1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include "ice_common.h"
5 #include "ice_flex_pipe.h"
6 #include "ice_flow.h"
7 #include "ice.h"
8
9 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
10 /* SWITCH */
11 {
12 ICE_SID_XLT0_SW,
13 ICE_SID_XLT_KEY_BUILDER_SW,
14 ICE_SID_XLT1_SW,
15 ICE_SID_XLT2_SW,
16 ICE_SID_PROFID_TCAM_SW,
17 ICE_SID_PROFID_REDIR_SW,
18 ICE_SID_FLD_VEC_SW,
19 ICE_SID_CDID_KEY_BUILDER_SW,
20 ICE_SID_CDID_REDIR_SW
21 },
22
23 /* ACL */
24 {
25 ICE_SID_XLT0_ACL,
26 ICE_SID_XLT_KEY_BUILDER_ACL,
27 ICE_SID_XLT1_ACL,
28 ICE_SID_XLT2_ACL,
29 ICE_SID_PROFID_TCAM_ACL,
30 ICE_SID_PROFID_REDIR_ACL,
31 ICE_SID_FLD_VEC_ACL,
32 ICE_SID_CDID_KEY_BUILDER_ACL,
33 ICE_SID_CDID_REDIR_ACL
34 },
35
36 /* FD */
37 {
38 ICE_SID_XLT0_FD,
39 ICE_SID_XLT_KEY_BUILDER_FD,
40 ICE_SID_XLT1_FD,
41 ICE_SID_XLT2_FD,
42 ICE_SID_PROFID_TCAM_FD,
43 ICE_SID_PROFID_REDIR_FD,
44 ICE_SID_FLD_VEC_FD,
45 ICE_SID_CDID_KEY_BUILDER_FD,
46 ICE_SID_CDID_REDIR_FD
47 },
48
49 /* RSS */
50 {
51 ICE_SID_XLT0_RSS,
52 ICE_SID_XLT_KEY_BUILDER_RSS,
53 ICE_SID_XLT1_RSS,
54 ICE_SID_XLT2_RSS,
55 ICE_SID_PROFID_TCAM_RSS,
56 ICE_SID_PROFID_REDIR_RSS,
57 ICE_SID_FLD_VEC_RSS,
58 ICE_SID_CDID_KEY_BUILDER_RSS,
59 ICE_SID_CDID_REDIR_RSS
60 },
61
62 /* PE */
63 {
64 ICE_SID_XLT0_PE,
65 ICE_SID_XLT_KEY_BUILDER_PE,
66 ICE_SID_XLT1_PE,
67 ICE_SID_XLT2_PE,
68 ICE_SID_PROFID_TCAM_PE,
69 ICE_SID_PROFID_REDIR_PE,
70 ICE_SID_FLD_VEC_PE,
71 ICE_SID_CDID_KEY_BUILDER_PE,
72 ICE_SID_CDID_REDIR_PE
73 }
74 };
75
76 /**
77 * ice_sect_id - returns section ID
78 * @blk: block type
79 * @sect: section type
80 *
81 * This helper function returns the proper section ID given a block type and a
82 * section type.
83 */
ice_sect_id(enum ice_block blk,enum ice_sect sect)84 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
85 {
86 return ice_sect_lkup[blk][sect];
87 }
88
89 /**
90 * ice_hw_ptype_ena - check if the PTYPE is enabled or not
91 * @hw: pointer to the HW structure
92 * @ptype: the hardware PTYPE
93 */
ice_hw_ptype_ena(struct ice_hw * hw,u16 ptype)94 bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype)
95 {
96 return ptype < ICE_FLOW_PTYPE_MAX &&
97 test_bit(ptype, hw->hw_ptype);
98 }
99
100 /* Key creation */
101
102 #define ICE_DC_KEY 0x1 /* don't care */
103 #define ICE_DC_KEYINV 0x1
104 #define ICE_NM_KEY 0x0 /* never match */
105 #define ICE_NM_KEYINV 0x0
106 #define ICE_0_KEY 0x1 /* match 0 */
107 #define ICE_0_KEYINV 0x0
108 #define ICE_1_KEY 0x0 /* match 1 */
109 #define ICE_1_KEYINV 0x1
110
111 /**
112 * ice_gen_key_word - generate 16-bits of a key/mask word
113 * @val: the value
114 * @valid: valid bits mask (change only the valid bits)
115 * @dont_care: don't care mask
116 * @nvr_mtch: never match mask
117 * @key: pointer to an array of where the resulting key portion
118 * @key_inv: pointer to an array of where the resulting key invert portion
119 *
120 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
121 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
122 * of key and 8 bits of key invert.
123 *
124 * '0' = b01, always match a 0 bit
125 * '1' = b10, always match a 1 bit
126 * '?' = b11, don't care bit (always matches)
127 * '~' = b00, never match bit
128 *
129 * Input:
130 * val: b0 1 0 1 0 1
131 * dont_care: b0 0 1 1 0 0
132 * never_mtch: b0 0 0 0 1 1
133 * ------------------------------
134 * Result: key: b01 10 11 11 00 00
135 */
136 static int
ice_gen_key_word(u8 val,u8 valid,u8 dont_care,u8 nvr_mtch,u8 * key,u8 * key_inv)137 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
138 u8 *key_inv)
139 {
140 u8 in_key = *key, in_key_inv = *key_inv;
141 u8 i;
142
143 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */
144 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
145 return -EIO;
146
147 *key = 0;
148 *key_inv = 0;
149
150 /* encode the 8 bits into 8-bit key and 8-bit key invert */
151 for (i = 0; i < 8; i++) {
152 *key >>= 1;
153 *key_inv >>= 1;
154
155 if (!(valid & 0x1)) { /* change only valid bits */
156 *key |= (in_key & 0x1) << 7;
157 *key_inv |= (in_key_inv & 0x1) << 7;
158 } else if (dont_care & 0x1) { /* don't care bit */
159 *key |= ICE_DC_KEY << 7;
160 *key_inv |= ICE_DC_KEYINV << 7;
161 } else if (nvr_mtch & 0x1) { /* never match bit */
162 *key |= ICE_NM_KEY << 7;
163 *key_inv |= ICE_NM_KEYINV << 7;
164 } else if (val & 0x01) { /* exact 1 match */
165 *key |= ICE_1_KEY << 7;
166 *key_inv |= ICE_1_KEYINV << 7;
167 } else { /* exact 0 match */
168 *key |= ICE_0_KEY << 7;
169 *key_inv |= ICE_0_KEYINV << 7;
170 }
171
172 dont_care >>= 1;
173 nvr_mtch >>= 1;
174 valid >>= 1;
175 val >>= 1;
176 in_key >>= 1;
177 in_key_inv >>= 1;
178 }
179
180 return 0;
181 }
182
183 /**
184 * ice_bits_max_set - determine if the number of bits set is within a maximum
185 * @mask: pointer to the byte array which is the mask
186 * @size: the number of bytes in the mask
187 * @max: the max number of set bits
188 *
189 * This function determines if there are at most 'max' number of bits set in an
190 * array. Returns true if the number for bits set is <= max or will return false
191 * otherwise.
192 */
ice_bits_max_set(const u8 * mask,u16 size,u16 max)193 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
194 {
195 u16 count = 0;
196 u16 i;
197
198 /* check each byte */
199 for (i = 0; i < size; i++) {
200 /* if 0, go to next byte */
201 if (!mask[i])
202 continue;
203
204 /* We know there is at least one set bit in this byte because of
205 * the above check; if we already have found 'max' number of
206 * bits set, then we can return failure now.
207 */
208 if (count == max)
209 return false;
210
211 /* count the bits in this byte, checking threshold */
212 count += hweight8(mask[i]);
213 if (count > max)
214 return false;
215 }
216
217 return true;
218 }
219
220 /**
221 * ice_set_key - generate a variable sized key with multiples of 16-bits
222 * @key: pointer to where the key will be stored
223 * @size: the size of the complete key in bytes (must be even)
224 * @val: array of 8-bit values that makes up the value portion of the key
225 * @upd: array of 8-bit masks that determine what key portion to update
226 * @dc: array of 8-bit masks that make up the don't care mask
227 * @nm: array of 8-bit masks that make up the never match mask
228 * @off: the offset of the first byte in the key to update
229 * @len: the number of bytes in the key update
230 *
231 * This function generates a key from a value, a don't care mask and a never
232 * match mask.
233 * upd, dc, and nm are optional parameters, and can be NULL:
234 * upd == NULL --> upd mask is all 1's (update all bits)
235 * dc == NULL --> dc mask is all 0's (no don't care bits)
236 * nm == NULL --> nm mask is all 0's (no never match bits)
237 */
238 static int
ice_set_key(u8 * key,u16 size,u8 * val,u8 * upd,u8 * dc,u8 * nm,u16 off,u16 len)239 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
240 u16 len)
241 {
242 u16 half_size;
243 u16 i;
244
245 /* size must be a multiple of 2 bytes. */
246 if (size % 2)
247 return -EIO;
248
249 half_size = size / 2;
250 if (off + len > half_size)
251 return -EIO;
252
253 /* Make sure at most one bit is set in the never match mask. Having more
254 * than one never match mask bit set will cause HW to consume excessive
255 * power otherwise; this is a power management efficiency check.
256 */
257 #define ICE_NVR_MTCH_BITS_MAX 1
258 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
259 return -EIO;
260
261 for (i = 0; i < len; i++)
262 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
263 dc ? dc[i] : 0, nm ? nm[i] : 0,
264 key + off + i, key + half_size + off + i))
265 return -EIO;
266
267 return 0;
268 }
269
270 /**
271 * ice_acquire_change_lock
272 * @hw: pointer to the HW structure
273 * @access: access type (read or write)
274 *
275 * This function will request ownership of the change lock.
276 */
277 int
ice_acquire_change_lock(struct ice_hw * hw,enum ice_aq_res_access_type access)278 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
279 {
280 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
281 ICE_CHANGE_LOCK_TIMEOUT);
282 }
283
284 /**
285 * ice_release_change_lock
286 * @hw: pointer to the HW structure
287 *
288 * This function will release the change lock using the proper Admin Command.
289 */
ice_release_change_lock(struct ice_hw * hw)290 void ice_release_change_lock(struct ice_hw *hw)
291 {
292 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
293 }
294
295 /**
296 * ice_get_open_tunnel_port - retrieve an open tunnel port
297 * @hw: pointer to the HW structure
298 * @port: returns open port
299 * @type: type of tunnel, can be TNL_LAST if it doesn't matter
300 */
301 bool
ice_get_open_tunnel_port(struct ice_hw * hw,u16 * port,enum ice_tunnel_type type)302 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port,
303 enum ice_tunnel_type type)
304 {
305 bool res = false;
306 u16 i;
307
308 mutex_lock(&hw->tnl_lock);
309
310 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
311 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port &&
312 (type == TNL_LAST || type == hw->tnl.tbl[i].type)) {
313 *port = hw->tnl.tbl[i].port;
314 res = true;
315 break;
316 }
317
318 mutex_unlock(&hw->tnl_lock);
319
320 return res;
321 }
322
323 /**
324 * ice_upd_dvm_boost_entry
325 * @hw: pointer to the HW structure
326 * @entry: pointer to double vlan boost entry info
327 */
328 static int
ice_upd_dvm_boost_entry(struct ice_hw * hw,struct ice_dvm_entry * entry)329 ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry)
330 {
331 struct ice_boost_tcam_section *sect_rx, *sect_tx;
332 int status = -ENOSPC;
333 struct ice_buf_build *bld;
334 u8 val, dc, nm;
335
336 bld = ice_pkg_buf_alloc(hw);
337 if (!bld)
338 return -ENOMEM;
339
340 /* allocate 2 sections, one for Rx parser, one for Tx parser */
341 if (ice_pkg_buf_reserve_section(bld, 2))
342 goto ice_upd_dvm_boost_entry_err;
343
344 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
345 struct_size(sect_rx, tcam, 1));
346 if (!sect_rx)
347 goto ice_upd_dvm_boost_entry_err;
348 sect_rx->count = cpu_to_le16(1);
349
350 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
351 struct_size(sect_tx, tcam, 1));
352 if (!sect_tx)
353 goto ice_upd_dvm_boost_entry_err;
354 sect_tx->count = cpu_to_le16(1);
355
356 /* copy original boost entry to update package buffer */
357 memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam));
358
359 /* re-write the don't care and never match bits accordingly */
360 if (entry->enable) {
361 /* all bits are don't care */
362 val = 0x00;
363 dc = 0xFF;
364 nm = 0x00;
365 } else {
366 /* disable, one never match bit, the rest are don't care */
367 val = 0x00;
368 dc = 0xF7;
369 nm = 0x08;
370 }
371
372 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
373 &val, NULL, &dc, &nm, 0, sizeof(u8));
374
375 /* exact copy of entry to Tx section entry */
376 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
377
378 status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1);
379
380 ice_upd_dvm_boost_entry_err:
381 ice_pkg_buf_free(hw, bld);
382
383 return status;
384 }
385
386 /**
387 * ice_set_dvm_boost_entries
388 * @hw: pointer to the HW structure
389 *
390 * Enable double vlan by updating the appropriate boost tcam entries.
391 */
ice_set_dvm_boost_entries(struct ice_hw * hw)392 int ice_set_dvm_boost_entries(struct ice_hw *hw)
393 {
394 u16 i;
395
396 for (i = 0; i < hw->dvm_upd.count; i++) {
397 int status;
398
399 status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]);
400 if (status)
401 return status;
402 }
403
404 return 0;
405 }
406
407 /**
408 * ice_tunnel_idx_to_entry - convert linear index to the sparse one
409 * @hw: pointer to the HW structure
410 * @type: type of tunnel
411 * @idx: linear index
412 *
413 * Stack assumes we have 2 linear tables with indexes [0, count_valid),
414 * but really the port table may be sprase, and types are mixed, so convert
415 * the stack index into the device index.
416 */
ice_tunnel_idx_to_entry(struct ice_hw * hw,enum ice_tunnel_type type,u16 idx)417 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
418 u16 idx)
419 {
420 u16 i;
421
422 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
423 if (hw->tnl.tbl[i].valid &&
424 hw->tnl.tbl[i].type == type &&
425 idx-- == 0)
426 return i;
427
428 WARN_ON_ONCE(1);
429 return 0;
430 }
431
432 /**
433 * ice_create_tunnel
434 * @hw: pointer to the HW structure
435 * @index: device table entry
436 * @type: type of tunnel
437 * @port: port of tunnel to create
438 *
439 * Create a tunnel by updating the parse graph in the parser. We do that by
440 * creating a package buffer with the tunnel info and issuing an update package
441 * command.
442 */
443 static int
ice_create_tunnel(struct ice_hw * hw,u16 index,enum ice_tunnel_type type,u16 port)444 ice_create_tunnel(struct ice_hw *hw, u16 index,
445 enum ice_tunnel_type type, u16 port)
446 {
447 struct ice_boost_tcam_section *sect_rx, *sect_tx;
448 struct ice_buf_build *bld;
449 int status = -ENOSPC;
450
451 mutex_lock(&hw->tnl_lock);
452
453 bld = ice_pkg_buf_alloc(hw);
454 if (!bld) {
455 status = -ENOMEM;
456 goto ice_create_tunnel_end;
457 }
458
459 /* allocate 2 sections, one for Rx parser, one for Tx parser */
460 if (ice_pkg_buf_reserve_section(bld, 2))
461 goto ice_create_tunnel_err;
462
463 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
464 struct_size(sect_rx, tcam, 1));
465 if (!sect_rx)
466 goto ice_create_tunnel_err;
467 sect_rx->count = cpu_to_le16(1);
468
469 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
470 struct_size(sect_tx, tcam, 1));
471 if (!sect_tx)
472 goto ice_create_tunnel_err;
473 sect_tx->count = cpu_to_le16(1);
474
475 /* copy original boost entry to update package buffer */
476 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
477 sizeof(*sect_rx->tcam));
478
479 /* over-write the never-match dest port key bits with the encoded port
480 * bits
481 */
482 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
483 (u8 *)&port, NULL, NULL, NULL,
484 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
485 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
486
487 /* exact copy of entry to Tx section entry */
488 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
489
490 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
491 if (!status)
492 hw->tnl.tbl[index].port = port;
493
494 ice_create_tunnel_err:
495 ice_pkg_buf_free(hw, bld);
496
497 ice_create_tunnel_end:
498 mutex_unlock(&hw->tnl_lock);
499
500 return status;
501 }
502
503 /**
504 * ice_destroy_tunnel
505 * @hw: pointer to the HW structure
506 * @index: device table entry
507 * @type: type of tunnel
508 * @port: port of tunnel to destroy (ignored if the all parameter is true)
509 *
510 * Destroys a tunnel or all tunnels by creating an update package buffer
511 * targeting the specific updates requested and then performing an update
512 * package.
513 */
514 static int
ice_destroy_tunnel(struct ice_hw * hw,u16 index,enum ice_tunnel_type type,u16 port)515 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
516 u16 port)
517 {
518 struct ice_boost_tcam_section *sect_rx, *sect_tx;
519 struct ice_buf_build *bld;
520 int status = -ENOSPC;
521
522 mutex_lock(&hw->tnl_lock);
523
524 if (WARN_ON(!hw->tnl.tbl[index].valid ||
525 hw->tnl.tbl[index].type != type ||
526 hw->tnl.tbl[index].port != port)) {
527 status = -EIO;
528 goto ice_destroy_tunnel_end;
529 }
530
531 bld = ice_pkg_buf_alloc(hw);
532 if (!bld) {
533 status = -ENOMEM;
534 goto ice_destroy_tunnel_end;
535 }
536
537 /* allocate 2 sections, one for Rx parser, one for Tx parser */
538 if (ice_pkg_buf_reserve_section(bld, 2))
539 goto ice_destroy_tunnel_err;
540
541 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
542 struct_size(sect_rx, tcam, 1));
543 if (!sect_rx)
544 goto ice_destroy_tunnel_err;
545 sect_rx->count = cpu_to_le16(1);
546
547 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
548 struct_size(sect_tx, tcam, 1));
549 if (!sect_tx)
550 goto ice_destroy_tunnel_err;
551 sect_tx->count = cpu_to_le16(1);
552
553 /* copy original boost entry to update package buffer, one copy to Rx
554 * section, another copy to the Tx section
555 */
556 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
557 sizeof(*sect_rx->tcam));
558 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
559 sizeof(*sect_tx->tcam));
560
561 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
562 if (!status)
563 hw->tnl.tbl[index].port = 0;
564
565 ice_destroy_tunnel_err:
566 ice_pkg_buf_free(hw, bld);
567
568 ice_destroy_tunnel_end:
569 mutex_unlock(&hw->tnl_lock);
570
571 return status;
572 }
573
ice_udp_tunnel_set_port(struct net_device * netdev,unsigned int table,unsigned int idx,struct udp_tunnel_info * ti)574 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
575 unsigned int idx, struct udp_tunnel_info *ti)
576 {
577 struct ice_netdev_priv *np = netdev_priv(netdev);
578 struct ice_vsi *vsi = np->vsi;
579 struct ice_pf *pf = vsi->back;
580 enum ice_tunnel_type tnl_type;
581 int status;
582 u16 index;
583
584 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
585 index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx);
586
587 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
588 if (status) {
589 netdev_err(netdev, "Error adding UDP tunnel - %d\n",
590 status);
591 return -EIO;
592 }
593
594 udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
595 return 0;
596 }
597
ice_udp_tunnel_unset_port(struct net_device * netdev,unsigned int table,unsigned int idx,struct udp_tunnel_info * ti)598 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
599 unsigned int idx, struct udp_tunnel_info *ti)
600 {
601 struct ice_netdev_priv *np = netdev_priv(netdev);
602 struct ice_vsi *vsi = np->vsi;
603 struct ice_pf *pf = vsi->back;
604 enum ice_tunnel_type tnl_type;
605 int status;
606
607 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
608
609 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
610 ntohs(ti->port));
611 if (status) {
612 netdev_err(netdev, "Error removing UDP tunnel - %d\n",
613 status);
614 return -EIO;
615 }
616
617 return 0;
618 }
619
620 /**
621 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
622 * @hw: pointer to the hardware structure
623 * @blk: hardware block
624 * @prof: profile ID
625 * @fv_idx: field vector word index
626 * @prot: variable to receive the protocol ID
627 * @off: variable to receive the protocol offset
628 */
629 int
ice_find_prot_off(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 fv_idx,u8 * prot,u16 * off)630 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
631 u8 *prot, u16 *off)
632 {
633 struct ice_fv_word *fv_ext;
634
635 if (prof >= hw->blk[blk].es.count)
636 return -EINVAL;
637
638 if (fv_idx >= hw->blk[blk].es.fvw)
639 return -EINVAL;
640
641 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
642
643 *prot = fv_ext[fv_idx].prot_id;
644 *off = fv_ext[fv_idx].off;
645
646 return 0;
647 }
648
649 /* PTG Management */
650
651 /**
652 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
653 * @hw: pointer to the hardware structure
654 * @blk: HW block
655 * @ptype: the ptype to search for
656 * @ptg: pointer to variable that receives the PTG
657 *
658 * This function will search the PTGs for a particular ptype, returning the
659 * PTG ID that contains it through the PTG parameter, with the value of
660 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
661 */
662 static int
ice_ptg_find_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 * ptg)663 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
664 {
665 if (ptype >= ICE_XLT1_CNT || !ptg)
666 return -EINVAL;
667
668 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
669 return 0;
670 }
671
672 /**
673 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
674 * @hw: pointer to the hardware structure
675 * @blk: HW block
676 * @ptg: the PTG to allocate
677 *
678 * This function allocates a given packet type group ID specified by the PTG
679 * parameter.
680 */
ice_ptg_alloc_val(struct ice_hw * hw,enum ice_block blk,u8 ptg)681 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
682 {
683 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
684 }
685
686 /**
687 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
688 * @hw: pointer to the hardware structure
689 * @blk: HW block
690 * @ptype: the ptype to remove
691 * @ptg: the PTG to remove the ptype from
692 *
693 * This function will remove the ptype from the specific PTG, and move it to
694 * the default PTG (ICE_DEFAULT_PTG).
695 */
696 static int
ice_ptg_remove_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 ptg)697 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
698 {
699 struct ice_ptg_ptype **ch;
700 struct ice_ptg_ptype *p;
701
702 if (ptype > ICE_XLT1_CNT - 1)
703 return -EINVAL;
704
705 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
706 return -ENOENT;
707
708 /* Should not happen if .in_use is set, bad config */
709 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
710 return -EIO;
711
712 /* find the ptype within this PTG, and bypass the link over it */
713 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
714 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
715 while (p) {
716 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
717 *ch = p->next_ptype;
718 break;
719 }
720
721 ch = &p->next_ptype;
722 p = p->next_ptype;
723 }
724
725 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
726 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
727
728 return 0;
729 }
730
731 /**
732 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
733 * @hw: pointer to the hardware structure
734 * @blk: HW block
735 * @ptype: the ptype to add or move
736 * @ptg: the PTG to add or move the ptype to
737 *
738 * This function will either add or move a ptype to a particular PTG depending
739 * on if the ptype is already part of another group. Note that using a
740 * destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
741 * default PTG.
742 */
743 static int
ice_ptg_add_mv_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 ptg)744 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
745 {
746 u8 original_ptg;
747 int status;
748
749 if (ptype > ICE_XLT1_CNT - 1)
750 return -EINVAL;
751
752 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
753 return -ENOENT;
754
755 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
756 if (status)
757 return status;
758
759 /* Is ptype already in the correct PTG? */
760 if (original_ptg == ptg)
761 return 0;
762
763 /* Remove from original PTG and move back to the default PTG */
764 if (original_ptg != ICE_DEFAULT_PTG)
765 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
766
767 /* Moving to default PTG? Then we're done with this request */
768 if (ptg == ICE_DEFAULT_PTG)
769 return 0;
770
771 /* Add ptype to PTG at beginning of list */
772 hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
773 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
774 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
775 &hw->blk[blk].xlt1.ptypes[ptype];
776
777 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
778 hw->blk[blk].xlt1.t[ptype] = ptg;
779
780 return 0;
781 }
782
783 /* Block / table size info */
784 struct ice_blk_size_details {
785 u16 xlt1; /* # XLT1 entries */
786 u16 xlt2; /* # XLT2 entries */
787 u16 prof_tcam; /* # profile ID TCAM entries */
788 u16 prof_id; /* # profile IDs */
789 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */
790 u16 prof_redir; /* # profile redirection entries */
791 u16 es; /* # extraction sequence entries */
792 u16 fvw; /* # field vector words */
793 u8 overwrite; /* overwrite existing entries allowed */
794 u8 reverse; /* reverse FV order */
795 };
796
797 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
798 /**
799 * Table Definitions
800 * XLT1 - Number of entries in XLT1 table
801 * XLT2 - Number of entries in XLT2 table
802 * TCAM - Number of entries Profile ID TCAM table
803 * CDID - Control Domain ID of the hardware block
804 * PRED - Number of entries in the Profile Redirection Table
805 * FV - Number of entries in the Field Vector
806 * FVW - Width (in WORDs) of the Field Vector
807 * OVR - Overwrite existing table entries
808 * REV - Reverse FV
809 */
810 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
811 /* Overwrite , Reverse FV */
812 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
813 false, false },
814 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
815 false, false },
816 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
817 false, true },
818 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
819 true, true },
820 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
821 false, false },
822 };
823
824 enum ice_sid_all {
825 ICE_SID_XLT1_OFF = 0,
826 ICE_SID_XLT2_OFF,
827 ICE_SID_PR_OFF,
828 ICE_SID_PR_REDIR_OFF,
829 ICE_SID_ES_OFF,
830 ICE_SID_OFF_COUNT,
831 };
832
833 /* Characteristic handling */
834
835 /**
836 * ice_match_prop_lst - determine if properties of two lists match
837 * @list1: first properties list
838 * @list2: second properties list
839 *
840 * Count, cookies and the order must match in order to be considered equivalent.
841 */
842 static bool
ice_match_prop_lst(struct list_head * list1,struct list_head * list2)843 ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
844 {
845 struct ice_vsig_prof *tmp1;
846 struct ice_vsig_prof *tmp2;
847 u16 chk_count = 0;
848 u16 count = 0;
849
850 /* compare counts */
851 list_for_each_entry(tmp1, list1, list)
852 count++;
853 list_for_each_entry(tmp2, list2, list)
854 chk_count++;
855 if (!count || count != chk_count)
856 return false;
857
858 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
859 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
860
861 /* profile cookies must compare, and in the exact same order to take
862 * into account priority
863 */
864 while (count--) {
865 if (tmp2->profile_cookie != tmp1->profile_cookie)
866 return false;
867
868 tmp1 = list_next_entry(tmp1, list);
869 tmp2 = list_next_entry(tmp2, list);
870 }
871
872 return true;
873 }
874
875 /* VSIG Management */
876
877 /**
878 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
879 * @hw: pointer to the hardware structure
880 * @blk: HW block
881 * @vsi: VSI of interest
882 * @vsig: pointer to receive the VSI group
883 *
884 * This function will lookup the VSI entry in the XLT2 list and return
885 * the VSI group its associated with.
886 */
887 static int
ice_vsig_find_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 * vsig)888 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
889 {
890 if (!vsig || vsi >= ICE_MAX_VSI)
891 return -EINVAL;
892
893 /* As long as there's a default or valid VSIG associated with the input
894 * VSI, the functions returns a success. Any handling of VSIG will be
895 * done by the following add, update or remove functions.
896 */
897 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
898
899 return 0;
900 }
901
902 /**
903 * ice_vsig_alloc_val - allocate a new VSIG by value
904 * @hw: pointer to the hardware structure
905 * @blk: HW block
906 * @vsig: the VSIG to allocate
907 *
908 * This function will allocate a given VSIG specified by the VSIG parameter.
909 */
ice_vsig_alloc_val(struct ice_hw * hw,enum ice_block blk,u16 vsig)910 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
911 {
912 u16 idx = vsig & ICE_VSIG_IDX_M;
913
914 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
915 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
916 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
917 }
918
919 return ICE_VSIG_VALUE(idx, hw->pf_id);
920 }
921
922 /**
923 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
924 * @hw: pointer to the hardware structure
925 * @blk: HW block
926 *
927 * This function will iterate through the VSIG list and mark the first
928 * unused entry for the new VSIG entry as used and return that value.
929 */
ice_vsig_alloc(struct ice_hw * hw,enum ice_block blk)930 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
931 {
932 u16 i;
933
934 for (i = 1; i < ICE_MAX_VSIGS; i++)
935 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
936 return ice_vsig_alloc_val(hw, blk, i);
937
938 return ICE_DEFAULT_VSIG;
939 }
940
941 /**
942 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
943 * @hw: pointer to the hardware structure
944 * @blk: HW block
945 * @chs: characteristic list
946 * @vsig: returns the VSIG with the matching profiles, if found
947 *
948 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
949 * a group have the same characteristic set. To check if there exists a VSIG
950 * which has the same characteristics as the input characteristics; this
951 * function will iterate through the XLT2 list and return the VSIG that has a
952 * matching configuration. In order to make sure that priorities are accounted
953 * for, the list must match exactly, including the order in which the
954 * characteristics are listed.
955 */
956 static int
ice_find_dup_props_vsig(struct ice_hw * hw,enum ice_block blk,struct list_head * chs,u16 * vsig)957 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
958 struct list_head *chs, u16 *vsig)
959 {
960 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
961 u16 i;
962
963 for (i = 0; i < xlt2->count; i++)
964 if (xlt2->vsig_tbl[i].in_use &&
965 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
966 *vsig = ICE_VSIG_VALUE(i, hw->pf_id);
967 return 0;
968 }
969
970 return -ENOENT;
971 }
972
973 /**
974 * ice_vsig_free - free VSI group
975 * @hw: pointer to the hardware structure
976 * @blk: HW block
977 * @vsig: VSIG to remove
978 *
979 * The function will remove all VSIs associated with the input VSIG and move
980 * them to the DEFAULT_VSIG and mark the VSIG available.
981 */
ice_vsig_free(struct ice_hw * hw,enum ice_block blk,u16 vsig)982 static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
983 {
984 struct ice_vsig_prof *dtmp, *del;
985 struct ice_vsig_vsi *vsi_cur;
986 u16 idx;
987
988 idx = vsig & ICE_VSIG_IDX_M;
989 if (idx >= ICE_MAX_VSIGS)
990 return -EINVAL;
991
992 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
993 return -ENOENT;
994
995 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
996
997 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
998 /* If the VSIG has at least 1 VSI then iterate through the
999 * list and remove the VSIs before deleting the group.
1000 */
1001 if (vsi_cur) {
1002 /* remove all vsis associated with this VSIG XLT2 entry */
1003 do {
1004 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
1005
1006 vsi_cur->vsig = ICE_DEFAULT_VSIG;
1007 vsi_cur->changed = 1;
1008 vsi_cur->next_vsi = NULL;
1009 vsi_cur = tmp;
1010 } while (vsi_cur);
1011
1012 /* NULL terminate head of VSI list */
1013 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
1014 }
1015
1016 /* free characteristic list */
1017 list_for_each_entry_safe(del, dtmp,
1018 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
1019 list) {
1020 list_del(&del->list);
1021 devm_kfree(ice_hw_to_dev(hw), del);
1022 }
1023
1024 /* if VSIG characteristic list was cleared for reset
1025 * re-initialize the list head
1026 */
1027 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
1028
1029 return 0;
1030 }
1031
1032 /**
1033 * ice_vsig_remove_vsi - remove VSI from VSIG
1034 * @hw: pointer to the hardware structure
1035 * @blk: HW block
1036 * @vsi: VSI to remove
1037 * @vsig: VSI group to remove from
1038 *
1039 * The function will remove the input VSI from its VSI group and move it
1040 * to the DEFAULT_VSIG.
1041 */
1042 static int
ice_vsig_remove_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig)1043 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1044 {
1045 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
1046 u16 idx;
1047
1048 idx = vsig & ICE_VSIG_IDX_M;
1049
1050 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1051 return -EINVAL;
1052
1053 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
1054 return -ENOENT;
1055
1056 /* entry already in default VSIG, don't have to remove */
1057 if (idx == ICE_DEFAULT_VSIG)
1058 return 0;
1059
1060 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1061 if (!(*vsi_head))
1062 return -EIO;
1063
1064 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
1065 vsi_cur = (*vsi_head);
1066
1067 /* iterate the VSI list, skip over the entry to be removed */
1068 while (vsi_cur) {
1069 if (vsi_tgt == vsi_cur) {
1070 (*vsi_head) = vsi_cur->next_vsi;
1071 break;
1072 }
1073 vsi_head = &vsi_cur->next_vsi;
1074 vsi_cur = vsi_cur->next_vsi;
1075 }
1076
1077 /* verify if VSI was removed from group list */
1078 if (!vsi_cur)
1079 return -ENOENT;
1080
1081 vsi_cur->vsig = ICE_DEFAULT_VSIG;
1082 vsi_cur->changed = 1;
1083 vsi_cur->next_vsi = NULL;
1084
1085 return 0;
1086 }
1087
1088 /**
1089 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
1090 * @hw: pointer to the hardware structure
1091 * @blk: HW block
1092 * @vsi: VSI to move
1093 * @vsig: destination VSI group
1094 *
1095 * This function will move or add the input VSI to the target VSIG.
1096 * The function will find the original VSIG the VSI belongs to and
1097 * move the entry to the DEFAULT_VSIG, update the original VSIG and
1098 * then move entry to the new VSIG.
1099 */
1100 static int
ice_vsig_add_mv_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig)1101 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1102 {
1103 struct ice_vsig_vsi *tmp;
1104 u16 orig_vsig, idx;
1105 int status;
1106
1107 idx = vsig & ICE_VSIG_IDX_M;
1108
1109 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1110 return -EINVAL;
1111
1112 /* if VSIG not in use and VSIG is not default type this VSIG
1113 * doesn't exist.
1114 */
1115 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
1116 vsig != ICE_DEFAULT_VSIG)
1117 return -ENOENT;
1118
1119 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
1120 if (status)
1121 return status;
1122
1123 /* no update required if vsigs match */
1124 if (orig_vsig == vsig)
1125 return 0;
1126
1127 if (orig_vsig != ICE_DEFAULT_VSIG) {
1128 /* remove entry from orig_vsig and add to default VSIG */
1129 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
1130 if (status)
1131 return status;
1132 }
1133
1134 if (idx == ICE_DEFAULT_VSIG)
1135 return 0;
1136
1137 /* Create VSI entry and add VSIG and prop_mask values */
1138 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
1139 hw->blk[blk].xlt2.vsis[vsi].changed = 1;
1140
1141 /* Add new entry to the head of the VSIG list */
1142 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1143 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
1144 &hw->blk[blk].xlt2.vsis[vsi];
1145 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
1146 hw->blk[blk].xlt2.t[vsi] = vsig;
1147
1148 return 0;
1149 }
1150
1151 /**
1152 * ice_prof_has_mask_idx - determine if profile index masking is identical
1153 * @hw: pointer to the hardware structure
1154 * @blk: HW block
1155 * @prof: profile to check
1156 * @idx: profile index to check
1157 * @mask: mask to match
1158 */
1159 static bool
ice_prof_has_mask_idx(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 idx,u16 mask)1160 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
1161 u16 mask)
1162 {
1163 bool expect_no_mask = false;
1164 bool found = false;
1165 bool match = false;
1166 u16 i;
1167
1168 /* If mask is 0x0000 or 0xffff, then there is no masking */
1169 if (mask == 0 || mask == 0xffff)
1170 expect_no_mask = true;
1171
1172 /* Scan the enabled masks on this profile, for the specified idx */
1173 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
1174 hw->blk[blk].masks.count; i++)
1175 if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
1176 if (hw->blk[blk].masks.masks[i].in_use &&
1177 hw->blk[blk].masks.masks[i].idx == idx) {
1178 found = true;
1179 if (hw->blk[blk].masks.masks[i].mask == mask)
1180 match = true;
1181 break;
1182 }
1183
1184 if (expect_no_mask) {
1185 if (found)
1186 return false;
1187 } else {
1188 if (!match)
1189 return false;
1190 }
1191
1192 return true;
1193 }
1194
1195 /**
1196 * ice_prof_has_mask - determine if profile masking is identical
1197 * @hw: pointer to the hardware structure
1198 * @blk: HW block
1199 * @prof: profile to check
1200 * @masks: masks to match
1201 */
1202 static bool
ice_prof_has_mask(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 * masks)1203 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
1204 {
1205 u16 i;
1206
1207 /* es->mask_ena[prof] will have the mask */
1208 for (i = 0; i < hw->blk[blk].es.fvw; i++)
1209 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
1210 return false;
1211
1212 return true;
1213 }
1214
1215 /**
1216 * ice_find_prof_id_with_mask - find profile ID for a given field vector
1217 * @hw: pointer to the hardware structure
1218 * @blk: HW block
1219 * @fv: field vector to search for
1220 * @masks: masks for FV
1221 * @symm: symmetric setting for RSS flows
1222 * @prof_id: receives the profile ID
1223 */
1224 static int
ice_find_prof_id_with_mask(struct ice_hw * hw,enum ice_block blk,struct ice_fv_word * fv,u16 * masks,bool symm,u8 * prof_id)1225 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
1226 struct ice_fv_word *fv, u16 *masks, bool symm,
1227 u8 *prof_id)
1228 {
1229 struct ice_es *es = &hw->blk[blk].es;
1230 u8 i;
1231
1232 /* For FD, we don't want to re-use a existed profile with the same
1233 * field vector and mask. This will cause rule interference.
1234 */
1235 if (blk == ICE_BLK_FD)
1236 return -ENOENT;
1237
1238 for (i = 0; i < (u8)es->count; i++) {
1239 u16 off = i * es->fvw;
1240
1241 if (blk == ICE_BLK_RSS && es->symm[i] != symm)
1242 continue;
1243
1244 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
1245 continue;
1246
1247 /* check if masks settings are the same for this profile */
1248 if (masks && !ice_prof_has_mask(hw, blk, i, masks))
1249 continue;
1250
1251 *prof_id = i;
1252 return 0;
1253 }
1254
1255 return -ENOENT;
1256 }
1257
1258 /**
1259 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
1260 * @blk: the block type
1261 * @rsrc_type: pointer to variable to receive the resource type
1262 */
ice_prof_id_rsrc_type(enum ice_block blk,u16 * rsrc_type)1263 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1264 {
1265 switch (blk) {
1266 case ICE_BLK_FD:
1267 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
1268 break;
1269 case ICE_BLK_RSS:
1270 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
1271 break;
1272 default:
1273 return false;
1274 }
1275 return true;
1276 }
1277
1278 /**
1279 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
1280 * @blk: the block type
1281 * @rsrc_type: pointer to variable to receive the resource type
1282 */
ice_tcam_ent_rsrc_type(enum ice_block blk,u16 * rsrc_type)1283 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1284 {
1285 switch (blk) {
1286 case ICE_BLK_FD:
1287 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
1288 break;
1289 case ICE_BLK_RSS:
1290 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
1291 break;
1292 default:
1293 return false;
1294 }
1295 return true;
1296 }
1297
1298 /**
1299 * ice_alloc_tcam_ent - allocate hardware TCAM entry
1300 * @hw: pointer to the HW struct
1301 * @blk: the block to allocate the TCAM for
1302 * @btm: true to allocate from bottom of table, false to allocate from top
1303 * @tcam_idx: pointer to variable to receive the TCAM entry
1304 *
1305 * This function allocates a new entry in a Profile ID TCAM for a specific
1306 * block.
1307 */
1308 static int
ice_alloc_tcam_ent(struct ice_hw * hw,enum ice_block blk,bool btm,u16 * tcam_idx)1309 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
1310 u16 *tcam_idx)
1311 {
1312 u16 res_type;
1313
1314 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1315 return -EINVAL;
1316
1317 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
1318 }
1319
1320 /**
1321 * ice_free_tcam_ent - free hardware TCAM entry
1322 * @hw: pointer to the HW struct
1323 * @blk: the block from which to free the TCAM entry
1324 * @tcam_idx: the TCAM entry to free
1325 *
1326 * This function frees an entry in a Profile ID TCAM for a specific block.
1327 */
1328 static int
ice_free_tcam_ent(struct ice_hw * hw,enum ice_block blk,u16 tcam_idx)1329 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
1330 {
1331 u16 res_type;
1332
1333 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1334 return -EINVAL;
1335
1336 return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
1337 }
1338
1339 /**
1340 * ice_alloc_prof_id - allocate profile ID
1341 * @hw: pointer to the HW struct
1342 * @blk: the block to allocate the profile ID for
1343 * @prof_id: pointer to variable to receive the profile ID
1344 *
1345 * This function allocates a new profile ID, which also corresponds to a Field
1346 * Vector (Extraction Sequence) entry.
1347 */
ice_alloc_prof_id(struct ice_hw * hw,enum ice_block blk,u8 * prof_id)1348 static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
1349 {
1350 u16 res_type;
1351 u16 get_prof;
1352 int status;
1353
1354 if (!ice_prof_id_rsrc_type(blk, &res_type))
1355 return -EINVAL;
1356
1357 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
1358 if (!status)
1359 *prof_id = (u8)get_prof;
1360
1361 return status;
1362 }
1363
1364 /**
1365 * ice_free_prof_id - free profile ID
1366 * @hw: pointer to the HW struct
1367 * @blk: the block from which to free the profile ID
1368 * @prof_id: the profile ID to free
1369 *
1370 * This function frees a profile ID, which also corresponds to a Field Vector.
1371 */
ice_free_prof_id(struct ice_hw * hw,enum ice_block blk,u8 prof_id)1372 static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1373 {
1374 u16 tmp_prof_id = (u16)prof_id;
1375 u16 res_type;
1376
1377 if (!ice_prof_id_rsrc_type(blk, &res_type))
1378 return -EINVAL;
1379
1380 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
1381 }
1382
1383 /**
1384 * ice_prof_inc_ref - increment reference count for profile
1385 * @hw: pointer to the HW struct
1386 * @blk: the block from which to free the profile ID
1387 * @prof_id: the profile ID for which to increment the reference count
1388 */
ice_prof_inc_ref(struct ice_hw * hw,enum ice_block blk,u8 prof_id)1389 static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1390 {
1391 if (prof_id > hw->blk[blk].es.count)
1392 return -EINVAL;
1393
1394 hw->blk[blk].es.ref_count[prof_id]++;
1395
1396 return 0;
1397 }
1398
1399 /**
1400 * ice_write_prof_mask_reg - write profile mask register
1401 * @hw: pointer to the HW struct
1402 * @blk: hardware block
1403 * @mask_idx: mask index
1404 * @idx: index of the FV which will use the mask
1405 * @mask: the 16-bit mask
1406 */
1407 static void
ice_write_prof_mask_reg(struct ice_hw * hw,enum ice_block blk,u16 mask_idx,u16 idx,u16 mask)1408 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
1409 u16 idx, u16 mask)
1410 {
1411 u32 offset;
1412 u32 val;
1413
1414 switch (blk) {
1415 case ICE_BLK_RSS:
1416 offset = GLQF_HMASK(mask_idx);
1417 val = FIELD_PREP(GLQF_HMASK_MSK_INDEX_M, idx);
1418 val |= FIELD_PREP(GLQF_HMASK_MASK_M, mask);
1419 break;
1420 case ICE_BLK_FD:
1421 offset = GLQF_FDMASK(mask_idx);
1422 val = FIELD_PREP(GLQF_FDMASK_MSK_INDEX_M, idx);
1423 val |= FIELD_PREP(GLQF_FDMASK_MASK_M, mask);
1424 break;
1425 default:
1426 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
1427 blk);
1428 return;
1429 }
1430
1431 wr32(hw, offset, val);
1432 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
1433 blk, idx, offset, val);
1434 }
1435
1436 /**
1437 * ice_write_prof_mask_enable_res - write profile mask enable register
1438 * @hw: pointer to the HW struct
1439 * @blk: hardware block
1440 * @prof_id: profile ID
1441 * @enable_mask: enable mask
1442 */
1443 static void
ice_write_prof_mask_enable_res(struct ice_hw * hw,enum ice_block blk,u16 prof_id,u32 enable_mask)1444 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
1445 u16 prof_id, u32 enable_mask)
1446 {
1447 u32 offset;
1448
1449 switch (blk) {
1450 case ICE_BLK_RSS:
1451 offset = GLQF_HMASK_SEL(prof_id);
1452 break;
1453 case ICE_BLK_FD:
1454 offset = GLQF_FDMASK_SEL(prof_id);
1455 break;
1456 default:
1457 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
1458 blk);
1459 return;
1460 }
1461
1462 wr32(hw, offset, enable_mask);
1463 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
1464 blk, prof_id, offset, enable_mask);
1465 }
1466
1467 /**
1468 * ice_init_prof_masks - initial prof masks
1469 * @hw: pointer to the HW struct
1470 * @blk: hardware block
1471 */
ice_init_prof_masks(struct ice_hw * hw,enum ice_block blk)1472 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
1473 {
1474 u16 per_pf;
1475 u16 i;
1476
1477 mutex_init(&hw->blk[blk].masks.lock);
1478
1479 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
1480
1481 hw->blk[blk].masks.count = per_pf;
1482 hw->blk[blk].masks.first = hw->pf_id * per_pf;
1483
1484 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
1485
1486 for (i = hw->blk[blk].masks.first;
1487 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
1488 ice_write_prof_mask_reg(hw, blk, i, 0, 0);
1489 }
1490
1491 /**
1492 * ice_init_all_prof_masks - initialize all prof masks
1493 * @hw: pointer to the HW struct
1494 */
ice_init_all_prof_masks(struct ice_hw * hw)1495 static void ice_init_all_prof_masks(struct ice_hw *hw)
1496 {
1497 ice_init_prof_masks(hw, ICE_BLK_RSS);
1498 ice_init_prof_masks(hw, ICE_BLK_FD);
1499 }
1500
1501 /**
1502 * ice_alloc_prof_mask - allocate profile mask
1503 * @hw: pointer to the HW struct
1504 * @blk: hardware block
1505 * @idx: index of FV which will use the mask
1506 * @mask: the 16-bit mask
1507 * @mask_idx: variable to receive the mask index
1508 */
1509 static int
ice_alloc_prof_mask(struct ice_hw * hw,enum ice_block blk,u16 idx,u16 mask,u16 * mask_idx)1510 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
1511 u16 *mask_idx)
1512 {
1513 bool found_unused = false, found_copy = false;
1514 u16 unused_idx = 0, copy_idx = 0;
1515 int status = -ENOSPC;
1516 u16 i;
1517
1518 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1519 return -EINVAL;
1520
1521 mutex_lock(&hw->blk[blk].masks.lock);
1522
1523 for (i = hw->blk[blk].masks.first;
1524 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
1525 if (hw->blk[blk].masks.masks[i].in_use) {
1526 /* if mask is in use and it exactly duplicates the
1527 * desired mask and index, then in can be reused
1528 */
1529 if (hw->blk[blk].masks.masks[i].mask == mask &&
1530 hw->blk[blk].masks.masks[i].idx == idx) {
1531 found_copy = true;
1532 copy_idx = i;
1533 break;
1534 }
1535 } else {
1536 /* save off unused index, but keep searching in case
1537 * there is an exact match later on
1538 */
1539 if (!found_unused) {
1540 found_unused = true;
1541 unused_idx = i;
1542 }
1543 }
1544
1545 if (found_copy)
1546 i = copy_idx;
1547 else if (found_unused)
1548 i = unused_idx;
1549 else
1550 goto err_ice_alloc_prof_mask;
1551
1552 /* update mask for a new entry */
1553 if (found_unused) {
1554 hw->blk[blk].masks.masks[i].in_use = true;
1555 hw->blk[blk].masks.masks[i].mask = mask;
1556 hw->blk[blk].masks.masks[i].idx = idx;
1557 hw->blk[blk].masks.masks[i].ref = 0;
1558 ice_write_prof_mask_reg(hw, blk, i, idx, mask);
1559 }
1560
1561 hw->blk[blk].masks.masks[i].ref++;
1562 *mask_idx = i;
1563 status = 0;
1564
1565 err_ice_alloc_prof_mask:
1566 mutex_unlock(&hw->blk[blk].masks.lock);
1567
1568 return status;
1569 }
1570
1571 /**
1572 * ice_free_prof_mask - free profile mask
1573 * @hw: pointer to the HW struct
1574 * @blk: hardware block
1575 * @mask_idx: index of mask
1576 */
1577 static int
ice_free_prof_mask(struct ice_hw * hw,enum ice_block blk,u16 mask_idx)1578 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
1579 {
1580 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1581 return -EINVAL;
1582
1583 if (!(mask_idx >= hw->blk[blk].masks.first &&
1584 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
1585 return -ENOENT;
1586
1587 mutex_lock(&hw->blk[blk].masks.lock);
1588
1589 if (!hw->blk[blk].masks.masks[mask_idx].in_use)
1590 goto exit_ice_free_prof_mask;
1591
1592 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
1593 hw->blk[blk].masks.masks[mask_idx].ref--;
1594 goto exit_ice_free_prof_mask;
1595 }
1596
1597 /* remove mask */
1598 hw->blk[blk].masks.masks[mask_idx].in_use = false;
1599 hw->blk[blk].masks.masks[mask_idx].mask = 0;
1600 hw->blk[blk].masks.masks[mask_idx].idx = 0;
1601
1602 /* update mask as unused entry */
1603 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
1604 mask_idx);
1605 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
1606
1607 exit_ice_free_prof_mask:
1608 mutex_unlock(&hw->blk[blk].masks.lock);
1609
1610 return 0;
1611 }
1612
1613 /**
1614 * ice_free_prof_masks - free all profile masks for a profile
1615 * @hw: pointer to the HW struct
1616 * @blk: hardware block
1617 * @prof_id: profile ID
1618 */
1619 static int
ice_free_prof_masks(struct ice_hw * hw,enum ice_block blk,u16 prof_id)1620 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
1621 {
1622 u32 mask_bm;
1623 u16 i;
1624
1625 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1626 return -EINVAL;
1627
1628 mask_bm = hw->blk[blk].es.mask_ena[prof_id];
1629 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
1630 if (mask_bm & BIT(i))
1631 ice_free_prof_mask(hw, blk, i);
1632
1633 return 0;
1634 }
1635
1636 /**
1637 * ice_shutdown_prof_masks - releases lock for masking
1638 * @hw: pointer to the HW struct
1639 * @blk: hardware block
1640 *
1641 * This should be called before unloading the driver
1642 */
ice_shutdown_prof_masks(struct ice_hw * hw,enum ice_block blk)1643 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
1644 {
1645 u16 i;
1646
1647 mutex_lock(&hw->blk[blk].masks.lock);
1648
1649 for (i = hw->blk[blk].masks.first;
1650 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
1651 ice_write_prof_mask_reg(hw, blk, i, 0, 0);
1652
1653 hw->blk[blk].masks.masks[i].in_use = false;
1654 hw->blk[blk].masks.masks[i].idx = 0;
1655 hw->blk[blk].masks.masks[i].mask = 0;
1656 }
1657
1658 mutex_unlock(&hw->blk[blk].masks.lock);
1659 mutex_destroy(&hw->blk[blk].masks.lock);
1660 }
1661
1662 /**
1663 * ice_shutdown_all_prof_masks - releases all locks for masking
1664 * @hw: pointer to the HW struct
1665 *
1666 * This should be called before unloading the driver
1667 */
ice_shutdown_all_prof_masks(struct ice_hw * hw)1668 static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
1669 {
1670 ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
1671 ice_shutdown_prof_masks(hw, ICE_BLK_FD);
1672 }
1673
1674 /**
1675 * ice_update_prof_masking - set registers according to masking
1676 * @hw: pointer to the HW struct
1677 * @blk: hardware block
1678 * @prof_id: profile ID
1679 * @masks: masks
1680 */
1681 static int
ice_update_prof_masking(struct ice_hw * hw,enum ice_block blk,u16 prof_id,u16 * masks)1682 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
1683 u16 *masks)
1684 {
1685 bool err = false;
1686 u32 ena_mask = 0;
1687 u16 idx;
1688 u16 i;
1689
1690 /* Only support FD and RSS masking, otherwise nothing to be done */
1691 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1692 return 0;
1693
1694 for (i = 0; i < hw->blk[blk].es.fvw; i++)
1695 if (masks[i] && masks[i] != 0xFFFF) {
1696 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
1697 ena_mask |= BIT(idx);
1698 } else {
1699 /* not enough bitmaps */
1700 err = true;
1701 break;
1702 }
1703 }
1704
1705 if (err) {
1706 /* free any bitmaps we have allocated */
1707 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
1708 if (ena_mask & BIT(i))
1709 ice_free_prof_mask(hw, blk, i);
1710
1711 return -EIO;
1712 }
1713
1714 /* enable the masks for this profile */
1715 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
1716
1717 /* store enabled masks with profile so that they can be freed later */
1718 hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
1719
1720 return 0;
1721 }
1722
1723 /**
1724 * ice_write_es - write an extraction sequence and symmetric setting to hardware
1725 * @hw: pointer to the HW struct
1726 * @blk: the block in which to write the extraction sequence
1727 * @prof_id: the profile ID to write
1728 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
1729 * @symm: symmetric setting for RSS profiles
1730 */
1731 static void
ice_write_es(struct ice_hw * hw,enum ice_block blk,u8 prof_id,struct ice_fv_word * fv,bool symm)1732 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
1733 struct ice_fv_word *fv, bool symm)
1734 {
1735 u16 off;
1736
1737 off = prof_id * hw->blk[blk].es.fvw;
1738 if (!fv) {
1739 memset(&hw->blk[blk].es.t[off], 0,
1740 hw->blk[blk].es.fvw * sizeof(*fv));
1741 hw->blk[blk].es.written[prof_id] = false;
1742 } else {
1743 memcpy(&hw->blk[blk].es.t[off], fv,
1744 hw->blk[blk].es.fvw * sizeof(*fv));
1745 }
1746
1747 if (blk == ICE_BLK_RSS)
1748 hw->blk[blk].es.symm[prof_id] = symm;
1749 }
1750
1751 /**
1752 * ice_prof_dec_ref - decrement reference count for profile
1753 * @hw: pointer to the HW struct
1754 * @blk: the block from which to free the profile ID
1755 * @prof_id: the profile ID for which to decrement the reference count
1756 */
1757 static int
ice_prof_dec_ref(struct ice_hw * hw,enum ice_block blk,u8 prof_id)1758 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1759 {
1760 if (prof_id > hw->blk[blk].es.count)
1761 return -EINVAL;
1762
1763 if (hw->blk[blk].es.ref_count[prof_id] > 0) {
1764 if (!--hw->blk[blk].es.ref_count[prof_id]) {
1765 ice_write_es(hw, blk, prof_id, NULL, false);
1766 ice_free_prof_masks(hw, blk, prof_id);
1767 return ice_free_prof_id(hw, blk, prof_id);
1768 }
1769 }
1770
1771 return 0;
1772 }
1773
1774 /* Block / table section IDs */
1775 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
1776 /* SWITCH */
1777 { ICE_SID_XLT1_SW,
1778 ICE_SID_XLT2_SW,
1779 ICE_SID_PROFID_TCAM_SW,
1780 ICE_SID_PROFID_REDIR_SW,
1781 ICE_SID_FLD_VEC_SW
1782 },
1783
1784 /* ACL */
1785 { ICE_SID_XLT1_ACL,
1786 ICE_SID_XLT2_ACL,
1787 ICE_SID_PROFID_TCAM_ACL,
1788 ICE_SID_PROFID_REDIR_ACL,
1789 ICE_SID_FLD_VEC_ACL
1790 },
1791
1792 /* FD */
1793 { ICE_SID_XLT1_FD,
1794 ICE_SID_XLT2_FD,
1795 ICE_SID_PROFID_TCAM_FD,
1796 ICE_SID_PROFID_REDIR_FD,
1797 ICE_SID_FLD_VEC_FD
1798 },
1799
1800 /* RSS */
1801 { ICE_SID_XLT1_RSS,
1802 ICE_SID_XLT2_RSS,
1803 ICE_SID_PROFID_TCAM_RSS,
1804 ICE_SID_PROFID_REDIR_RSS,
1805 ICE_SID_FLD_VEC_RSS
1806 },
1807
1808 /* PE */
1809 { ICE_SID_XLT1_PE,
1810 ICE_SID_XLT2_PE,
1811 ICE_SID_PROFID_TCAM_PE,
1812 ICE_SID_PROFID_REDIR_PE,
1813 ICE_SID_FLD_VEC_PE
1814 }
1815 };
1816
1817 /**
1818 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
1819 * @hw: pointer to the hardware structure
1820 * @blk: the HW block to initialize
1821 */
ice_init_sw_xlt1_db(struct ice_hw * hw,enum ice_block blk)1822 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
1823 {
1824 u16 pt;
1825
1826 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
1827 u8 ptg;
1828
1829 ptg = hw->blk[blk].xlt1.t[pt];
1830 if (ptg != ICE_DEFAULT_PTG) {
1831 ice_ptg_alloc_val(hw, blk, ptg);
1832 ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
1833 }
1834 }
1835 }
1836
1837 /**
1838 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
1839 * @hw: pointer to the hardware structure
1840 * @blk: the HW block to initialize
1841 */
ice_init_sw_xlt2_db(struct ice_hw * hw,enum ice_block blk)1842 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
1843 {
1844 u16 vsi;
1845
1846 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
1847 u16 vsig;
1848
1849 vsig = hw->blk[blk].xlt2.t[vsi];
1850 if (vsig) {
1851 ice_vsig_alloc_val(hw, blk, vsig);
1852 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
1853 /* no changes at this time, since this has been
1854 * initialized from the original package
1855 */
1856 hw->blk[blk].xlt2.vsis[vsi].changed = 0;
1857 }
1858 }
1859 }
1860
1861 /**
1862 * ice_init_sw_db - init software database from HW tables
1863 * @hw: pointer to the hardware structure
1864 */
ice_init_sw_db(struct ice_hw * hw)1865 static void ice_init_sw_db(struct ice_hw *hw)
1866 {
1867 u16 i;
1868
1869 for (i = 0; i < ICE_BLK_COUNT; i++) {
1870 ice_init_sw_xlt1_db(hw, (enum ice_block)i);
1871 ice_init_sw_xlt2_db(hw, (enum ice_block)i);
1872 }
1873 }
1874
1875 /**
1876 * ice_fill_tbl - Reads content of a single table type into database
1877 * @hw: pointer to the hardware structure
1878 * @block_id: Block ID of the table to copy
1879 * @sid: Section ID of the table to copy
1880 *
1881 * Will attempt to read the entire content of a given table of a single block
1882 * into the driver database. We assume that the buffer will always
1883 * be as large or larger than the data contained in the package. If
1884 * this condition is not met, there is most likely an error in the package
1885 * contents.
1886 */
ice_fill_tbl(struct ice_hw * hw,enum ice_block block_id,u32 sid)1887 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
1888 {
1889 u32 dst_len, sect_len, offset = 0;
1890 struct ice_prof_redir_section *pr;
1891 struct ice_prof_id_section *pid;
1892 struct ice_xlt1_section *xlt1;
1893 struct ice_xlt2_section *xlt2;
1894 struct ice_sw_fv_section *es;
1895 struct ice_pkg_enum state;
1896 u8 *src, *dst;
1897 void *sect;
1898
1899 /* if the HW segment pointer is null then the first iteration of
1900 * ice_pkg_enum_section() will fail. In this case the HW tables will
1901 * not be filled and return success.
1902 */
1903 if (!hw->seg) {
1904 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
1905 return;
1906 }
1907
1908 memset(&state, 0, sizeof(state));
1909
1910 sect = ice_pkg_enum_section(hw->seg, &state, sid);
1911
1912 while (sect) {
1913 switch (sid) {
1914 case ICE_SID_XLT1_SW:
1915 case ICE_SID_XLT1_FD:
1916 case ICE_SID_XLT1_RSS:
1917 case ICE_SID_XLT1_ACL:
1918 case ICE_SID_XLT1_PE:
1919 xlt1 = sect;
1920 src = xlt1->value;
1921 sect_len = le16_to_cpu(xlt1->count) *
1922 sizeof(*hw->blk[block_id].xlt1.t);
1923 dst = hw->blk[block_id].xlt1.t;
1924 dst_len = hw->blk[block_id].xlt1.count *
1925 sizeof(*hw->blk[block_id].xlt1.t);
1926 break;
1927 case ICE_SID_XLT2_SW:
1928 case ICE_SID_XLT2_FD:
1929 case ICE_SID_XLT2_RSS:
1930 case ICE_SID_XLT2_ACL:
1931 case ICE_SID_XLT2_PE:
1932 xlt2 = sect;
1933 src = (__force u8 *)xlt2->value;
1934 sect_len = le16_to_cpu(xlt2->count) *
1935 sizeof(*hw->blk[block_id].xlt2.t);
1936 dst = (u8 *)hw->blk[block_id].xlt2.t;
1937 dst_len = hw->blk[block_id].xlt2.count *
1938 sizeof(*hw->blk[block_id].xlt2.t);
1939 break;
1940 case ICE_SID_PROFID_TCAM_SW:
1941 case ICE_SID_PROFID_TCAM_FD:
1942 case ICE_SID_PROFID_TCAM_RSS:
1943 case ICE_SID_PROFID_TCAM_ACL:
1944 case ICE_SID_PROFID_TCAM_PE:
1945 pid = sect;
1946 src = (u8 *)pid->entry;
1947 sect_len = le16_to_cpu(pid->count) *
1948 sizeof(*hw->blk[block_id].prof.t);
1949 dst = (u8 *)hw->blk[block_id].prof.t;
1950 dst_len = hw->blk[block_id].prof.count *
1951 sizeof(*hw->blk[block_id].prof.t);
1952 break;
1953 case ICE_SID_PROFID_REDIR_SW:
1954 case ICE_SID_PROFID_REDIR_FD:
1955 case ICE_SID_PROFID_REDIR_RSS:
1956 case ICE_SID_PROFID_REDIR_ACL:
1957 case ICE_SID_PROFID_REDIR_PE:
1958 pr = sect;
1959 src = pr->redir_value;
1960 sect_len = le16_to_cpu(pr->count) *
1961 sizeof(*hw->blk[block_id].prof_redir.t);
1962 dst = hw->blk[block_id].prof_redir.t;
1963 dst_len = hw->blk[block_id].prof_redir.count *
1964 sizeof(*hw->blk[block_id].prof_redir.t);
1965 break;
1966 case ICE_SID_FLD_VEC_SW:
1967 case ICE_SID_FLD_VEC_FD:
1968 case ICE_SID_FLD_VEC_RSS:
1969 case ICE_SID_FLD_VEC_ACL:
1970 case ICE_SID_FLD_VEC_PE:
1971 es = sect;
1972 src = (u8 *)es->fv;
1973 sect_len = (u32)(le16_to_cpu(es->count) *
1974 hw->blk[block_id].es.fvw) *
1975 sizeof(*hw->blk[block_id].es.t);
1976 dst = (u8 *)hw->blk[block_id].es.t;
1977 dst_len = (u32)(hw->blk[block_id].es.count *
1978 hw->blk[block_id].es.fvw) *
1979 sizeof(*hw->blk[block_id].es.t);
1980 break;
1981 default:
1982 return;
1983 }
1984
1985 /* if the section offset exceeds destination length, terminate
1986 * table fill.
1987 */
1988 if (offset > dst_len)
1989 return;
1990
1991 /* if the sum of section size and offset exceed destination size
1992 * then we are out of bounds of the HW table size for that PF.
1993 * Changing section length to fill the remaining table space
1994 * of that PF.
1995 */
1996 if ((offset + sect_len) > dst_len)
1997 sect_len = dst_len - offset;
1998
1999 memcpy(dst + offset, src, sect_len);
2000 offset += sect_len;
2001 sect = ice_pkg_enum_section(NULL, &state, sid);
2002 }
2003 }
2004
2005 /**
2006 * ice_fill_blk_tbls - Read package context for tables
2007 * @hw: pointer to the hardware structure
2008 *
2009 * Reads the current package contents and populates the driver
2010 * database with the data iteratively for all advanced feature
2011 * blocks. Assume that the HW tables have been allocated.
2012 */
ice_fill_blk_tbls(struct ice_hw * hw)2013 void ice_fill_blk_tbls(struct ice_hw *hw)
2014 {
2015 u8 i;
2016
2017 for (i = 0; i < ICE_BLK_COUNT; i++) {
2018 enum ice_block blk_id = (enum ice_block)i;
2019
2020 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
2021 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
2022 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
2023 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
2024 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
2025 }
2026
2027 ice_init_sw_db(hw);
2028 }
2029
2030 /**
2031 * ice_free_prof_map - free profile map
2032 * @hw: pointer to the hardware structure
2033 * @blk_idx: HW block index
2034 */
ice_free_prof_map(struct ice_hw * hw,u8 blk_idx)2035 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
2036 {
2037 struct ice_es *es = &hw->blk[blk_idx].es;
2038 struct ice_prof_map *del, *tmp;
2039
2040 mutex_lock(&es->prof_map_lock);
2041 list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
2042 list_del(&del->list);
2043 devm_kfree(ice_hw_to_dev(hw), del);
2044 }
2045 INIT_LIST_HEAD(&es->prof_map);
2046 mutex_unlock(&es->prof_map_lock);
2047 }
2048
2049 /**
2050 * ice_free_flow_profs - free flow profile entries
2051 * @hw: pointer to the hardware structure
2052 * @blk_idx: HW block index
2053 */
ice_free_flow_profs(struct ice_hw * hw,u8 blk_idx)2054 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
2055 {
2056 struct ice_flow_prof *p, *tmp;
2057
2058 mutex_lock(&hw->fl_profs_locks[blk_idx]);
2059 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
2060 struct ice_flow_entry *e, *t;
2061
2062 list_for_each_entry_safe(e, t, &p->entries, l_entry)
2063 ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
2064 ICE_FLOW_ENTRY_HNDL(e));
2065
2066 list_del(&p->l_entry);
2067
2068 mutex_destroy(&p->entries_lock);
2069 devm_kfree(ice_hw_to_dev(hw), p);
2070 }
2071 mutex_unlock(&hw->fl_profs_locks[blk_idx]);
2072
2073 /* if driver is in reset and tables are being cleared
2074 * re-initialize the flow profile list heads
2075 */
2076 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2077 }
2078
2079 /**
2080 * ice_free_vsig_tbl - free complete VSIG table entries
2081 * @hw: pointer to the hardware structure
2082 * @blk: the HW block on which to free the VSIG table entries
2083 */
ice_free_vsig_tbl(struct ice_hw * hw,enum ice_block blk)2084 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
2085 {
2086 u16 i;
2087
2088 if (!hw->blk[blk].xlt2.vsig_tbl)
2089 return;
2090
2091 for (i = 1; i < ICE_MAX_VSIGS; i++)
2092 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2093 ice_vsig_free(hw, blk, i);
2094 }
2095
2096 /**
2097 * ice_free_hw_tbls - free hardware table memory
2098 * @hw: pointer to the hardware structure
2099 */
ice_free_hw_tbls(struct ice_hw * hw)2100 void ice_free_hw_tbls(struct ice_hw *hw)
2101 {
2102 struct ice_rss_cfg *r, *rt;
2103 u8 i;
2104
2105 for (i = 0; i < ICE_BLK_COUNT; i++) {
2106 if (hw->blk[i].is_list_init) {
2107 struct ice_es *es = &hw->blk[i].es;
2108
2109 ice_free_prof_map(hw, i);
2110 mutex_destroy(&es->prof_map_lock);
2111
2112 ice_free_flow_profs(hw, i);
2113 mutex_destroy(&hw->fl_profs_locks[i]);
2114
2115 hw->blk[i].is_list_init = false;
2116 }
2117 ice_free_vsig_tbl(hw, (enum ice_block)i);
2118 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
2119 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
2120 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
2121 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
2122 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
2123 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
2124 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
2125 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
2126 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
2127 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
2128 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.symm);
2129 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
2130 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
2131 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_id.id);
2132 }
2133
2134 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
2135 list_del(&r->l_entry);
2136 devm_kfree(ice_hw_to_dev(hw), r);
2137 }
2138 mutex_destroy(&hw->rss_locks);
2139 ice_shutdown_all_prof_masks(hw);
2140 memset(hw->blk, 0, sizeof(hw->blk));
2141 }
2142
2143 /**
2144 * ice_init_flow_profs - init flow profile locks and list heads
2145 * @hw: pointer to the hardware structure
2146 * @blk_idx: HW block index
2147 */
ice_init_flow_profs(struct ice_hw * hw,u8 blk_idx)2148 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
2149 {
2150 mutex_init(&hw->fl_profs_locks[blk_idx]);
2151 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2152 }
2153
2154 /**
2155 * ice_clear_hw_tbls - clear HW tables and flow profiles
2156 * @hw: pointer to the hardware structure
2157 */
ice_clear_hw_tbls(struct ice_hw * hw)2158 void ice_clear_hw_tbls(struct ice_hw *hw)
2159 {
2160 u8 i;
2161
2162 for (i = 0; i < ICE_BLK_COUNT; i++) {
2163 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2164 struct ice_prof_id *prof_id = &hw->blk[i].prof_id;
2165 struct ice_prof_tcam *prof = &hw->blk[i].prof;
2166 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2167 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2168 struct ice_es *es = &hw->blk[i].es;
2169
2170 if (hw->blk[i].is_list_init) {
2171 ice_free_prof_map(hw, i);
2172 ice_free_flow_profs(hw, i);
2173 }
2174
2175 ice_free_vsig_tbl(hw, (enum ice_block)i);
2176
2177 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
2178 memset(xlt1->ptg_tbl, 0,
2179 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
2180 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
2181
2182 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
2183 memset(xlt2->vsig_tbl, 0,
2184 xlt2->count * sizeof(*xlt2->vsig_tbl));
2185 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
2186
2187 memset(prof->t, 0, prof->count * sizeof(*prof->t));
2188 memset(prof_redir->t, 0,
2189 prof_redir->count * sizeof(*prof_redir->t));
2190
2191 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
2192 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
2193 memset(es->symm, 0, es->count * sizeof(*es->symm));
2194 memset(es->written, 0, es->count * sizeof(*es->written));
2195 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
2196
2197 memset(prof_id->id, 0, prof_id->count * sizeof(*prof_id->id));
2198 }
2199 }
2200
2201 /**
2202 * ice_init_hw_tbls - init hardware table memory
2203 * @hw: pointer to the hardware structure
2204 */
ice_init_hw_tbls(struct ice_hw * hw)2205 int ice_init_hw_tbls(struct ice_hw *hw)
2206 {
2207 u8 i;
2208
2209 mutex_init(&hw->rss_locks);
2210 INIT_LIST_HEAD(&hw->rss_list_head);
2211 ice_init_all_prof_masks(hw);
2212 for (i = 0; i < ICE_BLK_COUNT; i++) {
2213 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2214 struct ice_prof_id *prof_id = &hw->blk[i].prof_id;
2215 struct ice_prof_tcam *prof = &hw->blk[i].prof;
2216 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2217 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2218 struct ice_es *es = &hw->blk[i].es;
2219 u16 j;
2220
2221 if (hw->blk[i].is_list_init)
2222 continue;
2223
2224 ice_init_flow_profs(hw, i);
2225 mutex_init(&es->prof_map_lock);
2226 INIT_LIST_HEAD(&es->prof_map);
2227 hw->blk[i].is_list_init = true;
2228
2229 hw->blk[i].overwrite = blk_sizes[i].overwrite;
2230 es->reverse = blk_sizes[i].reverse;
2231
2232 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
2233 xlt1->count = blk_sizes[i].xlt1;
2234
2235 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
2236 sizeof(*xlt1->ptypes), GFP_KERNEL);
2237
2238 if (!xlt1->ptypes)
2239 goto err;
2240
2241 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
2242 sizeof(*xlt1->ptg_tbl),
2243 GFP_KERNEL);
2244
2245 if (!xlt1->ptg_tbl)
2246 goto err;
2247
2248 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
2249 sizeof(*xlt1->t), GFP_KERNEL);
2250 if (!xlt1->t)
2251 goto err;
2252
2253 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
2254 xlt2->count = blk_sizes[i].xlt2;
2255
2256 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2257 sizeof(*xlt2->vsis), GFP_KERNEL);
2258
2259 if (!xlt2->vsis)
2260 goto err;
2261
2262 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2263 sizeof(*xlt2->vsig_tbl),
2264 GFP_KERNEL);
2265 if (!xlt2->vsig_tbl)
2266 goto err;
2267
2268 for (j = 0; j < xlt2->count; j++)
2269 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
2270
2271 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2272 sizeof(*xlt2->t), GFP_KERNEL);
2273 if (!xlt2->t)
2274 goto err;
2275
2276 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
2277 prof->count = blk_sizes[i].prof_tcam;
2278 prof->max_prof_id = blk_sizes[i].prof_id;
2279 prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
2280 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
2281 sizeof(*prof->t), GFP_KERNEL);
2282
2283 if (!prof->t)
2284 goto err;
2285
2286 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
2287 prof_redir->count = blk_sizes[i].prof_redir;
2288 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
2289 prof_redir->count,
2290 sizeof(*prof_redir->t),
2291 GFP_KERNEL);
2292
2293 if (!prof_redir->t)
2294 goto err;
2295
2296 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
2297 es->count = blk_sizes[i].es;
2298 es->fvw = blk_sizes[i].fvw;
2299 es->t = devm_kcalloc(ice_hw_to_dev(hw),
2300 (u32)(es->count * es->fvw),
2301 sizeof(*es->t), GFP_KERNEL);
2302 if (!es->t)
2303 goto err;
2304
2305 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2306 sizeof(*es->ref_count),
2307 GFP_KERNEL);
2308 if (!es->ref_count)
2309 goto err;
2310
2311 es->symm = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2312 sizeof(*es->symm), GFP_KERNEL);
2313 if (!es->symm)
2314 goto err;
2315
2316 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2317 sizeof(*es->written), GFP_KERNEL);
2318 if (!es->written)
2319 goto err;
2320
2321 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2322 sizeof(*es->mask_ena), GFP_KERNEL);
2323 if (!es->mask_ena)
2324 goto err;
2325
2326 prof_id->count = blk_sizes[i].prof_id;
2327 prof_id->id = devm_kcalloc(ice_hw_to_dev(hw), prof_id->count,
2328 sizeof(*prof_id->id), GFP_KERNEL);
2329 if (!prof_id->id)
2330 goto err;
2331 }
2332 return 0;
2333
2334 err:
2335 ice_free_hw_tbls(hw);
2336 return -ENOMEM;
2337 }
2338
2339 /**
2340 * ice_prof_gen_key - generate profile ID key
2341 * @hw: pointer to the HW struct
2342 * @blk: the block in which to write profile ID to
2343 * @ptg: packet type group (PTG) portion of key
2344 * @vsig: VSIG portion of key
2345 * @cdid: CDID portion of key
2346 * @flags: flag portion of key
2347 * @vl_msk: valid mask
2348 * @dc_msk: don't care mask
2349 * @nm_msk: never match mask
2350 * @key: output of profile ID key
2351 */
2352 static int
ice_prof_gen_key(struct ice_hw * hw,enum ice_block blk,u8 ptg,u16 vsig,u8 cdid,u16 flags,u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],u8 key[ICE_TCAM_KEY_SZ])2353 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
2354 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2355 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
2356 u8 key[ICE_TCAM_KEY_SZ])
2357 {
2358 struct ice_prof_id_key inkey;
2359
2360 inkey.xlt1 = ptg;
2361 inkey.xlt2_cdid = cpu_to_le16(vsig);
2362 inkey.flags = cpu_to_le16(flags);
2363
2364 switch (hw->blk[blk].prof.cdid_bits) {
2365 case 0:
2366 break;
2367 case 2:
2368 #define ICE_CD_2_M 0xC000U
2369 #define ICE_CD_2_S 14
2370 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
2371 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
2372 break;
2373 case 4:
2374 #define ICE_CD_4_M 0xF000U
2375 #define ICE_CD_4_S 12
2376 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
2377 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
2378 break;
2379 case 8:
2380 #define ICE_CD_8_M 0xFF00U
2381 #define ICE_CD_8_S 16
2382 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
2383 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
2384 break;
2385 default:
2386 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
2387 break;
2388 }
2389
2390 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
2391 nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
2392 }
2393
2394 /**
2395 * ice_tcam_write_entry - write TCAM entry
2396 * @hw: pointer to the HW struct
2397 * @blk: the block in which to write profile ID to
2398 * @idx: the entry index to write to
2399 * @prof_id: profile ID
2400 * @ptg: packet type group (PTG) portion of key
2401 * @vsig: VSIG portion of key
2402 * @cdid: CDID portion of key
2403 * @flags: flag portion of key
2404 * @vl_msk: valid mask
2405 * @dc_msk: don't care mask
2406 * @nm_msk: never match mask
2407 */
2408 static int
ice_tcam_write_entry(struct ice_hw * hw,enum ice_block blk,u16 idx,u8 prof_id,u8 ptg,u16 vsig,u8 cdid,u16 flags,u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])2409 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
2410 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
2411 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2412 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
2413 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
2414 {
2415 struct ice_prof_tcam_entry;
2416 int status;
2417
2418 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
2419 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
2420 if (!status) {
2421 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
2422 hw->blk[blk].prof.t[idx].prof_id = prof_id;
2423 }
2424
2425 return status;
2426 }
2427
2428 /**
2429 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
2430 * @hw: pointer to the hardware structure
2431 * @blk: HW block
2432 * @vsig: VSIG to query
2433 * @refs: pointer to variable to receive the reference count
2434 */
2435 static int
ice_vsig_get_ref(struct ice_hw * hw,enum ice_block blk,u16 vsig,u16 * refs)2436 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
2437 {
2438 u16 idx = vsig & ICE_VSIG_IDX_M;
2439 struct ice_vsig_vsi *ptr;
2440
2441 *refs = 0;
2442
2443 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2444 return -ENOENT;
2445
2446 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2447 while (ptr) {
2448 (*refs)++;
2449 ptr = ptr->next_vsi;
2450 }
2451
2452 return 0;
2453 }
2454
2455 /**
2456 * ice_has_prof_vsig - check to see if VSIG has a specific profile
2457 * @hw: pointer to the hardware structure
2458 * @blk: HW block
2459 * @vsig: VSIG to check against
2460 * @hdl: profile handle
2461 */
2462 static bool
ice_has_prof_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl)2463 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
2464 {
2465 u16 idx = vsig & ICE_VSIG_IDX_M;
2466 struct ice_vsig_prof *ent;
2467
2468 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2469 list)
2470 if (ent->profile_cookie == hdl)
2471 return true;
2472
2473 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
2474 vsig);
2475 return false;
2476 }
2477
2478 /**
2479 * ice_prof_bld_es - build profile ID extraction sequence changes
2480 * @hw: pointer to the HW struct
2481 * @blk: hardware block
2482 * @bld: the update package buffer build to add to
2483 * @chgs: the list of changes to make in hardware
2484 */
2485 static int
ice_prof_bld_es(struct ice_hw * hw,enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)2486 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
2487 struct ice_buf_build *bld, struct list_head *chgs)
2488 {
2489 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
2490 struct ice_chs_chg *tmp;
2491
2492 list_for_each_entry(tmp, chgs, list_entry)
2493 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
2494 u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
2495 struct ice_pkg_es *p;
2496 u32 id;
2497
2498 id = ice_sect_id(blk, ICE_VEC_TBL);
2499 p = ice_pkg_buf_alloc_section(bld, id,
2500 struct_size(p, es, 1) +
2501 vec_size -
2502 sizeof(p->es[0]));
2503
2504 if (!p)
2505 return -ENOSPC;
2506
2507 p->count = cpu_to_le16(1);
2508 p->offset = cpu_to_le16(tmp->prof_id);
2509
2510 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
2511 }
2512
2513 return 0;
2514 }
2515
2516 /**
2517 * ice_prof_bld_tcam - build profile ID TCAM changes
2518 * @hw: pointer to the HW struct
2519 * @blk: hardware block
2520 * @bld: the update package buffer build to add to
2521 * @chgs: the list of changes to make in hardware
2522 */
2523 static int
ice_prof_bld_tcam(struct ice_hw * hw,enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)2524 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
2525 struct ice_buf_build *bld, struct list_head *chgs)
2526 {
2527 struct ice_chs_chg *tmp;
2528
2529 list_for_each_entry(tmp, chgs, list_entry)
2530 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
2531 struct ice_prof_id_section *p;
2532 u32 id;
2533
2534 id = ice_sect_id(blk, ICE_PROF_TCAM);
2535 p = ice_pkg_buf_alloc_section(bld, id,
2536 struct_size(p, entry, 1));
2537
2538 if (!p)
2539 return -ENOSPC;
2540
2541 p->count = cpu_to_le16(1);
2542 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
2543 p->entry[0].prof_id = tmp->prof_id;
2544
2545 memcpy(p->entry[0].key,
2546 &hw->blk[blk].prof.t[tmp->tcam_idx].key,
2547 sizeof(hw->blk[blk].prof.t->key));
2548 }
2549
2550 return 0;
2551 }
2552
2553 /**
2554 * ice_prof_bld_xlt1 - build XLT1 changes
2555 * @blk: hardware block
2556 * @bld: the update package buffer build to add to
2557 * @chgs: the list of changes to make in hardware
2558 */
2559 static int
ice_prof_bld_xlt1(enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)2560 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
2561 struct list_head *chgs)
2562 {
2563 struct ice_chs_chg *tmp;
2564
2565 list_for_each_entry(tmp, chgs, list_entry)
2566 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
2567 struct ice_xlt1_section *p;
2568 u32 id;
2569
2570 id = ice_sect_id(blk, ICE_XLT1);
2571 p = ice_pkg_buf_alloc_section(bld, id,
2572 struct_size(p, value, 1));
2573
2574 if (!p)
2575 return -ENOSPC;
2576
2577 p->count = cpu_to_le16(1);
2578 p->offset = cpu_to_le16(tmp->ptype);
2579 p->value[0] = tmp->ptg;
2580 }
2581
2582 return 0;
2583 }
2584
2585 /**
2586 * ice_prof_bld_xlt2 - build XLT2 changes
2587 * @blk: hardware block
2588 * @bld: the update package buffer build to add to
2589 * @chgs: the list of changes to make in hardware
2590 */
2591 static int
ice_prof_bld_xlt2(enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)2592 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
2593 struct list_head *chgs)
2594 {
2595 struct ice_chs_chg *tmp;
2596
2597 list_for_each_entry(tmp, chgs, list_entry) {
2598 struct ice_xlt2_section *p;
2599 u32 id;
2600
2601 switch (tmp->type) {
2602 case ICE_VSIG_ADD:
2603 case ICE_VSI_MOVE:
2604 case ICE_VSIG_REM:
2605 id = ice_sect_id(blk, ICE_XLT2);
2606 p = ice_pkg_buf_alloc_section(bld, id,
2607 struct_size(p, value, 1));
2608
2609 if (!p)
2610 return -ENOSPC;
2611
2612 p->count = cpu_to_le16(1);
2613 p->offset = cpu_to_le16(tmp->vsi);
2614 p->value[0] = cpu_to_le16(tmp->vsig);
2615 break;
2616 default:
2617 break;
2618 }
2619 }
2620
2621 return 0;
2622 }
2623
2624 /**
2625 * ice_upd_prof_hw - update hardware using the change list
2626 * @hw: pointer to the HW struct
2627 * @blk: hardware block
2628 * @chgs: the list of changes to make in hardware
2629 */
2630 static int
ice_upd_prof_hw(struct ice_hw * hw,enum ice_block blk,struct list_head * chgs)2631 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
2632 struct list_head *chgs)
2633 {
2634 struct ice_buf_build *b;
2635 struct ice_chs_chg *tmp;
2636 u16 pkg_sects;
2637 u16 xlt1 = 0;
2638 u16 xlt2 = 0;
2639 u16 tcam = 0;
2640 u16 es = 0;
2641 int status;
2642 u16 sects;
2643
2644 /* count number of sections we need */
2645 list_for_each_entry(tmp, chgs, list_entry) {
2646 switch (tmp->type) {
2647 case ICE_PTG_ES_ADD:
2648 if (tmp->add_ptg)
2649 xlt1++;
2650 if (tmp->add_prof)
2651 es++;
2652 break;
2653 case ICE_TCAM_ADD:
2654 tcam++;
2655 break;
2656 case ICE_VSIG_ADD:
2657 case ICE_VSI_MOVE:
2658 case ICE_VSIG_REM:
2659 xlt2++;
2660 break;
2661 default:
2662 break;
2663 }
2664 }
2665 sects = xlt1 + xlt2 + tcam + es;
2666
2667 if (!sects)
2668 return 0;
2669
2670 /* Build update package buffer */
2671 b = ice_pkg_buf_alloc(hw);
2672 if (!b)
2673 return -ENOMEM;
2674
2675 status = ice_pkg_buf_reserve_section(b, sects);
2676 if (status)
2677 goto error_tmp;
2678
2679 /* Preserve order of table update: ES, TCAM, PTG, VSIG */
2680 if (es) {
2681 status = ice_prof_bld_es(hw, blk, b, chgs);
2682 if (status)
2683 goto error_tmp;
2684 }
2685
2686 if (tcam) {
2687 status = ice_prof_bld_tcam(hw, blk, b, chgs);
2688 if (status)
2689 goto error_tmp;
2690 }
2691
2692 if (xlt1) {
2693 status = ice_prof_bld_xlt1(blk, b, chgs);
2694 if (status)
2695 goto error_tmp;
2696 }
2697
2698 if (xlt2) {
2699 status = ice_prof_bld_xlt2(blk, b, chgs);
2700 if (status)
2701 goto error_tmp;
2702 }
2703
2704 /* After package buffer build check if the section count in buffer is
2705 * non-zero and matches the number of sections detected for package
2706 * update.
2707 */
2708 pkg_sects = ice_pkg_buf_get_active_sections(b);
2709 if (!pkg_sects || pkg_sects != sects) {
2710 status = -EINVAL;
2711 goto error_tmp;
2712 }
2713
2714 /* update package */
2715 status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
2716 if (status == -EIO)
2717 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
2718
2719 error_tmp:
2720 ice_pkg_buf_free(hw, b);
2721 return status;
2722 }
2723
2724 /**
2725 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
2726 * @hw: pointer to the HW struct
2727 * @prof_id: profile ID
2728 * @mask_sel: mask select
2729 *
2730 * This function enable any of the masks selected by the mask select parameter
2731 * for the profile specified.
2732 */
ice_update_fd_mask(struct ice_hw * hw,u16 prof_id,u32 mask_sel)2733 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
2734 {
2735 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
2736
2737 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
2738 GLQF_FDMASK_SEL(prof_id), mask_sel);
2739 }
2740
2741 struct ice_fd_src_dst_pair {
2742 u8 prot_id;
2743 u8 count;
2744 u16 off;
2745 };
2746
2747 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
2748 /* These are defined in pairs */
2749 { ICE_PROT_IPV4_OF_OR_S, 2, 12 },
2750 { ICE_PROT_IPV4_OF_OR_S, 2, 16 },
2751
2752 { ICE_PROT_IPV4_IL, 2, 12 },
2753 { ICE_PROT_IPV4_IL, 2, 16 },
2754
2755 { ICE_PROT_IPV6_OF_OR_S, 8, 8 },
2756 { ICE_PROT_IPV6_OF_OR_S, 8, 24 },
2757
2758 { ICE_PROT_IPV6_IL, 8, 8 },
2759 { ICE_PROT_IPV6_IL, 8, 24 },
2760
2761 { ICE_PROT_TCP_IL, 1, 0 },
2762 { ICE_PROT_TCP_IL, 1, 2 },
2763
2764 { ICE_PROT_UDP_OF, 1, 0 },
2765 { ICE_PROT_UDP_OF, 1, 2 },
2766
2767 { ICE_PROT_UDP_IL_OR_S, 1, 0 },
2768 { ICE_PROT_UDP_IL_OR_S, 1, 2 },
2769
2770 { ICE_PROT_SCTP_IL, 1, 0 },
2771 { ICE_PROT_SCTP_IL, 1, 2 }
2772 };
2773
2774 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs)
2775
2776 /**
2777 * ice_update_fd_swap - set register appropriately for a FD FV extraction
2778 * @hw: pointer to the HW struct
2779 * @prof_id: profile ID
2780 * @es: extraction sequence (length of array is determined by the block)
2781 */
2782 static int
ice_update_fd_swap(struct ice_hw * hw,u16 prof_id,struct ice_fv_word * es)2783 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
2784 {
2785 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
2786 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
2787 #define ICE_FD_FV_NOT_FOUND (-2)
2788 s8 first_free = ICE_FD_FV_NOT_FOUND;
2789 u8 used[ICE_MAX_FV_WORDS] = { 0 };
2790 s8 orig_free, si;
2791 u32 mask_sel = 0;
2792 u8 i, j, k;
2793
2794 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
2795
2796 /* This code assumes that the Flow Director field vectors are assigned
2797 * from the end of the FV indexes working towards the zero index, that
2798 * only complete fields will be included and will be consecutive, and
2799 * that there are no gaps between valid indexes.
2800 */
2801
2802 /* Determine swap fields present */
2803 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
2804 /* Find the first free entry, assuming right to left population.
2805 * This is where we can start adding additional pairs if needed.
2806 */
2807 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
2808 ICE_PROT_INVALID)
2809 first_free = i - 1;
2810
2811 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
2812 if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
2813 es[i].off == ice_fd_pairs[j].off) {
2814 __set_bit(j, pair_list);
2815 pair_start[j] = i;
2816 }
2817 }
2818
2819 orig_free = first_free;
2820
2821 /* determine missing swap fields that need to be added */
2822 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
2823 u8 bit1 = test_bit(i + 1, pair_list);
2824 u8 bit0 = test_bit(i, pair_list);
2825
2826 if (bit0 ^ bit1) {
2827 u8 index;
2828
2829 /* add the appropriate 'paired' entry */
2830 if (!bit0)
2831 index = i;
2832 else
2833 index = i + 1;
2834
2835 /* check for room */
2836 if (first_free + 1 < (s8)ice_fd_pairs[index].count)
2837 return -ENOSPC;
2838
2839 /* place in extraction sequence */
2840 for (k = 0; k < ice_fd_pairs[index].count; k++) {
2841 es[first_free - k].prot_id =
2842 ice_fd_pairs[index].prot_id;
2843 es[first_free - k].off =
2844 ice_fd_pairs[index].off + (k * 2);
2845
2846 if (k > first_free)
2847 return -EIO;
2848
2849 /* keep track of non-relevant fields */
2850 mask_sel |= BIT(first_free - k);
2851 }
2852
2853 pair_start[index] = first_free;
2854 first_free -= ice_fd_pairs[index].count;
2855 }
2856 }
2857
2858 /* fill in the swap array */
2859 si = hw->blk[ICE_BLK_FD].es.fvw - 1;
2860 while (si >= 0) {
2861 u8 indexes_used = 1;
2862
2863 /* assume flat at this index */
2864 #define ICE_SWAP_VALID 0x80
2865 used[si] = si | ICE_SWAP_VALID;
2866
2867 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
2868 si -= indexes_used;
2869 continue;
2870 }
2871
2872 /* check for a swap location */
2873 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
2874 if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
2875 es[si].off == ice_fd_pairs[j].off) {
2876 u8 idx;
2877
2878 /* determine the appropriate matching field */
2879 idx = j + ((j % 2) ? -1 : 1);
2880
2881 indexes_used = ice_fd_pairs[idx].count;
2882 for (k = 0; k < indexes_used; k++) {
2883 used[si - k] = (pair_start[idx] - k) |
2884 ICE_SWAP_VALID;
2885 }
2886
2887 break;
2888 }
2889
2890 si -= indexes_used;
2891 }
2892
2893 /* for each set of 4 swap and 4 inset indexes, write the appropriate
2894 * register
2895 */
2896 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
2897 u32 raw_swap = 0;
2898 u32 raw_in = 0;
2899
2900 for (k = 0; k < 4; k++) {
2901 u8 idx;
2902
2903 idx = (j * 4) + k;
2904 if (used[idx] && !(mask_sel & BIT(idx))) {
2905 raw_swap |= used[idx] << (k * BITS_PER_BYTE);
2906 #define ICE_INSET_DFLT 0x9f
2907 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
2908 }
2909 }
2910
2911 /* write the appropriate swap register set */
2912 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
2913
2914 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
2915 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
2916
2917 /* write the appropriate inset register set */
2918 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
2919
2920 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
2921 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
2922 }
2923
2924 /* initially clear the mask select for this profile */
2925 ice_update_fd_mask(hw, prof_id, 0);
2926
2927 return 0;
2928 }
2929
2930 /* The entries here needs to match the order of enum ice_ptype_attrib */
2931 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
2932 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK },
2933 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK },
2934 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK },
2935 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK },
2936 };
2937
2938 /**
2939 * ice_get_ptype_attrib_info - get PTYPE attribute information
2940 * @type: attribute type
2941 * @info: pointer to variable to the attribute information
2942 */
2943 static void
ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,struct ice_ptype_attrib_info * info)2944 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
2945 struct ice_ptype_attrib_info *info)
2946 {
2947 *info = ice_ptype_attributes[type];
2948 }
2949
2950 /**
2951 * ice_add_prof_attrib - add any PTG with attributes to profile
2952 * @prof: pointer to the profile to which PTG entries will be added
2953 * @ptg: PTG to be added
2954 * @ptype: PTYPE that needs to be looked up
2955 * @attr: array of attributes that will be considered
2956 * @attr_cnt: number of elements in the attribute array
2957 */
2958 static int
ice_add_prof_attrib(struct ice_prof_map * prof,u8 ptg,u16 ptype,const struct ice_ptype_attributes * attr,u16 attr_cnt)2959 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
2960 const struct ice_ptype_attributes *attr, u16 attr_cnt)
2961 {
2962 bool found = false;
2963 u16 i;
2964
2965 for (i = 0; i < attr_cnt; i++)
2966 if (attr[i].ptype == ptype) {
2967 found = true;
2968
2969 prof->ptg[prof->ptg_cnt] = ptg;
2970 ice_get_ptype_attrib_info(attr[i].attrib,
2971 &prof->attr[prof->ptg_cnt]);
2972
2973 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
2974 return -ENOSPC;
2975 }
2976
2977 if (!found)
2978 return -ENOENT;
2979
2980 return 0;
2981 }
2982
2983 /**
2984 * ice_disable_fd_swap - set register appropriately to disable FD SWAP
2985 * @hw: pointer to the HW struct
2986 * @prof_id: profile ID
2987 */
2988 static void
ice_disable_fd_swap(struct ice_hw * hw,u8 prof_id)2989 ice_disable_fd_swap(struct ice_hw *hw, u8 prof_id)
2990 {
2991 u16 swap_val, fvw_num;
2992 unsigned int i;
2993
2994 swap_val = ICE_SWAP_VALID;
2995 fvw_num = hw->blk[ICE_BLK_FD].es.fvw / ICE_FDIR_REG_SET_SIZE;
2996
2997 /* Since the SWAP Flag in the Programming Desc doesn't work,
2998 * here add method to disable the SWAP Option via setting
2999 * certain SWAP and INSET register sets.
3000 */
3001 for (i = 0; i < fvw_num ; i++) {
3002 u32 raw_swap, raw_in;
3003 unsigned int j;
3004
3005 raw_swap = 0;
3006 raw_in = 0;
3007
3008 for (j = 0; j < ICE_FDIR_REG_SET_SIZE; j++) {
3009 raw_swap |= (swap_val++) << (j * BITS_PER_BYTE);
3010 raw_in |= ICE_INSET_DFLT << (j * BITS_PER_BYTE);
3011 }
3012
3013 /* write the FDIR swap register set */
3014 wr32(hw, GLQF_FDSWAP(prof_id, i), raw_swap);
3015
3016 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): 0x%x = 0x%08x\n",
3017 prof_id, i, GLQF_FDSWAP(prof_id, i), raw_swap);
3018
3019 /* write the FDIR inset register set */
3020 wr32(hw, GLQF_FDINSET(prof_id, i), raw_in);
3021
3022 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): 0x%x = 0x%08x\n",
3023 prof_id, i, GLQF_FDINSET(prof_id, i), raw_in);
3024 }
3025 }
3026
3027 /*
3028 * ice_add_prof - add profile
3029 * @hw: pointer to the HW struct
3030 * @blk: hardware block
3031 * @id: profile tracking ID
3032 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
3033 * @attr: array of attributes
3034 * @attr_cnt: number of elements in attr array
3035 * @es: extraction sequence (length of array is determined by the block)
3036 * @masks: mask for extraction sequence
3037 * @symm: symmetric setting for RSS profiles
3038 * @fd_swap: enable/disable FDIR paired src/dst fields swap option
3039 *
3040 * This function registers a profile, which matches a set of PTYPES with a
3041 * particular extraction sequence. While the hardware profile is allocated
3042 * it will not be written until the first call to ice_add_flow that specifies
3043 * the ID value used here.
3044 */
3045 int
ice_add_prof(struct ice_hw * hw,enum ice_block blk,u64 id,unsigned long * ptypes,const struct ice_ptype_attributes * attr,u16 attr_cnt,struct ice_fv_word * es,u16 * masks,bool symm,bool fd_swap)3046 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id,
3047 unsigned long *ptypes, const struct ice_ptype_attributes *attr,
3048 u16 attr_cnt, struct ice_fv_word *es, u16 *masks, bool symm,
3049 bool fd_swap)
3050 {
3051 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3052 struct ice_prof_map *prof;
3053 int status;
3054 u8 prof_id;
3055 u16 ptype;
3056
3057 bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3058
3059 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3060
3061 /* search for existing profile */
3062 status = ice_find_prof_id_with_mask(hw, blk, es, masks, symm, &prof_id);
3063 if (status) {
3064 /* allocate profile ID */
3065 status = ice_alloc_prof_id(hw, blk, &prof_id);
3066 if (status)
3067 goto err_ice_add_prof;
3068 if (blk == ICE_BLK_FD && fd_swap) {
3069 /* For Flow Director block, the extraction sequence may
3070 * need to be altered in the case where there are paired
3071 * fields that have no match. This is necessary because
3072 * for Flow Director, src and dest fields need to paired
3073 * for filter programming and these values are swapped
3074 * during Tx.
3075 */
3076 status = ice_update_fd_swap(hw, prof_id, es);
3077 if (status)
3078 goto err_ice_add_prof;
3079 } else if (blk == ICE_BLK_FD) {
3080 ice_disable_fd_swap(hw, prof_id);
3081 }
3082 status = ice_update_prof_masking(hw, blk, prof_id, masks);
3083 if (status)
3084 goto err_ice_add_prof;
3085
3086 /* and write new es */
3087 ice_write_es(hw, blk, prof_id, es, symm);
3088 }
3089
3090 ice_prof_inc_ref(hw, blk, prof_id);
3091
3092 /* add profile info */
3093 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
3094 if (!prof) {
3095 status = -ENOMEM;
3096 goto err_ice_add_prof;
3097 }
3098
3099 prof->profile_cookie = id;
3100 prof->prof_id = prof_id;
3101 prof->ptg_cnt = 0;
3102 prof->context = 0;
3103
3104 /* build list of ptgs */
3105 for_each_set_bit(ptype, ptypes, ICE_FLOW_PTYPE_MAX) {
3106 u8 ptg;
3107
3108 /* The package should place all ptypes in a non-zero
3109 * PTG, so the following call should never fail.
3110 */
3111 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
3112 continue;
3113
3114 /* If PTG is already added, skip and continue */
3115 if (test_bit(ptg, ptgs_used))
3116 continue;
3117
3118 set_bit(ptg, ptgs_used);
3119 /* Check to see there are any attributes for this ptype, and
3120 * add them if found.
3121 */
3122 status = ice_add_prof_attrib(prof, ptg, ptype, attr, attr_cnt);
3123 if (status == -ENOSPC)
3124 break;
3125 if (status) {
3126 /* This is simple a ptype/PTG with no attribute */
3127 prof->ptg[prof->ptg_cnt] = ptg;
3128 prof->attr[prof->ptg_cnt].flags = 0;
3129 prof->attr[prof->ptg_cnt].mask = 0;
3130
3131 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
3132 break;
3133 }
3134 }
3135
3136 list_add(&prof->list, &hw->blk[blk].es.prof_map);
3137 status = 0;
3138
3139 err_ice_add_prof:
3140 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3141 return status;
3142 }
3143
3144 /**
3145 * ice_search_prof_id - Search for a profile tracking ID
3146 * @hw: pointer to the HW struct
3147 * @blk: hardware block
3148 * @id: profile tracking ID
3149 *
3150 * This will search for a profile tracking ID which was previously added.
3151 * The profile map lock should be held before calling this function.
3152 */
3153 struct ice_prof_map *
ice_search_prof_id(struct ice_hw * hw,enum ice_block blk,u64 id)3154 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
3155 {
3156 struct ice_prof_map *entry = NULL;
3157 struct ice_prof_map *map;
3158
3159 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
3160 if (map->profile_cookie == id) {
3161 entry = map;
3162 break;
3163 }
3164
3165 return entry;
3166 }
3167
3168 /**
3169 * ice_vsig_prof_id_count - count profiles in a VSIG
3170 * @hw: pointer to the HW struct
3171 * @blk: hardware block
3172 * @vsig: VSIG to remove the profile from
3173 */
3174 static u16
ice_vsig_prof_id_count(struct ice_hw * hw,enum ice_block blk,u16 vsig)3175 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
3176 {
3177 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
3178 struct ice_vsig_prof *p;
3179
3180 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3181 list)
3182 count++;
3183
3184 return count;
3185 }
3186
3187 /**
3188 * ice_rel_tcam_idx - release a TCAM index
3189 * @hw: pointer to the HW struct
3190 * @blk: hardware block
3191 * @idx: the index to release
3192 */
ice_rel_tcam_idx(struct ice_hw * hw,enum ice_block blk,u16 idx)3193 static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
3194 {
3195 /* Masks to invoke a never match entry */
3196 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3197 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
3198 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
3199 int status;
3200
3201 /* write the TCAM entry */
3202 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
3203 dc_msk, nm_msk);
3204 if (status)
3205 return status;
3206
3207 /* release the TCAM entry */
3208 status = ice_free_tcam_ent(hw, blk, idx);
3209
3210 return status;
3211 }
3212
3213 /**
3214 * ice_rem_prof_id - remove one profile from a VSIG
3215 * @hw: pointer to the HW struct
3216 * @blk: hardware block
3217 * @prof: pointer to profile structure to remove
3218 */
3219 static int
ice_rem_prof_id(struct ice_hw * hw,enum ice_block blk,struct ice_vsig_prof * prof)3220 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
3221 struct ice_vsig_prof *prof)
3222 {
3223 int status;
3224 u16 i;
3225
3226 for (i = 0; i < prof->tcam_count; i++)
3227 if (prof->tcam[i].in_use) {
3228 prof->tcam[i].in_use = false;
3229 status = ice_rel_tcam_idx(hw, blk,
3230 prof->tcam[i].tcam_idx);
3231 if (status)
3232 return -EIO;
3233 }
3234
3235 return 0;
3236 }
3237
3238 /**
3239 * ice_rem_vsig - remove VSIG
3240 * @hw: pointer to the HW struct
3241 * @blk: hardware block
3242 * @vsig: the VSIG to remove
3243 * @chg: the change list
3244 */
3245 static int
ice_rem_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct list_head * chg)3246 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3247 struct list_head *chg)
3248 {
3249 u16 idx = vsig & ICE_VSIG_IDX_M;
3250 struct ice_vsig_vsi *vsi_cur;
3251 struct ice_vsig_prof *d, *t;
3252
3253 /* remove TCAM entries */
3254 list_for_each_entry_safe(d, t,
3255 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3256 list) {
3257 int status;
3258
3259 status = ice_rem_prof_id(hw, blk, d);
3260 if (status)
3261 return status;
3262
3263 list_del(&d->list);
3264 devm_kfree(ice_hw_to_dev(hw), d);
3265 }
3266
3267 /* Move all VSIS associated with this VSIG to the default VSIG */
3268 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3269 /* If the VSIG has at least 1 VSI then iterate through the list
3270 * and remove the VSIs before deleting the group.
3271 */
3272 if (vsi_cur)
3273 do {
3274 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
3275 struct ice_chs_chg *p;
3276
3277 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3278 GFP_KERNEL);
3279 if (!p)
3280 return -ENOMEM;
3281
3282 p->type = ICE_VSIG_REM;
3283 p->orig_vsig = vsig;
3284 p->vsig = ICE_DEFAULT_VSIG;
3285 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
3286
3287 list_add(&p->list_entry, chg);
3288
3289 vsi_cur = tmp;
3290 } while (vsi_cur);
3291
3292 return ice_vsig_free(hw, blk, vsig);
3293 }
3294
3295 /**
3296 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
3297 * @hw: pointer to the HW struct
3298 * @blk: hardware block
3299 * @vsig: VSIG to remove the profile from
3300 * @hdl: profile handle indicating which profile to remove
3301 * @chg: list to receive a record of changes
3302 */
3303 static int
ice_rem_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl,struct list_head * chg)3304 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3305 struct list_head *chg)
3306 {
3307 u16 idx = vsig & ICE_VSIG_IDX_M;
3308 struct ice_vsig_prof *p, *t;
3309
3310 list_for_each_entry_safe(p, t,
3311 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3312 list)
3313 if (p->profile_cookie == hdl) {
3314 int status;
3315
3316 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
3317 /* this is the last profile, remove the VSIG */
3318 return ice_rem_vsig(hw, blk, vsig, chg);
3319
3320 status = ice_rem_prof_id(hw, blk, p);
3321 if (!status) {
3322 list_del(&p->list);
3323 devm_kfree(ice_hw_to_dev(hw), p);
3324 }
3325 return status;
3326 }
3327
3328 return -ENOENT;
3329 }
3330
3331 /**
3332 * ice_rem_flow_all - remove all flows with a particular profile
3333 * @hw: pointer to the HW struct
3334 * @blk: hardware block
3335 * @id: profile tracking ID
3336 */
ice_rem_flow_all(struct ice_hw * hw,enum ice_block blk,u64 id)3337 static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
3338 {
3339 struct ice_chs_chg *del, *tmp;
3340 struct list_head chg;
3341 int status;
3342 u16 i;
3343
3344 INIT_LIST_HEAD(&chg);
3345
3346 for (i = 1; i < ICE_MAX_VSIGS; i++)
3347 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
3348 if (ice_has_prof_vsig(hw, blk, i, id)) {
3349 status = ice_rem_prof_id_vsig(hw, blk, i, id,
3350 &chg);
3351 if (status)
3352 goto err_ice_rem_flow_all;
3353 }
3354 }
3355
3356 status = ice_upd_prof_hw(hw, blk, &chg);
3357
3358 err_ice_rem_flow_all:
3359 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
3360 list_del(&del->list_entry);
3361 devm_kfree(ice_hw_to_dev(hw), del);
3362 }
3363
3364 return status;
3365 }
3366
3367 /**
3368 * ice_rem_prof - remove profile
3369 * @hw: pointer to the HW struct
3370 * @blk: hardware block
3371 * @id: profile tracking ID
3372 *
3373 * This will remove the profile specified by the ID parameter, which was
3374 * previously created through ice_add_prof. If any existing entries
3375 * are associated with this profile, they will be removed as well.
3376 */
ice_rem_prof(struct ice_hw * hw,enum ice_block blk,u64 id)3377 int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
3378 {
3379 struct ice_prof_map *pmap;
3380 int status;
3381
3382 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3383
3384 pmap = ice_search_prof_id(hw, blk, id);
3385 if (!pmap) {
3386 status = -ENOENT;
3387 goto err_ice_rem_prof;
3388 }
3389
3390 /* remove all flows with this profile */
3391 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
3392 if (status)
3393 goto err_ice_rem_prof;
3394
3395 /* dereference profile, and possibly remove */
3396 ice_prof_dec_ref(hw, blk, pmap->prof_id);
3397
3398 list_del(&pmap->list);
3399 devm_kfree(ice_hw_to_dev(hw), pmap);
3400
3401 err_ice_rem_prof:
3402 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3403 return status;
3404 }
3405
3406 /**
3407 * ice_get_prof - get profile
3408 * @hw: pointer to the HW struct
3409 * @blk: hardware block
3410 * @hdl: profile handle
3411 * @chg: change list
3412 */
3413 static int
ice_get_prof(struct ice_hw * hw,enum ice_block blk,u64 hdl,struct list_head * chg)3414 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
3415 struct list_head *chg)
3416 {
3417 struct ice_prof_map *map;
3418 struct ice_chs_chg *p;
3419 int status = 0;
3420 u16 i;
3421
3422 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3423 /* Get the details on the profile specified by the handle ID */
3424 map = ice_search_prof_id(hw, blk, hdl);
3425 if (!map) {
3426 status = -ENOENT;
3427 goto err_ice_get_prof;
3428 }
3429
3430 for (i = 0; i < map->ptg_cnt; i++)
3431 if (!hw->blk[blk].es.written[map->prof_id]) {
3432 /* add ES to change list */
3433 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3434 GFP_KERNEL);
3435 if (!p) {
3436 status = -ENOMEM;
3437 goto err_ice_get_prof;
3438 }
3439
3440 p->type = ICE_PTG_ES_ADD;
3441 p->ptype = 0;
3442 p->ptg = map->ptg[i];
3443 p->add_ptg = 0;
3444
3445 p->add_prof = 1;
3446 p->prof_id = map->prof_id;
3447
3448 hw->blk[blk].es.written[map->prof_id] = true;
3449
3450 list_add(&p->list_entry, chg);
3451 }
3452
3453 err_ice_get_prof:
3454 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3455 /* let caller clean up the change list */
3456 return status;
3457 }
3458
3459 /**
3460 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
3461 * @hw: pointer to the HW struct
3462 * @blk: hardware block
3463 * @vsig: VSIG from which to copy the list
3464 * @lst: output list
3465 *
3466 * This routine makes a copy of the list of profiles in the specified VSIG.
3467 */
3468 static int
ice_get_profs_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct list_head * lst)3469 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3470 struct list_head *lst)
3471 {
3472 struct ice_vsig_prof *ent1, *ent2;
3473 u16 idx = vsig & ICE_VSIG_IDX_M;
3474
3475 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3476 list) {
3477 struct ice_vsig_prof *p;
3478
3479 /* copy to the input list */
3480 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
3481 GFP_KERNEL);
3482 if (!p)
3483 goto err_ice_get_profs_vsig;
3484
3485 list_add_tail(&p->list, lst);
3486 }
3487
3488 return 0;
3489
3490 err_ice_get_profs_vsig:
3491 list_for_each_entry_safe(ent1, ent2, lst, list) {
3492 list_del(&ent1->list);
3493 devm_kfree(ice_hw_to_dev(hw), ent1);
3494 }
3495
3496 return -ENOMEM;
3497 }
3498
3499 /**
3500 * ice_add_prof_to_lst - add profile entry to a list
3501 * @hw: pointer to the HW struct
3502 * @blk: hardware block
3503 * @lst: the list to be added to
3504 * @hdl: profile handle of entry to add
3505 */
3506 static int
ice_add_prof_to_lst(struct ice_hw * hw,enum ice_block blk,struct list_head * lst,u64 hdl)3507 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
3508 struct list_head *lst, u64 hdl)
3509 {
3510 struct ice_prof_map *map;
3511 struct ice_vsig_prof *p;
3512 int status = 0;
3513 u16 i;
3514
3515 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3516 map = ice_search_prof_id(hw, blk, hdl);
3517 if (!map) {
3518 status = -ENOENT;
3519 goto err_ice_add_prof_to_lst;
3520 }
3521
3522 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3523 if (!p) {
3524 status = -ENOMEM;
3525 goto err_ice_add_prof_to_lst;
3526 }
3527
3528 p->profile_cookie = map->profile_cookie;
3529 p->prof_id = map->prof_id;
3530 p->tcam_count = map->ptg_cnt;
3531
3532 for (i = 0; i < map->ptg_cnt; i++) {
3533 p->tcam[i].prof_id = map->prof_id;
3534 p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
3535 p->tcam[i].ptg = map->ptg[i];
3536 }
3537
3538 list_add(&p->list, lst);
3539
3540 err_ice_add_prof_to_lst:
3541 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3542 return status;
3543 }
3544
3545 /**
3546 * ice_move_vsi - move VSI to another VSIG
3547 * @hw: pointer to the HW struct
3548 * @blk: hardware block
3549 * @vsi: the VSI to move
3550 * @vsig: the VSIG to move the VSI to
3551 * @chg: the change list
3552 */
3553 static int
ice_move_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig,struct list_head * chg)3554 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
3555 struct list_head *chg)
3556 {
3557 struct ice_chs_chg *p;
3558 u16 orig_vsig;
3559 int status;
3560
3561 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3562 if (!p)
3563 return -ENOMEM;
3564
3565 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3566 if (!status)
3567 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3568
3569 if (status) {
3570 devm_kfree(ice_hw_to_dev(hw), p);
3571 return status;
3572 }
3573
3574 p->type = ICE_VSI_MOVE;
3575 p->vsi = vsi;
3576 p->orig_vsig = orig_vsig;
3577 p->vsig = vsig;
3578
3579 list_add(&p->list_entry, chg);
3580
3581 return 0;
3582 }
3583
3584 /**
3585 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
3586 * @hw: pointer to the HW struct
3587 * @idx: the index of the TCAM entry to remove
3588 * @chg: the list of change structures to search
3589 */
3590 static void
ice_rem_chg_tcam_ent(struct ice_hw * hw,u16 idx,struct list_head * chg)3591 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
3592 {
3593 struct ice_chs_chg *pos, *tmp;
3594
3595 list_for_each_entry_safe(tmp, pos, chg, list_entry)
3596 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
3597 list_del(&tmp->list_entry);
3598 devm_kfree(ice_hw_to_dev(hw), tmp);
3599 }
3600 }
3601
3602 /**
3603 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
3604 * @hw: pointer to the HW struct
3605 * @blk: hardware block
3606 * @enable: true to enable, false to disable
3607 * @vsig: the VSIG of the TCAM entry
3608 * @tcam: pointer the TCAM info structure of the TCAM to disable
3609 * @chg: the change list
3610 *
3611 * This function appends an enable or disable TCAM entry in the change log
3612 */
3613 static int
ice_prof_tcam_ena_dis(struct ice_hw * hw,enum ice_block blk,bool enable,u16 vsig,struct ice_tcam_inf * tcam,struct list_head * chg)3614 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
3615 u16 vsig, struct ice_tcam_inf *tcam,
3616 struct list_head *chg)
3617 {
3618 struct ice_chs_chg *p;
3619 int status;
3620
3621 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3622 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3623 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3624
3625 /* if disabling, free the TCAM */
3626 if (!enable) {
3627 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
3628
3629 /* if we have already created a change for this TCAM entry, then
3630 * we need to remove that entry, in order to prevent writing to
3631 * a TCAM entry we no longer will have ownership of.
3632 */
3633 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
3634 tcam->tcam_idx = 0;
3635 tcam->in_use = 0;
3636 return status;
3637 }
3638
3639 /* for re-enabling, reallocate a TCAM */
3640 /* for entries with empty attribute masks, allocate entry from
3641 * the bottom of the TCAM table; otherwise, allocate from the
3642 * top of the table in order to give it higher priority
3643 */
3644 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
3645 &tcam->tcam_idx);
3646 if (status)
3647 return status;
3648
3649 /* add TCAM to change list */
3650 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3651 if (!p)
3652 return -ENOMEM;
3653
3654 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
3655 tcam->ptg, vsig, 0, tcam->attr.flags,
3656 vl_msk, dc_msk, nm_msk);
3657 if (status)
3658 goto err_ice_prof_tcam_ena_dis;
3659
3660 tcam->in_use = 1;
3661
3662 p->type = ICE_TCAM_ADD;
3663 p->add_tcam_idx = true;
3664 p->prof_id = tcam->prof_id;
3665 p->ptg = tcam->ptg;
3666 p->vsig = 0;
3667 p->tcam_idx = tcam->tcam_idx;
3668
3669 /* log change */
3670 list_add(&p->list_entry, chg);
3671
3672 return 0;
3673
3674 err_ice_prof_tcam_ena_dis:
3675 devm_kfree(ice_hw_to_dev(hw), p);
3676 return status;
3677 }
3678
3679 /**
3680 * ice_adj_prof_priorities - adjust profile based on priorities
3681 * @hw: pointer to the HW struct
3682 * @blk: hardware block
3683 * @vsig: the VSIG for which to adjust profile priorities
3684 * @chg: the change list
3685 */
3686 static int
ice_adj_prof_priorities(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct list_head * chg)3687 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3688 struct list_head *chg)
3689 {
3690 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3691 struct ice_vsig_prof *t;
3692 int status;
3693 u16 idx;
3694
3695 bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3696 idx = vsig & ICE_VSIG_IDX_M;
3697
3698 /* Priority is based on the order in which the profiles are added. The
3699 * newest added profile has highest priority and the oldest added
3700 * profile has the lowest priority. Since the profile property list for
3701 * a VSIG is sorted from newest to oldest, this code traverses the list
3702 * in order and enables the first of each PTG that it finds (that is not
3703 * already enabled); it also disables any duplicate PTGs that it finds
3704 * in the older profiles (that are currently enabled).
3705 */
3706
3707 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3708 list) {
3709 u16 i;
3710
3711 for (i = 0; i < t->tcam_count; i++) {
3712 /* Scan the priorities from newest to oldest.
3713 * Make sure that the newest profiles take priority.
3714 */
3715 if (test_bit(t->tcam[i].ptg, ptgs_used) &&
3716 t->tcam[i].in_use) {
3717 /* need to mark this PTG as never match, as it
3718 * was already in use and therefore duplicate
3719 * (and lower priority)
3720 */
3721 status = ice_prof_tcam_ena_dis(hw, blk, false,
3722 vsig,
3723 &t->tcam[i],
3724 chg);
3725 if (status)
3726 return status;
3727 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
3728 !t->tcam[i].in_use) {
3729 /* need to enable this PTG, as it in not in use
3730 * and not enabled (highest priority)
3731 */
3732 status = ice_prof_tcam_ena_dis(hw, blk, true,
3733 vsig,
3734 &t->tcam[i],
3735 chg);
3736 if (status)
3737 return status;
3738 }
3739
3740 /* keep track of used ptgs */
3741 __set_bit(t->tcam[i].ptg, ptgs_used);
3742 }
3743 }
3744
3745 return 0;
3746 }
3747
3748 /**
3749 * ice_add_prof_id_vsig - add profile to VSIG
3750 * @hw: pointer to the HW struct
3751 * @blk: hardware block
3752 * @vsig: the VSIG to which this profile is to be added
3753 * @hdl: the profile handle indicating the profile to add
3754 * @rev: true to add entries to the end of the list
3755 * @chg: the change list
3756 */
3757 static int
ice_add_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl,bool rev,struct list_head * chg)3758 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3759 bool rev, struct list_head *chg)
3760 {
3761 /* Masks that ignore flags */
3762 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3763 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3764 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3765 struct ice_prof_map *map;
3766 struct ice_vsig_prof *t;
3767 struct ice_chs_chg *p;
3768 u16 vsig_idx, i;
3769 int status = 0;
3770
3771 /* Error, if this VSIG already has this profile */
3772 if (ice_has_prof_vsig(hw, blk, vsig, hdl))
3773 return -EEXIST;
3774
3775 /* new VSIG profile structure */
3776 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
3777 if (!t)
3778 return -ENOMEM;
3779
3780 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3781 /* Get the details on the profile specified by the handle ID */
3782 map = ice_search_prof_id(hw, blk, hdl);
3783 if (!map) {
3784 status = -ENOENT;
3785 goto err_ice_add_prof_id_vsig;
3786 }
3787
3788 t->profile_cookie = map->profile_cookie;
3789 t->prof_id = map->prof_id;
3790 t->tcam_count = map->ptg_cnt;
3791
3792 /* create TCAM entries */
3793 for (i = 0; i < map->ptg_cnt; i++) {
3794 u16 tcam_idx;
3795
3796 /* add TCAM to change list */
3797 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3798 if (!p) {
3799 status = -ENOMEM;
3800 goto err_ice_add_prof_id_vsig;
3801 }
3802
3803 /* allocate the TCAM entry index */
3804 /* for entries with empty attribute masks, allocate entry from
3805 * the bottom of the TCAM table; otherwise, allocate from the
3806 * top of the table in order to give it higher priority
3807 */
3808 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
3809 &tcam_idx);
3810 if (status) {
3811 devm_kfree(ice_hw_to_dev(hw), p);
3812 goto err_ice_add_prof_id_vsig;
3813 }
3814
3815 t->tcam[i].ptg = map->ptg[i];
3816 t->tcam[i].prof_id = map->prof_id;
3817 t->tcam[i].tcam_idx = tcam_idx;
3818 t->tcam[i].attr = map->attr[i];
3819 t->tcam[i].in_use = true;
3820
3821 p->type = ICE_TCAM_ADD;
3822 p->add_tcam_idx = true;
3823 p->prof_id = t->tcam[i].prof_id;
3824 p->ptg = t->tcam[i].ptg;
3825 p->vsig = vsig;
3826 p->tcam_idx = t->tcam[i].tcam_idx;
3827
3828 /* write the TCAM entry */
3829 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
3830 t->tcam[i].prof_id,
3831 t->tcam[i].ptg, vsig, 0, 0,
3832 vl_msk, dc_msk, nm_msk);
3833 if (status) {
3834 devm_kfree(ice_hw_to_dev(hw), p);
3835 goto err_ice_add_prof_id_vsig;
3836 }
3837
3838 /* log change */
3839 list_add(&p->list_entry, chg);
3840 }
3841
3842 /* add profile to VSIG */
3843 vsig_idx = vsig & ICE_VSIG_IDX_M;
3844 if (rev)
3845 list_add_tail(&t->list,
3846 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3847 else
3848 list_add(&t->list,
3849 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3850
3851 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3852 return status;
3853
3854 err_ice_add_prof_id_vsig:
3855 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3856 /* let caller clean up the change list */
3857 devm_kfree(ice_hw_to_dev(hw), t);
3858 return status;
3859 }
3860
3861 /**
3862 * ice_create_prof_id_vsig - add a new VSIG with a single profile
3863 * @hw: pointer to the HW struct
3864 * @blk: hardware block
3865 * @vsi: the initial VSI that will be in VSIG
3866 * @hdl: the profile handle of the profile that will be added to the VSIG
3867 * @chg: the change list
3868 */
3869 static int
ice_create_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl,struct list_head * chg)3870 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
3871 struct list_head *chg)
3872 {
3873 struct ice_chs_chg *p;
3874 u16 new_vsig;
3875 int status;
3876
3877 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3878 if (!p)
3879 return -ENOMEM;
3880
3881 new_vsig = ice_vsig_alloc(hw, blk);
3882 if (!new_vsig) {
3883 status = -EIO;
3884 goto err_ice_create_prof_id_vsig;
3885 }
3886
3887 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
3888 if (status)
3889 goto err_ice_create_prof_id_vsig;
3890
3891 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
3892 if (status)
3893 goto err_ice_create_prof_id_vsig;
3894
3895 p->type = ICE_VSIG_ADD;
3896 p->vsi = vsi;
3897 p->orig_vsig = ICE_DEFAULT_VSIG;
3898 p->vsig = new_vsig;
3899
3900 list_add(&p->list_entry, chg);
3901
3902 return 0;
3903
3904 err_ice_create_prof_id_vsig:
3905 /* let caller clean up the change list */
3906 devm_kfree(ice_hw_to_dev(hw), p);
3907 return status;
3908 }
3909
3910 /**
3911 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
3912 * @hw: pointer to the HW struct
3913 * @blk: hardware block
3914 * @vsi: the initial VSI that will be in VSIG
3915 * @lst: the list of profile that will be added to the VSIG
3916 * @new_vsig: return of new VSIG
3917 * @chg: the change list
3918 */
3919 static int
ice_create_vsig_from_lst(struct ice_hw * hw,enum ice_block blk,u16 vsi,struct list_head * lst,u16 * new_vsig,struct list_head * chg)3920 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
3921 struct list_head *lst, u16 *new_vsig,
3922 struct list_head *chg)
3923 {
3924 struct ice_vsig_prof *t;
3925 int status;
3926 u16 vsig;
3927
3928 vsig = ice_vsig_alloc(hw, blk);
3929 if (!vsig)
3930 return -EIO;
3931
3932 status = ice_move_vsi(hw, blk, vsi, vsig, chg);
3933 if (status)
3934 return status;
3935
3936 list_for_each_entry(t, lst, list) {
3937 /* Reverse the order here since we are copying the list */
3938 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
3939 true, chg);
3940 if (status)
3941 return status;
3942 }
3943
3944 *new_vsig = vsig;
3945
3946 return 0;
3947 }
3948
3949 /**
3950 * ice_find_prof_vsig - find a VSIG with a specific profile handle
3951 * @hw: pointer to the HW struct
3952 * @blk: hardware block
3953 * @hdl: the profile handle of the profile to search for
3954 * @vsig: returns the VSIG with the matching profile
3955 */
3956 static bool
ice_find_prof_vsig(struct ice_hw * hw,enum ice_block blk,u64 hdl,u16 * vsig)3957 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
3958 {
3959 struct ice_vsig_prof *t;
3960 struct list_head lst;
3961 int status;
3962
3963 INIT_LIST_HEAD(&lst);
3964
3965 t = kzalloc(sizeof(*t), GFP_KERNEL);
3966 if (!t)
3967 return false;
3968
3969 t->profile_cookie = hdl;
3970 list_add(&t->list, &lst);
3971
3972 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
3973
3974 list_del(&t->list);
3975 kfree(t);
3976
3977 return !status;
3978 }
3979
3980 /**
3981 * ice_add_prof_id_flow - add profile flow
3982 * @hw: pointer to the HW struct
3983 * @blk: hardware block
3984 * @vsi: the VSI to enable with the profile specified by ID
3985 * @hdl: profile handle
3986 *
3987 * Calling this function will update the hardware tables to enable the
3988 * profile indicated by the ID parameter for the VSIs specified in the VSI
3989 * array. Once successfully called, the flow will be enabled.
3990 */
3991 int
ice_add_prof_id_flow(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl)3992 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
3993 {
3994 struct ice_vsig_prof *tmp1, *del1;
3995 struct ice_chs_chg *tmp, *del;
3996 struct list_head union_lst;
3997 struct list_head chg;
3998 int status;
3999 u16 vsig;
4000
4001 INIT_LIST_HEAD(&union_lst);
4002 INIT_LIST_HEAD(&chg);
4003
4004 /* Get profile */
4005 status = ice_get_prof(hw, blk, hdl, &chg);
4006 if (status)
4007 return status;
4008
4009 /* determine if VSI is already part of a VSIG */
4010 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4011 if (!status && vsig) {
4012 bool only_vsi;
4013 u16 or_vsig;
4014 u16 ref;
4015
4016 /* found in VSIG */
4017 or_vsig = vsig;
4018
4019 /* make sure that there is no overlap/conflict between the new
4020 * characteristics and the existing ones; we don't support that
4021 * scenario
4022 */
4023 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
4024 status = -EEXIST;
4025 goto err_ice_add_prof_id_flow;
4026 }
4027
4028 /* last VSI in the VSIG? */
4029 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4030 if (status)
4031 goto err_ice_add_prof_id_flow;
4032 only_vsi = (ref == 1);
4033
4034 /* create a union of the current profiles and the one being
4035 * added
4036 */
4037 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
4038 if (status)
4039 goto err_ice_add_prof_id_flow;
4040
4041 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
4042 if (status)
4043 goto err_ice_add_prof_id_flow;
4044
4045 /* search for an existing VSIG with an exact charc match */
4046 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
4047 if (!status) {
4048 /* move VSI to the VSIG that matches */
4049 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4050 if (status)
4051 goto err_ice_add_prof_id_flow;
4052
4053 /* VSI has been moved out of or_vsig. If the or_vsig had
4054 * only that VSI it is now empty and can be removed.
4055 */
4056 if (only_vsi) {
4057 status = ice_rem_vsig(hw, blk, or_vsig, &chg);
4058 if (status)
4059 goto err_ice_add_prof_id_flow;
4060 }
4061 } else if (only_vsi) {
4062 /* If the original VSIG only contains one VSI, then it
4063 * will be the requesting VSI. In this case the VSI is
4064 * not sharing entries and we can simply add the new
4065 * profile to the VSIG.
4066 */
4067 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
4068 &chg);
4069 if (status)
4070 goto err_ice_add_prof_id_flow;
4071
4072 /* Adjust priorities */
4073 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4074 if (status)
4075 goto err_ice_add_prof_id_flow;
4076 } else {
4077 /* No match, so we need a new VSIG */
4078 status = ice_create_vsig_from_lst(hw, blk, vsi,
4079 &union_lst, &vsig,
4080 &chg);
4081 if (status)
4082 goto err_ice_add_prof_id_flow;
4083
4084 /* Adjust priorities */
4085 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4086 if (status)
4087 goto err_ice_add_prof_id_flow;
4088 }
4089 } else {
4090 /* need to find or add a VSIG */
4091 /* search for an existing VSIG with an exact charc match */
4092 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
4093 /* found an exact match */
4094 /* add or move VSI to the VSIG that matches */
4095 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4096 if (status)
4097 goto err_ice_add_prof_id_flow;
4098 } else {
4099 /* we did not find an exact match */
4100 /* we need to add a VSIG */
4101 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
4102 &chg);
4103 if (status)
4104 goto err_ice_add_prof_id_flow;
4105 }
4106 }
4107
4108 /* update hardware */
4109 if (!status)
4110 status = ice_upd_prof_hw(hw, blk, &chg);
4111
4112 err_ice_add_prof_id_flow:
4113 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4114 list_del(&del->list_entry);
4115 devm_kfree(ice_hw_to_dev(hw), del);
4116 }
4117
4118 list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
4119 list_del(&del1->list);
4120 devm_kfree(ice_hw_to_dev(hw), del1);
4121 }
4122
4123 return status;
4124 }
4125
4126 /**
4127 * ice_flow_assoc_fdir_prof - add an FDIR profile for main/ctrl VSI
4128 * @hw: pointer to the HW struct
4129 * @blk: HW block
4130 * @dest_vsi: dest VSI
4131 * @fdir_vsi: fdir programming VSI
4132 * @hdl: profile handle
4133 *
4134 * Update the hardware tables to enable the FDIR profile indicated by @hdl for
4135 * the VSI specified by @dest_vsi. On success, the flow will be enabled.
4136 *
4137 * Return: 0 on success or negative errno on failure.
4138 */
4139 int
ice_flow_assoc_fdir_prof(struct ice_hw * hw,enum ice_block blk,u16 dest_vsi,u16 fdir_vsi,u64 hdl)4140 ice_flow_assoc_fdir_prof(struct ice_hw *hw, enum ice_block blk,
4141 u16 dest_vsi, u16 fdir_vsi, u64 hdl)
4142 {
4143 u16 vsi_num;
4144 int status;
4145
4146 if (blk != ICE_BLK_FD)
4147 return -EINVAL;
4148
4149 vsi_num = ice_get_hw_vsi_num(hw, dest_vsi);
4150 status = ice_add_prof_id_flow(hw, blk, vsi_num, hdl);
4151 if (status) {
4152 ice_debug(hw, ICE_DBG_FLOW, "Adding HW profile failed for main VSI flow entry: %d\n",
4153 status);
4154 return status;
4155 }
4156
4157 vsi_num = ice_get_hw_vsi_num(hw, fdir_vsi);
4158 status = ice_add_prof_id_flow(hw, blk, vsi_num, hdl);
4159 if (status) {
4160 ice_debug(hw, ICE_DBG_FLOW, "Adding HW profile failed for ctrl VSI flow entry: %d\n",
4161 status);
4162 goto err;
4163 }
4164
4165 return 0;
4166
4167 err:
4168 vsi_num = ice_get_hw_vsi_num(hw, dest_vsi);
4169 ice_rem_prof_id_flow(hw, blk, vsi_num, hdl);
4170
4171 return status;
4172 }
4173
4174 /**
4175 * ice_rem_prof_from_list - remove a profile from list
4176 * @hw: pointer to the HW struct
4177 * @lst: list to remove the profile from
4178 * @hdl: the profile handle indicating the profile to remove
4179 */
4180 static int
ice_rem_prof_from_list(struct ice_hw * hw,struct list_head * lst,u64 hdl)4181 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
4182 {
4183 struct ice_vsig_prof *ent, *tmp;
4184
4185 list_for_each_entry_safe(ent, tmp, lst, list)
4186 if (ent->profile_cookie == hdl) {
4187 list_del(&ent->list);
4188 devm_kfree(ice_hw_to_dev(hw), ent);
4189 return 0;
4190 }
4191
4192 return -ENOENT;
4193 }
4194
4195 /**
4196 * ice_rem_prof_id_flow - remove flow
4197 * @hw: pointer to the HW struct
4198 * @blk: hardware block
4199 * @vsi: the VSI from which to remove the profile specified by ID
4200 * @hdl: profile tracking handle
4201 *
4202 * Calling this function will update the hardware tables to remove the
4203 * profile indicated by the ID parameter for the VSIs specified in the VSI
4204 * array. Once successfully called, the flow will be disabled.
4205 */
4206 int
ice_rem_prof_id_flow(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl)4207 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4208 {
4209 struct ice_vsig_prof *tmp1, *del1;
4210 struct ice_chs_chg *tmp, *del;
4211 struct list_head chg, copy;
4212 int status;
4213 u16 vsig;
4214
4215 INIT_LIST_HEAD(©);
4216 INIT_LIST_HEAD(&chg);
4217
4218 /* determine if VSI is already part of a VSIG */
4219 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4220 if (!status && vsig) {
4221 bool last_profile;
4222 bool only_vsi;
4223 u16 ref;
4224
4225 /* found in VSIG */
4226 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
4227 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4228 if (status)
4229 goto err_ice_rem_prof_id_flow;
4230 only_vsi = (ref == 1);
4231
4232 if (only_vsi) {
4233 /* If the original VSIG only contains one reference,
4234 * which will be the requesting VSI, then the VSI is not
4235 * sharing entries and we can simply remove the specific
4236 * characteristics from the VSIG.
4237 */
4238
4239 if (last_profile) {
4240 /* If there are no profiles left for this VSIG,
4241 * then simply remove the VSIG.
4242 */
4243 status = ice_rem_vsig(hw, blk, vsig, &chg);
4244 if (status)
4245 goto err_ice_rem_prof_id_flow;
4246 } else {
4247 status = ice_rem_prof_id_vsig(hw, blk, vsig,
4248 hdl, &chg);
4249 if (status)
4250 goto err_ice_rem_prof_id_flow;
4251
4252 /* Adjust priorities */
4253 status = ice_adj_prof_priorities(hw, blk, vsig,
4254 &chg);
4255 if (status)
4256 goto err_ice_rem_prof_id_flow;
4257 }
4258
4259 } else {
4260 /* Make a copy of the VSIG's list of Profiles */
4261 status = ice_get_profs_vsig(hw, blk, vsig, ©);
4262 if (status)
4263 goto err_ice_rem_prof_id_flow;
4264
4265 /* Remove specified profile entry from the list */
4266 status = ice_rem_prof_from_list(hw, ©, hdl);
4267 if (status)
4268 goto err_ice_rem_prof_id_flow;
4269
4270 if (list_empty(©)) {
4271 status = ice_move_vsi(hw, blk, vsi,
4272 ICE_DEFAULT_VSIG, &chg);
4273 if (status)
4274 goto err_ice_rem_prof_id_flow;
4275
4276 } else if (!ice_find_dup_props_vsig(hw, blk, ©,
4277 &vsig)) {
4278 /* found an exact match */
4279 /* add or move VSI to the VSIG that matches */
4280 /* Search for a VSIG with a matching profile
4281 * list
4282 */
4283
4284 /* Found match, move VSI to the matching VSIG */
4285 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4286 if (status)
4287 goto err_ice_rem_prof_id_flow;
4288 } else {
4289 /* since no existing VSIG supports this
4290 * characteristic pattern, we need to create a
4291 * new VSIG and TCAM entries
4292 */
4293 status = ice_create_vsig_from_lst(hw, blk, vsi,
4294 ©, &vsig,
4295 &chg);
4296 if (status)
4297 goto err_ice_rem_prof_id_flow;
4298
4299 /* Adjust priorities */
4300 status = ice_adj_prof_priorities(hw, blk, vsig,
4301 &chg);
4302 if (status)
4303 goto err_ice_rem_prof_id_flow;
4304 }
4305 }
4306 } else {
4307 status = -ENOENT;
4308 }
4309
4310 /* update hardware tables */
4311 if (!status)
4312 status = ice_upd_prof_hw(hw, blk, &chg);
4313
4314 err_ice_rem_prof_id_flow:
4315 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4316 list_del(&del->list_entry);
4317 devm_kfree(ice_hw_to_dev(hw), del);
4318 }
4319
4320 list_for_each_entry_safe(del1, tmp1, ©, list) {
4321 list_del(&del1->list);
4322 devm_kfree(ice_hw_to_dev(hw), del1);
4323 }
4324
4325 return status;
4326 }
4327