vsi->tx_rings[ch->base_q + i];
8874 rx_ring = vsi->rx_rings[ch->base_q + i];
8875 if (tx_ring) {
8876 tx_ring->ch = NULL;
8877 if (tx_ring->q_vector)
8878 tx_ring->q_vector->ch = NULL;
8879 }
8880 if (rx_ring) {
8881 rx_ring->ch = NULL;
8882 if (rx_ring->q_vector)
8883 rx_ring->q_vector->ch = NULL;
8884 }
8885 }
8886
8887 /* Release FD resources for the channel VSI */
8888 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8889
8890 /* clear the VSI from scheduler tree */
8891 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8892
8893 /* Delete VSI from FW, PF and HW VSI arrays */
8894 ice_vsi_delete(ch->ch_vsi);
8895
8896 /* free the channel */
8897 kfree(ch);
8898 }
8899
8900 /* clear the channel VSI map which is stored in main VSI */
8901 ice_for_each_chnl_tc(i)
8902 vsi->tc_map_vsi[i] = NULL;
8903
8904 /* reset main VSI's all TC information */
8905 vsi->all_enatc = 0;
8906 vsi->all_numtc = 0;
8907 }
8908
8909 /**
8910 * ice_rebuild_channels - rebuild channel
8911 * @pf: ptr to PF
8912 *
8913 * Recreate channel VSIs and replay filters
8914 */
ice_rebuild_channels(struct ice_pf * pf)8915 static int ice_rebuild_channels(struct ice_pf *pf)
8916 {
8917 struct device *dev = ice_pf_to_dev(pf);
8918 struct ice_vsi *main_vsi;
8919 bool rem_adv_fltr = true;
8920 struct ice_channel *ch;
8921 struct ice_vsi *vsi;
8922 int tc_idx = 1;
8923 int i, err;
8924
8925 main_vsi = ice_get_main_vsi(pf);
8926 if (!main_vsi)
8927 return 0;
8928
8929 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8930 main_vsi->old_numtc == 1)
8931 return 0; /* nothing to be done */
8932
8933 /* reconfigure main VSI based on old value of TC and cached values
8934 * for MQPRIO opts
8935 */
8936 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8937 if (err) {
8938 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8939 main_vsi->old_ena_tc, main_vsi->vsi_num);
8940 return err;
8941 }
8942
8943 /* rebuild ADQ VSIs */
8944 ice_for_each_vsi(pf, i) {
8945 enum ice_vsi_type type;
8946
8947 vsi = pf->vsi[i];
8948 if (!vsi || vsi->type != ICE_VSI_CHNL)
8949 continue;
8950
8951 type = vsi->type;
8952
8953 /* rebuild ADQ VSI */
8954 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8955 if (err) {
8956 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8957 ice_vsi_type_str(type), vsi->idx, err);
8958 goto cleanup;
8959 }
8960
8961 /* Re-map HW VSI number, using VSI handle that has been
8962 * previously validated in ice_replay_vsi() call above
8963 */
8964 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8965
8966 /* replay filters for the VSI */
8967 err = ice_replay_vsi(&pf->hw, vsi->idx);
8968 if (err) {
8969 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8970 ice_vsi_type_str(type), err, vsi->idx);
8971 rem_adv_fltr = false;
8972 goto cleanup;
8973 }
8974 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8975 ice_vsi_type_str(type), vsi->idx);
8976
8977 /* store ADQ VSI at correct TC index in main VSI's
8978 * map of TC to VSI
8979 */
8980 main_vsi->tc_map_vsi[tc_idx++] = vsi;
8981 }
8982
8983 /* ADQ VSI(s) has been rebuilt successfully, so setup
8984 * channel for main VSI's Tx and Rx rings
8985 */
8986 list_for_each_entry(ch, &main_vsi->ch_list, list) {
8987 struct ice_vsi *ch_vsi;
8988
8989 ch_vsi = ch->ch_vsi;
8990 if (!ch_vsi)
8991 continue;
8992
8993 /* reconfig channel resources */
8994 ice_cfg_chnl_all_res(main_vsi, ch);
8995
8996 /* replay BW rate limit if it is non-zero */
8997 if (!ch->max_tx_rate && !ch->min_tx_rate)
8998 continue;
8999
9000 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
9001 ch->min_tx_rate);
9002 if (err)
9003 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9004 err, ch->max_tx_rate, ch->min_tx_rate,
9005 ch_vsi->vsi_num);
9006 else
9007 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9008 ch->max_tx_rate, ch->min_tx_rate,
9009 ch_vsi->vsi_num);
9010 }
9011
9012 /* reconfig RSS for main VSI */
9013 if (main_vsi->ch_rss_size)
9014 ice_vsi_cfg_rss_lut_key(main_vsi);
9015
9016 return 0;
9017
9018 cleanup:
9019 ice_remove_q_channels(main_vsi, rem_adv_fltr);
9020 return err;
9021 }
9022
9023 /**
9024 * ice_create_q_channels - Add queue channel for the given TCs
9025 * @vsi: VSI to be configured
9026 *
9027 * Configures queue channel mapping to the given TCs
9028 */
ice_create_q_channels(struct ice_vsi * vsi)9029 static int ice_create_q_channels(struct ice_vsi *vsi)
9030 {
9031 struct ice_pf *pf = vsi->back;
9032 struct ice_channel *ch;
9033 int ret = 0, i;
9034
9035 ice_for_each_chnl_tc(i) {
9036 if (!(vsi->all_enatc & BIT(i)))
9037 continue;
9038
9039 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
9040 if (!ch) {
9041 ret = -ENOMEM;
9042 goto err_free;
9043 }
9044 INIT_LIST_HEAD(&ch->list);
9045 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
9046 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
9047 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
9048 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
9049 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
9050
9051 /* convert to Kbits/s */
9052 if (ch->max_tx_rate)
9053 ch->max_tx_rate = div_u64(ch->max_tx_rate,
9054 ICE_BW_KBPS_DIVISOR);
9055 if (ch->min_tx_rate)
9056 ch->min_tx_rate = div_u64(ch->min_tx_rate,
9057 ICE_BW_KBPS_DIVISOR);
9058
9059 ret = ice_create_q_channel(vsi, ch);
9060 if (ret) {
9061 dev_err(ice_pf_to_dev(pf),
9062 "failed creating channel TC:%d\n", i);
9063 kfree(ch);
9064 goto err_free;
9065 }
9066 list_add_tail(&ch->list, &vsi->ch_list);
9067 vsi->tc_map_vsi[i] = ch->ch_vsi;
9068 dev_dbg(ice_pf_to_dev(pf),
9069 "successfully created channel: VSI %pK\n", ch->ch_vsi);
9070 }
9071 return 0;
9072
9073 err_free:
9074 ice_remove_q_channels(vsi, false);
9075
9076 return ret;
9077 }
9078
9079 /**
9080 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
9081 * @netdev: net device to configure
9082 * @type_data: TC offload data
9083 */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)9084 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
9085 {
9086 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
9087 struct ice_netdev_priv *np = netdev_priv(netdev);
9088 struct ice_vsi *vsi = np->vsi;
9089 struct ice_pf *pf = vsi->back;
9090 u16 mode, ena_tc_qdisc = 0;
9091 int cur_txq, cur_rxq;
9092 u8 hw = 0, num_tcf;
9093 struct device *dev;
9094 int ret, i;
9095
9096 dev = ice_pf_to_dev(pf);
9097 num_tcf = mqprio_qopt->qopt.num_tc;
9098 hw = mqprio_qopt->qopt.hw;
9099 mode = mqprio_qopt->mode;
9100 if (!hw) {
9101 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9102 vsi->ch_rss_size = 0;
9103 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9104 goto config_tcf;
9105 }
9106
9107 /* Generate queue region map for number of TCF requested */
9108 for (i = 0; i < num_tcf; i++)
9109 ena_tc_qdisc |= BIT(i);
9110
9111 switch (mode) {
9112 case TC_MQPRIO_MODE_CHANNEL:
9113
9114 if (pf->hw.port_info->is_custom_tx_enabled) {
9115 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
9116 return -EBUSY;
9117 }
9118 ice_tear_down_devlink_rate_tree(pf);
9119
9120 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
9121 if (ret) {
9122 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
9123 ret);
9124 return ret;
9125 }
9126 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9127 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9128 /* don't assume state of hw_tc_offload during driver load
9129 * and set the flag for TC flower filter if hw_tc_offload
9130 * already ON
9131 */
9132 if (vsi->netdev->features & NETIF_F_HW_TC)
9133 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9134 break;
9135 default:
9136 return -EINVAL;
9137 }
9138
9139 config_tcf:
9140
9141 /* Requesting same TCF configuration as already enabled */
9142 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9143 mode != TC_MQPRIO_MODE_CHANNEL)
9144 return 0;
9145
9146 /* Pause VSI queues */
9147 ice_dis_vsi(vsi, true);
9148
9149 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9150 ice_remove_q_channels(vsi, true);
9151
9152 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9153 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9154 num_online_cpus());
9155 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9156 num_online_cpus());
9157 } else {
9158 /* logic to rebuild VSI, same like ethtool -L */
9159 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9160
9161 for (i = 0; i < num_tcf; i++) {
9162 if (!(ena_tc_qdisc & BIT(i)))
9163 continue;
9164
9165 offset = vsi->mqprio_qopt.qopt.offset[i];
9166 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9167 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9168 }
9169 vsi->req_txq = offset + qcount_tx;
9170 vsi->req_rxq = offset + qcount_rx;
9171
9172 /* store away original rss_size info, so that it gets reused
9173 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9174 * determine, what should be the rss_sizefor main VSI
9175 */
9176 vsi->orig_rss_size = vsi->rss_size;
9177 }
9178
9179 /* save current values of Tx and Rx queues before calling VSI rebuild
9180 * for fallback option
9181 */
9182 cur_txq = vsi->num_txq;
9183 cur_rxq = vsi->num_rxq;
9184
9185 /* proceed with rebuild main VSI using correct number of queues */
9186 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9187 if (ret) {
9188 /* fallback to current number of queues */
9189 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9190 vsi->req_txq = cur_txq;
9191 vsi->req_rxq = cur_rxq;
9192 clear_bit(ICE_RESET_FAILED, pf->state);
9193 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9194 dev_err(dev, "Rebuild of main VSI failed again\n");
9195 return ret;
9196 }
9197 }
9198
9199 vsi->all_numtc = num_tcf;
9200 vsi->all_enatc = ena_tc_qdisc;
9201 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9202 if (ret) {
9203 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9204 vsi->vsi_num);
9205 goto exit;
9206 }
9207
9208 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9209 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9210 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9211
9212 /* set TC0 rate limit if specified */
9213 if (max_tx_rate || min_tx_rate) {
9214 /* convert to Kbits/s */
9215 if (max_tx_rate)
9216 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9217 if (min_tx_rate)
9218 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9219
9220 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9221 if (!ret) {
9222 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9223 max_tx_rate, min_tx_rate, vsi->vsi_num);
9224 } else {
9225 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9226 max_tx_rate, min_tx_rate, vsi->vsi_num);
9227 goto exit;
9228 }
9229 }
9230 ret = ice_create_q_channels(vsi);
9231 if (ret) {
9232 netdev_err(netdev, "failed configuring queue channels\n");
9233 goto exit;
9234 } else {
9235 netdev_dbg(netdev, "successfully configured channels\n");
9236 }
9237 }
9238
9239 if (vsi->ch_rss_size)
9240 ice_vsi_cfg_rss_lut_key(vsi);
9241
9242 exit:
9243 /* if error, reset the all_numtc and all_enatc */
9244 if (ret) {
9245 vsi->all_numtc = 0;
9246 vsi->all_enatc = 0;
9247 }
9248 /* resume VSI */
9249 ice_ena_vsi(vsi, true);
9250
9251 return ret;
9252 }
9253
9254 static LIST_HEAD(ice_block_cb_list);
9255
9256 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)9257 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9258 void *type_data)
9259 {
9260 struct ice_netdev_priv *np = netdev_priv(netdev);
9261 struct ice_pf *pf = np->vsi->back;
9262 bool locked = false;
9263 int err;
9264
9265 switch (type) {
9266 case TC_SETUP_BLOCK:
9267 return flow_block_cb_setup_simple(type_data,
9268 &ice_block_cb_list,
9269 ice_setup_tc_block_cb,
9270 np, np, true);
9271 case TC_SETUP_QDISC_MQPRIO:
9272 if (ice_is_eswitch_mode_switchdev(pf)) {
9273 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9274 return -EOPNOTSUPP;
9275 }
9276
9277 if (pf->adev) {
9278 mutex_lock(&pf->adev_mutex);
9279 device_lock(&pf->adev->dev);
9280 locked = true;
9281 if (pf->adev->dev.driver) {
9282 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9283 err = -EBUSY;
9284 goto adev_unlock;
9285 }
9286 }
9287
9288 /* setup traffic classifier for receive side */
9289 mutex_lock(&pf->tc_mutex);
9290 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9291 mutex_unlock(&pf->tc_mutex);
9292
9293 adev_unlock:
9294 if (locked) {
9295 device_unlock(&pf->adev->dev);
9296 mutex_unlock(&pf->adev_mutex);
9297 }
9298 return err;
9299 default:
9300 return -EOPNOTSUPP;
9301 }
9302 return -EOPNOTSUPP;
9303 }
9304
9305 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)9306 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9307 struct net_device *netdev)
9308 {
9309 struct ice_indr_block_priv *cb_priv;
9310
9311 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9312 if (!cb_priv->netdev)
9313 return NULL;
9314 if (cb_priv->netdev == netdev)
9315 return cb_priv;
9316 }
9317 return NULL;
9318 }
9319
9320 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)9321 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9322 void *indr_priv)
9323 {
9324 struct ice_indr_block_priv *priv = indr_priv;
9325 struct ice_netdev_priv *np = priv->np;
9326
9327 switch (type) {
9328 case TC_SETUP_CLSFLOWER:
9329 return ice_setup_tc_cls_flower(np, priv->netdev,
9330 (struct flow_cls_offload *)
9331 type_data);
9332 default:
9333 return -EOPNOTSUPP;
9334 }
9335 }
9336
9337 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9338 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9339 struct ice_netdev_priv *np,
9340 struct flow_block_offload *f, void *data,
9341 void (*cleanup)(struct flow_block_cb *block_cb))
9342 {
9343 struct ice_indr_block_priv *indr_priv;
9344 struct flow_block_cb *block_cb;
9345
9346 if (!ice_is_tunnel_supported(netdev) &&
9347 !(is_vlan_dev(netdev) &&
9348 vlan_dev_real_dev(netdev) == np->vsi->netdev))
9349 return -EOPNOTSUPP;
9350
9351 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9352 return -EOPNOTSUPP;
9353
9354 switch (f->command) {
9355 case FLOW_BLOCK_BIND:
9356 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9357 if (indr_priv)
9358 return -EEXIST;
9359
9360 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9361 if (!indr_priv)
9362 return -ENOMEM;
9363
9364 indr_priv->netdev = netdev;
9365 indr_priv->np = np;
9366 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9367
9368 block_cb =
9369 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9370 indr_priv, indr_priv,
9371 ice_rep_indr_tc_block_unbind,
9372 f, netdev, sch, data, np,
9373 cleanup);
9374
9375 if (IS_ERR(block_cb)) {
9376 list_del(&indr_priv->list);
9377 kfree(indr_priv);
9378 return PTR_ERR(block_cb);
9379 }
9380 flow_block_cb_add(block_cb, f);
9381 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9382 break;
9383 case FLOW_BLOCK_UNBIND:
9384 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9385 if (!indr_priv)
9386 return -ENOENT;
9387
9388 block_cb = flow_block_cb_lookup(f->block,
9389 ice_indr_setup_block_cb,
9390 indr_priv);
9391 if (!block_cb)
9392 return -ENOENT;
9393
9394 flow_indr_block_cb_remove(block_cb, f);
9395
9396 list_del(&block_cb->driver_list);
9397 break;
9398 default:
9399 return -EOPNOTSUPP;
9400 }
9401 return 0;
9402 }
9403
9404 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9405 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9406 void *cb_priv, enum tc_setup_type type, void *type_data,
9407 void *data,
9408 void (*cleanup)(struct flow_block_cb *block_cb))
9409 {
9410 switch (type) {
9411 case TC_SETUP_BLOCK:
9412 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9413 data, cleanup);
9414
9415 default:
9416 return -EOPNOTSUPP;
9417 }
9418 }
9419
9420 /**
9421 * ice_open - Called when a network interface becomes active
9422 * @netdev: network interface device structure
9423 *
9424 * The open entry point is called when a network interface is made
9425 * active by the system (IFF_UP). At this point all resources needed
9426 * for transmit and receive operations are allocated, the interrupt
9427 * handler is registered with the OS, the netdev watchdog is enabled,
9428 * and the stack is notified that the interface is ready.
9429 *
9430 * Returns 0 on success, negative value on failure
9431 */
ice_open(struct net_device * netdev)9432 int ice_open(struct net_device *netdev)
9433 {
9434 struct ice_netdev_priv *np = netdev_priv(netdev);
9435 struct ice_pf *pf = np->vsi->back;
9436
9437 if (ice_is_reset_in_progress(pf->state)) {
9438 netdev_err(netdev, "can't open net device while reset is in progress");
9439 return -EBUSY;
9440 }
9441
9442 return ice_open_internal(netdev);
9443 }
9444
9445 /**
9446 * ice_open_internal - Called when a network interface becomes active
9447 * @netdev: network interface device structure
9448 *
9449 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9450 * handling routine
9451 *
9452 * Returns 0 on success, negative value on failure
9453 */
ice_open_internal(struct net_device * netdev)9454 int ice_open_internal(struct net_device *netdev)
9455 {
9456 struct ice_netdev_priv *np = netdev_priv(netdev);
9457 struct ice_vsi *vsi = np->vsi;
9458 struct ice_pf *pf = vsi->back;
9459 struct ice_port_info *pi;
9460 int err;
9461
9462 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9463 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9464 return -EIO;
9465 }
9466
9467 netif_carrier_off(netdev);
9468
9469 pi = vsi->port_info;
9470 err = ice_update_link_info(pi);
9471 if (err) {
9472 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9473 return err;
9474 }
9475
9476 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9477
9478 /* Set PHY if there is media, otherwise, turn off PHY */
9479 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9480 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9481 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9482 err = ice_init_phy_user_cfg(pi);
9483 if (err) {
9484 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9485 err);
9486 return err;
9487 }
9488 }
9489
9490 err = ice_configure_phy(vsi);
9491 if (err) {
9492 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9493 err);
9494 return err;
9495 }
9496 } else {
9497 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9498 ice_set_link(vsi, false);
9499 }
9500
9501 err = ice_vsi_open(vsi);
9502 if (err)
9503 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9504 vsi->vsi_num, vsi->vsw->sw_id);
9505
9506 /* Update existing tunnels information */
9507 udp_tunnel_get_rx_info(netdev);
9508
9509 return err;
9510 }
9511
9512 /**
9513 * ice_stop - Disables a network interface
9514 * @netdev: network interface device structure
9515 *
9516 * The stop entry point is called when an interface is de-activated by the OS,
9517 * and the netdevice enters the DOWN state. The hardware is still under the
9518 * driver's control, but the netdev interface is disabled.
9519 *
9520 * Returns success only - not allowed to fail
9521 */
ice_stop(struct net_device * netdev)9522 int ice_stop(struct net_device *netdev)
9523 {
9524 struct ice_netdev_priv *np = netdev_priv(netdev);
9525 struct ice_vsi *vsi = np->vsi;
9526 struct ice_pf *pf = vsi->back;
9527
9528 if (ice_is_reset_in_progress(pf->state)) {
9529 netdev_err(netdev, "can't stop net device while reset is in progress");
9530 return -EBUSY;
9531 }
9532
9533 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9534 int link_err = ice_force_phys_link_state(vsi, false);
9535
9536 if (link_err) {
9537 if (link_err == -ENOMEDIUM)
9538 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9539 vsi->vsi_num);
9540 else
9541 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9542 vsi->vsi_num, link_err);
9543
9544 ice_vsi_close(vsi);
9545 return -EIO;
9546 }
9547 }
9548
9549 ice_vsi_close(vsi);
9550
9551 return 0;
9552 }
9553
9554 /**
9555 * ice_features_check - Validate encapsulated packet conforms to limits
9556 * @skb: skb buffer
9557 * @netdev: This port's netdev
9558 * @features: Offload features that the stack believes apply
9559 */
9560 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)9561 ice_features_check(struct sk_buff *skb,
9562 struct net_device __always_unused *netdev,
9563 netdev_features_t features)
9564 {
9565 bool gso = skb_is_gso(skb);
9566 size_t len;
9567
9568 /* No point in doing any of this if neither checksum nor GSO are
9569 * being requested for this frame. We can rule out both by just
9570 * checking for CHECKSUM_PARTIAL
9571 */
9572 if (skb->ip_summed != CHECKSUM_PARTIAL)
9573 return features;
9574
9575 /* We cannot support GSO if the MSS is going to be less than
9576 * 64 bytes. If it is then we need to drop support for GSO.
9577 */
9578 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9579 features &= ~NETIF_F_GSO_MASK;
9580
9581 len = skb_network_offset(skb);
9582 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9583 goto out_rm_features;
9584
9585 len = skb_network_header_len(skb);
9586 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9587 goto out_rm_features;
9588
9589 if (skb->encapsulation) {
9590 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9591 * the case of IPIP frames, the transport header pointer is
9592 * after the inner header! So check to make sure that this
9593 * is a GRE or UDP_TUNNEL frame before doing that math.
9594 */
9595 if (gso && (skb_shinfo(skb)->gso_type &
9596 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9597 len = skb_inner_network_header(skb) -
9598 skb_transport_header(skb);
9599 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9600 goto out_rm_features;
9601 }
9602
9603 len = skb_inner_network_header_len(skb);
9604 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9605 goto out_rm_features;
9606 }
9607
9608 return features;
9609 out_rm_features:
9610 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9611 }
9612
9613 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9614 .ndo_open = ice_open,
9615 .ndo_stop = ice_stop,
9616 .ndo_start_xmit = ice_start_xmit,
9617 .ndo_set_mac_address = ice_set_mac_address,
9618 .ndo_validate_addr = eth_validate_addr,
9619 .ndo_change_mtu = ice_change_mtu,
9620 .ndo_get_stats64 = ice_get_stats64,
9621 .ndo_tx_timeout = ice_tx_timeout,
9622 .ndo_bpf = ice_xdp_safe_mode,
9623 };
9624
9625 static const struct net_device_ops ice_netdev_ops = {
9626 .ndo_open = ice_open,
9627 .ndo_stop = ice_stop,
9628 .ndo_start_xmit = ice_start_xmit,
9629 .ndo_select_queue = ice_select_queue,
9630 .ndo_features_check = ice_features_check,
9631 .ndo_fix_features = ice_fix_features,
9632 .ndo_set_rx_mode = ice_set_rx_mode,
9633 .ndo_set_mac_address = ice_set_mac_address,
9634 .ndo_validate_addr = eth_validate_addr,
9635 .ndo_change_mtu = ice_change_mtu,
9636 .ndo_get_stats64 = ice_get_stats64,
9637 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9638 .ndo_eth_ioctl = ice_eth_ioctl,
9639 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9640 .ndo_set_vf_mac = ice_set_vf_mac,
9641 .ndo_get_vf_config = ice_get_vf_cfg,
9642 .ndo_set_vf_trust = ice_set_vf_trust,
9643 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9644 .ndo_set_vf_link_state = ice_set_vf_link_state,
9645 .ndo_get_vf_stats = ice_get_vf_stats,
9646 .ndo_set_vf_rate = ice_set_vf_bw,
9647 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9648 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9649 .ndo_setup_tc = ice_setup_tc,
9650 .ndo_set_features = ice_set_features,
9651 .ndo_bridge_getlink = ice_bridge_getlink,
9652 .ndo_bridge_setlink = ice_bridge_setlink,
9653 .ndo_fdb_add = ice_fdb_add,
9654 .ndo_fdb_del = ice_fdb_del,
9655 #ifdef CONFIG_RFS_ACCEL
9656 .ndo_rx_flow_steer = ice_rx_flow_steer,
9657 #endif
9658 .ndo_tx_timeout = ice_tx_timeout,
9659 .ndo_bpf = ice_xdp,
9660 .ndo_xdp_xmit = ice_xdp_xmit,
9661 .ndo_xsk_wakeup = ice_xsk_wakeup,
9662 };
9663