xref: /linux/drivers/net/ethernet/intel/ice/ice_common.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 #include <linux/packing.h>
10 
11 #define ICE_PF_RESET_WAIT_COUNT	300
12 #define ICE_MAX_NETLIST_SIZE	10
13 
14 static const char * const ice_link_mode_str_low[] = {
15 	[0] = "100BASE_TX",
16 	[1] = "100M_SGMII",
17 	[2] = "1000BASE_T",
18 	[3] = "1000BASE_SX",
19 	[4] = "1000BASE_LX",
20 	[5] = "1000BASE_KX",
21 	[6] = "1G_SGMII",
22 	[7] = "2500BASE_T",
23 	[8] = "2500BASE_X",
24 	[9] = "2500BASE_KX",
25 	[10] = "5GBASE_T",
26 	[11] = "5GBASE_KR",
27 	[12] = "10GBASE_T",
28 	[13] = "10G_SFI_DA",
29 	[14] = "10GBASE_SR",
30 	[15] = "10GBASE_LR",
31 	[16] = "10GBASE_KR_CR1",
32 	[17] = "10G_SFI_AOC_ACC",
33 	[18] = "10G_SFI_C2C",
34 	[19] = "25GBASE_T",
35 	[20] = "25GBASE_CR",
36 	[21] = "25GBASE_CR_S",
37 	[22] = "25GBASE_CR1",
38 	[23] = "25GBASE_SR",
39 	[24] = "25GBASE_LR",
40 	[25] = "25GBASE_KR",
41 	[26] = "25GBASE_KR_S",
42 	[27] = "25GBASE_KR1",
43 	[28] = "25G_AUI_AOC_ACC",
44 	[29] = "25G_AUI_C2C",
45 	[30] = "40GBASE_CR4",
46 	[31] = "40GBASE_SR4",
47 	[32] = "40GBASE_LR4",
48 	[33] = "40GBASE_KR4",
49 	[34] = "40G_XLAUI_AOC_ACC",
50 	[35] = "40G_XLAUI",
51 	[36] = "50GBASE_CR2",
52 	[37] = "50GBASE_SR2",
53 	[38] = "50GBASE_LR2",
54 	[39] = "50GBASE_KR2",
55 	[40] = "50G_LAUI2_AOC_ACC",
56 	[41] = "50G_LAUI2",
57 	[42] = "50G_AUI2_AOC_ACC",
58 	[43] = "50G_AUI2",
59 	[44] = "50GBASE_CP",
60 	[45] = "50GBASE_SR",
61 	[46] = "50GBASE_FR",
62 	[47] = "50GBASE_LR",
63 	[48] = "50GBASE_KR_PAM4",
64 	[49] = "50G_AUI1_AOC_ACC",
65 	[50] = "50G_AUI1",
66 	[51] = "100GBASE_CR4",
67 	[52] = "100GBASE_SR4",
68 	[53] = "100GBASE_LR4",
69 	[54] = "100GBASE_KR4",
70 	[55] = "100G_CAUI4_AOC_ACC",
71 	[56] = "100G_CAUI4",
72 	[57] = "100G_AUI4_AOC_ACC",
73 	[58] = "100G_AUI4",
74 	[59] = "100GBASE_CR_PAM4",
75 	[60] = "100GBASE_KR_PAM4",
76 	[61] = "100GBASE_CP2",
77 	[62] = "100GBASE_SR2",
78 	[63] = "100GBASE_DR",
79 };
80 
81 static const char * const ice_link_mode_str_high[] = {
82 	[0] = "100GBASE_KR2_PAM4",
83 	[1] = "100G_CAUI2_AOC_ACC",
84 	[2] = "100G_CAUI2",
85 	[3] = "100G_AUI2_AOC_ACC",
86 	[4] = "100G_AUI2",
87 };
88 
89 /**
90  * ice_dump_phy_type - helper function to dump phy_type
91  * @hw: pointer to the HW structure
92  * @low: 64 bit value for phy_type_low
93  * @high: 64 bit value for phy_type_high
94  * @prefix: prefix string to differentiate multiple dumps
95  */
96 static void
ice_dump_phy_type(struct ice_hw * hw,u64 low,u64 high,const char * prefix)97 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
98 {
99 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
100 
101 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
102 		if (low & BIT_ULL(i))
103 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
104 				  prefix, i, ice_link_mode_str_low[i]);
105 	}
106 
107 	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
108 
109 	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
110 		if (high & BIT_ULL(i))
111 			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
112 				  prefix, i, ice_link_mode_str_high[i]);
113 	}
114 }
115 
116 /**
117  * ice_set_mac_type - Sets MAC type
118  * @hw: pointer to the HW structure
119  *
120  * This function sets the MAC type of the adapter based on the
121  * vendor ID and device ID stored in the HW structure.
122  */
ice_set_mac_type(struct ice_hw * hw)123 static int ice_set_mac_type(struct ice_hw *hw)
124 {
125 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
126 		return -ENODEV;
127 
128 	switch (hw->device_id) {
129 	case ICE_DEV_ID_E810C_BACKPLANE:
130 	case ICE_DEV_ID_E810C_QSFP:
131 	case ICE_DEV_ID_E810C_SFP:
132 	case ICE_DEV_ID_E810_XXV_BACKPLANE:
133 	case ICE_DEV_ID_E810_XXV_QSFP:
134 	case ICE_DEV_ID_E810_XXV_SFP:
135 		hw->mac_type = ICE_MAC_E810;
136 		break;
137 	case ICE_DEV_ID_E823C_10G_BASE_T:
138 	case ICE_DEV_ID_E823C_BACKPLANE:
139 	case ICE_DEV_ID_E823C_QSFP:
140 	case ICE_DEV_ID_E823C_SFP:
141 	case ICE_DEV_ID_E823C_SGMII:
142 	case ICE_DEV_ID_E822C_10G_BASE_T:
143 	case ICE_DEV_ID_E822C_BACKPLANE:
144 	case ICE_DEV_ID_E822C_QSFP:
145 	case ICE_DEV_ID_E822C_SFP:
146 	case ICE_DEV_ID_E822C_SGMII:
147 	case ICE_DEV_ID_E822L_10G_BASE_T:
148 	case ICE_DEV_ID_E822L_BACKPLANE:
149 	case ICE_DEV_ID_E822L_SFP:
150 	case ICE_DEV_ID_E822L_SGMII:
151 	case ICE_DEV_ID_E823L_10G_BASE_T:
152 	case ICE_DEV_ID_E823L_1GBE:
153 	case ICE_DEV_ID_E823L_BACKPLANE:
154 	case ICE_DEV_ID_E823L_QSFP:
155 	case ICE_DEV_ID_E823L_SFP:
156 		hw->mac_type = ICE_MAC_GENERIC;
157 		break;
158 	case ICE_DEV_ID_E825C_BACKPLANE:
159 	case ICE_DEV_ID_E825C_QSFP:
160 	case ICE_DEV_ID_E825C_SFP:
161 	case ICE_DEV_ID_E825C_SGMII:
162 		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
163 		break;
164 	case ICE_DEV_ID_E830CC_BACKPLANE:
165 	case ICE_DEV_ID_E830CC_QSFP56:
166 	case ICE_DEV_ID_E830CC_SFP:
167 	case ICE_DEV_ID_E830CC_SFP_DD:
168 	case ICE_DEV_ID_E830C_BACKPLANE:
169 	case ICE_DEV_ID_E830_XXV_BACKPLANE:
170 	case ICE_DEV_ID_E830C_QSFP:
171 	case ICE_DEV_ID_E830_XXV_QSFP:
172 	case ICE_DEV_ID_E830C_SFP:
173 	case ICE_DEV_ID_E830_XXV_SFP:
174 	case ICE_DEV_ID_E835CC_BACKPLANE:
175 	case ICE_DEV_ID_E835CC_QSFP56:
176 	case ICE_DEV_ID_E835CC_SFP:
177 	case ICE_DEV_ID_E835C_BACKPLANE:
178 	case ICE_DEV_ID_E835C_QSFP:
179 	case ICE_DEV_ID_E835C_SFP:
180 	case ICE_DEV_ID_E835_L_BACKPLANE:
181 	case ICE_DEV_ID_E835_L_QSFP:
182 	case ICE_DEV_ID_E835_L_SFP:
183 		hw->mac_type = ICE_MAC_E830;
184 		break;
185 	default:
186 		hw->mac_type = ICE_MAC_UNKNOWN;
187 		break;
188 	}
189 
190 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
191 	return 0;
192 }
193 
194 /**
195  * ice_is_generic_mac - check if device's mac_type is generic
196  * @hw: pointer to the hardware structure
197  *
198  * Return: true if mac_type is ICE_MAC_GENERIC*, false otherwise.
199  */
ice_is_generic_mac(struct ice_hw * hw)200 bool ice_is_generic_mac(struct ice_hw *hw)
201 {
202 	return (hw->mac_type == ICE_MAC_GENERIC ||
203 		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
204 }
205 
206 /**
207  * ice_is_pf_c827 - check if pf contains c827 phy
208  * @hw: pointer to the hw struct
209  *
210  * Return: true if the device has c827 phy.
211  */
ice_is_pf_c827(struct ice_hw * hw)212 static bool ice_is_pf_c827(struct ice_hw *hw)
213 {
214 	struct ice_aqc_get_link_topo cmd = {};
215 	u8 node_part_number;
216 	u16 node_handle;
217 	int status;
218 
219 	if (hw->mac_type != ICE_MAC_E810)
220 		return false;
221 
222 	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
223 		return true;
224 
225 	cmd.addr.topo_params.node_type_ctx =
226 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
227 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
228 	cmd.addr.topo_params.index = 0;
229 
230 	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
231 					 &node_handle);
232 
233 	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
234 		return false;
235 
236 	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
237 		return true;
238 
239 	return false;
240 }
241 
242 /**
243  * ice_clear_pf_cfg - Clear PF configuration
244  * @hw: pointer to the hardware structure
245  *
246  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
247  * configuration, flow director filters, etc.).
248  */
ice_clear_pf_cfg(struct ice_hw * hw)249 int ice_clear_pf_cfg(struct ice_hw *hw)
250 {
251 	struct libie_aq_desc desc;
252 
253 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
254 
255 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
256 }
257 
258 /**
259  * ice_aq_manage_mac_read - manage MAC address read command
260  * @hw: pointer to the HW struct
261  * @buf: a virtual buffer to hold the manage MAC read response
262  * @buf_size: Size of the virtual buffer
263  * @cd: pointer to command details structure or NULL
264  *
265  * This function is used to return per PF station MAC address (0x0107).
266  * NOTE: Upon successful completion of this command, MAC address information
267  * is returned in user specified buffer. Please interpret user specified
268  * buffer as "manage_mac_read" response.
269  * Response such as various MAC addresses are stored in HW struct (port.mac)
270  * ice_discover_dev_caps is expected to be called before this function is
271  * called.
272  */
273 static int
ice_aq_manage_mac_read(struct ice_hw * hw,void * buf,u16 buf_size,struct ice_sq_cd * cd)274 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
275 		       struct ice_sq_cd *cd)
276 {
277 	struct ice_aqc_manage_mac_read_resp *resp;
278 	struct ice_aqc_manage_mac_read *cmd;
279 	struct libie_aq_desc desc;
280 	int status;
281 	u16 flags;
282 	u8 i;
283 
284 	cmd = libie_aq_raw(&desc);
285 
286 	if (buf_size < sizeof(*resp))
287 		return -EINVAL;
288 
289 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
290 
291 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
292 	if (status)
293 		return status;
294 
295 	resp = buf;
296 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
297 
298 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
299 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
300 		return -EIO;
301 	}
302 
303 	/* A single port can report up to two (LAN and WoL) addresses */
304 	for (i = 0; i < cmd->num_addr; i++)
305 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
306 			ether_addr_copy(hw->port_info->mac.lan_addr,
307 					resp[i].mac_addr);
308 			ether_addr_copy(hw->port_info->mac.perm_addr,
309 					resp[i].mac_addr);
310 			break;
311 		}
312 
313 	return 0;
314 }
315 
316 /**
317  * ice_aq_get_phy_caps - returns PHY capabilities
318  * @pi: port information structure
319  * @qual_mods: report qualified modules
320  * @report_mode: report mode capabilities
321  * @pcaps: structure for PHY capabilities to be filled
322  * @cd: pointer to command details structure or NULL
323  *
324  * Returns the various PHY capabilities supported on the Port (0x0600)
325  */
326 int
ice_aq_get_phy_caps(struct ice_port_info * pi,bool qual_mods,u8 report_mode,struct ice_aqc_get_phy_caps_data * pcaps,struct ice_sq_cd * cd)327 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
328 		    struct ice_aqc_get_phy_caps_data *pcaps,
329 		    struct ice_sq_cd *cd)
330 {
331 	struct ice_aqc_get_phy_caps *cmd;
332 	u16 pcaps_size = sizeof(*pcaps);
333 	struct libie_aq_desc desc;
334 	const char *prefix;
335 	struct ice_hw *hw;
336 	int status;
337 
338 	cmd = libie_aq_raw(&desc);
339 
340 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
341 		return -EINVAL;
342 	hw = pi->hw;
343 
344 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
345 	    !ice_fw_supports_report_dflt_cfg(hw))
346 		return -EINVAL;
347 
348 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
349 
350 	if (qual_mods)
351 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
352 
353 	cmd->param0 |= cpu_to_le16(report_mode);
354 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
355 
356 	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
357 
358 	switch (report_mode) {
359 	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
360 		prefix = "phy_caps_media";
361 		break;
362 	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
363 		prefix = "phy_caps_no_media";
364 		break;
365 	case ICE_AQC_REPORT_ACTIVE_CFG:
366 		prefix = "phy_caps_active";
367 		break;
368 	case ICE_AQC_REPORT_DFLT_CFG:
369 		prefix = "phy_caps_default";
370 		break;
371 	default:
372 		prefix = "phy_caps_invalid";
373 	}
374 
375 	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
376 			  le64_to_cpu(pcaps->phy_type_high), prefix);
377 
378 	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
379 		  prefix, report_mode);
380 	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
381 	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
382 		  pcaps->low_power_ctrl_an);
383 	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
384 		  pcaps->eee_cap);
385 	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
386 		  pcaps->eeer_value);
387 	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
388 		  pcaps->link_fec_options);
389 	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
390 		  prefix, pcaps->module_compliance_enforcement);
391 	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
392 		  prefix, pcaps->extended_compliance_code);
393 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
394 		  pcaps->module_type[0]);
395 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
396 		  pcaps->module_type[1]);
397 	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
398 		  pcaps->module_type[2]);
399 
400 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
401 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
402 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
403 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
404 		       sizeof(pi->phy.link_info.module_type));
405 	}
406 
407 	return status;
408 }
409 
410 /**
411  * ice_aq_get_link_topo_handle - get link topology node return status
412  * @pi: port information structure
413  * @node_type: requested node type
414  * @cd: pointer to command details structure or NULL
415  *
416  * Get link topology node return status for specified node type (0x06E0)
417  *
418  * Node type cage can be used to determine if cage is present. If AQC
419  * returns error (ENOENT), then no cage present. If no cage present, then
420  * connection type is backplane or BASE-T.
421  */
422 static int
ice_aq_get_link_topo_handle(struct ice_port_info * pi,u8 node_type,struct ice_sq_cd * cd)423 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
424 			    struct ice_sq_cd *cd)
425 {
426 	struct ice_aqc_get_link_topo *cmd;
427 	struct libie_aq_desc desc;
428 
429 	cmd = libie_aq_raw(&desc);
430 
431 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
432 
433 	cmd->addr.topo_params.node_type_ctx =
434 		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
435 		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
436 
437 	/* set node type */
438 	cmd->addr.topo_params.node_type_ctx |=
439 		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
440 
441 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
442 }
443 
444 /**
445  * ice_aq_get_netlist_node
446  * @hw: pointer to the hw struct
447  * @cmd: get_link_topo AQ structure
448  * @node_part_number: output node part number if node found
449  * @node_handle: output node handle parameter if node found
450  *
451  * Get netlist node handle.
452  */
453 int
ice_aq_get_netlist_node(struct ice_hw * hw,struct ice_aqc_get_link_topo * cmd,u8 * node_part_number,u16 * node_handle)454 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
455 			u8 *node_part_number, u16 *node_handle)
456 {
457 	struct ice_aqc_get_link_topo *resp;
458 	struct libie_aq_desc desc;
459 
460 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
461 	resp = libie_aq_raw(&desc);
462 	*resp = *cmd;
463 
464 	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
465 		return -EINTR;
466 
467 	if (node_handle)
468 		*node_handle = le16_to_cpu(resp->addr.handle);
469 	if (node_part_number)
470 		*node_part_number = resp->node_part_num;
471 
472 	return 0;
473 }
474 
475 /**
476  * ice_find_netlist_node
477  * @hw: pointer to the hw struct
478  * @node_type: type of netlist node to look for
479  * @ctx: context of the search
480  * @node_part_number: node part number to look for
481  * @node_handle: output parameter if node found - optional
482  *
483  * Scan the netlist for a node handle of the given node type and part number.
484  *
485  * If node_handle is non-NULL it will be modified on function exit. It is only
486  * valid if the function returns zero, and should be ignored on any non-zero
487  * return value.
488  *
489  * Return:
490  * * 0 if the node is found,
491  * * -ENOENT if no handle was found,
492  * * negative error code on failure to access the AQ.
493  */
ice_find_netlist_node(struct ice_hw * hw,u8 node_type,u8 ctx,u8 node_part_number,u16 * node_handle)494 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
495 				 u8 node_part_number, u16 *node_handle)
496 {
497 	u8 idx;
498 
499 	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
500 		struct ice_aqc_get_link_topo cmd = {};
501 		u8 rec_node_part_number;
502 		int status;
503 
504 		cmd.addr.topo_params.node_type_ctx =
505 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
506 			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
507 		cmd.addr.topo_params.index = idx;
508 
509 		status = ice_aq_get_netlist_node(hw, &cmd,
510 						 &rec_node_part_number,
511 						 node_handle);
512 		if (status)
513 			return status;
514 
515 		if (rec_node_part_number == node_part_number)
516 			return 0;
517 	}
518 
519 	return -ENOENT;
520 }
521 
522 /**
523  * ice_is_media_cage_present
524  * @pi: port information structure
525  *
526  * Returns true if media cage is present, else false. If no cage, then
527  * media type is backplane or BASE-T.
528  */
ice_is_media_cage_present(struct ice_port_info * pi)529 static bool ice_is_media_cage_present(struct ice_port_info *pi)
530 {
531 	/* Node type cage can be used to determine if cage is present. If AQC
532 	 * returns error (ENOENT), then no cage present. If no cage present then
533 	 * connection type is backplane or BASE-T.
534 	 */
535 	return !ice_aq_get_link_topo_handle(pi,
536 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
537 					    NULL);
538 }
539 
540 /**
541  * ice_get_media_type - Gets media type
542  * @pi: port information structure
543  */
ice_get_media_type(struct ice_port_info * pi)544 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
545 {
546 	struct ice_link_status *hw_link_info;
547 
548 	if (!pi)
549 		return ICE_MEDIA_UNKNOWN;
550 
551 	hw_link_info = &pi->phy.link_info;
552 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
553 		/* If more than one media type is selected, report unknown */
554 		return ICE_MEDIA_UNKNOWN;
555 
556 	if (hw_link_info->phy_type_low) {
557 		/* 1G SGMII is a special case where some DA cable PHYs
558 		 * may show this as an option when it really shouldn't
559 		 * be since SGMII is meant to be between a MAC and a PHY
560 		 * in a backplane. Try to detect this case and handle it
561 		 */
562 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
563 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
564 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
565 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
566 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
567 			return ICE_MEDIA_DA;
568 
569 		switch (hw_link_info->phy_type_low) {
570 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
571 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
572 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
573 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
574 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
575 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
576 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
577 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
578 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
579 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
580 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
581 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
582 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
583 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
584 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
585 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
586 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
587 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
588 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
589 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
590 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
591 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
592 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
593 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
594 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
595 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
596 			return ICE_MEDIA_FIBER;
597 		case ICE_PHY_TYPE_LOW_100BASE_TX:
598 		case ICE_PHY_TYPE_LOW_1000BASE_T:
599 		case ICE_PHY_TYPE_LOW_2500BASE_T:
600 		case ICE_PHY_TYPE_LOW_5GBASE_T:
601 		case ICE_PHY_TYPE_LOW_10GBASE_T:
602 		case ICE_PHY_TYPE_LOW_25GBASE_T:
603 			return ICE_MEDIA_BASET;
604 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
605 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
606 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
607 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
608 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
609 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
610 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
611 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
612 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
613 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
614 			return ICE_MEDIA_DA;
615 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
616 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
617 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
618 		case ICE_PHY_TYPE_LOW_50G_AUI2:
619 		case ICE_PHY_TYPE_LOW_50G_AUI1:
620 		case ICE_PHY_TYPE_LOW_100G_AUI4:
621 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
622 			if (ice_is_media_cage_present(pi))
623 				return ICE_MEDIA_DA;
624 			fallthrough;
625 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
626 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
627 		case ICE_PHY_TYPE_LOW_2500BASE_X:
628 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
629 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
630 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
631 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
632 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
633 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
634 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
635 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
636 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
637 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
638 			return ICE_MEDIA_BACKPLANE;
639 		}
640 	} else {
641 		switch (hw_link_info->phy_type_high) {
642 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
643 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
644 			if (ice_is_media_cage_present(pi))
645 				return ICE_MEDIA_DA;
646 			fallthrough;
647 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
648 			return ICE_MEDIA_BACKPLANE;
649 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
650 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
651 			return ICE_MEDIA_FIBER;
652 		}
653 	}
654 	return ICE_MEDIA_UNKNOWN;
655 }
656 
657 /**
658  * ice_get_link_status_datalen
659  * @hw: pointer to the HW struct
660  *
661  * Returns datalength for the Get Link Status AQ command, which is bigger for
662  * newer adapter families handled by ice driver.
663  */
ice_get_link_status_datalen(struct ice_hw * hw)664 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
665 {
666 	switch (hw->mac_type) {
667 	case ICE_MAC_E830:
668 		return ICE_AQC_LS_DATA_SIZE_V2;
669 	case ICE_MAC_E810:
670 	default:
671 		return ICE_AQC_LS_DATA_SIZE_V1;
672 	}
673 }
674 
675 /**
676  * ice_aq_get_link_info
677  * @pi: port information structure
678  * @ena_lse: enable/disable LinkStatusEvent reporting
679  * @link: pointer to link status structure - optional
680  * @cd: pointer to command details structure or NULL
681  *
682  * Get Link Status (0x607). Returns the link status of the adapter.
683  */
684 int
ice_aq_get_link_info(struct ice_port_info * pi,bool ena_lse,struct ice_link_status * link,struct ice_sq_cd * cd)685 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
686 		     struct ice_link_status *link, struct ice_sq_cd *cd)
687 {
688 	struct ice_aqc_get_link_status_data link_data = { 0 };
689 	struct ice_aqc_get_link_status *resp;
690 	struct ice_link_status *li_old, *li;
691 	enum ice_media_type *hw_media_type;
692 	struct ice_fc_info *hw_fc_info;
693 	struct libie_aq_desc desc;
694 	bool tx_pause, rx_pause;
695 	struct ice_hw *hw;
696 	u16 cmd_flags;
697 	int status;
698 
699 	if (!pi)
700 		return -EINVAL;
701 	hw = pi->hw;
702 	li_old = &pi->phy.link_info_old;
703 	hw_media_type = &pi->phy.media_type;
704 	li = &pi->phy.link_info;
705 	hw_fc_info = &pi->fc;
706 
707 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
708 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
709 	resp = libie_aq_raw(&desc);
710 	resp->cmd_flags = cpu_to_le16(cmd_flags);
711 	resp->lport_num = pi->lport;
712 
713 	status = ice_aq_send_cmd(hw, &desc, &link_data,
714 				 ice_get_link_status_datalen(hw), cd);
715 	if (status)
716 		return status;
717 
718 	/* save off old link status information */
719 	*li_old = *li;
720 
721 	/* update current link status information */
722 	li->link_speed = le16_to_cpu(link_data.link_speed);
723 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
724 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
725 	*hw_media_type = ice_get_media_type(pi);
726 	li->link_info = link_data.link_info;
727 	li->link_cfg_err = link_data.link_cfg_err;
728 	li->an_info = link_data.an_info;
729 	li->ext_info = link_data.ext_info;
730 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
731 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
732 	li->topo_media_conflict = link_data.topo_media_conflict;
733 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
734 				      ICE_AQ_CFG_PACING_TYPE_M);
735 
736 	/* update fc info */
737 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
738 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
739 	if (tx_pause && rx_pause)
740 		hw_fc_info->current_mode = ICE_FC_FULL;
741 	else if (tx_pause)
742 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
743 	else if (rx_pause)
744 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
745 	else
746 		hw_fc_info->current_mode = ICE_FC_NONE;
747 
748 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
749 
750 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
751 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
752 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
753 		  (unsigned long long)li->phy_type_low);
754 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
755 		  (unsigned long long)li->phy_type_high);
756 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
757 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
758 	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
759 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
760 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
761 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
762 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
763 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
764 		  li->max_frame_size);
765 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
766 
767 	/* save link status information */
768 	if (link)
769 		*link = *li;
770 
771 	/* flag cleared so calling functions don't call AQ again */
772 	pi->phy.get_link_info = false;
773 
774 	return 0;
775 }
776 
777 /**
778  * ice_fill_tx_timer_and_fc_thresh
779  * @hw: pointer to the HW struct
780  * @cmd: pointer to MAC cfg structure
781  *
782  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
783  * descriptor
784  */
785 static void
ice_fill_tx_timer_and_fc_thresh(struct ice_hw * hw,struct ice_aqc_set_mac_cfg * cmd)786 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
787 				struct ice_aqc_set_mac_cfg *cmd)
788 {
789 	u32 val, fc_thres_m;
790 
791 	/* We read back the transmit timer and FC threshold value of
792 	 * LFC. Thus, we will use index =
793 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
794 	 *
795 	 * Also, because we are operating on transmit timer and FC
796 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
797 	 */
798 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
799 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
800 
801 	if (hw->mac_type == ICE_MAC_E830) {
802 		/* Retrieve the transmit timer */
803 		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
804 		cmd->tx_tmr_value =
805 			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
806 
807 		/* Retrieve the fc threshold */
808 		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
809 		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
810 	} else {
811 		/* Retrieve the transmit timer */
812 		val = rd32(hw,
813 			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
814 		cmd->tx_tmr_value =
815 			le16_encode_bits(val,
816 					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
817 
818 		/* Retrieve the fc threshold */
819 		val = rd32(hw,
820 			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
821 		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
822 	}
823 	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
824 }
825 
826 /**
827  * ice_aq_set_mac_cfg
828  * @hw: pointer to the HW struct
829  * @max_frame_size: Maximum Frame Size to be supported
830  * @cd: pointer to command details structure or NULL
831  *
832  * Set MAC configuration (0x0603)
833  */
834 int
ice_aq_set_mac_cfg(struct ice_hw * hw,u16 max_frame_size,struct ice_sq_cd * cd)835 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
836 {
837 	struct ice_aqc_set_mac_cfg *cmd;
838 	struct libie_aq_desc desc;
839 
840 	cmd = libie_aq_raw(&desc);
841 
842 	if (max_frame_size == 0)
843 		return -EINVAL;
844 
845 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
846 
847 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
848 
849 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
850 
851 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
852 }
853 
854 /**
855  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
856  * @hw: pointer to the HW struct
857  */
ice_init_fltr_mgmt_struct(struct ice_hw * hw)858 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
859 {
860 	struct ice_switch_info *sw;
861 	int status;
862 
863 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
864 				       sizeof(*hw->switch_info), GFP_KERNEL);
865 	sw = hw->switch_info;
866 
867 	if (!sw)
868 		return -ENOMEM;
869 
870 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
871 	sw->prof_res_bm_init = 0;
872 
873 	/* Initialize recipe count with default recipes read from NVM */
874 	sw->recp_cnt = ICE_SW_LKUP_LAST;
875 
876 	status = ice_init_def_sw_recp(hw);
877 	if (status) {
878 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
879 		return status;
880 	}
881 	return 0;
882 }
883 
884 /**
885  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
886  * @hw: pointer to the HW struct
887  */
ice_cleanup_fltr_mgmt_struct(struct ice_hw * hw)888 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
889 {
890 	struct ice_switch_info *sw = hw->switch_info;
891 	struct ice_vsi_list_map_info *v_pos_map;
892 	struct ice_vsi_list_map_info *v_tmp_map;
893 	struct ice_sw_recipe *recps;
894 	u8 i;
895 
896 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
897 				 list_entry) {
898 		list_del(&v_pos_map->list_entry);
899 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
900 	}
901 	recps = sw->recp_list;
902 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
903 		recps[i].root_rid = i;
904 
905 		if (recps[i].adv_rule) {
906 			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
907 			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
908 
909 			mutex_destroy(&recps[i].filt_rule_lock);
910 			list_for_each_entry_safe(lst_itr, tmp_entry,
911 						 &recps[i].filt_rules,
912 						 list_entry) {
913 				list_del(&lst_itr->list_entry);
914 				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
915 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
916 			}
917 		} else {
918 			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
919 
920 			mutex_destroy(&recps[i].filt_rule_lock);
921 			list_for_each_entry_safe(lst_itr, tmp_entry,
922 						 &recps[i].filt_rules,
923 						 list_entry) {
924 				list_del(&lst_itr->list_entry);
925 				devm_kfree(ice_hw_to_dev(hw), lst_itr);
926 			}
927 		}
928 	}
929 	ice_rm_all_sw_replay_rule_info(hw);
930 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
931 	devm_kfree(ice_hw_to_dev(hw), sw);
932 }
933 
934 /**
935  * ice_get_itr_intrl_gran
936  * @hw: pointer to the HW struct
937  *
938  * Determines the ITR/INTRL granularities based on the maximum aggregate
939  * bandwidth according to the device's configuration during power-on.
940  */
ice_get_itr_intrl_gran(struct ice_hw * hw)941 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
942 {
943 	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
944 				  rd32(hw, GL_PWR_MODE_CTL));
945 
946 	switch (max_agg_bw) {
947 	case ICE_MAX_AGG_BW_200G:
948 	case ICE_MAX_AGG_BW_100G:
949 	case ICE_MAX_AGG_BW_50G:
950 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
951 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
952 		break;
953 	case ICE_MAX_AGG_BW_25G:
954 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
955 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
956 		break;
957 	}
958 }
959 
960 /**
961  * ice_wait_for_fw - wait for full FW readiness
962  * @hw: pointer to the hardware structure
963  * @timeout: milliseconds that can elapse before timing out
964  *
965  * Return: 0 on success, -ETIMEDOUT on timeout.
966  */
ice_wait_for_fw(struct ice_hw * hw,u32 timeout)967 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
968 {
969 	int fw_loading;
970 	u32 elapsed = 0;
971 
972 	while (elapsed <= timeout) {
973 		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
974 
975 		/* firmware was not yet loaded, we have to wait more */
976 		if (fw_loading) {
977 			elapsed += 100;
978 			msleep(100);
979 			continue;
980 		}
981 		return 0;
982 	}
983 
984 	return -ETIMEDOUT;
985 }
986 
__fwlog_send_cmd(void * priv,struct libie_aq_desc * desc,void * buf,u16 size)987 static int __fwlog_send_cmd(void *priv, struct libie_aq_desc *desc, void *buf,
988 			    u16 size)
989 {
990 	struct ice_hw *hw = priv;
991 
992 	return ice_aq_send_cmd(hw, desc, buf, size, NULL);
993 }
994 
__fwlog_init(struct ice_hw * hw)995 static int __fwlog_init(struct ice_hw *hw)
996 {
997 	struct ice_pf *pf = hw->back;
998 	struct libie_fwlog_api api = {
999 		.pdev = pf->pdev,
1000 		.send_cmd = __fwlog_send_cmd,
1001 		.priv = hw,
1002 	};
1003 	int err;
1004 
1005 	/* only support fw log commands on PF 0 */
1006 	if (hw->bus.func)
1007 		return -EINVAL;
1008 
1009 	err = ice_debugfs_pf_init(pf);
1010 	if (err)
1011 		return err;
1012 
1013 	api.debugfs_root = pf->ice_debugfs_pf;
1014 
1015 	return libie_fwlog_init(&hw->fwlog, &api);
1016 }
1017 
1018 /**
1019  * ice_init_hw - main hardware initialization routine
1020  * @hw: pointer to the hardware structure
1021  */
ice_init_hw(struct ice_hw * hw)1022 int ice_init_hw(struct ice_hw *hw)
1023 {
1024 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1025 	void *mac_buf __free(kfree) = NULL;
1026 	u16 mac_buf_len;
1027 	int status;
1028 
1029 	/* Set MAC type based on DeviceID */
1030 	status = ice_set_mac_type(hw);
1031 	if (status)
1032 		return status;
1033 
1034 	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1035 
1036 	status = ice_reset(hw, ICE_RESET_PFR);
1037 	if (status)
1038 		return status;
1039 
1040 	ice_get_itr_intrl_gran(hw);
1041 
1042 	status = ice_create_all_ctrlq(hw);
1043 	if (status)
1044 		goto err_unroll_cqinit;
1045 
1046 	status = __fwlog_init(hw);
1047 	if (status)
1048 		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1049 			  status);
1050 
1051 	status = ice_clear_pf_cfg(hw);
1052 	if (status)
1053 		goto err_unroll_cqinit;
1054 
1055 	/* Set bit to enable Flow Director filters */
1056 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1057 	INIT_LIST_HEAD(&hw->fdir_list_head);
1058 
1059 	ice_clear_pxe_mode(hw);
1060 
1061 	status = ice_init_nvm(hw);
1062 	if (status)
1063 		goto err_unroll_cqinit;
1064 
1065 	status = ice_get_caps(hw);
1066 	if (status)
1067 		goto err_unroll_cqinit;
1068 
1069 	if (!hw->port_info)
1070 		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1071 					     sizeof(*hw->port_info),
1072 					     GFP_KERNEL);
1073 	if (!hw->port_info) {
1074 		status = -ENOMEM;
1075 		goto err_unroll_cqinit;
1076 	}
1077 
1078 	hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1079 	/* set the back pointer to HW */
1080 	hw->port_info->hw = hw;
1081 
1082 	/* Initialize port_info struct with switch configuration data */
1083 	status = ice_get_initial_sw_cfg(hw);
1084 	if (status)
1085 		goto err_unroll_alloc;
1086 
1087 	hw->evb_veb = true;
1088 
1089 	/* init xarray for identifying scheduling nodes uniquely */
1090 	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1091 
1092 	/* Query the allocated resources for Tx scheduler */
1093 	status = ice_sched_query_res_alloc(hw);
1094 	if (status) {
1095 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1096 		goto err_unroll_alloc;
1097 	}
1098 	ice_sched_get_psm_clk_freq(hw);
1099 
1100 	/* Initialize port_info struct with scheduler data */
1101 	status = ice_sched_init_port(hw->port_info);
1102 	if (status)
1103 		goto err_unroll_sched;
1104 
1105 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1106 	if (!pcaps) {
1107 		status = -ENOMEM;
1108 		goto err_unroll_sched;
1109 	}
1110 
1111 	/* Initialize port_info struct with PHY capabilities */
1112 	status = ice_aq_get_phy_caps(hw->port_info, false,
1113 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1114 				     NULL);
1115 	if (status)
1116 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1117 			 status);
1118 
1119 	/* Initialize port_info struct with link information */
1120 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1121 	if (status)
1122 		goto err_unroll_sched;
1123 
1124 	/* need a valid SW entry point to build a Tx tree */
1125 	if (!hw->sw_entry_point_layer) {
1126 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1127 		status = -EIO;
1128 		goto err_unroll_sched;
1129 	}
1130 	INIT_LIST_HEAD(&hw->agg_list);
1131 	/* Initialize max burst size */
1132 	if (!hw->max_burst_size)
1133 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1134 
1135 	status = ice_init_fltr_mgmt_struct(hw);
1136 	if (status)
1137 		goto err_unroll_sched;
1138 
1139 	/* Get MAC information */
1140 	/* A single port can report up to two (LAN and WoL) addresses */
1141 	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1142 			  GFP_KERNEL);
1143 	if (!mac_buf) {
1144 		status = -ENOMEM;
1145 		goto err_unroll_fltr_mgmt_struct;
1146 	}
1147 
1148 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1149 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1150 
1151 	if (status)
1152 		goto err_unroll_fltr_mgmt_struct;
1153 	/* enable jumbo frame support at MAC level */
1154 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1155 	if (status)
1156 		goto err_unroll_fltr_mgmt_struct;
1157 	/* Obtain counter base index which would be used by flow director */
1158 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1159 	if (status)
1160 		goto err_unroll_fltr_mgmt_struct;
1161 	status = ice_init_hw_tbls(hw);
1162 	if (status)
1163 		goto err_unroll_fltr_mgmt_struct;
1164 
1165 	ice_init_dev_hw(hw->back);
1166 
1167 	mutex_init(&hw->tnl_lock);
1168 	ice_init_chk_recipe_reuse_support(hw);
1169 
1170 	/* Some cards require longer initialization times
1171 	 * due to necessity of loading FW from an external source.
1172 	 * This can take even half a minute.
1173 	 */
1174 	if (ice_is_pf_c827(hw)) {
1175 		status = ice_wait_for_fw(hw, 30000);
1176 		if (status) {
1177 			dev_err(ice_hw_to_dev(hw), "ice_wait_for_fw timed out");
1178 			goto err_unroll_fltr_mgmt_struct;
1179 		}
1180 	}
1181 
1182 	hw->lane_num = ice_get_phy_lane_number(hw);
1183 
1184 	return 0;
1185 err_unroll_fltr_mgmt_struct:
1186 	ice_cleanup_fltr_mgmt_struct(hw);
1187 err_unroll_sched:
1188 	ice_sched_cleanup_all(hw);
1189 err_unroll_alloc:
1190 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1191 err_unroll_cqinit:
1192 	ice_destroy_all_ctrlq(hw);
1193 	return status;
1194 }
1195 
__fwlog_deinit(struct ice_hw * hw)1196 static void __fwlog_deinit(struct ice_hw *hw)
1197 {
1198 	/* only support fw log commands on PF 0 */
1199 	if (hw->bus.func)
1200 		return;
1201 
1202 	ice_debugfs_pf_deinit(hw->back);
1203 	libie_fwlog_deinit(&hw->fwlog);
1204 }
1205 
1206 /**
1207  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1208  * @hw: pointer to the hardware structure
1209  *
1210  * This should be called only during nominal operation, not as a result of
1211  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1212  * applicable initializations if it fails for any reason.
1213  */
ice_deinit_hw(struct ice_hw * hw)1214 void ice_deinit_hw(struct ice_hw *hw)
1215 {
1216 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1217 	ice_cleanup_fltr_mgmt_struct(hw);
1218 
1219 	ice_sched_cleanup_all(hw);
1220 	ice_sched_clear_agg(hw);
1221 	ice_free_seg(hw);
1222 	ice_free_hw_tbls(hw);
1223 	mutex_destroy(&hw->tnl_lock);
1224 	__fwlog_deinit(hw);
1225 	ice_destroy_all_ctrlq(hw);
1226 
1227 	/* Clear VSI contexts if not already cleared */
1228 	ice_clear_all_vsi_ctx(hw);
1229 }
1230 
1231 /**
1232  * ice_check_reset - Check to see if a global reset is complete
1233  * @hw: pointer to the hardware structure
1234  */
ice_check_reset(struct ice_hw * hw)1235 int ice_check_reset(struct ice_hw *hw)
1236 {
1237 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1238 
1239 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1240 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1241 	 * Add 1sec for outstanding AQ commands that can take a long time.
1242 	 */
1243 	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1244 				 rd32(hw, GLGEN_RSTCTL)) + 10;
1245 
1246 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1247 		mdelay(100);
1248 		reg = rd32(hw, GLGEN_RSTAT);
1249 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1250 			break;
1251 	}
1252 
1253 	if (cnt == grst_timeout) {
1254 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1255 		return -EIO;
1256 	}
1257 
1258 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1259 				 GLNVM_ULD_PCIER_DONE_1_M |\
1260 				 GLNVM_ULD_CORER_DONE_M |\
1261 				 GLNVM_ULD_GLOBR_DONE_M |\
1262 				 GLNVM_ULD_POR_DONE_M |\
1263 				 GLNVM_ULD_POR_DONE_1_M |\
1264 				 GLNVM_ULD_PCIER_DONE_2_M)
1265 
1266 	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1267 					  GLNVM_ULD_PE_DONE_M : 0);
1268 
1269 	/* Device is Active; check Global Reset processes are done */
1270 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1271 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1272 		if (reg == uld_mask) {
1273 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1274 			break;
1275 		}
1276 		mdelay(10);
1277 	}
1278 
1279 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1280 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1281 			  reg);
1282 		return -EIO;
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  * ice_pf_reset - Reset the PF
1290  * @hw: pointer to the hardware structure
1291  *
1292  * If a global reset has been triggered, this function checks
1293  * for its completion and then issues the PF reset
1294  */
ice_pf_reset(struct ice_hw * hw)1295 static int ice_pf_reset(struct ice_hw *hw)
1296 {
1297 	u32 cnt, reg;
1298 
1299 	/* If at function entry a global reset was already in progress, i.e.
1300 	 * state is not 'device active' or any of the reset done bits are not
1301 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1302 	 * global reset is done.
1303 	 */
1304 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1305 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1306 		/* poll on global reset currently in progress until done */
1307 		if (ice_check_reset(hw))
1308 			return -EIO;
1309 
1310 		return 0;
1311 	}
1312 
1313 	/* Reset the PF */
1314 	reg = rd32(hw, PFGEN_CTRL);
1315 
1316 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1317 
1318 	/* Wait for the PFR to complete. The wait time is the global config lock
1319 	 * timeout plus the PFR timeout which will account for a possible reset
1320 	 * that is occurring during a download package operation.
1321 	 */
1322 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1323 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1324 		reg = rd32(hw, PFGEN_CTRL);
1325 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1326 			break;
1327 
1328 		mdelay(1);
1329 	}
1330 
1331 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1332 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1333 		return -EIO;
1334 	}
1335 
1336 	return 0;
1337 }
1338 
1339 /**
1340  * ice_reset - Perform different types of reset
1341  * @hw: pointer to the hardware structure
1342  * @req: reset request
1343  *
1344  * This function triggers a reset as specified by the req parameter.
1345  *
1346  * Note:
1347  * If anything other than a PF reset is triggered, PXE mode is restored.
1348  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1349  * interface has been restored in the rebuild flow.
1350  */
ice_reset(struct ice_hw * hw,enum ice_reset_req req)1351 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1352 {
1353 	u32 val = 0;
1354 
1355 	switch (req) {
1356 	case ICE_RESET_PFR:
1357 		return ice_pf_reset(hw);
1358 	case ICE_RESET_CORER:
1359 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1360 		val = GLGEN_RTRIG_CORER_M;
1361 		break;
1362 	case ICE_RESET_GLOBR:
1363 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1364 		val = GLGEN_RTRIG_GLOBR_M;
1365 		break;
1366 	default:
1367 		return -EINVAL;
1368 	}
1369 
1370 	val |= rd32(hw, GLGEN_RTRIG);
1371 	wr32(hw, GLGEN_RTRIG, val);
1372 	ice_flush(hw);
1373 
1374 	/* wait for the FW to be ready */
1375 	return ice_check_reset(hw);
1376 }
1377 
1378 /**
1379  * ice_copy_rxq_ctx_to_hw - Copy packed Rx queue context to HW registers
1380  * @hw: pointer to the hardware structure
1381  * @rxq_ctx: pointer to the packed Rx queue context
1382  * @rxq_index: the index of the Rx queue
1383  */
ice_copy_rxq_ctx_to_hw(struct ice_hw * hw,const ice_rxq_ctx_buf_t * rxq_ctx,u32 rxq_index)1384 static void ice_copy_rxq_ctx_to_hw(struct ice_hw *hw,
1385 				   const ice_rxq_ctx_buf_t *rxq_ctx,
1386 				   u32 rxq_index)
1387 {
1388 	/* Copy each dword separately to HW */
1389 	for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1390 		u32 ctx = ((const u32 *)rxq_ctx)[i];
1391 
1392 		wr32(hw, QRX_CONTEXT(i, rxq_index), ctx);
1393 
1394 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, ctx);
1395 	}
1396 }
1397 
1398 /**
1399  * ice_copy_rxq_ctx_from_hw - Copy packed Rx Queue context from HW registers
1400  * @hw: pointer to the hardware structure
1401  * @rxq_ctx: pointer to the packed Rx queue context
1402  * @rxq_index: the index of the Rx queue
1403  */
ice_copy_rxq_ctx_from_hw(struct ice_hw * hw,ice_rxq_ctx_buf_t * rxq_ctx,u32 rxq_index)1404 static void ice_copy_rxq_ctx_from_hw(struct ice_hw *hw,
1405 				     ice_rxq_ctx_buf_t *rxq_ctx,
1406 				     u32 rxq_index)
1407 {
1408 	u32 *ctx = (u32 *)rxq_ctx;
1409 
1410 	/* Copy each dword separately from HW */
1411 	for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++, ctx++) {
1412 		*ctx = rd32(hw, QRX_CONTEXT(i, rxq_index));
1413 
1414 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, *ctx);
1415 	}
1416 }
1417 
1418 #define ICE_CTX_STORE(struct_name, struct_field, width, lsb) \
1419 	PACKED_FIELD((lsb) + (width) - 1, (lsb), struct struct_name, struct_field)
1420 
1421 /* LAN Rx Queue Context */
1422 static const struct packed_field_u8 ice_rlan_ctx_fields[] = {
1423 				 /* Field		Width	LSB */
1424 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1425 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1426 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1427 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1428 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1429 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1430 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1431 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1432 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1433 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1434 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1435 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1436 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1437 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1438 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1439 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1440 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1441 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1442 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1443 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1444 };
1445 
1446 /**
1447  * ice_pack_rxq_ctx - Pack Rx queue context into a HW buffer
1448  * @ctx: the Rx queue context to pack
1449  * @buf: the HW buffer to pack into
1450  *
1451  * Pack the Rx queue context from the CPU-friendly unpacked buffer into its
1452  * bit-packed HW layout.
1453  */
ice_pack_rxq_ctx(const struct ice_rlan_ctx * ctx,ice_rxq_ctx_buf_t * buf)1454 static void ice_pack_rxq_ctx(const struct ice_rlan_ctx *ctx,
1455 			     ice_rxq_ctx_buf_t *buf)
1456 {
1457 	pack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1458 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1459 }
1460 
1461 /**
1462  * ice_unpack_rxq_ctx - Unpack Rx queue context from a HW buffer
1463  * @buf: the HW buffer to unpack from
1464  * @ctx: the Rx queue context to unpack
1465  *
1466  * Unpack the Rx queue context from the HW buffer into the CPU-friendly
1467  * structure.
1468  */
ice_unpack_rxq_ctx(const ice_rxq_ctx_buf_t * buf,struct ice_rlan_ctx * ctx)1469 static void ice_unpack_rxq_ctx(const ice_rxq_ctx_buf_t *buf,
1470 			       struct ice_rlan_ctx *ctx)
1471 {
1472 	unpack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1473 		      QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1474 }
1475 
1476 /**
1477  * ice_write_rxq_ctx - Write Rx Queue context to hardware
1478  * @hw: pointer to the hardware structure
1479  * @rlan_ctx: pointer to the unpacked Rx queue context
1480  * @rxq_index: the index of the Rx queue
1481  *
1482  * Pack the sparse Rx Queue context into dense hardware format and write it
1483  * into the HW register space.
1484  *
1485  * Return: 0 on success, or -EINVAL if the Rx queue index is invalid.
1486  */
ice_write_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1487 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1488 		      u32 rxq_index)
1489 {
1490 	ice_rxq_ctx_buf_t buf = {};
1491 
1492 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1493 		return -EINVAL;
1494 
1495 	ice_pack_rxq_ctx(rlan_ctx, &buf);
1496 	ice_copy_rxq_ctx_to_hw(hw, &buf, rxq_index);
1497 
1498 	return 0;
1499 }
1500 
1501 /**
1502  * ice_read_rxq_ctx - Read Rx queue context from HW
1503  * @hw: pointer to the hardware structure
1504  * @rlan_ctx: pointer to the Rx queue context
1505  * @rxq_index: the index of the Rx queue
1506  *
1507  * Read the Rx queue context from the hardware registers, and unpack it into
1508  * the sparse Rx queue context structure.
1509  *
1510  * Returns: 0 on success, or -EINVAL if the Rx queue index is invalid.
1511  */
ice_read_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1512 int ice_read_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1513 		     u32 rxq_index)
1514 {
1515 	ice_rxq_ctx_buf_t buf = {};
1516 
1517 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1518 		return -EINVAL;
1519 
1520 	ice_copy_rxq_ctx_from_hw(hw, &buf, rxq_index);
1521 	ice_unpack_rxq_ctx(&buf, rlan_ctx);
1522 
1523 	return 0;
1524 }
1525 
1526 /* LAN Tx Queue Context */
1527 static const struct packed_field_u8 ice_tlan_ctx_fields[] = {
1528 				    /* Field			Width	LSB */
1529 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1530 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1531 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1532 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1533 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1534 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1535 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1536 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1537 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1538 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1539 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1540 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1541 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1542 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1543 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1544 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1545 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1546 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1547 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1548 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1549 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1550 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1551 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1552 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1553 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1554 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1555 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1556 };
1557 
1558 /**
1559  * ice_pack_txq_ctx - Pack Tx queue context into Admin Queue buffer
1560  * @ctx: the Tx queue context to pack
1561  * @buf: the Admin Queue HW buffer to pack into
1562  *
1563  * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1564  * bit-packed Admin Queue layout.
1565  */
ice_pack_txq_ctx(const struct ice_tlan_ctx * ctx,ice_txq_ctx_buf_t * buf)1566 void ice_pack_txq_ctx(const struct ice_tlan_ctx *ctx, ice_txq_ctx_buf_t *buf)
1567 {
1568 	pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1569 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1570 }
1571 
1572 /**
1573  * ice_pack_txq_ctx_full - Pack Tx queue context into a HW buffer
1574  * @ctx: the Tx queue context to pack
1575  * @buf: the HW buffer to pack into
1576  *
1577  * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1578  * bit-packed HW layout, including the internal data portion.
1579  */
ice_pack_txq_ctx_full(const struct ice_tlan_ctx * ctx,ice_txq_ctx_buf_full_t * buf)1580 static void ice_pack_txq_ctx_full(const struct ice_tlan_ctx *ctx,
1581 				  ice_txq_ctx_buf_full_t *buf)
1582 {
1583 	pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1584 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1585 }
1586 
1587 /**
1588  * ice_unpack_txq_ctx_full - Unpack Tx queue context from a HW buffer
1589  * @buf: the HW buffer to unpack from
1590  * @ctx: the Tx queue context to unpack
1591  *
1592  * Unpack the Tx queue context from the HW buffer (including the full internal
1593  * state) into the CPU-friendly structure.
1594  */
ice_unpack_txq_ctx_full(const ice_txq_ctx_buf_full_t * buf,struct ice_tlan_ctx * ctx)1595 static void ice_unpack_txq_ctx_full(const ice_txq_ctx_buf_full_t *buf,
1596 				    struct ice_tlan_ctx *ctx)
1597 {
1598 	unpack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1599 		      QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1600 }
1601 
1602 /**
1603  * ice_copy_txq_ctx_from_hw - Copy Tx Queue context from HW registers
1604  * @hw: pointer to the hardware structure
1605  * @txq_ctx: pointer to the packed Tx queue context, including internal state
1606  * @txq_index: the index of the Tx queue
1607  *
1608  * Copy Tx Queue context from HW register space to dense structure
1609  */
ice_copy_txq_ctx_from_hw(struct ice_hw * hw,ice_txq_ctx_buf_full_t * txq_ctx,u32 txq_index)1610 static void ice_copy_txq_ctx_from_hw(struct ice_hw *hw,
1611 				     ice_txq_ctx_buf_full_t *txq_ctx,
1612 				     u32 txq_index)
1613 {
1614 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
1615 	u32 *ctx = (u32 *)txq_ctx;
1616 	u32 txq_base, reg;
1617 
1618 	/* Get Tx queue base within card space */
1619 	txq_base = rd32(hw, PFLAN_TX_QALLOC(hw->pf_id));
1620 	txq_base = FIELD_GET(PFLAN_TX_QALLOC_FIRSTQ_M, txq_base);
1621 
1622 	reg = FIELD_PREP(GLCOMM_QTX_CNTX_CTL_CMD_M,
1623 			 GLCOMM_QTX_CNTX_CTL_CMD_READ) |
1624 	      FIELD_PREP(GLCOMM_QTX_CNTX_CTL_QUEUE_ID_M,
1625 			 txq_base + txq_index) |
1626 	      GLCOMM_QTX_CNTX_CTL_CMD_EXEC_M;
1627 
1628 	/* Prevent other PFs on the same adapter from accessing the Tx queue
1629 	 * context interface concurrently.
1630 	 */
1631 	spin_lock(&pf->adapter->txq_ctx_lock);
1632 
1633 	wr32(hw, GLCOMM_QTX_CNTX_CTL, reg);
1634 	ice_flush(hw);
1635 
1636 	/* Copy each dword separately from HW */
1637 	for (int i = 0; i < ICE_TXQ_CTX_FULL_SIZE_DWORDS; i++, ctx++) {
1638 		*ctx = rd32(hw, GLCOMM_QTX_CNTX_DATA(i));
1639 
1640 		ice_debug(hw, ICE_DBG_QCTX, "qtxdata[%d]: %08X\n", i, *ctx);
1641 	}
1642 
1643 	spin_unlock(&pf->adapter->txq_ctx_lock);
1644 }
1645 
1646 /**
1647  * ice_copy_txq_ctx_to_hw - Copy Tx Queue context into HW registers
1648  * @hw: pointer to the hardware structure
1649  * @txq_ctx: pointer to the packed Tx queue context, including internal state
1650  * @txq_index: the index of the Tx queue
1651  */
ice_copy_txq_ctx_to_hw(struct ice_hw * hw,const ice_txq_ctx_buf_full_t * txq_ctx,u32 txq_index)1652 static void ice_copy_txq_ctx_to_hw(struct ice_hw *hw,
1653 				   const ice_txq_ctx_buf_full_t *txq_ctx,
1654 				   u32 txq_index)
1655 {
1656 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
1657 	u32 txq_base, reg;
1658 
1659 	/* Get Tx queue base within card space */
1660 	txq_base = rd32(hw, PFLAN_TX_QALLOC(hw->pf_id));
1661 	txq_base = FIELD_GET(PFLAN_TX_QALLOC_FIRSTQ_M, txq_base);
1662 
1663 	reg = FIELD_PREP(GLCOMM_QTX_CNTX_CTL_CMD_M,
1664 			 GLCOMM_QTX_CNTX_CTL_CMD_WRITE_NO_DYN) |
1665 	      FIELD_PREP(GLCOMM_QTX_CNTX_CTL_QUEUE_ID_M,
1666 			 txq_base + txq_index) |
1667 	      GLCOMM_QTX_CNTX_CTL_CMD_EXEC_M;
1668 
1669 	/* Prevent other PFs on the same adapter from accessing the Tx queue
1670 	 * context interface concurrently.
1671 	 */
1672 	spin_lock(&pf->adapter->txq_ctx_lock);
1673 
1674 	/* Copy each dword separately to HW */
1675 	for (int i = 0; i < ICE_TXQ_CTX_FULL_SIZE_DWORDS; i++) {
1676 		u32 ctx = ((const u32 *)txq_ctx)[i];
1677 
1678 		wr32(hw, GLCOMM_QTX_CNTX_DATA(i), ctx);
1679 
1680 		ice_debug(hw, ICE_DBG_QCTX, "qtxdata[%d]: %08X\n", i, ctx);
1681 	}
1682 
1683 	wr32(hw, GLCOMM_QTX_CNTX_CTL, reg);
1684 	ice_flush(hw);
1685 
1686 	spin_unlock(&pf->adapter->txq_ctx_lock);
1687 }
1688 
1689 /**
1690  * ice_read_txq_ctx - Read Tx queue context from HW
1691  * @hw: pointer to the hardware structure
1692  * @tlan_ctx: pointer to the Tx queue context
1693  * @txq_index: the index of the Tx queue
1694  *
1695  * Read the Tx queue context from the HW registers, then unpack it into the
1696  * ice_tlan_ctx structure for use.
1697  *
1698  * Returns: 0 on success, or -EINVAL on an invalid Tx queue index.
1699  */
ice_read_txq_ctx(struct ice_hw * hw,struct ice_tlan_ctx * tlan_ctx,u32 txq_index)1700 int ice_read_txq_ctx(struct ice_hw *hw, struct ice_tlan_ctx *tlan_ctx,
1701 		     u32 txq_index)
1702 {
1703 	ice_txq_ctx_buf_full_t buf = {};
1704 
1705 	if (txq_index > QTX_COMM_HEAD_MAX_INDEX)
1706 		return -EINVAL;
1707 
1708 	ice_copy_txq_ctx_from_hw(hw, &buf, txq_index);
1709 	ice_unpack_txq_ctx_full(&buf, tlan_ctx);
1710 
1711 	return 0;
1712 }
1713 
1714 /**
1715  * ice_write_txq_ctx - Write Tx queue context to HW
1716  * @hw: pointer to the hardware structure
1717  * @tlan_ctx: pointer to the Tx queue context
1718  * @txq_index: the index of the Tx queue
1719  *
1720  * Pack the Tx queue context into the dense HW layout, then write it into the
1721  * HW registers.
1722  *
1723  * Returns: 0 on success, or -EINVAL on an invalid Tx queue index.
1724  */
ice_write_txq_ctx(struct ice_hw * hw,struct ice_tlan_ctx * tlan_ctx,u32 txq_index)1725 int ice_write_txq_ctx(struct ice_hw *hw, struct ice_tlan_ctx *tlan_ctx,
1726 		      u32 txq_index)
1727 {
1728 	ice_txq_ctx_buf_full_t buf = {};
1729 
1730 	if (txq_index > QTX_COMM_HEAD_MAX_INDEX)
1731 		return -EINVAL;
1732 
1733 	ice_pack_txq_ctx_full(tlan_ctx, &buf);
1734 	ice_copy_txq_ctx_to_hw(hw, &buf, txq_index);
1735 
1736 	return 0;
1737 }
1738 
1739 /* Tx time Queue Context */
1740 static const struct packed_field_u8 ice_txtime_ctx_fields[] = {
1741 				    /* Field			Width	LSB */
1742 	ICE_CTX_STORE(ice_txtime_ctx, base,			57,	0),
1743 	ICE_CTX_STORE(ice_txtime_ctx, pf_num,			3,	57),
1744 	ICE_CTX_STORE(ice_txtime_ctx, vmvf_num,			10,	60),
1745 	ICE_CTX_STORE(ice_txtime_ctx, vmvf_type,		2,	70),
1746 	ICE_CTX_STORE(ice_txtime_ctx, src_vsi,			10,	72),
1747 	ICE_CTX_STORE(ice_txtime_ctx, cpuid,			8,	82),
1748 	ICE_CTX_STORE(ice_txtime_ctx, tphrd_desc,		1,	90),
1749 	ICE_CTX_STORE(ice_txtime_ctx, qlen,			13,	91),
1750 	ICE_CTX_STORE(ice_txtime_ctx, timer_num,		1,	104),
1751 	ICE_CTX_STORE(ice_txtime_ctx, txtime_ena_q,		1,	105),
1752 	ICE_CTX_STORE(ice_txtime_ctx, drbell_mode_32,		1,	106),
1753 	ICE_CTX_STORE(ice_txtime_ctx, ts_res,			4,	107),
1754 	ICE_CTX_STORE(ice_txtime_ctx, ts_round_type,		2,	111),
1755 	ICE_CTX_STORE(ice_txtime_ctx, ts_pacing_slot,		3,	113),
1756 	ICE_CTX_STORE(ice_txtime_ctx, merging_ena,		1,	116),
1757 	ICE_CTX_STORE(ice_txtime_ctx, ts_fetch_prof_id,		4,	117),
1758 	ICE_CTX_STORE(ice_txtime_ctx, ts_fetch_cache_line_aln_thld, 4,	121),
1759 	ICE_CTX_STORE(ice_txtime_ctx, tx_pipe_delay_mode,	1,	125),
1760 };
1761 
1762 /**
1763  * ice_pack_txtime_ctx - pack Tx time queue context into a HW buffer
1764  * @ctx: the Tx time queue context to pack
1765  * @buf: the HW buffer to pack into
1766  *
1767  * Pack the Tx time queue context from the CPU-friendly unpacked buffer into
1768  * its bit-packed HW layout.
1769  */
ice_pack_txtime_ctx(const struct ice_txtime_ctx * ctx,ice_txtime_ctx_buf_t * buf)1770 void ice_pack_txtime_ctx(const struct ice_txtime_ctx *ctx,
1771 			 ice_txtime_ctx_buf_t *buf)
1772 {
1773 	pack_fields(buf, sizeof(*buf), ctx, ice_txtime_ctx_fields,
1774 		    QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1775 }
1776 
1777 /* Sideband Queue command wrappers */
1778 
1779 /**
1780  * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1781  * @hw: pointer to the HW struct
1782  * @desc: descriptor describing the command
1783  * @buf: buffer to use for indirect commands (NULL for direct commands)
1784  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1785  * @cd: pointer to command details structure
1786  */
1787 static int
ice_sbq_send_cmd(struct ice_hw * hw,struct ice_sbq_cmd_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1788 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1789 		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1790 {
1791 	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1792 			       (struct libie_aq_desc *)desc, buf, buf_size, cd);
1793 }
1794 
1795 /**
1796  * ice_sbq_rw_reg - Fill Sideband Queue command
1797  * @hw: pointer to the HW struct
1798  * @in: message info to be filled in descriptor
1799  * @flags: control queue descriptor flags
1800  */
ice_sbq_rw_reg(struct ice_hw * hw,struct ice_sbq_msg_input * in,u16 flags)1801 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1802 {
1803 	struct ice_sbq_cmd_desc desc = {0};
1804 	struct ice_sbq_msg_req msg = {0};
1805 	u16 msg_len;
1806 	int status;
1807 
1808 	msg_len = sizeof(msg);
1809 
1810 	msg.dest_dev = in->dest_dev;
1811 	msg.opcode = in->opcode;
1812 	msg.flags = ICE_SBQ_MSG_FLAGS;
1813 	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1814 	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1815 	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1816 
1817 	if (in->opcode)
1818 		msg.data = cpu_to_le32(in->data);
1819 	else
1820 		/* data read comes back in completion, so shorten the struct by
1821 		 * sizeof(msg.data)
1822 		 */
1823 		msg_len -= sizeof(msg.data);
1824 
1825 	desc.flags = cpu_to_le16(flags);
1826 	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1827 	desc.param0.cmd_len = cpu_to_le16(msg_len);
1828 	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1829 	if (!status && !in->opcode)
1830 		in->data = le32_to_cpu
1831 			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1832 	return status;
1833 }
1834 
1835 /* FW Admin Queue command wrappers */
1836 
1837 /* Software lock/mutex that is meant to be held while the Global Config Lock
1838  * in firmware is acquired by the software to prevent most (but not all) types
1839  * of AQ commands from being sent to FW
1840  */
1841 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1842 
1843 /**
1844  * ice_should_retry_sq_send_cmd
1845  * @opcode: AQ opcode
1846  *
1847  * Decide if we should retry the send command routine for the ATQ, depending
1848  * on the opcode.
1849  */
ice_should_retry_sq_send_cmd(u16 opcode)1850 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1851 {
1852 	switch (opcode) {
1853 	case ice_aqc_opc_get_link_topo:
1854 	case ice_aqc_opc_lldp_stop:
1855 	case ice_aqc_opc_lldp_start:
1856 	case ice_aqc_opc_lldp_filter_ctrl:
1857 		return true;
1858 	}
1859 
1860 	return false;
1861 }
1862 
1863 /**
1864  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1865  * @hw: pointer to the HW struct
1866  * @cq: pointer to the specific Control queue
1867  * @desc: prefilled descriptor describing the command
1868  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1869  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1870  * @cd: pointer to command details structure
1871  *
1872  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1873  * Queue if the EBUSY AQ error is returned.
1874  */
1875 static int
ice_sq_send_cmd_retry(struct ice_hw * hw,struct ice_ctl_q_info * cq,struct libie_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1876 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1877 		      struct libie_aq_desc *desc, void *buf, u16 buf_size,
1878 		      struct ice_sq_cd *cd)
1879 {
1880 	struct libie_aq_desc desc_cpy;
1881 	bool is_cmd_for_retry;
1882 	u8 idx = 0;
1883 	u16 opcode;
1884 	int status;
1885 
1886 	opcode = le16_to_cpu(desc->opcode);
1887 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1888 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1889 
1890 	if (is_cmd_for_retry) {
1891 		/* All retryable cmds are direct, without buf. */
1892 		WARN_ON(buf);
1893 
1894 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1895 	}
1896 
1897 	do {
1898 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1899 
1900 		if (!is_cmd_for_retry || !status ||
1901 		    hw->adminq.sq_last_status != LIBIE_AQ_RC_EBUSY)
1902 			break;
1903 
1904 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1905 
1906 		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1907 
1908 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1909 
1910 	return status;
1911 }
1912 
1913 /**
1914  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1915  * @hw: pointer to the HW struct
1916  * @desc: descriptor describing the command
1917  * @buf: buffer to use for indirect commands (NULL for direct commands)
1918  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1919  * @cd: pointer to command details structure
1920  *
1921  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1922  */
1923 int
ice_aq_send_cmd(struct ice_hw * hw,struct libie_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1924 ice_aq_send_cmd(struct ice_hw *hw, struct libie_aq_desc *desc, void *buf,
1925 		u16 buf_size, struct ice_sq_cd *cd)
1926 {
1927 	struct libie_aqc_req_res *cmd = libie_aq_raw(desc);
1928 	bool lock_acquired = false;
1929 	int status;
1930 
1931 	/* When a package download is in process (i.e. when the firmware's
1932 	 * Global Configuration Lock resource is held), only the Download
1933 	 * Package, Get Version, Get Package Info List, Upload Section,
1934 	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1935 	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1936 	 * Recipes to Profile Association, and Release Resource (with resource
1937 	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1938 	 * must block until the package download completes and the Global Config
1939 	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1940 	 */
1941 	switch (le16_to_cpu(desc->opcode)) {
1942 	case ice_aqc_opc_download_pkg:
1943 	case ice_aqc_opc_get_pkg_info_list:
1944 	case ice_aqc_opc_get_ver:
1945 	case ice_aqc_opc_upload_section:
1946 	case ice_aqc_opc_update_pkg:
1947 	case ice_aqc_opc_set_port_params:
1948 	case ice_aqc_opc_get_vlan_mode_parameters:
1949 	case ice_aqc_opc_set_vlan_mode_parameters:
1950 	case ice_aqc_opc_set_tx_topo:
1951 	case ice_aqc_opc_get_tx_topo:
1952 	case ice_aqc_opc_add_recipe:
1953 	case ice_aqc_opc_recipe_to_profile:
1954 	case ice_aqc_opc_get_recipe:
1955 	case ice_aqc_opc_get_recipe_to_profile:
1956 		break;
1957 	case ice_aqc_opc_release_res:
1958 		if (le16_to_cpu(cmd->res_id) == LIBIE_AQC_RES_ID_GLBL_LOCK)
1959 			break;
1960 		fallthrough;
1961 	default:
1962 		mutex_lock(&ice_global_cfg_lock_sw);
1963 		lock_acquired = true;
1964 		break;
1965 	}
1966 
1967 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1968 	if (lock_acquired)
1969 		mutex_unlock(&ice_global_cfg_lock_sw);
1970 
1971 	return status;
1972 }
1973 
1974 /**
1975  * ice_aq_get_fw_ver
1976  * @hw: pointer to the HW struct
1977  * @cd: pointer to command details structure or NULL
1978  *
1979  * Get the firmware version (0x0001) from the admin queue commands
1980  */
ice_aq_get_fw_ver(struct ice_hw * hw,struct ice_sq_cd * cd)1981 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1982 {
1983 	struct libie_aqc_get_ver *resp;
1984 	struct libie_aq_desc desc;
1985 	int status;
1986 
1987 	resp = &desc.params.get_ver;
1988 
1989 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1990 
1991 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1992 
1993 	if (!status) {
1994 		hw->fw_branch = resp->fw_branch;
1995 		hw->fw_maj_ver = resp->fw_major;
1996 		hw->fw_min_ver = resp->fw_minor;
1997 		hw->fw_patch = resp->fw_patch;
1998 		hw->fw_build = le32_to_cpu(resp->fw_build);
1999 		hw->api_branch = resp->api_branch;
2000 		hw->api_maj_ver = resp->api_major;
2001 		hw->api_min_ver = resp->api_minor;
2002 		hw->api_patch = resp->api_patch;
2003 	}
2004 
2005 	return status;
2006 }
2007 
2008 /**
2009  * ice_aq_send_driver_ver
2010  * @hw: pointer to the HW struct
2011  * @dv: driver's major, minor version
2012  * @cd: pointer to command details structure or NULL
2013  *
2014  * Send the driver version (0x0002) to the firmware
2015  */
2016 int
ice_aq_send_driver_ver(struct ice_hw * hw,struct ice_driver_ver * dv,struct ice_sq_cd * cd)2017 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
2018 		       struct ice_sq_cd *cd)
2019 {
2020 	struct libie_aqc_driver_ver *cmd;
2021 	struct libie_aq_desc desc;
2022 	u16 len;
2023 
2024 	cmd = &desc.params.driver_ver;
2025 
2026 	if (!dv)
2027 		return -EINVAL;
2028 
2029 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
2030 
2031 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
2032 	cmd->major_ver = dv->major_ver;
2033 	cmd->minor_ver = dv->minor_ver;
2034 	cmd->build_ver = dv->build_ver;
2035 	cmd->subbuild_ver = dv->subbuild_ver;
2036 
2037 	len = 0;
2038 	while (len < sizeof(dv->driver_string) &&
2039 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
2040 		len++;
2041 
2042 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
2043 }
2044 
2045 /**
2046  * ice_aq_q_shutdown
2047  * @hw: pointer to the HW struct
2048  * @unloading: is the driver unloading itself
2049  *
2050  * Tell the Firmware that we're shutting down the AdminQ and whether
2051  * or not the driver is unloading as well (0x0003).
2052  */
ice_aq_q_shutdown(struct ice_hw * hw,bool unloading)2053 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
2054 {
2055 	struct ice_aqc_q_shutdown *cmd;
2056 	struct libie_aq_desc desc;
2057 
2058 	cmd = libie_aq_raw(&desc);
2059 
2060 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
2061 
2062 	if (unloading)
2063 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
2064 
2065 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2066 }
2067 
2068 /**
2069  * ice_aq_req_res
2070  * @hw: pointer to the HW struct
2071  * @res: resource ID
2072  * @access: access type
2073  * @sdp_number: resource number
2074  * @timeout: the maximum time in ms that the driver may hold the resource
2075  * @cd: pointer to command details structure or NULL
2076  *
2077  * Requests common resource using the admin queue commands (0x0008).
2078  * When attempting to acquire the Global Config Lock, the driver can
2079  * learn of three states:
2080  *  1) 0 -         acquired lock, and can perform download package
2081  *  2) -EIO -      did not get lock, driver should fail to load
2082  *  3) -EALREADY - did not get lock, but another driver has
2083  *                 successfully downloaded the package; the driver does
2084  *                 not have to download the package and can continue
2085  *                 loading
2086  *
2087  * Note that if the caller is in an acquire lock, perform action, release lock
2088  * phase of operation, it is possible that the FW may detect a timeout and issue
2089  * a CORER. In this case, the driver will receive a CORER interrupt and will
2090  * have to determine its cause. The calling thread that is handling this flow
2091  * will likely get an error propagated back to it indicating the Download
2092  * Package, Update Package or the Release Resource AQ commands timed out.
2093  */
2094 static int
ice_aq_req_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u8 sdp_number,u32 * timeout,struct ice_sq_cd * cd)2095 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2096 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
2097 	       struct ice_sq_cd *cd)
2098 {
2099 	struct libie_aqc_req_res *cmd_resp;
2100 	struct libie_aq_desc desc;
2101 	int status;
2102 
2103 	cmd_resp = &desc.params.res_owner;
2104 
2105 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
2106 
2107 	cmd_resp->res_id = cpu_to_le16(res);
2108 	cmd_resp->access_type = cpu_to_le16(access);
2109 	cmd_resp->res_number = cpu_to_le32(sdp_number);
2110 	cmd_resp->timeout = cpu_to_le32(*timeout);
2111 	*timeout = 0;
2112 
2113 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2114 
2115 	/* The completion specifies the maximum time in ms that the driver
2116 	 * may hold the resource in the Timeout field.
2117 	 */
2118 
2119 	/* Global config lock response utilizes an additional status field.
2120 	 *
2121 	 * If the Global config lock resource is held by some other driver, the
2122 	 * command completes with LIBIE_AQ_RES_GLBL_IN_PROG in the status field
2123 	 * and the timeout field indicates the maximum time the current owner
2124 	 * of the resource has to free it.
2125 	 */
2126 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
2127 		if (le16_to_cpu(cmd_resp->status) == LIBIE_AQ_RES_GLBL_SUCCESS) {
2128 			*timeout = le32_to_cpu(cmd_resp->timeout);
2129 			return 0;
2130 		} else if (le16_to_cpu(cmd_resp->status) ==
2131 			   LIBIE_AQ_RES_GLBL_IN_PROG) {
2132 			*timeout = le32_to_cpu(cmd_resp->timeout);
2133 			return -EIO;
2134 		} else if (le16_to_cpu(cmd_resp->status) ==
2135 			   LIBIE_AQ_RES_GLBL_DONE) {
2136 			return -EALREADY;
2137 		}
2138 
2139 		/* invalid FW response, force a timeout immediately */
2140 		*timeout = 0;
2141 		return -EIO;
2142 	}
2143 
2144 	/* If the resource is held by some other driver, the command completes
2145 	 * with a busy return value and the timeout field indicates the maximum
2146 	 * time the current owner of the resource has to free it.
2147 	 */
2148 	if (!status || hw->adminq.sq_last_status == LIBIE_AQ_RC_EBUSY)
2149 		*timeout = le32_to_cpu(cmd_resp->timeout);
2150 
2151 	return status;
2152 }
2153 
2154 /**
2155  * ice_aq_release_res
2156  * @hw: pointer to the HW struct
2157  * @res: resource ID
2158  * @sdp_number: resource number
2159  * @cd: pointer to command details structure or NULL
2160  *
2161  * release common resource using the admin queue commands (0x0009)
2162  */
2163 static int
ice_aq_release_res(struct ice_hw * hw,enum ice_aq_res_ids res,u8 sdp_number,struct ice_sq_cd * cd)2164 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
2165 		   struct ice_sq_cd *cd)
2166 {
2167 	struct libie_aqc_req_res *cmd;
2168 	struct libie_aq_desc desc;
2169 
2170 	cmd = &desc.params.res_owner;
2171 
2172 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
2173 
2174 	cmd->res_id = cpu_to_le16(res);
2175 	cmd->res_number = cpu_to_le32(sdp_number);
2176 
2177 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2178 }
2179 
2180 /**
2181  * ice_acquire_res
2182  * @hw: pointer to the HW structure
2183  * @res: resource ID
2184  * @access: access type (read or write)
2185  * @timeout: timeout in milliseconds
2186  *
2187  * This function will attempt to acquire the ownership of a resource.
2188  */
2189 int
ice_acquire_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u32 timeout)2190 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2191 		enum ice_aq_res_access_type access, u32 timeout)
2192 {
2193 #define ICE_RES_POLLING_DELAY_MS	10
2194 	u32 delay = ICE_RES_POLLING_DELAY_MS;
2195 	u32 time_left = timeout;
2196 	int status;
2197 
2198 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2199 
2200 	/* A return code of -EALREADY means that another driver has
2201 	 * previously acquired the resource and performed any necessary updates;
2202 	 * in this case the caller does not obtain the resource and has no
2203 	 * further work to do.
2204 	 */
2205 	if (status == -EALREADY)
2206 		goto ice_acquire_res_exit;
2207 
2208 	if (status)
2209 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
2210 
2211 	/* If necessary, poll until the current lock owner timeouts */
2212 	timeout = time_left;
2213 	while (status && timeout && time_left) {
2214 		mdelay(delay);
2215 		timeout = (timeout > delay) ? timeout - delay : 0;
2216 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2217 
2218 		if (status == -EALREADY)
2219 			/* lock free, but no work to do */
2220 			break;
2221 
2222 		if (!status)
2223 			/* lock acquired */
2224 			break;
2225 	}
2226 	if (status && status != -EALREADY)
2227 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2228 
2229 ice_acquire_res_exit:
2230 	if (status == -EALREADY) {
2231 		if (access == ICE_RES_WRITE)
2232 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2233 		else
2234 			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
2235 	}
2236 	return status;
2237 }
2238 
2239 /**
2240  * ice_release_res
2241  * @hw: pointer to the HW structure
2242  * @res: resource ID
2243  *
2244  * This function will release a resource using the proper Admin Command.
2245  */
ice_release_res(struct ice_hw * hw,enum ice_aq_res_ids res)2246 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2247 {
2248 	unsigned long timeout;
2249 	int status;
2250 
2251 	/* there are some rare cases when trying to release the resource
2252 	 * results in an admin queue timeout, so handle them correctly
2253 	 */
2254 	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
2255 	do {
2256 		status = ice_aq_release_res(hw, res, 0, NULL);
2257 		if (status != -EIO)
2258 			break;
2259 		usleep_range(1000, 2000);
2260 	} while (time_before(jiffies, timeout));
2261 }
2262 
2263 /**
2264  * ice_aq_alloc_free_res - command to allocate/free resources
2265  * @hw: pointer to the HW struct
2266  * @buf: Indirect buffer to hold data parameters and response
2267  * @buf_size: size of buffer for indirect commands
2268  * @opc: pass in the command opcode
2269  *
2270  * Helper function to allocate/free resources using the admin queue commands
2271  */
ice_aq_alloc_free_res(struct ice_hw * hw,struct ice_aqc_alloc_free_res_elem * buf,u16 buf_size,enum ice_adminq_opc opc)2272 int ice_aq_alloc_free_res(struct ice_hw *hw,
2273 			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2274 			  enum ice_adminq_opc opc)
2275 {
2276 	struct ice_aqc_alloc_free_res_cmd *cmd;
2277 	struct libie_aq_desc desc;
2278 
2279 	cmd = libie_aq_raw(&desc);
2280 
2281 	if (!buf || buf_size < flex_array_size(buf, elem, 1))
2282 		return -EINVAL;
2283 
2284 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2285 
2286 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
2287 
2288 	cmd->num_entries = cpu_to_le16(1);
2289 
2290 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
2291 }
2292 
2293 /**
2294  * ice_alloc_hw_res - allocate resource
2295  * @hw: pointer to the HW struct
2296  * @type: type of resource
2297  * @num: number of resources to allocate
2298  * @btm: allocate from bottom
2299  * @res: pointer to array that will receive the resources
2300  */
2301 int
ice_alloc_hw_res(struct ice_hw * hw,u16 type,u16 num,bool btm,u16 * res)2302 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2303 {
2304 	struct ice_aqc_alloc_free_res_elem *buf;
2305 	u16 buf_len;
2306 	int status;
2307 
2308 	buf_len = struct_size(buf, elem, num);
2309 	buf = kzalloc(buf_len, GFP_KERNEL);
2310 	if (!buf)
2311 		return -ENOMEM;
2312 
2313 	/* Prepare buffer to allocate resource. */
2314 	buf->num_elems = cpu_to_le16(num);
2315 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2316 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2317 	if (btm)
2318 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2319 
2320 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2321 	if (status)
2322 		goto ice_alloc_res_exit;
2323 
2324 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2325 
2326 ice_alloc_res_exit:
2327 	kfree(buf);
2328 	return status;
2329 }
2330 
2331 /**
2332  * ice_free_hw_res - free allocated HW resource
2333  * @hw: pointer to the HW struct
2334  * @type: type of resource to free
2335  * @num: number of resources
2336  * @res: pointer to array that contains the resources to free
2337  */
ice_free_hw_res(struct ice_hw * hw,u16 type,u16 num,u16 * res)2338 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2339 {
2340 	struct ice_aqc_alloc_free_res_elem *buf;
2341 	u16 buf_len;
2342 	int status;
2343 
2344 	buf_len = struct_size(buf, elem, num);
2345 	buf = kzalloc(buf_len, GFP_KERNEL);
2346 	if (!buf)
2347 		return -ENOMEM;
2348 
2349 	/* Prepare buffer to free resource. */
2350 	buf->num_elems = cpu_to_le16(num);
2351 	buf->res_type = cpu_to_le16(type);
2352 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2353 
2354 	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2355 	if (status)
2356 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2357 
2358 	kfree(buf);
2359 	return status;
2360 }
2361 
2362 /**
2363  * ice_get_num_per_func - determine number of resources per PF
2364  * @hw: pointer to the HW structure
2365  * @max: value to be evenly split between each PF
2366  *
2367  * Determine the number of valid functions by going through the bitmap returned
2368  * from parsing capabilities and use this to calculate the number of resources
2369  * per PF based on the max value passed in.
2370  */
ice_get_num_per_func(struct ice_hw * hw,u32 max)2371 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2372 {
2373 	u8 funcs;
2374 
2375 #define ICE_CAPS_VALID_FUNCS_M	0xFF
2376 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2377 			 ICE_CAPS_VALID_FUNCS_M);
2378 
2379 	if (!funcs)
2380 		return 0;
2381 
2382 	return max / funcs;
2383 }
2384 
2385 /**
2386  * ice_parse_common_caps - parse common device/function capabilities
2387  * @hw: pointer to the HW struct
2388  * @caps: pointer to common capabilities structure
2389  * @elem: the capability element to parse
2390  * @prefix: message prefix for tracing capabilities
2391  *
2392  * Given a capability element, extract relevant details into the common
2393  * capability structure.
2394  *
2395  * Returns: true if the capability matches one of the common capability ids,
2396  * false otherwise.
2397  */
2398 static bool
ice_parse_common_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps,struct libie_aqc_list_caps_elem * elem,const char * prefix)2399 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2400 		      struct libie_aqc_list_caps_elem *elem, const char *prefix)
2401 {
2402 	u32 logical_id = le32_to_cpu(elem->logical_id);
2403 	u32 phys_id = le32_to_cpu(elem->phys_id);
2404 	u32 number = le32_to_cpu(elem->number);
2405 	u16 cap = le16_to_cpu(elem->cap);
2406 	bool found = true;
2407 
2408 	switch (cap) {
2409 	case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
2410 		caps->valid_functions = number;
2411 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2412 			  caps->valid_functions);
2413 		break;
2414 	case LIBIE_AQC_CAPS_SRIOV:
2415 		caps->sr_iov_1_1 = (number == 1);
2416 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2417 			  caps->sr_iov_1_1);
2418 		break;
2419 	case LIBIE_AQC_CAPS_DCB:
2420 		caps->dcb = (number == 1);
2421 		caps->active_tc_bitmap = logical_id;
2422 		caps->maxtc = phys_id;
2423 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2424 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2425 			  caps->active_tc_bitmap);
2426 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2427 		break;
2428 	case LIBIE_AQC_CAPS_RSS:
2429 		caps->rss_table_size = number;
2430 		caps->rss_table_entry_width = logical_id;
2431 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2432 			  caps->rss_table_size);
2433 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2434 			  caps->rss_table_entry_width);
2435 		break;
2436 	case LIBIE_AQC_CAPS_RXQS:
2437 		caps->num_rxq = number;
2438 		caps->rxq_first_id = phys_id;
2439 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2440 			  caps->num_rxq);
2441 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2442 			  caps->rxq_first_id);
2443 		break;
2444 	case LIBIE_AQC_CAPS_TXQS:
2445 		caps->num_txq = number;
2446 		caps->txq_first_id = phys_id;
2447 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2448 			  caps->num_txq);
2449 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2450 			  caps->txq_first_id);
2451 		break;
2452 	case LIBIE_AQC_CAPS_MSIX:
2453 		caps->num_msix_vectors = number;
2454 		caps->msix_vector_first_id = phys_id;
2455 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2456 			  caps->num_msix_vectors);
2457 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2458 			  caps->msix_vector_first_id);
2459 		break;
2460 	case LIBIE_AQC_CAPS_PENDING_NVM_VER:
2461 		caps->nvm_update_pending_nvm = true;
2462 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2463 		break;
2464 	case LIBIE_AQC_CAPS_PENDING_OROM_VER:
2465 		caps->nvm_update_pending_orom = true;
2466 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2467 		break;
2468 	case LIBIE_AQC_CAPS_PENDING_NET_VER:
2469 		caps->nvm_update_pending_netlist = true;
2470 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2471 		break;
2472 	case LIBIE_AQC_CAPS_NVM_MGMT:
2473 		caps->nvm_unified_update =
2474 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2475 			true : false;
2476 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2477 			  caps->nvm_unified_update);
2478 		break;
2479 	case LIBIE_AQC_CAPS_RDMA:
2480 		if (IS_ENABLED(CONFIG_INFINIBAND_IRDMA))
2481 			caps->rdma = (number == 1);
2482 		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2483 		break;
2484 	case LIBIE_AQC_CAPS_MAX_MTU:
2485 		caps->max_mtu = number;
2486 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2487 			  prefix, caps->max_mtu);
2488 		break;
2489 	case LIBIE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2490 		caps->pcie_reset_avoidance = (number > 0);
2491 		ice_debug(hw, ICE_DBG_INIT,
2492 			  "%s: pcie_reset_avoidance = %d\n", prefix,
2493 			  caps->pcie_reset_avoidance);
2494 		break;
2495 	case LIBIE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2496 		caps->reset_restrict_support = (number == 1);
2497 		ice_debug(hw, ICE_DBG_INIT,
2498 			  "%s: reset_restrict_support = %d\n", prefix,
2499 			  caps->reset_restrict_support);
2500 		break;
2501 	case LIBIE_AQC_CAPS_FW_LAG_SUPPORT:
2502 		caps->roce_lag = number & LIBIE_AQC_BIT_ROCEV2_LAG;
2503 		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2504 			  prefix, caps->roce_lag);
2505 		caps->sriov_lag = number & LIBIE_AQC_BIT_SRIOV_LAG;
2506 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2507 			  prefix, caps->sriov_lag);
2508 		caps->sriov_aa_lag = number & LIBIE_AQC_BIT_SRIOV_AA_LAG;
2509 		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_aa_lag = %u\n",
2510 			  prefix, caps->sriov_aa_lag);
2511 		break;
2512 	case LIBIE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2513 		caps->tx_sched_topo_comp_mode_en = (number == 1);
2514 		break;
2515 	default:
2516 		/* Not one of the recognized common capabilities */
2517 		found = false;
2518 	}
2519 
2520 	return found;
2521 }
2522 
2523 /**
2524  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2525  * @hw: pointer to the HW structure
2526  * @caps: pointer to capabilities structure to fix
2527  *
2528  * Re-calculate the capabilities that are dependent on the number of physical
2529  * ports; i.e. some features are not supported or function differently on
2530  * devices with more than 4 ports.
2531  */
2532 static void
ice_recalc_port_limited_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps)2533 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2534 {
2535 	/* This assumes device capabilities are always scanned before function
2536 	 * capabilities during the initialization flow.
2537 	 */
2538 	if (hw->dev_caps.num_funcs > 4) {
2539 		/* Max 4 TCs per port */
2540 		caps->maxtc = 4;
2541 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2542 			  caps->maxtc);
2543 		if (caps->rdma) {
2544 			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2545 			caps->rdma = 0;
2546 		}
2547 
2548 		/* print message only when processing device capabilities
2549 		 * during initialization.
2550 		 */
2551 		if (caps == &hw->dev_caps.common_cap)
2552 			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2553 	}
2554 }
2555 
2556 /**
2557  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2558  * @hw: pointer to the HW struct
2559  * @func_p: pointer to function capabilities structure
2560  * @cap: pointer to the capability element to parse
2561  *
2562  * Extract function capabilities for ICE_AQC_CAPS_VF.
2563  */
2564 static void
ice_parse_vf_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct libie_aqc_list_caps_elem * cap)2565 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2566 		       struct libie_aqc_list_caps_elem *cap)
2567 {
2568 	u32 logical_id = le32_to_cpu(cap->logical_id);
2569 	u32 number = le32_to_cpu(cap->number);
2570 
2571 	func_p->num_allocd_vfs = number;
2572 	func_p->vf_base_id = logical_id;
2573 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2574 		  func_p->num_allocd_vfs);
2575 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2576 		  func_p->vf_base_id);
2577 }
2578 
2579 /**
2580  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2581  * @hw: pointer to the HW struct
2582  * @func_p: pointer to function capabilities structure
2583  * @cap: pointer to the capability element to parse
2584  *
2585  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2586  */
2587 static void
ice_parse_vsi_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct libie_aqc_list_caps_elem * cap)2588 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2589 			struct libie_aqc_list_caps_elem *cap)
2590 {
2591 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2592 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2593 		  le32_to_cpu(cap->number));
2594 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2595 		  func_p->guar_num_vsi);
2596 }
2597 
2598 /**
2599  * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2600  * @hw: pointer to the HW struct
2601  * @func_p: pointer to function capabilities structure
2602  * @cap: pointer to the capability element to parse
2603  *
2604  * Extract function capabilities for ICE_AQC_CAPS_1588.
2605  */
2606 static void
ice_parse_1588_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct libie_aqc_list_caps_elem * cap)2607 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2608 			 struct libie_aqc_list_caps_elem *cap)
2609 {
2610 	struct ice_ts_func_info *info = &func_p->ts_func_info;
2611 	u32 number = le32_to_cpu(cap->number);
2612 
2613 	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2614 	func_p->common_cap.ieee_1588 = info->ena;
2615 
2616 	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2617 	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2618 	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2619 	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2620 
2621 	if (hw->mac_type != ICE_MAC_GENERIC_3K_E825) {
2622 		info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2623 		info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2624 	} else {
2625 		info->clk_freq = ICE_TSPLL_FREQ_156_250;
2626 		info->clk_src = ICE_CLK_SRC_TIME_REF;
2627 	}
2628 
2629 	if (info->clk_freq < NUM_ICE_TSPLL_FREQ) {
2630 		info->time_ref = (enum ice_tspll_freq)info->clk_freq;
2631 	} else {
2632 		/* Unknown clock frequency, so assume a (probably incorrect)
2633 		 * default to avoid out-of-bounds look ups of frequency
2634 		 * related information.
2635 		 */
2636 		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2637 			  info->clk_freq);
2638 		info->time_ref = ICE_TSPLL_FREQ_25_000;
2639 	}
2640 
2641 	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2642 		  func_p->common_cap.ieee_1588);
2643 	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2644 		  info->src_tmr_owned);
2645 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2646 		  info->tmr_ena);
2647 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2648 		  info->tmr_index_owned);
2649 	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2650 		  info->tmr_index_assoc);
2651 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2652 		  info->clk_freq);
2653 	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2654 		  info->clk_src);
2655 }
2656 
2657 /**
2658  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2659  * @hw: pointer to the HW struct
2660  * @func_p: pointer to function capabilities structure
2661  *
2662  * Extract function capabilities for ICE_AQC_CAPS_FD.
2663  */
2664 static void
ice_parse_fdir_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p)2665 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2666 {
2667 	u32 reg_val, gsize, bsize;
2668 
2669 	reg_val = rd32(hw, GLQF_FD_SIZE);
2670 	switch (hw->mac_type) {
2671 	case ICE_MAC_E830:
2672 		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2673 		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2674 		break;
2675 	case ICE_MAC_E810:
2676 	default:
2677 		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2678 		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2679 	}
2680 	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2681 	func_p->fd_fltr_best_effort = bsize;
2682 
2683 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2684 		  func_p->fd_fltr_guar);
2685 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2686 		  func_p->fd_fltr_best_effort);
2687 }
2688 
2689 /**
2690  * ice_parse_func_caps - Parse function capabilities
2691  * @hw: pointer to the HW struct
2692  * @func_p: pointer to function capabilities structure
2693  * @buf: buffer containing the function capability records
2694  * @cap_count: the number of capabilities
2695  *
2696  * Helper function to parse function (0x000A) capabilities list. For
2697  * capabilities shared between device and function, this relies on
2698  * ice_parse_common_caps.
2699  *
2700  * Loop through the list of provided capabilities and extract the relevant
2701  * data into the function capabilities structured.
2702  */
2703 static void
ice_parse_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,void * buf,u32 cap_count)2704 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2705 		    void *buf, u32 cap_count)
2706 {
2707 	struct libie_aqc_list_caps_elem *cap_resp;
2708 	u32 i;
2709 
2710 	cap_resp = buf;
2711 
2712 	memset(func_p, 0, sizeof(*func_p));
2713 
2714 	for (i = 0; i < cap_count; i++) {
2715 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2716 		bool found;
2717 
2718 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2719 					      &cap_resp[i], "func caps");
2720 
2721 		switch (cap) {
2722 		case LIBIE_AQC_CAPS_VF:
2723 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2724 			break;
2725 		case LIBIE_AQC_CAPS_VSI:
2726 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2727 			break;
2728 		case LIBIE_AQC_CAPS_1588:
2729 			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2730 			break;
2731 		case LIBIE_AQC_CAPS_FD:
2732 			ice_parse_fdir_func_caps(hw, func_p);
2733 			break;
2734 		default:
2735 			/* Don't list common capabilities as unknown */
2736 			if (!found)
2737 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2738 					  i, cap);
2739 			break;
2740 		}
2741 	}
2742 
2743 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2744 }
2745 
2746 /**
2747  * ice_func_id_to_logical_id - map from function id to logical pf id
2748  * @active_function_bitmap: active function bitmap
2749  * @pf_id: function number of device
2750  *
2751  * Return: logical PF ID.
2752  */
ice_func_id_to_logical_id(u32 active_function_bitmap,u8 pf_id)2753 static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2754 {
2755 	u8 logical_id = 0;
2756 	u8 i;
2757 
2758 	for (i = 0; i < pf_id; i++)
2759 		if (active_function_bitmap & BIT(i))
2760 			logical_id++;
2761 
2762 	return logical_id;
2763 }
2764 
2765 /**
2766  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2767  * @hw: pointer to the HW struct
2768  * @dev_p: pointer to device capabilities structure
2769  * @cap: capability element to parse
2770  *
2771  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2772  */
2773 static void
ice_parse_valid_functions_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2774 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2775 			      struct libie_aqc_list_caps_elem *cap)
2776 {
2777 	u32 number = le32_to_cpu(cap->number);
2778 
2779 	dev_p->num_funcs = hweight32(number);
2780 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2781 		  dev_p->num_funcs);
2782 
2783 	hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id);
2784 }
2785 
2786 /**
2787  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2788  * @hw: pointer to the HW struct
2789  * @dev_p: pointer to device capabilities structure
2790  * @cap: capability element to parse
2791  *
2792  * Parse ICE_AQC_CAPS_VF for device capabilities.
2793  */
2794 static void
ice_parse_vf_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2795 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2796 		      struct libie_aqc_list_caps_elem *cap)
2797 {
2798 	u32 number = le32_to_cpu(cap->number);
2799 
2800 	dev_p->num_vfs_exposed = number;
2801 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2802 		  dev_p->num_vfs_exposed);
2803 }
2804 
2805 /**
2806  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2807  * @hw: pointer to the HW struct
2808  * @dev_p: pointer to device capabilities structure
2809  * @cap: capability element to parse
2810  *
2811  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2812  */
2813 static void
ice_parse_vsi_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2814 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2815 		       struct libie_aqc_list_caps_elem *cap)
2816 {
2817 	u32 number = le32_to_cpu(cap->number);
2818 
2819 	dev_p->num_vsi_allocd_to_host = number;
2820 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2821 		  dev_p->num_vsi_allocd_to_host);
2822 }
2823 
2824 /**
2825  * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2826  * @hw: pointer to the HW struct
2827  * @dev_p: pointer to device capabilities structure
2828  * @cap: capability element to parse
2829  *
2830  * Parse ICE_AQC_CAPS_1588 for device capabilities.
2831  */
2832 static void
ice_parse_1588_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2833 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2834 			struct libie_aqc_list_caps_elem *cap)
2835 {
2836 	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2837 	u32 logical_id = le32_to_cpu(cap->logical_id);
2838 	u32 phys_id = le32_to_cpu(cap->phys_id);
2839 	u32 number = le32_to_cpu(cap->number);
2840 
2841 	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2842 	dev_p->common_cap.ieee_1588 = info->ena;
2843 
2844 	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2845 	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2846 	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2847 
2848 	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2849 	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2850 	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2851 
2852 	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2853 	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2854 	info->ll_phy_tmr_update = ((number & ICE_TS_LL_PHY_TMR_UPDATE_M) != 0);
2855 
2856 	info->ena_ports = logical_id;
2857 	info->tmr_own_map = phys_id;
2858 
2859 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2860 		  dev_p->common_cap.ieee_1588);
2861 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2862 		  info->tmr0_owner);
2863 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2864 		  info->tmr0_owned);
2865 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2866 		  info->tmr0_ena);
2867 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2868 		  info->tmr1_owner);
2869 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2870 		  info->tmr1_owned);
2871 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2872 		  info->tmr1_ena);
2873 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2874 		  info->ts_ll_read);
2875 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2876 		  info->ts_ll_int_read);
2877 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ll_phy_tmr_update = %u\n",
2878 		  info->ll_phy_tmr_update);
2879 	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2880 		  info->ena_ports);
2881 	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2882 		  info->tmr_own_map);
2883 }
2884 
2885 /**
2886  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2887  * @hw: pointer to the HW struct
2888  * @dev_p: pointer to device capabilities structure
2889  * @cap: capability element to parse
2890  *
2891  * Parse ICE_AQC_CAPS_FD for device capabilities.
2892  */
2893 static void
ice_parse_fdir_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2894 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2895 			struct libie_aqc_list_caps_elem *cap)
2896 {
2897 	u32 number = le32_to_cpu(cap->number);
2898 
2899 	dev_p->num_flow_director_fltr = number;
2900 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2901 		  dev_p->num_flow_director_fltr);
2902 }
2903 
2904 /**
2905  * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2906  * @hw: pointer to the HW struct
2907  * @dev_p: pointer to device capabilities structure
2908  * @cap: capability element to parse
2909  *
2910  * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2911  * enabled sensors.
2912  */
2913 static void
ice_parse_sensor_reading_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2914 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2915 			     struct libie_aqc_list_caps_elem *cap)
2916 {
2917 	dev_p->supported_sensors = le32_to_cpu(cap->number);
2918 
2919 	ice_debug(hw, ICE_DBG_INIT,
2920 		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2921 		  dev_p->supported_sensors);
2922 }
2923 
2924 /**
2925  * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2926  * @hw: pointer to the HW struct
2927  * @dev_p: pointer to device capabilities structure
2928  * @cap: capability element to parse
2929  *
2930  * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2931  */
ice_parse_nac_topo_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2932 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2933 					struct ice_hw_dev_caps *dev_p,
2934 					struct libie_aqc_list_caps_elem *cap)
2935 {
2936 	dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2937 	dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2938 
2939 	dev_info(ice_hw_to_dev(hw),
2940 		 "PF is configured in %s mode with IP instance ID %d\n",
2941 		 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2942 		 "primary" : "secondary", dev_p->nac_topo.id);
2943 
2944 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2945 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2946 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2947 		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2948 	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2949 		  dev_p->nac_topo.id);
2950 }
2951 
2952 /**
2953  * ice_parse_dev_caps - Parse device capabilities
2954  * @hw: pointer to the HW struct
2955  * @dev_p: pointer to device capabilities structure
2956  * @buf: buffer containing the device capability records
2957  * @cap_count: the number of capabilities
2958  *
2959  * Helper device to parse device (0x000B) capabilities list. For
2960  * capabilities shared between device and function, this relies on
2961  * ice_parse_common_caps.
2962  *
2963  * Loop through the list of provided capabilities and extract the relevant
2964  * data into the device capabilities structured.
2965  */
2966 static void
ice_parse_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,void * buf,u32 cap_count)2967 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2968 		   void *buf, u32 cap_count)
2969 {
2970 	struct libie_aqc_list_caps_elem *cap_resp;
2971 	u32 i;
2972 
2973 	cap_resp = buf;
2974 
2975 	memset(dev_p, 0, sizeof(*dev_p));
2976 
2977 	for (i = 0; i < cap_count; i++) {
2978 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2979 		bool found;
2980 
2981 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2982 					      &cap_resp[i], "dev caps");
2983 
2984 		switch (cap) {
2985 		case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
2986 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2987 			break;
2988 		case LIBIE_AQC_CAPS_VF:
2989 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2990 			break;
2991 		case LIBIE_AQC_CAPS_VSI:
2992 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2993 			break;
2994 		case LIBIE_AQC_CAPS_1588:
2995 			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2996 			break;
2997 		case LIBIE_AQC_CAPS_FD:
2998 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2999 			break;
3000 		case LIBIE_AQC_CAPS_SENSOR_READING:
3001 			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
3002 			break;
3003 		case LIBIE_AQC_CAPS_NAC_TOPOLOGY:
3004 			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
3005 			break;
3006 		default:
3007 			/* Don't list common capabilities as unknown */
3008 			if (!found)
3009 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
3010 					  i, cap);
3011 			break;
3012 		}
3013 	}
3014 
3015 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
3016 }
3017 
3018 /**
3019  * ice_is_phy_rclk_in_netlist
3020  * @hw: pointer to the hw struct
3021  *
3022  * Check if the PHY Recovered Clock device is present in the netlist
3023  */
ice_is_phy_rclk_in_netlist(struct ice_hw * hw)3024 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
3025 {
3026 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
3027 				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
3028 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
3029 	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
3030 				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
3031 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
3032 		return false;
3033 
3034 	return true;
3035 }
3036 
3037 /**
3038  * ice_is_clock_mux_in_netlist
3039  * @hw: pointer to the hw struct
3040  *
3041  * Check if the Clock Multiplexer device is present in the netlist
3042  */
ice_is_clock_mux_in_netlist(struct ice_hw * hw)3043 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
3044 {
3045 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
3046 				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3047 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
3048 				  NULL))
3049 		return false;
3050 
3051 	return true;
3052 }
3053 
3054 /**
3055  * ice_is_cgu_in_netlist - check for CGU presence
3056  * @hw: pointer to the hw struct
3057  *
3058  * Check if the Clock Generation Unit (CGU) device is present in the netlist.
3059  * Save the CGU part number in the hw structure for later use.
3060  * Return:
3061  * * true - cgu is present
3062  * * false - cgu is not present
3063  */
ice_is_cgu_in_netlist(struct ice_hw * hw)3064 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
3065 {
3066 	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
3067 				   ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3068 				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
3069 				   NULL)) {
3070 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
3071 		return true;
3072 	} else if (!ice_find_netlist_node(hw,
3073 					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
3074 					  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3075 					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
3076 					  NULL)) {
3077 		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
3078 		return true;
3079 	}
3080 
3081 	return false;
3082 }
3083 
3084 /**
3085  * ice_is_gps_in_netlist
3086  * @hw: pointer to the hw struct
3087  *
3088  * Check if the GPS generic device is present in the netlist
3089  */
ice_is_gps_in_netlist(struct ice_hw * hw)3090 bool ice_is_gps_in_netlist(struct ice_hw *hw)
3091 {
3092 	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
3093 				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3094 				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
3095 		return false;
3096 
3097 	return true;
3098 }
3099 
3100 /**
3101  * ice_aq_list_caps - query function/device capabilities
3102  * @hw: pointer to the HW struct
3103  * @buf: a buffer to hold the capabilities
3104  * @buf_size: size of the buffer
3105  * @cap_count: if not NULL, set to the number of capabilities reported
3106  * @opc: capabilities type to discover, device or function
3107  * @cd: pointer to command details structure or NULL
3108  *
3109  * Get the function (0x000A) or device (0x000B) capabilities description from
3110  * firmware and store it in the buffer.
3111  *
3112  * If the cap_count pointer is not NULL, then it is set to the number of
3113  * capabilities firmware will report. Note that if the buffer size is too
3114  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
3115  * cap_count will still be updated in this case. It is recommended that the
3116  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
3117  * firmware could return) to avoid this.
3118  */
3119 int
ice_aq_list_caps(struct ice_hw * hw,void * buf,u16 buf_size,u32 * cap_count,enum ice_adminq_opc opc,struct ice_sq_cd * cd)3120 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
3121 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
3122 {
3123 	struct libie_aqc_list_caps *cmd;
3124 	struct libie_aq_desc desc;
3125 	int status;
3126 
3127 	cmd = &desc.params.get_cap;
3128 
3129 	if (opc != ice_aqc_opc_list_func_caps &&
3130 	    opc != ice_aqc_opc_list_dev_caps)
3131 		return -EINVAL;
3132 
3133 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
3134 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
3135 
3136 	if (cap_count)
3137 		*cap_count = le32_to_cpu(cmd->count);
3138 
3139 	return status;
3140 }
3141 
3142 /**
3143  * ice_discover_dev_caps - Read and extract device capabilities
3144  * @hw: pointer to the hardware structure
3145  * @dev_caps: pointer to device capabilities structure
3146  *
3147  * Read the device capabilities and extract them into the dev_caps structure
3148  * for later use.
3149  */
3150 int
ice_discover_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_caps)3151 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
3152 {
3153 	u32 cap_count = 0;
3154 	void *cbuf;
3155 	int status;
3156 
3157 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
3158 	if (!cbuf)
3159 		return -ENOMEM;
3160 
3161 	/* Although the driver doesn't know the number of capabilities the
3162 	 * device will return, we can simply send a 4KB buffer, the maximum
3163 	 * possible size that firmware can return.
3164 	 */
3165 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct libie_aqc_list_caps_elem);
3166 
3167 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3168 				  ice_aqc_opc_list_dev_caps, NULL);
3169 	if (!status)
3170 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
3171 	kfree(cbuf);
3172 
3173 	return status;
3174 }
3175 
3176 /**
3177  * ice_discover_func_caps - Read and extract function capabilities
3178  * @hw: pointer to the hardware structure
3179  * @func_caps: pointer to function capabilities structure
3180  *
3181  * Read the function capabilities and extract them into the func_caps structure
3182  * for later use.
3183  */
3184 static int
ice_discover_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_caps)3185 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
3186 {
3187 	u32 cap_count = 0;
3188 	void *cbuf;
3189 	int status;
3190 
3191 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
3192 	if (!cbuf)
3193 		return -ENOMEM;
3194 
3195 	/* Although the driver doesn't know the number of capabilities the
3196 	 * device will return, we can simply send a 4KB buffer, the maximum
3197 	 * possible size that firmware can return.
3198 	 */
3199 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct libie_aqc_list_caps_elem);
3200 
3201 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3202 				  ice_aqc_opc_list_func_caps, NULL);
3203 	if (!status)
3204 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
3205 	kfree(cbuf);
3206 
3207 	return status;
3208 }
3209 
3210 /**
3211  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
3212  * @hw: pointer to the hardware structure
3213  */
ice_set_safe_mode_caps(struct ice_hw * hw)3214 void ice_set_safe_mode_caps(struct ice_hw *hw)
3215 {
3216 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
3217 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
3218 	struct ice_hw_common_caps cached_caps;
3219 	u32 num_funcs;
3220 
3221 	/* cache some func_caps values that should be restored after memset */
3222 	cached_caps = func_caps->common_cap;
3223 
3224 	/* unset func capabilities */
3225 	memset(func_caps, 0, sizeof(*func_caps));
3226 
3227 #define ICE_RESTORE_FUNC_CAP(name) \
3228 	func_caps->common_cap.name = cached_caps.name
3229 
3230 	/* restore cached values */
3231 	ICE_RESTORE_FUNC_CAP(valid_functions);
3232 	ICE_RESTORE_FUNC_CAP(txq_first_id);
3233 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
3234 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
3235 	ICE_RESTORE_FUNC_CAP(max_mtu);
3236 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
3237 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
3238 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
3239 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
3240 
3241 	/* one Tx and one Rx queue in safe mode */
3242 	func_caps->common_cap.num_rxq = 1;
3243 	func_caps->common_cap.num_txq = 1;
3244 
3245 	/* two MSIX vectors, one for traffic and one for misc causes */
3246 	func_caps->common_cap.num_msix_vectors = 2;
3247 	func_caps->guar_num_vsi = 1;
3248 
3249 	/* cache some dev_caps values that should be restored after memset */
3250 	cached_caps = dev_caps->common_cap;
3251 	num_funcs = dev_caps->num_funcs;
3252 
3253 	/* unset dev capabilities */
3254 	memset(dev_caps, 0, sizeof(*dev_caps));
3255 
3256 #define ICE_RESTORE_DEV_CAP(name) \
3257 	dev_caps->common_cap.name = cached_caps.name
3258 
3259 	/* restore cached values */
3260 	ICE_RESTORE_DEV_CAP(valid_functions);
3261 	ICE_RESTORE_DEV_CAP(txq_first_id);
3262 	ICE_RESTORE_DEV_CAP(rxq_first_id);
3263 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
3264 	ICE_RESTORE_DEV_CAP(max_mtu);
3265 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
3266 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
3267 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
3268 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
3269 	dev_caps->num_funcs = num_funcs;
3270 
3271 	/* one Tx and one Rx queue per function in safe mode */
3272 	dev_caps->common_cap.num_rxq = num_funcs;
3273 	dev_caps->common_cap.num_txq = num_funcs;
3274 
3275 	/* two MSIX vectors per function */
3276 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3277 }
3278 
3279 /**
3280  * ice_get_caps - get info about the HW
3281  * @hw: pointer to the hardware structure
3282  */
ice_get_caps(struct ice_hw * hw)3283 int ice_get_caps(struct ice_hw *hw)
3284 {
3285 	int status;
3286 
3287 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
3288 	if (status)
3289 		return status;
3290 
3291 	return ice_discover_func_caps(hw, &hw->func_caps);
3292 }
3293 
3294 /**
3295  * ice_aq_manage_mac_write - manage MAC address write command
3296  * @hw: pointer to the HW struct
3297  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3298  * @flags: flags to control write behavior
3299  * @cd: pointer to command details structure or NULL
3300  *
3301  * This function is used to write MAC address to the NVM (0x0108).
3302  */
3303 int
ice_aq_manage_mac_write(struct ice_hw * hw,const u8 * mac_addr,u8 flags,struct ice_sq_cd * cd)3304 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3305 			struct ice_sq_cd *cd)
3306 {
3307 	struct ice_aqc_manage_mac_write *cmd;
3308 	struct libie_aq_desc desc;
3309 
3310 	cmd = libie_aq_raw(&desc);
3311 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3312 
3313 	cmd->flags = flags;
3314 	ether_addr_copy(cmd->mac_addr, mac_addr);
3315 
3316 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3317 }
3318 
3319 /**
3320  * ice_aq_clear_pxe_mode
3321  * @hw: pointer to the HW struct
3322  *
3323  * Tell the firmware that the driver is taking over from PXE (0x0110).
3324  */
ice_aq_clear_pxe_mode(struct ice_hw * hw)3325 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3326 {
3327 	struct ice_aqc_clear_pxe *cmd;
3328 	struct libie_aq_desc desc;
3329 
3330 	cmd = libie_aq_raw(&desc);
3331 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3332 	cmd->rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3333 
3334 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3335 }
3336 
3337 /**
3338  * ice_clear_pxe_mode - clear pxe operations mode
3339  * @hw: pointer to the HW struct
3340  *
3341  * Make sure all PXE mode settings are cleared, including things
3342  * like descriptor fetch/write-back mode.
3343  */
ice_clear_pxe_mode(struct ice_hw * hw)3344 void ice_clear_pxe_mode(struct ice_hw *hw)
3345 {
3346 	if (ice_check_sq_alive(hw, &hw->adminq))
3347 		ice_aq_clear_pxe_mode(hw);
3348 }
3349 
3350 /**
3351  * ice_aq_set_port_params - set physical port parameters.
3352  * @pi: pointer to the port info struct
3353  * @double_vlan: if set double VLAN is enabled
3354  * @cd: pointer to command details structure or NULL
3355  *
3356  * Set Physical port parameters (0x0203)
3357  */
3358 int
ice_aq_set_port_params(struct ice_port_info * pi,bool double_vlan,struct ice_sq_cd * cd)3359 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3360 		       struct ice_sq_cd *cd)
3361 
3362 {
3363 	struct ice_aqc_set_port_params *cmd;
3364 	struct ice_hw *hw = pi->hw;
3365 	struct libie_aq_desc desc;
3366 	u16 cmd_flags = 0;
3367 
3368 	cmd = libie_aq_raw(&desc);
3369 
3370 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3371 	if (double_vlan)
3372 		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3373 	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3374 
3375 	cmd->local_fwd_mode = pi->local_fwd_mode |
3376 				ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3377 
3378 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3379 }
3380 
3381 /**
3382  * ice_is_100m_speed_supported
3383  * @hw: pointer to the HW struct
3384  *
3385  * returns true if 100M speeds are supported by the device,
3386  * false otherwise.
3387  */
ice_is_100m_speed_supported(struct ice_hw * hw)3388 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3389 {
3390 	switch (hw->device_id) {
3391 	case ICE_DEV_ID_E822C_SGMII:
3392 	case ICE_DEV_ID_E822L_SGMII:
3393 	case ICE_DEV_ID_E823L_1GBE:
3394 	case ICE_DEV_ID_E823C_SGMII:
3395 	case ICE_DEV_ID_E825C_SGMII:
3396 		return true;
3397 	default:
3398 		return false;
3399 	}
3400 }
3401 
3402 /**
3403  * ice_get_link_speed_based_on_phy_type - returns link speed
3404  * @phy_type_low: lower part of phy_type
3405  * @phy_type_high: higher part of phy_type
3406  *
3407  * This helper function will convert an entry in PHY type structure
3408  * [phy_type_low, phy_type_high] to its corresponding link speed.
3409  * Note: In the structure of [phy_type_low, phy_type_high], there should
3410  * be one bit set, as this function will convert one PHY type to its
3411  * speed.
3412  *
3413  * Return:
3414  * * PHY speed for recognized PHY type
3415  * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3416  * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3417  */
ice_get_link_speed_based_on_phy_type(u64 phy_type_low,u64 phy_type_high)3418 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3419 {
3420 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3421 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3422 
3423 	switch (phy_type_low) {
3424 	case ICE_PHY_TYPE_LOW_100BASE_TX:
3425 	case ICE_PHY_TYPE_LOW_100M_SGMII:
3426 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3427 		break;
3428 	case ICE_PHY_TYPE_LOW_1000BASE_T:
3429 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3430 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3431 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3432 	case ICE_PHY_TYPE_LOW_1G_SGMII:
3433 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3434 		break;
3435 	case ICE_PHY_TYPE_LOW_2500BASE_T:
3436 	case ICE_PHY_TYPE_LOW_2500BASE_X:
3437 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3438 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3439 		break;
3440 	case ICE_PHY_TYPE_LOW_5GBASE_T:
3441 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3442 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3443 		break;
3444 	case ICE_PHY_TYPE_LOW_10GBASE_T:
3445 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3446 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3447 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3448 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3449 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3450 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3451 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3452 		break;
3453 	case ICE_PHY_TYPE_LOW_25GBASE_T:
3454 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3455 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3456 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3457 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3458 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3459 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3460 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3461 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3462 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3463 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3464 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3465 		break;
3466 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3467 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3468 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3469 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3470 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3471 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3472 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3473 		break;
3474 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3475 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3476 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3477 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3478 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3479 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3480 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3481 	case ICE_PHY_TYPE_LOW_50G_AUI2:
3482 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3483 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3484 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3485 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3486 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3487 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3488 	case ICE_PHY_TYPE_LOW_50G_AUI1:
3489 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3490 		break;
3491 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3492 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3493 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3494 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3495 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3496 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3497 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3498 	case ICE_PHY_TYPE_LOW_100G_AUI4:
3499 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3500 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3501 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3502 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3503 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3504 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3505 		break;
3506 	default:
3507 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3508 		break;
3509 	}
3510 
3511 	switch (phy_type_high) {
3512 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3513 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3514 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3515 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3516 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3517 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3518 		break;
3519 	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3520 	case ICE_PHY_TYPE_HIGH_200G_SR4:
3521 	case ICE_PHY_TYPE_HIGH_200G_FR4:
3522 	case ICE_PHY_TYPE_HIGH_200G_LR4:
3523 	case ICE_PHY_TYPE_HIGH_200G_DR4:
3524 	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3525 	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3526 	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3527 		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3528 		break;
3529 	default:
3530 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3531 		break;
3532 	}
3533 
3534 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3535 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3536 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3537 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3538 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3539 		return ICE_AQ_LINK_SPEED_UNKNOWN;
3540 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3541 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3542 		return speed_phy_type_low;
3543 	else
3544 		return speed_phy_type_high;
3545 }
3546 
3547 /**
3548  * ice_update_phy_type
3549  * @phy_type_low: pointer to the lower part of phy_type
3550  * @phy_type_high: pointer to the higher part of phy_type
3551  * @link_speeds_bitmap: targeted link speeds bitmap
3552  *
3553  * Note: For the link_speeds_bitmap structure, you can check it at
3554  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3555  * link_speeds_bitmap include multiple speeds.
3556  *
3557  * Each entry in this [phy_type_low, phy_type_high] structure will
3558  * present a certain link speed. This helper function will turn on bits
3559  * in [phy_type_low, phy_type_high] structure based on the value of
3560  * link_speeds_bitmap input parameter.
3561  */
3562 void
ice_update_phy_type(u64 * phy_type_low,u64 * phy_type_high,u16 link_speeds_bitmap)3563 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3564 		    u16 link_speeds_bitmap)
3565 {
3566 	u64 pt_high;
3567 	u64 pt_low;
3568 	int index;
3569 	u16 speed;
3570 
3571 	/* We first check with low part of phy_type */
3572 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3573 		pt_low = BIT_ULL(index);
3574 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3575 
3576 		if (link_speeds_bitmap & speed)
3577 			*phy_type_low |= BIT_ULL(index);
3578 	}
3579 
3580 	/* We then check with high part of phy_type */
3581 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3582 		pt_high = BIT_ULL(index);
3583 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3584 
3585 		if (link_speeds_bitmap & speed)
3586 			*phy_type_high |= BIT_ULL(index);
3587 	}
3588 }
3589 
3590 /**
3591  * ice_aq_set_phy_cfg
3592  * @hw: pointer to the HW struct
3593  * @pi: port info structure of the interested logical port
3594  * @cfg: structure with PHY configuration data to be set
3595  * @cd: pointer to command details structure or NULL
3596  *
3597  * Set the various PHY configuration parameters supported on the Port.
3598  * One or more of the Set PHY config parameters may be ignored in an MFP
3599  * mode as the PF may not have the privilege to set some of the PHY Config
3600  * parameters. This status will be indicated by the command response (0x0601).
3601  */
3602 int
ice_aq_set_phy_cfg(struct ice_hw * hw,struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,struct ice_sq_cd * cd)3603 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3604 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3605 {
3606 	struct ice_aqc_set_phy_cfg *cmd;
3607 	struct libie_aq_desc desc;
3608 	int status;
3609 
3610 	if (!cfg)
3611 		return -EINVAL;
3612 
3613 	/* Ensure that only valid bits of cfg->caps can be turned on. */
3614 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3615 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3616 			  cfg->caps);
3617 
3618 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3619 	}
3620 
3621 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3622 	cmd = libie_aq_raw(&desc);
3623 	cmd->lport_num = pi->lport;
3624 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
3625 
3626 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3627 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3628 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3629 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3630 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3631 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3632 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3633 		  cfg->low_power_ctrl_an);
3634 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3635 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3636 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3637 		  cfg->link_fec_opt);
3638 
3639 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3640 	if (hw->adminq.sq_last_status == LIBIE_AQ_RC_EMODE)
3641 		status = 0;
3642 
3643 	if (!status)
3644 		pi->phy.curr_user_phy_cfg = *cfg;
3645 
3646 	return status;
3647 }
3648 
3649 /**
3650  * ice_update_link_info - update status of the HW network link
3651  * @pi: port info structure of the interested logical port
3652  */
ice_update_link_info(struct ice_port_info * pi)3653 int ice_update_link_info(struct ice_port_info *pi)
3654 {
3655 	struct ice_link_status *li;
3656 	int status;
3657 
3658 	if (!pi)
3659 		return -EINVAL;
3660 
3661 	li = &pi->phy.link_info;
3662 
3663 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3664 	if (status)
3665 		return status;
3666 
3667 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3668 		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3669 
3670 		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3671 		if (!pcaps)
3672 			return -ENOMEM;
3673 
3674 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3675 					     pcaps, NULL);
3676 	}
3677 
3678 	return status;
3679 }
3680 
3681 /**
3682  * ice_aq_get_phy_equalization - function to read serdes equaliser
3683  * value from firmware using admin queue command.
3684  * @hw: pointer to the HW struct
3685  * @data_in: represents the serdes equalization parameter requested
3686  * @op_code: represents the serdes number and flag to represent tx or rx
3687  * @serdes_num: represents the serdes number
3688  * @output: pointer to the caller-supplied buffer to return serdes equaliser
3689  *
3690  * Return: non-zero status on error and 0 on success.
3691  */
ice_aq_get_phy_equalization(struct ice_hw * hw,u16 data_in,u16 op_code,u8 serdes_num,int * output)3692 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3693 				u8 serdes_num, int *output)
3694 {
3695 	struct ice_aqc_dnl_call_command *cmd;
3696 	struct ice_aqc_dnl_call buf = {};
3697 	struct libie_aq_desc desc;
3698 	int err;
3699 
3700 	buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3701 	buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3702 		cpu_to_le16(op_code | (serdes_num & 0xF));
3703 	cmd = libie_aq_raw(&desc);
3704 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3705 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_BUF |
3706 				  LIBIE_AQ_FLAG_RD |
3707 				  LIBIE_AQ_FLAG_SI);
3708 	desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3709 	cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3710 
3711 	err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3712 			      NULL);
3713 	*output = err ? 0 : buf.sto.txrx_equa_resp.val;
3714 
3715 	return err;
3716 }
3717 
3718 #define FEC_REG_PORT(port) {	\
3719 	FEC_CORR_LOW_REG_PORT##port,		\
3720 	FEC_CORR_HIGH_REG_PORT##port,	\
3721 	FEC_UNCORR_LOW_REG_PORT##port,	\
3722 	FEC_UNCORR_HIGH_REG_PORT##port,	\
3723 }
3724 
3725 static const u32 fec_reg[][ICE_FEC_MAX] = {
3726 	FEC_REG_PORT(0),
3727 	FEC_REG_PORT(1),
3728 	FEC_REG_PORT(2),
3729 	FEC_REG_PORT(3)
3730 };
3731 
3732 /**
3733  * ice_aq_get_fec_stats - reads fec stats from phy
3734  * @hw: pointer to the HW struct
3735  * @pcs_quad: represents pcsquad of user input serdes
3736  * @pcs_port: represents the pcs port number part of above pcs quad
3737  * @fec_type: represents FEC stats type
3738  * @output: pointer to the caller-supplied buffer to return requested fec stats
3739  *
3740  * Return: non-zero status on error and 0 on success.
3741  */
ice_aq_get_fec_stats(struct ice_hw * hw,u16 pcs_quad,u16 pcs_port,enum ice_fec_stats_types fec_type,u32 * output)3742 int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3743 			 enum ice_fec_stats_types fec_type, u32 *output)
3744 {
3745 	u16 flag = (LIBIE_AQ_FLAG_RD | LIBIE_AQ_FLAG_BUF | LIBIE_AQ_FLAG_SI);
3746 	struct ice_sbq_msg_input msg = {};
3747 	u32 receiver_id, reg_offset;
3748 	int err;
3749 
3750 	if (pcs_port > 3)
3751 		return -EINVAL;
3752 
3753 	reg_offset = fec_reg[pcs_port][fec_type];
3754 
3755 	if (pcs_quad == 0)
3756 		receiver_id = FEC_RECEIVER_ID_PCS0;
3757 	else if (pcs_quad == 1)
3758 		receiver_id = FEC_RECEIVER_ID_PCS1;
3759 	else
3760 		return -EINVAL;
3761 
3762 	msg.msg_addr_low = lower_16_bits(reg_offset);
3763 	msg.msg_addr_high = receiver_id;
3764 	msg.opcode = ice_sbq_msg_rd;
3765 	msg.dest_dev = ice_sbq_dev_phy_0;
3766 
3767 	err = ice_sbq_rw_reg(hw, &msg, flag);
3768 	if (err)
3769 		return err;
3770 
3771 	*output = msg.data;
3772 	return 0;
3773 }
3774 
3775 /**
3776  * ice_cache_phy_user_req
3777  * @pi: port information structure
3778  * @cache_data: PHY logging data
3779  * @cache_mode: PHY logging mode
3780  *
3781  * Log the user request on (FC, FEC, SPEED) for later use.
3782  */
3783 static void
ice_cache_phy_user_req(struct ice_port_info * pi,struct ice_phy_cache_mode_data cache_data,enum ice_phy_cache_mode cache_mode)3784 ice_cache_phy_user_req(struct ice_port_info *pi,
3785 		       struct ice_phy_cache_mode_data cache_data,
3786 		       enum ice_phy_cache_mode cache_mode)
3787 {
3788 	if (!pi)
3789 		return;
3790 
3791 	switch (cache_mode) {
3792 	case ICE_FC_MODE:
3793 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3794 		break;
3795 	case ICE_SPEED_MODE:
3796 		pi->phy.curr_user_speed_req =
3797 			cache_data.data.curr_user_speed_req;
3798 		break;
3799 	case ICE_FEC_MODE:
3800 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3801 		break;
3802 	default:
3803 		break;
3804 	}
3805 }
3806 
3807 /**
3808  * ice_caps_to_fc_mode
3809  * @caps: PHY capabilities
3810  *
3811  * Convert PHY FC capabilities to ice FC mode
3812  */
ice_caps_to_fc_mode(u8 caps)3813 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3814 {
3815 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3816 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3817 		return ICE_FC_FULL;
3818 
3819 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3820 		return ICE_FC_TX_PAUSE;
3821 
3822 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3823 		return ICE_FC_RX_PAUSE;
3824 
3825 	return ICE_FC_NONE;
3826 }
3827 
3828 /**
3829  * ice_caps_to_fec_mode
3830  * @caps: PHY capabilities
3831  * @fec_options: Link FEC options
3832  *
3833  * Convert PHY FEC capabilities to ice FEC mode
3834  */
ice_caps_to_fec_mode(u8 caps,u8 fec_options)3835 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3836 {
3837 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3838 		return ICE_FEC_AUTO;
3839 
3840 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3841 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3842 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3843 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3844 		return ICE_FEC_BASER;
3845 
3846 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3847 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3848 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3849 		return ICE_FEC_RS;
3850 
3851 	return ICE_FEC_NONE;
3852 }
3853 
3854 /**
3855  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3856  * @pi: port information structure
3857  * @cfg: PHY configuration data to set FC mode
3858  * @req_mode: FC mode to configure
3859  */
3860 int
ice_cfg_phy_fc(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fc_mode req_mode)3861 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3862 	       enum ice_fc_mode req_mode)
3863 {
3864 	struct ice_phy_cache_mode_data cache_data;
3865 	u8 pause_mask = 0x0;
3866 
3867 	if (!pi || !cfg)
3868 		return -EINVAL;
3869 
3870 	switch (req_mode) {
3871 	case ICE_FC_FULL:
3872 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3873 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3874 		break;
3875 	case ICE_FC_RX_PAUSE:
3876 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3877 		break;
3878 	case ICE_FC_TX_PAUSE:
3879 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3880 		break;
3881 	default:
3882 		break;
3883 	}
3884 
3885 	/* clear the old pause settings */
3886 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3887 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3888 
3889 	/* set the new capabilities */
3890 	cfg->caps |= pause_mask;
3891 
3892 	/* Cache user FC request */
3893 	cache_data.data.curr_user_fc_req = req_mode;
3894 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3895 
3896 	return 0;
3897 }
3898 
3899 /**
3900  * ice_set_fc
3901  * @pi: port information structure
3902  * @aq_failures: pointer to status code, specific to ice_set_fc routine
3903  * @ena_auto_link_update: enable automatic link update
3904  *
3905  * Set the requested flow control mode.
3906  */
3907 int
ice_set_fc(struct ice_port_info * pi,u8 * aq_failures,bool ena_auto_link_update)3908 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3909 {
3910 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3911 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3912 	struct ice_hw *hw;
3913 	int status;
3914 
3915 	if (!pi || !aq_failures)
3916 		return -EINVAL;
3917 
3918 	*aq_failures = 0;
3919 	hw = pi->hw;
3920 
3921 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3922 	if (!pcaps)
3923 		return -ENOMEM;
3924 
3925 	/* Get the current PHY config */
3926 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3927 				     pcaps, NULL);
3928 	if (status) {
3929 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3930 		goto out;
3931 	}
3932 
3933 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3934 
3935 	/* Configure the set PHY data */
3936 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3937 	if (status)
3938 		goto out;
3939 
3940 	/* If the capabilities have changed, then set the new config */
3941 	if (cfg.caps != pcaps->caps) {
3942 		int retry_count, retry_max = 10;
3943 
3944 		/* Auto restart link so settings take effect */
3945 		if (ena_auto_link_update)
3946 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3947 
3948 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3949 		if (status) {
3950 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3951 			goto out;
3952 		}
3953 
3954 		/* Update the link info
3955 		 * It sometimes takes a really long time for link to
3956 		 * come back from the atomic reset. Thus, we wait a
3957 		 * little bit.
3958 		 */
3959 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3960 			status = ice_update_link_info(pi);
3961 
3962 			if (!status)
3963 				break;
3964 
3965 			mdelay(100);
3966 		}
3967 
3968 		if (status)
3969 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3970 	}
3971 
3972 out:
3973 	return status;
3974 }
3975 
3976 /**
3977  * ice_phy_caps_equals_cfg
3978  * @phy_caps: PHY capabilities
3979  * @phy_cfg: PHY configuration
3980  *
3981  * Helper function to determine if PHY capabilities matches PHY
3982  * configuration
3983  */
3984 bool
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data * phy_caps,struct ice_aqc_set_phy_cfg_data * phy_cfg)3985 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3986 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3987 {
3988 	u8 caps_mask, cfg_mask;
3989 
3990 	if (!phy_caps || !phy_cfg)
3991 		return false;
3992 
3993 	/* These bits are not common between capabilities and configuration.
3994 	 * Do not use them to determine equality.
3995 	 */
3996 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3997 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3998 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3999 
4000 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
4001 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
4002 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
4003 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
4004 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
4005 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
4006 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
4007 		return false;
4008 
4009 	return true;
4010 }
4011 
4012 /**
4013  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
4014  * @pi: port information structure
4015  * @caps: PHY ability structure to copy date from
4016  * @cfg: PHY configuration structure to copy data to
4017  *
4018  * Helper function to copy AQC PHY get ability data to PHY set configuration
4019  * data structure
4020  */
4021 void
ice_copy_phy_caps_to_cfg(struct ice_port_info * pi,struct ice_aqc_get_phy_caps_data * caps,struct ice_aqc_set_phy_cfg_data * cfg)4022 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
4023 			 struct ice_aqc_get_phy_caps_data *caps,
4024 			 struct ice_aqc_set_phy_cfg_data *cfg)
4025 {
4026 	if (!pi || !caps || !cfg)
4027 		return;
4028 
4029 	memset(cfg, 0, sizeof(*cfg));
4030 	cfg->phy_type_low = caps->phy_type_low;
4031 	cfg->phy_type_high = caps->phy_type_high;
4032 	cfg->caps = caps->caps;
4033 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
4034 	cfg->eee_cap = caps->eee_cap;
4035 	cfg->eeer_value = caps->eeer_value;
4036 	cfg->link_fec_opt = caps->link_fec_options;
4037 	cfg->module_compliance_enforcement =
4038 		caps->module_compliance_enforcement;
4039 }
4040 
4041 /**
4042  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
4043  * @pi: port information structure
4044  * @cfg: PHY configuration data to set FEC mode
4045  * @fec: FEC mode to configure
4046  */
4047 int
ice_cfg_phy_fec(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fec_mode fec)4048 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
4049 		enum ice_fec_mode fec)
4050 {
4051 	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
4052 	struct ice_hw *hw;
4053 	int status;
4054 
4055 	if (!pi || !cfg)
4056 		return -EINVAL;
4057 
4058 	hw = pi->hw;
4059 
4060 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
4061 	if (!pcaps)
4062 		return -ENOMEM;
4063 
4064 	status = ice_aq_get_phy_caps(pi, false,
4065 				     (ice_fw_supports_report_dflt_cfg(hw) ?
4066 				      ICE_AQC_REPORT_DFLT_CFG :
4067 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
4068 	if (status)
4069 		goto out;
4070 
4071 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
4072 	cfg->link_fec_opt = pcaps->link_fec_options;
4073 
4074 	switch (fec) {
4075 	case ICE_FEC_BASER:
4076 		/* Clear RS bits, and AND BASE-R ability
4077 		 * bits and OR request bits.
4078 		 */
4079 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
4080 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
4081 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
4082 			ICE_AQC_PHY_FEC_25G_KR_REQ;
4083 		break;
4084 	case ICE_FEC_RS:
4085 		/* Clear BASE-R bits, and AND RS ability
4086 		 * bits and OR request bits.
4087 		 */
4088 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
4089 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
4090 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
4091 		break;
4092 	case ICE_FEC_NONE:
4093 		/* Clear all FEC option bits. */
4094 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
4095 		break;
4096 	case ICE_FEC_AUTO:
4097 		/* AND auto FEC bit, and all caps bits. */
4098 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
4099 		cfg->link_fec_opt |= pcaps->link_fec_options;
4100 		break;
4101 	default:
4102 		status = -EINVAL;
4103 		break;
4104 	}
4105 
4106 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
4107 	    !ice_fw_supports_report_dflt_cfg(hw)) {
4108 		struct ice_link_default_override_tlv tlv = { 0 };
4109 
4110 		status = ice_get_link_default_override(&tlv, pi);
4111 		if (status)
4112 			goto out;
4113 
4114 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
4115 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
4116 			cfg->link_fec_opt = tlv.fec_options;
4117 	}
4118 
4119 out:
4120 	return status;
4121 }
4122 
4123 /**
4124  * ice_get_link_status - get status of the HW network link
4125  * @pi: port information structure
4126  * @link_up: pointer to bool (true/false = linkup/linkdown)
4127  *
4128  * Variable link_up is true if link is up, false if link is down.
4129  * The variable link_up is invalid if status is non zero. As a
4130  * result of this call, link status reporting becomes enabled
4131  */
ice_get_link_status(struct ice_port_info * pi,bool * link_up)4132 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
4133 {
4134 	struct ice_phy_info *phy_info;
4135 	int status = 0;
4136 
4137 	if (!pi || !link_up)
4138 		return -EINVAL;
4139 
4140 	phy_info = &pi->phy;
4141 
4142 	if (phy_info->get_link_info) {
4143 		status = ice_update_link_info(pi);
4144 
4145 		if (status)
4146 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
4147 				  status);
4148 	}
4149 
4150 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
4151 
4152 	return status;
4153 }
4154 
4155 /**
4156  * ice_aq_set_link_restart_an
4157  * @pi: pointer to the port information structure
4158  * @ena_link: if true: enable link, if false: disable link
4159  * @cd: pointer to command details structure or NULL
4160  *
4161  * Sets up the link and restarts the Auto-Negotiation over the link.
4162  */
4163 int
ice_aq_set_link_restart_an(struct ice_port_info * pi,bool ena_link,struct ice_sq_cd * cd)4164 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
4165 			   struct ice_sq_cd *cd)
4166 {
4167 	struct ice_aqc_restart_an *cmd;
4168 	struct libie_aq_desc desc;
4169 
4170 	cmd = libie_aq_raw(&desc);
4171 
4172 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
4173 
4174 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
4175 	cmd->lport_num = pi->lport;
4176 	if (ena_link)
4177 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
4178 	else
4179 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
4180 
4181 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
4182 }
4183 
4184 /**
4185  * ice_aq_set_event_mask
4186  * @hw: pointer to the HW struct
4187  * @port_num: port number of the physical function
4188  * @mask: event mask to be set
4189  * @cd: pointer to command details structure or NULL
4190  *
4191  * Set event mask (0x0613)
4192  */
4193 int
ice_aq_set_event_mask(struct ice_hw * hw,u8 port_num,u16 mask,struct ice_sq_cd * cd)4194 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
4195 		      struct ice_sq_cd *cd)
4196 {
4197 	struct ice_aqc_set_event_mask *cmd;
4198 	struct libie_aq_desc desc;
4199 
4200 	cmd = libie_aq_raw(&desc);
4201 
4202 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
4203 
4204 	cmd->lport_num = port_num;
4205 
4206 	cmd->event_mask = cpu_to_le16(mask);
4207 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4208 }
4209 
4210 /**
4211  * ice_aq_set_mac_loopback
4212  * @hw: pointer to the HW struct
4213  * @ena_lpbk: Enable or Disable loopback
4214  * @cd: pointer to command details structure or NULL
4215  *
4216  * Enable/disable loopback on a given port
4217  */
4218 int
ice_aq_set_mac_loopback(struct ice_hw * hw,bool ena_lpbk,struct ice_sq_cd * cd)4219 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
4220 {
4221 	struct ice_aqc_set_mac_lb *cmd;
4222 	struct libie_aq_desc desc;
4223 
4224 	cmd = libie_aq_raw(&desc);
4225 
4226 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
4227 	if (ena_lpbk)
4228 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
4229 
4230 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4231 }
4232 
4233 /**
4234  * ice_aq_set_port_id_led
4235  * @pi: pointer to the port information
4236  * @is_orig_mode: is this LED set to original mode (by the net-list)
4237  * @cd: pointer to command details structure or NULL
4238  *
4239  * Set LED value for the given port (0x06e9)
4240  */
4241 int
ice_aq_set_port_id_led(struct ice_port_info * pi,bool is_orig_mode,struct ice_sq_cd * cd)4242 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
4243 		       struct ice_sq_cd *cd)
4244 {
4245 	struct ice_aqc_set_port_id_led *cmd;
4246 	struct ice_hw *hw = pi->hw;
4247 	struct libie_aq_desc desc;
4248 
4249 	cmd = libie_aq_raw(&desc);
4250 
4251 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
4252 
4253 	if (is_orig_mode)
4254 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
4255 	else
4256 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
4257 
4258 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4259 }
4260 
4261 /**
4262  * ice_aq_get_port_options
4263  * @hw: pointer to the HW struct
4264  * @options: buffer for the resultant port options
4265  * @option_count: input - size of the buffer in port options structures,
4266  *                output - number of returned port options
4267  * @lport: logical port to call the command with (optional)
4268  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4269  *               when PF owns more than 1 port it must be true
4270  * @active_option_idx: index of active port option in returned buffer
4271  * @active_option_valid: active option in returned buffer is valid
4272  * @pending_option_idx: index of pending port option in returned buffer
4273  * @pending_option_valid: pending option in returned buffer is valid
4274  *
4275  * Calls Get Port Options AQC (0x06ea) and verifies result.
4276  */
4277 int
ice_aq_get_port_options(struct ice_hw * hw,struct ice_aqc_get_port_options_elem * options,u8 * option_count,u8 lport,bool lport_valid,u8 * active_option_idx,bool * active_option_valid,u8 * pending_option_idx,bool * pending_option_valid)4278 ice_aq_get_port_options(struct ice_hw *hw,
4279 			struct ice_aqc_get_port_options_elem *options,
4280 			u8 *option_count, u8 lport, bool lport_valid,
4281 			u8 *active_option_idx, bool *active_option_valid,
4282 			u8 *pending_option_idx, bool *pending_option_valid)
4283 {
4284 	struct ice_aqc_get_port_options *cmd;
4285 	struct libie_aq_desc desc;
4286 	int status;
4287 	u8 i;
4288 
4289 	/* options buffer shall be able to hold max returned options */
4290 	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
4291 		return -EINVAL;
4292 
4293 	cmd = libie_aq_raw(&desc);
4294 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
4295 
4296 	if (lport_valid)
4297 		cmd->lport_num = lport;
4298 	cmd->lport_num_valid = lport_valid;
4299 
4300 	status = ice_aq_send_cmd(hw, &desc, options,
4301 				 *option_count * sizeof(*options), NULL);
4302 	if (status)
4303 		return status;
4304 
4305 	/* verify direct FW response & set output parameters */
4306 	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
4307 				  cmd->port_options_count);
4308 	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4309 	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4310 					 cmd->port_options);
4311 	if (*active_option_valid) {
4312 		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4313 					       cmd->port_options);
4314 		if (*active_option_idx > (*option_count - 1))
4315 			return -EIO;
4316 		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4317 			  *active_option_idx);
4318 	}
4319 
4320 	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4321 					  cmd->pending_port_option_status);
4322 	if (*pending_option_valid) {
4323 		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4324 						cmd->pending_port_option_status);
4325 		if (*pending_option_idx > (*option_count - 1))
4326 			return -EIO;
4327 		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4328 			  *pending_option_idx);
4329 	}
4330 
4331 	/* mask output options fields */
4332 	for (i = 0; i < *option_count; i++) {
4333 		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4334 					   options[i].pmd);
4335 		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4336 						      options[i].max_lane_speed);
4337 		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4338 			  options[i].pmd, options[i].max_lane_speed);
4339 	}
4340 
4341 	return 0;
4342 }
4343 
4344 /**
4345  * ice_aq_set_port_option
4346  * @hw: pointer to the HW struct
4347  * @lport: logical port to call the command with
4348  * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4349  *               when PF owns more than 1 port it must be true
4350  * @new_option: new port option to be written
4351  *
4352  * Calls Set Port Options AQC (0x06eb).
4353  */
4354 int
ice_aq_set_port_option(struct ice_hw * hw,u8 lport,u8 lport_valid,u8 new_option)4355 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4356 		       u8 new_option)
4357 {
4358 	struct ice_aqc_set_port_option *cmd;
4359 	struct libie_aq_desc desc;
4360 
4361 	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4362 		return -EINVAL;
4363 
4364 	cmd = libie_aq_raw(&desc);
4365 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4366 
4367 	if (lport_valid)
4368 		cmd->lport_num = lport;
4369 
4370 	cmd->lport_num_valid = lport_valid;
4371 	cmd->selected_port_option = new_option;
4372 
4373 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4374 }
4375 
4376 /**
4377  * ice_get_phy_lane_number - Get PHY lane number for current adapter
4378  * @hw: pointer to the hw struct
4379  *
4380  * Return: PHY lane number on success, negative error code otherwise.
4381  */
ice_get_phy_lane_number(struct ice_hw * hw)4382 int ice_get_phy_lane_number(struct ice_hw *hw)
4383 {
4384 	struct ice_aqc_get_port_options_elem *options;
4385 	unsigned int lport = 0;
4386 	unsigned int lane;
4387 	int err;
4388 
4389 	/* E82X does not have sequential IDs, lane number is PF ID.
4390 	 * For E825 device, the exception is the variant with external
4391 	 * PHY (0x579F), in which there is also 1:1 pf_id -> lane_number
4392 	 * mapping.
4393 	 */
4394 	if (hw->mac_type == ICE_MAC_GENERIC ||
4395 	    hw->device_id == ICE_DEV_ID_E825C_SGMII)
4396 		return hw->pf_id;
4397 
4398 	options = kcalloc(ICE_AQC_PORT_OPT_MAX, sizeof(*options), GFP_KERNEL);
4399 	if (!options)
4400 		return -ENOMEM;
4401 
4402 	for (lane = 0; lane < ICE_MAX_PORT_PER_PCI_DEV; lane++) {
4403 		u8 options_count = ICE_AQC_PORT_OPT_MAX;
4404 		u8 speed, active_idx, pending_idx;
4405 		bool active_valid, pending_valid;
4406 
4407 		err = ice_aq_get_port_options(hw, options, &options_count, lane,
4408 					      true, &active_idx, &active_valid,
4409 					      &pending_idx, &pending_valid);
4410 		if (err)
4411 			goto err;
4412 
4413 		if (!active_valid)
4414 			continue;
4415 
4416 		speed = options[active_idx].max_lane_speed;
4417 		/* If we don't get speed for this lane, it's unoccupied */
4418 		if (speed > ICE_AQC_PORT_OPT_MAX_LANE_40G)
4419 			continue;
4420 
4421 		if (hw->pf_id == lport) {
4422 			if (hw->mac_type == ICE_MAC_GENERIC_3K_E825 &&
4423 			    ice_is_dual(hw) && !ice_is_primary(hw))
4424 				lane += ICE_PORTS_PER_QUAD;
4425 			kfree(options);
4426 			return lane;
4427 		}
4428 		lport++;
4429 	}
4430 
4431 	/* PHY lane not found */
4432 	err = -ENXIO;
4433 err:
4434 	kfree(options);
4435 	return err;
4436 }
4437 
4438 /**
4439  * ice_aq_sff_eeprom
4440  * @hw: pointer to the HW struct
4441  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4442  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4443  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4444  * @page: QSFP page
4445  * @set_page: set or ignore the page
4446  * @data: pointer to data buffer to be read/written to the I2C device.
4447  * @length: 1-16 for read, 1 for write.
4448  * @write: 0 read, 1 for write.
4449  * @cd: pointer to command details structure or NULL
4450  *
4451  * Read/Write SFF EEPROM (0x06EE)
4452  */
4453 int
ice_aq_sff_eeprom(struct ice_hw * hw,u16 lport,u8 bus_addr,u16 mem_addr,u8 page,u8 set_page,u8 * data,u8 length,bool write,struct ice_sq_cd * cd)4454 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4455 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4456 		  bool write, struct ice_sq_cd *cd)
4457 {
4458 	struct ice_aqc_sff_eeprom *cmd;
4459 	struct libie_aq_desc desc;
4460 	u16 i2c_bus_addr;
4461 	int status;
4462 
4463 	if (!data || (mem_addr & 0xff00))
4464 		return -EINVAL;
4465 
4466 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4467 	cmd = libie_aq_raw(&desc);
4468 	desc.flags = cpu_to_le16(LIBIE_AQ_FLAG_RD);
4469 	cmd->lport_num = (u8)(lport & 0xff);
4470 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4471 	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4472 		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4473 	if (write)
4474 		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4475 	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4476 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4477 	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4478 
4479 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4480 	return status;
4481 }
4482 
ice_lut_type_to_size(enum ice_lut_type type)4483 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4484 {
4485 	switch (type) {
4486 	case ICE_LUT_VSI:
4487 		return ICE_LUT_VSI_SIZE;
4488 	case ICE_LUT_GLOBAL:
4489 		return ICE_LUT_GLOBAL_SIZE;
4490 	case ICE_LUT_PF:
4491 		return ICE_LUT_PF_SIZE;
4492 	}
4493 	WARN_ONCE(1, "incorrect type passed");
4494 	return ICE_LUT_VSI_SIZE;
4495 }
4496 
ice_lut_size_to_flag(enum ice_lut_size size)4497 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4498 {
4499 	switch (size) {
4500 	case ICE_LUT_VSI_SIZE:
4501 		return ICE_AQC_LUT_SIZE_SMALL;
4502 	case ICE_LUT_GLOBAL_SIZE:
4503 		return ICE_AQC_LUT_SIZE_512;
4504 	case ICE_LUT_PF_SIZE:
4505 		return ICE_AQC_LUT_SIZE_2K;
4506 	}
4507 	WARN_ONCE(1, "incorrect size passed");
4508 	return 0;
4509 }
4510 
4511 /**
4512  * __ice_aq_get_set_rss_lut
4513  * @hw: pointer to the hardware structure
4514  * @params: RSS LUT parameters
4515  * @set: set true to set the table, false to get the table
4516  *
4517  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4518  */
4519 static int
__ice_aq_get_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * params,bool set)4520 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4521 			 struct ice_aq_get_set_rss_lut_params *params, bool set)
4522 {
4523 	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4524 	enum ice_lut_type lut_type = params->lut_type;
4525 	struct ice_aqc_get_set_rss_lut *desc_params;
4526 	enum ice_aqc_lut_flags flags;
4527 	enum ice_lut_size lut_size;
4528 	struct libie_aq_desc desc;
4529 	u8 *lut = params->lut;
4530 
4531 
4532 	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4533 		return -EINVAL;
4534 
4535 	lut_size = ice_lut_type_to_size(lut_type);
4536 	if (lut_size > params->lut_size)
4537 		return -EINVAL;
4538 	else if (set && lut_size != params->lut_size)
4539 		return -EINVAL;
4540 
4541 	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4542 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4543 	if (set)
4544 		desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4545 
4546 	desc_params = libie_aq_raw(&desc);
4547 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4548 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4549 
4550 	if (lut_type == ICE_LUT_GLOBAL)
4551 		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4552 					  params->global_lut_id);
4553 
4554 	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4555 	desc_params->flags = cpu_to_le16(flags);
4556 
4557 	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4558 }
4559 
4560 /**
4561  * ice_aq_get_rss_lut
4562  * @hw: pointer to the hardware structure
4563  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4564  *
4565  * get the RSS lookup table, PF or VSI type
4566  */
4567 int
ice_aq_get_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * get_params)4568 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4569 {
4570 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4571 }
4572 
4573 /**
4574  * ice_aq_set_rss_lut
4575  * @hw: pointer to the hardware structure
4576  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4577  *
4578  * set the RSS lookup table, PF or VSI type
4579  */
4580 int
ice_aq_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * set_params)4581 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4582 {
4583 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4584 }
4585 
4586 /**
4587  * __ice_aq_get_set_rss_key
4588  * @hw: pointer to the HW struct
4589  * @vsi_id: VSI FW index
4590  * @key: pointer to key info struct
4591  * @set: set true to set the key, false to get the key
4592  *
4593  * get (0x0B04) or set (0x0B02) the RSS key per VSI
4594  */
4595 static int
__ice_aq_get_set_rss_key(struct ice_hw * hw,u16 vsi_id,struct ice_aqc_get_set_rss_keys * key,bool set)4596 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4597 			 struct ice_aqc_get_set_rss_keys *key, bool set)
4598 {
4599 	struct ice_aqc_get_set_rss_key *desc_params;
4600 	u16 key_size = sizeof(*key);
4601 	struct libie_aq_desc desc;
4602 
4603 	if (set) {
4604 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4605 		desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4606 	} else {
4607 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4608 	}
4609 
4610 	desc_params = libie_aq_raw(&desc);
4611 	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4612 
4613 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4614 }
4615 
4616 /**
4617  * ice_aq_get_rss_key
4618  * @hw: pointer to the HW struct
4619  * @vsi_handle: software VSI handle
4620  * @key: pointer to key info struct
4621  *
4622  * get the RSS key per VSI
4623  */
4624 int
ice_aq_get_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * key)4625 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4626 		   struct ice_aqc_get_set_rss_keys *key)
4627 {
4628 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4629 		return -EINVAL;
4630 
4631 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4632 					key, false);
4633 }
4634 
4635 /**
4636  * ice_aq_set_rss_key
4637  * @hw: pointer to the HW struct
4638  * @vsi_handle: software VSI handle
4639  * @keys: pointer to key info struct
4640  *
4641  * set the RSS key per VSI
4642  */
4643 int
ice_aq_set_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * keys)4644 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4645 		   struct ice_aqc_get_set_rss_keys *keys)
4646 {
4647 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4648 		return -EINVAL;
4649 
4650 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4651 					keys, true);
4652 }
4653 
4654 /**
4655  * ice_aq_add_lan_txq
4656  * @hw: pointer to the hardware structure
4657  * @num_qgrps: Number of added queue groups
4658  * @qg_list: list of queue groups to be added
4659  * @buf_size: size of buffer for indirect command
4660  * @cd: pointer to command details structure or NULL
4661  *
4662  * Add Tx LAN queue (0x0C30)
4663  *
4664  * NOTE:
4665  * Prior to calling add Tx LAN queue:
4666  * Initialize the following as part of the Tx queue context:
4667  * Completion queue ID if the queue uses Completion queue, Quanta profile,
4668  * Cache profile and Packet shaper profile.
4669  *
4670  * After add Tx LAN queue AQ command is completed:
4671  * Interrupts should be associated with specific queues,
4672  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4673  * flow.
4674  */
4675 static int
ice_aq_add_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * qg_list,u16 buf_size,struct ice_sq_cd * cd)4676 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4677 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4678 		   struct ice_sq_cd *cd)
4679 {
4680 	struct ice_aqc_add_tx_qgrp *list;
4681 	struct ice_aqc_add_txqs *cmd;
4682 	struct libie_aq_desc desc;
4683 	u16 i, sum_size = 0;
4684 
4685 	cmd = libie_aq_raw(&desc);
4686 
4687 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4688 
4689 	if (!qg_list)
4690 		return -EINVAL;
4691 
4692 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4693 		return -EINVAL;
4694 
4695 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4696 		sum_size += struct_size(list, txqs, list->num_txqs);
4697 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4698 						      list->num_txqs);
4699 	}
4700 
4701 	if (buf_size != sum_size)
4702 		return -EINVAL;
4703 
4704 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4705 
4706 	cmd->num_qgrps = num_qgrps;
4707 
4708 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4709 }
4710 
4711 /**
4712  * ice_aq_dis_lan_txq
4713  * @hw: pointer to the hardware structure
4714  * @num_qgrps: number of groups in the list
4715  * @qg_list: the list of groups to disable
4716  * @buf_size: the total size of the qg_list buffer in bytes
4717  * @rst_src: if called due to reset, specifies the reset source
4718  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4719  * @cd: pointer to command details structure or NULL
4720  *
4721  * Disable LAN Tx queue (0x0C31)
4722  */
4723 static int
ice_aq_dis_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_dis_txq_item * qg_list,u16 buf_size,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4724 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4725 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4726 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4727 		   struct ice_sq_cd *cd)
4728 {
4729 	struct ice_aqc_dis_txq_item *item;
4730 	struct ice_aqc_dis_txqs *cmd;
4731 	struct libie_aq_desc desc;
4732 	u16 vmvf_and_timeout;
4733 	u16 i, sz = 0;
4734 	int status;
4735 
4736 	cmd = libie_aq_raw(&desc);
4737 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4738 
4739 	/* qg_list can be NULL only in VM/VF reset flow */
4740 	if (!qg_list && !rst_src)
4741 		return -EINVAL;
4742 
4743 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4744 		return -EINVAL;
4745 
4746 	cmd->num_entries = num_qgrps;
4747 
4748 	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4749 
4750 	switch (rst_src) {
4751 	case ICE_VM_RESET:
4752 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4753 		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4754 		break;
4755 	case ICE_VF_RESET:
4756 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4757 		/* In this case, FW expects vmvf_num to be absolute VF ID */
4758 		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4759 				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4760 		break;
4761 	case ICE_NO_RESET:
4762 	default:
4763 		break;
4764 	}
4765 
4766 	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4767 
4768 	/* flush pipe on time out */
4769 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4770 	/* If no queue group info, we are in a reset flow. Issue the AQ */
4771 	if (!qg_list)
4772 		goto do_aq;
4773 
4774 	/* set RD bit to indicate that command buffer is provided by the driver
4775 	 * and it needs to be read by the firmware
4776 	 */
4777 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4778 
4779 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4780 		u16 item_size = struct_size(item, q_id, item->num_qs);
4781 
4782 		/* If the num of queues is even, add 2 bytes of padding */
4783 		if ((item->num_qs % 2) == 0)
4784 			item_size += 2;
4785 
4786 		sz += item_size;
4787 
4788 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4789 	}
4790 
4791 	if (buf_size != sz)
4792 		return -EINVAL;
4793 
4794 do_aq:
4795 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4796 	if (status) {
4797 		if (!qg_list)
4798 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4799 				  vmvf_num, hw->adminq.sq_last_status);
4800 		else
4801 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4802 				  le16_to_cpu(qg_list[0].q_id[0]),
4803 				  hw->adminq.sq_last_status);
4804 	}
4805 	return status;
4806 }
4807 
4808 /**
4809  * ice_aq_cfg_lan_txq - send AQ command 0x0C32 to FW
4810  * @hw: pointer to the hardware structure
4811  * @buf: buffer for command
4812  * @buf_size: size of buffer in bytes
4813  * @num_qs: number of queues being configured
4814  * @oldport: origination lport
4815  * @newport: destination lport
4816  * @mode: cmd_type for move to use
4817  * @cd: pointer to command details structure or NULL
4818  *
4819  * Move/Configure LAN Tx queue (0x0C32)
4820  *
4821  * Return: Zero on success, associated error code on failure.
4822  */
4823 int
ice_aq_cfg_lan_txq(struct ice_hw * hw,struct ice_aqc_cfg_txqs_buf * buf,u16 buf_size,u16 num_qs,u8 oldport,u8 newport,u8 mode,struct ice_sq_cd * cd)4824 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4825 		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4826 		   u8 mode, struct ice_sq_cd *cd)
4827 {
4828 	struct ice_aqc_cfg_txqs *cmd;
4829 	struct libie_aq_desc desc;
4830 	int status;
4831 
4832 	cmd = libie_aq_raw(&desc);
4833 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4834 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4835 
4836 	if (!buf)
4837 		return -EINVAL;
4838 
4839 	cmd->cmd_type = mode;
4840 	cmd->num_qs = num_qs;
4841 	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4842 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4843 	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_MODE_M,
4844 					 ICE_AQC_Q_CFG_MODE_KEEP_OWN);
4845 	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4846 	cmd->blocked_cgds = 0;
4847 
4848 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4849 	if (status)
4850 		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4851 			  hw->adminq.sq_last_status);
4852 	return status;
4853 }
4854 
4855 /**
4856  * ice_aq_add_rdma_qsets
4857  * @hw: pointer to the hardware structure
4858  * @num_qset_grps: Number of RDMA Qset groups
4859  * @qset_list: list of Qset groups to be added
4860  * @buf_size: size of buffer for indirect command
4861  * @cd: pointer to command details structure or NULL
4862  *
4863  * Add Tx RDMA Qsets (0x0C33)
4864  */
4865 static int
ice_aq_add_rdma_qsets(struct ice_hw * hw,u8 num_qset_grps,struct ice_aqc_add_rdma_qset_data * qset_list,u16 buf_size,struct ice_sq_cd * cd)4866 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4867 		      struct ice_aqc_add_rdma_qset_data *qset_list,
4868 		      u16 buf_size, struct ice_sq_cd *cd)
4869 {
4870 	struct ice_aqc_add_rdma_qset_data *list;
4871 	struct ice_aqc_add_rdma_qset *cmd;
4872 	struct libie_aq_desc desc;
4873 	u16 i, sum_size = 0;
4874 
4875 	cmd = libie_aq_raw(&desc);
4876 
4877 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4878 
4879 	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4880 		return -EINVAL;
4881 
4882 	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4883 		u16 num_qsets = le16_to_cpu(list->num_qsets);
4884 
4885 		sum_size += struct_size(list, rdma_qsets, num_qsets);
4886 		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4887 							     num_qsets);
4888 	}
4889 
4890 	if (buf_size != sum_size)
4891 		return -EINVAL;
4892 
4893 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4894 
4895 	cmd->num_qset_grps = num_qset_grps;
4896 
4897 	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4898 }
4899 
4900 /**
4901  * ice_aq_set_txtimeq - set Tx time queues
4902  * @hw: pointer to the hardware structure
4903  * @txtimeq: first Tx time queue id to configure
4904  * @q_count: number of queues to configure
4905  * @txtime_qg: queue group to be set
4906  * @buf_size: size of buffer for indirect command
4907  * @cd: pointer to command details structure or NULL
4908  *
4909  * Set Tx Time queue (0x0C35)
4910  * Return: 0 on success or negative value on failure.
4911  */
4912 int
ice_aq_set_txtimeq(struct ice_hw * hw,u16 txtimeq,u8 q_count,struct ice_aqc_set_txtime_qgrp * txtime_qg,u16 buf_size,struct ice_sq_cd * cd)4913 ice_aq_set_txtimeq(struct ice_hw *hw, u16 txtimeq, u8 q_count,
4914 		   struct ice_aqc_set_txtime_qgrp *txtime_qg, u16 buf_size,
4915 		   struct ice_sq_cd *cd)
4916 {
4917 	struct ice_aqc_set_txtimeqs *cmd;
4918 	struct libie_aq_desc desc;
4919 	u16 size;
4920 
4921 	if (!txtime_qg || txtimeq > ICE_TXTIME_MAX_QUEUE ||
4922 	    q_count < 1 || q_count > ICE_SET_TXTIME_MAX_Q_AMOUNT)
4923 		return -EINVAL;
4924 
4925 	size = struct_size(txtime_qg, txtimeqs, q_count);
4926 	if (buf_size != size)
4927 		return -EINVAL;
4928 
4929 	cmd = libie_aq_raw(&desc);
4930 
4931 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_txtimeqs);
4932 
4933 	desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4934 
4935 	cmd->q_id = cpu_to_le16(txtimeq);
4936 	cmd->q_amount = cpu_to_le16(q_count);
4937 	return ice_aq_send_cmd(hw, &desc, txtime_qg, buf_size, cd);
4938 }
4939 
4940 /* End of FW Admin Queue command wrappers */
4941 
4942 /**
4943  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4944  * @hw: pointer to the HW struct
4945  * @vsi_handle: software VSI handle
4946  * @tc: TC number
4947  * @q_handle: software queue handle
4948  */
4949 struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 q_handle)4950 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4951 {
4952 	struct ice_vsi_ctx *vsi;
4953 	struct ice_q_ctx *q_ctx;
4954 
4955 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4956 	if (!vsi)
4957 		return NULL;
4958 	if (q_handle >= vsi->num_lan_q_entries[tc])
4959 		return NULL;
4960 	if (!vsi->lan_q_ctx[tc])
4961 		return NULL;
4962 	q_ctx = vsi->lan_q_ctx[tc];
4963 	return &q_ctx[q_handle];
4964 }
4965 
4966 /**
4967  * ice_ena_vsi_txq
4968  * @pi: port information structure
4969  * @vsi_handle: software VSI handle
4970  * @tc: TC number
4971  * @q_handle: software queue handle
4972  * @num_qgrps: Number of added queue groups
4973  * @buf: list of queue groups to be added
4974  * @buf_size: size of buffer for indirect command
4975  * @cd: pointer to command details structure or NULL
4976  *
4977  * This function adds one LAN queue
4978  */
4979 int
ice_ena_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * buf,u16 buf_size,struct ice_sq_cd * cd)4980 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4981 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4982 		struct ice_sq_cd *cd)
4983 {
4984 	struct ice_aqc_txsched_elem_data node = { 0 };
4985 	struct ice_sched_node *parent;
4986 	struct ice_q_ctx *q_ctx;
4987 	struct ice_hw *hw;
4988 	int status;
4989 
4990 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4991 		return -EIO;
4992 
4993 	if (num_qgrps > 1 || buf->num_txqs > 1)
4994 		return -ENOSPC;
4995 
4996 	hw = pi->hw;
4997 
4998 	if (!ice_is_vsi_valid(hw, vsi_handle))
4999 		return -EINVAL;
5000 
5001 	mutex_lock(&pi->sched_lock);
5002 
5003 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
5004 	if (!q_ctx) {
5005 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
5006 			  q_handle);
5007 		status = -EINVAL;
5008 		goto ena_txq_exit;
5009 	}
5010 
5011 	/* find a parent node */
5012 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5013 					    ICE_SCHED_NODE_OWNER_LAN);
5014 	if (!parent) {
5015 		status = -EINVAL;
5016 		goto ena_txq_exit;
5017 	}
5018 
5019 	buf->parent_teid = parent->info.node_teid;
5020 	node.parent_teid = parent->info.node_teid;
5021 	/* Mark that the values in the "generic" section as valid. The default
5022 	 * value in the "generic" section is zero. This means that :
5023 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
5024 	 * - 0 priority among siblings, indicated by Bit 1-3.
5025 	 * - WFQ, indicated by Bit 4.
5026 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
5027 	 * Bit 5-6.
5028 	 * - Bit 7 is reserved.
5029 	 * Without setting the generic section as valid in valid_sections, the
5030 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
5031 	 */
5032 	buf->txqs[0].info.valid_sections =
5033 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5034 		ICE_AQC_ELEM_VALID_EIR;
5035 	buf->txqs[0].info.generic = 0;
5036 	buf->txqs[0].info.cir_bw.bw_profile_idx =
5037 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5038 	buf->txqs[0].info.cir_bw.bw_alloc =
5039 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5040 	buf->txqs[0].info.eir_bw.bw_profile_idx =
5041 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5042 	buf->txqs[0].info.eir_bw.bw_alloc =
5043 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5044 
5045 	/* add the LAN queue */
5046 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
5047 	if (status) {
5048 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
5049 			  le16_to_cpu(buf->txqs[0].txq_id),
5050 			  hw->adminq.sq_last_status);
5051 		goto ena_txq_exit;
5052 	}
5053 
5054 	node.node_teid = buf->txqs[0].q_teid;
5055 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5056 	q_ctx->q_handle = q_handle;
5057 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
5058 
5059 	/* add a leaf node into scheduler tree queue layer */
5060 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
5061 	if (!status)
5062 		status = ice_sched_replay_q_bw(pi, q_ctx);
5063 
5064 ena_txq_exit:
5065 	mutex_unlock(&pi->sched_lock);
5066 	return status;
5067 }
5068 
5069 /**
5070  * ice_dis_vsi_txq
5071  * @pi: port information structure
5072  * @vsi_handle: software VSI handle
5073  * @tc: TC number
5074  * @num_queues: number of queues
5075  * @q_handles: pointer to software queue handle array
5076  * @q_ids: pointer to the q_id array
5077  * @q_teids: pointer to queue node teids
5078  * @rst_src: if called due to reset, specifies the reset source
5079  * @vmvf_num: the relative VM or VF number that is undergoing the reset
5080  * @cd: pointer to command details structure or NULL
5081  *
5082  * This function removes queues and their corresponding nodes in SW DB
5083  */
5084 int
ice_dis_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 num_queues,u16 * q_handles,u16 * q_ids,u32 * q_teids,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)5085 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
5086 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
5087 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
5088 		struct ice_sq_cd *cd)
5089 {
5090 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5091 	u16 i, buf_size = __struct_size(qg_list);
5092 	struct ice_q_ctx *q_ctx;
5093 	int status = -ENOENT;
5094 	struct ice_hw *hw;
5095 
5096 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5097 		return -EIO;
5098 
5099 	hw = pi->hw;
5100 
5101 	if (!num_queues) {
5102 		/* if queue is disabled already yet the disable queue command
5103 		 * has to be sent to complete the VF reset, then call
5104 		 * ice_aq_dis_lan_txq without any queue information
5105 		 */
5106 		if (rst_src)
5107 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
5108 						  vmvf_num, NULL);
5109 		return -EIO;
5110 	}
5111 
5112 	mutex_lock(&pi->sched_lock);
5113 
5114 	for (i = 0; i < num_queues; i++) {
5115 		struct ice_sched_node *node;
5116 
5117 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
5118 		if (!node)
5119 			continue;
5120 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
5121 		if (!q_ctx) {
5122 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
5123 				  q_handles[i]);
5124 			continue;
5125 		}
5126 		if (q_ctx->q_handle != q_handles[i]) {
5127 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
5128 				  q_ctx->q_handle, q_handles[i]);
5129 			continue;
5130 		}
5131 		qg_list->parent_teid = node->info.parent_teid;
5132 		qg_list->num_qs = 1;
5133 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
5134 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
5135 					    vmvf_num, cd);
5136 
5137 		if (status)
5138 			break;
5139 		ice_free_sched_node(pi, node);
5140 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5141 		q_ctx->q_teid = ICE_INVAL_TEID;
5142 	}
5143 	mutex_unlock(&pi->sched_lock);
5144 	return status;
5145 }
5146 
5147 /**
5148  * ice_cfg_vsi_qs - configure the new/existing VSI queues
5149  * @pi: port information structure
5150  * @vsi_handle: software VSI handle
5151  * @tc_bitmap: TC bitmap
5152  * @maxqs: max queues array per TC
5153  * @owner: LAN or RDMA
5154  *
5155  * This function adds/updates the VSI queues per TC.
5156  */
5157 static int
ice_cfg_vsi_qs(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * maxqs,u8 owner)5158 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5159 	       u16 *maxqs, u8 owner)
5160 {
5161 	int status = 0;
5162 	u8 i;
5163 
5164 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5165 		return -EIO;
5166 
5167 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5168 		return -EINVAL;
5169 
5170 	mutex_lock(&pi->sched_lock);
5171 
5172 	ice_for_each_traffic_class(i) {
5173 		/* configuration is possible only if TC node is present */
5174 		if (!ice_sched_get_tc_node(pi, i))
5175 			continue;
5176 
5177 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5178 					   ice_is_tc_ena(tc_bitmap, i));
5179 		if (status)
5180 			break;
5181 	}
5182 
5183 	mutex_unlock(&pi->sched_lock);
5184 	return status;
5185 }
5186 
5187 /**
5188  * ice_cfg_vsi_lan - configure VSI LAN queues
5189  * @pi: port information structure
5190  * @vsi_handle: software VSI handle
5191  * @tc_bitmap: TC bitmap
5192  * @max_lanqs: max LAN queues array per TC
5193  *
5194  * This function adds/updates the VSI LAN queues per TC.
5195  */
5196 int
ice_cfg_vsi_lan(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * max_lanqs)5197 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5198 		u16 *max_lanqs)
5199 {
5200 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5201 			      ICE_SCHED_NODE_OWNER_LAN);
5202 }
5203 
5204 /**
5205  * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5206  * @pi: port information structure
5207  * @vsi_handle: software VSI handle
5208  * @tc_bitmap: TC bitmap
5209  * @max_rdmaqs: max RDMA queues array per TC
5210  *
5211  * This function adds/updates the VSI RDMA queues per TC.
5212  */
5213 int
ice_cfg_vsi_rdma(struct ice_port_info * pi,u16 vsi_handle,u16 tc_bitmap,u16 * max_rdmaqs)5214 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5215 		 u16 *max_rdmaqs)
5216 {
5217 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5218 			      ICE_SCHED_NODE_OWNER_RDMA);
5219 }
5220 
5221 /**
5222  * ice_ena_vsi_rdma_qset
5223  * @pi: port information structure
5224  * @vsi_handle: software VSI handle
5225  * @tc: TC number
5226  * @rdma_qset: pointer to RDMA Qset
5227  * @num_qsets: number of RDMA Qsets
5228  * @qset_teid: pointer to Qset node TEIDs
5229  *
5230  * This function adds RDMA Qset
5231  */
5232 int
ice_ena_vsi_rdma_qset(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 * rdma_qset,u16 num_qsets,u32 * qset_teid)5233 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5234 		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5235 {
5236 	struct ice_aqc_txsched_elem_data node = { 0 };
5237 	struct ice_aqc_add_rdma_qset_data *buf;
5238 	struct ice_sched_node *parent;
5239 	struct ice_hw *hw;
5240 	u16 i, buf_size;
5241 	int ret;
5242 
5243 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5244 		return -EIO;
5245 	hw = pi->hw;
5246 
5247 	if (!ice_is_vsi_valid(hw, vsi_handle))
5248 		return -EINVAL;
5249 
5250 	buf_size = struct_size(buf, rdma_qsets, num_qsets);
5251 	buf = kzalloc(buf_size, GFP_KERNEL);
5252 	if (!buf)
5253 		return -ENOMEM;
5254 	mutex_lock(&pi->sched_lock);
5255 
5256 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5257 					    ICE_SCHED_NODE_OWNER_RDMA);
5258 	if (!parent) {
5259 		ret = -EINVAL;
5260 		goto rdma_error_exit;
5261 	}
5262 	buf->parent_teid = parent->info.node_teid;
5263 	node.parent_teid = parent->info.node_teid;
5264 
5265 	buf->num_qsets = cpu_to_le16(num_qsets);
5266 	for (i = 0; i < num_qsets; i++) {
5267 		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5268 		buf->rdma_qsets[i].info.valid_sections =
5269 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5270 			ICE_AQC_ELEM_VALID_EIR;
5271 		buf->rdma_qsets[i].info.generic = 0;
5272 		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5273 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5274 		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5275 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5276 		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5277 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5278 		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5279 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5280 	}
5281 	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5282 	if (ret) {
5283 		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5284 		goto rdma_error_exit;
5285 	}
5286 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5287 	for (i = 0; i < num_qsets; i++) {
5288 		node.node_teid = buf->rdma_qsets[i].qset_teid;
5289 		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5290 					 &node, NULL);
5291 		if (ret)
5292 			break;
5293 		qset_teid[i] = le32_to_cpu(node.node_teid);
5294 	}
5295 rdma_error_exit:
5296 	mutex_unlock(&pi->sched_lock);
5297 	kfree(buf);
5298 	return ret;
5299 }
5300 
5301 /**
5302  * ice_dis_vsi_rdma_qset - free RDMA resources
5303  * @pi: port_info struct
5304  * @count: number of RDMA Qsets to free
5305  * @qset_teid: TEID of Qset node
5306  * @q_id: list of queue IDs being disabled
5307  */
5308 int
ice_dis_vsi_rdma_qset(struct ice_port_info * pi,u16 count,u32 * qset_teid,u16 * q_id)5309 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5310 		      u16 *q_id)
5311 {
5312 	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5313 	u16 qg_size = __struct_size(qg_list);
5314 	struct ice_hw *hw;
5315 	int status = 0;
5316 	int i;
5317 
5318 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5319 		return -EIO;
5320 
5321 	hw = pi->hw;
5322 
5323 	mutex_lock(&pi->sched_lock);
5324 
5325 	for (i = 0; i < count; i++) {
5326 		struct ice_sched_node *node;
5327 
5328 		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5329 		if (!node)
5330 			continue;
5331 
5332 		qg_list->parent_teid = node->info.parent_teid;
5333 		qg_list->num_qs = 1;
5334 		qg_list->q_id[0] =
5335 			cpu_to_le16(q_id[i] |
5336 				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5337 
5338 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5339 					    ICE_NO_RESET, 0, NULL);
5340 		if (status)
5341 			break;
5342 
5343 		ice_free_sched_node(pi, node);
5344 	}
5345 
5346 	mutex_unlock(&pi->sched_lock);
5347 	return status;
5348 }
5349 
5350 /**
5351  * ice_aq_get_cgu_input_pin_measure - get input pin signal measurements
5352  * @hw: pointer to the HW struct
5353  * @dpll_idx: index of dpll to be measured
5354  * @meas: array to be filled with results
5355  * @meas_num: max number of results array can hold
5356  *
5357  * Get CGU measurements (0x0C59) of phase and frequency offsets for input
5358  * pins on given dpll.
5359  *
5360  * Return: 0 on success or negative value on failure.
5361  */
ice_aq_get_cgu_input_pin_measure(struct ice_hw * hw,u8 dpll_idx,struct ice_cgu_input_measure * meas,u16 meas_num)5362 int ice_aq_get_cgu_input_pin_measure(struct ice_hw *hw, u8 dpll_idx,
5363 				     struct ice_cgu_input_measure *meas,
5364 				     u16 meas_num)
5365 {
5366 	struct ice_aqc_get_cgu_input_measure *cmd;
5367 	struct libie_aq_desc desc;
5368 
5369 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_measure);
5370 	cmd = libie_aq_raw(&desc);
5371 	cmd->dpll_idx_opt = dpll_idx & ICE_AQC_GET_CGU_IN_MEAS_DPLL_IDX_M;
5372 
5373 	return ice_aq_send_cmd(hw, &desc, meas, meas_num * sizeof(*meas), NULL);
5374 }
5375 
5376 /**
5377  * ice_aq_get_cgu_abilities - get cgu abilities
5378  * @hw: pointer to the HW struct
5379  * @abilities: CGU abilities
5380  *
5381  * Get CGU abilities (0x0C61)
5382  * Return: 0 on success or negative value on failure.
5383  */
5384 int
ice_aq_get_cgu_abilities(struct ice_hw * hw,struct ice_aqc_get_cgu_abilities * abilities)5385 ice_aq_get_cgu_abilities(struct ice_hw *hw,
5386 			 struct ice_aqc_get_cgu_abilities *abilities)
5387 {
5388 	struct libie_aq_desc desc;
5389 
5390 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5391 	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5392 }
5393 
5394 /**
5395  * ice_aq_set_input_pin_cfg - set input pin config
5396  * @hw: pointer to the HW struct
5397  * @input_idx: Input index
5398  * @flags1: Input flags
5399  * @flags2: Input flags
5400  * @freq: Frequency in Hz
5401  * @phase_delay: Delay in ps
5402  *
5403  * Set CGU input config (0x0C62)
5404  * Return: 0 on success or negative value on failure.
5405  */
5406 int
ice_aq_set_input_pin_cfg(struct ice_hw * hw,u8 input_idx,u8 flags1,u8 flags2,u32 freq,s32 phase_delay)5407 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5408 			 u32 freq, s32 phase_delay)
5409 {
5410 	struct ice_aqc_set_cgu_input_config *cmd;
5411 	struct libie_aq_desc desc;
5412 
5413 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5414 	cmd = libie_aq_raw(&desc);
5415 	cmd->input_idx = input_idx;
5416 	cmd->flags1 = flags1;
5417 	cmd->flags2 = flags2;
5418 	cmd->freq = cpu_to_le32(freq);
5419 	cmd->phase_delay = cpu_to_le32(phase_delay);
5420 
5421 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5422 }
5423 
5424 /**
5425  * ice_aq_get_input_pin_cfg - get input pin config
5426  * @hw: pointer to the HW struct
5427  * @input_idx: Input index
5428  * @status: Pin status
5429  * @type: Pin type
5430  * @flags1: Input flags
5431  * @flags2: Input flags
5432  * @freq: Frequency in Hz
5433  * @phase_delay: Delay in ps
5434  *
5435  * Get CGU input config (0x0C63)
5436  * Return: 0 on success or negative value on failure.
5437  */
5438 int
ice_aq_get_input_pin_cfg(struct ice_hw * hw,u8 input_idx,u8 * status,u8 * type,u8 * flags1,u8 * flags2,u32 * freq,s32 * phase_delay)5439 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5440 			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5441 {
5442 	struct ice_aqc_get_cgu_input_config *cmd;
5443 	struct libie_aq_desc desc;
5444 	int ret;
5445 
5446 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5447 	cmd = libie_aq_raw(&desc);
5448 	cmd->input_idx = input_idx;
5449 
5450 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5451 	if (!ret) {
5452 		if (status)
5453 			*status = cmd->status;
5454 		if (type)
5455 			*type = cmd->type;
5456 		if (flags1)
5457 			*flags1 = cmd->flags1;
5458 		if (flags2)
5459 			*flags2 = cmd->flags2;
5460 		if (freq)
5461 			*freq = le32_to_cpu(cmd->freq);
5462 		if (phase_delay)
5463 			*phase_delay = le32_to_cpu(cmd->phase_delay);
5464 	}
5465 
5466 	return ret;
5467 }
5468 
5469 /**
5470  * ice_aq_set_output_pin_cfg - set output pin config
5471  * @hw: pointer to the HW struct
5472  * @output_idx: Output index
5473  * @flags: Output flags
5474  * @src_sel: Index of DPLL block
5475  * @freq: Output frequency
5476  * @phase_delay: Output phase compensation
5477  *
5478  * Set CGU output config (0x0C64)
5479  * Return: 0 on success or negative value on failure.
5480  */
5481 int
ice_aq_set_output_pin_cfg(struct ice_hw * hw,u8 output_idx,u8 flags,u8 src_sel,u32 freq,s32 phase_delay)5482 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5483 			  u8 src_sel, u32 freq, s32 phase_delay)
5484 {
5485 	struct ice_aqc_set_cgu_output_config *cmd;
5486 	struct libie_aq_desc desc;
5487 
5488 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5489 	cmd = libie_aq_raw(&desc);
5490 	cmd->output_idx = output_idx;
5491 	cmd->flags = flags;
5492 	cmd->src_sel = src_sel;
5493 	cmd->freq = cpu_to_le32(freq);
5494 	cmd->phase_delay = cpu_to_le32(phase_delay);
5495 
5496 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5497 }
5498 
5499 /**
5500  * ice_aq_get_output_pin_cfg - get output pin config
5501  * @hw: pointer to the HW struct
5502  * @output_idx: Output index
5503  * @flags: Output flags
5504  * @src_sel: Internal DPLL source
5505  * @freq: Output frequency
5506  * @src_freq: Source frequency
5507  *
5508  * Get CGU output config (0x0C65)
5509  * Return: 0 on success or negative value on failure.
5510  */
5511 int
ice_aq_get_output_pin_cfg(struct ice_hw * hw,u8 output_idx,u8 * flags,u8 * src_sel,u32 * freq,u32 * src_freq)5512 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5513 			  u8 *src_sel, u32 *freq, u32 *src_freq)
5514 {
5515 	struct ice_aqc_get_cgu_output_config *cmd;
5516 	struct libie_aq_desc desc;
5517 	int ret;
5518 
5519 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5520 	cmd = libie_aq_raw(&desc);
5521 	cmd->output_idx = output_idx;
5522 
5523 	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5524 	if (!ret) {
5525 		if (flags)
5526 			*flags = cmd->flags;
5527 		if (src_sel)
5528 			*src_sel = cmd->src_sel;
5529 		if (freq)
5530 			*freq = le32_to_cpu(cmd->freq);
5531 		if (src_freq)
5532 			*src_freq = le32_to_cpu(cmd->src_freq);
5533 	}
5534 
5535 	return ret;
5536 }
5537 
5538 /**
5539  * ice_aq_get_cgu_dpll_status - get dpll status
5540  * @hw: pointer to the HW struct
5541  * @dpll_num: DPLL index
5542  * @ref_state: Reference clock state
5543  * @config: current DPLL config
5544  * @dpll_state: current DPLL state
5545  * @phase_offset: Phase offset in ns
5546  * @eec_mode: EEC_mode
5547  *
5548  * Get CGU DPLL status (0x0C66)
5549  * Return: 0 on success or negative value on failure.
5550  */
5551 int
ice_aq_get_cgu_dpll_status(struct ice_hw * hw,u8 dpll_num,u8 * ref_state,u8 * dpll_state,u8 * config,s64 * phase_offset,u8 * eec_mode)5552 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5553 			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5554 			   u8 *eec_mode)
5555 {
5556 	struct ice_aqc_get_cgu_dpll_status *cmd;
5557 	struct libie_aq_desc desc;
5558 	int status;
5559 
5560 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5561 	cmd = libie_aq_raw(&desc);
5562 	cmd->dpll_num = dpll_num;
5563 
5564 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5565 	if (!status) {
5566 		*ref_state = cmd->ref_state;
5567 		*dpll_state = cmd->dpll_state;
5568 		*config = cmd->config;
5569 		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5570 		*phase_offset <<= 32;
5571 		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5572 		*phase_offset = sign_extend64(*phase_offset, 47);
5573 		*eec_mode = cmd->eec_mode;
5574 	}
5575 
5576 	return status;
5577 }
5578 
5579 /**
5580  * ice_aq_set_cgu_dpll_config - set dpll config
5581  * @hw: pointer to the HW struct
5582  * @dpll_num: DPLL index
5583  * @ref_state: Reference clock state
5584  * @config: DPLL config
5585  * @eec_mode: EEC mode
5586  *
5587  * Set CGU DPLL config (0x0C67)
5588  * Return: 0 on success or negative value on failure.
5589  */
5590 int
ice_aq_set_cgu_dpll_config(struct ice_hw * hw,u8 dpll_num,u8 ref_state,u8 config,u8 eec_mode)5591 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5592 			   u8 config, u8 eec_mode)
5593 {
5594 	struct ice_aqc_set_cgu_dpll_config *cmd;
5595 	struct libie_aq_desc desc;
5596 
5597 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5598 	cmd = libie_aq_raw(&desc);
5599 	cmd->dpll_num = dpll_num;
5600 	cmd->ref_state = ref_state;
5601 	cmd->config = config;
5602 	cmd->eec_mode = eec_mode;
5603 
5604 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5605 }
5606 
5607 /**
5608  * ice_aq_set_cgu_ref_prio - set input reference priority
5609  * @hw: pointer to the HW struct
5610  * @dpll_num: DPLL index
5611  * @ref_idx: Reference pin index
5612  * @ref_priority: Reference input priority
5613  *
5614  * Set CGU reference priority (0x0C68)
5615  * Return: 0 on success or negative value on failure.
5616  */
5617 int
ice_aq_set_cgu_ref_prio(struct ice_hw * hw,u8 dpll_num,u8 ref_idx,u8 ref_priority)5618 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5619 			u8 ref_priority)
5620 {
5621 	struct ice_aqc_set_cgu_ref_prio *cmd;
5622 	struct libie_aq_desc desc;
5623 
5624 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5625 	cmd = libie_aq_raw(&desc);
5626 	cmd->dpll_num = dpll_num;
5627 	cmd->ref_idx = ref_idx;
5628 	cmd->ref_priority = ref_priority;
5629 
5630 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5631 }
5632 
5633 /**
5634  * ice_aq_get_cgu_ref_prio - get input reference priority
5635  * @hw: pointer to the HW struct
5636  * @dpll_num: DPLL index
5637  * @ref_idx: Reference pin index
5638  * @ref_prio: Reference input priority
5639  *
5640  * Get CGU reference priority (0x0C69)
5641  * Return: 0 on success or negative value on failure.
5642  */
5643 int
ice_aq_get_cgu_ref_prio(struct ice_hw * hw,u8 dpll_num,u8 ref_idx,u8 * ref_prio)5644 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5645 			u8 *ref_prio)
5646 {
5647 	struct ice_aqc_get_cgu_ref_prio *cmd;
5648 	struct libie_aq_desc desc;
5649 	int status;
5650 
5651 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5652 	cmd = libie_aq_raw(&desc);
5653 	cmd->dpll_num = dpll_num;
5654 	cmd->ref_idx = ref_idx;
5655 
5656 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5657 	if (!status)
5658 		*ref_prio = cmd->ref_priority;
5659 
5660 	return status;
5661 }
5662 
5663 /**
5664  * ice_aq_get_cgu_info - get cgu info
5665  * @hw: pointer to the HW struct
5666  * @cgu_id: CGU ID
5667  * @cgu_cfg_ver: CGU config version
5668  * @cgu_fw_ver: CGU firmware version
5669  *
5670  * Get CGU info (0x0C6A)
5671  * Return: 0 on success or negative value on failure.
5672  */
5673 int
ice_aq_get_cgu_info(struct ice_hw * hw,u32 * cgu_id,u32 * cgu_cfg_ver,u32 * cgu_fw_ver)5674 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5675 		    u32 *cgu_fw_ver)
5676 {
5677 	struct ice_aqc_get_cgu_info *cmd;
5678 	struct libie_aq_desc desc;
5679 	int status;
5680 
5681 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5682 	cmd = libie_aq_raw(&desc);
5683 
5684 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5685 	if (!status) {
5686 		*cgu_id = le32_to_cpu(cmd->cgu_id);
5687 		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5688 		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5689 	}
5690 
5691 	return status;
5692 }
5693 
5694 /**
5695  * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5696  * @hw: pointer to the HW struct
5697  * @phy_output: PHY reference clock output pin
5698  * @enable: GPIO state to be applied
5699  * @freq: PHY output frequency
5700  *
5701  * Set phy recovered clock as reference (0x0630)
5702  * Return: 0 on success or negative value on failure.
5703  */
5704 int
ice_aq_set_phy_rec_clk_out(struct ice_hw * hw,u8 phy_output,bool enable,u32 * freq)5705 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5706 			   u32 *freq)
5707 {
5708 	struct ice_aqc_set_phy_rec_clk_out *cmd;
5709 	struct libie_aq_desc desc;
5710 	int status;
5711 
5712 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5713 	cmd = libie_aq_raw(&desc);
5714 	cmd->phy_output = phy_output;
5715 	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5716 	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5717 	cmd->freq = cpu_to_le32(*freq);
5718 
5719 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5720 	if (!status)
5721 		*freq = le32_to_cpu(cmd->freq);
5722 
5723 	return status;
5724 }
5725 
5726 /**
5727  * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5728  * @hw: pointer to the HW struct
5729  * @phy_output: PHY reference clock output pin
5730  * @port_num: Port number
5731  * @flags: PHY flags
5732  * @node_handle: PHY output frequency
5733  *
5734  * Get PHY recovered clock output info (0x0631)
5735  * Return: 0 on success or negative value on failure.
5736  */
5737 int
ice_aq_get_phy_rec_clk_out(struct ice_hw * hw,u8 * phy_output,u8 * port_num,u8 * flags,u16 * node_handle)5738 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5739 			   u8 *flags, u16 *node_handle)
5740 {
5741 	struct ice_aqc_get_phy_rec_clk_out *cmd;
5742 	struct libie_aq_desc desc;
5743 	int status;
5744 
5745 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5746 	cmd = libie_aq_raw(&desc);
5747 	cmd->phy_output = *phy_output;
5748 
5749 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5750 	if (!status) {
5751 		*phy_output = cmd->phy_output;
5752 		if (port_num)
5753 			*port_num = cmd->port_num;
5754 		if (flags)
5755 			*flags = cmd->flags;
5756 		if (node_handle)
5757 			*node_handle = le16_to_cpu(cmd->node_handle);
5758 	}
5759 
5760 	return status;
5761 }
5762 
5763 /**
5764  * ice_aq_get_sensor_reading
5765  * @hw: pointer to the HW struct
5766  * @data: pointer to data to be read from the sensor
5767  *
5768  * Get sensor reading (0x0632)
5769  */
ice_aq_get_sensor_reading(struct ice_hw * hw,struct ice_aqc_get_sensor_reading_resp * data)5770 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5771 			      struct ice_aqc_get_sensor_reading_resp *data)
5772 {
5773 	struct ice_aqc_get_sensor_reading *cmd;
5774 	struct libie_aq_desc desc;
5775 	int status;
5776 
5777 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5778 	cmd = libie_aq_raw(&desc);
5779 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5780 #define ICE_INTERNAL_TEMP_SENSOR	0
5781 	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5782 	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5783 
5784 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5785 	if (!status)
5786 		memcpy(data, &desc.params.raw,
5787 		       sizeof(*data));
5788 
5789 	return status;
5790 }
5791 
5792 /**
5793  * ice_replay_pre_init - replay pre initialization
5794  * @hw: pointer to the HW struct
5795  *
5796  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5797  */
ice_replay_pre_init(struct ice_hw * hw)5798 static int ice_replay_pre_init(struct ice_hw *hw)
5799 {
5800 	struct ice_switch_info *sw = hw->switch_info;
5801 	u8 i;
5802 
5803 	/* Delete old entries from replay filter list head if there is any */
5804 	ice_rm_all_sw_replay_rule_info(hw);
5805 	/* In start of replay, move entries into replay_rules list, it
5806 	 * will allow adding rules entries back to filt_rules list,
5807 	 * which is operational list.
5808 	 */
5809 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5810 		list_replace_init(&sw->recp_list[i].filt_rules,
5811 				  &sw->recp_list[i].filt_replay_rules);
5812 	ice_sched_replay_agg_vsi_preinit(hw);
5813 
5814 	return 0;
5815 }
5816 
5817 /**
5818  * ice_replay_vsi - replay VSI configuration
5819  * @hw: pointer to the HW struct
5820  * @vsi_handle: driver VSI handle
5821  *
5822  * Restore all VSI configuration after reset. It is required to call this
5823  * function with main VSI first.
5824  */
ice_replay_vsi(struct ice_hw * hw,u16 vsi_handle)5825 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5826 {
5827 	int status;
5828 
5829 	if (!ice_is_vsi_valid(hw, vsi_handle))
5830 		return -EINVAL;
5831 
5832 	/* Replay pre-initialization if there is any */
5833 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5834 		status = ice_replay_pre_init(hw);
5835 		if (status)
5836 			return status;
5837 	}
5838 	/* Replay per VSI all RSS configurations */
5839 	status = ice_replay_rss_cfg(hw, vsi_handle);
5840 	if (status)
5841 		return status;
5842 	/* Replay per VSI all filters */
5843 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5844 	if (!status)
5845 		status = ice_replay_vsi_agg(hw, vsi_handle);
5846 	return status;
5847 }
5848 
5849 /**
5850  * ice_replay_post - post replay configuration cleanup
5851  * @hw: pointer to the HW struct
5852  *
5853  * Post replay cleanup.
5854  */
ice_replay_post(struct ice_hw * hw)5855 void ice_replay_post(struct ice_hw *hw)
5856 {
5857 	/* Delete old entries from replay filter list head */
5858 	ice_rm_all_sw_replay_rule_info(hw);
5859 	ice_sched_replay_agg(hw);
5860 }
5861 
5862 /**
5863  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5864  * @hw: ptr to the hardware info
5865  * @reg: offset of 64 bit HW register to read from
5866  * @prev_stat_loaded: bool to specify if previous stats are loaded
5867  * @prev_stat: ptr to previous loaded stat value
5868  * @cur_stat: ptr to current stat value
5869  */
5870 void
ice_stat_update40(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5871 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5872 		  u64 *prev_stat, u64 *cur_stat)
5873 {
5874 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5875 
5876 	/* device stats are not reset at PFR, they likely will not be zeroed
5877 	 * when the driver starts. Thus, save the value from the first read
5878 	 * without adding to the statistic value so that we report stats which
5879 	 * count up from zero.
5880 	 */
5881 	if (!prev_stat_loaded) {
5882 		*prev_stat = new_data;
5883 		return;
5884 	}
5885 
5886 	/* Calculate the difference between the new and old values, and then
5887 	 * add it to the software stat value.
5888 	 */
5889 	if (new_data >= *prev_stat)
5890 		*cur_stat += new_data - *prev_stat;
5891 	else
5892 		/* to manage the potential roll-over */
5893 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5894 
5895 	/* Update the previously stored value to prepare for next read */
5896 	*prev_stat = new_data;
5897 }
5898 
5899 /**
5900  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5901  * @hw: ptr to the hardware info
5902  * @reg: offset of HW register to read from
5903  * @prev_stat_loaded: bool to specify if previous stats are loaded
5904  * @prev_stat: ptr to previous loaded stat value
5905  * @cur_stat: ptr to current stat value
5906  */
5907 void
ice_stat_update32(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5908 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5909 		  u64 *prev_stat, u64 *cur_stat)
5910 {
5911 	u32 new_data;
5912 
5913 	new_data = rd32(hw, reg);
5914 
5915 	/* device stats are not reset at PFR, they likely will not be zeroed
5916 	 * when the driver starts. Thus, save the value from the first read
5917 	 * without adding to the statistic value so that we report stats which
5918 	 * count up from zero.
5919 	 */
5920 	if (!prev_stat_loaded) {
5921 		*prev_stat = new_data;
5922 		return;
5923 	}
5924 
5925 	/* Calculate the difference between the new and old values, and then
5926 	 * add it to the software stat value.
5927 	 */
5928 	if (new_data >= *prev_stat)
5929 		*cur_stat += new_data - *prev_stat;
5930 	else
5931 		/* to manage the potential roll-over */
5932 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5933 
5934 	/* Update the previously stored value to prepare for next read */
5935 	*prev_stat = new_data;
5936 }
5937 
5938 /**
5939  * ice_sched_query_elem - query element information from HW
5940  * @hw: pointer to the HW struct
5941  * @node_teid: node TEID to be queried
5942  * @buf: buffer to element information
5943  *
5944  * This function queries HW element information
5945  */
5946 int
ice_sched_query_elem(struct ice_hw * hw,u32 node_teid,struct ice_aqc_txsched_elem_data * buf)5947 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5948 		     struct ice_aqc_txsched_elem_data *buf)
5949 {
5950 	u16 buf_size, num_elem_ret = 0;
5951 	int status;
5952 
5953 	buf_size = sizeof(*buf);
5954 	memset(buf, 0, buf_size);
5955 	buf->node_teid = cpu_to_le32(node_teid);
5956 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5957 					  NULL);
5958 	if (status || num_elem_ret != 1)
5959 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5960 	return status;
5961 }
5962 
5963 /**
5964  * ice_aq_read_i2c
5965  * @hw: pointer to the hw struct
5966  * @topo_addr: topology address for a device to communicate with
5967  * @bus_addr: 7-bit I2C bus address
5968  * @addr: I2C memory address (I2C offset) with up to 16 bits
5969  * @params: I2C parameters: bit [7] - Repeated start,
5970  *			    bits [6:5] data offset size,
5971  *			    bit [4] - I2C address type,
5972  *			    bits [3:0] - data size to read (0-16 bytes)
5973  * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5974  * @cd: pointer to command details structure or NULL
5975  *
5976  * Read I2C (0x06E2)
5977  */
5978 int
ice_aq_read_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,u8 * data,struct ice_sq_cd * cd)5979 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5980 		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5981 		struct ice_sq_cd *cd)
5982 {
5983 	struct libie_aq_desc desc = { 0 };
5984 	struct ice_aqc_i2c *cmd;
5985 	u8 data_size;
5986 	int status;
5987 
5988 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5989 	cmd = libie_aq_raw(&desc);
5990 
5991 	if (!data)
5992 		return -EINVAL;
5993 
5994 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5995 
5996 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5997 	cmd->topo_addr = topo_addr;
5998 	cmd->i2c_params = params;
5999 	cmd->i2c_addr = addr;
6000 
6001 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6002 	if (!status) {
6003 		struct ice_aqc_read_i2c_resp *resp;
6004 		u8 i;
6005 
6006 		resp = libie_aq_raw(&desc);
6007 		for (i = 0; i < data_size; i++) {
6008 			*data = resp->i2c_data[i];
6009 			data++;
6010 		}
6011 	}
6012 
6013 	return status;
6014 }
6015 
6016 /**
6017  * ice_aq_write_i2c
6018  * @hw: pointer to the hw struct
6019  * @topo_addr: topology address for a device to communicate with
6020  * @bus_addr: 7-bit I2C bus address
6021  * @addr: I2C memory address (I2C offset) with up to 16 bits
6022  * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
6023  * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
6024  * @cd: pointer to command details structure or NULL
6025  *
6026  * Write I2C (0x06E3)
6027  *
6028  * * Return:
6029  * * 0             - Successful write to the i2c device
6030  * * -EINVAL       - Data size greater than 4 bytes
6031  * * -EIO          - FW error
6032  */
6033 int
ice_aq_write_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,const u8 * data,struct ice_sq_cd * cd)6034 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
6035 		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
6036 		 struct ice_sq_cd *cd)
6037 {
6038 	struct libie_aq_desc desc = { 0 };
6039 	struct ice_aqc_i2c *cmd;
6040 	u8 data_size;
6041 
6042 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
6043 	cmd = libie_aq_raw(&desc);
6044 
6045 	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
6046 
6047 	/* data_size limited to 4 */
6048 	if (data_size > 4)
6049 		return -EINVAL;
6050 
6051 	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
6052 	cmd->topo_addr = topo_addr;
6053 	cmd->i2c_params = params;
6054 	cmd->i2c_addr = addr;
6055 
6056 	memcpy(cmd->i2c_data, data, data_size);
6057 
6058 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6059 }
6060 
6061 /**
6062  * ice_get_pca9575_handle - find and return the PCA9575 controller
6063  * @hw: pointer to the hw struct
6064  * @pca9575_handle: GPIO controller's handle
6065  *
6066  * Find and return the GPIO controller's handle in the netlist.
6067  * When found - the value will be cached in the hw structure and following calls
6068  * will return cached value.
6069  *
6070  * Return: 0 on success, -ENXIO when there's no PCA9575 present.
6071  */
ice_get_pca9575_handle(struct ice_hw * hw,u16 * pca9575_handle)6072 int ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
6073 {
6074 	struct ice_aqc_get_link_topo *cmd;
6075 	struct libie_aq_desc desc;
6076 	int err;
6077 	u8 idx;
6078 
6079 	/* If handle was read previously return cached value */
6080 	if (hw->io_expander_handle) {
6081 		*pca9575_handle = hw->io_expander_handle;
6082 		return 0;
6083 	}
6084 
6085 #define SW_PCA9575_SFP_TOPO_IDX		2
6086 #define SW_PCA9575_QSFP_TOPO_IDX	1
6087 
6088 	/* Check if the SW IO expander controlling SMA exists in the netlist. */
6089 	if (hw->device_id == ICE_DEV_ID_E810C_SFP)
6090 		idx = SW_PCA9575_SFP_TOPO_IDX;
6091 	else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
6092 		idx = SW_PCA9575_QSFP_TOPO_IDX;
6093 	else
6094 		return -ENXIO;
6095 
6096 	/* If handle was not detected read it from the netlist */
6097 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
6098 	cmd = libie_aq_raw(&desc);
6099 	cmd->addr.topo_params.node_type_ctx =
6100 		ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL;
6101 	cmd->addr.topo_params.index = idx;
6102 
6103 	err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6104 	if (err)
6105 		return -ENXIO;
6106 
6107 	/* Verify if we found the right IO expander type */
6108 	if (cmd->node_part_num != ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
6109 		return -ENXIO;
6110 
6111 	/* If present save the handle and return it */
6112 	hw->io_expander_handle =
6113 		le16_to_cpu(cmd->addr.handle);
6114 	*pca9575_handle = hw->io_expander_handle;
6115 
6116 	return 0;
6117 }
6118 
6119 /**
6120  * ice_read_pca9575_reg - read the register from the PCA9575 controller
6121  * @hw: pointer to the hw struct
6122  * @offset: GPIO controller register offset
6123  * @data: pointer to data to be read from the GPIO controller
6124  *
6125  * Return: 0 on success, negative error code otherwise.
6126  */
ice_read_pca9575_reg(struct ice_hw * hw,u8 offset,u8 * data)6127 int ice_read_pca9575_reg(struct ice_hw *hw, u8 offset, u8 *data)
6128 {
6129 	struct ice_aqc_link_topo_addr link_topo;
6130 	__le16 addr;
6131 	u16 handle;
6132 	int err;
6133 
6134 	memset(&link_topo, 0, sizeof(link_topo));
6135 
6136 	err = ice_get_pca9575_handle(hw, &handle);
6137 	if (err)
6138 		return err;
6139 
6140 	link_topo.handle = cpu_to_le16(handle);
6141 	link_topo.topo_params.node_type_ctx =
6142 		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
6143 			   ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
6144 
6145 	addr = cpu_to_le16((u16)offset);
6146 
6147 	return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
6148 }
6149 
6150 /**
6151  * ice_aq_set_gpio
6152  * @hw: pointer to the hw struct
6153  * @gpio_ctrl_handle: GPIO controller node handle
6154  * @pin_idx: IO Number of the GPIO that needs to be set
6155  * @value: SW provide IO value to set in the LSB
6156  * @cd: pointer to command details structure or NULL
6157  *
6158  * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
6159  */
6160 int
ice_aq_set_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool value,struct ice_sq_cd * cd)6161 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
6162 		struct ice_sq_cd *cd)
6163 {
6164 	struct libie_aq_desc desc;
6165 	struct ice_aqc_gpio *cmd;
6166 
6167 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
6168 	cmd = libie_aq_raw(&desc);
6169 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
6170 	cmd->gpio_num = pin_idx;
6171 	cmd->gpio_val = value ? 1 : 0;
6172 
6173 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6174 }
6175 
6176 /**
6177  * ice_aq_get_gpio
6178  * @hw: pointer to the hw struct
6179  * @gpio_ctrl_handle: GPIO controller node handle
6180  * @pin_idx: IO Number of the GPIO that needs to be set
6181  * @value: IO value read
6182  * @cd: pointer to command details structure or NULL
6183  *
6184  * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
6185  * the topology
6186  */
6187 int
ice_aq_get_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool * value,struct ice_sq_cd * cd)6188 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
6189 		bool *value, struct ice_sq_cd *cd)
6190 {
6191 	struct libie_aq_desc desc;
6192 	struct ice_aqc_gpio *cmd;
6193 	int status;
6194 
6195 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
6196 	cmd = libie_aq_raw(&desc);
6197 	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
6198 	cmd->gpio_num = pin_idx;
6199 
6200 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6201 	if (status)
6202 		return status;
6203 
6204 	*value = !!cmd->gpio_val;
6205 	return 0;
6206 }
6207 
6208 /**
6209  * ice_is_fw_api_min_ver
6210  * @hw: pointer to the hardware structure
6211  * @maj: major version
6212  * @min: minor version
6213  * @patch: patch version
6214  *
6215  * Checks if the firmware API is minimum version
6216  */
ice_is_fw_api_min_ver(struct ice_hw * hw,u8 maj,u8 min,u8 patch)6217 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
6218 {
6219 	if (hw->api_maj_ver == maj) {
6220 		if (hw->api_min_ver > min)
6221 			return true;
6222 		if (hw->api_min_ver == min && hw->api_patch >= patch)
6223 			return true;
6224 	} else if (hw->api_maj_ver > maj) {
6225 		return true;
6226 	}
6227 
6228 	return false;
6229 }
6230 
6231 /**
6232  * ice_fw_supports_link_override
6233  * @hw: pointer to the hardware structure
6234  *
6235  * Checks if the firmware supports link override
6236  */
ice_fw_supports_link_override(struct ice_hw * hw)6237 bool ice_fw_supports_link_override(struct ice_hw *hw)
6238 {
6239 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
6240 				     ICE_FW_API_LINK_OVERRIDE_MIN,
6241 				     ICE_FW_API_LINK_OVERRIDE_PATCH);
6242 }
6243 
6244 /**
6245  * ice_get_link_default_override
6246  * @ldo: pointer to the link default override struct
6247  * @pi: pointer to the port info struct
6248  *
6249  * Gets the link default override for a port
6250  */
6251 int
ice_get_link_default_override(struct ice_link_default_override_tlv * ldo,struct ice_port_info * pi)6252 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
6253 			      struct ice_port_info *pi)
6254 {
6255 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
6256 	struct ice_hw *hw = pi->hw;
6257 	int status;
6258 
6259 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
6260 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
6261 	if (status) {
6262 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
6263 		return status;
6264 	}
6265 
6266 	/* Each port has its own config; calculate for our port */
6267 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
6268 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
6269 
6270 	/* link options first */
6271 	status = ice_read_sr_word(hw, tlv_start, &buf);
6272 	if (status) {
6273 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6274 		return status;
6275 	}
6276 	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
6277 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
6278 		ICE_LINK_OVERRIDE_PHY_CFG_S;
6279 
6280 	/* link PHY config */
6281 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
6282 	status = ice_read_sr_word(hw, offset, &buf);
6283 	if (status) {
6284 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
6285 		return status;
6286 	}
6287 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
6288 
6289 	/* PHY types low */
6290 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
6291 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6292 		status = ice_read_sr_word(hw, (offset + i), &buf);
6293 		if (status) {
6294 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6295 			return status;
6296 		}
6297 		/* shift 16 bits at a time to fill 64 bits */
6298 		ldo->phy_type_low |= ((u64)buf << (i * 16));
6299 	}
6300 
6301 	/* PHY types high */
6302 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6303 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6304 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6305 		status = ice_read_sr_word(hw, (offset + i), &buf);
6306 		if (status) {
6307 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6308 			return status;
6309 		}
6310 		/* shift 16 bits at a time to fill 64 bits */
6311 		ldo->phy_type_high |= ((u64)buf << (i * 16));
6312 	}
6313 
6314 	return status;
6315 }
6316 
6317 /**
6318  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6319  * @caps: get PHY capability data
6320  */
ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data * caps)6321 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6322 {
6323 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6324 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6325 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
6326 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
6327 		return true;
6328 
6329 	return false;
6330 }
6331 
6332 /**
6333  * ice_is_fw_health_report_supported - checks if firmware supports health events
6334  * @hw: pointer to the hardware structure
6335  *
6336  * Return: true if firmware supports health status reports,
6337  * false otherwise
6338  */
ice_is_fw_health_report_supported(struct ice_hw * hw)6339 bool ice_is_fw_health_report_supported(struct ice_hw *hw)
6340 {
6341 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_HEALTH_REPORT_MAJ,
6342 				     ICE_FW_API_HEALTH_REPORT_MIN,
6343 				     ICE_FW_API_HEALTH_REPORT_PATCH);
6344 }
6345 
6346 /**
6347  * ice_aq_set_health_status_cfg - Configure FW health events
6348  * @hw: pointer to the HW struct
6349  * @event_source: type of diagnostic events to enable
6350  *
6351  * Configure the health status event types that the firmware will send to this
6352  * PF. The supported event types are: PF-specific, all PFs, and global.
6353  *
6354  * Return: 0 on success, negative error code otherwise.
6355  */
ice_aq_set_health_status_cfg(struct ice_hw * hw,u8 event_source)6356 int ice_aq_set_health_status_cfg(struct ice_hw *hw, u8 event_source)
6357 {
6358 	struct ice_aqc_set_health_status_cfg *cmd;
6359 	struct libie_aq_desc desc;
6360 
6361 	cmd = libie_aq_raw(&desc);
6362 
6363 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_health_status_cfg);
6364 
6365 	cmd->event_source = event_source;
6366 
6367 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6368 }
6369 
6370 /**
6371  * ice_aq_set_lldp_mib - Set the LLDP MIB
6372  * @hw: pointer to the HW struct
6373  * @mib_type: Local, Remote or both Local and Remote MIBs
6374  * @buf: pointer to the caller-supplied buffer to store the MIB block
6375  * @buf_size: size of the buffer (in bytes)
6376  * @cd: pointer to command details structure or NULL
6377  *
6378  * Set the LLDP MIB. (0x0A08)
6379  */
6380 int
ice_aq_set_lldp_mib(struct ice_hw * hw,u8 mib_type,void * buf,u16 buf_size,struct ice_sq_cd * cd)6381 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6382 		    struct ice_sq_cd *cd)
6383 {
6384 	struct ice_aqc_lldp_set_local_mib *cmd;
6385 	struct libie_aq_desc desc;
6386 
6387 	cmd = libie_aq_raw(&desc);
6388 
6389 	if (buf_size == 0 || !buf)
6390 		return -EINVAL;
6391 
6392 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6393 
6394 	desc.flags |= cpu_to_le16((u16)LIBIE_AQ_FLAG_RD);
6395 	desc.datalen = cpu_to_le16(buf_size);
6396 
6397 	cmd->type = mib_type;
6398 	cmd->length = cpu_to_le16(buf_size);
6399 
6400 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6401 }
6402 
6403 /**
6404  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6405  * @hw: pointer to HW struct
6406  */
ice_fw_supports_lldp_fltr_ctrl(struct ice_hw * hw)6407 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6408 {
6409 	if (hw->mac_type != ICE_MAC_E810)
6410 		return false;
6411 
6412 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6413 				     ICE_FW_API_LLDP_FLTR_MIN,
6414 				     ICE_FW_API_LLDP_FLTR_PATCH);
6415 }
6416 
6417 /**
6418  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6419  * @hw: pointer to HW struct
6420  * @vsi: VSI to add the filter to
6421  * @add: boolean for if adding or removing a filter
6422  *
6423  * Return: 0 on success, -EOPNOTSUPP if the operation cannot be performed
6424  *	   with this HW or VSI, otherwise an error corresponding to
6425  *	   the AQ transaction result.
6426  */
ice_lldp_fltr_add_remove(struct ice_hw * hw,struct ice_vsi * vsi,bool add)6427 int ice_lldp_fltr_add_remove(struct ice_hw *hw, struct ice_vsi *vsi, bool add)
6428 {
6429 	struct ice_aqc_lldp_filter_ctrl *cmd;
6430 	struct libie_aq_desc desc;
6431 
6432 	if (vsi->type != ICE_VSI_PF || !ice_fw_supports_lldp_fltr_ctrl(hw))
6433 		return -EOPNOTSUPP;
6434 
6435 	cmd = libie_aq_raw(&desc);
6436 
6437 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6438 
6439 	if (add)
6440 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6441 	else
6442 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6443 
6444 	cmd->vsi_num = cpu_to_le16(vsi->vsi_num);
6445 
6446 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6447 }
6448 
6449 /**
6450  * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6451  * @hw: pointer to HW struct
6452  */
ice_lldp_execute_pending_mib(struct ice_hw * hw)6453 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6454 {
6455 	struct libie_aq_desc desc;
6456 
6457 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6458 
6459 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6460 }
6461 
6462 /**
6463  * ice_fw_supports_report_dflt_cfg
6464  * @hw: pointer to the hardware structure
6465  *
6466  * Checks if the firmware supports report default configuration
6467  */
ice_fw_supports_report_dflt_cfg(struct ice_hw * hw)6468 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6469 {
6470 	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6471 				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6472 				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6473 }
6474 
6475 /* each of the indexes into the following array match the speed of a return
6476  * value from the list of AQ returned speeds like the range:
6477  * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6478  * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6479  * array. The array is defined as 15 elements long because the link_speed
6480  * returned by the firmware is a 16 bit * value, but is indexed
6481  * by [fls(speed) - 1]
6482  */
6483 static const u32 ice_aq_to_link_speed[] = {
6484 	SPEED_10,	/* BIT(0) */
6485 	SPEED_100,
6486 	SPEED_1000,
6487 	SPEED_2500,
6488 	SPEED_5000,
6489 	SPEED_10000,
6490 	SPEED_20000,
6491 	SPEED_25000,
6492 	SPEED_40000,
6493 	SPEED_50000,
6494 	SPEED_100000,	/* BIT(10) */
6495 	SPEED_200000,
6496 };
6497 
6498 /**
6499  * ice_get_link_speed - get integer speed from table
6500  * @index: array index from fls(aq speed) - 1
6501  *
6502  * Returns: u32 value containing integer speed
6503  */
ice_get_link_speed(u16 index)6504 u32 ice_get_link_speed(u16 index)
6505 {
6506 	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6507 		return 0;
6508 
6509 	return ice_aq_to_link_speed[index];
6510 }
6511 
6512 /**
6513  * ice_get_dest_cgu - get destination CGU dev for given HW
6514  * @hw: pointer to the HW struct
6515  *
6516  * Get CGU client id for CGU register read/write operations.
6517  *
6518  * Return: CGU device id to use in SBQ transactions.
6519  */
ice_get_dest_cgu(struct ice_hw * hw)6520 static enum ice_sbq_dev_id ice_get_dest_cgu(struct ice_hw *hw)
6521 {
6522 	/* On dual complex E825 only complex 0 has functional CGU powering all
6523 	 * the PHYs.
6524 	 * SBQ destination device cgu points to CGU on a current complex and to
6525 	 * access primary CGU from the secondary complex, the driver should use
6526 	 * cgu_peer as a destination device.
6527 	 */
6528 	if (hw->mac_type == ICE_MAC_GENERIC_3K_E825 && ice_is_dual(hw) &&
6529 	    !ice_is_primary(hw))
6530 		return ice_sbq_dev_cgu_peer;
6531 	return ice_sbq_dev_cgu;
6532 }
6533 
6534 /**
6535  * ice_read_cgu_reg - Read a CGU register
6536  * @hw: Pointer to the HW struct
6537  * @addr: Register address to read
6538  * @val: Storage for register value read
6539  *
6540  * Read the contents of a register of the Clock Generation Unit. Only
6541  * applicable to E82X devices.
6542  *
6543  * Return: 0 on success, other error codes when failed to read from CGU.
6544  */
ice_read_cgu_reg(struct ice_hw * hw,u32 addr,u32 * val)6545 int ice_read_cgu_reg(struct ice_hw *hw, u32 addr, u32 *val)
6546 {
6547 	struct ice_sbq_msg_input cgu_msg = {
6548 		.dest_dev = ice_get_dest_cgu(hw),
6549 		.opcode = ice_sbq_msg_rd,
6550 		.msg_addr_low = addr
6551 	};
6552 	int err;
6553 
6554 	err = ice_sbq_rw_reg(hw, &cgu_msg, LIBIE_AQ_FLAG_RD);
6555 	if (err) {
6556 		ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
6557 			  addr, err);
6558 		return err;
6559 	}
6560 
6561 	*val = cgu_msg.data;
6562 
6563 	return 0;
6564 }
6565 
6566 /**
6567  * ice_write_cgu_reg - Write a CGU register
6568  * @hw: Pointer to the HW struct
6569  * @addr: Register address to write
6570  * @val: Value to write into the register
6571  *
6572  * Write the specified value to a register of the Clock Generation Unit. Only
6573  * applicable to E82X devices.
6574  *
6575  * Return: 0 on success, other error codes when failed to write to CGU.
6576  */
ice_write_cgu_reg(struct ice_hw * hw,u32 addr,u32 val)6577 int ice_write_cgu_reg(struct ice_hw *hw, u32 addr, u32 val)
6578 {
6579 	struct ice_sbq_msg_input cgu_msg = {
6580 		.dest_dev = ice_get_dest_cgu(hw),
6581 		.opcode = ice_sbq_msg_wr,
6582 		.msg_addr_low = addr,
6583 		.data = val
6584 	};
6585 	int err;
6586 
6587 	err = ice_sbq_rw_reg(hw, &cgu_msg, LIBIE_AQ_FLAG_RD);
6588 	if (err)
6589 		ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
6590 			  addr, err);
6591 
6592 	return err;
6593 }
6594