1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_type.h"
11 #include "ice_vsi_vlan_ops.h"
12
13 /**
14 * ice_vsi_type_str - maps VSI type enum to string equivalents
15 * @vsi_type: VSI type enum
16 */
ice_vsi_type_str(enum ice_vsi_type vsi_type)17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 switch (vsi_type) {
20 case ICE_VSI_PF:
21 return "ICE_VSI_PF";
22 case ICE_VSI_VF:
23 return "ICE_VSI_VF";
24 case ICE_VSI_SF:
25 return "ICE_VSI_SF";
26 case ICE_VSI_CTRL:
27 return "ICE_VSI_CTRL";
28 case ICE_VSI_CHNL:
29 return "ICE_VSI_CHNL";
30 case ICE_VSI_LB:
31 return "ICE_VSI_LB";
32 default:
33 return "unknown";
34 }
35 }
36
37 /**
38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39 * @vsi: the VSI being configured
40 * @ena: start or stop the Rx rings
41 *
42 * First enable/disable all of the Rx rings, flush any remaining writes, and
43 * then verify that they have all been enabled/disabled successfully. This will
44 * let all of the register writes complete when enabling/disabling the Rx rings
45 * before waiting for the change in hardware to complete.
46 */
ice_vsi_ctrl_all_rx_rings(struct ice_vsi * vsi,bool ena)47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 int ret = 0;
50 u16 i;
51
52 ice_for_each_rxq(vsi, i)
53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54
55 ice_flush(&vsi->back->hw);
56
57 ice_for_each_rxq(vsi, i) {
58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 if (ret)
60 break;
61 }
62
63 return ret;
64 }
65
66 /**
67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68 * @vsi: VSI pointer
69 *
70 * On error: returns error code (negative)
71 * On success: returns 0
72 */
ice_vsi_alloc_arrays(struct ice_vsi * vsi)73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 struct ice_pf *pf = vsi->back;
76 struct device *dev;
77
78 dev = ice_pf_to_dev(pf);
79 if (vsi->type == ICE_VSI_CHNL)
80 return 0;
81
82 /* allocate memory for both Tx and Rx ring pointers */
83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 sizeof(*vsi->tx_rings), GFP_KERNEL);
85 if (!vsi->tx_rings)
86 return -ENOMEM;
87
88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 sizeof(*vsi->rx_rings), GFP_KERNEL);
90 if (!vsi->rx_rings)
91 goto err_rings;
92
93 /* txq_map needs to have enough space to track both Tx (stack) rings
94 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 * so use num_possible_cpus() as we want to always provide XDP ring
96 * per CPU, regardless of queue count settings from user that might
97 * have come from ethtool's set_channels() callback;
98 */
99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 sizeof(*vsi->txq_map), GFP_KERNEL);
101
102 if (!vsi->txq_map)
103 goto err_txq_map;
104
105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 sizeof(*vsi->rxq_map), GFP_KERNEL);
107 if (!vsi->rxq_map)
108 goto err_rxq_map;
109
110 /* There is no need to allocate q_vectors for a loopback VSI. */
111 if (vsi->type == ICE_VSI_LB)
112 return 0;
113
114 /* allocate memory for q_vector pointers */
115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 sizeof(*vsi->q_vectors), GFP_KERNEL);
117 if (!vsi->q_vectors)
118 goto err_vectors;
119
120 return 0;
121
122 err_vectors:
123 devm_kfree(dev, vsi->rxq_map);
124 err_rxq_map:
125 devm_kfree(dev, vsi->txq_map);
126 err_txq_map:
127 devm_kfree(dev, vsi->rx_rings);
128 err_rings:
129 devm_kfree(dev, vsi->tx_rings);
130 return -ENOMEM;
131 }
132
133 /**
134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
135 * @vsi: the VSI being configured
136 */
ice_vsi_set_num_desc(struct ice_vsi * vsi)137 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
138 {
139 switch (vsi->type) {
140 case ICE_VSI_PF:
141 case ICE_VSI_SF:
142 case ICE_VSI_CTRL:
143 case ICE_VSI_LB:
144 /* a user could change the values of num_[tr]x_desc using
145 * ethtool -G so we should keep those values instead of
146 * overwriting them with the defaults.
147 */
148 if (!vsi->num_rx_desc)
149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
150 if (!vsi->num_tx_desc)
151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
152 break;
153 default:
154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
155 vsi->type);
156 break;
157 }
158 }
159
160 /**
161 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
162 * @vsi: the VSI being configured
163 *
164 * Return 0 on success and a negative value on error
165 */
ice_vsi_set_num_qs(struct ice_vsi * vsi)166 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
167 {
168 enum ice_vsi_type vsi_type = vsi->type;
169 struct ice_pf *pf = vsi->back;
170 struct ice_vf *vf = vsi->vf;
171
172 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
173 return;
174
175 switch (vsi_type) {
176 case ICE_VSI_PF:
177 if (vsi->req_txq) {
178 vsi->alloc_txq = vsi->req_txq;
179 vsi->num_txq = vsi->req_txq;
180 } else {
181 vsi->alloc_txq = min3(pf->num_lan_msix,
182 ice_get_avail_txq_count(pf),
183 (u16)num_online_cpus());
184 }
185
186 pf->num_lan_tx = vsi->alloc_txq;
187
188 /* only 1 Rx queue unless RSS is enabled */
189 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
190 vsi->alloc_rxq = 1;
191 } else {
192 if (vsi->req_rxq) {
193 vsi->alloc_rxq = vsi->req_rxq;
194 vsi->num_rxq = vsi->req_rxq;
195 } else {
196 vsi->alloc_rxq = min3(pf->num_lan_msix,
197 ice_get_avail_rxq_count(pf),
198 (u16)num_online_cpus());
199 }
200 }
201
202 pf->num_lan_rx = vsi->alloc_rxq;
203
204 vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
205 max_t(int, vsi->alloc_rxq,
206 vsi->alloc_txq));
207 break;
208 case ICE_VSI_SF:
209 vsi->alloc_txq = 1;
210 vsi->alloc_rxq = 1;
211 vsi->num_q_vectors = 1;
212 vsi->irq_dyn_alloc = true;
213 break;
214 case ICE_VSI_VF:
215 if (vf->num_req_qs)
216 vf->num_vf_qs = vf->num_req_qs;
217 vsi->alloc_txq = vf->num_vf_qs;
218 vsi->alloc_rxq = vf->num_vf_qs;
219 /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
220 * data queue interrupts). Since vsi->num_q_vectors is number
221 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
222 * original vector count
223 */
224 vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
225 break;
226 case ICE_VSI_CTRL:
227 vsi->alloc_txq = 1;
228 vsi->alloc_rxq = 1;
229 vsi->num_q_vectors = 1;
230 break;
231 case ICE_VSI_CHNL:
232 vsi->alloc_txq = 0;
233 vsi->alloc_rxq = 0;
234 break;
235 case ICE_VSI_LB:
236 vsi->alloc_txq = 1;
237 vsi->alloc_rxq = 1;
238 break;
239 default:
240 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
241 break;
242 }
243
244 ice_vsi_set_num_desc(vsi);
245 }
246
247 /**
248 * ice_get_free_slot - get the next non-NULL location index in array
249 * @array: array to search
250 * @size: size of the array
251 * @curr: last known occupied index to be used as a search hint
252 *
253 * void * is being used to keep the functionality generic. This lets us use this
254 * function on any array of pointers.
255 */
ice_get_free_slot(void * array,int size,int curr)256 static int ice_get_free_slot(void *array, int size, int curr)
257 {
258 int **tmp_array = (int **)array;
259 int next;
260
261 if (curr < (size - 1) && !tmp_array[curr + 1]) {
262 next = curr + 1;
263 } else {
264 int i = 0;
265
266 while ((i < size) && (tmp_array[i]))
267 i++;
268 if (i == size)
269 next = ICE_NO_VSI;
270 else
271 next = i;
272 }
273 return next;
274 }
275
276 /**
277 * ice_vsi_delete_from_hw - delete a VSI from the switch
278 * @vsi: pointer to VSI being removed
279 */
ice_vsi_delete_from_hw(struct ice_vsi * vsi)280 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
281 {
282 struct ice_pf *pf = vsi->back;
283 struct ice_vsi_ctx *ctxt;
284 int status;
285
286 ice_fltr_remove_all(vsi);
287 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
288 if (!ctxt)
289 return;
290
291 if (vsi->type == ICE_VSI_VF)
292 ctxt->vf_num = vsi->vf->vf_id;
293 ctxt->vsi_num = vsi->vsi_num;
294
295 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
296
297 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
298 if (status)
299 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
300 vsi->vsi_num, status);
301
302 kfree(ctxt);
303 }
304
305 /**
306 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
307 * @vsi: pointer to VSI being cleared
308 */
ice_vsi_free_arrays(struct ice_vsi * vsi)309 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
310 {
311 struct ice_pf *pf = vsi->back;
312 struct device *dev;
313
314 dev = ice_pf_to_dev(pf);
315
316 /* free the ring and vector containers */
317 devm_kfree(dev, vsi->q_vectors);
318 vsi->q_vectors = NULL;
319 devm_kfree(dev, vsi->tx_rings);
320 vsi->tx_rings = NULL;
321 devm_kfree(dev, vsi->rx_rings);
322 vsi->rx_rings = NULL;
323 devm_kfree(dev, vsi->txq_map);
324 vsi->txq_map = NULL;
325 devm_kfree(dev, vsi->rxq_map);
326 vsi->rxq_map = NULL;
327 }
328
329 /**
330 * ice_vsi_free_stats - Free the ring statistics structures
331 * @vsi: VSI pointer
332 */
ice_vsi_free_stats(struct ice_vsi * vsi)333 static void ice_vsi_free_stats(struct ice_vsi *vsi)
334 {
335 struct ice_vsi_stats *vsi_stat;
336 struct ice_pf *pf = vsi->back;
337 int i;
338
339 if (vsi->type == ICE_VSI_CHNL)
340 return;
341 if (!pf->vsi_stats)
342 return;
343
344 vsi_stat = pf->vsi_stats[vsi->idx];
345 if (!vsi_stat)
346 return;
347
348 ice_for_each_alloc_txq(vsi, i) {
349 if (vsi_stat->tx_ring_stats[i]) {
350 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
351 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
352 }
353 }
354
355 ice_for_each_alloc_rxq(vsi, i) {
356 if (vsi_stat->rx_ring_stats[i]) {
357 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
358 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
359 }
360 }
361
362 kfree(vsi_stat->tx_ring_stats);
363 kfree(vsi_stat->rx_ring_stats);
364 kfree(vsi_stat);
365 pf->vsi_stats[vsi->idx] = NULL;
366 }
367
368 /**
369 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
370 * @vsi: VSI which is having stats allocated
371 */
ice_vsi_alloc_ring_stats(struct ice_vsi * vsi)372 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
373 {
374 struct ice_ring_stats **tx_ring_stats;
375 struct ice_ring_stats **rx_ring_stats;
376 struct ice_vsi_stats *vsi_stats;
377 struct ice_pf *pf = vsi->back;
378 u16 i;
379
380 vsi_stats = pf->vsi_stats[vsi->idx];
381 tx_ring_stats = vsi_stats->tx_ring_stats;
382 rx_ring_stats = vsi_stats->rx_ring_stats;
383
384 /* Allocate Tx ring stats */
385 ice_for_each_alloc_txq(vsi, i) {
386 struct ice_ring_stats *ring_stats;
387 struct ice_tx_ring *ring;
388
389 ring = vsi->tx_rings[i];
390 ring_stats = tx_ring_stats[i];
391
392 if (!ring_stats) {
393 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
394 if (!ring_stats)
395 goto err_out;
396
397 WRITE_ONCE(tx_ring_stats[i], ring_stats);
398 }
399
400 ring->ring_stats = ring_stats;
401 }
402
403 /* Allocate Rx ring stats */
404 ice_for_each_alloc_rxq(vsi, i) {
405 struct ice_ring_stats *ring_stats;
406 struct ice_rx_ring *ring;
407
408 ring = vsi->rx_rings[i];
409 ring_stats = rx_ring_stats[i];
410
411 if (!ring_stats) {
412 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
413 if (!ring_stats)
414 goto err_out;
415
416 WRITE_ONCE(rx_ring_stats[i], ring_stats);
417 }
418
419 ring->ring_stats = ring_stats;
420 }
421
422 return 0;
423
424 err_out:
425 ice_vsi_free_stats(vsi);
426 return -ENOMEM;
427 }
428
429 /**
430 * ice_vsi_free - clean up and deallocate the provided VSI
431 * @vsi: pointer to VSI being cleared
432 *
433 * This deallocates the VSI's queue resources, removes it from the PF's
434 * VSI array if necessary, and deallocates the VSI
435 */
ice_vsi_free(struct ice_vsi * vsi)436 void ice_vsi_free(struct ice_vsi *vsi)
437 {
438 struct ice_pf *pf = NULL;
439 struct device *dev;
440
441 if (!vsi || !vsi->back)
442 return;
443
444 pf = vsi->back;
445 dev = ice_pf_to_dev(pf);
446
447 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
448 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
449 return;
450 }
451
452 mutex_lock(&pf->sw_mutex);
453 /* updates the PF for this cleared VSI */
454
455 pf->vsi[vsi->idx] = NULL;
456 pf->next_vsi = vsi->idx;
457
458 ice_vsi_free_stats(vsi);
459 ice_vsi_free_arrays(vsi);
460 mutex_destroy(&vsi->xdp_state_lock);
461 mutex_unlock(&pf->sw_mutex);
462 devm_kfree(dev, vsi);
463 }
464
ice_vsi_delete(struct ice_vsi * vsi)465 void ice_vsi_delete(struct ice_vsi *vsi)
466 {
467 ice_vsi_delete_from_hw(vsi);
468 ice_vsi_free(vsi);
469 }
470
471 /**
472 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
473 * @irq: interrupt number
474 * @data: pointer to a q_vector
475 */
ice_msix_clean_ctrl_vsi(int __always_unused irq,void * data)476 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
477 {
478 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
479
480 if (!q_vector->tx.tx_ring)
481 return IRQ_HANDLED;
482
483 #define FDIR_RX_DESC_CLEAN_BUDGET 64
484 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
485 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
486
487 return IRQ_HANDLED;
488 }
489
490 /**
491 * ice_msix_clean_rings - MSIX mode Interrupt Handler
492 * @irq: interrupt number
493 * @data: pointer to a q_vector
494 */
ice_msix_clean_rings(int __always_unused irq,void * data)495 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
496 {
497 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
498
499 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
500 return IRQ_HANDLED;
501
502 q_vector->total_events++;
503
504 napi_schedule(&q_vector->napi);
505
506 return IRQ_HANDLED;
507 }
508
509 /**
510 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
511 * @vsi: VSI pointer
512 */
ice_vsi_alloc_stat_arrays(struct ice_vsi * vsi)513 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
514 {
515 struct ice_vsi_stats *vsi_stat;
516 struct ice_pf *pf = vsi->back;
517
518 if (vsi->type == ICE_VSI_CHNL)
519 return 0;
520 if (!pf->vsi_stats)
521 return -ENOENT;
522
523 if (pf->vsi_stats[vsi->idx])
524 /* realloc will happen in rebuild path */
525 return 0;
526
527 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
528 if (!vsi_stat)
529 return -ENOMEM;
530
531 vsi_stat->tx_ring_stats =
532 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
533 GFP_KERNEL);
534 if (!vsi_stat->tx_ring_stats)
535 goto err_alloc_tx;
536
537 vsi_stat->rx_ring_stats =
538 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
539 GFP_KERNEL);
540 if (!vsi_stat->rx_ring_stats)
541 goto err_alloc_rx;
542
543 pf->vsi_stats[vsi->idx] = vsi_stat;
544
545 return 0;
546
547 err_alloc_rx:
548 kfree(vsi_stat->rx_ring_stats);
549 err_alloc_tx:
550 kfree(vsi_stat->tx_ring_stats);
551 kfree(vsi_stat);
552 pf->vsi_stats[vsi->idx] = NULL;
553 return -ENOMEM;
554 }
555
556 /**
557 * ice_vsi_alloc_def - set default values for already allocated VSI
558 * @vsi: ptr to VSI
559 * @ch: ptr to channel
560 */
561 static int
ice_vsi_alloc_def(struct ice_vsi * vsi,struct ice_channel * ch)562 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
563 {
564 if (vsi->type != ICE_VSI_CHNL) {
565 ice_vsi_set_num_qs(vsi);
566 if (ice_vsi_alloc_arrays(vsi))
567 return -ENOMEM;
568 }
569
570 switch (vsi->type) {
571 case ICE_VSI_PF:
572 case ICE_VSI_SF:
573 /* Setup default MSIX irq handler for VSI */
574 vsi->irq_handler = ice_msix_clean_rings;
575 break;
576 case ICE_VSI_CTRL:
577 /* Setup ctrl VSI MSIX irq handler */
578 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
579 break;
580 case ICE_VSI_CHNL:
581 if (!ch)
582 return -EINVAL;
583
584 vsi->num_rxq = ch->num_rxq;
585 vsi->num_txq = ch->num_txq;
586 vsi->next_base_q = ch->base_q;
587 break;
588 case ICE_VSI_VF:
589 case ICE_VSI_LB:
590 break;
591 default:
592 ice_vsi_free_arrays(vsi);
593 return -EINVAL;
594 }
595
596 return 0;
597 }
598
599 /**
600 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
601 * @pf: board private structure
602 *
603 * Reserves a VSI index from the PF and allocates an empty VSI structure
604 * without a type. The VSI structure must later be initialized by calling
605 * ice_vsi_cfg().
606 *
607 * returns a pointer to a VSI on success, NULL on failure.
608 */
ice_vsi_alloc(struct ice_pf * pf)609 struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
610 {
611 struct device *dev = ice_pf_to_dev(pf);
612 struct ice_vsi *vsi = NULL;
613
614 /* Need to protect the allocation of the VSIs at the PF level */
615 mutex_lock(&pf->sw_mutex);
616
617 /* If we have already allocated our maximum number of VSIs,
618 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
619 * is available to be populated
620 */
621 if (pf->next_vsi == ICE_NO_VSI) {
622 dev_dbg(dev, "out of VSI slots!\n");
623 goto unlock_pf;
624 }
625
626 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
627 if (!vsi)
628 goto unlock_pf;
629
630 vsi->back = pf;
631 set_bit(ICE_VSI_DOWN, vsi->state);
632
633 /* fill slot and make note of the index */
634 vsi->idx = pf->next_vsi;
635 pf->vsi[pf->next_vsi] = vsi;
636
637 /* prepare pf->next_vsi for next use */
638 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
639 pf->next_vsi);
640
641 mutex_init(&vsi->xdp_state_lock);
642
643 unlock_pf:
644 mutex_unlock(&pf->sw_mutex);
645 return vsi;
646 }
647
648 /**
649 * ice_alloc_fd_res - Allocate FD resource for a VSI
650 * @vsi: pointer to the ice_vsi
651 *
652 * This allocates the FD resources
653 *
654 * Returns 0 on success, -EPERM on no-op or -EIO on failure
655 */
ice_alloc_fd_res(struct ice_vsi * vsi)656 static int ice_alloc_fd_res(struct ice_vsi *vsi)
657 {
658 struct ice_pf *pf = vsi->back;
659 u32 g_val, b_val;
660
661 /* Flow Director filters are only allocated/assigned to the PF VSI or
662 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
663 * add/delete filters so resources are not allocated to it
664 */
665 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
666 return -EPERM;
667
668 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
669 vsi->type == ICE_VSI_CHNL))
670 return -EPERM;
671
672 /* FD filters from guaranteed pool per VSI */
673 g_val = pf->hw.func_caps.fd_fltr_guar;
674 if (!g_val)
675 return -EPERM;
676
677 /* FD filters from best effort pool */
678 b_val = pf->hw.func_caps.fd_fltr_best_effort;
679 if (!b_val)
680 return -EPERM;
681
682 /* PF main VSI gets only 64 FD resources from guaranteed pool
683 * when ADQ is configured.
684 */
685 #define ICE_PF_VSI_GFLTR 64
686
687 /* determine FD filter resources per VSI from shared(best effort) and
688 * dedicated pool
689 */
690 if (vsi->type == ICE_VSI_PF) {
691 vsi->num_gfltr = g_val;
692 /* if MQPRIO is configured, main VSI doesn't get all FD
693 * resources from guaranteed pool. PF VSI gets 64 FD resources
694 */
695 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
696 if (g_val < ICE_PF_VSI_GFLTR)
697 return -EPERM;
698 /* allow bare minimum entries for PF VSI */
699 vsi->num_gfltr = ICE_PF_VSI_GFLTR;
700 }
701
702 /* each VSI gets same "best_effort" quota */
703 vsi->num_bfltr = b_val;
704 } else if (vsi->type == ICE_VSI_VF) {
705 vsi->num_gfltr = 0;
706
707 /* each VSI gets same "best_effort" quota */
708 vsi->num_bfltr = b_val;
709 } else {
710 struct ice_vsi *main_vsi;
711 int numtc;
712
713 main_vsi = ice_get_main_vsi(pf);
714 if (!main_vsi)
715 return -EPERM;
716
717 if (!main_vsi->all_numtc)
718 return -EINVAL;
719
720 /* figure out ADQ numtc */
721 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
722
723 /* only one TC but still asking resources for channels,
724 * invalid config
725 */
726 if (numtc < ICE_CHNL_START_TC)
727 return -EPERM;
728
729 g_val -= ICE_PF_VSI_GFLTR;
730 /* channel VSIs gets equal share from guaranteed pool */
731 vsi->num_gfltr = g_val / numtc;
732
733 /* each VSI gets same "best_effort" quota */
734 vsi->num_bfltr = b_val;
735 }
736
737 return 0;
738 }
739
740 /**
741 * ice_vsi_get_qs - Assign queues from PF to VSI
742 * @vsi: the VSI to assign queues to
743 *
744 * Returns 0 on success and a negative value on error
745 */
ice_vsi_get_qs(struct ice_vsi * vsi)746 static int ice_vsi_get_qs(struct ice_vsi *vsi)
747 {
748 struct ice_pf *pf = vsi->back;
749 struct ice_qs_cfg tx_qs_cfg = {
750 .qs_mutex = &pf->avail_q_mutex,
751 .pf_map = pf->avail_txqs,
752 .pf_map_size = pf->max_pf_txqs,
753 .q_count = vsi->alloc_txq,
754 .scatter_count = ICE_MAX_SCATTER_TXQS,
755 .vsi_map = vsi->txq_map,
756 .vsi_map_offset = 0,
757 .mapping_mode = ICE_VSI_MAP_CONTIG
758 };
759 struct ice_qs_cfg rx_qs_cfg = {
760 .qs_mutex = &pf->avail_q_mutex,
761 .pf_map = pf->avail_rxqs,
762 .pf_map_size = pf->max_pf_rxqs,
763 .q_count = vsi->alloc_rxq,
764 .scatter_count = ICE_MAX_SCATTER_RXQS,
765 .vsi_map = vsi->rxq_map,
766 .vsi_map_offset = 0,
767 .mapping_mode = ICE_VSI_MAP_CONTIG
768 };
769 int ret;
770
771 if (vsi->type == ICE_VSI_CHNL)
772 return 0;
773
774 ret = __ice_vsi_get_qs(&tx_qs_cfg);
775 if (ret)
776 return ret;
777 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
778
779 ret = __ice_vsi_get_qs(&rx_qs_cfg);
780 if (ret)
781 return ret;
782 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
783
784 return 0;
785 }
786
787 /**
788 * ice_vsi_put_qs - Release queues from VSI to PF
789 * @vsi: the VSI that is going to release queues
790 */
ice_vsi_put_qs(struct ice_vsi * vsi)791 static void ice_vsi_put_qs(struct ice_vsi *vsi)
792 {
793 struct ice_pf *pf = vsi->back;
794 int i;
795
796 mutex_lock(&pf->avail_q_mutex);
797
798 ice_for_each_alloc_txq(vsi, i) {
799 clear_bit(vsi->txq_map[i], pf->avail_txqs);
800 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
801 }
802
803 ice_for_each_alloc_rxq(vsi, i) {
804 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
805 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
806 }
807
808 mutex_unlock(&pf->avail_q_mutex);
809 }
810
811 /**
812 * ice_is_safe_mode
813 * @pf: pointer to the PF struct
814 *
815 * returns true if driver is in safe mode, false otherwise
816 */
ice_is_safe_mode(struct ice_pf * pf)817 bool ice_is_safe_mode(struct ice_pf *pf)
818 {
819 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
820 }
821
822 /**
823 * ice_is_rdma_ena
824 * @pf: pointer to the PF struct
825 *
826 * returns true if RDMA is currently supported, false otherwise
827 */
ice_is_rdma_ena(struct ice_pf * pf)828 bool ice_is_rdma_ena(struct ice_pf *pf)
829 {
830 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
831 }
832
833 /**
834 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
835 * @vsi: the VSI being cleaned up
836 *
837 * This function deletes RSS input set for all flows that were configured
838 * for this VSI
839 */
ice_vsi_clean_rss_flow_fld(struct ice_vsi * vsi)840 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
841 {
842 struct ice_pf *pf = vsi->back;
843 int status;
844
845 if (ice_is_safe_mode(pf))
846 return;
847
848 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
849 if (status)
850 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
851 vsi->vsi_num, status);
852 }
853
854 /**
855 * ice_rss_clean - Delete RSS related VSI structures and configuration
856 * @vsi: the VSI being removed
857 */
ice_rss_clean(struct ice_vsi * vsi)858 static void ice_rss_clean(struct ice_vsi *vsi)
859 {
860 struct ice_pf *pf = vsi->back;
861 struct device *dev;
862
863 dev = ice_pf_to_dev(pf);
864
865 devm_kfree(dev, vsi->rss_hkey_user);
866 devm_kfree(dev, vsi->rss_lut_user);
867
868 ice_vsi_clean_rss_flow_fld(vsi);
869 /* remove RSS replay list */
870 if (!ice_is_safe_mode(pf))
871 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
872 }
873
874 /**
875 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
876 * @vsi: the VSI being configured
877 */
ice_vsi_set_rss_params(struct ice_vsi * vsi)878 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
879 {
880 struct ice_hw_common_caps *cap;
881 struct ice_pf *pf = vsi->back;
882 u16 max_rss_size;
883
884 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
885 vsi->rss_size = 1;
886 return;
887 }
888
889 cap = &pf->hw.func_caps.common_cap;
890 max_rss_size = BIT(cap->rss_table_entry_width);
891 switch (vsi->type) {
892 case ICE_VSI_CHNL:
893 case ICE_VSI_PF:
894 /* PF VSI will inherit RSS instance of PF */
895 vsi->rss_table_size = (u16)cap->rss_table_size;
896 if (vsi->type == ICE_VSI_CHNL)
897 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
898 else
899 vsi->rss_size = min_t(u16, num_online_cpus(),
900 max_rss_size);
901 vsi->rss_lut_type = ICE_LUT_PF;
902 break;
903 case ICE_VSI_SF:
904 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
905 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
906 vsi->rss_lut_type = ICE_LUT_VSI;
907 break;
908 case ICE_VSI_VF:
909 /* VF VSI will get a small RSS table.
910 * For VSI_LUT, LUT size should be set to 64 bytes.
911 */
912 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
913 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
914 vsi->rss_lut_type = ICE_LUT_VSI;
915 break;
916 case ICE_VSI_LB:
917 break;
918 default:
919 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
920 ice_vsi_type_str(vsi->type));
921 break;
922 }
923 }
924
925 /**
926 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
927 * @hw: HW structure used to determine the VLAN mode of the device
928 * @ctxt: the VSI context being set
929 *
930 * This initializes a default VSI context for all sections except the Queues.
931 */
ice_set_dflt_vsi_ctx(struct ice_hw * hw,struct ice_vsi_ctx * ctxt)932 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
933 {
934 u32 table = 0;
935
936 memset(&ctxt->info, 0, sizeof(ctxt->info));
937 /* VSI's should be allocated from shared pool */
938 ctxt->alloc_from_pool = true;
939 /* Src pruning enabled by default */
940 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
941 /* Traffic from VSI can be sent to LAN */
942 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
943 /* allow all untagged/tagged packets by default on Tx */
944 ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
945 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
946 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
947 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
948 *
949 * DVM - leave inner VLAN in packet by default
950 */
951 if (ice_is_dvm_ena(hw)) {
952 ctxt->info.inner_vlan_flags |=
953 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
954 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
955 ctxt->info.outer_vlan_flags =
956 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
957 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
958 ctxt->info.outer_vlan_flags |=
959 FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
960 ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
961 ctxt->info.outer_vlan_flags |=
962 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
963 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
964 }
965 /* Have 1:1 UP mapping for both ingress/egress tables */
966 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
967 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
968 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
969 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
970 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
971 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
972 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
973 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
974 ctxt->info.ingress_table = cpu_to_le32(table);
975 ctxt->info.egress_table = cpu_to_le32(table);
976 /* Have 1:1 UP mapping for outer to inner UP table */
977 ctxt->info.outer_up_table = cpu_to_le32(table);
978 /* No Outer tag support outer_tag_flags remains to zero */
979 }
980
981 /**
982 * ice_vsi_setup_q_map - Setup a VSI queue map
983 * @vsi: the VSI being configured
984 * @ctxt: VSI context structure
985 */
ice_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)986 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
987 {
988 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
989 u16 num_txq_per_tc, num_rxq_per_tc;
990 u16 qcount_tx = vsi->alloc_txq;
991 u16 qcount_rx = vsi->alloc_rxq;
992 u8 netdev_tc = 0;
993 int i;
994
995 if (!vsi->tc_cfg.numtc) {
996 /* at least TC0 should be enabled by default */
997 vsi->tc_cfg.numtc = 1;
998 vsi->tc_cfg.ena_tc = 1;
999 }
1000
1001 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1002 if (!num_rxq_per_tc)
1003 num_rxq_per_tc = 1;
1004 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1005 if (!num_txq_per_tc)
1006 num_txq_per_tc = 1;
1007
1008 /* find the (rounded up) power-of-2 of qcount */
1009 pow = (u16)order_base_2(num_rxq_per_tc);
1010
1011 /* TC mapping is a function of the number of Rx queues assigned to the
1012 * VSI for each traffic class and the offset of these queues.
1013 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1014 * queues allocated to TC0. No:of queues is a power-of-2.
1015 *
1016 * If TC is not enabled, the queue offset is set to 0, and allocate one
1017 * queue, this way, traffic for the given TC will be sent to the default
1018 * queue.
1019 *
1020 * Setup number and offset of Rx queues for all TCs for the VSI
1021 */
1022 ice_for_each_traffic_class(i) {
1023 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1024 /* TC is not enabled */
1025 vsi->tc_cfg.tc_info[i].qoffset = 0;
1026 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1027 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1028 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1029 ctxt->info.tc_mapping[i] = 0;
1030 continue;
1031 }
1032
1033 /* TC is enabled */
1034 vsi->tc_cfg.tc_info[i].qoffset = offset;
1035 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1036 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1037 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1038
1039 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1040 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1041 offset += num_rxq_per_tc;
1042 tx_count += num_txq_per_tc;
1043 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1044 }
1045
1046 /* if offset is non-zero, means it is calculated correctly based on
1047 * enabled TCs for a given VSI otherwise qcount_rx will always
1048 * be correct and non-zero because it is based off - VSI's
1049 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1050 * at least 1)
1051 */
1052 if (offset)
1053 rx_count = offset;
1054 else
1055 rx_count = num_rxq_per_tc;
1056
1057 if (rx_count > vsi->alloc_rxq) {
1058 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1059 rx_count, vsi->alloc_rxq);
1060 return -EINVAL;
1061 }
1062
1063 if (tx_count > vsi->alloc_txq) {
1064 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1065 tx_count, vsi->alloc_txq);
1066 return -EINVAL;
1067 }
1068
1069 vsi->num_txq = tx_count;
1070 vsi->num_rxq = rx_count;
1071
1072 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1073 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1074 /* since there is a chance that num_rxq could have been changed
1075 * in the above for loop, make num_txq equal to num_rxq.
1076 */
1077 vsi->num_txq = vsi->num_rxq;
1078 }
1079
1080 /* Rx queue mapping */
1081 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1082 /* q_mapping buffer holds the info for the first queue allocated for
1083 * this VSI in the PF space and also the number of queues associated
1084 * with this VSI.
1085 */
1086 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1087 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1088
1089 return 0;
1090 }
1091
1092 /**
1093 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1094 * @ctxt: the VSI context being set
1095 * @vsi: the VSI being configured
1096 */
ice_set_fd_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1097 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1098 {
1099 u8 dflt_q_group, dflt_q_prio;
1100 u16 dflt_q, report_q, val;
1101
1102 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1103 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1104 return;
1105
1106 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1107 ctxt->info.valid_sections |= cpu_to_le16(val);
1108 dflt_q = 0;
1109 dflt_q_group = 0;
1110 report_q = 0;
1111 dflt_q_prio = 0;
1112
1113 /* enable flow director filtering/programming */
1114 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1115 ctxt->info.fd_options = cpu_to_le16(val);
1116 /* max of allocated flow director filters */
1117 ctxt->info.max_fd_fltr_dedicated =
1118 cpu_to_le16(vsi->num_gfltr);
1119 /* max of shared flow director filters any VSI may program */
1120 ctxt->info.max_fd_fltr_shared =
1121 cpu_to_le16(vsi->num_bfltr);
1122 /* default queue index within the VSI of the default FD */
1123 val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
1124 /* target queue or queue group to the FD filter */
1125 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
1126 ctxt->info.fd_def_q = cpu_to_le16(val);
1127 /* queue index on which FD filter completion is reported */
1128 val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
1129 /* priority of the default qindex action */
1130 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
1131 ctxt->info.fd_report_opt = cpu_to_le16(val);
1132 }
1133
1134 /**
1135 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1136 * @ctxt: the VSI context being set
1137 * @vsi: the VSI being configured
1138 */
ice_set_rss_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1139 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1140 {
1141 u8 lut_type, hash_type;
1142 struct device *dev;
1143 struct ice_pf *pf;
1144
1145 pf = vsi->back;
1146 dev = ice_pf_to_dev(pf);
1147
1148 switch (vsi->type) {
1149 case ICE_VSI_CHNL:
1150 case ICE_VSI_PF:
1151 /* PF VSI will inherit RSS instance of PF */
1152 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1153 break;
1154 case ICE_VSI_VF:
1155 case ICE_VSI_SF:
1156 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1157 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1158 break;
1159 default:
1160 dev_dbg(dev, "Unsupported VSI type %s\n",
1161 ice_vsi_type_str(vsi->type));
1162 return;
1163 }
1164
1165 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1166 vsi->rss_hfunc = hash_type;
1167
1168 ctxt->info.q_opt_rss =
1169 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1170 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1171 }
1172
1173 static void
ice_chnl_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)1174 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1175 {
1176 struct ice_pf *pf = vsi->back;
1177 u16 qcount, qmap;
1178 u8 offset = 0;
1179 int pow;
1180
1181 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
1182
1183 pow = order_base_2(qcount);
1184 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1185 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1186
1187 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1188 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1189 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1190 ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1191 }
1192
1193 /**
1194 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1195 * @vsi: VSI to check whether or not VLAN pruning is enabled.
1196 *
1197 * returns true if Rx VLAN pruning is enabled and false otherwise.
1198 */
ice_vsi_is_vlan_pruning_ena(struct ice_vsi * vsi)1199 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1200 {
1201 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1202 }
1203
1204 /**
1205 * ice_vsi_init - Create and initialize a VSI
1206 * @vsi: the VSI being configured
1207 * @vsi_flags: VSI configuration flags
1208 *
1209 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1210 * reconfigure an existing context.
1211 *
1212 * This initializes a VSI context depending on the VSI type to be added and
1213 * passes it down to the add_vsi aq command to create a new VSI.
1214 */
ice_vsi_init(struct ice_vsi * vsi,u32 vsi_flags)1215 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1216 {
1217 struct ice_pf *pf = vsi->back;
1218 struct ice_hw *hw = &pf->hw;
1219 struct ice_vsi_ctx *ctxt;
1220 struct device *dev;
1221 int ret = 0;
1222
1223 dev = ice_pf_to_dev(pf);
1224 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1225 if (!ctxt)
1226 return -ENOMEM;
1227
1228 switch (vsi->type) {
1229 case ICE_VSI_CTRL:
1230 case ICE_VSI_LB:
1231 case ICE_VSI_PF:
1232 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1233 break;
1234 case ICE_VSI_SF:
1235 case ICE_VSI_CHNL:
1236 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1237 break;
1238 case ICE_VSI_VF:
1239 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1240 /* VF number here is the absolute VF number (0-255) */
1241 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1242 break;
1243 default:
1244 ret = -ENODEV;
1245 goto out;
1246 }
1247
1248 /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1249 * prune enabled
1250 */
1251 if (vsi->type == ICE_VSI_CHNL) {
1252 struct ice_vsi *main_vsi;
1253
1254 main_vsi = ice_get_main_vsi(pf);
1255 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1256 ctxt->info.sw_flags2 |=
1257 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1258 else
1259 ctxt->info.sw_flags2 &=
1260 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1261 }
1262
1263 ice_set_dflt_vsi_ctx(hw, ctxt);
1264 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1265 ice_set_fd_vsi_ctx(ctxt, vsi);
1266 /* if the switch is in VEB mode, allow VSI loopback */
1267 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1268 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1269
1270 /* Set LUT type and HASH type if RSS is enabled */
1271 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1272 vsi->type != ICE_VSI_CTRL) {
1273 ice_set_rss_vsi_ctx(ctxt, vsi);
1274 /* if updating VSI context, make sure to set valid_section:
1275 * to indicate which section of VSI context being updated
1276 */
1277 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1278 ctxt->info.valid_sections |=
1279 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1280 }
1281
1282 ctxt->info.sw_id = vsi->port_info->sw_id;
1283 if (vsi->type == ICE_VSI_CHNL) {
1284 ice_chnl_vsi_setup_q_map(vsi, ctxt);
1285 } else {
1286 ret = ice_vsi_setup_q_map(vsi, ctxt);
1287 if (ret)
1288 goto out;
1289
1290 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1291 /* means VSI being updated */
1292 /* must to indicate which section of VSI context are
1293 * being modified
1294 */
1295 ctxt->info.valid_sections |=
1296 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1297 }
1298
1299 /* Allow control frames out of main VSI */
1300 if (vsi->type == ICE_VSI_PF) {
1301 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1302 ctxt->info.valid_sections |=
1303 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1304 }
1305
1306 if (vsi_flags & ICE_VSI_FLAG_INIT) {
1307 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1308 if (ret) {
1309 dev_err(dev, "Add VSI failed, err %d\n", ret);
1310 ret = -EIO;
1311 goto out;
1312 }
1313 } else {
1314 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1315 if (ret) {
1316 dev_err(dev, "Update VSI failed, err %d\n", ret);
1317 ret = -EIO;
1318 goto out;
1319 }
1320 }
1321
1322 /* keep context for update VSI operations */
1323 vsi->info = ctxt->info;
1324
1325 /* record VSI number returned */
1326 vsi->vsi_num = ctxt->vsi_num;
1327
1328 out:
1329 kfree(ctxt);
1330 return ret;
1331 }
1332
1333 /**
1334 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1335 * @vsi: the VSI having rings deallocated
1336 */
ice_vsi_clear_rings(struct ice_vsi * vsi)1337 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1338 {
1339 int i;
1340
1341 /* Avoid stale references by clearing map from vector to ring */
1342 if (vsi->q_vectors) {
1343 ice_for_each_q_vector(vsi, i) {
1344 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1345
1346 if (q_vector) {
1347 q_vector->tx.tx_ring = NULL;
1348 q_vector->rx.rx_ring = NULL;
1349 }
1350 }
1351 }
1352
1353 if (vsi->tx_rings) {
1354 ice_for_each_alloc_txq(vsi, i) {
1355 if (vsi->tx_rings[i]) {
1356 kfree_rcu(vsi->tx_rings[i], rcu);
1357 WRITE_ONCE(vsi->tx_rings[i], NULL);
1358 }
1359 }
1360 }
1361 if (vsi->rx_rings) {
1362 ice_for_each_alloc_rxq(vsi, i) {
1363 if (vsi->rx_rings[i]) {
1364 kfree_rcu(vsi->rx_rings[i], rcu);
1365 WRITE_ONCE(vsi->rx_rings[i], NULL);
1366 }
1367 }
1368 }
1369 }
1370
1371 /**
1372 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1373 * @vsi: VSI which is having rings allocated
1374 */
ice_vsi_alloc_rings(struct ice_vsi * vsi)1375 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1376 {
1377 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1378 struct ice_pf *pf = vsi->back;
1379 struct device *dev;
1380 u16 i;
1381
1382 dev = ice_pf_to_dev(pf);
1383 /* Allocate Tx rings */
1384 ice_for_each_alloc_txq(vsi, i) {
1385 struct ice_tx_ring *ring;
1386
1387 /* allocate with kzalloc(), free with kfree_rcu() */
1388 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1389
1390 if (!ring)
1391 goto err_out;
1392
1393 ring->q_index = i;
1394 ring->reg_idx = vsi->txq_map[i];
1395 ring->vsi = vsi;
1396 ring->tx_tstamps = &pf->ptp.port.tx;
1397 ring->dev = dev;
1398 ring->count = vsi->num_tx_desc;
1399 ring->txq_teid = ICE_INVAL_TEID;
1400 if (dvm_ena)
1401 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1402 else
1403 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1404 WRITE_ONCE(vsi->tx_rings[i], ring);
1405 }
1406
1407 /* Allocate Rx rings */
1408 ice_for_each_alloc_rxq(vsi, i) {
1409 struct ice_rx_ring *ring;
1410
1411 /* allocate with kzalloc(), free with kfree_rcu() */
1412 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1413 if (!ring)
1414 goto err_out;
1415
1416 ring->q_index = i;
1417 ring->reg_idx = vsi->rxq_map[i];
1418 ring->vsi = vsi;
1419 ring->netdev = vsi->netdev;
1420 ring->dev = dev;
1421 ring->count = vsi->num_rx_desc;
1422 ring->cached_phctime = pf->ptp.cached_phc_time;
1423 WRITE_ONCE(vsi->rx_rings[i], ring);
1424 }
1425
1426 return 0;
1427
1428 err_out:
1429 ice_vsi_clear_rings(vsi);
1430 return -ENOMEM;
1431 }
1432
1433 /**
1434 * ice_vsi_manage_rss_lut - disable/enable RSS
1435 * @vsi: the VSI being changed
1436 * @ena: boolean value indicating if this is an enable or disable request
1437 *
1438 * In the event of disable request for RSS, this function will zero out RSS
1439 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1440 * LUT.
1441 */
ice_vsi_manage_rss_lut(struct ice_vsi * vsi,bool ena)1442 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1443 {
1444 u8 *lut;
1445
1446 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1447 if (!lut)
1448 return;
1449
1450 if (ena) {
1451 if (vsi->rss_lut_user)
1452 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1453 else
1454 ice_fill_rss_lut(lut, vsi->rss_table_size,
1455 vsi->rss_size);
1456 }
1457
1458 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1459 kfree(lut);
1460 }
1461
1462 /**
1463 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1464 * @vsi: VSI to be configured
1465 * @disable: set to true to have FCS / CRC in the frame data
1466 */
ice_vsi_cfg_crc_strip(struct ice_vsi * vsi,bool disable)1467 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1468 {
1469 int i;
1470
1471 ice_for_each_rxq(vsi, i)
1472 if (disable)
1473 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1474 else
1475 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1476 }
1477
1478 /**
1479 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1480 * @vsi: VSI to be configured
1481 */
ice_vsi_cfg_rss_lut_key(struct ice_vsi * vsi)1482 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1483 {
1484 struct ice_pf *pf = vsi->back;
1485 struct device *dev;
1486 u8 *lut, *key;
1487 int err;
1488
1489 dev = ice_pf_to_dev(pf);
1490 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1491 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1492 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1493 } else {
1494 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1495
1496 /* If orig_rss_size is valid and it is less than determined
1497 * main VSI's rss_size, update main VSI's rss_size to be
1498 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1499 * RSS table gets programmed to be correct (whatever it was
1500 * to begin with (prior to setup-tc for ADQ config)
1501 */
1502 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1503 vsi->orig_rss_size <= vsi->num_rxq) {
1504 vsi->rss_size = vsi->orig_rss_size;
1505 /* now orig_rss_size is used, reset it to zero */
1506 vsi->orig_rss_size = 0;
1507 }
1508 }
1509
1510 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1511 if (!lut)
1512 return -ENOMEM;
1513
1514 if (vsi->rss_lut_user)
1515 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1516 else
1517 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1518
1519 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1520 if (err) {
1521 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1522 goto ice_vsi_cfg_rss_exit;
1523 }
1524
1525 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1526 if (!key) {
1527 err = -ENOMEM;
1528 goto ice_vsi_cfg_rss_exit;
1529 }
1530
1531 if (vsi->rss_hkey_user)
1532 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1533 else
1534 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1535
1536 err = ice_set_rss_key(vsi, key);
1537 if (err)
1538 dev_err(dev, "set_rss_key failed, error %d\n", err);
1539
1540 kfree(key);
1541 ice_vsi_cfg_rss_exit:
1542 kfree(lut);
1543 return err;
1544 }
1545
1546 /**
1547 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1548 * @vsi: VSI to be configured
1549 *
1550 * This function will only be called during the VF VSI setup. Upon successful
1551 * completion of package download, this function will configure default RSS
1552 * input sets for VF VSI.
1553 */
ice_vsi_set_vf_rss_flow_fld(struct ice_vsi * vsi)1554 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1555 {
1556 struct ice_pf *pf = vsi->back;
1557 struct device *dev;
1558 int status;
1559
1560 dev = ice_pf_to_dev(pf);
1561 if (ice_is_safe_mode(pf)) {
1562 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1563 vsi->vsi_num);
1564 return;
1565 }
1566
1567 status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA);
1568 if (status)
1569 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1570 vsi->vsi_num, status);
1571 }
1572
1573 static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1574 /* configure RSS for IPv4 with input set IP src/dst */
1575 {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1576 /* configure RSS for IPv6 with input set IPv6 src/dst */
1577 {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1578 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1579 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1580 ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false},
1581 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1582 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1583 ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false},
1584 /* configure RSS for sctp4 with input set IP src/dst - only support
1585 * RSS on SCTPv4 on outer headers (non-tunneled)
1586 */
1587 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1588 ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1589 /* configure RSS for gtpc4 with input set IPv4 src/dst */
1590 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4,
1591 ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false},
1592 /* configure RSS for gtpc4t with input set IPv4 src/dst */
1593 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4,
1594 ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1595 /* configure RSS for gtpu4 with input set IPv4 src/dst */
1596 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4,
1597 ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1598 /* configure RSS for gtpu4e with input set IPv4 src/dst */
1599 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4,
1600 ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false},
1601 /* configure RSS for gtpu4u with input set IPv4 src/dst */
1602 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4,
1603 ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false},
1604 /* configure RSS for gtpu4d with input set IPv4 src/dst */
1605 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4,
1606 ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false},
1607
1608 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1609 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1610 ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false},
1611 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1612 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1613 ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false},
1614 /* configure RSS for sctp6 with input set IPv6 src/dst - only support
1615 * RSS on SCTPv6 on outer headers (non-tunneled)
1616 */
1617 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1618 ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1619 /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1620 {ICE_FLOW_SEG_HDR_ESP,
1621 ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1622 /* configure RSS for gtpc6 with input set IPv6 src/dst */
1623 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6,
1624 ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false},
1625 /* configure RSS for gtpc6t with input set IPv6 src/dst */
1626 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6,
1627 ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1628 /* configure RSS for gtpu6 with input set IPv6 src/dst */
1629 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6,
1630 ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1631 /* configure RSS for gtpu6e with input set IPv6 src/dst */
1632 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6,
1633 ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false},
1634 /* configure RSS for gtpu6u with input set IPv6 src/dst */
1635 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6,
1636 ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false},
1637 /* configure RSS for gtpu6d with input set IPv6 src/dst */
1638 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6,
1639 ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false},
1640 };
1641
1642 /**
1643 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1644 * @vsi: VSI to be configured
1645 *
1646 * This function will only be called after successful download package call
1647 * during initialization of PF. Since the downloaded package will erase the
1648 * RSS section, this function will configure RSS input sets for different
1649 * flow types. The last profile added has the highest priority, therefore 2
1650 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1651 * (i.e. IPv4 src/dst TCP src/dst port).
1652 */
ice_vsi_set_rss_flow_fld(struct ice_vsi * vsi)1653 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1654 {
1655 u16 vsi_num = vsi->vsi_num;
1656 struct ice_pf *pf = vsi->back;
1657 struct ice_hw *hw = &pf->hw;
1658 struct device *dev;
1659 int status;
1660 u32 i;
1661
1662 dev = ice_pf_to_dev(pf);
1663 if (ice_is_safe_mode(pf)) {
1664 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1665 vsi_num);
1666 return;
1667 }
1668 for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1669 const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1670
1671 status = ice_add_rss_cfg(hw, vsi, cfg);
1672 if (status)
1673 dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1674 cfg->addl_hdrs, cfg->hash_flds,
1675 cfg->hdr_type, cfg->symm);
1676 }
1677 }
1678
1679 /**
1680 * ice_pf_state_is_nominal - checks the PF for nominal state
1681 * @pf: pointer to PF to check
1682 *
1683 * Check the PF's state for a collection of bits that would indicate
1684 * the PF is in a state that would inhibit normal operation for
1685 * driver functionality.
1686 *
1687 * Returns true if PF is in a nominal state, false otherwise
1688 */
ice_pf_state_is_nominal(struct ice_pf * pf)1689 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1690 {
1691 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1692
1693 if (!pf)
1694 return false;
1695
1696 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1697 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1698 return false;
1699
1700 return true;
1701 }
1702
1703 #define ICE_FW_MODE_REC_M BIT(1)
ice_is_recovery_mode(struct ice_hw * hw)1704 bool ice_is_recovery_mode(struct ice_hw *hw)
1705 {
1706 return rd32(hw, GL_MNG_FWSM) & ICE_FW_MODE_REC_M;
1707 }
1708
1709 /**
1710 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1711 * @vsi: the VSI to be updated
1712 */
ice_update_eth_stats(struct ice_vsi * vsi)1713 void ice_update_eth_stats(struct ice_vsi *vsi)
1714 {
1715 struct ice_eth_stats *prev_es, *cur_es;
1716 struct ice_hw *hw = &vsi->back->hw;
1717 struct ice_pf *pf = vsi->back;
1718 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1719
1720 prev_es = &vsi->eth_stats_prev;
1721 cur_es = &vsi->eth_stats;
1722
1723 if (ice_is_reset_in_progress(pf->state))
1724 vsi->stat_offsets_loaded = false;
1725
1726 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1727 &prev_es->rx_bytes, &cur_es->rx_bytes);
1728
1729 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1730 &prev_es->rx_unicast, &cur_es->rx_unicast);
1731
1732 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1733 &prev_es->rx_multicast, &cur_es->rx_multicast);
1734
1735 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1736 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1737
1738 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1739 &prev_es->rx_discards, &cur_es->rx_discards);
1740
1741 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1742 &prev_es->tx_bytes, &cur_es->tx_bytes);
1743
1744 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1745 &prev_es->tx_unicast, &cur_es->tx_unicast);
1746
1747 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1748 &prev_es->tx_multicast, &cur_es->tx_multicast);
1749
1750 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1751 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1752
1753 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1754 &prev_es->tx_errors, &cur_es->tx_errors);
1755
1756 vsi->stat_offsets_loaded = true;
1757 }
1758
1759 /**
1760 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1761 * @hw: HW pointer
1762 * @pf_q: index of the Rx queue in the PF's queue space
1763 * @rxdid: flexible descriptor RXDID
1764 * @prio: priority for the RXDID for this queue
1765 * @ena_ts: true to enable timestamp and false to disable timestamp
1766 */
1767 void
ice_write_qrxflxp_cntxt(struct ice_hw * hw,u16 pf_q,u32 rxdid,u32 prio,bool ena_ts)1768 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1769 bool ena_ts)
1770 {
1771 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1772
1773 /* clear any previous values */
1774 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1775 QRXFLXP_CNTXT_RXDID_PRIO_M |
1776 QRXFLXP_CNTXT_TS_M);
1777
1778 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1779 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
1780
1781 if (ena_ts)
1782 /* Enable TimeSync on this queue */
1783 regval |= QRXFLXP_CNTXT_TS_M;
1784
1785 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1786 }
1787
1788 /**
1789 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1790 * @intrl: interrupt rate limit in usecs
1791 * @gran: interrupt rate limit granularity in usecs
1792 *
1793 * This function converts a decimal interrupt rate limit in usecs to the format
1794 * expected by firmware.
1795 */
ice_intrl_usec_to_reg(u8 intrl,u8 gran)1796 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1797 {
1798 u32 val = intrl / gran;
1799
1800 if (val)
1801 return val | GLINT_RATE_INTRL_ENA_M;
1802 return 0;
1803 }
1804
1805 /**
1806 * ice_write_intrl - write throttle rate limit to interrupt specific register
1807 * @q_vector: pointer to interrupt specific structure
1808 * @intrl: throttle rate limit in microseconds to write
1809 */
ice_write_intrl(struct ice_q_vector * q_vector,u8 intrl)1810 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1811 {
1812 struct ice_hw *hw = &q_vector->vsi->back->hw;
1813
1814 wr32(hw, GLINT_RATE(q_vector->reg_idx),
1815 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1816 }
1817
ice_pull_qvec_from_rc(struct ice_ring_container * rc)1818 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1819 {
1820 switch (rc->type) {
1821 case ICE_RX_CONTAINER:
1822 if (rc->rx_ring)
1823 return rc->rx_ring->q_vector;
1824 break;
1825 case ICE_TX_CONTAINER:
1826 if (rc->tx_ring)
1827 return rc->tx_ring->q_vector;
1828 break;
1829 default:
1830 break;
1831 }
1832
1833 return NULL;
1834 }
1835
1836 /**
1837 * __ice_write_itr - write throttle rate to register
1838 * @q_vector: pointer to interrupt data structure
1839 * @rc: pointer to ring container
1840 * @itr: throttle rate in microseconds to write
1841 */
__ice_write_itr(struct ice_q_vector * q_vector,struct ice_ring_container * rc,u16 itr)1842 static void __ice_write_itr(struct ice_q_vector *q_vector,
1843 struct ice_ring_container *rc, u16 itr)
1844 {
1845 struct ice_hw *hw = &q_vector->vsi->back->hw;
1846
1847 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1848 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1849 }
1850
1851 /**
1852 * ice_write_itr - write throttle rate to queue specific register
1853 * @rc: pointer to ring container
1854 * @itr: throttle rate in microseconds to write
1855 */
ice_write_itr(struct ice_ring_container * rc,u16 itr)1856 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1857 {
1858 struct ice_q_vector *q_vector;
1859
1860 q_vector = ice_pull_qvec_from_rc(rc);
1861 if (!q_vector)
1862 return;
1863
1864 __ice_write_itr(q_vector, rc, itr);
1865 }
1866
1867 /**
1868 * ice_set_q_vector_intrl - set up interrupt rate limiting
1869 * @q_vector: the vector to be configured
1870 *
1871 * Interrupt rate limiting is local to the vector, not per-queue so we must
1872 * detect if either ring container has dynamic moderation enabled to decide
1873 * what to set the interrupt rate limit to via INTRL settings. In the case that
1874 * dynamic moderation is disabled on both, write the value with the cached
1875 * setting to make sure INTRL register matches the user visible value.
1876 */
ice_set_q_vector_intrl(struct ice_q_vector * q_vector)1877 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
1878 {
1879 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1880 /* in the case of dynamic enabled, cap each vector to no more
1881 * than (4 us) 250,000 ints/sec, which allows low latency
1882 * but still less than 500,000 interrupts per second, which
1883 * reduces CPU a bit in the case of the lowest latency
1884 * setting. The 4 here is a value in microseconds.
1885 */
1886 ice_write_intrl(q_vector, 4);
1887 } else {
1888 ice_write_intrl(q_vector, q_vector->intrl);
1889 }
1890 }
1891
1892 /**
1893 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1894 * @vsi: the VSI being configured
1895 *
1896 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1897 * for the VF VSI.
1898 */
ice_vsi_cfg_msix(struct ice_vsi * vsi)1899 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1900 {
1901 struct ice_pf *pf = vsi->back;
1902 struct ice_hw *hw = &pf->hw;
1903 u16 txq = 0, rxq = 0;
1904 int i, q;
1905
1906 ice_for_each_q_vector(vsi, i) {
1907 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1908 u16 reg_idx = q_vector->reg_idx;
1909
1910 ice_cfg_itr(hw, q_vector);
1911
1912 /* Both Transmit Queue Interrupt Cause Control register
1913 * and Receive Queue Interrupt Cause control register
1914 * expects MSIX_INDX field to be the vector index
1915 * within the function space and not the absolute
1916 * vector index across PF or across device.
1917 * For SR-IOV VF VSIs queue vector index always starts
1918 * with 1 since first vector index(0) is used for OICR
1919 * in VF space. Since VMDq and other PF VSIs are within
1920 * the PF function space, use the vector index that is
1921 * tracked for this PF.
1922 */
1923 for (q = 0; q < q_vector->num_ring_tx; q++) {
1924 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1925 q_vector->tx.itr_idx);
1926 txq++;
1927 }
1928
1929 for (q = 0; q < q_vector->num_ring_rx; q++) {
1930 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1931 q_vector->rx.itr_idx);
1932 rxq++;
1933 }
1934 }
1935 }
1936
1937 /**
1938 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1939 * @vsi: the VSI whose rings are to be enabled
1940 *
1941 * Returns 0 on success and a negative value on error
1942 */
ice_vsi_start_all_rx_rings(struct ice_vsi * vsi)1943 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1944 {
1945 return ice_vsi_ctrl_all_rx_rings(vsi, true);
1946 }
1947
1948 /**
1949 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1950 * @vsi: the VSI whose rings are to be disabled
1951 *
1952 * Returns 0 on success and a negative value on error
1953 */
ice_vsi_stop_all_rx_rings(struct ice_vsi * vsi)1954 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1955 {
1956 return ice_vsi_ctrl_all_rx_rings(vsi, false);
1957 }
1958
1959 /**
1960 * ice_vsi_stop_tx_rings - Disable Tx rings
1961 * @vsi: the VSI being configured
1962 * @rst_src: reset source
1963 * @rel_vmvf_num: Relative ID of VF/VM
1964 * @rings: Tx ring array to be stopped
1965 * @count: number of Tx ring array elements
1966 */
1967 static int
ice_vsi_stop_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring ** rings,u16 count)1968 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1969 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
1970 {
1971 u16 q_idx;
1972
1973 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1974 return -EINVAL;
1975
1976 for (q_idx = 0; q_idx < count; q_idx++) {
1977 struct ice_txq_meta txq_meta = { };
1978 int status;
1979
1980 if (!rings || !rings[q_idx])
1981 return -EINVAL;
1982
1983 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
1984 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
1985 rings[q_idx], &txq_meta);
1986
1987 if (status)
1988 return status;
1989 }
1990
1991 return 0;
1992 }
1993
1994 /**
1995 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
1996 * @vsi: the VSI being configured
1997 * @rst_src: reset source
1998 * @rel_vmvf_num: Relative ID of VF/VM
1999 */
2000 int
ice_vsi_stop_lan_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num)2001 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2002 u16 rel_vmvf_num)
2003 {
2004 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2005 }
2006
2007 /**
2008 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2009 * @vsi: the VSI being configured
2010 */
ice_vsi_stop_xdp_tx_rings(struct ice_vsi * vsi)2011 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2012 {
2013 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2014 }
2015
2016 /**
2017 * ice_vsi_is_rx_queue_active
2018 * @vsi: the VSI being configured
2019 *
2020 * Return true if at least one queue is active.
2021 */
ice_vsi_is_rx_queue_active(struct ice_vsi * vsi)2022 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2023 {
2024 struct ice_pf *pf = vsi->back;
2025 struct ice_hw *hw = &pf->hw;
2026 int i;
2027
2028 ice_for_each_rxq(vsi, i) {
2029 u32 rx_reg;
2030 int pf_q;
2031
2032 pf_q = vsi->rxq_map[i];
2033 rx_reg = rd32(hw, QRX_CTRL(pf_q));
2034 if (rx_reg & QRX_CTRL_QENA_STAT_M)
2035 return true;
2036 }
2037
2038 return false;
2039 }
2040
ice_vsi_set_tc_cfg(struct ice_vsi * vsi)2041 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2042 {
2043 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2044 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2045 vsi->tc_cfg.numtc = 1;
2046 return;
2047 }
2048
2049 /* set VSI TC information based on DCB config */
2050 ice_vsi_set_dcb_tc_cfg(vsi);
2051 }
2052
2053 /**
2054 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2055 * @vsi: the VSI being configured
2056 * @tx: bool to determine Tx or Rx rule
2057 * @create: bool to determine create or remove Rule
2058 */
ice_cfg_sw_lldp(struct ice_vsi * vsi,bool tx,bool create)2059 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2060 {
2061 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2062 enum ice_sw_fwd_act_type act);
2063 struct ice_pf *pf = vsi->back;
2064 struct device *dev;
2065 int status;
2066
2067 dev = ice_pf_to_dev(pf);
2068 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2069
2070 if (tx) {
2071 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2072 ICE_DROP_PACKET);
2073 } else {
2074 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2075 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2076 create);
2077 } else {
2078 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2079 ICE_FWD_TO_VSI);
2080 }
2081 }
2082
2083 if (status)
2084 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2085 create ? "adding" : "removing", tx ? "TX" : "RX",
2086 vsi->vsi_num, status);
2087 }
2088
2089 /**
2090 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2091 * @vsi: pointer to the VSI
2092 *
2093 * This function will allocate new scheduler aggregator now if needed and will
2094 * move specified VSI into it.
2095 */
ice_set_agg_vsi(struct ice_vsi * vsi)2096 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2097 {
2098 struct device *dev = ice_pf_to_dev(vsi->back);
2099 struct ice_agg_node *agg_node_iter = NULL;
2100 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2101 struct ice_agg_node *agg_node = NULL;
2102 int node_offset, max_agg_nodes = 0;
2103 struct ice_port_info *port_info;
2104 struct ice_pf *pf = vsi->back;
2105 u32 agg_node_id_start = 0;
2106 int status;
2107
2108 /* create (as needed) scheduler aggregator node and move VSI into
2109 * corresponding aggregator node
2110 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2111 * - VF aggregator nodes will contain VF VSI
2112 */
2113 port_info = pf->hw.port_info;
2114 if (!port_info)
2115 return;
2116
2117 switch (vsi->type) {
2118 case ICE_VSI_CTRL:
2119 case ICE_VSI_CHNL:
2120 case ICE_VSI_LB:
2121 case ICE_VSI_PF:
2122 case ICE_VSI_SF:
2123 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2124 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2125 agg_node_iter = &pf->pf_agg_node[0];
2126 break;
2127 case ICE_VSI_VF:
2128 /* user can create 'n' VFs on a given PF, but since max children
2129 * per aggregator node can be only 64. Following code handles
2130 * aggregator(s) for VF VSIs, either selects a agg_node which
2131 * was already created provided num_vsis < 64, otherwise
2132 * select next available node, which will be created
2133 */
2134 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2135 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2136 agg_node_iter = &pf->vf_agg_node[0];
2137 break;
2138 default:
2139 /* other VSI type, handle later if needed */
2140 dev_dbg(dev, "unexpected VSI type %s\n",
2141 ice_vsi_type_str(vsi->type));
2142 return;
2143 }
2144
2145 /* find the appropriate aggregator node */
2146 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2147 /* see if we can find space in previously created
2148 * node if num_vsis < 64, otherwise skip
2149 */
2150 if (agg_node_iter->num_vsis &&
2151 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2152 agg_node_iter++;
2153 continue;
2154 }
2155
2156 if (agg_node_iter->valid &&
2157 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2158 agg_id = agg_node_iter->agg_id;
2159 agg_node = agg_node_iter;
2160 break;
2161 }
2162
2163 /* find unclaimed agg_id */
2164 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2165 agg_id = node_offset + agg_node_id_start;
2166 agg_node = agg_node_iter;
2167 break;
2168 }
2169 /* move to next agg_node */
2170 agg_node_iter++;
2171 }
2172
2173 if (!agg_node)
2174 return;
2175
2176 /* if selected aggregator node was not created, create it */
2177 if (!agg_node->valid) {
2178 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2179 (u8)vsi->tc_cfg.ena_tc);
2180 if (status) {
2181 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2182 agg_id);
2183 return;
2184 }
2185 /* aggregator node is created, store the needed info */
2186 agg_node->valid = true;
2187 agg_node->agg_id = agg_id;
2188 }
2189
2190 /* move VSI to corresponding aggregator node */
2191 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2192 (u8)vsi->tc_cfg.ena_tc);
2193 if (status) {
2194 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2195 vsi->idx, agg_id);
2196 return;
2197 }
2198
2199 /* keep active children count for aggregator node */
2200 agg_node->num_vsis++;
2201
2202 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2203 * to aggregator node
2204 */
2205 vsi->agg_node = agg_node;
2206 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2207 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2208 vsi->agg_node->num_vsis);
2209 }
2210
ice_vsi_cfg_tc_lan(struct ice_pf * pf,struct ice_vsi * vsi)2211 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2212 {
2213 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2214 struct device *dev = ice_pf_to_dev(pf);
2215 int ret, i;
2216
2217 /* configure VSI nodes based on number of queues and TC's */
2218 ice_for_each_traffic_class(i) {
2219 if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2220 continue;
2221
2222 if (vsi->type == ICE_VSI_CHNL) {
2223 if (!vsi->alloc_txq && vsi->num_txq)
2224 max_txqs[i] = vsi->num_txq;
2225 else
2226 max_txqs[i] = pf->num_lan_tx;
2227 } else {
2228 max_txqs[i] = vsi->alloc_txq;
2229 }
2230
2231 if (vsi->type == ICE_VSI_PF)
2232 max_txqs[i] += vsi->num_xdp_txq;
2233 }
2234
2235 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2236 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2237 max_txqs);
2238 if (ret) {
2239 dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2240 vsi->vsi_num, ret);
2241 return ret;
2242 }
2243
2244 return 0;
2245 }
2246
2247 /**
2248 * ice_vsi_cfg_def - configure default VSI based on the type
2249 * @vsi: pointer to VSI
2250 */
ice_vsi_cfg_def(struct ice_vsi * vsi)2251 static int ice_vsi_cfg_def(struct ice_vsi *vsi)
2252 {
2253 struct device *dev = ice_pf_to_dev(vsi->back);
2254 struct ice_pf *pf = vsi->back;
2255 int ret;
2256
2257 vsi->vsw = pf->first_sw;
2258
2259 ret = ice_vsi_alloc_def(vsi, vsi->ch);
2260 if (ret)
2261 return ret;
2262
2263 /* allocate memory for Tx/Rx ring stat pointers */
2264 ret = ice_vsi_alloc_stat_arrays(vsi);
2265 if (ret)
2266 goto unroll_vsi_alloc;
2267
2268 ice_alloc_fd_res(vsi);
2269
2270 ret = ice_vsi_get_qs(vsi);
2271 if (ret) {
2272 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2273 vsi->idx);
2274 goto unroll_vsi_alloc_stat;
2275 }
2276
2277 /* set RSS capabilities */
2278 ice_vsi_set_rss_params(vsi);
2279
2280 /* set TC configuration */
2281 ice_vsi_set_tc_cfg(vsi);
2282
2283 /* create the VSI */
2284 ret = ice_vsi_init(vsi, vsi->flags);
2285 if (ret)
2286 goto unroll_get_qs;
2287
2288 ice_vsi_init_vlan_ops(vsi);
2289
2290 switch (vsi->type) {
2291 case ICE_VSI_CTRL:
2292 case ICE_VSI_SF:
2293 case ICE_VSI_PF:
2294 ret = ice_vsi_alloc_q_vectors(vsi);
2295 if (ret)
2296 goto unroll_vsi_init;
2297
2298 ret = ice_vsi_alloc_rings(vsi);
2299 if (ret)
2300 goto unroll_vector_base;
2301
2302 ret = ice_vsi_alloc_ring_stats(vsi);
2303 if (ret)
2304 goto unroll_vector_base;
2305
2306 if (ice_is_xdp_ena_vsi(vsi)) {
2307 ret = ice_vsi_determine_xdp_res(vsi);
2308 if (ret)
2309 goto unroll_vector_base;
2310 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog,
2311 ICE_XDP_CFG_PART);
2312 if (ret)
2313 goto unroll_vector_base;
2314 }
2315
2316 ice_vsi_map_rings_to_vectors(vsi);
2317
2318 vsi->stat_offsets_loaded = false;
2319
2320 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2321 if (vsi->type != ICE_VSI_CTRL)
2322 /* Do not exit if configuring RSS had an issue, at
2323 * least receive traffic on first queue. Hence no
2324 * need to capture return value
2325 */
2326 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2327 ice_vsi_cfg_rss_lut_key(vsi);
2328 ice_vsi_set_rss_flow_fld(vsi);
2329 }
2330 ice_init_arfs(vsi);
2331 break;
2332 case ICE_VSI_CHNL:
2333 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2334 ice_vsi_cfg_rss_lut_key(vsi);
2335 ice_vsi_set_rss_flow_fld(vsi);
2336 }
2337 break;
2338 case ICE_VSI_VF:
2339 /* VF driver will take care of creating netdev for this type and
2340 * map queues to vectors through Virtchnl, PF driver only
2341 * creates a VSI and corresponding structures for bookkeeping
2342 * purpose
2343 */
2344 ret = ice_vsi_alloc_q_vectors(vsi);
2345 if (ret)
2346 goto unroll_vsi_init;
2347
2348 ret = ice_vsi_alloc_rings(vsi);
2349 if (ret)
2350 goto unroll_alloc_q_vector;
2351
2352 ret = ice_vsi_alloc_ring_stats(vsi);
2353 if (ret)
2354 goto unroll_vector_base;
2355
2356 vsi->stat_offsets_loaded = false;
2357
2358 /* Do not exit if configuring RSS had an issue, at least
2359 * receive traffic on first queue. Hence no need to capture
2360 * return value
2361 */
2362 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2363 ice_vsi_cfg_rss_lut_key(vsi);
2364 ice_vsi_set_vf_rss_flow_fld(vsi);
2365 }
2366 break;
2367 case ICE_VSI_LB:
2368 ret = ice_vsi_alloc_rings(vsi);
2369 if (ret)
2370 goto unroll_vsi_init;
2371
2372 ret = ice_vsi_alloc_ring_stats(vsi);
2373 if (ret)
2374 goto unroll_vector_base;
2375
2376 break;
2377 default:
2378 /* clean up the resources and exit */
2379 ret = -EINVAL;
2380 goto unroll_vsi_init;
2381 }
2382
2383 return 0;
2384
2385 unroll_vector_base:
2386 /* reclaim SW interrupts back to the common pool */
2387 unroll_alloc_q_vector:
2388 ice_vsi_free_q_vectors(vsi);
2389 unroll_vsi_init:
2390 ice_vsi_delete_from_hw(vsi);
2391 unroll_get_qs:
2392 ice_vsi_put_qs(vsi);
2393 unroll_vsi_alloc_stat:
2394 ice_vsi_free_stats(vsi);
2395 unroll_vsi_alloc:
2396 ice_vsi_free_arrays(vsi);
2397 return ret;
2398 }
2399
2400 /**
2401 * ice_vsi_cfg - configure a previously allocated VSI
2402 * @vsi: pointer to VSI
2403 */
ice_vsi_cfg(struct ice_vsi * vsi)2404 int ice_vsi_cfg(struct ice_vsi *vsi)
2405 {
2406 struct ice_pf *pf = vsi->back;
2407 int ret;
2408
2409 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
2410 return -EINVAL;
2411
2412 ret = ice_vsi_cfg_def(vsi);
2413 if (ret)
2414 return ret;
2415
2416 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2417 if (ret)
2418 ice_vsi_decfg(vsi);
2419
2420 if (vsi->type == ICE_VSI_CTRL) {
2421 if (vsi->vf) {
2422 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2423 vsi->vf->ctrl_vsi_idx = vsi->idx;
2424 } else {
2425 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2426 pf->ctrl_vsi_idx = vsi->idx;
2427 }
2428 }
2429
2430 return ret;
2431 }
2432
2433 /**
2434 * ice_vsi_decfg - remove all VSI configuration
2435 * @vsi: pointer to VSI
2436 */
ice_vsi_decfg(struct ice_vsi * vsi)2437 void ice_vsi_decfg(struct ice_vsi *vsi)
2438 {
2439 struct ice_pf *pf = vsi->back;
2440 int err;
2441
2442 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2443 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2444 if (err)
2445 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2446 vsi->vsi_num, err);
2447
2448 if (vsi->xdp_rings)
2449 /* return value check can be skipped here, it always returns
2450 * 0 if reset is in progress
2451 */
2452 ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_PART);
2453
2454 ice_vsi_clear_rings(vsi);
2455 ice_vsi_free_q_vectors(vsi);
2456 ice_vsi_put_qs(vsi);
2457 ice_vsi_free_arrays(vsi);
2458
2459 /* SR-IOV determines needed MSIX resources all at once instead of per
2460 * VSI since when VFs are spawned we know how many VFs there are and how
2461 * many interrupts each VF needs. SR-IOV MSIX resources are also
2462 * cleared in the same manner.
2463 */
2464
2465 if (vsi->type == ICE_VSI_VF &&
2466 vsi->agg_node && vsi->agg_node->valid)
2467 vsi->agg_node->num_vsis--;
2468 }
2469
2470 /**
2471 * ice_vsi_setup - Set up a VSI by a given type
2472 * @pf: board private structure
2473 * @params: parameters to use when creating the VSI
2474 *
2475 * This allocates the sw VSI structure and its queue resources.
2476 *
2477 * Returns pointer to the successfully allocated and configured VSI sw struct on
2478 * success, NULL on failure.
2479 */
2480 struct ice_vsi *
ice_vsi_setup(struct ice_pf * pf,struct ice_vsi_cfg_params * params)2481 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2482 {
2483 struct device *dev = ice_pf_to_dev(pf);
2484 struct ice_vsi *vsi;
2485 int ret;
2486
2487 /* ice_vsi_setup can only initialize a new VSI, and we must have
2488 * a port_info structure for it.
2489 */
2490 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2491 WARN_ON(!params->port_info))
2492 return NULL;
2493
2494 vsi = ice_vsi_alloc(pf);
2495 if (!vsi) {
2496 dev_err(dev, "could not allocate VSI\n");
2497 return NULL;
2498 }
2499
2500 vsi->params = *params;
2501 ret = ice_vsi_cfg(vsi);
2502 if (ret)
2503 goto err_vsi_cfg;
2504
2505 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2506 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2507 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2508 * The rule is added once for PF VSI in order to create appropriate
2509 * recipe, since VSI/VSI list is ignored with drop action...
2510 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2511 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2512 * settings in the HW.
2513 */
2514 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2515 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2516 ICE_DROP_PACKET);
2517 ice_cfg_sw_lldp(vsi, true, true);
2518 }
2519
2520 if (!vsi->agg_node)
2521 ice_set_agg_vsi(vsi);
2522
2523 return vsi;
2524
2525 err_vsi_cfg:
2526 ice_vsi_free(vsi);
2527
2528 return NULL;
2529 }
2530
2531 /**
2532 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2533 * @vsi: the VSI being cleaned up
2534 */
ice_vsi_release_msix(struct ice_vsi * vsi)2535 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2536 {
2537 struct ice_pf *pf = vsi->back;
2538 struct ice_hw *hw = &pf->hw;
2539 u32 txq = 0;
2540 u32 rxq = 0;
2541 int i, q;
2542
2543 ice_for_each_q_vector(vsi, i) {
2544 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2545
2546 ice_write_intrl(q_vector, 0);
2547 for (q = 0; q < q_vector->num_ring_tx; q++) {
2548 ice_write_itr(&q_vector->tx, 0);
2549 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2550 if (vsi->xdp_rings) {
2551 u32 xdp_txq = txq + vsi->num_xdp_txq;
2552
2553 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2554 }
2555 txq++;
2556 }
2557
2558 for (q = 0; q < q_vector->num_ring_rx; q++) {
2559 ice_write_itr(&q_vector->rx, 0);
2560 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2561 rxq++;
2562 }
2563 }
2564
2565 ice_flush(hw);
2566 }
2567
2568 /**
2569 * ice_vsi_free_irq - Free the IRQ association with the OS
2570 * @vsi: the VSI being configured
2571 */
ice_vsi_free_irq(struct ice_vsi * vsi)2572 void ice_vsi_free_irq(struct ice_vsi *vsi)
2573 {
2574 struct ice_pf *pf = vsi->back;
2575 int i;
2576
2577 if (!vsi->q_vectors || !vsi->irqs_ready)
2578 return;
2579
2580 ice_vsi_release_msix(vsi);
2581 if (vsi->type == ICE_VSI_VF)
2582 return;
2583
2584 vsi->irqs_ready = false;
2585 ice_free_cpu_rx_rmap(vsi);
2586
2587 ice_for_each_q_vector(vsi, i) {
2588 int irq_num;
2589
2590 irq_num = vsi->q_vectors[i]->irq.virq;
2591
2592 /* free only the irqs that were actually requested */
2593 if (!vsi->q_vectors[i] ||
2594 !(vsi->q_vectors[i]->num_ring_tx ||
2595 vsi->q_vectors[i]->num_ring_rx))
2596 continue;
2597
2598 /* clear the affinity notifier in the IRQ descriptor */
2599 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2600 irq_set_affinity_notifier(irq_num, NULL);
2601
2602 /* clear the affinity_hint in the IRQ descriptor */
2603 irq_update_affinity_hint(irq_num, NULL);
2604 synchronize_irq(irq_num);
2605 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2606 }
2607 }
2608
2609 /**
2610 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2611 * @vsi: the VSI having resources freed
2612 */
ice_vsi_free_tx_rings(struct ice_vsi * vsi)2613 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2614 {
2615 int i;
2616
2617 if (!vsi->tx_rings)
2618 return;
2619
2620 ice_for_each_txq(vsi, i)
2621 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2622 ice_free_tx_ring(vsi->tx_rings[i]);
2623 }
2624
2625 /**
2626 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2627 * @vsi: the VSI having resources freed
2628 */
ice_vsi_free_rx_rings(struct ice_vsi * vsi)2629 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2630 {
2631 int i;
2632
2633 if (!vsi->rx_rings)
2634 return;
2635
2636 ice_for_each_rxq(vsi, i)
2637 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2638 ice_free_rx_ring(vsi->rx_rings[i]);
2639 }
2640
2641 /**
2642 * ice_vsi_close - Shut down a VSI
2643 * @vsi: the VSI being shut down
2644 */
ice_vsi_close(struct ice_vsi * vsi)2645 void ice_vsi_close(struct ice_vsi *vsi)
2646 {
2647 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2648 ice_down(vsi);
2649
2650 ice_vsi_clear_napi_queues(vsi);
2651 ice_vsi_free_irq(vsi);
2652 ice_vsi_free_tx_rings(vsi);
2653 ice_vsi_free_rx_rings(vsi);
2654 }
2655
2656 /**
2657 * ice_ena_vsi - resume a VSI
2658 * @vsi: the VSI being resume
2659 * @locked: is the rtnl_lock already held
2660 */
ice_ena_vsi(struct ice_vsi * vsi,bool locked)2661 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2662 {
2663 int err = 0;
2664
2665 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2666 return 0;
2667
2668 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2669
2670 if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2671 vsi->type == ICE_VSI_SF)) {
2672 if (netif_running(vsi->netdev)) {
2673 if (!locked)
2674 rtnl_lock();
2675
2676 err = ice_open_internal(vsi->netdev);
2677
2678 if (!locked)
2679 rtnl_unlock();
2680 }
2681 } else if (vsi->type == ICE_VSI_CTRL) {
2682 err = ice_vsi_open_ctrl(vsi);
2683 }
2684
2685 return err;
2686 }
2687
2688 /**
2689 * ice_dis_vsi - pause a VSI
2690 * @vsi: the VSI being paused
2691 * @locked: is the rtnl_lock already held
2692 */
ice_dis_vsi(struct ice_vsi * vsi,bool locked)2693 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2694 {
2695 bool already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2696
2697 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2698
2699 if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2700 vsi->type == ICE_VSI_SF)) {
2701 if (netif_running(vsi->netdev)) {
2702 if (!locked)
2703 rtnl_lock();
2704 already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2705 if (!already_down)
2706 ice_vsi_close(vsi);
2707
2708 if (!locked)
2709 rtnl_unlock();
2710 } else if (!already_down) {
2711 ice_vsi_close(vsi);
2712 }
2713 } else if (vsi->type == ICE_VSI_CTRL && !already_down) {
2714 ice_vsi_close(vsi);
2715 }
2716 }
2717
2718 /**
2719 * ice_vsi_set_napi_queues - associate netdev queues with napi
2720 * @vsi: VSI pointer
2721 *
2722 * Associate queue[s] with napi for all vectors.
2723 * The caller must hold rtnl_lock.
2724 */
ice_vsi_set_napi_queues(struct ice_vsi * vsi)2725 void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
2726 {
2727 struct net_device *netdev = vsi->netdev;
2728 int q_idx, v_idx;
2729
2730 if (!netdev)
2731 return;
2732
2733 ice_for_each_rxq(vsi, q_idx)
2734 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX,
2735 &vsi->rx_rings[q_idx]->q_vector->napi);
2736
2737 ice_for_each_txq(vsi, q_idx)
2738 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX,
2739 &vsi->tx_rings[q_idx]->q_vector->napi);
2740 /* Also set the interrupt number for the NAPI */
2741 ice_for_each_q_vector(vsi, v_idx) {
2742 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2743
2744 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2745 }
2746 }
2747
2748 /**
2749 * ice_vsi_clear_napi_queues - dissociate netdev queues from napi
2750 * @vsi: VSI pointer
2751 *
2752 * Clear the association between all VSI queues queue[s] and napi.
2753 * The caller must hold rtnl_lock.
2754 */
ice_vsi_clear_napi_queues(struct ice_vsi * vsi)2755 void ice_vsi_clear_napi_queues(struct ice_vsi *vsi)
2756 {
2757 struct net_device *netdev = vsi->netdev;
2758 int q_idx;
2759
2760 if (!netdev)
2761 return;
2762
2763 ice_for_each_txq(vsi, q_idx)
2764 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX, NULL);
2765
2766 ice_for_each_rxq(vsi, q_idx)
2767 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX, NULL);
2768 }
2769
2770 /**
2771 * ice_napi_add - register NAPI handler for the VSI
2772 * @vsi: VSI for which NAPI handler is to be registered
2773 *
2774 * This function is only called in the driver's load path. Registering the NAPI
2775 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2776 * reset/rebuild, etc.)
2777 */
ice_napi_add(struct ice_vsi * vsi)2778 void ice_napi_add(struct ice_vsi *vsi)
2779 {
2780 int v_idx;
2781
2782 if (!vsi->netdev)
2783 return;
2784
2785 ice_for_each_q_vector(vsi, v_idx)
2786 netif_napi_add_config(vsi->netdev,
2787 &vsi->q_vectors[v_idx]->napi,
2788 ice_napi_poll,
2789 v_idx);
2790 }
2791
2792 /**
2793 * ice_vsi_release - Delete a VSI and free its resources
2794 * @vsi: the VSI being removed
2795 *
2796 * Returns 0 on success or < 0 on error
2797 */
ice_vsi_release(struct ice_vsi * vsi)2798 int ice_vsi_release(struct ice_vsi *vsi)
2799 {
2800 struct ice_pf *pf;
2801
2802 if (!vsi->back)
2803 return -ENODEV;
2804 pf = vsi->back;
2805
2806 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2807 ice_rss_clean(vsi);
2808
2809 ice_vsi_close(vsi);
2810
2811 /* The Rx rule will only exist to remove if the LLDP FW
2812 * engine is currently stopped
2813 */
2814 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2815 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2816 ice_cfg_sw_lldp(vsi, false, false);
2817
2818 ice_vsi_decfg(vsi);
2819
2820 /* retain SW VSI data structure since it is needed to unregister and
2821 * free VSI netdev when PF is not in reset recovery pending state,\
2822 * for ex: during rmmod.
2823 */
2824 if (!ice_is_reset_in_progress(pf->state))
2825 ice_vsi_delete(vsi);
2826
2827 return 0;
2828 }
2829
2830 /**
2831 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2832 * @vsi: VSI connected with q_vectors
2833 * @coalesce: array of struct with stored coalesce
2834 *
2835 * Returns array size.
2836 */
2837 static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce)2838 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2839 struct ice_coalesce_stored *coalesce)
2840 {
2841 int i;
2842
2843 ice_for_each_q_vector(vsi, i) {
2844 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2845
2846 coalesce[i].itr_tx = q_vector->tx.itr_settings;
2847 coalesce[i].itr_rx = q_vector->rx.itr_settings;
2848 coalesce[i].intrl = q_vector->intrl;
2849
2850 if (i < vsi->num_txq)
2851 coalesce[i].tx_valid = true;
2852 if (i < vsi->num_rxq)
2853 coalesce[i].rx_valid = true;
2854 }
2855
2856 return vsi->num_q_vectors;
2857 }
2858
2859 /**
2860 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2861 * @vsi: VSI connected with q_vectors
2862 * @coalesce: pointer to array of struct with stored coalesce
2863 * @size: size of coalesce array
2864 *
2865 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2866 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2867 * to default value.
2868 */
2869 static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce,int size)2870 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2871 struct ice_coalesce_stored *coalesce, int size)
2872 {
2873 struct ice_ring_container *rc;
2874 int i;
2875
2876 if ((size && !coalesce) || !vsi)
2877 return;
2878
2879 /* There are a couple of cases that have to be handled here:
2880 * 1. The case where the number of queue vectors stays the same, but
2881 * the number of Tx or Rx rings changes (the first for loop)
2882 * 2. The case where the number of queue vectors increased (the
2883 * second for loop)
2884 */
2885 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2886 /* There are 2 cases to handle here and they are the same for
2887 * both Tx and Rx:
2888 * if the entry was valid previously (coalesce[i].[tr]x_valid
2889 * and the loop variable is less than the number of rings
2890 * allocated, then write the previous values
2891 *
2892 * if the entry was not valid previously, but the number of
2893 * rings is less than are allocated (this means the number of
2894 * rings increased from previously), then write out the
2895 * values in the first element
2896 *
2897 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
2898 * as there is no harm because the dynamic algorithm
2899 * will just overwrite.
2900 */
2901 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2902 rc = &vsi->q_vectors[i]->rx;
2903 rc->itr_settings = coalesce[i].itr_rx;
2904 ice_write_itr(rc, rc->itr_setting);
2905 } else if (i < vsi->alloc_rxq) {
2906 rc = &vsi->q_vectors[i]->rx;
2907 rc->itr_settings = coalesce[0].itr_rx;
2908 ice_write_itr(rc, rc->itr_setting);
2909 }
2910
2911 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2912 rc = &vsi->q_vectors[i]->tx;
2913 rc->itr_settings = coalesce[i].itr_tx;
2914 ice_write_itr(rc, rc->itr_setting);
2915 } else if (i < vsi->alloc_txq) {
2916 rc = &vsi->q_vectors[i]->tx;
2917 rc->itr_settings = coalesce[0].itr_tx;
2918 ice_write_itr(rc, rc->itr_setting);
2919 }
2920
2921 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2922 ice_set_q_vector_intrl(vsi->q_vectors[i]);
2923 }
2924
2925 /* the number of queue vectors increased so write whatever is in
2926 * the first element
2927 */
2928 for (; i < vsi->num_q_vectors; i++) {
2929 /* transmit */
2930 rc = &vsi->q_vectors[i]->tx;
2931 rc->itr_settings = coalesce[0].itr_tx;
2932 ice_write_itr(rc, rc->itr_setting);
2933
2934 /* receive */
2935 rc = &vsi->q_vectors[i]->rx;
2936 rc->itr_settings = coalesce[0].itr_rx;
2937 ice_write_itr(rc, rc->itr_setting);
2938
2939 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
2940 ice_set_q_vector_intrl(vsi->q_vectors[i]);
2941 }
2942 }
2943
2944 /**
2945 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
2946 * @vsi: VSI pointer
2947 */
2948 static int
ice_vsi_realloc_stat_arrays(struct ice_vsi * vsi)2949 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
2950 {
2951 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
2952 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
2953 struct ice_ring_stats **tx_ring_stats;
2954 struct ice_ring_stats **rx_ring_stats;
2955 struct ice_vsi_stats *vsi_stat;
2956 struct ice_pf *pf = vsi->back;
2957 u16 prev_txq = vsi->alloc_txq;
2958 u16 prev_rxq = vsi->alloc_rxq;
2959 int i;
2960
2961 vsi_stat = pf->vsi_stats[vsi->idx];
2962
2963 if (req_txq < prev_txq) {
2964 for (i = req_txq; i < prev_txq; i++) {
2965 if (vsi_stat->tx_ring_stats[i]) {
2966 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
2967 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
2968 }
2969 }
2970 }
2971
2972 tx_ring_stats = vsi_stat->tx_ring_stats;
2973 vsi_stat->tx_ring_stats =
2974 krealloc_array(vsi_stat->tx_ring_stats, req_txq,
2975 sizeof(*vsi_stat->tx_ring_stats),
2976 GFP_KERNEL | __GFP_ZERO);
2977 if (!vsi_stat->tx_ring_stats) {
2978 vsi_stat->tx_ring_stats = tx_ring_stats;
2979 return -ENOMEM;
2980 }
2981
2982 if (req_rxq < prev_rxq) {
2983 for (i = req_rxq; i < prev_rxq; i++) {
2984 if (vsi_stat->rx_ring_stats[i]) {
2985 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
2986 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
2987 }
2988 }
2989 }
2990
2991 rx_ring_stats = vsi_stat->rx_ring_stats;
2992 vsi_stat->rx_ring_stats =
2993 krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
2994 sizeof(*vsi_stat->rx_ring_stats),
2995 GFP_KERNEL | __GFP_ZERO);
2996 if (!vsi_stat->rx_ring_stats) {
2997 vsi_stat->rx_ring_stats = rx_ring_stats;
2998 return -ENOMEM;
2999 }
3000
3001 return 0;
3002 }
3003
3004 /**
3005 * ice_vsi_rebuild - Rebuild VSI after reset
3006 * @vsi: VSI to be rebuild
3007 * @vsi_flags: flags used for VSI rebuild flow
3008 *
3009 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3010 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3011 *
3012 * Returns 0 on success and negative value on failure
3013 */
ice_vsi_rebuild(struct ice_vsi * vsi,u32 vsi_flags)3014 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3015 {
3016 struct ice_coalesce_stored *coalesce;
3017 int prev_num_q_vectors;
3018 struct ice_pf *pf;
3019 int ret;
3020
3021 if (!vsi)
3022 return -EINVAL;
3023
3024 vsi->flags = vsi_flags;
3025 pf = vsi->back;
3026 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3027 return -EINVAL;
3028
3029 mutex_lock(&vsi->xdp_state_lock);
3030
3031 ret = ice_vsi_realloc_stat_arrays(vsi);
3032 if (ret)
3033 goto unlock;
3034
3035 ice_vsi_decfg(vsi);
3036 ret = ice_vsi_cfg_def(vsi);
3037 if (ret)
3038 goto unlock;
3039
3040 coalesce = kcalloc(vsi->num_q_vectors,
3041 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3042 if (!coalesce) {
3043 ret = -ENOMEM;
3044 goto decfg;
3045 }
3046
3047 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3048
3049 ret = ice_vsi_cfg_tc_lan(pf, vsi);
3050 if (ret) {
3051 if (vsi_flags & ICE_VSI_FLAG_INIT) {
3052 ret = -EIO;
3053 goto free_coalesce;
3054 }
3055
3056 ret = ice_schedule_reset(pf, ICE_RESET_PFR);
3057 goto free_coalesce;
3058 }
3059
3060 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3061 clear_bit(ICE_VSI_REBUILD_PENDING, vsi->state);
3062
3063 free_coalesce:
3064 kfree(coalesce);
3065 decfg:
3066 if (ret)
3067 ice_vsi_decfg(vsi);
3068 unlock:
3069 mutex_unlock(&vsi->xdp_state_lock);
3070 return ret;
3071 }
3072
3073 /**
3074 * ice_is_reset_in_progress - check for a reset in progress
3075 * @state: PF state field
3076 */
ice_is_reset_in_progress(unsigned long * state)3077 bool ice_is_reset_in_progress(unsigned long *state)
3078 {
3079 return test_bit(ICE_RESET_OICR_RECV, state) ||
3080 test_bit(ICE_PFR_REQ, state) ||
3081 test_bit(ICE_CORER_REQ, state) ||
3082 test_bit(ICE_GLOBR_REQ, state);
3083 }
3084
3085 /**
3086 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3087 * @pf: pointer to the PF structure
3088 * @timeout: length of time to wait, in jiffies
3089 *
3090 * Wait (sleep) for a short time until the driver finishes cleaning up from
3091 * a device reset. The caller must be able to sleep. Use this to delay
3092 * operations that could fail while the driver is cleaning up after a device
3093 * reset.
3094 *
3095 * Returns 0 on success, -EBUSY if the reset is not finished within the
3096 * timeout, and -ERESTARTSYS if the thread was interrupted.
3097 */
ice_wait_for_reset(struct ice_pf * pf,unsigned long timeout)3098 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3099 {
3100 long ret;
3101
3102 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3103 !ice_is_reset_in_progress(pf->state),
3104 timeout);
3105 if (ret < 0)
3106 return ret;
3107 else if (!ret)
3108 return -EBUSY;
3109 else
3110 return 0;
3111 }
3112
3113 /**
3114 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3115 * @vsi: VSI being configured
3116 * @ctx: the context buffer returned from AQ VSI update command
3117 */
ice_vsi_update_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctx)3118 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3119 {
3120 vsi->info.mapping_flags = ctx->info.mapping_flags;
3121 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3122 sizeof(vsi->info.q_mapping));
3123 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3124 sizeof(vsi->info.tc_mapping));
3125 }
3126
3127 /**
3128 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3129 * @vsi: the VSI being configured
3130 * @ena_tc: TC map to be enabled
3131 */
ice_vsi_cfg_netdev_tc(struct ice_vsi * vsi,u8 ena_tc)3132 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3133 {
3134 struct net_device *netdev = vsi->netdev;
3135 struct ice_pf *pf = vsi->back;
3136 int numtc = vsi->tc_cfg.numtc;
3137 struct ice_dcbx_cfg *dcbcfg;
3138 u8 netdev_tc;
3139 int i;
3140
3141 if (!netdev)
3142 return;
3143
3144 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3145 if (vsi->type == ICE_VSI_CHNL)
3146 return;
3147
3148 if (!ena_tc) {
3149 netdev_reset_tc(netdev);
3150 return;
3151 }
3152
3153 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3154 numtc = vsi->all_numtc;
3155
3156 if (netdev_set_num_tc(netdev, numtc))
3157 return;
3158
3159 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3160
3161 ice_for_each_traffic_class(i)
3162 if (vsi->tc_cfg.ena_tc & BIT(i))
3163 netdev_set_tc_queue(netdev,
3164 vsi->tc_cfg.tc_info[i].netdev_tc,
3165 vsi->tc_cfg.tc_info[i].qcount_tx,
3166 vsi->tc_cfg.tc_info[i].qoffset);
3167 /* setup TC queue map for CHNL TCs */
3168 ice_for_each_chnl_tc(i) {
3169 if (!(vsi->all_enatc & BIT(i)))
3170 break;
3171 if (!vsi->mqprio_qopt.qopt.count[i])
3172 break;
3173 netdev_set_tc_queue(netdev, i,
3174 vsi->mqprio_qopt.qopt.count[i],
3175 vsi->mqprio_qopt.qopt.offset[i]);
3176 }
3177
3178 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3179 return;
3180
3181 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3182 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3183
3184 /* Get the mapped netdev TC# for the UP */
3185 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3186 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3187 }
3188 }
3189
3190 /**
3191 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3192 * @vsi: the VSI being configured,
3193 * @ctxt: VSI context structure
3194 * @ena_tc: number of traffic classes to enable
3195 *
3196 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3197 */
3198 static int
ice_vsi_setup_q_map_mqprio(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt,u8 ena_tc)3199 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3200 u8 ena_tc)
3201 {
3202 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3203 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3204 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3205 u16 new_txq, new_rxq;
3206 u8 netdev_tc = 0;
3207 int i;
3208
3209 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3210
3211 pow = order_base_2(tc0_qcount);
3212 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3213 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
3214
3215 ice_for_each_traffic_class(i) {
3216 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3217 /* TC is not enabled */
3218 vsi->tc_cfg.tc_info[i].qoffset = 0;
3219 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3220 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3221 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3222 ctxt->info.tc_mapping[i] = 0;
3223 continue;
3224 }
3225
3226 offset = vsi->mqprio_qopt.qopt.offset[i];
3227 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3228 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3229 vsi->tc_cfg.tc_info[i].qoffset = offset;
3230 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3231 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3232 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3233 }
3234
3235 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3236 ice_for_each_chnl_tc(i) {
3237 if (!(vsi->all_enatc & BIT(i)))
3238 continue;
3239 offset = vsi->mqprio_qopt.qopt.offset[i];
3240 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3241 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3242 }
3243 }
3244
3245 new_txq = offset + qcount_tx;
3246 if (new_txq > vsi->alloc_txq) {
3247 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3248 new_txq, vsi->alloc_txq);
3249 return -EINVAL;
3250 }
3251
3252 new_rxq = offset + qcount_rx;
3253 if (new_rxq > vsi->alloc_rxq) {
3254 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3255 new_rxq, vsi->alloc_rxq);
3256 return -EINVAL;
3257 }
3258
3259 /* Set actual Tx/Rx queue pairs */
3260 vsi->num_txq = new_txq;
3261 vsi->num_rxq = new_rxq;
3262
3263 /* Setup queue TC[0].qmap for given VSI context */
3264 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3265 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3266 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3267
3268 /* Find queue count available for channel VSIs and starting offset
3269 * for channel VSIs
3270 */
3271 if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3272 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3273 vsi->next_base_q = tc0_qcount;
3274 }
3275 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
3276 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
3277 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3278 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3279
3280 return 0;
3281 }
3282
3283 /**
3284 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3285 * @vsi: VSI to be configured
3286 * @ena_tc: TC bitmap
3287 *
3288 * VSI queues expected to be quiesced before calling this function
3289 */
ice_vsi_cfg_tc(struct ice_vsi * vsi,u8 ena_tc)3290 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3291 {
3292 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3293 struct ice_pf *pf = vsi->back;
3294 struct ice_tc_cfg old_tc_cfg;
3295 struct ice_vsi_ctx *ctx;
3296 struct device *dev;
3297 int i, ret = 0;
3298 u8 num_tc = 0;
3299
3300 dev = ice_pf_to_dev(pf);
3301 if (vsi->tc_cfg.ena_tc == ena_tc &&
3302 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3303 return 0;
3304
3305 ice_for_each_traffic_class(i) {
3306 /* build bitmap of enabled TCs */
3307 if (ena_tc & BIT(i))
3308 num_tc++;
3309 /* populate max_txqs per TC */
3310 max_txqs[i] = vsi->alloc_txq;
3311 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3312 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3313 */
3314 if (vsi->type == ICE_VSI_CHNL &&
3315 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3316 max_txqs[i] = vsi->num_txq;
3317 }
3318
3319 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3320 vsi->tc_cfg.ena_tc = ena_tc;
3321 vsi->tc_cfg.numtc = num_tc;
3322
3323 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3324 if (!ctx)
3325 return -ENOMEM;
3326
3327 ctx->vf_num = 0;
3328 ctx->info = vsi->info;
3329
3330 if (vsi->type == ICE_VSI_PF &&
3331 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3332 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3333 else
3334 ret = ice_vsi_setup_q_map(vsi, ctx);
3335
3336 if (ret) {
3337 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3338 goto out;
3339 }
3340
3341 /* must to indicate which section of VSI context are being modified */
3342 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3343 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3344 if (ret) {
3345 dev_info(dev, "Failed VSI Update\n");
3346 goto out;
3347 }
3348
3349 if (vsi->type == ICE_VSI_PF &&
3350 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3351 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3352 else
3353 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3354 vsi->tc_cfg.ena_tc, max_txqs);
3355
3356 if (ret) {
3357 dev_err(dev, "VSI %d failed TC config, error %d\n",
3358 vsi->vsi_num, ret);
3359 goto out;
3360 }
3361 ice_vsi_update_q_map(vsi, ctx);
3362 vsi->info.valid_sections = 0;
3363
3364 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3365 out:
3366 kfree(ctx);
3367 return ret;
3368 }
3369
3370 /**
3371 * ice_update_ring_stats - Update ring statistics
3372 * @stats: stats to be updated
3373 * @pkts: number of processed packets
3374 * @bytes: number of processed bytes
3375 *
3376 * This function assumes that caller has acquired a u64_stats_sync lock.
3377 */
ice_update_ring_stats(struct ice_q_stats * stats,u64 pkts,u64 bytes)3378 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3379 {
3380 stats->bytes += bytes;
3381 stats->pkts += pkts;
3382 }
3383
3384 /**
3385 * ice_update_tx_ring_stats - Update Tx ring specific counters
3386 * @tx_ring: ring to update
3387 * @pkts: number of processed packets
3388 * @bytes: number of processed bytes
3389 */
ice_update_tx_ring_stats(struct ice_tx_ring * tx_ring,u64 pkts,u64 bytes)3390 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3391 {
3392 u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3393 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3394 u64_stats_update_end(&tx_ring->ring_stats->syncp);
3395 }
3396
3397 /**
3398 * ice_update_rx_ring_stats - Update Rx ring specific counters
3399 * @rx_ring: ring to update
3400 * @pkts: number of processed packets
3401 * @bytes: number of processed bytes
3402 */
ice_update_rx_ring_stats(struct ice_rx_ring * rx_ring,u64 pkts,u64 bytes)3403 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3404 {
3405 u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3406 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3407 u64_stats_update_end(&rx_ring->ring_stats->syncp);
3408 }
3409
3410 /**
3411 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3412 * @pi: port info of the switch with default VSI
3413 *
3414 * Return true if the there is a single VSI in default forwarding VSI list
3415 */
ice_is_dflt_vsi_in_use(struct ice_port_info * pi)3416 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3417 {
3418 bool exists = false;
3419
3420 ice_check_if_dflt_vsi(pi, 0, &exists);
3421 return exists;
3422 }
3423
3424 /**
3425 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3426 * @vsi: VSI to compare against default forwarding VSI
3427 *
3428 * If this VSI passed in is the default forwarding VSI then return true, else
3429 * return false
3430 */
ice_is_vsi_dflt_vsi(struct ice_vsi * vsi)3431 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3432 {
3433 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3434 }
3435
3436 /**
3437 * ice_set_dflt_vsi - set the default forwarding VSI
3438 * @vsi: VSI getting set as the default forwarding VSI on the switch
3439 *
3440 * If the VSI passed in is already the default VSI and it's enabled just return
3441 * success.
3442 *
3443 * Otherwise try to set the VSI passed in as the switch's default VSI and
3444 * return the result.
3445 */
ice_set_dflt_vsi(struct ice_vsi * vsi)3446 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3447 {
3448 struct device *dev;
3449 int status;
3450
3451 if (!vsi)
3452 return -EINVAL;
3453
3454 dev = ice_pf_to_dev(vsi->back);
3455
3456 if (ice_lag_is_switchdev_running(vsi->back)) {
3457 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3458 vsi->vsi_num);
3459 return 0;
3460 }
3461
3462 /* the VSI passed in is already the default VSI */
3463 if (ice_is_vsi_dflt_vsi(vsi)) {
3464 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3465 vsi->vsi_num);
3466 return 0;
3467 }
3468
3469 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3470 if (status) {
3471 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3472 vsi->vsi_num, status);
3473 return status;
3474 }
3475
3476 return 0;
3477 }
3478
3479 /**
3480 * ice_clear_dflt_vsi - clear the default forwarding VSI
3481 * @vsi: VSI to remove from filter list
3482 *
3483 * If the switch has no default VSI or it's not enabled then return error.
3484 *
3485 * Otherwise try to clear the default VSI and return the result.
3486 */
ice_clear_dflt_vsi(struct ice_vsi * vsi)3487 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3488 {
3489 struct device *dev;
3490 int status;
3491
3492 if (!vsi)
3493 return -EINVAL;
3494
3495 dev = ice_pf_to_dev(vsi->back);
3496
3497 /* there is no default VSI configured */
3498 if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3499 return -ENODEV;
3500
3501 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3502 ICE_FLTR_RX);
3503 if (status) {
3504 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3505 vsi->vsi_num, status);
3506 return -EIO;
3507 }
3508
3509 return 0;
3510 }
3511
3512 /**
3513 * ice_get_link_speed_mbps - get link speed in Mbps
3514 * @vsi: the VSI whose link speed is being queried
3515 *
3516 * Return current VSI link speed and 0 if the speed is unknown.
3517 */
ice_get_link_speed_mbps(struct ice_vsi * vsi)3518 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3519 {
3520 unsigned int link_speed;
3521
3522 link_speed = vsi->port_info->phy.link_info.link_speed;
3523
3524 return (int)ice_get_link_speed(fls(link_speed) - 1);
3525 }
3526
3527 /**
3528 * ice_get_link_speed_kbps - get link speed in Kbps
3529 * @vsi: the VSI whose link speed is being queried
3530 *
3531 * Return current VSI link speed and 0 if the speed is unknown.
3532 */
ice_get_link_speed_kbps(struct ice_vsi * vsi)3533 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3534 {
3535 int speed_mbps;
3536
3537 speed_mbps = ice_get_link_speed_mbps(vsi);
3538
3539 return speed_mbps * 1000;
3540 }
3541
3542 /**
3543 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3544 * @vsi: VSI to be configured
3545 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3546 *
3547 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3548 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3549 * on TC 0.
3550 */
ice_set_min_bw_limit(struct ice_vsi * vsi,u64 min_tx_rate)3551 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3552 {
3553 struct ice_pf *pf = vsi->back;
3554 struct device *dev;
3555 int status;
3556 int speed;
3557
3558 dev = ice_pf_to_dev(pf);
3559 if (!vsi->port_info) {
3560 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3561 vsi->idx, vsi->type);
3562 return -EINVAL;
3563 }
3564
3565 speed = ice_get_link_speed_kbps(vsi);
3566 if (min_tx_rate > (u64)speed) {
3567 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3568 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3569 speed);
3570 return -EINVAL;
3571 }
3572
3573 /* Configure min BW for VSI limit */
3574 if (min_tx_rate) {
3575 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3576 ICE_MIN_BW, min_tx_rate);
3577 if (status) {
3578 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3579 min_tx_rate, ice_vsi_type_str(vsi->type),
3580 vsi->idx);
3581 return status;
3582 }
3583
3584 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3585 min_tx_rate, ice_vsi_type_str(vsi->type));
3586 } else {
3587 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3588 vsi->idx, 0,
3589 ICE_MIN_BW);
3590 if (status) {
3591 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3592 ice_vsi_type_str(vsi->type), vsi->idx);
3593 return status;
3594 }
3595
3596 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3597 ice_vsi_type_str(vsi->type), vsi->idx);
3598 }
3599
3600 return 0;
3601 }
3602
3603 /**
3604 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3605 * @vsi: VSI to be configured
3606 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3607 *
3608 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3609 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3610 * on TC 0.
3611 */
ice_set_max_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate)3612 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3613 {
3614 struct ice_pf *pf = vsi->back;
3615 struct device *dev;
3616 int status;
3617 int speed;
3618
3619 dev = ice_pf_to_dev(pf);
3620 if (!vsi->port_info) {
3621 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3622 vsi->idx, vsi->type);
3623 return -EINVAL;
3624 }
3625
3626 speed = ice_get_link_speed_kbps(vsi);
3627 if (max_tx_rate > (u64)speed) {
3628 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3629 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3630 speed);
3631 return -EINVAL;
3632 }
3633
3634 /* Configure max BW for VSI limit */
3635 if (max_tx_rate) {
3636 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3637 ICE_MAX_BW, max_tx_rate);
3638 if (status) {
3639 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3640 max_tx_rate, ice_vsi_type_str(vsi->type),
3641 vsi->idx);
3642 return status;
3643 }
3644
3645 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3646 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3647 } else {
3648 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3649 vsi->idx, 0,
3650 ICE_MAX_BW);
3651 if (status) {
3652 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3653 ice_vsi_type_str(vsi->type), vsi->idx);
3654 return status;
3655 }
3656
3657 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3658 ice_vsi_type_str(vsi->type), vsi->idx);
3659 }
3660
3661 return 0;
3662 }
3663
3664 /**
3665 * ice_set_link - turn on/off physical link
3666 * @vsi: VSI to modify physical link on
3667 * @ena: turn on/off physical link
3668 */
ice_set_link(struct ice_vsi * vsi,bool ena)3669 int ice_set_link(struct ice_vsi *vsi, bool ena)
3670 {
3671 struct device *dev = ice_pf_to_dev(vsi->back);
3672 struct ice_port_info *pi = vsi->port_info;
3673 struct ice_hw *hw = pi->hw;
3674 int status;
3675
3676 if (vsi->type != ICE_VSI_PF)
3677 return -EINVAL;
3678
3679 status = ice_aq_set_link_restart_an(pi, ena, NULL);
3680
3681 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3682 * this is not a fatal error, so print a warning message and return
3683 * a success code. Return an error if FW returns an error code other
3684 * than ICE_AQ_RC_EMODE
3685 */
3686 if (status == -EIO) {
3687 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3688 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3689 (ena ? "ON" : "OFF"), status,
3690 ice_aq_str(hw->adminq.sq_last_status));
3691 } else if (status) {
3692 dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3693 (ena ? "ON" : "OFF"), status,
3694 ice_aq_str(hw->adminq.sq_last_status));
3695 return status;
3696 }
3697
3698 return 0;
3699 }
3700
3701 /**
3702 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3703 * @vsi: VSI used to add VLAN filters
3704 *
3705 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3706 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3707 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3708 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3709 *
3710 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3711 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3712 * traffic in SVM, since the VLAN TPID isn't part of filtering.
3713 *
3714 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3715 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3716 * part of filtering.
3717 */
ice_vsi_add_vlan_zero(struct ice_vsi * vsi)3718 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3719 {
3720 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3721 struct ice_vlan vlan;
3722 int err;
3723
3724 vlan = ICE_VLAN(0, 0, 0);
3725 err = vlan_ops->add_vlan(vsi, &vlan);
3726 if (err && err != -EEXIST)
3727 return err;
3728
3729 /* in SVM both VLAN 0 filters are identical */
3730 if (!ice_is_dvm_ena(&vsi->back->hw))
3731 return 0;
3732
3733 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3734 err = vlan_ops->add_vlan(vsi, &vlan);
3735 if (err && err != -EEXIST)
3736 return err;
3737
3738 return 0;
3739 }
3740
3741 /**
3742 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3743 * @vsi: VSI used to add VLAN filters
3744 *
3745 * Delete the VLAN 0 filters in the same manner that they were added in
3746 * ice_vsi_add_vlan_zero.
3747 */
ice_vsi_del_vlan_zero(struct ice_vsi * vsi)3748 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3749 {
3750 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3751 struct ice_vlan vlan;
3752 int err;
3753
3754 vlan = ICE_VLAN(0, 0, 0);
3755 err = vlan_ops->del_vlan(vsi, &vlan);
3756 if (err && err != -EEXIST)
3757 return err;
3758
3759 /* in SVM both VLAN 0 filters are identical */
3760 if (!ice_is_dvm_ena(&vsi->back->hw))
3761 return 0;
3762
3763 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3764 err = vlan_ops->del_vlan(vsi, &vlan);
3765 if (err && err != -EEXIST)
3766 return err;
3767
3768 /* when deleting the last VLAN filter, make sure to disable the VLAN
3769 * promisc mode so the filter isn't left by accident
3770 */
3771 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3772 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3773 }
3774
3775 /**
3776 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3777 * @vsi: VSI used to get the VLAN mode
3778 *
3779 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3780 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3781 */
ice_vsi_num_zero_vlans(struct ice_vsi * vsi)3782 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3783 {
3784 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
3785 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
3786 /* no VLAN 0 filter is created when a port VLAN is active */
3787 if (vsi->type == ICE_VSI_VF) {
3788 if (WARN_ON(!vsi->vf))
3789 return 0;
3790
3791 if (ice_vf_is_port_vlan_ena(vsi->vf))
3792 return 0;
3793 }
3794
3795 if (ice_is_dvm_ena(&vsi->back->hw))
3796 return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3797 else
3798 return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3799 }
3800
3801 /**
3802 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3803 * @vsi: VSI used to determine if any non-zero VLANs have been added
3804 */
ice_vsi_has_non_zero_vlans(struct ice_vsi * vsi)3805 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3806 {
3807 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3808 }
3809
3810 /**
3811 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3812 * @vsi: VSI used to get the number of non-zero VLANs added
3813 */
ice_vsi_num_non_zero_vlans(struct ice_vsi * vsi)3814 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3815 {
3816 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3817 }
3818
3819 /**
3820 * ice_is_feature_supported
3821 * @pf: pointer to the struct ice_pf instance
3822 * @f: feature enum to be checked
3823 *
3824 * returns true if feature is supported, false otherwise
3825 */
ice_is_feature_supported(struct ice_pf * pf,enum ice_feature f)3826 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3827 {
3828 if (f < 0 || f >= ICE_F_MAX)
3829 return false;
3830
3831 return test_bit(f, pf->features);
3832 }
3833
3834 /**
3835 * ice_set_feature_support
3836 * @pf: pointer to the struct ice_pf instance
3837 * @f: feature enum to set
3838 */
ice_set_feature_support(struct ice_pf * pf,enum ice_feature f)3839 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3840 {
3841 if (f < 0 || f >= ICE_F_MAX)
3842 return;
3843
3844 set_bit(f, pf->features);
3845 }
3846
3847 /**
3848 * ice_clear_feature_support
3849 * @pf: pointer to the struct ice_pf instance
3850 * @f: feature enum to clear
3851 */
ice_clear_feature_support(struct ice_pf * pf,enum ice_feature f)3852 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3853 {
3854 if (f < 0 || f >= ICE_F_MAX)
3855 return;
3856
3857 clear_bit(f, pf->features);
3858 }
3859
3860 /**
3861 * ice_init_feature_support
3862 * @pf: pointer to the struct ice_pf instance
3863 *
3864 * called during init to setup supported feature
3865 */
ice_init_feature_support(struct ice_pf * pf)3866 void ice_init_feature_support(struct ice_pf *pf)
3867 {
3868 switch (pf->hw.device_id) {
3869 case ICE_DEV_ID_E810C_BACKPLANE:
3870 case ICE_DEV_ID_E810C_QSFP:
3871 case ICE_DEV_ID_E810C_SFP:
3872 case ICE_DEV_ID_E810_XXV_BACKPLANE:
3873 case ICE_DEV_ID_E810_XXV_QSFP:
3874 case ICE_DEV_ID_E810_XXV_SFP:
3875 ice_set_feature_support(pf, ICE_F_DSCP);
3876 if (ice_is_phy_rclk_in_netlist(&pf->hw))
3877 ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3878 /* If we don't own the timer - don't enable other caps */
3879 if (!ice_pf_src_tmr_owned(pf))
3880 break;
3881 if (ice_is_cgu_in_netlist(&pf->hw))
3882 ice_set_feature_support(pf, ICE_F_CGU);
3883 if (ice_is_clock_mux_in_netlist(&pf->hw))
3884 ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3885 if (ice_gnss_is_gps_present(&pf->hw))
3886 ice_set_feature_support(pf, ICE_F_GNSS);
3887 break;
3888 default:
3889 break;
3890 }
3891
3892 if (pf->hw.mac_type == ICE_MAC_E830)
3893 ice_set_feature_support(pf, ICE_F_MBX_LIMIT);
3894 }
3895
3896 /**
3897 * ice_vsi_update_security - update security block in VSI
3898 * @vsi: pointer to VSI structure
3899 * @fill: function pointer to fill ctx
3900 */
3901 int
ice_vsi_update_security(struct ice_vsi * vsi,void (* fill)(struct ice_vsi_ctx *))3902 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
3903 {
3904 struct ice_vsi_ctx ctx = { 0 };
3905
3906 ctx.info = vsi->info;
3907 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3908 fill(&ctx);
3909
3910 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3911 return -ENODEV;
3912
3913 vsi->info = ctx.info;
3914 return 0;
3915 }
3916
3917 /**
3918 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
3919 * @ctx: pointer to VSI ctx structure
3920 */
ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx * ctx)3921 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
3922 {
3923 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
3924 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3925 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3926 }
3927
3928 /**
3929 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
3930 * @ctx: pointer to VSI ctx structure
3931 */
ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx * ctx)3932 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
3933 {
3934 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
3935 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3936 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3937 }
3938
3939 /**
3940 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
3941 * @vsi: pointer to VSI structure
3942 * @set: set or unset the bit
3943 */
3944 int
ice_vsi_update_local_lb(struct ice_vsi * vsi,bool set)3945 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
3946 {
3947 struct ice_vsi_ctx ctx = {
3948 .info = vsi->info,
3949 };
3950
3951 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
3952 if (set)
3953 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
3954 else
3955 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
3956
3957 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3958 return -ENODEV;
3959
3960 vsi->info = ctx.info;
3961 return 0;
3962 }
3963