1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 #include <linux/packing.h>
10
11 #define ICE_PF_RESET_WAIT_COUNT 300
12 #define ICE_MAX_NETLIST_SIZE 10
13
14 static const char * const ice_link_mode_str_low[] = {
15 [0] = "100BASE_TX",
16 [1] = "100M_SGMII",
17 [2] = "1000BASE_T",
18 [3] = "1000BASE_SX",
19 [4] = "1000BASE_LX",
20 [5] = "1000BASE_KX",
21 [6] = "1G_SGMII",
22 [7] = "2500BASE_T",
23 [8] = "2500BASE_X",
24 [9] = "2500BASE_KX",
25 [10] = "5GBASE_T",
26 [11] = "5GBASE_KR",
27 [12] = "10GBASE_T",
28 [13] = "10G_SFI_DA",
29 [14] = "10GBASE_SR",
30 [15] = "10GBASE_LR",
31 [16] = "10GBASE_KR_CR1",
32 [17] = "10G_SFI_AOC_ACC",
33 [18] = "10G_SFI_C2C",
34 [19] = "25GBASE_T",
35 [20] = "25GBASE_CR",
36 [21] = "25GBASE_CR_S",
37 [22] = "25GBASE_CR1",
38 [23] = "25GBASE_SR",
39 [24] = "25GBASE_LR",
40 [25] = "25GBASE_KR",
41 [26] = "25GBASE_KR_S",
42 [27] = "25GBASE_KR1",
43 [28] = "25G_AUI_AOC_ACC",
44 [29] = "25G_AUI_C2C",
45 [30] = "40GBASE_CR4",
46 [31] = "40GBASE_SR4",
47 [32] = "40GBASE_LR4",
48 [33] = "40GBASE_KR4",
49 [34] = "40G_XLAUI_AOC_ACC",
50 [35] = "40G_XLAUI",
51 [36] = "50GBASE_CR2",
52 [37] = "50GBASE_SR2",
53 [38] = "50GBASE_LR2",
54 [39] = "50GBASE_KR2",
55 [40] = "50G_LAUI2_AOC_ACC",
56 [41] = "50G_LAUI2",
57 [42] = "50G_AUI2_AOC_ACC",
58 [43] = "50G_AUI2",
59 [44] = "50GBASE_CP",
60 [45] = "50GBASE_SR",
61 [46] = "50GBASE_FR",
62 [47] = "50GBASE_LR",
63 [48] = "50GBASE_KR_PAM4",
64 [49] = "50G_AUI1_AOC_ACC",
65 [50] = "50G_AUI1",
66 [51] = "100GBASE_CR4",
67 [52] = "100GBASE_SR4",
68 [53] = "100GBASE_LR4",
69 [54] = "100GBASE_KR4",
70 [55] = "100G_CAUI4_AOC_ACC",
71 [56] = "100G_CAUI4",
72 [57] = "100G_AUI4_AOC_ACC",
73 [58] = "100G_AUI4",
74 [59] = "100GBASE_CR_PAM4",
75 [60] = "100GBASE_KR_PAM4",
76 [61] = "100GBASE_CP2",
77 [62] = "100GBASE_SR2",
78 [63] = "100GBASE_DR",
79 };
80
81 static const char * const ice_link_mode_str_high[] = {
82 [0] = "100GBASE_KR2_PAM4",
83 [1] = "100G_CAUI2_AOC_ACC",
84 [2] = "100G_CAUI2",
85 [3] = "100G_AUI2_AOC_ACC",
86 [4] = "100G_AUI2",
87 };
88
89 /**
90 * ice_dump_phy_type - helper function to dump phy_type
91 * @hw: pointer to the HW structure
92 * @low: 64 bit value for phy_type_low
93 * @high: 64 bit value for phy_type_high
94 * @prefix: prefix string to differentiate multiple dumps
95 */
96 static void
ice_dump_phy_type(struct ice_hw * hw,u64 low,u64 high,const char * prefix)97 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
98 {
99 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
100
101 for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
102 if (low & BIT_ULL(i))
103 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
104 prefix, i, ice_link_mode_str_low[i]);
105 }
106
107 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
108
109 for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
110 if (high & BIT_ULL(i))
111 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
112 prefix, i, ice_link_mode_str_high[i]);
113 }
114 }
115
116 /**
117 * ice_set_mac_type - Sets MAC type
118 * @hw: pointer to the HW structure
119 *
120 * This function sets the MAC type of the adapter based on the
121 * vendor ID and device ID stored in the HW structure.
122 */
ice_set_mac_type(struct ice_hw * hw)123 static int ice_set_mac_type(struct ice_hw *hw)
124 {
125 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
126 return -ENODEV;
127
128 switch (hw->device_id) {
129 case ICE_DEV_ID_E810C_BACKPLANE:
130 case ICE_DEV_ID_E810C_QSFP:
131 case ICE_DEV_ID_E810C_SFP:
132 case ICE_DEV_ID_E810_XXV_BACKPLANE:
133 case ICE_DEV_ID_E810_XXV_QSFP:
134 case ICE_DEV_ID_E810_XXV_SFP:
135 hw->mac_type = ICE_MAC_E810;
136 break;
137 case ICE_DEV_ID_E823C_10G_BASE_T:
138 case ICE_DEV_ID_E823C_BACKPLANE:
139 case ICE_DEV_ID_E823C_QSFP:
140 case ICE_DEV_ID_E823C_SFP:
141 case ICE_DEV_ID_E823C_SGMII:
142 case ICE_DEV_ID_E822C_10G_BASE_T:
143 case ICE_DEV_ID_E822C_BACKPLANE:
144 case ICE_DEV_ID_E822C_QSFP:
145 case ICE_DEV_ID_E822C_SFP:
146 case ICE_DEV_ID_E822C_SGMII:
147 case ICE_DEV_ID_E822L_10G_BASE_T:
148 case ICE_DEV_ID_E822L_BACKPLANE:
149 case ICE_DEV_ID_E822L_SFP:
150 case ICE_DEV_ID_E822L_SGMII:
151 case ICE_DEV_ID_E823L_10G_BASE_T:
152 case ICE_DEV_ID_E823L_1GBE:
153 case ICE_DEV_ID_E823L_BACKPLANE:
154 case ICE_DEV_ID_E823L_QSFP:
155 case ICE_DEV_ID_E823L_SFP:
156 hw->mac_type = ICE_MAC_GENERIC;
157 break;
158 case ICE_DEV_ID_E825C_BACKPLANE:
159 case ICE_DEV_ID_E825C_QSFP:
160 case ICE_DEV_ID_E825C_SFP:
161 case ICE_DEV_ID_E825C_SGMII:
162 hw->mac_type = ICE_MAC_GENERIC_3K_E825;
163 break;
164 case ICE_DEV_ID_E830CC_BACKPLANE:
165 case ICE_DEV_ID_E830CC_QSFP56:
166 case ICE_DEV_ID_E830CC_SFP:
167 case ICE_DEV_ID_E830CC_SFP_DD:
168 case ICE_DEV_ID_E830C_BACKPLANE:
169 case ICE_DEV_ID_E830_XXV_BACKPLANE:
170 case ICE_DEV_ID_E830C_QSFP:
171 case ICE_DEV_ID_E830_XXV_QSFP:
172 case ICE_DEV_ID_E830C_SFP:
173 case ICE_DEV_ID_E830_XXV_SFP:
174 hw->mac_type = ICE_MAC_E830;
175 break;
176 default:
177 hw->mac_type = ICE_MAC_UNKNOWN;
178 break;
179 }
180
181 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
182 return 0;
183 }
184
185 /**
186 * ice_is_generic_mac - check if device's mac_type is generic
187 * @hw: pointer to the hardware structure
188 *
189 * Return: true if mac_type is ICE_MAC_GENERIC*, false otherwise.
190 */
ice_is_generic_mac(struct ice_hw * hw)191 bool ice_is_generic_mac(struct ice_hw *hw)
192 {
193 return (hw->mac_type == ICE_MAC_GENERIC ||
194 hw->mac_type == ICE_MAC_GENERIC_3K_E825);
195 }
196
197 /**
198 * ice_is_pf_c827 - check if pf contains c827 phy
199 * @hw: pointer to the hw struct
200 *
201 * Return: true if the device has c827 phy.
202 */
ice_is_pf_c827(struct ice_hw * hw)203 static bool ice_is_pf_c827(struct ice_hw *hw)
204 {
205 struct ice_aqc_get_link_topo cmd = {};
206 u8 node_part_number;
207 u16 node_handle;
208 int status;
209
210 if (hw->mac_type != ICE_MAC_E810)
211 return false;
212
213 if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
214 return true;
215
216 cmd.addr.topo_params.node_type_ctx =
217 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
218 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
219 cmd.addr.topo_params.index = 0;
220
221 status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
222 &node_handle);
223
224 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
225 return false;
226
227 if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
228 return true;
229
230 return false;
231 }
232
233 /**
234 * ice_clear_pf_cfg - Clear PF configuration
235 * @hw: pointer to the hardware structure
236 *
237 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
238 * configuration, flow director filters, etc.).
239 */
ice_clear_pf_cfg(struct ice_hw * hw)240 int ice_clear_pf_cfg(struct ice_hw *hw)
241 {
242 struct ice_aq_desc desc;
243
244 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
245
246 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
247 }
248
249 /**
250 * ice_aq_manage_mac_read - manage MAC address read command
251 * @hw: pointer to the HW struct
252 * @buf: a virtual buffer to hold the manage MAC read response
253 * @buf_size: Size of the virtual buffer
254 * @cd: pointer to command details structure or NULL
255 *
256 * This function is used to return per PF station MAC address (0x0107).
257 * NOTE: Upon successful completion of this command, MAC address information
258 * is returned in user specified buffer. Please interpret user specified
259 * buffer as "manage_mac_read" response.
260 * Response such as various MAC addresses are stored in HW struct (port.mac)
261 * ice_discover_dev_caps is expected to be called before this function is
262 * called.
263 */
264 static int
ice_aq_manage_mac_read(struct ice_hw * hw,void * buf,u16 buf_size,struct ice_sq_cd * cd)265 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
266 struct ice_sq_cd *cd)
267 {
268 struct ice_aqc_manage_mac_read_resp *resp;
269 struct ice_aqc_manage_mac_read *cmd;
270 struct ice_aq_desc desc;
271 int status;
272 u16 flags;
273 u8 i;
274
275 cmd = &desc.params.mac_read;
276
277 if (buf_size < sizeof(*resp))
278 return -EINVAL;
279
280 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
281
282 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
283 if (status)
284 return status;
285
286 resp = buf;
287 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
288
289 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
290 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
291 return -EIO;
292 }
293
294 /* A single port can report up to two (LAN and WoL) addresses */
295 for (i = 0; i < cmd->num_addr; i++)
296 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
297 ether_addr_copy(hw->port_info->mac.lan_addr,
298 resp[i].mac_addr);
299 ether_addr_copy(hw->port_info->mac.perm_addr,
300 resp[i].mac_addr);
301 break;
302 }
303
304 return 0;
305 }
306
307 /**
308 * ice_aq_get_phy_caps - returns PHY capabilities
309 * @pi: port information structure
310 * @qual_mods: report qualified modules
311 * @report_mode: report mode capabilities
312 * @pcaps: structure for PHY capabilities to be filled
313 * @cd: pointer to command details structure or NULL
314 *
315 * Returns the various PHY capabilities supported on the Port (0x0600)
316 */
317 int
ice_aq_get_phy_caps(struct ice_port_info * pi,bool qual_mods,u8 report_mode,struct ice_aqc_get_phy_caps_data * pcaps,struct ice_sq_cd * cd)318 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
319 struct ice_aqc_get_phy_caps_data *pcaps,
320 struct ice_sq_cd *cd)
321 {
322 struct ice_aqc_get_phy_caps *cmd;
323 u16 pcaps_size = sizeof(*pcaps);
324 struct ice_aq_desc desc;
325 const char *prefix;
326 struct ice_hw *hw;
327 int status;
328
329 cmd = &desc.params.get_phy;
330
331 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
332 return -EINVAL;
333 hw = pi->hw;
334
335 if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
336 !ice_fw_supports_report_dflt_cfg(hw))
337 return -EINVAL;
338
339 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
340
341 if (qual_mods)
342 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
343
344 cmd->param0 |= cpu_to_le16(report_mode);
345 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
346
347 ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
348
349 switch (report_mode) {
350 case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
351 prefix = "phy_caps_media";
352 break;
353 case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
354 prefix = "phy_caps_no_media";
355 break;
356 case ICE_AQC_REPORT_ACTIVE_CFG:
357 prefix = "phy_caps_active";
358 break;
359 case ICE_AQC_REPORT_DFLT_CFG:
360 prefix = "phy_caps_default";
361 break;
362 default:
363 prefix = "phy_caps_invalid";
364 }
365
366 ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
367 le64_to_cpu(pcaps->phy_type_high), prefix);
368
369 ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
370 prefix, report_mode);
371 ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
372 ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
373 pcaps->low_power_ctrl_an);
374 ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
375 pcaps->eee_cap);
376 ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
377 pcaps->eeer_value);
378 ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
379 pcaps->link_fec_options);
380 ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
381 prefix, pcaps->module_compliance_enforcement);
382 ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
383 prefix, pcaps->extended_compliance_code);
384 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
385 pcaps->module_type[0]);
386 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
387 pcaps->module_type[1]);
388 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
389 pcaps->module_type[2]);
390
391 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
392 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
393 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
394 memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
395 sizeof(pi->phy.link_info.module_type));
396 }
397
398 return status;
399 }
400
401 /**
402 * ice_aq_get_link_topo_handle - get link topology node return status
403 * @pi: port information structure
404 * @node_type: requested node type
405 * @cd: pointer to command details structure or NULL
406 *
407 * Get link topology node return status for specified node type (0x06E0)
408 *
409 * Node type cage can be used to determine if cage is present. If AQC
410 * returns error (ENOENT), then no cage present. If no cage present, then
411 * connection type is backplane or BASE-T.
412 */
413 static int
ice_aq_get_link_topo_handle(struct ice_port_info * pi,u8 node_type,struct ice_sq_cd * cd)414 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
415 struct ice_sq_cd *cd)
416 {
417 struct ice_aqc_get_link_topo *cmd;
418 struct ice_aq_desc desc;
419
420 cmd = &desc.params.get_link_topo;
421
422 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
423
424 cmd->addr.topo_params.node_type_ctx =
425 (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
426 ICE_AQC_LINK_TOPO_NODE_CTX_S);
427
428 /* set node type */
429 cmd->addr.topo_params.node_type_ctx |=
430 (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
431
432 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
433 }
434
435 /**
436 * ice_aq_get_netlist_node
437 * @hw: pointer to the hw struct
438 * @cmd: get_link_topo AQ structure
439 * @node_part_number: output node part number if node found
440 * @node_handle: output node handle parameter if node found
441 *
442 * Get netlist node handle.
443 */
444 int
ice_aq_get_netlist_node(struct ice_hw * hw,struct ice_aqc_get_link_topo * cmd,u8 * node_part_number,u16 * node_handle)445 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
446 u8 *node_part_number, u16 *node_handle)
447 {
448 struct ice_aq_desc desc;
449
450 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
451 desc.params.get_link_topo = *cmd;
452
453 if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
454 return -EINTR;
455
456 if (node_handle)
457 *node_handle =
458 le16_to_cpu(desc.params.get_link_topo.addr.handle);
459 if (node_part_number)
460 *node_part_number = desc.params.get_link_topo.node_part_num;
461
462 return 0;
463 }
464
465 /**
466 * ice_find_netlist_node
467 * @hw: pointer to the hw struct
468 * @node_type: type of netlist node to look for
469 * @ctx: context of the search
470 * @node_part_number: node part number to look for
471 * @node_handle: output parameter if node found - optional
472 *
473 * Scan the netlist for a node handle of the given node type and part number.
474 *
475 * If node_handle is non-NULL it will be modified on function exit. It is only
476 * valid if the function returns zero, and should be ignored on any non-zero
477 * return value.
478 *
479 * Return:
480 * * 0 if the node is found,
481 * * -ENOENT if no handle was found,
482 * * negative error code on failure to access the AQ.
483 */
ice_find_netlist_node(struct ice_hw * hw,u8 node_type,u8 ctx,u8 node_part_number,u16 * node_handle)484 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
485 u8 node_part_number, u16 *node_handle)
486 {
487 u8 idx;
488
489 for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
490 struct ice_aqc_get_link_topo cmd = {};
491 u8 rec_node_part_number;
492 int status;
493
494 cmd.addr.topo_params.node_type_ctx =
495 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
496 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
497 cmd.addr.topo_params.index = idx;
498
499 status = ice_aq_get_netlist_node(hw, &cmd,
500 &rec_node_part_number,
501 node_handle);
502 if (status)
503 return status;
504
505 if (rec_node_part_number == node_part_number)
506 return 0;
507 }
508
509 return -ENOENT;
510 }
511
512 /**
513 * ice_is_media_cage_present
514 * @pi: port information structure
515 *
516 * Returns true if media cage is present, else false. If no cage, then
517 * media type is backplane or BASE-T.
518 */
ice_is_media_cage_present(struct ice_port_info * pi)519 static bool ice_is_media_cage_present(struct ice_port_info *pi)
520 {
521 /* Node type cage can be used to determine if cage is present. If AQC
522 * returns error (ENOENT), then no cage present. If no cage present then
523 * connection type is backplane or BASE-T.
524 */
525 return !ice_aq_get_link_topo_handle(pi,
526 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
527 NULL);
528 }
529
530 /**
531 * ice_get_media_type - Gets media type
532 * @pi: port information structure
533 */
ice_get_media_type(struct ice_port_info * pi)534 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
535 {
536 struct ice_link_status *hw_link_info;
537
538 if (!pi)
539 return ICE_MEDIA_UNKNOWN;
540
541 hw_link_info = &pi->phy.link_info;
542 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
543 /* If more than one media type is selected, report unknown */
544 return ICE_MEDIA_UNKNOWN;
545
546 if (hw_link_info->phy_type_low) {
547 /* 1G SGMII is a special case where some DA cable PHYs
548 * may show this as an option when it really shouldn't
549 * be since SGMII is meant to be between a MAC and a PHY
550 * in a backplane. Try to detect this case and handle it
551 */
552 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
553 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
554 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
555 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
556 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
557 return ICE_MEDIA_DA;
558
559 switch (hw_link_info->phy_type_low) {
560 case ICE_PHY_TYPE_LOW_1000BASE_SX:
561 case ICE_PHY_TYPE_LOW_1000BASE_LX:
562 case ICE_PHY_TYPE_LOW_10GBASE_SR:
563 case ICE_PHY_TYPE_LOW_10GBASE_LR:
564 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
565 case ICE_PHY_TYPE_LOW_25GBASE_SR:
566 case ICE_PHY_TYPE_LOW_25GBASE_LR:
567 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
568 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
569 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
570 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
571 case ICE_PHY_TYPE_LOW_50GBASE_SR:
572 case ICE_PHY_TYPE_LOW_50GBASE_FR:
573 case ICE_PHY_TYPE_LOW_50GBASE_LR:
574 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
575 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
576 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
577 case ICE_PHY_TYPE_LOW_100GBASE_DR:
578 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
579 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
580 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
581 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
582 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
583 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
584 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
585 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
586 return ICE_MEDIA_FIBER;
587 case ICE_PHY_TYPE_LOW_100BASE_TX:
588 case ICE_PHY_TYPE_LOW_1000BASE_T:
589 case ICE_PHY_TYPE_LOW_2500BASE_T:
590 case ICE_PHY_TYPE_LOW_5GBASE_T:
591 case ICE_PHY_TYPE_LOW_10GBASE_T:
592 case ICE_PHY_TYPE_LOW_25GBASE_T:
593 return ICE_MEDIA_BASET;
594 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
595 case ICE_PHY_TYPE_LOW_25GBASE_CR:
596 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
597 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
598 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
599 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
600 case ICE_PHY_TYPE_LOW_50GBASE_CP:
601 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
602 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
603 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
604 return ICE_MEDIA_DA;
605 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
606 case ICE_PHY_TYPE_LOW_40G_XLAUI:
607 case ICE_PHY_TYPE_LOW_50G_LAUI2:
608 case ICE_PHY_TYPE_LOW_50G_AUI2:
609 case ICE_PHY_TYPE_LOW_50G_AUI1:
610 case ICE_PHY_TYPE_LOW_100G_AUI4:
611 case ICE_PHY_TYPE_LOW_100G_CAUI4:
612 if (ice_is_media_cage_present(pi))
613 return ICE_MEDIA_DA;
614 fallthrough;
615 case ICE_PHY_TYPE_LOW_1000BASE_KX:
616 case ICE_PHY_TYPE_LOW_2500BASE_KX:
617 case ICE_PHY_TYPE_LOW_2500BASE_X:
618 case ICE_PHY_TYPE_LOW_5GBASE_KR:
619 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
620 case ICE_PHY_TYPE_LOW_25GBASE_KR:
621 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
622 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
623 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
624 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
625 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
626 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
627 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
628 return ICE_MEDIA_BACKPLANE;
629 }
630 } else {
631 switch (hw_link_info->phy_type_high) {
632 case ICE_PHY_TYPE_HIGH_100G_AUI2:
633 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
634 if (ice_is_media_cage_present(pi))
635 return ICE_MEDIA_DA;
636 fallthrough;
637 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
638 return ICE_MEDIA_BACKPLANE;
639 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
640 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
641 return ICE_MEDIA_FIBER;
642 }
643 }
644 return ICE_MEDIA_UNKNOWN;
645 }
646
647 /**
648 * ice_get_link_status_datalen
649 * @hw: pointer to the HW struct
650 *
651 * Returns datalength for the Get Link Status AQ command, which is bigger for
652 * newer adapter families handled by ice driver.
653 */
ice_get_link_status_datalen(struct ice_hw * hw)654 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
655 {
656 switch (hw->mac_type) {
657 case ICE_MAC_E830:
658 return ICE_AQC_LS_DATA_SIZE_V2;
659 case ICE_MAC_E810:
660 default:
661 return ICE_AQC_LS_DATA_SIZE_V1;
662 }
663 }
664
665 /**
666 * ice_aq_get_link_info
667 * @pi: port information structure
668 * @ena_lse: enable/disable LinkStatusEvent reporting
669 * @link: pointer to link status structure - optional
670 * @cd: pointer to command details structure or NULL
671 *
672 * Get Link Status (0x607). Returns the link status of the adapter.
673 */
674 int
ice_aq_get_link_info(struct ice_port_info * pi,bool ena_lse,struct ice_link_status * link,struct ice_sq_cd * cd)675 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
676 struct ice_link_status *link, struct ice_sq_cd *cd)
677 {
678 struct ice_aqc_get_link_status_data link_data = { 0 };
679 struct ice_aqc_get_link_status *resp;
680 struct ice_link_status *li_old, *li;
681 enum ice_media_type *hw_media_type;
682 struct ice_fc_info *hw_fc_info;
683 bool tx_pause, rx_pause;
684 struct ice_aq_desc desc;
685 struct ice_hw *hw;
686 u16 cmd_flags;
687 int status;
688
689 if (!pi)
690 return -EINVAL;
691 hw = pi->hw;
692 li_old = &pi->phy.link_info_old;
693 hw_media_type = &pi->phy.media_type;
694 li = &pi->phy.link_info;
695 hw_fc_info = &pi->fc;
696
697 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
698 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
699 resp = &desc.params.get_link_status;
700 resp->cmd_flags = cpu_to_le16(cmd_flags);
701 resp->lport_num = pi->lport;
702
703 status = ice_aq_send_cmd(hw, &desc, &link_data,
704 ice_get_link_status_datalen(hw), cd);
705 if (status)
706 return status;
707
708 /* save off old link status information */
709 *li_old = *li;
710
711 /* update current link status information */
712 li->link_speed = le16_to_cpu(link_data.link_speed);
713 li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
714 li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
715 *hw_media_type = ice_get_media_type(pi);
716 li->link_info = link_data.link_info;
717 li->link_cfg_err = link_data.link_cfg_err;
718 li->an_info = link_data.an_info;
719 li->ext_info = link_data.ext_info;
720 li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
721 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
722 li->topo_media_conflict = link_data.topo_media_conflict;
723 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
724 ICE_AQ_CFG_PACING_TYPE_M);
725
726 /* update fc info */
727 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
728 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
729 if (tx_pause && rx_pause)
730 hw_fc_info->current_mode = ICE_FC_FULL;
731 else if (tx_pause)
732 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
733 else if (rx_pause)
734 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
735 else
736 hw_fc_info->current_mode = ICE_FC_NONE;
737
738 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
739
740 ice_debug(hw, ICE_DBG_LINK, "get link info\n");
741 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
742 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
743 (unsigned long long)li->phy_type_low);
744 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
745 (unsigned long long)li->phy_type_high);
746 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
747 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
748 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
749 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
750 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
751 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
752 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
753 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
754 li->max_frame_size);
755 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
756
757 /* save link status information */
758 if (link)
759 *link = *li;
760
761 /* flag cleared so calling functions don't call AQ again */
762 pi->phy.get_link_info = false;
763
764 return 0;
765 }
766
767 /**
768 * ice_fill_tx_timer_and_fc_thresh
769 * @hw: pointer to the HW struct
770 * @cmd: pointer to MAC cfg structure
771 *
772 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
773 * descriptor
774 */
775 static void
ice_fill_tx_timer_and_fc_thresh(struct ice_hw * hw,struct ice_aqc_set_mac_cfg * cmd)776 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
777 struct ice_aqc_set_mac_cfg *cmd)
778 {
779 u32 val, fc_thres_m;
780
781 /* We read back the transmit timer and FC threshold value of
782 * LFC. Thus, we will use index =
783 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
784 *
785 * Also, because we are operating on transmit timer and FC
786 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
787 */
788 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
789 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
790
791 if (hw->mac_type == ICE_MAC_E830) {
792 /* Retrieve the transmit timer */
793 val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
794 cmd->tx_tmr_value =
795 le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
796
797 /* Retrieve the fc threshold */
798 val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
799 fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
800 } else {
801 /* Retrieve the transmit timer */
802 val = rd32(hw,
803 E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
804 cmd->tx_tmr_value =
805 le16_encode_bits(val,
806 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
807
808 /* Retrieve the fc threshold */
809 val = rd32(hw,
810 E800_REFRESH_TMR(E800_IDX_OF_LFC));
811 fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
812 }
813 cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
814 }
815
816 /**
817 * ice_aq_set_mac_cfg
818 * @hw: pointer to the HW struct
819 * @max_frame_size: Maximum Frame Size to be supported
820 * @cd: pointer to command details structure or NULL
821 *
822 * Set MAC configuration (0x0603)
823 */
824 int
ice_aq_set_mac_cfg(struct ice_hw * hw,u16 max_frame_size,struct ice_sq_cd * cd)825 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
826 {
827 struct ice_aqc_set_mac_cfg *cmd;
828 struct ice_aq_desc desc;
829
830 cmd = &desc.params.set_mac_cfg;
831
832 if (max_frame_size == 0)
833 return -EINVAL;
834
835 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
836
837 cmd->max_frame_size = cpu_to_le16(max_frame_size);
838
839 ice_fill_tx_timer_and_fc_thresh(hw, cmd);
840
841 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
842 }
843
844 /**
845 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
846 * @hw: pointer to the HW struct
847 */
ice_init_fltr_mgmt_struct(struct ice_hw * hw)848 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
849 {
850 struct ice_switch_info *sw;
851 int status;
852
853 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
854 sizeof(*hw->switch_info), GFP_KERNEL);
855 sw = hw->switch_info;
856
857 if (!sw)
858 return -ENOMEM;
859
860 INIT_LIST_HEAD(&sw->vsi_list_map_head);
861 sw->prof_res_bm_init = 0;
862
863 /* Initialize recipe count with default recipes read from NVM */
864 sw->recp_cnt = ICE_SW_LKUP_LAST;
865
866 status = ice_init_def_sw_recp(hw);
867 if (status) {
868 devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
869 return status;
870 }
871 return 0;
872 }
873
874 /**
875 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
876 * @hw: pointer to the HW struct
877 */
ice_cleanup_fltr_mgmt_struct(struct ice_hw * hw)878 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
879 {
880 struct ice_switch_info *sw = hw->switch_info;
881 struct ice_vsi_list_map_info *v_pos_map;
882 struct ice_vsi_list_map_info *v_tmp_map;
883 struct ice_sw_recipe *recps;
884 u8 i;
885
886 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
887 list_entry) {
888 list_del(&v_pos_map->list_entry);
889 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
890 }
891 recps = sw->recp_list;
892 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
893 recps[i].root_rid = i;
894
895 if (recps[i].adv_rule) {
896 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
897 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
898
899 mutex_destroy(&recps[i].filt_rule_lock);
900 list_for_each_entry_safe(lst_itr, tmp_entry,
901 &recps[i].filt_rules,
902 list_entry) {
903 list_del(&lst_itr->list_entry);
904 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
905 devm_kfree(ice_hw_to_dev(hw), lst_itr);
906 }
907 } else {
908 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
909
910 mutex_destroy(&recps[i].filt_rule_lock);
911 list_for_each_entry_safe(lst_itr, tmp_entry,
912 &recps[i].filt_rules,
913 list_entry) {
914 list_del(&lst_itr->list_entry);
915 devm_kfree(ice_hw_to_dev(hw), lst_itr);
916 }
917 }
918 }
919 ice_rm_all_sw_replay_rule_info(hw);
920 devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
921 devm_kfree(ice_hw_to_dev(hw), sw);
922 }
923
924 /**
925 * ice_get_itr_intrl_gran
926 * @hw: pointer to the HW struct
927 *
928 * Determines the ITR/INTRL granularities based on the maximum aggregate
929 * bandwidth according to the device's configuration during power-on.
930 */
ice_get_itr_intrl_gran(struct ice_hw * hw)931 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
932 {
933 u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
934 rd32(hw, GL_PWR_MODE_CTL));
935
936 switch (max_agg_bw) {
937 case ICE_MAX_AGG_BW_200G:
938 case ICE_MAX_AGG_BW_100G:
939 case ICE_MAX_AGG_BW_50G:
940 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
941 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
942 break;
943 case ICE_MAX_AGG_BW_25G:
944 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
945 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
946 break;
947 }
948 }
949
950 /**
951 * ice_wait_for_fw - wait for full FW readiness
952 * @hw: pointer to the hardware structure
953 * @timeout: milliseconds that can elapse before timing out
954 *
955 * Return: 0 on success, -ETIMEDOUT on timeout.
956 */
ice_wait_for_fw(struct ice_hw * hw,u32 timeout)957 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
958 {
959 int fw_loading;
960 u32 elapsed = 0;
961
962 while (elapsed <= timeout) {
963 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
964
965 /* firmware was not yet loaded, we have to wait more */
966 if (fw_loading) {
967 elapsed += 100;
968 msleep(100);
969 continue;
970 }
971 return 0;
972 }
973
974 return -ETIMEDOUT;
975 }
976
977 /**
978 * ice_init_hw - main hardware initialization routine
979 * @hw: pointer to the hardware structure
980 */
ice_init_hw(struct ice_hw * hw)981 int ice_init_hw(struct ice_hw *hw)
982 {
983 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
984 void *mac_buf __free(kfree) = NULL;
985 u16 mac_buf_len;
986 int status;
987
988 /* Set MAC type based on DeviceID */
989 status = ice_set_mac_type(hw);
990 if (status)
991 return status;
992
993 hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
994
995 status = ice_reset(hw, ICE_RESET_PFR);
996 if (status)
997 return status;
998
999 ice_get_itr_intrl_gran(hw);
1000
1001 status = ice_create_all_ctrlq(hw);
1002 if (status)
1003 goto err_unroll_cqinit;
1004
1005 status = ice_fwlog_init(hw);
1006 if (status)
1007 ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1008 status);
1009
1010 status = ice_clear_pf_cfg(hw);
1011 if (status)
1012 goto err_unroll_cqinit;
1013
1014 /* Set bit to enable Flow Director filters */
1015 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1016 INIT_LIST_HEAD(&hw->fdir_list_head);
1017
1018 ice_clear_pxe_mode(hw);
1019
1020 status = ice_init_nvm(hw);
1021 if (status)
1022 goto err_unroll_cqinit;
1023
1024 status = ice_get_caps(hw);
1025 if (status)
1026 goto err_unroll_cqinit;
1027
1028 if (!hw->port_info)
1029 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1030 sizeof(*hw->port_info),
1031 GFP_KERNEL);
1032 if (!hw->port_info) {
1033 status = -ENOMEM;
1034 goto err_unroll_cqinit;
1035 }
1036
1037 hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1038 /* set the back pointer to HW */
1039 hw->port_info->hw = hw;
1040
1041 /* Initialize port_info struct with switch configuration data */
1042 status = ice_get_initial_sw_cfg(hw);
1043 if (status)
1044 goto err_unroll_alloc;
1045
1046 hw->evb_veb = true;
1047
1048 /* init xarray for identifying scheduling nodes uniquely */
1049 xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1050
1051 /* Query the allocated resources for Tx scheduler */
1052 status = ice_sched_query_res_alloc(hw);
1053 if (status) {
1054 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1055 goto err_unroll_alloc;
1056 }
1057 ice_sched_get_psm_clk_freq(hw);
1058
1059 /* Initialize port_info struct with scheduler data */
1060 status = ice_sched_init_port(hw->port_info);
1061 if (status)
1062 goto err_unroll_sched;
1063
1064 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1065 if (!pcaps) {
1066 status = -ENOMEM;
1067 goto err_unroll_sched;
1068 }
1069
1070 /* Initialize port_info struct with PHY capabilities */
1071 status = ice_aq_get_phy_caps(hw->port_info, false,
1072 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1073 NULL);
1074 if (status)
1075 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1076 status);
1077
1078 /* Initialize port_info struct with link information */
1079 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1080 if (status)
1081 goto err_unroll_sched;
1082
1083 /* need a valid SW entry point to build a Tx tree */
1084 if (!hw->sw_entry_point_layer) {
1085 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1086 status = -EIO;
1087 goto err_unroll_sched;
1088 }
1089 INIT_LIST_HEAD(&hw->agg_list);
1090 /* Initialize max burst size */
1091 if (!hw->max_burst_size)
1092 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1093
1094 status = ice_init_fltr_mgmt_struct(hw);
1095 if (status)
1096 goto err_unroll_sched;
1097
1098 /* Get MAC information */
1099 /* A single port can report up to two (LAN and WoL) addresses */
1100 mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1101 GFP_KERNEL);
1102 if (!mac_buf) {
1103 status = -ENOMEM;
1104 goto err_unroll_fltr_mgmt_struct;
1105 }
1106
1107 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1108 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1109
1110 if (status)
1111 goto err_unroll_fltr_mgmt_struct;
1112 /* enable jumbo frame support at MAC level */
1113 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1114 if (status)
1115 goto err_unroll_fltr_mgmt_struct;
1116 /* Obtain counter base index which would be used by flow director */
1117 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1118 if (status)
1119 goto err_unroll_fltr_mgmt_struct;
1120 status = ice_init_hw_tbls(hw);
1121 if (status)
1122 goto err_unroll_fltr_mgmt_struct;
1123 mutex_init(&hw->tnl_lock);
1124 ice_init_chk_recipe_reuse_support(hw);
1125
1126 /* Some cards require longer initialization times
1127 * due to necessity of loading FW from an external source.
1128 * This can take even half a minute.
1129 */
1130 if (ice_is_pf_c827(hw)) {
1131 status = ice_wait_for_fw(hw, 30000);
1132 if (status) {
1133 dev_err(ice_hw_to_dev(hw), "ice_wait_for_fw timed out");
1134 goto err_unroll_fltr_mgmt_struct;
1135 }
1136 }
1137
1138 return 0;
1139 err_unroll_fltr_mgmt_struct:
1140 ice_cleanup_fltr_mgmt_struct(hw);
1141 err_unroll_sched:
1142 ice_sched_cleanup_all(hw);
1143 err_unroll_alloc:
1144 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1145 err_unroll_cqinit:
1146 ice_destroy_all_ctrlq(hw);
1147 return status;
1148 }
1149
1150 /**
1151 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1152 * @hw: pointer to the hardware structure
1153 *
1154 * This should be called only during nominal operation, not as a result of
1155 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1156 * applicable initializations if it fails for any reason.
1157 */
ice_deinit_hw(struct ice_hw * hw)1158 void ice_deinit_hw(struct ice_hw *hw)
1159 {
1160 ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1161 ice_cleanup_fltr_mgmt_struct(hw);
1162
1163 ice_sched_cleanup_all(hw);
1164 ice_sched_clear_agg(hw);
1165 ice_free_seg(hw);
1166 ice_free_hw_tbls(hw);
1167 mutex_destroy(&hw->tnl_lock);
1168
1169 ice_fwlog_deinit(hw);
1170 ice_destroy_all_ctrlq(hw);
1171
1172 /* Clear VSI contexts if not already cleared */
1173 ice_clear_all_vsi_ctx(hw);
1174 }
1175
1176 /**
1177 * ice_check_reset - Check to see if a global reset is complete
1178 * @hw: pointer to the hardware structure
1179 */
ice_check_reset(struct ice_hw * hw)1180 int ice_check_reset(struct ice_hw *hw)
1181 {
1182 u32 cnt, reg = 0, grst_timeout, uld_mask;
1183
1184 /* Poll for Device Active state in case a recent CORER, GLOBR,
1185 * or EMPR has occurred. The grst delay value is in 100ms units.
1186 * Add 1sec for outstanding AQ commands that can take a long time.
1187 */
1188 grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1189 rd32(hw, GLGEN_RSTCTL)) + 10;
1190
1191 for (cnt = 0; cnt < grst_timeout; cnt++) {
1192 mdelay(100);
1193 reg = rd32(hw, GLGEN_RSTAT);
1194 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1195 break;
1196 }
1197
1198 if (cnt == grst_timeout) {
1199 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1200 return -EIO;
1201 }
1202
1203 #define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
1204 GLNVM_ULD_PCIER_DONE_1_M |\
1205 GLNVM_ULD_CORER_DONE_M |\
1206 GLNVM_ULD_GLOBR_DONE_M |\
1207 GLNVM_ULD_POR_DONE_M |\
1208 GLNVM_ULD_POR_DONE_1_M |\
1209 GLNVM_ULD_PCIER_DONE_2_M)
1210
1211 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1212 GLNVM_ULD_PE_DONE_M : 0);
1213
1214 /* Device is Active; check Global Reset processes are done */
1215 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1216 reg = rd32(hw, GLNVM_ULD) & uld_mask;
1217 if (reg == uld_mask) {
1218 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1219 break;
1220 }
1221 mdelay(10);
1222 }
1223
1224 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1225 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1226 reg);
1227 return -EIO;
1228 }
1229
1230 return 0;
1231 }
1232
1233 /**
1234 * ice_pf_reset - Reset the PF
1235 * @hw: pointer to the hardware structure
1236 *
1237 * If a global reset has been triggered, this function checks
1238 * for its completion and then issues the PF reset
1239 */
ice_pf_reset(struct ice_hw * hw)1240 static int ice_pf_reset(struct ice_hw *hw)
1241 {
1242 u32 cnt, reg;
1243
1244 /* If at function entry a global reset was already in progress, i.e.
1245 * state is not 'device active' or any of the reset done bits are not
1246 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1247 * global reset is done.
1248 */
1249 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1250 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1251 /* poll on global reset currently in progress until done */
1252 if (ice_check_reset(hw))
1253 return -EIO;
1254
1255 return 0;
1256 }
1257
1258 /* Reset the PF */
1259 reg = rd32(hw, PFGEN_CTRL);
1260
1261 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1262
1263 /* Wait for the PFR to complete. The wait time is the global config lock
1264 * timeout plus the PFR timeout which will account for a possible reset
1265 * that is occurring during a download package operation.
1266 */
1267 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1268 ICE_PF_RESET_WAIT_COUNT; cnt++) {
1269 reg = rd32(hw, PFGEN_CTRL);
1270 if (!(reg & PFGEN_CTRL_PFSWR_M))
1271 break;
1272
1273 mdelay(1);
1274 }
1275
1276 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1277 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1278 return -EIO;
1279 }
1280
1281 return 0;
1282 }
1283
1284 /**
1285 * ice_reset - Perform different types of reset
1286 * @hw: pointer to the hardware structure
1287 * @req: reset request
1288 *
1289 * This function triggers a reset as specified by the req parameter.
1290 *
1291 * Note:
1292 * If anything other than a PF reset is triggered, PXE mode is restored.
1293 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1294 * interface has been restored in the rebuild flow.
1295 */
ice_reset(struct ice_hw * hw,enum ice_reset_req req)1296 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1297 {
1298 u32 val = 0;
1299
1300 switch (req) {
1301 case ICE_RESET_PFR:
1302 return ice_pf_reset(hw);
1303 case ICE_RESET_CORER:
1304 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1305 val = GLGEN_RTRIG_CORER_M;
1306 break;
1307 case ICE_RESET_GLOBR:
1308 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1309 val = GLGEN_RTRIG_GLOBR_M;
1310 break;
1311 default:
1312 return -EINVAL;
1313 }
1314
1315 val |= rd32(hw, GLGEN_RTRIG);
1316 wr32(hw, GLGEN_RTRIG, val);
1317 ice_flush(hw);
1318
1319 /* wait for the FW to be ready */
1320 return ice_check_reset(hw);
1321 }
1322
1323 /**
1324 * ice_copy_rxq_ctx_to_hw - Copy packed Rx queue context to HW registers
1325 * @hw: pointer to the hardware structure
1326 * @rxq_ctx: pointer to the packed Rx queue context
1327 * @rxq_index: the index of the Rx queue
1328 */
ice_copy_rxq_ctx_to_hw(struct ice_hw * hw,const ice_rxq_ctx_buf_t * rxq_ctx,u32 rxq_index)1329 static void ice_copy_rxq_ctx_to_hw(struct ice_hw *hw,
1330 const ice_rxq_ctx_buf_t *rxq_ctx,
1331 u32 rxq_index)
1332 {
1333 /* Copy each dword separately to HW */
1334 for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1335 u32 ctx = ((const u32 *)rxq_ctx)[i];
1336
1337 wr32(hw, QRX_CONTEXT(i, rxq_index), ctx);
1338
1339 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, ctx);
1340 }
1341 }
1342
1343 #define ICE_CTX_STORE(struct_name, struct_field, width, lsb) \
1344 PACKED_FIELD((lsb) + (width) - 1, (lsb), struct struct_name, struct_field)
1345
1346 /* LAN Rx Queue Context */
1347 static const struct packed_field_u8 ice_rlan_ctx_fields[] = {
1348 /* Field Width LSB */
1349 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1350 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1351 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1352 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1353 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1354 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1355 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1356 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1357 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1358 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1359 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1360 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1361 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1362 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1363 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1364 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1365 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1366 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1367 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1368 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
1369 };
1370
1371 /**
1372 * ice_pack_rxq_ctx - Pack Rx queue context into a HW buffer
1373 * @ctx: the Rx queue context to pack
1374 * @buf: the HW buffer to pack into
1375 *
1376 * Pack the Rx queue context from the CPU-friendly unpacked buffer into its
1377 * bit-packed HW layout.
1378 */
ice_pack_rxq_ctx(const struct ice_rlan_ctx * ctx,ice_rxq_ctx_buf_t * buf)1379 static void ice_pack_rxq_ctx(const struct ice_rlan_ctx *ctx,
1380 ice_rxq_ctx_buf_t *buf)
1381 {
1382 pack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1383 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1384 }
1385
1386 /**
1387 * ice_write_rxq_ctx - Write Rx Queue context to hardware
1388 * @hw: pointer to the hardware structure
1389 * @rlan_ctx: pointer to the unpacked Rx queue context
1390 * @rxq_index: the index of the Rx queue
1391 *
1392 * Pack the sparse Rx Queue context into dense hardware format and write it
1393 * into the HW register space.
1394 *
1395 * Return: 0 on success, or -EINVAL if the Rx queue index is invalid.
1396 */
ice_write_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1397 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1398 u32 rxq_index)
1399 {
1400 ice_rxq_ctx_buf_t buf = {};
1401
1402 if (rxq_index > QRX_CTRL_MAX_INDEX)
1403 return -EINVAL;
1404
1405 ice_pack_rxq_ctx(rlan_ctx, &buf);
1406 ice_copy_rxq_ctx_to_hw(hw, &buf, rxq_index);
1407
1408 return 0;
1409 }
1410
1411 /* LAN Tx Queue Context */
1412 static const struct packed_field_u8 ice_tlan_ctx_fields[] = {
1413 /* Field Width LSB */
1414 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1415 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1416 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1417 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1418 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1419 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1420 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1421 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1422 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
1423 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1424 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1425 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1426 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1427 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1428 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1429 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1430 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1431 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1432 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1433 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1434 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1435 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1436 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1437 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1438 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1439 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1440 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1441 };
1442
1443 /**
1444 * ice_pack_txq_ctx - Pack Tx queue context into a HW buffer
1445 * @ctx: the Tx queue context to pack
1446 * @buf: the HW buffer to pack into
1447 *
1448 * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1449 * bit-packed HW layout.
1450 */
ice_pack_txq_ctx(const struct ice_tlan_ctx * ctx,ice_txq_ctx_buf_t * buf)1451 void ice_pack_txq_ctx(const struct ice_tlan_ctx *ctx, ice_txq_ctx_buf_t *buf)
1452 {
1453 pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1454 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1455 }
1456
1457 /* Sideband Queue command wrappers */
1458
1459 /**
1460 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1461 * @hw: pointer to the HW struct
1462 * @desc: descriptor describing the command
1463 * @buf: buffer to use for indirect commands (NULL for direct commands)
1464 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1465 * @cd: pointer to command details structure
1466 */
1467 static int
ice_sbq_send_cmd(struct ice_hw * hw,struct ice_sbq_cmd_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1468 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1469 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1470 {
1471 return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1472 (struct ice_aq_desc *)desc, buf, buf_size, cd);
1473 }
1474
1475 /**
1476 * ice_sbq_rw_reg - Fill Sideband Queue command
1477 * @hw: pointer to the HW struct
1478 * @in: message info to be filled in descriptor
1479 * @flags: control queue descriptor flags
1480 */
ice_sbq_rw_reg(struct ice_hw * hw,struct ice_sbq_msg_input * in,u16 flags)1481 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1482 {
1483 struct ice_sbq_cmd_desc desc = {0};
1484 struct ice_sbq_msg_req msg = {0};
1485 u16 msg_len;
1486 int status;
1487
1488 msg_len = sizeof(msg);
1489
1490 msg.dest_dev = in->dest_dev;
1491 msg.opcode = in->opcode;
1492 msg.flags = ICE_SBQ_MSG_FLAGS;
1493 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1494 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1495 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1496
1497 if (in->opcode)
1498 msg.data = cpu_to_le32(in->data);
1499 else
1500 /* data read comes back in completion, so shorten the struct by
1501 * sizeof(msg.data)
1502 */
1503 msg_len -= sizeof(msg.data);
1504
1505 desc.flags = cpu_to_le16(flags);
1506 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1507 desc.param0.cmd_len = cpu_to_le16(msg_len);
1508 status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1509 if (!status && !in->opcode)
1510 in->data = le32_to_cpu
1511 (((struct ice_sbq_msg_cmpl *)&msg)->data);
1512 return status;
1513 }
1514
1515 /* FW Admin Queue command wrappers */
1516
1517 /* Software lock/mutex that is meant to be held while the Global Config Lock
1518 * in firmware is acquired by the software to prevent most (but not all) types
1519 * of AQ commands from being sent to FW
1520 */
1521 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1522
1523 /**
1524 * ice_should_retry_sq_send_cmd
1525 * @opcode: AQ opcode
1526 *
1527 * Decide if we should retry the send command routine for the ATQ, depending
1528 * on the opcode.
1529 */
ice_should_retry_sq_send_cmd(u16 opcode)1530 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1531 {
1532 switch (opcode) {
1533 case ice_aqc_opc_get_link_topo:
1534 case ice_aqc_opc_lldp_stop:
1535 case ice_aqc_opc_lldp_start:
1536 case ice_aqc_opc_lldp_filter_ctrl:
1537 return true;
1538 }
1539
1540 return false;
1541 }
1542
1543 /**
1544 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1545 * @hw: pointer to the HW struct
1546 * @cq: pointer to the specific Control queue
1547 * @desc: prefilled descriptor describing the command
1548 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1549 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1550 * @cd: pointer to command details structure
1551 *
1552 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1553 * Queue if the EBUSY AQ error is returned.
1554 */
1555 static int
ice_sq_send_cmd_retry(struct ice_hw * hw,struct ice_ctl_q_info * cq,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1556 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1557 struct ice_aq_desc *desc, void *buf, u16 buf_size,
1558 struct ice_sq_cd *cd)
1559 {
1560 struct ice_aq_desc desc_cpy;
1561 bool is_cmd_for_retry;
1562 u8 idx = 0;
1563 u16 opcode;
1564 int status;
1565
1566 opcode = le16_to_cpu(desc->opcode);
1567 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1568 memset(&desc_cpy, 0, sizeof(desc_cpy));
1569
1570 if (is_cmd_for_retry) {
1571 /* All retryable cmds are direct, without buf. */
1572 WARN_ON(buf);
1573
1574 memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1575 }
1576
1577 do {
1578 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1579
1580 if (!is_cmd_for_retry || !status ||
1581 hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1582 break;
1583
1584 memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1585
1586 msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1587
1588 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1589
1590 return status;
1591 }
1592
1593 /**
1594 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1595 * @hw: pointer to the HW struct
1596 * @desc: descriptor describing the command
1597 * @buf: buffer to use for indirect commands (NULL for direct commands)
1598 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1599 * @cd: pointer to command details structure
1600 *
1601 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1602 */
1603 int
ice_aq_send_cmd(struct ice_hw * hw,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1604 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1605 u16 buf_size, struct ice_sq_cd *cd)
1606 {
1607 struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1608 bool lock_acquired = false;
1609 int status;
1610
1611 /* When a package download is in process (i.e. when the firmware's
1612 * Global Configuration Lock resource is held), only the Download
1613 * Package, Get Version, Get Package Info List, Upload Section,
1614 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1615 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1616 * Recipes to Profile Association, and Release Resource (with resource
1617 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1618 * must block until the package download completes and the Global Config
1619 * Lock is released. See also ice_acquire_global_cfg_lock().
1620 */
1621 switch (le16_to_cpu(desc->opcode)) {
1622 case ice_aqc_opc_download_pkg:
1623 case ice_aqc_opc_get_pkg_info_list:
1624 case ice_aqc_opc_get_ver:
1625 case ice_aqc_opc_upload_section:
1626 case ice_aqc_opc_update_pkg:
1627 case ice_aqc_opc_set_port_params:
1628 case ice_aqc_opc_get_vlan_mode_parameters:
1629 case ice_aqc_opc_set_vlan_mode_parameters:
1630 case ice_aqc_opc_set_tx_topo:
1631 case ice_aqc_opc_get_tx_topo:
1632 case ice_aqc_opc_add_recipe:
1633 case ice_aqc_opc_recipe_to_profile:
1634 case ice_aqc_opc_get_recipe:
1635 case ice_aqc_opc_get_recipe_to_profile:
1636 break;
1637 case ice_aqc_opc_release_res:
1638 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1639 break;
1640 fallthrough;
1641 default:
1642 mutex_lock(&ice_global_cfg_lock_sw);
1643 lock_acquired = true;
1644 break;
1645 }
1646
1647 status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1648 if (lock_acquired)
1649 mutex_unlock(&ice_global_cfg_lock_sw);
1650
1651 return status;
1652 }
1653
1654 /**
1655 * ice_aq_get_fw_ver
1656 * @hw: pointer to the HW struct
1657 * @cd: pointer to command details structure or NULL
1658 *
1659 * Get the firmware version (0x0001) from the admin queue commands
1660 */
ice_aq_get_fw_ver(struct ice_hw * hw,struct ice_sq_cd * cd)1661 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1662 {
1663 struct ice_aqc_get_ver *resp;
1664 struct ice_aq_desc desc;
1665 int status;
1666
1667 resp = &desc.params.get_ver;
1668
1669 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1670
1671 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1672
1673 if (!status) {
1674 hw->fw_branch = resp->fw_branch;
1675 hw->fw_maj_ver = resp->fw_major;
1676 hw->fw_min_ver = resp->fw_minor;
1677 hw->fw_patch = resp->fw_patch;
1678 hw->fw_build = le32_to_cpu(resp->fw_build);
1679 hw->api_branch = resp->api_branch;
1680 hw->api_maj_ver = resp->api_major;
1681 hw->api_min_ver = resp->api_minor;
1682 hw->api_patch = resp->api_patch;
1683 }
1684
1685 return status;
1686 }
1687
1688 /**
1689 * ice_aq_send_driver_ver
1690 * @hw: pointer to the HW struct
1691 * @dv: driver's major, minor version
1692 * @cd: pointer to command details structure or NULL
1693 *
1694 * Send the driver version (0x0002) to the firmware
1695 */
1696 int
ice_aq_send_driver_ver(struct ice_hw * hw,struct ice_driver_ver * dv,struct ice_sq_cd * cd)1697 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1698 struct ice_sq_cd *cd)
1699 {
1700 struct ice_aqc_driver_ver *cmd;
1701 struct ice_aq_desc desc;
1702 u16 len;
1703
1704 cmd = &desc.params.driver_ver;
1705
1706 if (!dv)
1707 return -EINVAL;
1708
1709 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1710
1711 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1712 cmd->major_ver = dv->major_ver;
1713 cmd->minor_ver = dv->minor_ver;
1714 cmd->build_ver = dv->build_ver;
1715 cmd->subbuild_ver = dv->subbuild_ver;
1716
1717 len = 0;
1718 while (len < sizeof(dv->driver_string) &&
1719 isascii(dv->driver_string[len]) && dv->driver_string[len])
1720 len++;
1721
1722 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1723 }
1724
1725 /**
1726 * ice_aq_q_shutdown
1727 * @hw: pointer to the HW struct
1728 * @unloading: is the driver unloading itself
1729 *
1730 * Tell the Firmware that we're shutting down the AdminQ and whether
1731 * or not the driver is unloading as well (0x0003).
1732 */
ice_aq_q_shutdown(struct ice_hw * hw,bool unloading)1733 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1734 {
1735 struct ice_aqc_q_shutdown *cmd;
1736 struct ice_aq_desc desc;
1737
1738 cmd = &desc.params.q_shutdown;
1739
1740 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1741
1742 if (unloading)
1743 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1744
1745 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1746 }
1747
1748 /**
1749 * ice_aq_req_res
1750 * @hw: pointer to the HW struct
1751 * @res: resource ID
1752 * @access: access type
1753 * @sdp_number: resource number
1754 * @timeout: the maximum time in ms that the driver may hold the resource
1755 * @cd: pointer to command details structure or NULL
1756 *
1757 * Requests common resource using the admin queue commands (0x0008).
1758 * When attempting to acquire the Global Config Lock, the driver can
1759 * learn of three states:
1760 * 1) 0 - acquired lock, and can perform download package
1761 * 2) -EIO - did not get lock, driver should fail to load
1762 * 3) -EALREADY - did not get lock, but another driver has
1763 * successfully downloaded the package; the driver does
1764 * not have to download the package and can continue
1765 * loading
1766 *
1767 * Note that if the caller is in an acquire lock, perform action, release lock
1768 * phase of operation, it is possible that the FW may detect a timeout and issue
1769 * a CORER. In this case, the driver will receive a CORER interrupt and will
1770 * have to determine its cause. The calling thread that is handling this flow
1771 * will likely get an error propagated back to it indicating the Download
1772 * Package, Update Package or the Release Resource AQ commands timed out.
1773 */
1774 static int
ice_aq_req_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u8 sdp_number,u32 * timeout,struct ice_sq_cd * cd)1775 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1776 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1777 struct ice_sq_cd *cd)
1778 {
1779 struct ice_aqc_req_res *cmd_resp;
1780 struct ice_aq_desc desc;
1781 int status;
1782
1783 cmd_resp = &desc.params.res_owner;
1784
1785 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1786
1787 cmd_resp->res_id = cpu_to_le16(res);
1788 cmd_resp->access_type = cpu_to_le16(access);
1789 cmd_resp->res_number = cpu_to_le32(sdp_number);
1790 cmd_resp->timeout = cpu_to_le32(*timeout);
1791 *timeout = 0;
1792
1793 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1794
1795 /* The completion specifies the maximum time in ms that the driver
1796 * may hold the resource in the Timeout field.
1797 */
1798
1799 /* Global config lock response utilizes an additional status field.
1800 *
1801 * If the Global config lock resource is held by some other driver, the
1802 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1803 * and the timeout field indicates the maximum time the current owner
1804 * of the resource has to free it.
1805 */
1806 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1807 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1808 *timeout = le32_to_cpu(cmd_resp->timeout);
1809 return 0;
1810 } else if (le16_to_cpu(cmd_resp->status) ==
1811 ICE_AQ_RES_GLBL_IN_PROG) {
1812 *timeout = le32_to_cpu(cmd_resp->timeout);
1813 return -EIO;
1814 } else if (le16_to_cpu(cmd_resp->status) ==
1815 ICE_AQ_RES_GLBL_DONE) {
1816 return -EALREADY;
1817 }
1818
1819 /* invalid FW response, force a timeout immediately */
1820 *timeout = 0;
1821 return -EIO;
1822 }
1823
1824 /* If the resource is held by some other driver, the command completes
1825 * with a busy return value and the timeout field indicates the maximum
1826 * time the current owner of the resource has to free it.
1827 */
1828 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1829 *timeout = le32_to_cpu(cmd_resp->timeout);
1830
1831 return status;
1832 }
1833
1834 /**
1835 * ice_aq_release_res
1836 * @hw: pointer to the HW struct
1837 * @res: resource ID
1838 * @sdp_number: resource number
1839 * @cd: pointer to command details structure or NULL
1840 *
1841 * release common resource using the admin queue commands (0x0009)
1842 */
1843 static int
ice_aq_release_res(struct ice_hw * hw,enum ice_aq_res_ids res,u8 sdp_number,struct ice_sq_cd * cd)1844 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1845 struct ice_sq_cd *cd)
1846 {
1847 struct ice_aqc_req_res *cmd;
1848 struct ice_aq_desc desc;
1849
1850 cmd = &desc.params.res_owner;
1851
1852 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1853
1854 cmd->res_id = cpu_to_le16(res);
1855 cmd->res_number = cpu_to_le32(sdp_number);
1856
1857 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1858 }
1859
1860 /**
1861 * ice_acquire_res
1862 * @hw: pointer to the HW structure
1863 * @res: resource ID
1864 * @access: access type (read or write)
1865 * @timeout: timeout in milliseconds
1866 *
1867 * This function will attempt to acquire the ownership of a resource.
1868 */
1869 int
ice_acquire_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u32 timeout)1870 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1871 enum ice_aq_res_access_type access, u32 timeout)
1872 {
1873 #define ICE_RES_POLLING_DELAY_MS 10
1874 u32 delay = ICE_RES_POLLING_DELAY_MS;
1875 u32 time_left = timeout;
1876 int status;
1877
1878 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1879
1880 /* A return code of -EALREADY means that another driver has
1881 * previously acquired the resource and performed any necessary updates;
1882 * in this case the caller does not obtain the resource and has no
1883 * further work to do.
1884 */
1885 if (status == -EALREADY)
1886 goto ice_acquire_res_exit;
1887
1888 if (status)
1889 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1890
1891 /* If necessary, poll until the current lock owner timeouts */
1892 timeout = time_left;
1893 while (status && timeout && time_left) {
1894 mdelay(delay);
1895 timeout = (timeout > delay) ? timeout - delay : 0;
1896 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1897
1898 if (status == -EALREADY)
1899 /* lock free, but no work to do */
1900 break;
1901
1902 if (!status)
1903 /* lock acquired */
1904 break;
1905 }
1906 if (status && status != -EALREADY)
1907 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1908
1909 ice_acquire_res_exit:
1910 if (status == -EALREADY) {
1911 if (access == ICE_RES_WRITE)
1912 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1913 else
1914 ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1915 }
1916 return status;
1917 }
1918
1919 /**
1920 * ice_release_res
1921 * @hw: pointer to the HW structure
1922 * @res: resource ID
1923 *
1924 * This function will release a resource using the proper Admin Command.
1925 */
ice_release_res(struct ice_hw * hw,enum ice_aq_res_ids res)1926 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1927 {
1928 unsigned long timeout;
1929 int status;
1930
1931 /* there are some rare cases when trying to release the resource
1932 * results in an admin queue timeout, so handle them correctly
1933 */
1934 timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1935 do {
1936 status = ice_aq_release_res(hw, res, 0, NULL);
1937 if (status != -EIO)
1938 break;
1939 usleep_range(1000, 2000);
1940 } while (time_before(jiffies, timeout));
1941 }
1942
1943 /**
1944 * ice_aq_alloc_free_res - command to allocate/free resources
1945 * @hw: pointer to the HW struct
1946 * @buf: Indirect buffer to hold data parameters and response
1947 * @buf_size: size of buffer for indirect commands
1948 * @opc: pass in the command opcode
1949 *
1950 * Helper function to allocate/free resources using the admin queue commands
1951 */
ice_aq_alloc_free_res(struct ice_hw * hw,struct ice_aqc_alloc_free_res_elem * buf,u16 buf_size,enum ice_adminq_opc opc)1952 int ice_aq_alloc_free_res(struct ice_hw *hw,
1953 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1954 enum ice_adminq_opc opc)
1955 {
1956 struct ice_aqc_alloc_free_res_cmd *cmd;
1957 struct ice_aq_desc desc;
1958
1959 cmd = &desc.params.sw_res_ctrl;
1960
1961 if (!buf || buf_size < flex_array_size(buf, elem, 1))
1962 return -EINVAL;
1963
1964 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1965
1966 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1967
1968 cmd->num_entries = cpu_to_le16(1);
1969
1970 return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
1971 }
1972
1973 /**
1974 * ice_alloc_hw_res - allocate resource
1975 * @hw: pointer to the HW struct
1976 * @type: type of resource
1977 * @num: number of resources to allocate
1978 * @btm: allocate from bottom
1979 * @res: pointer to array that will receive the resources
1980 */
1981 int
ice_alloc_hw_res(struct ice_hw * hw,u16 type,u16 num,bool btm,u16 * res)1982 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1983 {
1984 struct ice_aqc_alloc_free_res_elem *buf;
1985 u16 buf_len;
1986 int status;
1987
1988 buf_len = struct_size(buf, elem, num);
1989 buf = kzalloc(buf_len, GFP_KERNEL);
1990 if (!buf)
1991 return -ENOMEM;
1992
1993 /* Prepare buffer to allocate resource. */
1994 buf->num_elems = cpu_to_le16(num);
1995 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1996 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1997 if (btm)
1998 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1999
2000 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2001 if (status)
2002 goto ice_alloc_res_exit;
2003
2004 memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2005
2006 ice_alloc_res_exit:
2007 kfree(buf);
2008 return status;
2009 }
2010
2011 /**
2012 * ice_free_hw_res - free allocated HW resource
2013 * @hw: pointer to the HW struct
2014 * @type: type of resource to free
2015 * @num: number of resources
2016 * @res: pointer to array that contains the resources to free
2017 */
ice_free_hw_res(struct ice_hw * hw,u16 type,u16 num,u16 * res)2018 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2019 {
2020 struct ice_aqc_alloc_free_res_elem *buf;
2021 u16 buf_len;
2022 int status;
2023
2024 buf_len = struct_size(buf, elem, num);
2025 buf = kzalloc(buf_len, GFP_KERNEL);
2026 if (!buf)
2027 return -ENOMEM;
2028
2029 /* Prepare buffer to free resource. */
2030 buf->num_elems = cpu_to_le16(num);
2031 buf->res_type = cpu_to_le16(type);
2032 memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2033
2034 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2035 if (status)
2036 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2037
2038 kfree(buf);
2039 return status;
2040 }
2041
2042 /**
2043 * ice_get_num_per_func - determine number of resources per PF
2044 * @hw: pointer to the HW structure
2045 * @max: value to be evenly split between each PF
2046 *
2047 * Determine the number of valid functions by going through the bitmap returned
2048 * from parsing capabilities and use this to calculate the number of resources
2049 * per PF based on the max value passed in.
2050 */
ice_get_num_per_func(struct ice_hw * hw,u32 max)2051 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2052 {
2053 u8 funcs;
2054
2055 #define ICE_CAPS_VALID_FUNCS_M 0xFF
2056 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2057 ICE_CAPS_VALID_FUNCS_M);
2058
2059 if (!funcs)
2060 return 0;
2061
2062 return max / funcs;
2063 }
2064
2065 /**
2066 * ice_parse_common_caps - parse common device/function capabilities
2067 * @hw: pointer to the HW struct
2068 * @caps: pointer to common capabilities structure
2069 * @elem: the capability element to parse
2070 * @prefix: message prefix for tracing capabilities
2071 *
2072 * Given a capability element, extract relevant details into the common
2073 * capability structure.
2074 *
2075 * Returns: true if the capability matches one of the common capability ids,
2076 * false otherwise.
2077 */
2078 static bool
ice_parse_common_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps,struct ice_aqc_list_caps_elem * elem,const char * prefix)2079 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2080 struct ice_aqc_list_caps_elem *elem, const char *prefix)
2081 {
2082 u32 logical_id = le32_to_cpu(elem->logical_id);
2083 u32 phys_id = le32_to_cpu(elem->phys_id);
2084 u32 number = le32_to_cpu(elem->number);
2085 u16 cap = le16_to_cpu(elem->cap);
2086 bool found = true;
2087
2088 switch (cap) {
2089 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2090 caps->valid_functions = number;
2091 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2092 caps->valid_functions);
2093 break;
2094 case ICE_AQC_CAPS_SRIOV:
2095 caps->sr_iov_1_1 = (number == 1);
2096 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2097 caps->sr_iov_1_1);
2098 break;
2099 case ICE_AQC_CAPS_DCB:
2100 caps->dcb = (number == 1);
2101 caps->active_tc_bitmap = logical_id;
2102 caps->maxtc = phys_id;
2103 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2104 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2105 caps->active_tc_bitmap);
2106 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2107 break;
2108 case ICE_AQC_CAPS_RSS:
2109 caps->rss_table_size = number;
2110 caps->rss_table_entry_width = logical_id;
2111 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2112 caps->rss_table_size);
2113 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2114 caps->rss_table_entry_width);
2115 break;
2116 case ICE_AQC_CAPS_RXQS:
2117 caps->num_rxq = number;
2118 caps->rxq_first_id = phys_id;
2119 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2120 caps->num_rxq);
2121 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2122 caps->rxq_first_id);
2123 break;
2124 case ICE_AQC_CAPS_TXQS:
2125 caps->num_txq = number;
2126 caps->txq_first_id = phys_id;
2127 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2128 caps->num_txq);
2129 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2130 caps->txq_first_id);
2131 break;
2132 case ICE_AQC_CAPS_MSIX:
2133 caps->num_msix_vectors = number;
2134 caps->msix_vector_first_id = phys_id;
2135 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2136 caps->num_msix_vectors);
2137 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2138 caps->msix_vector_first_id);
2139 break;
2140 case ICE_AQC_CAPS_PENDING_NVM_VER:
2141 caps->nvm_update_pending_nvm = true;
2142 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2143 break;
2144 case ICE_AQC_CAPS_PENDING_OROM_VER:
2145 caps->nvm_update_pending_orom = true;
2146 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2147 break;
2148 case ICE_AQC_CAPS_PENDING_NET_VER:
2149 caps->nvm_update_pending_netlist = true;
2150 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2151 break;
2152 case ICE_AQC_CAPS_NVM_MGMT:
2153 caps->nvm_unified_update =
2154 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2155 true : false;
2156 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2157 caps->nvm_unified_update);
2158 break;
2159 case ICE_AQC_CAPS_RDMA:
2160 if (IS_ENABLED(CONFIG_INFINIBAND_IRDMA))
2161 caps->rdma = (number == 1);
2162 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2163 break;
2164 case ICE_AQC_CAPS_MAX_MTU:
2165 caps->max_mtu = number;
2166 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2167 prefix, caps->max_mtu);
2168 break;
2169 case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2170 caps->pcie_reset_avoidance = (number > 0);
2171 ice_debug(hw, ICE_DBG_INIT,
2172 "%s: pcie_reset_avoidance = %d\n", prefix,
2173 caps->pcie_reset_avoidance);
2174 break;
2175 case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2176 caps->reset_restrict_support = (number == 1);
2177 ice_debug(hw, ICE_DBG_INIT,
2178 "%s: reset_restrict_support = %d\n", prefix,
2179 caps->reset_restrict_support);
2180 break;
2181 case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2182 caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2183 ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2184 prefix, caps->roce_lag);
2185 caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2186 ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2187 prefix, caps->sriov_lag);
2188 break;
2189 case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2190 caps->tx_sched_topo_comp_mode_en = (number == 1);
2191 break;
2192 default:
2193 /* Not one of the recognized common capabilities */
2194 found = false;
2195 }
2196
2197 return found;
2198 }
2199
2200 /**
2201 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2202 * @hw: pointer to the HW structure
2203 * @caps: pointer to capabilities structure to fix
2204 *
2205 * Re-calculate the capabilities that are dependent on the number of physical
2206 * ports; i.e. some features are not supported or function differently on
2207 * devices with more than 4 ports.
2208 */
2209 static void
ice_recalc_port_limited_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps)2210 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2211 {
2212 /* This assumes device capabilities are always scanned before function
2213 * capabilities during the initialization flow.
2214 */
2215 if (hw->dev_caps.num_funcs > 4) {
2216 /* Max 4 TCs per port */
2217 caps->maxtc = 4;
2218 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2219 caps->maxtc);
2220 if (caps->rdma) {
2221 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2222 caps->rdma = 0;
2223 }
2224
2225 /* print message only when processing device capabilities
2226 * during initialization.
2227 */
2228 if (caps == &hw->dev_caps.common_cap)
2229 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2230 }
2231 }
2232
2233 /**
2234 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2235 * @hw: pointer to the HW struct
2236 * @func_p: pointer to function capabilities structure
2237 * @cap: pointer to the capability element to parse
2238 *
2239 * Extract function capabilities for ICE_AQC_CAPS_VF.
2240 */
2241 static void
ice_parse_vf_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2242 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2243 struct ice_aqc_list_caps_elem *cap)
2244 {
2245 u32 logical_id = le32_to_cpu(cap->logical_id);
2246 u32 number = le32_to_cpu(cap->number);
2247
2248 func_p->num_allocd_vfs = number;
2249 func_p->vf_base_id = logical_id;
2250 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2251 func_p->num_allocd_vfs);
2252 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2253 func_p->vf_base_id);
2254 }
2255
2256 /**
2257 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2258 * @hw: pointer to the HW struct
2259 * @func_p: pointer to function capabilities structure
2260 * @cap: pointer to the capability element to parse
2261 *
2262 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2263 */
2264 static void
ice_parse_vsi_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2265 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2266 struct ice_aqc_list_caps_elem *cap)
2267 {
2268 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2269 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2270 le32_to_cpu(cap->number));
2271 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2272 func_p->guar_num_vsi);
2273 }
2274
2275 /**
2276 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2277 * @hw: pointer to the HW struct
2278 * @func_p: pointer to function capabilities structure
2279 * @cap: pointer to the capability element to parse
2280 *
2281 * Extract function capabilities for ICE_AQC_CAPS_1588.
2282 */
2283 static void
ice_parse_1588_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2284 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2285 struct ice_aqc_list_caps_elem *cap)
2286 {
2287 struct ice_ts_func_info *info = &func_p->ts_func_info;
2288 u32 number = le32_to_cpu(cap->number);
2289
2290 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2291 func_p->common_cap.ieee_1588 = info->ena;
2292
2293 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2294 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2295 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2296 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2297
2298 if (hw->mac_type != ICE_MAC_GENERIC_3K_E825) {
2299 info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2300 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2301 } else {
2302 info->clk_freq = ICE_TIME_REF_FREQ_156_250;
2303 info->clk_src = ICE_CLK_SRC_TCXO;
2304 }
2305
2306 if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2307 info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2308 } else {
2309 /* Unknown clock frequency, so assume a (probably incorrect)
2310 * default to avoid out-of-bounds look ups of frequency
2311 * related information.
2312 */
2313 ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2314 info->clk_freq);
2315 info->time_ref = ICE_TIME_REF_FREQ_25_000;
2316 }
2317
2318 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2319 func_p->common_cap.ieee_1588);
2320 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2321 info->src_tmr_owned);
2322 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2323 info->tmr_ena);
2324 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2325 info->tmr_index_owned);
2326 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2327 info->tmr_index_assoc);
2328 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2329 info->clk_freq);
2330 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2331 info->clk_src);
2332 }
2333
2334 /**
2335 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2336 * @hw: pointer to the HW struct
2337 * @func_p: pointer to function capabilities structure
2338 *
2339 * Extract function capabilities for ICE_AQC_CAPS_FD.
2340 */
2341 static void
ice_parse_fdir_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p)2342 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2343 {
2344 u32 reg_val, gsize, bsize;
2345
2346 reg_val = rd32(hw, GLQF_FD_SIZE);
2347 switch (hw->mac_type) {
2348 case ICE_MAC_E830:
2349 gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2350 bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2351 break;
2352 case ICE_MAC_E810:
2353 default:
2354 gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2355 bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2356 }
2357 func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2358 func_p->fd_fltr_best_effort = bsize;
2359
2360 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2361 func_p->fd_fltr_guar);
2362 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2363 func_p->fd_fltr_best_effort);
2364 }
2365
2366 /**
2367 * ice_parse_func_caps - Parse function capabilities
2368 * @hw: pointer to the HW struct
2369 * @func_p: pointer to function capabilities structure
2370 * @buf: buffer containing the function capability records
2371 * @cap_count: the number of capabilities
2372 *
2373 * Helper function to parse function (0x000A) capabilities list. For
2374 * capabilities shared between device and function, this relies on
2375 * ice_parse_common_caps.
2376 *
2377 * Loop through the list of provided capabilities and extract the relevant
2378 * data into the function capabilities structured.
2379 */
2380 static void
ice_parse_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,void * buf,u32 cap_count)2381 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2382 void *buf, u32 cap_count)
2383 {
2384 struct ice_aqc_list_caps_elem *cap_resp;
2385 u32 i;
2386
2387 cap_resp = buf;
2388
2389 memset(func_p, 0, sizeof(*func_p));
2390
2391 for (i = 0; i < cap_count; i++) {
2392 u16 cap = le16_to_cpu(cap_resp[i].cap);
2393 bool found;
2394
2395 found = ice_parse_common_caps(hw, &func_p->common_cap,
2396 &cap_resp[i], "func caps");
2397
2398 switch (cap) {
2399 case ICE_AQC_CAPS_VF:
2400 ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2401 break;
2402 case ICE_AQC_CAPS_VSI:
2403 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2404 break;
2405 case ICE_AQC_CAPS_1588:
2406 ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2407 break;
2408 case ICE_AQC_CAPS_FD:
2409 ice_parse_fdir_func_caps(hw, func_p);
2410 break;
2411 default:
2412 /* Don't list common capabilities as unknown */
2413 if (!found)
2414 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2415 i, cap);
2416 break;
2417 }
2418 }
2419
2420 ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2421 }
2422
2423 /**
2424 * ice_func_id_to_logical_id - map from function id to logical pf id
2425 * @active_function_bitmap: active function bitmap
2426 * @pf_id: function number of device
2427 *
2428 * Return: logical PF ID.
2429 */
ice_func_id_to_logical_id(u32 active_function_bitmap,u8 pf_id)2430 static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2431 {
2432 u8 logical_id = 0;
2433 u8 i;
2434
2435 for (i = 0; i < pf_id; i++)
2436 if (active_function_bitmap & BIT(i))
2437 logical_id++;
2438
2439 return logical_id;
2440 }
2441
2442 /**
2443 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2444 * @hw: pointer to the HW struct
2445 * @dev_p: pointer to device capabilities structure
2446 * @cap: capability element to parse
2447 *
2448 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2449 */
2450 static void
ice_parse_valid_functions_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2451 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2452 struct ice_aqc_list_caps_elem *cap)
2453 {
2454 u32 number = le32_to_cpu(cap->number);
2455
2456 dev_p->num_funcs = hweight32(number);
2457 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2458 dev_p->num_funcs);
2459
2460 hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id);
2461 }
2462
2463 /**
2464 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2465 * @hw: pointer to the HW struct
2466 * @dev_p: pointer to device capabilities structure
2467 * @cap: capability element to parse
2468 *
2469 * Parse ICE_AQC_CAPS_VF for device capabilities.
2470 */
2471 static void
ice_parse_vf_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2472 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2473 struct ice_aqc_list_caps_elem *cap)
2474 {
2475 u32 number = le32_to_cpu(cap->number);
2476
2477 dev_p->num_vfs_exposed = number;
2478 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2479 dev_p->num_vfs_exposed);
2480 }
2481
2482 /**
2483 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2484 * @hw: pointer to the HW struct
2485 * @dev_p: pointer to device capabilities structure
2486 * @cap: capability element to parse
2487 *
2488 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2489 */
2490 static void
ice_parse_vsi_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2491 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2492 struct ice_aqc_list_caps_elem *cap)
2493 {
2494 u32 number = le32_to_cpu(cap->number);
2495
2496 dev_p->num_vsi_allocd_to_host = number;
2497 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2498 dev_p->num_vsi_allocd_to_host);
2499 }
2500
2501 /**
2502 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2503 * @hw: pointer to the HW struct
2504 * @dev_p: pointer to device capabilities structure
2505 * @cap: capability element to parse
2506 *
2507 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2508 */
2509 static void
ice_parse_1588_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2510 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2511 struct ice_aqc_list_caps_elem *cap)
2512 {
2513 struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2514 u32 logical_id = le32_to_cpu(cap->logical_id);
2515 u32 phys_id = le32_to_cpu(cap->phys_id);
2516 u32 number = le32_to_cpu(cap->number);
2517
2518 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2519 dev_p->common_cap.ieee_1588 = info->ena;
2520
2521 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2522 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2523 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2524
2525 info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2526 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2527 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2528
2529 info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2530 info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2531 info->ll_phy_tmr_update = ((number & ICE_TS_LL_PHY_TMR_UPDATE_M) != 0);
2532
2533 info->ena_ports = logical_id;
2534 info->tmr_own_map = phys_id;
2535
2536 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2537 dev_p->common_cap.ieee_1588);
2538 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2539 info->tmr0_owner);
2540 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2541 info->tmr0_owned);
2542 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2543 info->tmr0_ena);
2544 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2545 info->tmr1_owner);
2546 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2547 info->tmr1_owned);
2548 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2549 info->tmr1_ena);
2550 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2551 info->ts_ll_read);
2552 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2553 info->ts_ll_int_read);
2554 ice_debug(hw, ICE_DBG_INIT, "dev caps: ll_phy_tmr_update = %u\n",
2555 info->ll_phy_tmr_update);
2556 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2557 info->ena_ports);
2558 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2559 info->tmr_own_map);
2560 }
2561
2562 /**
2563 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2564 * @hw: pointer to the HW struct
2565 * @dev_p: pointer to device capabilities structure
2566 * @cap: capability element to parse
2567 *
2568 * Parse ICE_AQC_CAPS_FD for device capabilities.
2569 */
2570 static void
ice_parse_fdir_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2571 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2572 struct ice_aqc_list_caps_elem *cap)
2573 {
2574 u32 number = le32_to_cpu(cap->number);
2575
2576 dev_p->num_flow_director_fltr = number;
2577 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2578 dev_p->num_flow_director_fltr);
2579 }
2580
2581 /**
2582 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2583 * @hw: pointer to the HW struct
2584 * @dev_p: pointer to device capabilities structure
2585 * @cap: capability element to parse
2586 *
2587 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2588 * enabled sensors.
2589 */
2590 static void
ice_parse_sensor_reading_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2591 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2592 struct ice_aqc_list_caps_elem *cap)
2593 {
2594 dev_p->supported_sensors = le32_to_cpu(cap->number);
2595
2596 ice_debug(hw, ICE_DBG_INIT,
2597 "dev caps: supported sensors (bitmap) = 0x%x\n",
2598 dev_p->supported_sensors);
2599 }
2600
2601 /**
2602 * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2603 * @hw: pointer to the HW struct
2604 * @dev_p: pointer to device capabilities structure
2605 * @cap: capability element to parse
2606 *
2607 * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2608 */
ice_parse_nac_topo_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2609 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2610 struct ice_hw_dev_caps *dev_p,
2611 struct ice_aqc_list_caps_elem *cap)
2612 {
2613 dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2614 dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2615
2616 dev_info(ice_hw_to_dev(hw),
2617 "PF is configured in %s mode with IP instance ID %d\n",
2618 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2619 "primary" : "secondary", dev_p->nac_topo.id);
2620
2621 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2622 !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2623 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2624 !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2625 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2626 dev_p->nac_topo.id);
2627 }
2628
2629 /**
2630 * ice_parse_dev_caps - Parse device capabilities
2631 * @hw: pointer to the HW struct
2632 * @dev_p: pointer to device capabilities structure
2633 * @buf: buffer containing the device capability records
2634 * @cap_count: the number of capabilities
2635 *
2636 * Helper device to parse device (0x000B) capabilities list. For
2637 * capabilities shared between device and function, this relies on
2638 * ice_parse_common_caps.
2639 *
2640 * Loop through the list of provided capabilities and extract the relevant
2641 * data into the device capabilities structured.
2642 */
2643 static void
ice_parse_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,void * buf,u32 cap_count)2644 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2645 void *buf, u32 cap_count)
2646 {
2647 struct ice_aqc_list_caps_elem *cap_resp;
2648 u32 i;
2649
2650 cap_resp = buf;
2651
2652 memset(dev_p, 0, sizeof(*dev_p));
2653
2654 for (i = 0; i < cap_count; i++) {
2655 u16 cap = le16_to_cpu(cap_resp[i].cap);
2656 bool found;
2657
2658 found = ice_parse_common_caps(hw, &dev_p->common_cap,
2659 &cap_resp[i], "dev caps");
2660
2661 switch (cap) {
2662 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2663 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2664 break;
2665 case ICE_AQC_CAPS_VF:
2666 ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2667 break;
2668 case ICE_AQC_CAPS_VSI:
2669 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2670 break;
2671 case ICE_AQC_CAPS_1588:
2672 ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2673 break;
2674 case ICE_AQC_CAPS_FD:
2675 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2676 break;
2677 case ICE_AQC_CAPS_SENSOR_READING:
2678 ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2679 break;
2680 case ICE_AQC_CAPS_NAC_TOPOLOGY:
2681 ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2682 break;
2683 default:
2684 /* Don't list common capabilities as unknown */
2685 if (!found)
2686 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2687 i, cap);
2688 break;
2689 }
2690 }
2691
2692 ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2693 }
2694
2695 /**
2696 * ice_is_phy_rclk_in_netlist
2697 * @hw: pointer to the hw struct
2698 *
2699 * Check if the PHY Recovered Clock device is present in the netlist
2700 */
ice_is_phy_rclk_in_netlist(struct ice_hw * hw)2701 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2702 {
2703 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2704 ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2705 ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2706 ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2707 ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2708 ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2709 return false;
2710
2711 return true;
2712 }
2713
2714 /**
2715 * ice_is_clock_mux_in_netlist
2716 * @hw: pointer to the hw struct
2717 *
2718 * Check if the Clock Multiplexer device is present in the netlist
2719 */
ice_is_clock_mux_in_netlist(struct ice_hw * hw)2720 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2721 {
2722 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2723 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2724 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2725 NULL))
2726 return false;
2727
2728 return true;
2729 }
2730
2731 /**
2732 * ice_is_cgu_in_netlist - check for CGU presence
2733 * @hw: pointer to the hw struct
2734 *
2735 * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2736 * Save the CGU part number in the hw structure for later use.
2737 * Return:
2738 * * true - cgu is present
2739 * * false - cgu is not present
2740 */
ice_is_cgu_in_netlist(struct ice_hw * hw)2741 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2742 {
2743 if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2744 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2745 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2746 NULL)) {
2747 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2748 return true;
2749 } else if (!ice_find_netlist_node(hw,
2750 ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2751 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2752 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2753 NULL)) {
2754 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2755 return true;
2756 }
2757
2758 return false;
2759 }
2760
2761 /**
2762 * ice_is_gps_in_netlist
2763 * @hw: pointer to the hw struct
2764 *
2765 * Check if the GPS generic device is present in the netlist
2766 */
ice_is_gps_in_netlist(struct ice_hw * hw)2767 bool ice_is_gps_in_netlist(struct ice_hw *hw)
2768 {
2769 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2770 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2771 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2772 return false;
2773
2774 return true;
2775 }
2776
2777 /**
2778 * ice_aq_list_caps - query function/device capabilities
2779 * @hw: pointer to the HW struct
2780 * @buf: a buffer to hold the capabilities
2781 * @buf_size: size of the buffer
2782 * @cap_count: if not NULL, set to the number of capabilities reported
2783 * @opc: capabilities type to discover, device or function
2784 * @cd: pointer to command details structure or NULL
2785 *
2786 * Get the function (0x000A) or device (0x000B) capabilities description from
2787 * firmware and store it in the buffer.
2788 *
2789 * If the cap_count pointer is not NULL, then it is set to the number of
2790 * capabilities firmware will report. Note that if the buffer size is too
2791 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2792 * cap_count will still be updated in this case. It is recommended that the
2793 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2794 * firmware could return) to avoid this.
2795 */
2796 int
ice_aq_list_caps(struct ice_hw * hw,void * buf,u16 buf_size,u32 * cap_count,enum ice_adminq_opc opc,struct ice_sq_cd * cd)2797 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2798 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2799 {
2800 struct ice_aqc_list_caps *cmd;
2801 struct ice_aq_desc desc;
2802 int status;
2803
2804 cmd = &desc.params.get_cap;
2805
2806 if (opc != ice_aqc_opc_list_func_caps &&
2807 opc != ice_aqc_opc_list_dev_caps)
2808 return -EINVAL;
2809
2810 ice_fill_dflt_direct_cmd_desc(&desc, opc);
2811 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2812
2813 if (cap_count)
2814 *cap_count = le32_to_cpu(cmd->count);
2815
2816 return status;
2817 }
2818
2819 /**
2820 * ice_discover_dev_caps - Read and extract device capabilities
2821 * @hw: pointer to the hardware structure
2822 * @dev_caps: pointer to device capabilities structure
2823 *
2824 * Read the device capabilities and extract them into the dev_caps structure
2825 * for later use.
2826 */
2827 int
ice_discover_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_caps)2828 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2829 {
2830 u32 cap_count = 0;
2831 void *cbuf;
2832 int status;
2833
2834 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2835 if (!cbuf)
2836 return -ENOMEM;
2837
2838 /* Although the driver doesn't know the number of capabilities the
2839 * device will return, we can simply send a 4KB buffer, the maximum
2840 * possible size that firmware can return.
2841 */
2842 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2843
2844 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2845 ice_aqc_opc_list_dev_caps, NULL);
2846 if (!status)
2847 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2848 kfree(cbuf);
2849
2850 return status;
2851 }
2852
2853 /**
2854 * ice_discover_func_caps - Read and extract function capabilities
2855 * @hw: pointer to the hardware structure
2856 * @func_caps: pointer to function capabilities structure
2857 *
2858 * Read the function capabilities and extract them into the func_caps structure
2859 * for later use.
2860 */
2861 static int
ice_discover_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_caps)2862 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2863 {
2864 u32 cap_count = 0;
2865 void *cbuf;
2866 int status;
2867
2868 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2869 if (!cbuf)
2870 return -ENOMEM;
2871
2872 /* Although the driver doesn't know the number of capabilities the
2873 * device will return, we can simply send a 4KB buffer, the maximum
2874 * possible size that firmware can return.
2875 */
2876 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2877
2878 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2879 ice_aqc_opc_list_func_caps, NULL);
2880 if (!status)
2881 ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2882 kfree(cbuf);
2883
2884 return status;
2885 }
2886
2887 /**
2888 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2889 * @hw: pointer to the hardware structure
2890 */
ice_set_safe_mode_caps(struct ice_hw * hw)2891 void ice_set_safe_mode_caps(struct ice_hw *hw)
2892 {
2893 struct ice_hw_func_caps *func_caps = &hw->func_caps;
2894 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2895 struct ice_hw_common_caps cached_caps;
2896 u32 num_funcs;
2897
2898 /* cache some func_caps values that should be restored after memset */
2899 cached_caps = func_caps->common_cap;
2900
2901 /* unset func capabilities */
2902 memset(func_caps, 0, sizeof(*func_caps));
2903
2904 #define ICE_RESTORE_FUNC_CAP(name) \
2905 func_caps->common_cap.name = cached_caps.name
2906
2907 /* restore cached values */
2908 ICE_RESTORE_FUNC_CAP(valid_functions);
2909 ICE_RESTORE_FUNC_CAP(txq_first_id);
2910 ICE_RESTORE_FUNC_CAP(rxq_first_id);
2911 ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2912 ICE_RESTORE_FUNC_CAP(max_mtu);
2913 ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2914 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2915 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2916 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2917
2918 /* one Tx and one Rx queue in safe mode */
2919 func_caps->common_cap.num_rxq = 1;
2920 func_caps->common_cap.num_txq = 1;
2921
2922 /* two MSIX vectors, one for traffic and one for misc causes */
2923 func_caps->common_cap.num_msix_vectors = 2;
2924 func_caps->guar_num_vsi = 1;
2925
2926 /* cache some dev_caps values that should be restored after memset */
2927 cached_caps = dev_caps->common_cap;
2928 num_funcs = dev_caps->num_funcs;
2929
2930 /* unset dev capabilities */
2931 memset(dev_caps, 0, sizeof(*dev_caps));
2932
2933 #define ICE_RESTORE_DEV_CAP(name) \
2934 dev_caps->common_cap.name = cached_caps.name
2935
2936 /* restore cached values */
2937 ICE_RESTORE_DEV_CAP(valid_functions);
2938 ICE_RESTORE_DEV_CAP(txq_first_id);
2939 ICE_RESTORE_DEV_CAP(rxq_first_id);
2940 ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2941 ICE_RESTORE_DEV_CAP(max_mtu);
2942 ICE_RESTORE_DEV_CAP(nvm_unified_update);
2943 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2944 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2945 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2946 dev_caps->num_funcs = num_funcs;
2947
2948 /* one Tx and one Rx queue per function in safe mode */
2949 dev_caps->common_cap.num_rxq = num_funcs;
2950 dev_caps->common_cap.num_txq = num_funcs;
2951
2952 /* two MSIX vectors per function */
2953 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2954 }
2955
2956 /**
2957 * ice_get_caps - get info about the HW
2958 * @hw: pointer to the hardware structure
2959 */
ice_get_caps(struct ice_hw * hw)2960 int ice_get_caps(struct ice_hw *hw)
2961 {
2962 int status;
2963
2964 status = ice_discover_dev_caps(hw, &hw->dev_caps);
2965 if (status)
2966 return status;
2967
2968 return ice_discover_func_caps(hw, &hw->func_caps);
2969 }
2970
2971 /**
2972 * ice_aq_manage_mac_write - manage MAC address write command
2973 * @hw: pointer to the HW struct
2974 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2975 * @flags: flags to control write behavior
2976 * @cd: pointer to command details structure or NULL
2977 *
2978 * This function is used to write MAC address to the NVM (0x0108).
2979 */
2980 int
ice_aq_manage_mac_write(struct ice_hw * hw,const u8 * mac_addr,u8 flags,struct ice_sq_cd * cd)2981 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2982 struct ice_sq_cd *cd)
2983 {
2984 struct ice_aqc_manage_mac_write *cmd;
2985 struct ice_aq_desc desc;
2986
2987 cmd = &desc.params.mac_write;
2988 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2989
2990 cmd->flags = flags;
2991 ether_addr_copy(cmd->mac_addr, mac_addr);
2992
2993 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2994 }
2995
2996 /**
2997 * ice_aq_clear_pxe_mode
2998 * @hw: pointer to the HW struct
2999 *
3000 * Tell the firmware that the driver is taking over from PXE (0x0110).
3001 */
ice_aq_clear_pxe_mode(struct ice_hw * hw)3002 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3003 {
3004 struct ice_aq_desc desc;
3005
3006 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3007 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3008
3009 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3010 }
3011
3012 /**
3013 * ice_clear_pxe_mode - clear pxe operations mode
3014 * @hw: pointer to the HW struct
3015 *
3016 * Make sure all PXE mode settings are cleared, including things
3017 * like descriptor fetch/write-back mode.
3018 */
ice_clear_pxe_mode(struct ice_hw * hw)3019 void ice_clear_pxe_mode(struct ice_hw *hw)
3020 {
3021 if (ice_check_sq_alive(hw, &hw->adminq))
3022 ice_aq_clear_pxe_mode(hw);
3023 }
3024
3025 /**
3026 * ice_aq_set_port_params - set physical port parameters.
3027 * @pi: pointer to the port info struct
3028 * @double_vlan: if set double VLAN is enabled
3029 * @cd: pointer to command details structure or NULL
3030 *
3031 * Set Physical port parameters (0x0203)
3032 */
3033 int
ice_aq_set_port_params(struct ice_port_info * pi,bool double_vlan,struct ice_sq_cd * cd)3034 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3035 struct ice_sq_cd *cd)
3036
3037 {
3038 struct ice_aqc_set_port_params *cmd;
3039 struct ice_hw *hw = pi->hw;
3040 struct ice_aq_desc desc;
3041 u16 cmd_flags = 0;
3042
3043 cmd = &desc.params.set_port_params;
3044
3045 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3046 if (double_vlan)
3047 cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3048 cmd->cmd_flags = cpu_to_le16(cmd_flags);
3049
3050 cmd->local_fwd_mode = pi->local_fwd_mode |
3051 ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3052
3053 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3054 }
3055
3056 /**
3057 * ice_is_100m_speed_supported
3058 * @hw: pointer to the HW struct
3059 *
3060 * returns true if 100M speeds are supported by the device,
3061 * false otherwise.
3062 */
ice_is_100m_speed_supported(struct ice_hw * hw)3063 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3064 {
3065 switch (hw->device_id) {
3066 case ICE_DEV_ID_E822C_SGMII:
3067 case ICE_DEV_ID_E822L_SGMII:
3068 case ICE_DEV_ID_E823L_1GBE:
3069 case ICE_DEV_ID_E823C_SGMII:
3070 return true;
3071 default:
3072 return false;
3073 }
3074 }
3075
3076 /**
3077 * ice_get_link_speed_based_on_phy_type - returns link speed
3078 * @phy_type_low: lower part of phy_type
3079 * @phy_type_high: higher part of phy_type
3080 *
3081 * This helper function will convert an entry in PHY type structure
3082 * [phy_type_low, phy_type_high] to its corresponding link speed.
3083 * Note: In the structure of [phy_type_low, phy_type_high], there should
3084 * be one bit set, as this function will convert one PHY type to its
3085 * speed.
3086 *
3087 * Return:
3088 * * PHY speed for recognized PHY type
3089 * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3090 * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3091 */
ice_get_link_speed_based_on_phy_type(u64 phy_type_low,u64 phy_type_high)3092 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3093 {
3094 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3095 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3096
3097 switch (phy_type_low) {
3098 case ICE_PHY_TYPE_LOW_100BASE_TX:
3099 case ICE_PHY_TYPE_LOW_100M_SGMII:
3100 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3101 break;
3102 case ICE_PHY_TYPE_LOW_1000BASE_T:
3103 case ICE_PHY_TYPE_LOW_1000BASE_SX:
3104 case ICE_PHY_TYPE_LOW_1000BASE_LX:
3105 case ICE_PHY_TYPE_LOW_1000BASE_KX:
3106 case ICE_PHY_TYPE_LOW_1G_SGMII:
3107 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3108 break;
3109 case ICE_PHY_TYPE_LOW_2500BASE_T:
3110 case ICE_PHY_TYPE_LOW_2500BASE_X:
3111 case ICE_PHY_TYPE_LOW_2500BASE_KX:
3112 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3113 break;
3114 case ICE_PHY_TYPE_LOW_5GBASE_T:
3115 case ICE_PHY_TYPE_LOW_5GBASE_KR:
3116 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3117 break;
3118 case ICE_PHY_TYPE_LOW_10GBASE_T:
3119 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3120 case ICE_PHY_TYPE_LOW_10GBASE_SR:
3121 case ICE_PHY_TYPE_LOW_10GBASE_LR:
3122 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3123 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3124 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3125 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3126 break;
3127 case ICE_PHY_TYPE_LOW_25GBASE_T:
3128 case ICE_PHY_TYPE_LOW_25GBASE_CR:
3129 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3130 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3131 case ICE_PHY_TYPE_LOW_25GBASE_SR:
3132 case ICE_PHY_TYPE_LOW_25GBASE_LR:
3133 case ICE_PHY_TYPE_LOW_25GBASE_KR:
3134 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3135 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3136 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3137 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3138 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3139 break;
3140 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3141 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3142 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3143 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3144 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3145 case ICE_PHY_TYPE_LOW_40G_XLAUI:
3146 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3147 break;
3148 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3149 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3150 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3151 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3152 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3153 case ICE_PHY_TYPE_LOW_50G_LAUI2:
3154 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3155 case ICE_PHY_TYPE_LOW_50G_AUI2:
3156 case ICE_PHY_TYPE_LOW_50GBASE_CP:
3157 case ICE_PHY_TYPE_LOW_50GBASE_SR:
3158 case ICE_PHY_TYPE_LOW_50GBASE_FR:
3159 case ICE_PHY_TYPE_LOW_50GBASE_LR:
3160 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3161 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3162 case ICE_PHY_TYPE_LOW_50G_AUI1:
3163 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3164 break;
3165 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3166 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3167 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3168 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3169 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3170 case ICE_PHY_TYPE_LOW_100G_CAUI4:
3171 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3172 case ICE_PHY_TYPE_LOW_100G_AUI4:
3173 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3174 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3175 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3176 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3177 case ICE_PHY_TYPE_LOW_100GBASE_DR:
3178 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3179 break;
3180 default:
3181 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3182 break;
3183 }
3184
3185 switch (phy_type_high) {
3186 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3187 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3188 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3189 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3190 case ICE_PHY_TYPE_HIGH_100G_AUI2:
3191 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3192 break;
3193 case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3194 case ICE_PHY_TYPE_HIGH_200G_SR4:
3195 case ICE_PHY_TYPE_HIGH_200G_FR4:
3196 case ICE_PHY_TYPE_HIGH_200G_LR4:
3197 case ICE_PHY_TYPE_HIGH_200G_DR4:
3198 case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3199 case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3200 case ICE_PHY_TYPE_HIGH_200G_AUI4:
3201 speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3202 break;
3203 default:
3204 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3205 break;
3206 }
3207
3208 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3209 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3210 return ICE_AQ_LINK_SPEED_UNKNOWN;
3211 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3212 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3213 return ICE_AQ_LINK_SPEED_UNKNOWN;
3214 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3215 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3216 return speed_phy_type_low;
3217 else
3218 return speed_phy_type_high;
3219 }
3220
3221 /**
3222 * ice_update_phy_type
3223 * @phy_type_low: pointer to the lower part of phy_type
3224 * @phy_type_high: pointer to the higher part of phy_type
3225 * @link_speeds_bitmap: targeted link speeds bitmap
3226 *
3227 * Note: For the link_speeds_bitmap structure, you can check it at
3228 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3229 * link_speeds_bitmap include multiple speeds.
3230 *
3231 * Each entry in this [phy_type_low, phy_type_high] structure will
3232 * present a certain link speed. This helper function will turn on bits
3233 * in [phy_type_low, phy_type_high] structure based on the value of
3234 * link_speeds_bitmap input parameter.
3235 */
3236 void
ice_update_phy_type(u64 * phy_type_low,u64 * phy_type_high,u16 link_speeds_bitmap)3237 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3238 u16 link_speeds_bitmap)
3239 {
3240 u64 pt_high;
3241 u64 pt_low;
3242 int index;
3243 u16 speed;
3244
3245 /* We first check with low part of phy_type */
3246 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3247 pt_low = BIT_ULL(index);
3248 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3249
3250 if (link_speeds_bitmap & speed)
3251 *phy_type_low |= BIT_ULL(index);
3252 }
3253
3254 /* We then check with high part of phy_type */
3255 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3256 pt_high = BIT_ULL(index);
3257 speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3258
3259 if (link_speeds_bitmap & speed)
3260 *phy_type_high |= BIT_ULL(index);
3261 }
3262 }
3263
3264 /**
3265 * ice_aq_set_phy_cfg
3266 * @hw: pointer to the HW struct
3267 * @pi: port info structure of the interested logical port
3268 * @cfg: structure with PHY configuration data to be set
3269 * @cd: pointer to command details structure or NULL
3270 *
3271 * Set the various PHY configuration parameters supported on the Port.
3272 * One or more of the Set PHY config parameters may be ignored in an MFP
3273 * mode as the PF may not have the privilege to set some of the PHY Config
3274 * parameters. This status will be indicated by the command response (0x0601).
3275 */
3276 int
ice_aq_set_phy_cfg(struct ice_hw * hw,struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,struct ice_sq_cd * cd)3277 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3278 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3279 {
3280 struct ice_aq_desc desc;
3281 int status;
3282
3283 if (!cfg)
3284 return -EINVAL;
3285
3286 /* Ensure that only valid bits of cfg->caps can be turned on. */
3287 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3288 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3289 cfg->caps);
3290
3291 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3292 }
3293
3294 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3295 desc.params.set_phy.lport_num = pi->lport;
3296 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3297
3298 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3299 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
3300 (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3301 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
3302 (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3303 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
3304 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
3305 cfg->low_power_ctrl_an);
3306 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
3307 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
3308 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
3309 cfg->link_fec_opt);
3310
3311 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3312 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3313 status = 0;
3314
3315 if (!status)
3316 pi->phy.curr_user_phy_cfg = *cfg;
3317
3318 return status;
3319 }
3320
3321 /**
3322 * ice_update_link_info - update status of the HW network link
3323 * @pi: port info structure of the interested logical port
3324 */
ice_update_link_info(struct ice_port_info * pi)3325 int ice_update_link_info(struct ice_port_info *pi)
3326 {
3327 struct ice_link_status *li;
3328 int status;
3329
3330 if (!pi)
3331 return -EINVAL;
3332
3333 li = &pi->phy.link_info;
3334
3335 status = ice_aq_get_link_info(pi, true, NULL, NULL);
3336 if (status)
3337 return status;
3338
3339 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3340 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3341
3342 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3343 if (!pcaps)
3344 return -ENOMEM;
3345
3346 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3347 pcaps, NULL);
3348 }
3349
3350 return status;
3351 }
3352
3353 /**
3354 * ice_aq_get_phy_equalization - function to read serdes equaliser
3355 * value from firmware using admin queue command.
3356 * @hw: pointer to the HW struct
3357 * @data_in: represents the serdes equalization parameter requested
3358 * @op_code: represents the serdes number and flag to represent tx or rx
3359 * @serdes_num: represents the serdes number
3360 * @output: pointer to the caller-supplied buffer to return serdes equaliser
3361 *
3362 * Return: non-zero status on error and 0 on success.
3363 */
ice_aq_get_phy_equalization(struct ice_hw * hw,u16 data_in,u16 op_code,u8 serdes_num,int * output)3364 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3365 u8 serdes_num, int *output)
3366 {
3367 struct ice_aqc_dnl_call_command *cmd;
3368 struct ice_aqc_dnl_call buf = {};
3369 struct ice_aq_desc desc;
3370 int err;
3371
3372 buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3373 buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3374 cpu_to_le16(op_code | (serdes_num & 0xF));
3375 cmd = &desc.params.dnl_call;
3376 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3377 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF |
3378 ICE_AQ_FLAG_RD |
3379 ICE_AQ_FLAG_SI);
3380 desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3381 cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3382
3383 err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3384 NULL);
3385 *output = err ? 0 : buf.sto.txrx_equa_resp.val;
3386
3387 return err;
3388 }
3389
3390 #define FEC_REG_PORT(port) { \
3391 FEC_CORR_LOW_REG_PORT##port, \
3392 FEC_CORR_HIGH_REG_PORT##port, \
3393 FEC_UNCORR_LOW_REG_PORT##port, \
3394 FEC_UNCORR_HIGH_REG_PORT##port, \
3395 }
3396
3397 static const u32 fec_reg[][ICE_FEC_MAX] = {
3398 FEC_REG_PORT(0),
3399 FEC_REG_PORT(1),
3400 FEC_REG_PORT(2),
3401 FEC_REG_PORT(3)
3402 };
3403
3404 /**
3405 * ice_aq_get_fec_stats - reads fec stats from phy
3406 * @hw: pointer to the HW struct
3407 * @pcs_quad: represents pcsquad of user input serdes
3408 * @pcs_port: represents the pcs port number part of above pcs quad
3409 * @fec_type: represents FEC stats type
3410 * @output: pointer to the caller-supplied buffer to return requested fec stats
3411 *
3412 * Return: non-zero status on error and 0 on success.
3413 */
ice_aq_get_fec_stats(struct ice_hw * hw,u16 pcs_quad,u16 pcs_port,enum ice_fec_stats_types fec_type,u32 * output)3414 int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3415 enum ice_fec_stats_types fec_type, u32 *output)
3416 {
3417 u16 flag = (ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF | ICE_AQ_FLAG_SI);
3418 struct ice_sbq_msg_input msg = {};
3419 u32 receiver_id, reg_offset;
3420 int err;
3421
3422 if (pcs_port > 3)
3423 return -EINVAL;
3424
3425 reg_offset = fec_reg[pcs_port][fec_type];
3426
3427 if (pcs_quad == 0)
3428 receiver_id = FEC_RECEIVER_ID_PCS0;
3429 else if (pcs_quad == 1)
3430 receiver_id = FEC_RECEIVER_ID_PCS1;
3431 else
3432 return -EINVAL;
3433
3434 msg.msg_addr_low = lower_16_bits(reg_offset);
3435 msg.msg_addr_high = receiver_id;
3436 msg.opcode = ice_sbq_msg_rd;
3437 msg.dest_dev = rmn_0;
3438
3439 err = ice_sbq_rw_reg(hw, &msg, flag);
3440 if (err)
3441 return err;
3442
3443 *output = msg.data;
3444 return 0;
3445 }
3446
3447 /**
3448 * ice_cache_phy_user_req
3449 * @pi: port information structure
3450 * @cache_data: PHY logging data
3451 * @cache_mode: PHY logging mode
3452 *
3453 * Log the user request on (FC, FEC, SPEED) for later use.
3454 */
3455 static void
ice_cache_phy_user_req(struct ice_port_info * pi,struct ice_phy_cache_mode_data cache_data,enum ice_phy_cache_mode cache_mode)3456 ice_cache_phy_user_req(struct ice_port_info *pi,
3457 struct ice_phy_cache_mode_data cache_data,
3458 enum ice_phy_cache_mode cache_mode)
3459 {
3460 if (!pi)
3461 return;
3462
3463 switch (cache_mode) {
3464 case ICE_FC_MODE:
3465 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3466 break;
3467 case ICE_SPEED_MODE:
3468 pi->phy.curr_user_speed_req =
3469 cache_data.data.curr_user_speed_req;
3470 break;
3471 case ICE_FEC_MODE:
3472 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3473 break;
3474 default:
3475 break;
3476 }
3477 }
3478
3479 /**
3480 * ice_caps_to_fc_mode
3481 * @caps: PHY capabilities
3482 *
3483 * Convert PHY FC capabilities to ice FC mode
3484 */
ice_caps_to_fc_mode(u8 caps)3485 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3486 {
3487 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3488 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3489 return ICE_FC_FULL;
3490
3491 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3492 return ICE_FC_TX_PAUSE;
3493
3494 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3495 return ICE_FC_RX_PAUSE;
3496
3497 return ICE_FC_NONE;
3498 }
3499
3500 /**
3501 * ice_caps_to_fec_mode
3502 * @caps: PHY capabilities
3503 * @fec_options: Link FEC options
3504 *
3505 * Convert PHY FEC capabilities to ice FEC mode
3506 */
ice_caps_to_fec_mode(u8 caps,u8 fec_options)3507 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3508 {
3509 if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3510 return ICE_FEC_AUTO;
3511
3512 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3513 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3514 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3515 ICE_AQC_PHY_FEC_25G_KR_REQ))
3516 return ICE_FEC_BASER;
3517
3518 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3519 ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3520 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3521 return ICE_FEC_RS;
3522
3523 return ICE_FEC_NONE;
3524 }
3525
3526 /**
3527 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3528 * @pi: port information structure
3529 * @cfg: PHY configuration data to set FC mode
3530 * @req_mode: FC mode to configure
3531 */
3532 int
ice_cfg_phy_fc(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fc_mode req_mode)3533 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3534 enum ice_fc_mode req_mode)
3535 {
3536 struct ice_phy_cache_mode_data cache_data;
3537 u8 pause_mask = 0x0;
3538
3539 if (!pi || !cfg)
3540 return -EINVAL;
3541
3542 switch (req_mode) {
3543 case ICE_FC_FULL:
3544 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3545 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3546 break;
3547 case ICE_FC_RX_PAUSE:
3548 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3549 break;
3550 case ICE_FC_TX_PAUSE:
3551 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3552 break;
3553 default:
3554 break;
3555 }
3556
3557 /* clear the old pause settings */
3558 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3559 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3560
3561 /* set the new capabilities */
3562 cfg->caps |= pause_mask;
3563
3564 /* Cache user FC request */
3565 cache_data.data.curr_user_fc_req = req_mode;
3566 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3567
3568 return 0;
3569 }
3570
3571 /**
3572 * ice_set_fc
3573 * @pi: port information structure
3574 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3575 * @ena_auto_link_update: enable automatic link update
3576 *
3577 * Set the requested flow control mode.
3578 */
3579 int
ice_set_fc(struct ice_port_info * pi,u8 * aq_failures,bool ena_auto_link_update)3580 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3581 {
3582 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3583 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3584 struct ice_hw *hw;
3585 int status;
3586
3587 if (!pi || !aq_failures)
3588 return -EINVAL;
3589
3590 *aq_failures = 0;
3591 hw = pi->hw;
3592
3593 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3594 if (!pcaps)
3595 return -ENOMEM;
3596
3597 /* Get the current PHY config */
3598 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3599 pcaps, NULL);
3600 if (status) {
3601 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3602 goto out;
3603 }
3604
3605 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3606
3607 /* Configure the set PHY data */
3608 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3609 if (status)
3610 goto out;
3611
3612 /* If the capabilities have changed, then set the new config */
3613 if (cfg.caps != pcaps->caps) {
3614 int retry_count, retry_max = 10;
3615
3616 /* Auto restart link so settings take effect */
3617 if (ena_auto_link_update)
3618 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3619
3620 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3621 if (status) {
3622 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3623 goto out;
3624 }
3625
3626 /* Update the link info
3627 * It sometimes takes a really long time for link to
3628 * come back from the atomic reset. Thus, we wait a
3629 * little bit.
3630 */
3631 for (retry_count = 0; retry_count < retry_max; retry_count++) {
3632 status = ice_update_link_info(pi);
3633
3634 if (!status)
3635 break;
3636
3637 mdelay(100);
3638 }
3639
3640 if (status)
3641 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3642 }
3643
3644 out:
3645 return status;
3646 }
3647
3648 /**
3649 * ice_phy_caps_equals_cfg
3650 * @phy_caps: PHY capabilities
3651 * @phy_cfg: PHY configuration
3652 *
3653 * Helper function to determine if PHY capabilities matches PHY
3654 * configuration
3655 */
3656 bool
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data * phy_caps,struct ice_aqc_set_phy_cfg_data * phy_cfg)3657 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3658 struct ice_aqc_set_phy_cfg_data *phy_cfg)
3659 {
3660 u8 caps_mask, cfg_mask;
3661
3662 if (!phy_caps || !phy_cfg)
3663 return false;
3664
3665 /* These bits are not common between capabilities and configuration.
3666 * Do not use them to determine equality.
3667 */
3668 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3669 ICE_AQC_GET_PHY_EN_MOD_QUAL);
3670 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3671
3672 if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3673 phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3674 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3675 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3676 phy_caps->eee_cap != phy_cfg->eee_cap ||
3677 phy_caps->eeer_value != phy_cfg->eeer_value ||
3678 phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3679 return false;
3680
3681 return true;
3682 }
3683
3684 /**
3685 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3686 * @pi: port information structure
3687 * @caps: PHY ability structure to copy date from
3688 * @cfg: PHY configuration structure to copy data to
3689 *
3690 * Helper function to copy AQC PHY get ability data to PHY set configuration
3691 * data structure
3692 */
3693 void
ice_copy_phy_caps_to_cfg(struct ice_port_info * pi,struct ice_aqc_get_phy_caps_data * caps,struct ice_aqc_set_phy_cfg_data * cfg)3694 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3695 struct ice_aqc_get_phy_caps_data *caps,
3696 struct ice_aqc_set_phy_cfg_data *cfg)
3697 {
3698 if (!pi || !caps || !cfg)
3699 return;
3700
3701 memset(cfg, 0, sizeof(*cfg));
3702 cfg->phy_type_low = caps->phy_type_low;
3703 cfg->phy_type_high = caps->phy_type_high;
3704 cfg->caps = caps->caps;
3705 cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3706 cfg->eee_cap = caps->eee_cap;
3707 cfg->eeer_value = caps->eeer_value;
3708 cfg->link_fec_opt = caps->link_fec_options;
3709 cfg->module_compliance_enforcement =
3710 caps->module_compliance_enforcement;
3711 }
3712
3713 /**
3714 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3715 * @pi: port information structure
3716 * @cfg: PHY configuration data to set FEC mode
3717 * @fec: FEC mode to configure
3718 */
3719 int
ice_cfg_phy_fec(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fec_mode fec)3720 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3721 enum ice_fec_mode fec)
3722 {
3723 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3724 struct ice_hw *hw;
3725 int status;
3726
3727 if (!pi || !cfg)
3728 return -EINVAL;
3729
3730 hw = pi->hw;
3731
3732 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3733 if (!pcaps)
3734 return -ENOMEM;
3735
3736 status = ice_aq_get_phy_caps(pi, false,
3737 (ice_fw_supports_report_dflt_cfg(hw) ?
3738 ICE_AQC_REPORT_DFLT_CFG :
3739 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3740 if (status)
3741 goto out;
3742
3743 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3744 cfg->link_fec_opt = pcaps->link_fec_options;
3745
3746 switch (fec) {
3747 case ICE_FEC_BASER:
3748 /* Clear RS bits, and AND BASE-R ability
3749 * bits and OR request bits.
3750 */
3751 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3752 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3753 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3754 ICE_AQC_PHY_FEC_25G_KR_REQ;
3755 break;
3756 case ICE_FEC_RS:
3757 /* Clear BASE-R bits, and AND RS ability
3758 * bits and OR request bits.
3759 */
3760 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3761 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3762 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3763 break;
3764 case ICE_FEC_NONE:
3765 /* Clear all FEC option bits. */
3766 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3767 break;
3768 case ICE_FEC_AUTO:
3769 /* AND auto FEC bit, and all caps bits. */
3770 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3771 cfg->link_fec_opt |= pcaps->link_fec_options;
3772 break;
3773 default:
3774 status = -EINVAL;
3775 break;
3776 }
3777
3778 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3779 !ice_fw_supports_report_dflt_cfg(hw)) {
3780 struct ice_link_default_override_tlv tlv = { 0 };
3781
3782 status = ice_get_link_default_override(&tlv, pi);
3783 if (status)
3784 goto out;
3785
3786 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3787 (tlv.options & ICE_LINK_OVERRIDE_EN))
3788 cfg->link_fec_opt = tlv.fec_options;
3789 }
3790
3791 out:
3792 return status;
3793 }
3794
3795 /**
3796 * ice_get_link_status - get status of the HW network link
3797 * @pi: port information structure
3798 * @link_up: pointer to bool (true/false = linkup/linkdown)
3799 *
3800 * Variable link_up is true if link is up, false if link is down.
3801 * The variable link_up is invalid if status is non zero. As a
3802 * result of this call, link status reporting becomes enabled
3803 */
ice_get_link_status(struct ice_port_info * pi,bool * link_up)3804 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3805 {
3806 struct ice_phy_info *phy_info;
3807 int status = 0;
3808
3809 if (!pi || !link_up)
3810 return -EINVAL;
3811
3812 phy_info = &pi->phy;
3813
3814 if (phy_info->get_link_info) {
3815 status = ice_update_link_info(pi);
3816
3817 if (status)
3818 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3819 status);
3820 }
3821
3822 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3823
3824 return status;
3825 }
3826
3827 /**
3828 * ice_aq_set_link_restart_an
3829 * @pi: pointer to the port information structure
3830 * @ena_link: if true: enable link, if false: disable link
3831 * @cd: pointer to command details structure or NULL
3832 *
3833 * Sets up the link and restarts the Auto-Negotiation over the link.
3834 */
3835 int
ice_aq_set_link_restart_an(struct ice_port_info * pi,bool ena_link,struct ice_sq_cd * cd)3836 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3837 struct ice_sq_cd *cd)
3838 {
3839 struct ice_aqc_restart_an *cmd;
3840 struct ice_aq_desc desc;
3841
3842 cmd = &desc.params.restart_an;
3843
3844 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3845
3846 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3847 cmd->lport_num = pi->lport;
3848 if (ena_link)
3849 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3850 else
3851 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3852
3853 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3854 }
3855
3856 /**
3857 * ice_aq_set_event_mask
3858 * @hw: pointer to the HW struct
3859 * @port_num: port number of the physical function
3860 * @mask: event mask to be set
3861 * @cd: pointer to command details structure or NULL
3862 *
3863 * Set event mask (0x0613)
3864 */
3865 int
ice_aq_set_event_mask(struct ice_hw * hw,u8 port_num,u16 mask,struct ice_sq_cd * cd)3866 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3867 struct ice_sq_cd *cd)
3868 {
3869 struct ice_aqc_set_event_mask *cmd;
3870 struct ice_aq_desc desc;
3871
3872 cmd = &desc.params.set_event_mask;
3873
3874 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3875
3876 cmd->lport_num = port_num;
3877
3878 cmd->event_mask = cpu_to_le16(mask);
3879 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3880 }
3881
3882 /**
3883 * ice_aq_set_mac_loopback
3884 * @hw: pointer to the HW struct
3885 * @ena_lpbk: Enable or Disable loopback
3886 * @cd: pointer to command details structure or NULL
3887 *
3888 * Enable/disable loopback on a given port
3889 */
3890 int
ice_aq_set_mac_loopback(struct ice_hw * hw,bool ena_lpbk,struct ice_sq_cd * cd)3891 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3892 {
3893 struct ice_aqc_set_mac_lb *cmd;
3894 struct ice_aq_desc desc;
3895
3896 cmd = &desc.params.set_mac_lb;
3897
3898 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3899 if (ena_lpbk)
3900 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3901
3902 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3903 }
3904
3905 /**
3906 * ice_aq_set_port_id_led
3907 * @pi: pointer to the port information
3908 * @is_orig_mode: is this LED set to original mode (by the net-list)
3909 * @cd: pointer to command details structure or NULL
3910 *
3911 * Set LED value for the given port (0x06e9)
3912 */
3913 int
ice_aq_set_port_id_led(struct ice_port_info * pi,bool is_orig_mode,struct ice_sq_cd * cd)3914 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3915 struct ice_sq_cd *cd)
3916 {
3917 struct ice_aqc_set_port_id_led *cmd;
3918 struct ice_hw *hw = pi->hw;
3919 struct ice_aq_desc desc;
3920
3921 cmd = &desc.params.set_port_id_led;
3922
3923 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3924
3925 if (is_orig_mode)
3926 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3927 else
3928 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3929
3930 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3931 }
3932
3933 /**
3934 * ice_aq_get_port_options
3935 * @hw: pointer to the HW struct
3936 * @options: buffer for the resultant port options
3937 * @option_count: input - size of the buffer in port options structures,
3938 * output - number of returned port options
3939 * @lport: logical port to call the command with (optional)
3940 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3941 * when PF owns more than 1 port it must be true
3942 * @active_option_idx: index of active port option in returned buffer
3943 * @active_option_valid: active option in returned buffer is valid
3944 * @pending_option_idx: index of pending port option in returned buffer
3945 * @pending_option_valid: pending option in returned buffer is valid
3946 *
3947 * Calls Get Port Options AQC (0x06ea) and verifies result.
3948 */
3949 int
ice_aq_get_port_options(struct ice_hw * hw,struct ice_aqc_get_port_options_elem * options,u8 * option_count,u8 lport,bool lport_valid,u8 * active_option_idx,bool * active_option_valid,u8 * pending_option_idx,bool * pending_option_valid)3950 ice_aq_get_port_options(struct ice_hw *hw,
3951 struct ice_aqc_get_port_options_elem *options,
3952 u8 *option_count, u8 lport, bool lport_valid,
3953 u8 *active_option_idx, bool *active_option_valid,
3954 u8 *pending_option_idx, bool *pending_option_valid)
3955 {
3956 struct ice_aqc_get_port_options *cmd;
3957 struct ice_aq_desc desc;
3958 int status;
3959 u8 i;
3960
3961 /* options buffer shall be able to hold max returned options */
3962 if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3963 return -EINVAL;
3964
3965 cmd = &desc.params.get_port_options;
3966 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3967
3968 if (lport_valid)
3969 cmd->lport_num = lport;
3970 cmd->lport_num_valid = lport_valid;
3971
3972 status = ice_aq_send_cmd(hw, &desc, options,
3973 *option_count * sizeof(*options), NULL);
3974 if (status)
3975 return status;
3976
3977 /* verify direct FW response & set output parameters */
3978 *option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3979 cmd->port_options_count);
3980 ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3981 *active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3982 cmd->port_options);
3983 if (*active_option_valid) {
3984 *active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3985 cmd->port_options);
3986 if (*active_option_idx > (*option_count - 1))
3987 return -EIO;
3988 ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3989 *active_option_idx);
3990 }
3991
3992 *pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3993 cmd->pending_port_option_status);
3994 if (*pending_option_valid) {
3995 *pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3996 cmd->pending_port_option_status);
3997 if (*pending_option_idx > (*option_count - 1))
3998 return -EIO;
3999 ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4000 *pending_option_idx);
4001 }
4002
4003 /* mask output options fields */
4004 for (i = 0; i < *option_count; i++) {
4005 options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4006 options[i].pmd);
4007 options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4008 options[i].max_lane_speed);
4009 ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4010 options[i].pmd, options[i].max_lane_speed);
4011 }
4012
4013 return 0;
4014 }
4015
4016 /**
4017 * ice_aq_set_port_option
4018 * @hw: pointer to the HW struct
4019 * @lport: logical port to call the command with
4020 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4021 * when PF owns more than 1 port it must be true
4022 * @new_option: new port option to be written
4023 *
4024 * Calls Set Port Options AQC (0x06eb).
4025 */
4026 int
ice_aq_set_port_option(struct ice_hw * hw,u8 lport,u8 lport_valid,u8 new_option)4027 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4028 u8 new_option)
4029 {
4030 struct ice_aqc_set_port_option *cmd;
4031 struct ice_aq_desc desc;
4032
4033 if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4034 return -EINVAL;
4035
4036 cmd = &desc.params.set_port_option;
4037 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4038
4039 if (lport_valid)
4040 cmd->lport_num = lport;
4041
4042 cmd->lport_num_valid = lport_valid;
4043 cmd->selected_port_option = new_option;
4044
4045 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4046 }
4047
4048 /**
4049 * ice_get_phy_lane_number - Get PHY lane number for current adapter
4050 * @hw: pointer to the hw struct
4051 *
4052 * Return: PHY lane number on success, negative error code otherwise.
4053 */
ice_get_phy_lane_number(struct ice_hw * hw)4054 int ice_get_phy_lane_number(struct ice_hw *hw)
4055 {
4056 struct ice_aqc_get_port_options_elem *options;
4057 unsigned int lport = 0;
4058 unsigned int lane;
4059 int err;
4060
4061 options = kcalloc(ICE_AQC_PORT_OPT_MAX, sizeof(*options), GFP_KERNEL);
4062 if (!options)
4063 return -ENOMEM;
4064
4065 for (lane = 0; lane < ICE_MAX_PORT_PER_PCI_DEV; lane++) {
4066 u8 options_count = ICE_AQC_PORT_OPT_MAX;
4067 u8 speed, active_idx, pending_idx;
4068 bool active_valid, pending_valid;
4069
4070 err = ice_aq_get_port_options(hw, options, &options_count, lane,
4071 true, &active_idx, &active_valid,
4072 &pending_idx, &pending_valid);
4073 if (err)
4074 goto err;
4075
4076 if (!active_valid)
4077 continue;
4078
4079 speed = options[active_idx].max_lane_speed;
4080 /* If we don't get speed for this lane, it's unoccupied */
4081 if (speed > ICE_AQC_PORT_OPT_MAX_LANE_200G)
4082 continue;
4083
4084 if (hw->pf_id == lport) {
4085 kfree(options);
4086 return lane;
4087 }
4088
4089 lport++;
4090 }
4091
4092 /* PHY lane not found */
4093 err = -ENXIO;
4094 err:
4095 kfree(options);
4096 return err;
4097 }
4098
4099 /**
4100 * ice_aq_sff_eeprom
4101 * @hw: pointer to the HW struct
4102 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4103 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4104 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4105 * @page: QSFP page
4106 * @set_page: set or ignore the page
4107 * @data: pointer to data buffer to be read/written to the I2C device.
4108 * @length: 1-16 for read, 1 for write.
4109 * @write: 0 read, 1 for write.
4110 * @cd: pointer to command details structure or NULL
4111 *
4112 * Read/Write SFF EEPROM (0x06EE)
4113 */
4114 int
ice_aq_sff_eeprom(struct ice_hw * hw,u16 lport,u8 bus_addr,u16 mem_addr,u8 page,u8 set_page,u8 * data,u8 length,bool write,struct ice_sq_cd * cd)4115 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4116 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4117 bool write, struct ice_sq_cd *cd)
4118 {
4119 struct ice_aqc_sff_eeprom *cmd;
4120 struct ice_aq_desc desc;
4121 u16 i2c_bus_addr;
4122 int status;
4123
4124 if (!data || (mem_addr & 0xff00))
4125 return -EINVAL;
4126
4127 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4128 cmd = &desc.params.read_write_sff_param;
4129 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
4130 cmd->lport_num = (u8)(lport & 0xff);
4131 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4132 i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4133 FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4134 if (write)
4135 i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4136 cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4137 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4138 cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4139
4140 status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4141 return status;
4142 }
4143
ice_lut_type_to_size(enum ice_lut_type type)4144 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4145 {
4146 switch (type) {
4147 case ICE_LUT_VSI:
4148 return ICE_LUT_VSI_SIZE;
4149 case ICE_LUT_GLOBAL:
4150 return ICE_LUT_GLOBAL_SIZE;
4151 case ICE_LUT_PF:
4152 return ICE_LUT_PF_SIZE;
4153 }
4154 WARN_ONCE(1, "incorrect type passed");
4155 return ICE_LUT_VSI_SIZE;
4156 }
4157
ice_lut_size_to_flag(enum ice_lut_size size)4158 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4159 {
4160 switch (size) {
4161 case ICE_LUT_VSI_SIZE:
4162 return ICE_AQC_LUT_SIZE_SMALL;
4163 case ICE_LUT_GLOBAL_SIZE:
4164 return ICE_AQC_LUT_SIZE_512;
4165 case ICE_LUT_PF_SIZE:
4166 return ICE_AQC_LUT_SIZE_2K;
4167 }
4168 WARN_ONCE(1, "incorrect size passed");
4169 return 0;
4170 }
4171
4172 /**
4173 * __ice_aq_get_set_rss_lut
4174 * @hw: pointer to the hardware structure
4175 * @params: RSS LUT parameters
4176 * @set: set true to set the table, false to get the table
4177 *
4178 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4179 */
4180 static int
__ice_aq_get_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * params,bool set)4181 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4182 struct ice_aq_get_set_rss_lut_params *params, bool set)
4183 {
4184 u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4185 enum ice_lut_type lut_type = params->lut_type;
4186 struct ice_aqc_get_set_rss_lut *desc_params;
4187 enum ice_aqc_lut_flags flags;
4188 enum ice_lut_size lut_size;
4189 struct ice_aq_desc desc;
4190 u8 *lut = params->lut;
4191
4192
4193 if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4194 return -EINVAL;
4195
4196 lut_size = ice_lut_type_to_size(lut_type);
4197 if (lut_size > params->lut_size)
4198 return -EINVAL;
4199 else if (set && lut_size != params->lut_size)
4200 return -EINVAL;
4201
4202 opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4203 ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4204 if (set)
4205 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4206
4207 desc_params = &desc.params.get_set_rss_lut;
4208 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4209 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4210
4211 if (lut_type == ICE_LUT_GLOBAL)
4212 glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4213 params->global_lut_id);
4214
4215 flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4216 desc_params->flags = cpu_to_le16(flags);
4217
4218 return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4219 }
4220
4221 /**
4222 * ice_aq_get_rss_lut
4223 * @hw: pointer to the hardware structure
4224 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4225 *
4226 * get the RSS lookup table, PF or VSI type
4227 */
4228 int
ice_aq_get_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * get_params)4229 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4230 {
4231 return __ice_aq_get_set_rss_lut(hw, get_params, false);
4232 }
4233
4234 /**
4235 * ice_aq_set_rss_lut
4236 * @hw: pointer to the hardware structure
4237 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4238 *
4239 * set the RSS lookup table, PF or VSI type
4240 */
4241 int
ice_aq_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * set_params)4242 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4243 {
4244 return __ice_aq_get_set_rss_lut(hw, set_params, true);
4245 }
4246
4247 /**
4248 * __ice_aq_get_set_rss_key
4249 * @hw: pointer to the HW struct
4250 * @vsi_id: VSI FW index
4251 * @key: pointer to key info struct
4252 * @set: set true to set the key, false to get the key
4253 *
4254 * get (0x0B04) or set (0x0B02) the RSS key per VSI
4255 */
4256 static int
__ice_aq_get_set_rss_key(struct ice_hw * hw,u16 vsi_id,struct ice_aqc_get_set_rss_keys * key,bool set)4257 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4258 struct ice_aqc_get_set_rss_keys *key, bool set)
4259 {
4260 struct ice_aqc_get_set_rss_key *desc_params;
4261 u16 key_size = sizeof(*key);
4262 struct ice_aq_desc desc;
4263
4264 if (set) {
4265 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4266 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4267 } else {
4268 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4269 }
4270
4271 desc_params = &desc.params.get_set_rss_key;
4272 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4273
4274 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4275 }
4276
4277 /**
4278 * ice_aq_get_rss_key
4279 * @hw: pointer to the HW struct
4280 * @vsi_handle: software VSI handle
4281 * @key: pointer to key info struct
4282 *
4283 * get the RSS key per VSI
4284 */
4285 int
ice_aq_get_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * key)4286 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4287 struct ice_aqc_get_set_rss_keys *key)
4288 {
4289 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4290 return -EINVAL;
4291
4292 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4293 key, false);
4294 }
4295
4296 /**
4297 * ice_aq_set_rss_key
4298 * @hw: pointer to the HW struct
4299 * @vsi_handle: software VSI handle
4300 * @keys: pointer to key info struct
4301 *
4302 * set the RSS key per VSI
4303 */
4304 int
ice_aq_set_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * keys)4305 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4306 struct ice_aqc_get_set_rss_keys *keys)
4307 {
4308 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4309 return -EINVAL;
4310
4311 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4312 keys, true);
4313 }
4314
4315 /**
4316 * ice_aq_add_lan_txq
4317 * @hw: pointer to the hardware structure
4318 * @num_qgrps: Number of added queue groups
4319 * @qg_list: list of queue groups to be added
4320 * @buf_size: size of buffer for indirect command
4321 * @cd: pointer to command details structure or NULL
4322 *
4323 * Add Tx LAN queue (0x0C30)
4324 *
4325 * NOTE:
4326 * Prior to calling add Tx LAN queue:
4327 * Initialize the following as part of the Tx queue context:
4328 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4329 * Cache profile and Packet shaper profile.
4330 *
4331 * After add Tx LAN queue AQ command is completed:
4332 * Interrupts should be associated with specific queues,
4333 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4334 * flow.
4335 */
4336 static int
ice_aq_add_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * qg_list,u16 buf_size,struct ice_sq_cd * cd)4337 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4338 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4339 struct ice_sq_cd *cd)
4340 {
4341 struct ice_aqc_add_tx_qgrp *list;
4342 struct ice_aqc_add_txqs *cmd;
4343 struct ice_aq_desc desc;
4344 u16 i, sum_size = 0;
4345
4346 cmd = &desc.params.add_txqs;
4347
4348 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4349
4350 if (!qg_list)
4351 return -EINVAL;
4352
4353 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4354 return -EINVAL;
4355
4356 for (i = 0, list = qg_list; i < num_qgrps; i++) {
4357 sum_size += struct_size(list, txqs, list->num_txqs);
4358 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4359 list->num_txqs);
4360 }
4361
4362 if (buf_size != sum_size)
4363 return -EINVAL;
4364
4365 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4366
4367 cmd->num_qgrps = num_qgrps;
4368
4369 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4370 }
4371
4372 /**
4373 * ice_aq_dis_lan_txq
4374 * @hw: pointer to the hardware structure
4375 * @num_qgrps: number of groups in the list
4376 * @qg_list: the list of groups to disable
4377 * @buf_size: the total size of the qg_list buffer in bytes
4378 * @rst_src: if called due to reset, specifies the reset source
4379 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4380 * @cd: pointer to command details structure or NULL
4381 *
4382 * Disable LAN Tx queue (0x0C31)
4383 */
4384 static int
ice_aq_dis_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_dis_txq_item * qg_list,u16 buf_size,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4385 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4386 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4387 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4388 struct ice_sq_cd *cd)
4389 {
4390 struct ice_aqc_dis_txq_item *item;
4391 struct ice_aqc_dis_txqs *cmd;
4392 struct ice_aq_desc desc;
4393 u16 vmvf_and_timeout;
4394 u16 i, sz = 0;
4395 int status;
4396
4397 cmd = &desc.params.dis_txqs;
4398 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4399
4400 /* qg_list can be NULL only in VM/VF reset flow */
4401 if (!qg_list && !rst_src)
4402 return -EINVAL;
4403
4404 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4405 return -EINVAL;
4406
4407 cmd->num_entries = num_qgrps;
4408
4409 vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4410
4411 switch (rst_src) {
4412 case ICE_VM_RESET:
4413 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4414 vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4415 break;
4416 case ICE_VF_RESET:
4417 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4418 /* In this case, FW expects vmvf_num to be absolute VF ID */
4419 vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4420 ICE_AQC_Q_DIS_VMVF_NUM_M;
4421 break;
4422 case ICE_NO_RESET:
4423 default:
4424 break;
4425 }
4426
4427 cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4428
4429 /* flush pipe on time out */
4430 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4431 /* If no queue group info, we are in a reset flow. Issue the AQ */
4432 if (!qg_list)
4433 goto do_aq;
4434
4435 /* set RD bit to indicate that command buffer is provided by the driver
4436 * and it needs to be read by the firmware
4437 */
4438 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4439
4440 for (i = 0, item = qg_list; i < num_qgrps; i++) {
4441 u16 item_size = struct_size(item, q_id, item->num_qs);
4442
4443 /* If the num of queues is even, add 2 bytes of padding */
4444 if ((item->num_qs % 2) == 0)
4445 item_size += 2;
4446
4447 sz += item_size;
4448
4449 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4450 }
4451
4452 if (buf_size != sz)
4453 return -EINVAL;
4454
4455 do_aq:
4456 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4457 if (status) {
4458 if (!qg_list)
4459 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4460 vmvf_num, hw->adminq.sq_last_status);
4461 else
4462 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4463 le16_to_cpu(qg_list[0].q_id[0]),
4464 hw->adminq.sq_last_status);
4465 }
4466 return status;
4467 }
4468
4469 /**
4470 * ice_aq_cfg_lan_txq
4471 * @hw: pointer to the hardware structure
4472 * @buf: buffer for command
4473 * @buf_size: size of buffer in bytes
4474 * @num_qs: number of queues being configured
4475 * @oldport: origination lport
4476 * @newport: destination lport
4477 * @cd: pointer to command details structure or NULL
4478 *
4479 * Move/Configure LAN Tx queue (0x0C32)
4480 *
4481 * There is a better AQ command to use for moving nodes, so only coding
4482 * this one for configuring the node.
4483 */
4484 int
ice_aq_cfg_lan_txq(struct ice_hw * hw,struct ice_aqc_cfg_txqs_buf * buf,u16 buf_size,u16 num_qs,u8 oldport,u8 newport,struct ice_sq_cd * cd)4485 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4486 u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4487 struct ice_sq_cd *cd)
4488 {
4489 struct ice_aqc_cfg_txqs *cmd;
4490 struct ice_aq_desc desc;
4491 int status;
4492
4493 cmd = &desc.params.cfg_txqs;
4494 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4495 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4496
4497 if (!buf)
4498 return -EINVAL;
4499
4500 cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4501 cmd->num_qs = num_qs;
4502 cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4503 cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4504 cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4505 cmd->blocked_cgds = 0;
4506
4507 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4508 if (status)
4509 ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4510 hw->adminq.sq_last_status);
4511 return status;
4512 }
4513
4514 /**
4515 * ice_aq_add_rdma_qsets
4516 * @hw: pointer to the hardware structure
4517 * @num_qset_grps: Number of RDMA Qset groups
4518 * @qset_list: list of Qset groups to be added
4519 * @buf_size: size of buffer for indirect command
4520 * @cd: pointer to command details structure or NULL
4521 *
4522 * Add Tx RDMA Qsets (0x0C33)
4523 */
4524 static int
ice_aq_add_rdma_qsets(struct ice_hw * hw,u8 num_qset_grps,struct ice_aqc_add_rdma_qset_data * qset_list,u16 buf_size,struct ice_sq_cd * cd)4525 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4526 struct ice_aqc_add_rdma_qset_data *qset_list,
4527 u16 buf_size, struct ice_sq_cd *cd)
4528 {
4529 struct ice_aqc_add_rdma_qset_data *list;
4530 struct ice_aqc_add_rdma_qset *cmd;
4531 struct ice_aq_desc desc;
4532 u16 i, sum_size = 0;
4533
4534 cmd = &desc.params.add_rdma_qset;
4535
4536 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4537
4538 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4539 return -EINVAL;
4540
4541 for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4542 u16 num_qsets = le16_to_cpu(list->num_qsets);
4543
4544 sum_size += struct_size(list, rdma_qsets, num_qsets);
4545 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4546 num_qsets);
4547 }
4548
4549 if (buf_size != sum_size)
4550 return -EINVAL;
4551
4552 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4553
4554 cmd->num_qset_grps = num_qset_grps;
4555
4556 return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4557 }
4558
4559 /* End of FW Admin Queue command wrappers */
4560
4561 /**
4562 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4563 * @hw: pointer to the HW struct
4564 * @vsi_handle: software VSI handle
4565 * @tc: TC number
4566 * @q_handle: software queue handle
4567 */
4568 struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 q_handle)4569 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4570 {
4571 struct ice_vsi_ctx *vsi;
4572 struct ice_q_ctx *q_ctx;
4573
4574 vsi = ice_get_vsi_ctx(hw, vsi_handle);
4575 if (!vsi)
4576 return NULL;
4577 if (q_handle >= vsi->num_lan_q_entries[tc])
4578 return NULL;
4579 if (!vsi->lan_q_ctx[tc])
4580 return NULL;
4581 q_ctx = vsi->lan_q_ctx[tc];
4582 return &q_ctx[q_handle];
4583 }
4584
4585 /**
4586 * ice_ena_vsi_txq
4587 * @pi: port information structure
4588 * @vsi_handle: software VSI handle
4589 * @tc: TC number
4590 * @q_handle: software queue handle
4591 * @num_qgrps: Number of added queue groups
4592 * @buf: list of queue groups to be added
4593 * @buf_size: size of buffer for indirect command
4594 * @cd: pointer to command details structure or NULL
4595 *
4596 * This function adds one LAN queue
4597 */
4598 int
ice_ena_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * buf,u16 buf_size,struct ice_sq_cd * cd)4599 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4600 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4601 struct ice_sq_cd *cd)
4602 {
4603 struct ice_aqc_txsched_elem_data node = { 0 };
4604 struct ice_sched_node *parent;
4605 struct ice_q_ctx *q_ctx;
4606 struct ice_hw *hw;
4607 int status;
4608
4609 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4610 return -EIO;
4611
4612 if (num_qgrps > 1 || buf->num_txqs > 1)
4613 return -ENOSPC;
4614
4615 hw = pi->hw;
4616
4617 if (!ice_is_vsi_valid(hw, vsi_handle))
4618 return -EINVAL;
4619
4620 mutex_lock(&pi->sched_lock);
4621
4622 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4623 if (!q_ctx) {
4624 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4625 q_handle);
4626 status = -EINVAL;
4627 goto ena_txq_exit;
4628 }
4629
4630 /* find a parent node */
4631 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4632 ICE_SCHED_NODE_OWNER_LAN);
4633 if (!parent) {
4634 status = -EINVAL;
4635 goto ena_txq_exit;
4636 }
4637
4638 buf->parent_teid = parent->info.node_teid;
4639 node.parent_teid = parent->info.node_teid;
4640 /* Mark that the values in the "generic" section as valid. The default
4641 * value in the "generic" section is zero. This means that :
4642 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4643 * - 0 priority among siblings, indicated by Bit 1-3.
4644 * - WFQ, indicated by Bit 4.
4645 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4646 * Bit 5-6.
4647 * - Bit 7 is reserved.
4648 * Without setting the generic section as valid in valid_sections, the
4649 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4650 */
4651 buf->txqs[0].info.valid_sections =
4652 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4653 ICE_AQC_ELEM_VALID_EIR;
4654 buf->txqs[0].info.generic = 0;
4655 buf->txqs[0].info.cir_bw.bw_profile_idx =
4656 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4657 buf->txqs[0].info.cir_bw.bw_alloc =
4658 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4659 buf->txqs[0].info.eir_bw.bw_profile_idx =
4660 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4661 buf->txqs[0].info.eir_bw.bw_alloc =
4662 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4663
4664 /* add the LAN queue */
4665 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4666 if (status) {
4667 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4668 le16_to_cpu(buf->txqs[0].txq_id),
4669 hw->adminq.sq_last_status);
4670 goto ena_txq_exit;
4671 }
4672
4673 node.node_teid = buf->txqs[0].q_teid;
4674 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4675 q_ctx->q_handle = q_handle;
4676 q_ctx->q_teid = le32_to_cpu(node.node_teid);
4677
4678 /* add a leaf node into scheduler tree queue layer */
4679 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4680 if (!status)
4681 status = ice_sched_replay_q_bw(pi, q_ctx);
4682
4683 ena_txq_exit:
4684 mutex_unlock(&pi->sched_lock);
4685 return status;
4686 }
4687
4688 /**
4689 * ice_dis_vsi_txq
4690 * @pi: port information structure
4691 * @vsi_handle: software VSI handle
4692 * @tc: TC number
4693 * @num_queues: number of queues
4694 * @q_handles: pointer to software queue handle array
4695 * @q_ids: pointer to the q_id array
4696 * @q_teids: pointer to queue node teids
4697 * @rst_src: if called due to reset, specifies the reset source
4698 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4699 * @cd: pointer to command details structure or NULL
4700 *
4701 * This function removes queues and their corresponding nodes in SW DB
4702 */
4703 int
ice_dis_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 num_queues,u16 * q_handles,u16 * q_ids,u32 * q_teids,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4704 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4705 u16 *q_handles, u16 *q_ids, u32 *q_teids,
4706 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4707 struct ice_sq_cd *cd)
4708 {
4709 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4710 u16 i, buf_size = __struct_size(qg_list);
4711 struct ice_q_ctx *q_ctx;
4712 int status = -ENOENT;
4713 struct ice_hw *hw;
4714
4715 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4716 return -EIO;
4717
4718 hw = pi->hw;
4719
4720 if (!num_queues) {
4721 /* if queue is disabled already yet the disable queue command
4722 * has to be sent to complete the VF reset, then call
4723 * ice_aq_dis_lan_txq without any queue information
4724 */
4725 if (rst_src)
4726 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4727 vmvf_num, NULL);
4728 return -EIO;
4729 }
4730
4731 mutex_lock(&pi->sched_lock);
4732
4733 for (i = 0; i < num_queues; i++) {
4734 struct ice_sched_node *node;
4735
4736 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4737 if (!node)
4738 continue;
4739 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4740 if (!q_ctx) {
4741 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4742 q_handles[i]);
4743 continue;
4744 }
4745 if (q_ctx->q_handle != q_handles[i]) {
4746 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4747 q_ctx->q_handle, q_handles[i]);
4748 continue;
4749 }
4750 qg_list->parent_teid = node->info.parent_teid;
4751 qg_list->num_qs = 1;
4752 qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4753 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4754 vmvf_num, cd);
4755
4756 if (status)
4757 break;
4758 ice_free_sched_node(pi, node);
4759 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4760 q_ctx->q_teid = ICE_INVAL_TEID;
4761 }
4762 mutex_unlock(&pi->sched_lock);
4763 return status;
4764 }
4765
4766 /**
4767 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4768 * @pi: port information structure
4769 * @vsi_handle: software VSI handle
4770 * @tc_bitmap: TC bitmap
4771 * @maxqs: max queues array per TC
4772 * @owner: LAN or RDMA
4773 *
4774 * This function adds/updates the VSI queues per TC.
4775 */
4776 static int
ice_cfg_vsi_qs(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * maxqs,u8 owner)4777 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4778 u16 *maxqs, u8 owner)
4779 {
4780 int status = 0;
4781 u8 i;
4782
4783 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4784 return -EIO;
4785
4786 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4787 return -EINVAL;
4788
4789 mutex_lock(&pi->sched_lock);
4790
4791 ice_for_each_traffic_class(i) {
4792 /* configuration is possible only if TC node is present */
4793 if (!ice_sched_get_tc_node(pi, i))
4794 continue;
4795
4796 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4797 ice_is_tc_ena(tc_bitmap, i));
4798 if (status)
4799 break;
4800 }
4801
4802 mutex_unlock(&pi->sched_lock);
4803 return status;
4804 }
4805
4806 /**
4807 * ice_cfg_vsi_lan - configure VSI LAN queues
4808 * @pi: port information structure
4809 * @vsi_handle: software VSI handle
4810 * @tc_bitmap: TC bitmap
4811 * @max_lanqs: max LAN queues array per TC
4812 *
4813 * This function adds/updates the VSI LAN queues per TC.
4814 */
4815 int
ice_cfg_vsi_lan(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * max_lanqs)4816 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4817 u16 *max_lanqs)
4818 {
4819 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4820 ICE_SCHED_NODE_OWNER_LAN);
4821 }
4822
4823 /**
4824 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4825 * @pi: port information structure
4826 * @vsi_handle: software VSI handle
4827 * @tc_bitmap: TC bitmap
4828 * @max_rdmaqs: max RDMA queues array per TC
4829 *
4830 * This function adds/updates the VSI RDMA queues per TC.
4831 */
4832 int
ice_cfg_vsi_rdma(struct ice_port_info * pi,u16 vsi_handle,u16 tc_bitmap,u16 * max_rdmaqs)4833 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4834 u16 *max_rdmaqs)
4835 {
4836 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4837 ICE_SCHED_NODE_OWNER_RDMA);
4838 }
4839
4840 /**
4841 * ice_ena_vsi_rdma_qset
4842 * @pi: port information structure
4843 * @vsi_handle: software VSI handle
4844 * @tc: TC number
4845 * @rdma_qset: pointer to RDMA Qset
4846 * @num_qsets: number of RDMA Qsets
4847 * @qset_teid: pointer to Qset node TEIDs
4848 *
4849 * This function adds RDMA Qset
4850 */
4851 int
ice_ena_vsi_rdma_qset(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 * rdma_qset,u16 num_qsets,u32 * qset_teid)4852 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4853 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4854 {
4855 struct ice_aqc_txsched_elem_data node = { 0 };
4856 struct ice_aqc_add_rdma_qset_data *buf;
4857 struct ice_sched_node *parent;
4858 struct ice_hw *hw;
4859 u16 i, buf_size;
4860 int ret;
4861
4862 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4863 return -EIO;
4864 hw = pi->hw;
4865
4866 if (!ice_is_vsi_valid(hw, vsi_handle))
4867 return -EINVAL;
4868
4869 buf_size = struct_size(buf, rdma_qsets, num_qsets);
4870 buf = kzalloc(buf_size, GFP_KERNEL);
4871 if (!buf)
4872 return -ENOMEM;
4873 mutex_lock(&pi->sched_lock);
4874
4875 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4876 ICE_SCHED_NODE_OWNER_RDMA);
4877 if (!parent) {
4878 ret = -EINVAL;
4879 goto rdma_error_exit;
4880 }
4881 buf->parent_teid = parent->info.node_teid;
4882 node.parent_teid = parent->info.node_teid;
4883
4884 buf->num_qsets = cpu_to_le16(num_qsets);
4885 for (i = 0; i < num_qsets; i++) {
4886 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4887 buf->rdma_qsets[i].info.valid_sections =
4888 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4889 ICE_AQC_ELEM_VALID_EIR;
4890 buf->rdma_qsets[i].info.generic = 0;
4891 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4892 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4893 buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4894 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4895 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4896 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4897 buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4898 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4899 }
4900 ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4901 if (ret) {
4902 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4903 goto rdma_error_exit;
4904 }
4905 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4906 for (i = 0; i < num_qsets; i++) {
4907 node.node_teid = buf->rdma_qsets[i].qset_teid;
4908 ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4909 &node, NULL);
4910 if (ret)
4911 break;
4912 qset_teid[i] = le32_to_cpu(node.node_teid);
4913 }
4914 rdma_error_exit:
4915 mutex_unlock(&pi->sched_lock);
4916 kfree(buf);
4917 return ret;
4918 }
4919
4920 /**
4921 * ice_dis_vsi_rdma_qset - free RDMA resources
4922 * @pi: port_info struct
4923 * @count: number of RDMA Qsets to free
4924 * @qset_teid: TEID of Qset node
4925 * @q_id: list of queue IDs being disabled
4926 */
4927 int
ice_dis_vsi_rdma_qset(struct ice_port_info * pi,u16 count,u32 * qset_teid,u16 * q_id)4928 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4929 u16 *q_id)
4930 {
4931 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4932 u16 qg_size = __struct_size(qg_list);
4933 struct ice_hw *hw;
4934 int status = 0;
4935 int i;
4936
4937 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4938 return -EIO;
4939
4940 hw = pi->hw;
4941
4942 mutex_lock(&pi->sched_lock);
4943
4944 for (i = 0; i < count; i++) {
4945 struct ice_sched_node *node;
4946
4947 node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4948 if (!node)
4949 continue;
4950
4951 qg_list->parent_teid = node->info.parent_teid;
4952 qg_list->num_qs = 1;
4953 qg_list->q_id[0] =
4954 cpu_to_le16(q_id[i] |
4955 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4956
4957 status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4958 ICE_NO_RESET, 0, NULL);
4959 if (status)
4960 break;
4961
4962 ice_free_sched_node(pi, node);
4963 }
4964
4965 mutex_unlock(&pi->sched_lock);
4966 return status;
4967 }
4968
4969 /**
4970 * ice_aq_get_cgu_abilities - get cgu abilities
4971 * @hw: pointer to the HW struct
4972 * @abilities: CGU abilities
4973 *
4974 * Get CGU abilities (0x0C61)
4975 * Return: 0 on success or negative value on failure.
4976 */
4977 int
ice_aq_get_cgu_abilities(struct ice_hw * hw,struct ice_aqc_get_cgu_abilities * abilities)4978 ice_aq_get_cgu_abilities(struct ice_hw *hw,
4979 struct ice_aqc_get_cgu_abilities *abilities)
4980 {
4981 struct ice_aq_desc desc;
4982
4983 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
4984 return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
4985 }
4986
4987 /**
4988 * ice_aq_set_input_pin_cfg - set input pin config
4989 * @hw: pointer to the HW struct
4990 * @input_idx: Input index
4991 * @flags1: Input flags
4992 * @flags2: Input flags
4993 * @freq: Frequency in Hz
4994 * @phase_delay: Delay in ps
4995 *
4996 * Set CGU input config (0x0C62)
4997 * Return: 0 on success or negative value on failure.
4998 */
4999 int
ice_aq_set_input_pin_cfg(struct ice_hw * hw,u8 input_idx,u8 flags1,u8 flags2,u32 freq,s32 phase_delay)5000 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5001 u32 freq, s32 phase_delay)
5002 {
5003 struct ice_aqc_set_cgu_input_config *cmd;
5004 struct ice_aq_desc desc;
5005
5006 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5007 cmd = &desc.params.set_cgu_input_config;
5008 cmd->input_idx = input_idx;
5009 cmd->flags1 = flags1;
5010 cmd->flags2 = flags2;
5011 cmd->freq = cpu_to_le32(freq);
5012 cmd->phase_delay = cpu_to_le32(phase_delay);
5013
5014 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5015 }
5016
5017 /**
5018 * ice_aq_get_input_pin_cfg - get input pin config
5019 * @hw: pointer to the HW struct
5020 * @input_idx: Input index
5021 * @status: Pin status
5022 * @type: Pin type
5023 * @flags1: Input flags
5024 * @flags2: Input flags
5025 * @freq: Frequency in Hz
5026 * @phase_delay: Delay in ps
5027 *
5028 * Get CGU input config (0x0C63)
5029 * Return: 0 on success or negative value on failure.
5030 */
5031 int
ice_aq_get_input_pin_cfg(struct ice_hw * hw,u8 input_idx,u8 * status,u8 * type,u8 * flags1,u8 * flags2,u32 * freq,s32 * phase_delay)5032 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5033 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5034 {
5035 struct ice_aqc_get_cgu_input_config *cmd;
5036 struct ice_aq_desc desc;
5037 int ret;
5038
5039 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5040 cmd = &desc.params.get_cgu_input_config;
5041 cmd->input_idx = input_idx;
5042
5043 ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5044 if (!ret) {
5045 if (status)
5046 *status = cmd->status;
5047 if (type)
5048 *type = cmd->type;
5049 if (flags1)
5050 *flags1 = cmd->flags1;
5051 if (flags2)
5052 *flags2 = cmd->flags2;
5053 if (freq)
5054 *freq = le32_to_cpu(cmd->freq);
5055 if (phase_delay)
5056 *phase_delay = le32_to_cpu(cmd->phase_delay);
5057 }
5058
5059 return ret;
5060 }
5061
5062 /**
5063 * ice_aq_set_output_pin_cfg - set output pin config
5064 * @hw: pointer to the HW struct
5065 * @output_idx: Output index
5066 * @flags: Output flags
5067 * @src_sel: Index of DPLL block
5068 * @freq: Output frequency
5069 * @phase_delay: Output phase compensation
5070 *
5071 * Set CGU output config (0x0C64)
5072 * Return: 0 on success or negative value on failure.
5073 */
5074 int
ice_aq_set_output_pin_cfg(struct ice_hw * hw,u8 output_idx,u8 flags,u8 src_sel,u32 freq,s32 phase_delay)5075 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5076 u8 src_sel, u32 freq, s32 phase_delay)
5077 {
5078 struct ice_aqc_set_cgu_output_config *cmd;
5079 struct ice_aq_desc desc;
5080
5081 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5082 cmd = &desc.params.set_cgu_output_config;
5083 cmd->output_idx = output_idx;
5084 cmd->flags = flags;
5085 cmd->src_sel = src_sel;
5086 cmd->freq = cpu_to_le32(freq);
5087 cmd->phase_delay = cpu_to_le32(phase_delay);
5088
5089 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5090 }
5091
5092 /**
5093 * ice_aq_get_output_pin_cfg - get output pin config
5094 * @hw: pointer to the HW struct
5095 * @output_idx: Output index
5096 * @flags: Output flags
5097 * @src_sel: Internal DPLL source
5098 * @freq: Output frequency
5099 * @src_freq: Source frequency
5100 *
5101 * Get CGU output config (0x0C65)
5102 * Return: 0 on success or negative value on failure.
5103 */
5104 int
ice_aq_get_output_pin_cfg(struct ice_hw * hw,u8 output_idx,u8 * flags,u8 * src_sel,u32 * freq,u32 * src_freq)5105 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5106 u8 *src_sel, u32 *freq, u32 *src_freq)
5107 {
5108 struct ice_aqc_get_cgu_output_config *cmd;
5109 struct ice_aq_desc desc;
5110 int ret;
5111
5112 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5113 cmd = &desc.params.get_cgu_output_config;
5114 cmd->output_idx = output_idx;
5115
5116 ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5117 if (!ret) {
5118 if (flags)
5119 *flags = cmd->flags;
5120 if (src_sel)
5121 *src_sel = cmd->src_sel;
5122 if (freq)
5123 *freq = le32_to_cpu(cmd->freq);
5124 if (src_freq)
5125 *src_freq = le32_to_cpu(cmd->src_freq);
5126 }
5127
5128 return ret;
5129 }
5130
5131 /**
5132 * ice_aq_get_cgu_dpll_status - get dpll status
5133 * @hw: pointer to the HW struct
5134 * @dpll_num: DPLL index
5135 * @ref_state: Reference clock state
5136 * @config: current DPLL config
5137 * @dpll_state: current DPLL state
5138 * @phase_offset: Phase offset in ns
5139 * @eec_mode: EEC_mode
5140 *
5141 * Get CGU DPLL status (0x0C66)
5142 * Return: 0 on success or negative value on failure.
5143 */
5144 int
ice_aq_get_cgu_dpll_status(struct ice_hw * hw,u8 dpll_num,u8 * ref_state,u8 * dpll_state,u8 * config,s64 * phase_offset,u8 * eec_mode)5145 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5146 u8 *dpll_state, u8 *config, s64 *phase_offset,
5147 u8 *eec_mode)
5148 {
5149 struct ice_aqc_get_cgu_dpll_status *cmd;
5150 struct ice_aq_desc desc;
5151 int status;
5152
5153 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5154 cmd = &desc.params.get_cgu_dpll_status;
5155 cmd->dpll_num = dpll_num;
5156
5157 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5158 if (!status) {
5159 *ref_state = cmd->ref_state;
5160 *dpll_state = cmd->dpll_state;
5161 *config = cmd->config;
5162 *phase_offset = le32_to_cpu(cmd->phase_offset_h);
5163 *phase_offset <<= 32;
5164 *phase_offset += le32_to_cpu(cmd->phase_offset_l);
5165 *phase_offset = sign_extend64(*phase_offset, 47);
5166 *eec_mode = cmd->eec_mode;
5167 }
5168
5169 return status;
5170 }
5171
5172 /**
5173 * ice_aq_set_cgu_dpll_config - set dpll config
5174 * @hw: pointer to the HW struct
5175 * @dpll_num: DPLL index
5176 * @ref_state: Reference clock state
5177 * @config: DPLL config
5178 * @eec_mode: EEC mode
5179 *
5180 * Set CGU DPLL config (0x0C67)
5181 * Return: 0 on success or negative value on failure.
5182 */
5183 int
ice_aq_set_cgu_dpll_config(struct ice_hw * hw,u8 dpll_num,u8 ref_state,u8 config,u8 eec_mode)5184 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5185 u8 config, u8 eec_mode)
5186 {
5187 struct ice_aqc_set_cgu_dpll_config *cmd;
5188 struct ice_aq_desc desc;
5189
5190 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5191 cmd = &desc.params.set_cgu_dpll_config;
5192 cmd->dpll_num = dpll_num;
5193 cmd->ref_state = ref_state;
5194 cmd->config = config;
5195 cmd->eec_mode = eec_mode;
5196
5197 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5198 }
5199
5200 /**
5201 * ice_aq_set_cgu_ref_prio - set input reference priority
5202 * @hw: pointer to the HW struct
5203 * @dpll_num: DPLL index
5204 * @ref_idx: Reference pin index
5205 * @ref_priority: Reference input priority
5206 *
5207 * Set CGU reference priority (0x0C68)
5208 * Return: 0 on success or negative value on failure.
5209 */
5210 int
ice_aq_set_cgu_ref_prio(struct ice_hw * hw,u8 dpll_num,u8 ref_idx,u8 ref_priority)5211 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5212 u8 ref_priority)
5213 {
5214 struct ice_aqc_set_cgu_ref_prio *cmd;
5215 struct ice_aq_desc desc;
5216
5217 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5218 cmd = &desc.params.set_cgu_ref_prio;
5219 cmd->dpll_num = dpll_num;
5220 cmd->ref_idx = ref_idx;
5221 cmd->ref_priority = ref_priority;
5222
5223 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5224 }
5225
5226 /**
5227 * ice_aq_get_cgu_ref_prio - get input reference priority
5228 * @hw: pointer to the HW struct
5229 * @dpll_num: DPLL index
5230 * @ref_idx: Reference pin index
5231 * @ref_prio: Reference input priority
5232 *
5233 * Get CGU reference priority (0x0C69)
5234 * Return: 0 on success or negative value on failure.
5235 */
5236 int
ice_aq_get_cgu_ref_prio(struct ice_hw * hw,u8 dpll_num,u8 ref_idx,u8 * ref_prio)5237 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5238 u8 *ref_prio)
5239 {
5240 struct ice_aqc_get_cgu_ref_prio *cmd;
5241 struct ice_aq_desc desc;
5242 int status;
5243
5244 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5245 cmd = &desc.params.get_cgu_ref_prio;
5246 cmd->dpll_num = dpll_num;
5247 cmd->ref_idx = ref_idx;
5248
5249 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5250 if (!status)
5251 *ref_prio = cmd->ref_priority;
5252
5253 return status;
5254 }
5255
5256 /**
5257 * ice_aq_get_cgu_info - get cgu info
5258 * @hw: pointer to the HW struct
5259 * @cgu_id: CGU ID
5260 * @cgu_cfg_ver: CGU config version
5261 * @cgu_fw_ver: CGU firmware version
5262 *
5263 * Get CGU info (0x0C6A)
5264 * Return: 0 on success or negative value on failure.
5265 */
5266 int
ice_aq_get_cgu_info(struct ice_hw * hw,u32 * cgu_id,u32 * cgu_cfg_ver,u32 * cgu_fw_ver)5267 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5268 u32 *cgu_fw_ver)
5269 {
5270 struct ice_aqc_get_cgu_info *cmd;
5271 struct ice_aq_desc desc;
5272 int status;
5273
5274 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5275 cmd = &desc.params.get_cgu_info;
5276
5277 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5278 if (!status) {
5279 *cgu_id = le32_to_cpu(cmd->cgu_id);
5280 *cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5281 *cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5282 }
5283
5284 return status;
5285 }
5286
5287 /**
5288 * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5289 * @hw: pointer to the HW struct
5290 * @phy_output: PHY reference clock output pin
5291 * @enable: GPIO state to be applied
5292 * @freq: PHY output frequency
5293 *
5294 * Set phy recovered clock as reference (0x0630)
5295 * Return: 0 on success or negative value on failure.
5296 */
5297 int
ice_aq_set_phy_rec_clk_out(struct ice_hw * hw,u8 phy_output,bool enable,u32 * freq)5298 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5299 u32 *freq)
5300 {
5301 struct ice_aqc_set_phy_rec_clk_out *cmd;
5302 struct ice_aq_desc desc;
5303 int status;
5304
5305 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5306 cmd = &desc.params.set_phy_rec_clk_out;
5307 cmd->phy_output = phy_output;
5308 cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5309 cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5310 cmd->freq = cpu_to_le32(*freq);
5311
5312 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5313 if (!status)
5314 *freq = le32_to_cpu(cmd->freq);
5315
5316 return status;
5317 }
5318
5319 /**
5320 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5321 * @hw: pointer to the HW struct
5322 * @phy_output: PHY reference clock output pin
5323 * @port_num: Port number
5324 * @flags: PHY flags
5325 * @node_handle: PHY output frequency
5326 *
5327 * Get PHY recovered clock output info (0x0631)
5328 * Return: 0 on success or negative value on failure.
5329 */
5330 int
ice_aq_get_phy_rec_clk_out(struct ice_hw * hw,u8 * phy_output,u8 * port_num,u8 * flags,u16 * node_handle)5331 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5332 u8 *flags, u16 *node_handle)
5333 {
5334 struct ice_aqc_get_phy_rec_clk_out *cmd;
5335 struct ice_aq_desc desc;
5336 int status;
5337
5338 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5339 cmd = &desc.params.get_phy_rec_clk_out;
5340 cmd->phy_output = *phy_output;
5341
5342 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5343 if (!status) {
5344 *phy_output = cmd->phy_output;
5345 if (port_num)
5346 *port_num = cmd->port_num;
5347 if (flags)
5348 *flags = cmd->flags;
5349 if (node_handle)
5350 *node_handle = le16_to_cpu(cmd->node_handle);
5351 }
5352
5353 return status;
5354 }
5355
5356 /**
5357 * ice_aq_get_sensor_reading
5358 * @hw: pointer to the HW struct
5359 * @data: pointer to data to be read from the sensor
5360 *
5361 * Get sensor reading (0x0632)
5362 */
ice_aq_get_sensor_reading(struct ice_hw * hw,struct ice_aqc_get_sensor_reading_resp * data)5363 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5364 struct ice_aqc_get_sensor_reading_resp *data)
5365 {
5366 struct ice_aqc_get_sensor_reading *cmd;
5367 struct ice_aq_desc desc;
5368 int status;
5369
5370 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5371 cmd = &desc.params.get_sensor_reading;
5372 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT 0
5373 #define ICE_INTERNAL_TEMP_SENSOR 0
5374 cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5375 cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5376
5377 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5378 if (!status)
5379 memcpy(data, &desc.params.get_sensor_reading_resp,
5380 sizeof(*data));
5381
5382 return status;
5383 }
5384
5385 /**
5386 * ice_replay_pre_init - replay pre initialization
5387 * @hw: pointer to the HW struct
5388 *
5389 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5390 */
ice_replay_pre_init(struct ice_hw * hw)5391 static int ice_replay_pre_init(struct ice_hw *hw)
5392 {
5393 struct ice_switch_info *sw = hw->switch_info;
5394 u8 i;
5395
5396 /* Delete old entries from replay filter list head if there is any */
5397 ice_rm_all_sw_replay_rule_info(hw);
5398 /* In start of replay, move entries into replay_rules list, it
5399 * will allow adding rules entries back to filt_rules list,
5400 * which is operational list.
5401 */
5402 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5403 list_replace_init(&sw->recp_list[i].filt_rules,
5404 &sw->recp_list[i].filt_replay_rules);
5405 ice_sched_replay_agg_vsi_preinit(hw);
5406
5407 return 0;
5408 }
5409
5410 /**
5411 * ice_replay_vsi - replay VSI configuration
5412 * @hw: pointer to the HW struct
5413 * @vsi_handle: driver VSI handle
5414 *
5415 * Restore all VSI configuration after reset. It is required to call this
5416 * function with main VSI first.
5417 */
ice_replay_vsi(struct ice_hw * hw,u16 vsi_handle)5418 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5419 {
5420 int status;
5421
5422 if (!ice_is_vsi_valid(hw, vsi_handle))
5423 return -EINVAL;
5424
5425 /* Replay pre-initialization if there is any */
5426 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5427 status = ice_replay_pre_init(hw);
5428 if (status)
5429 return status;
5430 }
5431 /* Replay per VSI all RSS configurations */
5432 status = ice_replay_rss_cfg(hw, vsi_handle);
5433 if (status)
5434 return status;
5435 /* Replay per VSI all filters */
5436 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5437 if (!status)
5438 status = ice_replay_vsi_agg(hw, vsi_handle);
5439 return status;
5440 }
5441
5442 /**
5443 * ice_replay_post - post replay configuration cleanup
5444 * @hw: pointer to the HW struct
5445 *
5446 * Post replay cleanup.
5447 */
ice_replay_post(struct ice_hw * hw)5448 void ice_replay_post(struct ice_hw *hw)
5449 {
5450 /* Delete old entries from replay filter list head */
5451 ice_rm_all_sw_replay_rule_info(hw);
5452 ice_sched_replay_agg(hw);
5453 }
5454
5455 /**
5456 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5457 * @hw: ptr to the hardware info
5458 * @reg: offset of 64 bit HW register to read from
5459 * @prev_stat_loaded: bool to specify if previous stats are loaded
5460 * @prev_stat: ptr to previous loaded stat value
5461 * @cur_stat: ptr to current stat value
5462 */
5463 void
ice_stat_update40(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5464 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5465 u64 *prev_stat, u64 *cur_stat)
5466 {
5467 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5468
5469 /* device stats are not reset at PFR, they likely will not be zeroed
5470 * when the driver starts. Thus, save the value from the first read
5471 * without adding to the statistic value so that we report stats which
5472 * count up from zero.
5473 */
5474 if (!prev_stat_loaded) {
5475 *prev_stat = new_data;
5476 return;
5477 }
5478
5479 /* Calculate the difference between the new and old values, and then
5480 * add it to the software stat value.
5481 */
5482 if (new_data >= *prev_stat)
5483 *cur_stat += new_data - *prev_stat;
5484 else
5485 /* to manage the potential roll-over */
5486 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5487
5488 /* Update the previously stored value to prepare for next read */
5489 *prev_stat = new_data;
5490 }
5491
5492 /**
5493 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5494 * @hw: ptr to the hardware info
5495 * @reg: offset of HW register to read from
5496 * @prev_stat_loaded: bool to specify if previous stats are loaded
5497 * @prev_stat: ptr to previous loaded stat value
5498 * @cur_stat: ptr to current stat value
5499 */
5500 void
ice_stat_update32(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5501 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5502 u64 *prev_stat, u64 *cur_stat)
5503 {
5504 u32 new_data;
5505
5506 new_data = rd32(hw, reg);
5507
5508 /* device stats are not reset at PFR, they likely will not be zeroed
5509 * when the driver starts. Thus, save the value from the first read
5510 * without adding to the statistic value so that we report stats which
5511 * count up from zero.
5512 */
5513 if (!prev_stat_loaded) {
5514 *prev_stat = new_data;
5515 return;
5516 }
5517
5518 /* Calculate the difference between the new and old values, and then
5519 * add it to the software stat value.
5520 */
5521 if (new_data >= *prev_stat)
5522 *cur_stat += new_data - *prev_stat;
5523 else
5524 /* to manage the potential roll-over */
5525 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5526
5527 /* Update the previously stored value to prepare for next read */
5528 *prev_stat = new_data;
5529 }
5530
5531 /**
5532 * ice_sched_query_elem - query element information from HW
5533 * @hw: pointer to the HW struct
5534 * @node_teid: node TEID to be queried
5535 * @buf: buffer to element information
5536 *
5537 * This function queries HW element information
5538 */
5539 int
ice_sched_query_elem(struct ice_hw * hw,u32 node_teid,struct ice_aqc_txsched_elem_data * buf)5540 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5541 struct ice_aqc_txsched_elem_data *buf)
5542 {
5543 u16 buf_size, num_elem_ret = 0;
5544 int status;
5545
5546 buf_size = sizeof(*buf);
5547 memset(buf, 0, buf_size);
5548 buf->node_teid = cpu_to_le32(node_teid);
5549 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5550 NULL);
5551 if (status || num_elem_ret != 1)
5552 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5553 return status;
5554 }
5555
5556 /**
5557 * ice_aq_read_i2c
5558 * @hw: pointer to the hw struct
5559 * @topo_addr: topology address for a device to communicate with
5560 * @bus_addr: 7-bit I2C bus address
5561 * @addr: I2C memory address (I2C offset) with up to 16 bits
5562 * @params: I2C parameters: bit [7] - Repeated start,
5563 * bits [6:5] data offset size,
5564 * bit [4] - I2C address type,
5565 * bits [3:0] - data size to read (0-16 bytes)
5566 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5567 * @cd: pointer to command details structure or NULL
5568 *
5569 * Read I2C (0x06E2)
5570 */
5571 int
ice_aq_read_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,u8 * data,struct ice_sq_cd * cd)5572 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5573 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5574 struct ice_sq_cd *cd)
5575 {
5576 struct ice_aq_desc desc = { 0 };
5577 struct ice_aqc_i2c *cmd;
5578 u8 data_size;
5579 int status;
5580
5581 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5582 cmd = &desc.params.read_write_i2c;
5583
5584 if (!data)
5585 return -EINVAL;
5586
5587 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5588
5589 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5590 cmd->topo_addr = topo_addr;
5591 cmd->i2c_params = params;
5592 cmd->i2c_addr = addr;
5593
5594 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5595 if (!status) {
5596 struct ice_aqc_read_i2c_resp *resp;
5597 u8 i;
5598
5599 resp = &desc.params.read_i2c_resp;
5600 for (i = 0; i < data_size; i++) {
5601 *data = resp->i2c_data[i];
5602 data++;
5603 }
5604 }
5605
5606 return status;
5607 }
5608
5609 /**
5610 * ice_aq_write_i2c
5611 * @hw: pointer to the hw struct
5612 * @topo_addr: topology address for a device to communicate with
5613 * @bus_addr: 7-bit I2C bus address
5614 * @addr: I2C memory address (I2C offset) with up to 16 bits
5615 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5616 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5617 * @cd: pointer to command details structure or NULL
5618 *
5619 * Write I2C (0x06E3)
5620 *
5621 * * Return:
5622 * * 0 - Successful write to the i2c device
5623 * * -EINVAL - Data size greater than 4 bytes
5624 * * -EIO - FW error
5625 */
5626 int
ice_aq_write_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,const u8 * data,struct ice_sq_cd * cd)5627 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5628 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5629 struct ice_sq_cd *cd)
5630 {
5631 struct ice_aq_desc desc = { 0 };
5632 struct ice_aqc_i2c *cmd;
5633 u8 data_size;
5634
5635 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5636 cmd = &desc.params.read_write_i2c;
5637
5638 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5639
5640 /* data_size limited to 4 */
5641 if (data_size > 4)
5642 return -EINVAL;
5643
5644 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5645 cmd->topo_addr = topo_addr;
5646 cmd->i2c_params = params;
5647 cmd->i2c_addr = addr;
5648
5649 memcpy(cmd->i2c_data, data, data_size);
5650
5651 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5652 }
5653
5654 /**
5655 * ice_get_pca9575_handle - find and return the PCA9575 controller
5656 * @hw: pointer to the hw struct
5657 * @pca9575_handle: GPIO controller's handle
5658 *
5659 * Find and return the GPIO controller's handle in the netlist.
5660 * When found - the value will be cached in the hw structure and following calls
5661 * will return cached value.
5662 *
5663 * Return: 0 on success, -ENXIO when there's no PCA9575 present.
5664 */
ice_get_pca9575_handle(struct ice_hw * hw,u16 * pca9575_handle)5665 int ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
5666 {
5667 struct ice_aqc_get_link_topo *cmd;
5668 struct ice_aq_desc desc;
5669 int err;
5670 u8 idx;
5671
5672 /* If handle was read previously return cached value */
5673 if (hw->io_expander_handle) {
5674 *pca9575_handle = hw->io_expander_handle;
5675 return 0;
5676 }
5677
5678 #define SW_PCA9575_SFP_TOPO_IDX 2
5679 #define SW_PCA9575_QSFP_TOPO_IDX 1
5680
5681 /* Check if the SW IO expander controlling SMA exists in the netlist. */
5682 if (hw->device_id == ICE_DEV_ID_E810C_SFP)
5683 idx = SW_PCA9575_SFP_TOPO_IDX;
5684 else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
5685 idx = SW_PCA9575_QSFP_TOPO_IDX;
5686 else
5687 return -ENXIO;
5688
5689 /* If handle was not detected read it from the netlist */
5690 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
5691 cmd = &desc.params.get_link_topo;
5692 cmd->addr.topo_params.node_type_ctx =
5693 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL;
5694 cmd->addr.topo_params.index = idx;
5695
5696 err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5697 if (err)
5698 return -ENXIO;
5699
5700 /* Verify if we found the right IO expander type */
5701 if (desc.params.get_link_topo.node_part_num !=
5702 ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
5703 return -ENXIO;
5704
5705 /* If present save the handle and return it */
5706 hw->io_expander_handle =
5707 le16_to_cpu(desc.params.get_link_topo.addr.handle);
5708 *pca9575_handle = hw->io_expander_handle;
5709
5710 return 0;
5711 }
5712
5713 /**
5714 * ice_read_pca9575_reg - read the register from the PCA9575 controller
5715 * @hw: pointer to the hw struct
5716 * @offset: GPIO controller register offset
5717 * @data: pointer to data to be read from the GPIO controller
5718 *
5719 * Return: 0 on success, negative error code otherwise.
5720 */
ice_read_pca9575_reg(struct ice_hw * hw,u8 offset,u8 * data)5721 int ice_read_pca9575_reg(struct ice_hw *hw, u8 offset, u8 *data)
5722 {
5723 struct ice_aqc_link_topo_addr link_topo;
5724 __le16 addr;
5725 u16 handle;
5726 int err;
5727
5728 memset(&link_topo, 0, sizeof(link_topo));
5729
5730 err = ice_get_pca9575_handle(hw, &handle);
5731 if (err)
5732 return err;
5733
5734 link_topo.handle = cpu_to_le16(handle);
5735 link_topo.topo_params.node_type_ctx =
5736 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
5737 ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
5738
5739 addr = cpu_to_le16((u16)offset);
5740
5741 return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
5742 }
5743
5744 /**
5745 * ice_aq_set_gpio
5746 * @hw: pointer to the hw struct
5747 * @gpio_ctrl_handle: GPIO controller node handle
5748 * @pin_idx: IO Number of the GPIO that needs to be set
5749 * @value: SW provide IO value to set in the LSB
5750 * @cd: pointer to command details structure or NULL
5751 *
5752 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5753 */
5754 int
ice_aq_set_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool value,struct ice_sq_cd * cd)5755 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5756 struct ice_sq_cd *cd)
5757 {
5758 struct ice_aqc_gpio *cmd;
5759 struct ice_aq_desc desc;
5760
5761 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5762 cmd = &desc.params.read_write_gpio;
5763 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5764 cmd->gpio_num = pin_idx;
5765 cmd->gpio_val = value ? 1 : 0;
5766
5767 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5768 }
5769
5770 /**
5771 * ice_aq_get_gpio
5772 * @hw: pointer to the hw struct
5773 * @gpio_ctrl_handle: GPIO controller node handle
5774 * @pin_idx: IO Number of the GPIO that needs to be set
5775 * @value: IO value read
5776 * @cd: pointer to command details structure or NULL
5777 *
5778 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5779 * the topology
5780 */
5781 int
ice_aq_get_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool * value,struct ice_sq_cd * cd)5782 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5783 bool *value, struct ice_sq_cd *cd)
5784 {
5785 struct ice_aqc_gpio *cmd;
5786 struct ice_aq_desc desc;
5787 int status;
5788
5789 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5790 cmd = &desc.params.read_write_gpio;
5791 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5792 cmd->gpio_num = pin_idx;
5793
5794 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5795 if (status)
5796 return status;
5797
5798 *value = !!cmd->gpio_val;
5799 return 0;
5800 }
5801
5802 /**
5803 * ice_is_fw_api_min_ver
5804 * @hw: pointer to the hardware structure
5805 * @maj: major version
5806 * @min: minor version
5807 * @patch: patch version
5808 *
5809 * Checks if the firmware API is minimum version
5810 */
ice_is_fw_api_min_ver(struct ice_hw * hw,u8 maj,u8 min,u8 patch)5811 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5812 {
5813 if (hw->api_maj_ver == maj) {
5814 if (hw->api_min_ver > min)
5815 return true;
5816 if (hw->api_min_ver == min && hw->api_patch >= patch)
5817 return true;
5818 } else if (hw->api_maj_ver > maj) {
5819 return true;
5820 }
5821
5822 return false;
5823 }
5824
5825 /**
5826 * ice_fw_supports_link_override
5827 * @hw: pointer to the hardware structure
5828 *
5829 * Checks if the firmware supports link override
5830 */
ice_fw_supports_link_override(struct ice_hw * hw)5831 bool ice_fw_supports_link_override(struct ice_hw *hw)
5832 {
5833 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5834 ICE_FW_API_LINK_OVERRIDE_MIN,
5835 ICE_FW_API_LINK_OVERRIDE_PATCH);
5836 }
5837
5838 /**
5839 * ice_get_link_default_override
5840 * @ldo: pointer to the link default override struct
5841 * @pi: pointer to the port info struct
5842 *
5843 * Gets the link default override for a port
5844 */
5845 int
ice_get_link_default_override(struct ice_link_default_override_tlv * ldo,struct ice_port_info * pi)5846 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5847 struct ice_port_info *pi)
5848 {
5849 u16 i, tlv, tlv_len, tlv_start, buf, offset;
5850 struct ice_hw *hw = pi->hw;
5851 int status;
5852
5853 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5854 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5855 if (status) {
5856 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5857 return status;
5858 }
5859
5860 /* Each port has its own config; calculate for our port */
5861 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5862 ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5863
5864 /* link options first */
5865 status = ice_read_sr_word(hw, tlv_start, &buf);
5866 if (status) {
5867 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5868 return status;
5869 }
5870 ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5871 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5872 ICE_LINK_OVERRIDE_PHY_CFG_S;
5873
5874 /* link PHY config */
5875 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5876 status = ice_read_sr_word(hw, offset, &buf);
5877 if (status) {
5878 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5879 return status;
5880 }
5881 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5882
5883 /* PHY types low */
5884 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5885 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5886 status = ice_read_sr_word(hw, (offset + i), &buf);
5887 if (status) {
5888 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5889 return status;
5890 }
5891 /* shift 16 bits at a time to fill 64 bits */
5892 ldo->phy_type_low |= ((u64)buf << (i * 16));
5893 }
5894
5895 /* PHY types high */
5896 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5897 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5898 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5899 status = ice_read_sr_word(hw, (offset + i), &buf);
5900 if (status) {
5901 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5902 return status;
5903 }
5904 /* shift 16 bits at a time to fill 64 bits */
5905 ldo->phy_type_high |= ((u64)buf << (i * 16));
5906 }
5907
5908 return status;
5909 }
5910
5911 /**
5912 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5913 * @caps: get PHY capability data
5914 */
ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data * caps)5915 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5916 {
5917 if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5918 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5919 ICE_AQC_PHY_AN_EN_CLAUSE73 |
5920 ICE_AQC_PHY_AN_EN_CLAUSE37))
5921 return true;
5922
5923 return false;
5924 }
5925
5926 /**
5927 * ice_is_fw_health_report_supported - checks if firmware supports health events
5928 * @hw: pointer to the hardware structure
5929 *
5930 * Return: true if firmware supports health status reports,
5931 * false otherwise
5932 */
ice_is_fw_health_report_supported(struct ice_hw * hw)5933 bool ice_is_fw_health_report_supported(struct ice_hw *hw)
5934 {
5935 return ice_is_fw_api_min_ver(hw, ICE_FW_API_HEALTH_REPORT_MAJ,
5936 ICE_FW_API_HEALTH_REPORT_MIN,
5937 ICE_FW_API_HEALTH_REPORT_PATCH);
5938 }
5939
5940 /**
5941 * ice_aq_set_health_status_cfg - Configure FW health events
5942 * @hw: pointer to the HW struct
5943 * @event_source: type of diagnostic events to enable
5944 *
5945 * Configure the health status event types that the firmware will send to this
5946 * PF. The supported event types are: PF-specific, all PFs, and global.
5947 *
5948 * Return: 0 on success, negative error code otherwise.
5949 */
ice_aq_set_health_status_cfg(struct ice_hw * hw,u8 event_source)5950 int ice_aq_set_health_status_cfg(struct ice_hw *hw, u8 event_source)
5951 {
5952 struct ice_aqc_set_health_status_cfg *cmd;
5953 struct ice_aq_desc desc;
5954
5955 cmd = &desc.params.set_health_status_cfg;
5956
5957 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_health_status_cfg);
5958
5959 cmd->event_source = event_source;
5960
5961 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5962 }
5963
5964 /**
5965 * ice_aq_set_lldp_mib - Set the LLDP MIB
5966 * @hw: pointer to the HW struct
5967 * @mib_type: Local, Remote or both Local and Remote MIBs
5968 * @buf: pointer to the caller-supplied buffer to store the MIB block
5969 * @buf_size: size of the buffer (in bytes)
5970 * @cd: pointer to command details structure or NULL
5971 *
5972 * Set the LLDP MIB. (0x0A08)
5973 */
5974 int
ice_aq_set_lldp_mib(struct ice_hw * hw,u8 mib_type,void * buf,u16 buf_size,struct ice_sq_cd * cd)5975 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5976 struct ice_sq_cd *cd)
5977 {
5978 struct ice_aqc_lldp_set_local_mib *cmd;
5979 struct ice_aq_desc desc;
5980
5981 cmd = &desc.params.lldp_set_mib;
5982
5983 if (buf_size == 0 || !buf)
5984 return -EINVAL;
5985
5986 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5987
5988 desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5989 desc.datalen = cpu_to_le16(buf_size);
5990
5991 cmd->type = mib_type;
5992 cmd->length = cpu_to_le16(buf_size);
5993
5994 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5995 }
5996
5997 /**
5998 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5999 * @hw: pointer to HW struct
6000 */
ice_fw_supports_lldp_fltr_ctrl(struct ice_hw * hw)6001 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6002 {
6003 if (hw->mac_type != ICE_MAC_E810)
6004 return false;
6005
6006 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6007 ICE_FW_API_LLDP_FLTR_MIN,
6008 ICE_FW_API_LLDP_FLTR_PATCH);
6009 }
6010
6011 /**
6012 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6013 * @hw: pointer to HW struct
6014 * @vsi_num: absolute HW index for VSI
6015 * @add: boolean for if adding or removing a filter
6016 */
6017 int
ice_lldp_fltr_add_remove(struct ice_hw * hw,u16 vsi_num,bool add)6018 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
6019 {
6020 struct ice_aqc_lldp_filter_ctrl *cmd;
6021 struct ice_aq_desc desc;
6022
6023 cmd = &desc.params.lldp_filter_ctrl;
6024
6025 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6026
6027 if (add)
6028 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6029 else
6030 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6031
6032 cmd->vsi_num = cpu_to_le16(vsi_num);
6033
6034 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6035 }
6036
6037 /**
6038 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6039 * @hw: pointer to HW struct
6040 */
ice_lldp_execute_pending_mib(struct ice_hw * hw)6041 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6042 {
6043 struct ice_aq_desc desc;
6044
6045 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6046
6047 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6048 }
6049
6050 /**
6051 * ice_fw_supports_report_dflt_cfg
6052 * @hw: pointer to the hardware structure
6053 *
6054 * Checks if the firmware supports report default configuration
6055 */
ice_fw_supports_report_dflt_cfg(struct ice_hw * hw)6056 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6057 {
6058 return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6059 ICE_FW_API_REPORT_DFLT_CFG_MIN,
6060 ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6061 }
6062
6063 /* each of the indexes into the following array match the speed of a return
6064 * value from the list of AQ returned speeds like the range:
6065 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6066 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6067 * array. The array is defined as 15 elements long because the link_speed
6068 * returned by the firmware is a 16 bit * value, but is indexed
6069 * by [fls(speed) - 1]
6070 */
6071 static const u32 ice_aq_to_link_speed[] = {
6072 SPEED_10, /* BIT(0) */
6073 SPEED_100,
6074 SPEED_1000,
6075 SPEED_2500,
6076 SPEED_5000,
6077 SPEED_10000,
6078 SPEED_20000,
6079 SPEED_25000,
6080 SPEED_40000,
6081 SPEED_50000,
6082 SPEED_100000, /* BIT(10) */
6083 SPEED_200000,
6084 };
6085
6086 /**
6087 * ice_get_link_speed - get integer speed from table
6088 * @index: array index from fls(aq speed) - 1
6089 *
6090 * Returns: u32 value containing integer speed
6091 */
ice_get_link_speed(u16 index)6092 u32 ice_get_link_speed(u16 index)
6093 {
6094 if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6095 return 0;
6096
6097 return ice_aq_to_link_speed[index];
6098 }
6099