1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "devlink/devlink.h"
17 #include "devlink/port.h"
18 #include "ice_sf_eth.h"
19 #include "ice_hwmon.h"
20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
21 * ice tracepoint functions. This must be done exactly once across the
22 * ice driver.
23 */
24 #define CREATE_TRACE_POINTS
25 #include "ice_trace.h"
26 #include "ice_eswitch.h"
27 #include "ice_tc_lib.h"
28 #include "ice_vsi_vlan_ops.h"
29 #include <net/xdp_sock_drv.h>
30
31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
32 static const char ice_driver_string[] = DRV_SUMMARY;
33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
34
35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
38
39 MODULE_DESCRIPTION(DRV_SUMMARY);
40 MODULE_IMPORT_NS("LIBIE");
41 MODULE_LICENSE("GPL v2");
42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
43
44 static int debug = -1;
45 module_param(debug, int, 0644);
46 #ifndef CONFIG_DYNAMIC_DEBUG
47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
48 #else
49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
50 #endif /* !CONFIG_DYNAMIC_DEBUG */
51
52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
53 EXPORT_SYMBOL(ice_xdp_locking_key);
54
55 /**
56 * ice_hw_to_dev - Get device pointer from the hardware structure
57 * @hw: pointer to the device HW structure
58 *
59 * Used to access the device pointer from compilation units which can't easily
60 * include the definition of struct ice_pf without leading to circular header
61 * dependencies.
62 */
ice_hw_to_dev(struct ice_hw * hw)63 struct device *ice_hw_to_dev(struct ice_hw *hw)
64 {
65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
66
67 return &pf->pdev->dev;
68 }
69
70 static struct workqueue_struct *ice_wq;
71 struct workqueue_struct *ice_lag_wq;
72 static const struct net_device_ops ice_netdev_safe_mode_ops;
73 static const struct net_device_ops ice_netdev_ops;
74
75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
76
77 static void ice_vsi_release_all(struct ice_pf *pf);
78
79 static int ice_rebuild_channels(struct ice_pf *pf);
80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
81
82 static int
83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
84 void *cb_priv, enum tc_setup_type type, void *type_data,
85 void *data,
86 void (*cleanup)(struct flow_block_cb *block_cb));
87
netif_is_ice(const struct net_device * dev)88 bool netif_is_ice(const struct net_device *dev)
89 {
90 return dev && (dev->netdev_ops == &ice_netdev_ops ||
91 dev->netdev_ops == &ice_netdev_safe_mode_ops);
92 }
93
94 /**
95 * ice_get_tx_pending - returns number of Tx descriptors not processed
96 * @ring: the ring of descriptors
97 */
ice_get_tx_pending(struct ice_tx_ring * ring)98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
99 {
100 u16 head, tail;
101
102 head = ring->next_to_clean;
103 tail = ring->next_to_use;
104
105 if (head != tail)
106 return (head < tail) ?
107 tail - head : (tail + ring->count - head);
108 return 0;
109 }
110
111 /**
112 * ice_check_for_hang_subtask - check for and recover hung queues
113 * @pf: pointer to PF struct
114 */
ice_check_for_hang_subtask(struct ice_pf * pf)115 static void ice_check_for_hang_subtask(struct ice_pf *pf)
116 {
117 struct ice_vsi *vsi = NULL;
118 struct ice_hw *hw;
119 unsigned int i;
120 int packets;
121 u32 v;
122
123 ice_for_each_vsi(pf, v)
124 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
125 vsi = pf->vsi[v];
126 break;
127 }
128
129 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
130 return;
131
132 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
133 return;
134
135 hw = &vsi->back->hw;
136
137 ice_for_each_txq(vsi, i) {
138 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
139 struct ice_ring_stats *ring_stats;
140
141 if (!tx_ring)
142 continue;
143 if (ice_ring_ch_enabled(tx_ring))
144 continue;
145
146 ring_stats = tx_ring->ring_stats;
147 if (!ring_stats)
148 continue;
149
150 if (tx_ring->desc) {
151 /* If packet counter has not changed the queue is
152 * likely stalled, so force an interrupt for this
153 * queue.
154 *
155 * prev_pkt would be negative if there was no
156 * pending work.
157 */
158 packets = ring_stats->stats.pkts & INT_MAX;
159 if (ring_stats->tx_stats.prev_pkt == packets) {
160 /* Trigger sw interrupt to revive the queue */
161 ice_trigger_sw_intr(hw, tx_ring->q_vector);
162 continue;
163 }
164
165 /* Memory barrier between read of packet count and call
166 * to ice_get_tx_pending()
167 */
168 smp_rmb();
169 ring_stats->tx_stats.prev_pkt =
170 ice_get_tx_pending(tx_ring) ? packets : -1;
171 }
172 }
173 }
174
175 /**
176 * ice_init_mac_fltr - Set initial MAC filters
177 * @pf: board private structure
178 *
179 * Set initial set of MAC filters for PF VSI; configure filters for permanent
180 * address and broadcast address. If an error is encountered, netdevice will be
181 * unregistered.
182 */
ice_init_mac_fltr(struct ice_pf * pf)183 static int ice_init_mac_fltr(struct ice_pf *pf)
184 {
185 struct ice_vsi *vsi;
186 u8 *perm_addr;
187
188 vsi = ice_get_main_vsi(pf);
189 if (!vsi)
190 return -EINVAL;
191
192 perm_addr = vsi->port_info->mac.perm_addr;
193 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
194 }
195
196 /**
197 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
198 * @netdev: the net device on which the sync is happening
199 * @addr: MAC address to sync
200 *
201 * This is a callback function which is called by the in kernel device sync
202 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
203 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
204 * MAC filters from the hardware.
205 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
207 {
208 struct ice_netdev_priv *np = netdev_priv(netdev);
209 struct ice_vsi *vsi = np->vsi;
210
211 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
212 ICE_FWD_TO_VSI))
213 return -EINVAL;
214
215 return 0;
216 }
217
218 /**
219 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
220 * @netdev: the net device on which the unsync is happening
221 * @addr: MAC address to unsync
222 *
223 * This is a callback function which is called by the in kernel device unsync
224 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
225 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
226 * delete the MAC filters from the hardware.
227 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
229 {
230 struct ice_netdev_priv *np = netdev_priv(netdev);
231 struct ice_vsi *vsi = np->vsi;
232
233 /* Under some circumstances, we might receive a request to delete our
234 * own device address from our uc list. Because we store the device
235 * address in the VSI's MAC filter list, we need to ignore such
236 * requests and not delete our device address from this list.
237 */
238 if (ether_addr_equal(addr, netdev->dev_addr))
239 return 0;
240
241 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
242 ICE_FWD_TO_VSI))
243 return -EINVAL;
244
245 return 0;
246 }
247
248 /**
249 * ice_vsi_fltr_changed - check if filter state changed
250 * @vsi: VSI to be checked
251 *
252 * returns true if filter state has changed, false otherwise.
253 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
255 {
256 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
257 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
258 }
259
260 /**
261 * ice_set_promisc - Enable promiscuous mode for a given PF
262 * @vsi: the VSI being configured
263 * @promisc_m: mask of promiscuous config bits
264 *
265 */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
267 {
268 int status;
269
270 if (vsi->type != ICE_VSI_PF)
271 return 0;
272
273 if (ice_vsi_has_non_zero_vlans(vsi)) {
274 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
275 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
276 promisc_m);
277 } else {
278 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
279 promisc_m, 0);
280 }
281 if (status && status != -EEXIST)
282 return status;
283
284 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
285 vsi->vsi_num, promisc_m);
286 return 0;
287 }
288
289 /**
290 * ice_clear_promisc - Disable promiscuous mode for a given PF
291 * @vsi: the VSI being configured
292 * @promisc_m: mask of promiscuous config bits
293 *
294 */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
296 {
297 int status;
298
299 if (vsi->type != ICE_VSI_PF)
300 return 0;
301
302 if (ice_vsi_has_non_zero_vlans(vsi)) {
303 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
304 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
305 promisc_m);
306 } else {
307 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
308 promisc_m, 0);
309 }
310
311 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
312 vsi->vsi_num, promisc_m);
313 return status;
314 }
315
316 /**
317 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
318 * @vsi: ptr to the VSI
319 *
320 * Push any outstanding VSI filter changes through the AdminQ.
321 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
323 {
324 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
325 struct device *dev = ice_pf_to_dev(vsi->back);
326 struct net_device *netdev = vsi->netdev;
327 bool promisc_forced_on = false;
328 struct ice_pf *pf = vsi->back;
329 struct ice_hw *hw = &pf->hw;
330 u32 changed_flags = 0;
331 int err;
332
333 if (!vsi->netdev)
334 return -EINVAL;
335
336 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
337 usleep_range(1000, 2000);
338
339 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
340 vsi->current_netdev_flags = vsi->netdev->flags;
341
342 INIT_LIST_HEAD(&vsi->tmp_sync_list);
343 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
344
345 if (ice_vsi_fltr_changed(vsi)) {
346 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
347 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
348
349 /* grab the netdev's addr_list_lock */
350 netif_addr_lock_bh(netdev);
351 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
352 ice_add_mac_to_unsync_list);
353 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
354 ice_add_mac_to_unsync_list);
355 /* our temp lists are populated. release lock */
356 netif_addr_unlock_bh(netdev);
357 }
358
359 /* Remove MAC addresses in the unsync list */
360 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
361 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
362 if (err) {
363 netdev_err(netdev, "Failed to delete MAC filters\n");
364 /* if we failed because of alloc failures, just bail */
365 if (err == -ENOMEM)
366 goto out;
367 }
368
369 /* Add MAC addresses in the sync list */
370 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
371 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
372 /* If filter is added successfully or already exists, do not go into
373 * 'if' condition and report it as error. Instead continue processing
374 * rest of the function.
375 */
376 if (err && err != -EEXIST) {
377 netdev_err(netdev, "Failed to add MAC filters\n");
378 /* If there is no more space for new umac filters, VSI
379 * should go into promiscuous mode. There should be some
380 * space reserved for promiscuous filters.
381 */
382 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
383 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
384 vsi->state)) {
385 promisc_forced_on = true;
386 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
387 vsi->vsi_num);
388 } else {
389 goto out;
390 }
391 }
392 err = 0;
393 /* check for changes in promiscuous modes */
394 if (changed_flags & IFF_ALLMULTI) {
395 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
396 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
397 if (err) {
398 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
399 goto out_promisc;
400 }
401 } else {
402 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
403 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
404 if (err) {
405 vsi->current_netdev_flags |= IFF_ALLMULTI;
406 goto out_promisc;
407 }
408 }
409 }
410
411 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
412 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
413 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
414 if (vsi->current_netdev_flags & IFF_PROMISC) {
415 /* Apply Rx filter rule to get traffic from wire */
416 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
417 err = ice_set_dflt_vsi(vsi);
418 if (err && err != -EEXIST) {
419 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
420 err, vsi->vsi_num);
421 vsi->current_netdev_flags &=
422 ~IFF_PROMISC;
423 goto out_promisc;
424 }
425 err = 0;
426 vlan_ops->dis_rx_filtering(vsi);
427
428 /* promiscuous mode implies allmulticast so
429 * that VSIs that are in promiscuous mode are
430 * subscribed to multicast packets coming to
431 * the port
432 */
433 err = ice_set_promisc(vsi,
434 ICE_MCAST_PROMISC_BITS);
435 if (err)
436 goto out_promisc;
437 }
438 } else {
439 /* Clear Rx filter to remove traffic from wire */
440 if (ice_is_vsi_dflt_vsi(vsi)) {
441 err = ice_clear_dflt_vsi(vsi);
442 if (err) {
443 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
444 err, vsi->vsi_num);
445 vsi->current_netdev_flags |=
446 IFF_PROMISC;
447 goto out_promisc;
448 }
449 if (vsi->netdev->features &
450 NETIF_F_HW_VLAN_CTAG_FILTER)
451 vlan_ops->ena_rx_filtering(vsi);
452 }
453
454 /* disable allmulti here, but only if allmulti is not
455 * still enabled for the netdev
456 */
457 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
458 err = ice_clear_promisc(vsi,
459 ICE_MCAST_PROMISC_BITS);
460 if (err) {
461 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
462 err, vsi->vsi_num);
463 }
464 }
465 }
466 }
467 goto exit;
468
469 out_promisc:
470 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
471 goto exit;
472 out:
473 /* if something went wrong then set the changed flag so we try again */
474 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
475 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
476 exit:
477 clear_bit(ICE_CFG_BUSY, vsi->state);
478 return err;
479 }
480
481 /**
482 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
483 * @pf: board private structure
484 */
ice_sync_fltr_subtask(struct ice_pf * pf)485 static void ice_sync_fltr_subtask(struct ice_pf *pf)
486 {
487 int v;
488
489 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
490 return;
491
492 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
493
494 ice_for_each_vsi(pf, v)
495 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
496 ice_vsi_sync_fltr(pf->vsi[v])) {
497 /* come back and try again later */
498 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
499 break;
500 }
501 }
502
503 /**
504 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
505 * @pf: the PF
506 * @locked: is the rtnl_lock already held
507 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
509 {
510 int node;
511 int v;
512
513 ice_for_each_vsi(pf, v)
514 if (pf->vsi[v])
515 ice_dis_vsi(pf->vsi[v], locked);
516
517 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
518 pf->pf_agg_node[node].num_vsis = 0;
519
520 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
521 pf->vf_agg_node[node].num_vsis = 0;
522 }
523
524 /**
525 * ice_prepare_for_reset - prep for reset
526 * @pf: board private structure
527 * @reset_type: reset type requested
528 *
529 * Inform or close all dependent features in prep for reset.
530 */
531 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
533 {
534 struct ice_hw *hw = &pf->hw;
535 struct ice_vsi *vsi;
536 struct ice_vf *vf;
537 unsigned int bkt;
538
539 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
540
541 /* already prepared for reset */
542 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
543 return;
544
545 synchronize_irq(pf->oicr_irq.virq);
546
547 ice_unplug_aux_dev(pf);
548
549 /* Notify VFs of impending reset */
550 if (ice_check_sq_alive(hw, &hw->mailboxq))
551 ice_vc_notify_reset(pf);
552
553 /* Disable VFs until reset is completed */
554 mutex_lock(&pf->vfs.table_lock);
555 ice_for_each_vf(pf, bkt, vf)
556 ice_set_vf_state_dis(vf);
557 mutex_unlock(&pf->vfs.table_lock);
558
559 if (ice_is_eswitch_mode_switchdev(pf)) {
560 rtnl_lock();
561 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
562 rtnl_unlock();
563 }
564
565 /* release ADQ specific HW and SW resources */
566 vsi = ice_get_main_vsi(pf);
567 if (!vsi)
568 goto skip;
569
570 /* to be on safe side, reset orig_rss_size so that normal flow
571 * of deciding rss_size can take precedence
572 */
573 vsi->orig_rss_size = 0;
574
575 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
576 if (reset_type == ICE_RESET_PFR) {
577 vsi->old_ena_tc = vsi->all_enatc;
578 vsi->old_numtc = vsi->all_numtc;
579 } else {
580 ice_remove_q_channels(vsi, true);
581
582 /* for other reset type, do not support channel rebuild
583 * hence reset needed info
584 */
585 vsi->old_ena_tc = 0;
586 vsi->all_enatc = 0;
587 vsi->old_numtc = 0;
588 vsi->all_numtc = 0;
589 vsi->req_txq = 0;
590 vsi->req_rxq = 0;
591 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
592 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
593 }
594 }
595
596 if (vsi->netdev)
597 netif_device_detach(vsi->netdev);
598 skip:
599
600 /* clear SW filtering DB */
601 ice_clear_hw_tbls(hw);
602 /* disable the VSIs and their queues that are not already DOWN */
603 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
604 ice_pf_dis_all_vsi(pf, false);
605
606 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
607 ice_ptp_prepare_for_reset(pf, reset_type);
608
609 if (ice_is_feature_supported(pf, ICE_F_GNSS))
610 ice_gnss_exit(pf);
611
612 if (hw->port_info)
613 ice_sched_clear_port(hw->port_info);
614
615 ice_shutdown_all_ctrlq(hw, false);
616
617 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
618 }
619
620 /**
621 * ice_do_reset - Initiate one of many types of resets
622 * @pf: board private structure
623 * @reset_type: reset type requested before this function was called.
624 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
626 {
627 struct device *dev = ice_pf_to_dev(pf);
628 struct ice_hw *hw = &pf->hw;
629
630 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
631
632 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
633 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
634 reset_type = ICE_RESET_CORER;
635 }
636
637 ice_prepare_for_reset(pf, reset_type);
638
639 /* trigger the reset */
640 if (ice_reset(hw, reset_type)) {
641 dev_err(dev, "reset %d failed\n", reset_type);
642 set_bit(ICE_RESET_FAILED, pf->state);
643 clear_bit(ICE_RESET_OICR_RECV, pf->state);
644 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
645 clear_bit(ICE_PFR_REQ, pf->state);
646 clear_bit(ICE_CORER_REQ, pf->state);
647 clear_bit(ICE_GLOBR_REQ, pf->state);
648 wake_up(&pf->reset_wait_queue);
649 return;
650 }
651
652 /* PFR is a bit of a special case because it doesn't result in an OICR
653 * interrupt. So for PFR, rebuild after the reset and clear the reset-
654 * associated state bits.
655 */
656 if (reset_type == ICE_RESET_PFR) {
657 pf->pfr_count++;
658 ice_rebuild(pf, reset_type);
659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
660 clear_bit(ICE_PFR_REQ, pf->state);
661 wake_up(&pf->reset_wait_queue);
662 ice_reset_all_vfs(pf);
663 }
664 }
665
666 /**
667 * ice_reset_subtask - Set up for resetting the device and driver
668 * @pf: board private structure
669 */
ice_reset_subtask(struct ice_pf * pf)670 static void ice_reset_subtask(struct ice_pf *pf)
671 {
672 enum ice_reset_req reset_type = ICE_RESET_INVAL;
673
674 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
675 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
676 * of reset is pending and sets bits in pf->state indicating the reset
677 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
678 * prepare for pending reset if not already (for PF software-initiated
679 * global resets the software should already be prepared for it as
680 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
681 * by firmware or software on other PFs, that bit is not set so prepare
682 * for the reset now), poll for reset done, rebuild and return.
683 */
684 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
685 /* Perform the largest reset requested */
686 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
687 reset_type = ICE_RESET_CORER;
688 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
689 reset_type = ICE_RESET_GLOBR;
690 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
691 reset_type = ICE_RESET_EMPR;
692 /* return if no valid reset type requested */
693 if (reset_type == ICE_RESET_INVAL)
694 return;
695 ice_prepare_for_reset(pf, reset_type);
696
697 /* make sure we are ready to rebuild */
698 if (ice_check_reset(&pf->hw)) {
699 set_bit(ICE_RESET_FAILED, pf->state);
700 } else {
701 /* done with reset. start rebuild */
702 pf->hw.reset_ongoing = false;
703 ice_rebuild(pf, reset_type);
704 /* clear bit to resume normal operations, but
705 * ICE_NEEDS_RESTART bit is set in case rebuild failed
706 */
707 clear_bit(ICE_RESET_OICR_RECV, pf->state);
708 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
709 clear_bit(ICE_PFR_REQ, pf->state);
710 clear_bit(ICE_CORER_REQ, pf->state);
711 clear_bit(ICE_GLOBR_REQ, pf->state);
712 wake_up(&pf->reset_wait_queue);
713 ice_reset_all_vfs(pf);
714 }
715
716 return;
717 }
718
719 /* No pending resets to finish processing. Check for new resets */
720 if (test_bit(ICE_PFR_REQ, pf->state)) {
721 reset_type = ICE_RESET_PFR;
722 if (pf->lag && pf->lag->bonded) {
723 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
724 reset_type = ICE_RESET_CORER;
725 }
726 }
727 if (test_bit(ICE_CORER_REQ, pf->state))
728 reset_type = ICE_RESET_CORER;
729 if (test_bit(ICE_GLOBR_REQ, pf->state))
730 reset_type = ICE_RESET_GLOBR;
731 /* If no valid reset type requested just return */
732 if (reset_type == ICE_RESET_INVAL)
733 return;
734
735 /* reset if not already down or busy */
736 if (!test_bit(ICE_DOWN, pf->state) &&
737 !test_bit(ICE_CFG_BUSY, pf->state)) {
738 ice_do_reset(pf, reset_type);
739 }
740 }
741
742 /**
743 * ice_print_topo_conflict - print topology conflict message
744 * @vsi: the VSI whose topology status is being checked
745 */
ice_print_topo_conflict(struct ice_vsi * vsi)746 static void ice_print_topo_conflict(struct ice_vsi *vsi)
747 {
748 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
749 case ICE_AQ_LINK_TOPO_CONFLICT:
750 case ICE_AQ_LINK_MEDIA_CONFLICT:
751 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
752 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
753 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
754 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
755 break;
756 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
757 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
758 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
759 else
760 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
761 break;
762 default:
763 break;
764 }
765 }
766
767 /**
768 * ice_print_link_msg - print link up or down message
769 * @vsi: the VSI whose link status is being queried
770 * @isup: boolean for if the link is now up or down
771 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
773 {
774 struct ice_aqc_get_phy_caps_data *caps;
775 const char *an_advertised;
776 const char *fec_req;
777 const char *speed;
778 const char *fec;
779 const char *fc;
780 const char *an;
781 int status;
782
783 if (!vsi)
784 return;
785
786 if (vsi->current_isup == isup)
787 return;
788
789 vsi->current_isup = isup;
790
791 if (!isup) {
792 netdev_info(vsi->netdev, "NIC Link is Down\n");
793 return;
794 }
795
796 switch (vsi->port_info->phy.link_info.link_speed) {
797 case ICE_AQ_LINK_SPEED_200GB:
798 speed = "200 G";
799 break;
800 case ICE_AQ_LINK_SPEED_100GB:
801 speed = "100 G";
802 break;
803 case ICE_AQ_LINK_SPEED_50GB:
804 speed = "50 G";
805 break;
806 case ICE_AQ_LINK_SPEED_40GB:
807 speed = "40 G";
808 break;
809 case ICE_AQ_LINK_SPEED_25GB:
810 speed = "25 G";
811 break;
812 case ICE_AQ_LINK_SPEED_20GB:
813 speed = "20 G";
814 break;
815 case ICE_AQ_LINK_SPEED_10GB:
816 speed = "10 G";
817 break;
818 case ICE_AQ_LINK_SPEED_5GB:
819 speed = "5 G";
820 break;
821 case ICE_AQ_LINK_SPEED_2500MB:
822 speed = "2.5 G";
823 break;
824 case ICE_AQ_LINK_SPEED_1000MB:
825 speed = "1 G";
826 break;
827 case ICE_AQ_LINK_SPEED_100MB:
828 speed = "100 M";
829 break;
830 default:
831 speed = "Unknown ";
832 break;
833 }
834
835 switch (vsi->port_info->fc.current_mode) {
836 case ICE_FC_FULL:
837 fc = "Rx/Tx";
838 break;
839 case ICE_FC_TX_PAUSE:
840 fc = "Tx";
841 break;
842 case ICE_FC_RX_PAUSE:
843 fc = "Rx";
844 break;
845 case ICE_FC_NONE:
846 fc = "None";
847 break;
848 default:
849 fc = "Unknown";
850 break;
851 }
852
853 /* Get FEC mode based on negotiated link info */
854 switch (vsi->port_info->phy.link_info.fec_info) {
855 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
856 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
857 fec = "RS-FEC";
858 break;
859 case ICE_AQ_LINK_25G_KR_FEC_EN:
860 fec = "FC-FEC/BASE-R";
861 break;
862 default:
863 fec = "NONE";
864 break;
865 }
866
867 /* check if autoneg completed, might be false due to not supported */
868 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
869 an = "True";
870 else
871 an = "False";
872
873 /* Get FEC mode requested based on PHY caps last SW configuration */
874 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
875 if (!caps) {
876 fec_req = "Unknown";
877 an_advertised = "Unknown";
878 goto done;
879 }
880
881 status = ice_aq_get_phy_caps(vsi->port_info, false,
882 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
883 if (status)
884 netdev_info(vsi->netdev, "Get phy capability failed.\n");
885
886 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
887
888 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
889 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
890 fec_req = "RS-FEC";
891 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
892 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
893 fec_req = "FC-FEC/BASE-R";
894 else
895 fec_req = "NONE";
896
897 kfree(caps);
898
899 done:
900 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
901 speed, fec_req, fec, an_advertised, an, fc);
902 ice_print_topo_conflict(vsi);
903 }
904
905 /**
906 * ice_vsi_link_event - update the VSI's netdev
907 * @vsi: the VSI on which the link event occurred
908 * @link_up: whether or not the VSI needs to be set up or down
909 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
911 {
912 if (!vsi)
913 return;
914
915 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
916 return;
917
918 if (vsi->type == ICE_VSI_PF) {
919 if (link_up == netif_carrier_ok(vsi->netdev))
920 return;
921
922 if (link_up) {
923 netif_carrier_on(vsi->netdev);
924 netif_tx_wake_all_queues(vsi->netdev);
925 } else {
926 netif_carrier_off(vsi->netdev);
927 netif_tx_stop_all_queues(vsi->netdev);
928 }
929 }
930 }
931
932 /**
933 * ice_set_dflt_mib - send a default config MIB to the FW
934 * @pf: private PF struct
935 *
936 * This function sends a default configuration MIB to the FW.
937 *
938 * If this function errors out at any point, the driver is still able to
939 * function. The main impact is that LFC may not operate as expected.
940 * Therefore an error state in this function should be treated with a DBG
941 * message and continue on with driver rebuild/reenable.
942 */
ice_set_dflt_mib(struct ice_pf * pf)943 static void ice_set_dflt_mib(struct ice_pf *pf)
944 {
945 struct device *dev = ice_pf_to_dev(pf);
946 u8 mib_type, *buf, *lldpmib = NULL;
947 u16 len, typelen, offset = 0;
948 struct ice_lldp_org_tlv *tlv;
949 struct ice_hw *hw = &pf->hw;
950 u32 ouisubtype;
951
952 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
953 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
954 if (!lldpmib) {
955 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
956 __func__);
957 return;
958 }
959
960 /* Add ETS CFG TLV */
961 tlv = (struct ice_lldp_org_tlv *)lldpmib;
962 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
963 ICE_IEEE_ETS_TLV_LEN);
964 tlv->typelen = htons(typelen);
965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
966 ICE_IEEE_SUBTYPE_ETS_CFG);
967 tlv->ouisubtype = htonl(ouisubtype);
968
969 buf = tlv->tlvinfo;
970 buf[0] = 0;
971
972 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
973 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
974 * Octets 13 - 20 are TSA values - leave as zeros
975 */
976 buf[5] = 0x64;
977 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
978 offset += len + 2;
979 tlv = (struct ice_lldp_org_tlv *)
980 ((char *)tlv + sizeof(tlv->typelen) + len);
981
982 /* Add ETS REC TLV */
983 buf = tlv->tlvinfo;
984 tlv->typelen = htons(typelen);
985
986 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
987 ICE_IEEE_SUBTYPE_ETS_REC);
988 tlv->ouisubtype = htonl(ouisubtype);
989
990 /* First octet of buf is reserved
991 * Octets 1 - 4 map UP to TC - all UPs map to zero
992 * Octets 5 - 12 are BW values - set TC 0 to 100%.
993 * Octets 13 - 20 are TSA value - leave as zeros
994 */
995 buf[5] = 0x64;
996 offset += len + 2;
997 tlv = (struct ice_lldp_org_tlv *)
998 ((char *)tlv + sizeof(tlv->typelen) + len);
999
1000 /* Add PFC CFG TLV */
1001 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1002 ICE_IEEE_PFC_TLV_LEN);
1003 tlv->typelen = htons(typelen);
1004
1005 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1006 ICE_IEEE_SUBTYPE_PFC_CFG);
1007 tlv->ouisubtype = htonl(ouisubtype);
1008
1009 /* Octet 1 left as all zeros - PFC disabled */
1010 buf[0] = 0x08;
1011 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1012 offset += len + 2;
1013
1014 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1015 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1016
1017 kfree(lldpmib);
1018 }
1019
1020 /**
1021 * ice_check_phy_fw_load - check if PHY FW load failed
1022 * @pf: pointer to PF struct
1023 * @link_cfg_err: bitmap from the link info structure
1024 *
1025 * check if external PHY FW load failed and print an error message if it did
1026 */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1028 {
1029 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1030 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1031 return;
1032 }
1033
1034 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1035 return;
1036
1037 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1038 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1039 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1040 }
1041 }
1042
1043 /**
1044 * ice_check_module_power
1045 * @pf: pointer to PF struct
1046 * @link_cfg_err: bitmap from the link info structure
1047 *
1048 * check module power level returned by a previous call to aq_get_link_info
1049 * and print error messages if module power level is not supported
1050 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1052 {
1053 /* if module power level is supported, clear the flag */
1054 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1055 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1056 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1057 return;
1058 }
1059
1060 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1061 * above block didn't clear this bit, there's nothing to do
1062 */
1063 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1064 return;
1065
1066 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1067 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1068 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1069 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1070 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1071 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1072 }
1073 }
1074
1075 /**
1076 * ice_check_link_cfg_err - check if link configuration failed
1077 * @pf: pointer to the PF struct
1078 * @link_cfg_err: bitmap from the link info structure
1079 *
1080 * print if any link configuration failure happens due to the value in the
1081 * link_cfg_err parameter in the link info structure
1082 */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1084 {
1085 ice_check_module_power(pf, link_cfg_err);
1086 ice_check_phy_fw_load(pf, link_cfg_err);
1087 }
1088
1089 /**
1090 * ice_link_event - process the link event
1091 * @pf: PF that the link event is associated with
1092 * @pi: port_info for the port that the link event is associated with
1093 * @link_up: true if the physical link is up and false if it is down
1094 * @link_speed: current link speed received from the link event
1095 *
1096 * Returns 0 on success and negative on failure
1097 */
1098 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1100 u16 link_speed)
1101 {
1102 struct device *dev = ice_pf_to_dev(pf);
1103 struct ice_phy_info *phy_info;
1104 struct ice_vsi *vsi;
1105 u16 old_link_speed;
1106 bool old_link;
1107 int status;
1108
1109 phy_info = &pi->phy;
1110 phy_info->link_info_old = phy_info->link_info;
1111
1112 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1113 old_link_speed = phy_info->link_info_old.link_speed;
1114
1115 /* update the link info structures and re-enable link events,
1116 * don't bail on failure due to other book keeping needed
1117 */
1118 status = ice_update_link_info(pi);
1119 if (status)
1120 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1121 pi->lport, status,
1122 ice_aq_str(pi->hw->adminq.sq_last_status));
1123
1124 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1125
1126 /* Check if the link state is up after updating link info, and treat
1127 * this event as an UP event since the link is actually UP now.
1128 */
1129 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1130 link_up = true;
1131
1132 vsi = ice_get_main_vsi(pf);
1133 if (!vsi || !vsi->port_info)
1134 return -EINVAL;
1135
1136 /* turn off PHY if media was removed */
1137 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1138 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1139 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1140 ice_set_link(vsi, false);
1141 }
1142
1143 /* if the old link up/down and speed is the same as the new */
1144 if (link_up == old_link && link_speed == old_link_speed)
1145 return 0;
1146
1147 ice_ptp_link_change(pf, link_up);
1148
1149 if (ice_is_dcb_active(pf)) {
1150 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1151 ice_dcb_rebuild(pf);
1152 } else {
1153 if (link_up)
1154 ice_set_dflt_mib(pf);
1155 }
1156 ice_vsi_link_event(vsi, link_up);
1157 ice_print_link_msg(vsi, link_up);
1158
1159 ice_vc_notify_link_state(pf);
1160
1161 return 0;
1162 }
1163
1164 /**
1165 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1166 * @pf: board private structure
1167 */
ice_watchdog_subtask(struct ice_pf * pf)1168 static void ice_watchdog_subtask(struct ice_pf *pf)
1169 {
1170 int i;
1171
1172 /* if interface is down do nothing */
1173 if (test_bit(ICE_DOWN, pf->state) ||
1174 test_bit(ICE_CFG_BUSY, pf->state))
1175 return;
1176
1177 /* make sure we don't do these things too often */
1178 if (time_before(jiffies,
1179 pf->serv_tmr_prev + pf->serv_tmr_period))
1180 return;
1181
1182 pf->serv_tmr_prev = jiffies;
1183
1184 /* Update the stats for active netdevs so the network stack
1185 * can look at updated numbers whenever it cares to
1186 */
1187 ice_update_pf_stats(pf);
1188 ice_for_each_vsi(pf, i)
1189 if (pf->vsi[i] && pf->vsi[i]->netdev)
1190 ice_update_vsi_stats(pf->vsi[i]);
1191 }
1192
1193 /**
1194 * ice_init_link_events - enable/initialize link events
1195 * @pi: pointer to the port_info instance
1196 *
1197 * Returns -EIO on failure, 0 on success
1198 */
ice_init_link_events(struct ice_port_info * pi)1199 static int ice_init_link_events(struct ice_port_info *pi)
1200 {
1201 u16 mask;
1202
1203 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1204 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1205 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1206
1207 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1209 pi->lport);
1210 return -EIO;
1211 }
1212
1213 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1215 pi->lport);
1216 return -EIO;
1217 }
1218
1219 return 0;
1220 }
1221
1222 /**
1223 * ice_handle_link_event - handle link event via ARQ
1224 * @pf: PF that the link event is associated with
1225 * @event: event structure containing link status info
1226 */
1227 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1228 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1229 {
1230 struct ice_aqc_get_link_status_data *link_data;
1231 struct ice_port_info *port_info;
1232 int status;
1233
1234 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1235 port_info = pf->hw.port_info;
1236 if (!port_info)
1237 return -EINVAL;
1238
1239 status = ice_link_event(pf, port_info,
1240 !!(link_data->link_info & ICE_AQ_LINK_UP),
1241 le16_to_cpu(link_data->link_speed));
1242 if (status)
1243 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1244 status);
1245
1246 return status;
1247 }
1248
1249 /**
1250 * ice_get_fwlog_data - copy the FW log data from ARQ event
1251 * @pf: PF that the FW log event is associated with
1252 * @event: event structure containing FW log data
1253 */
1254 static void
ice_get_fwlog_data(struct ice_pf * pf,struct ice_rq_event_info * event)1255 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1256 {
1257 struct ice_fwlog_data *fwlog;
1258 struct ice_hw *hw = &pf->hw;
1259
1260 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1261
1262 memset(fwlog->data, 0, PAGE_SIZE);
1263 fwlog->data_size = le16_to_cpu(event->desc.datalen);
1264
1265 memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1266 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1267
1268 if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1269 /* the rings are full so bump the head to create room */
1270 ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1271 hw->fwlog_ring.size);
1272 }
1273 }
1274
1275 /**
1276 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1277 * @pf: pointer to the PF private structure
1278 * @task: intermediate helper storage and identifier for waiting
1279 * @opcode: the opcode to wait for
1280 *
1281 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1282 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1283 *
1284 * Calls are separated to allow caller registering for event before sending
1285 * the command, which mitigates a race between registering and FW responding.
1286 *
1287 * To obtain only the descriptor contents, pass an task->event with null
1288 * msg_buf. If the complete data buffer is desired, allocate the
1289 * task->event.msg_buf with enough space ahead of time.
1290 */
ice_aq_prep_for_event(struct ice_pf * pf,struct ice_aq_task * task,u16 opcode)1291 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1292 u16 opcode)
1293 {
1294 INIT_HLIST_NODE(&task->entry);
1295 task->opcode = opcode;
1296 task->state = ICE_AQ_TASK_WAITING;
1297
1298 spin_lock_bh(&pf->aq_wait_lock);
1299 hlist_add_head(&task->entry, &pf->aq_wait_list);
1300 spin_unlock_bh(&pf->aq_wait_lock);
1301 }
1302
1303 /**
1304 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1305 * @pf: pointer to the PF private structure
1306 * @task: ptr prepared by ice_aq_prep_for_event()
1307 * @timeout: how long to wait, in jiffies
1308 *
1309 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1310 * current thread will be put to sleep until the specified event occurs or
1311 * until the given timeout is reached.
1312 *
1313 * Returns: zero on success, or a negative error code on failure.
1314 */
ice_aq_wait_for_event(struct ice_pf * pf,struct ice_aq_task * task,unsigned long timeout)1315 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1316 unsigned long timeout)
1317 {
1318 enum ice_aq_task_state *state = &task->state;
1319 struct device *dev = ice_pf_to_dev(pf);
1320 unsigned long start = jiffies;
1321 long ret;
1322 int err;
1323
1324 ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1325 *state != ICE_AQ_TASK_WAITING,
1326 timeout);
1327 switch (*state) {
1328 case ICE_AQ_TASK_NOT_PREPARED:
1329 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1330 err = -EINVAL;
1331 break;
1332 case ICE_AQ_TASK_WAITING:
1333 err = ret < 0 ? ret : -ETIMEDOUT;
1334 break;
1335 case ICE_AQ_TASK_CANCELED:
1336 err = ret < 0 ? ret : -ECANCELED;
1337 break;
1338 case ICE_AQ_TASK_COMPLETE:
1339 err = ret < 0 ? ret : 0;
1340 break;
1341 default:
1342 WARN(1, "Unexpected AdminQ wait task state %u", *state);
1343 err = -EINVAL;
1344 break;
1345 }
1346
1347 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1348 jiffies_to_msecs(jiffies - start),
1349 jiffies_to_msecs(timeout),
1350 task->opcode);
1351
1352 spin_lock_bh(&pf->aq_wait_lock);
1353 hlist_del(&task->entry);
1354 spin_unlock_bh(&pf->aq_wait_lock);
1355
1356 return err;
1357 }
1358
1359 /**
1360 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1361 * @pf: pointer to the PF private structure
1362 * @opcode: the opcode of the event
1363 * @event: the event to check
1364 *
1365 * Loops over the current list of pending threads waiting for an AdminQ event.
1366 * For each matching task, copy the contents of the event into the task
1367 * structure and wake up the thread.
1368 *
1369 * If multiple threads wait for the same opcode, they will all be woken up.
1370 *
1371 * Note that event->msg_buf will only be duplicated if the event has a buffer
1372 * with enough space already allocated. Otherwise, only the descriptor and
1373 * message length will be copied.
1374 *
1375 * Returns: true if an event was found, false otherwise
1376 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1377 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1378 struct ice_rq_event_info *event)
1379 {
1380 struct ice_rq_event_info *task_ev;
1381 struct ice_aq_task *task;
1382 bool found = false;
1383
1384 spin_lock_bh(&pf->aq_wait_lock);
1385 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1386 if (task->state != ICE_AQ_TASK_WAITING)
1387 continue;
1388 if (task->opcode != opcode)
1389 continue;
1390
1391 task_ev = &task->event;
1392 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1393 task_ev->msg_len = event->msg_len;
1394
1395 /* Only copy the data buffer if a destination was set */
1396 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1397 memcpy(task_ev->msg_buf, event->msg_buf,
1398 event->buf_len);
1399 task_ev->buf_len = event->buf_len;
1400 }
1401
1402 task->state = ICE_AQ_TASK_COMPLETE;
1403 found = true;
1404 }
1405 spin_unlock_bh(&pf->aq_wait_lock);
1406
1407 if (found)
1408 wake_up(&pf->aq_wait_queue);
1409 }
1410
1411 /**
1412 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1413 * @pf: the PF private structure
1414 *
1415 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1416 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1417 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1418 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1419 {
1420 struct ice_aq_task *task;
1421
1422 spin_lock_bh(&pf->aq_wait_lock);
1423 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1424 task->state = ICE_AQ_TASK_CANCELED;
1425 spin_unlock_bh(&pf->aq_wait_lock);
1426
1427 wake_up(&pf->aq_wait_queue);
1428 }
1429
1430 #define ICE_MBX_OVERFLOW_WATERMARK 64
1431
1432 /**
1433 * __ice_clean_ctrlq - helper function to clean controlq rings
1434 * @pf: ptr to struct ice_pf
1435 * @q_type: specific Control queue type
1436 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1437 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1438 {
1439 struct device *dev = ice_pf_to_dev(pf);
1440 struct ice_rq_event_info event;
1441 struct ice_hw *hw = &pf->hw;
1442 struct ice_ctl_q_info *cq;
1443 u16 pending, i = 0;
1444 const char *qtype;
1445 u32 oldval, val;
1446
1447 /* Do not clean control queue if/when PF reset fails */
1448 if (test_bit(ICE_RESET_FAILED, pf->state))
1449 return 0;
1450
1451 switch (q_type) {
1452 case ICE_CTL_Q_ADMIN:
1453 cq = &hw->adminq;
1454 qtype = "Admin";
1455 break;
1456 case ICE_CTL_Q_SB:
1457 cq = &hw->sbq;
1458 qtype = "Sideband";
1459 break;
1460 case ICE_CTL_Q_MAILBOX:
1461 cq = &hw->mailboxq;
1462 qtype = "Mailbox";
1463 /* we are going to try to detect a malicious VF, so set the
1464 * state to begin detection
1465 */
1466 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1467 break;
1468 default:
1469 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1470 return 0;
1471 }
1472
1473 /* check for error indications - PF_xx_AxQLEN register layout for
1474 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1475 */
1476 val = rd32(hw, cq->rq.len);
1477 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1478 PF_FW_ARQLEN_ARQCRIT_M)) {
1479 oldval = val;
1480 if (val & PF_FW_ARQLEN_ARQVFE_M)
1481 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1482 qtype);
1483 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1484 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1485 qtype);
1486 }
1487 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1488 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1489 qtype);
1490 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1491 PF_FW_ARQLEN_ARQCRIT_M);
1492 if (oldval != val)
1493 wr32(hw, cq->rq.len, val);
1494 }
1495
1496 val = rd32(hw, cq->sq.len);
1497 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1498 PF_FW_ATQLEN_ATQCRIT_M)) {
1499 oldval = val;
1500 if (val & PF_FW_ATQLEN_ATQVFE_M)
1501 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1502 qtype);
1503 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1504 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1505 qtype);
1506 }
1507 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1508 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1509 qtype);
1510 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1511 PF_FW_ATQLEN_ATQCRIT_M);
1512 if (oldval != val)
1513 wr32(hw, cq->sq.len, val);
1514 }
1515
1516 event.buf_len = cq->rq_buf_size;
1517 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1518 if (!event.msg_buf)
1519 return 0;
1520
1521 do {
1522 struct ice_mbx_data data = {};
1523 u16 opcode;
1524 int ret;
1525
1526 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1527 if (ret == -EALREADY)
1528 break;
1529 if (ret) {
1530 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1531 ret);
1532 break;
1533 }
1534
1535 opcode = le16_to_cpu(event.desc.opcode);
1536
1537 /* Notify any thread that might be waiting for this event */
1538 ice_aq_check_events(pf, opcode, &event);
1539
1540 switch (opcode) {
1541 case ice_aqc_opc_get_link_status:
1542 if (ice_handle_link_event(pf, &event))
1543 dev_err(dev, "Could not handle link event\n");
1544 break;
1545 case ice_aqc_opc_event_lan_overflow:
1546 ice_vf_lan_overflow_event(pf, &event);
1547 break;
1548 case ice_mbx_opc_send_msg_to_pf:
1549 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) {
1550 ice_vc_process_vf_msg(pf, &event, NULL);
1551 ice_mbx_vf_dec_trig_e830(hw, &event);
1552 } else {
1553 u16 val = hw->mailboxq.num_rq_entries;
1554
1555 data.max_num_msgs_mbx = val;
1556 val = ICE_MBX_OVERFLOW_WATERMARK;
1557 data.async_watermark_val = val;
1558 data.num_msg_proc = i;
1559 data.num_pending_arq = pending;
1560
1561 ice_vc_process_vf_msg(pf, &event, &data);
1562 }
1563 break;
1564 case ice_aqc_opc_fw_logs_event:
1565 ice_get_fwlog_data(pf, &event);
1566 break;
1567 case ice_aqc_opc_lldp_set_mib_change:
1568 ice_dcb_process_lldp_set_mib_change(pf, &event);
1569 break;
1570 case ice_aqc_opc_get_health_status:
1571 ice_process_health_status_event(pf, &event);
1572 break;
1573 default:
1574 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1575 qtype, opcode);
1576 break;
1577 }
1578 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1579
1580 kfree(event.msg_buf);
1581
1582 return pending && (i == ICE_DFLT_IRQ_WORK);
1583 }
1584
1585 /**
1586 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1587 * @hw: pointer to hardware info
1588 * @cq: control queue information
1589 *
1590 * returns true if there are pending messages in a queue, false if there aren't
1591 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1592 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1593 {
1594 u16 ntu;
1595
1596 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1597 return cq->rq.next_to_clean != ntu;
1598 }
1599
1600 /**
1601 * ice_clean_adminq_subtask - clean the AdminQ rings
1602 * @pf: board private structure
1603 */
ice_clean_adminq_subtask(struct ice_pf * pf)1604 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1605 {
1606 struct ice_hw *hw = &pf->hw;
1607
1608 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1609 return;
1610
1611 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1612 return;
1613
1614 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1615
1616 /* There might be a situation where new messages arrive to a control
1617 * queue between processing the last message and clearing the
1618 * EVENT_PENDING bit. So before exiting, check queue head again (using
1619 * ice_ctrlq_pending) and process new messages if any.
1620 */
1621 if (ice_ctrlq_pending(hw, &hw->adminq))
1622 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1623
1624 ice_flush(hw);
1625 }
1626
1627 /**
1628 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1629 * @pf: board private structure
1630 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1631 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1632 {
1633 struct ice_hw *hw = &pf->hw;
1634
1635 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1636 return;
1637
1638 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1639 return;
1640
1641 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1642
1643 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1644 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1645
1646 ice_flush(hw);
1647 }
1648
1649 /**
1650 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1651 * @pf: board private structure
1652 */
ice_clean_sbq_subtask(struct ice_pf * pf)1653 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1654 {
1655 struct ice_hw *hw = &pf->hw;
1656
1657 /* if mac_type is not generic, sideband is not supported
1658 * and there's nothing to do here
1659 */
1660 if (!ice_is_generic_mac(hw)) {
1661 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1662 return;
1663 }
1664
1665 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1666 return;
1667
1668 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1669 return;
1670
1671 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1672
1673 if (ice_ctrlq_pending(hw, &hw->sbq))
1674 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1675
1676 ice_flush(hw);
1677 }
1678
1679 /**
1680 * ice_service_task_schedule - schedule the service task to wake up
1681 * @pf: board private structure
1682 *
1683 * If not already scheduled, this puts the task into the work queue.
1684 */
ice_service_task_schedule(struct ice_pf * pf)1685 void ice_service_task_schedule(struct ice_pf *pf)
1686 {
1687 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1688 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1689 !test_bit(ICE_NEEDS_RESTART, pf->state))
1690 queue_work(ice_wq, &pf->serv_task);
1691 }
1692
1693 /**
1694 * ice_service_task_complete - finish up the service task
1695 * @pf: board private structure
1696 */
ice_service_task_complete(struct ice_pf * pf)1697 static void ice_service_task_complete(struct ice_pf *pf)
1698 {
1699 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1700
1701 /* force memory (pf->state) to sync before next service task */
1702 smp_mb__before_atomic();
1703 clear_bit(ICE_SERVICE_SCHED, pf->state);
1704 }
1705
1706 /**
1707 * ice_service_task_stop - stop service task and cancel works
1708 * @pf: board private structure
1709 *
1710 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1711 * 1 otherwise.
1712 */
ice_service_task_stop(struct ice_pf * pf)1713 static int ice_service_task_stop(struct ice_pf *pf)
1714 {
1715 int ret;
1716
1717 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1718
1719 if (pf->serv_tmr.function)
1720 timer_delete_sync(&pf->serv_tmr);
1721 if (pf->serv_task.func)
1722 cancel_work_sync(&pf->serv_task);
1723
1724 clear_bit(ICE_SERVICE_SCHED, pf->state);
1725 return ret;
1726 }
1727
1728 /**
1729 * ice_service_task_restart - restart service task and schedule works
1730 * @pf: board private structure
1731 *
1732 * This function is needed for suspend and resume works (e.g WoL scenario)
1733 */
ice_service_task_restart(struct ice_pf * pf)1734 static void ice_service_task_restart(struct ice_pf *pf)
1735 {
1736 clear_bit(ICE_SERVICE_DIS, pf->state);
1737 ice_service_task_schedule(pf);
1738 }
1739
1740 /**
1741 * ice_service_timer - timer callback to schedule service task
1742 * @t: pointer to timer_list
1743 */
ice_service_timer(struct timer_list * t)1744 static void ice_service_timer(struct timer_list *t)
1745 {
1746 struct ice_pf *pf = timer_container_of(pf, t, serv_tmr);
1747
1748 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1749 ice_service_task_schedule(pf);
1750 }
1751
1752 /**
1753 * ice_mdd_maybe_reset_vf - reset VF after MDD event
1754 * @pf: pointer to the PF structure
1755 * @vf: pointer to the VF structure
1756 * @reset_vf_tx: whether Tx MDD has occurred
1757 * @reset_vf_rx: whether Rx MDD has occurred
1758 *
1759 * Since the queue can get stuck on VF MDD events, the PF can be configured to
1760 * automatically reset the VF by enabling the private ethtool flag
1761 * mdd-auto-reset-vf.
1762 */
ice_mdd_maybe_reset_vf(struct ice_pf * pf,struct ice_vf * vf,bool reset_vf_tx,bool reset_vf_rx)1763 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf,
1764 bool reset_vf_tx, bool reset_vf_rx)
1765 {
1766 struct device *dev = ice_pf_to_dev(pf);
1767
1768 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1769 return;
1770
1771 /* VF MDD event counters will be cleared by reset, so print the event
1772 * prior to reset.
1773 */
1774 if (reset_vf_tx)
1775 ice_print_vf_tx_mdd_event(vf);
1776
1777 if (reset_vf_rx)
1778 ice_print_vf_rx_mdd_event(vf);
1779
1780 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n",
1781 pf->hw.pf_id, vf->vf_id);
1782 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1783 }
1784
1785 /**
1786 * ice_handle_mdd_event - handle malicious driver detect event
1787 * @pf: pointer to the PF structure
1788 *
1789 * Called from service task. OICR interrupt handler indicates MDD event.
1790 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1791 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1792 * disable the queue, the PF can be configured to reset the VF using ethtool
1793 * private flag mdd-auto-reset-vf.
1794 */
ice_handle_mdd_event(struct ice_pf * pf)1795 static void ice_handle_mdd_event(struct ice_pf *pf)
1796 {
1797 struct device *dev = ice_pf_to_dev(pf);
1798 struct ice_hw *hw = &pf->hw;
1799 struct ice_vf *vf;
1800 unsigned int bkt;
1801 u32 reg;
1802
1803 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1804 /* Since the VF MDD event logging is rate limited, check if
1805 * there are pending MDD events.
1806 */
1807 ice_print_vfs_mdd_events(pf);
1808 return;
1809 }
1810
1811 /* find what triggered an MDD event */
1812 reg = rd32(hw, GL_MDET_TX_PQM);
1813 if (reg & GL_MDET_TX_PQM_VALID_M) {
1814 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1815 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1816 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1817 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1818
1819 if (netif_msg_tx_err(pf))
1820 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1821 event, queue, pf_num, vf_num);
1822 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num,
1823 event, queue);
1824 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1825 }
1826
1827 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1828 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1829 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1830 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1831 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1832 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1833
1834 if (netif_msg_tx_err(pf))
1835 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1836 event, queue, pf_num, vf_num);
1837 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num,
1838 event, queue);
1839 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1840 }
1841
1842 reg = rd32(hw, GL_MDET_RX);
1843 if (reg & GL_MDET_RX_VALID_M) {
1844 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1845 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1846 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1847 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1848
1849 if (netif_msg_rx_err(pf))
1850 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1851 event, queue, pf_num, vf_num);
1852 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event,
1853 queue);
1854 wr32(hw, GL_MDET_RX, 0xffffffff);
1855 }
1856
1857 /* check to see if this PF caused an MDD event */
1858 reg = rd32(hw, PF_MDET_TX_PQM);
1859 if (reg & PF_MDET_TX_PQM_VALID_M) {
1860 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1861 if (netif_msg_tx_err(pf))
1862 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1863 }
1864
1865 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1866 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1867 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1868 if (netif_msg_tx_err(pf))
1869 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1870 }
1871
1872 reg = rd32(hw, PF_MDET_RX);
1873 if (reg & PF_MDET_RX_VALID_M) {
1874 wr32(hw, PF_MDET_RX, 0xFFFF);
1875 if (netif_msg_rx_err(pf))
1876 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1877 }
1878
1879 /* Check to see if one of the VFs caused an MDD event, and then
1880 * increment counters and set print pending
1881 */
1882 mutex_lock(&pf->vfs.table_lock);
1883 ice_for_each_vf(pf, bkt, vf) {
1884 bool reset_vf_tx = false, reset_vf_rx = false;
1885
1886 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1887 if (reg & VP_MDET_TX_PQM_VALID_M) {
1888 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1889 vf->mdd_tx_events.count++;
1890 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1891 if (netif_msg_tx_err(pf))
1892 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1893 vf->vf_id);
1894
1895 reset_vf_tx = true;
1896 }
1897
1898 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1899 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1900 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1901 vf->mdd_tx_events.count++;
1902 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1903 if (netif_msg_tx_err(pf))
1904 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1905 vf->vf_id);
1906
1907 reset_vf_tx = true;
1908 }
1909
1910 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1911 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1912 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1913 vf->mdd_tx_events.count++;
1914 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1915 if (netif_msg_tx_err(pf))
1916 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1917 vf->vf_id);
1918
1919 reset_vf_tx = true;
1920 }
1921
1922 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1923 if (reg & VP_MDET_RX_VALID_M) {
1924 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1925 vf->mdd_rx_events.count++;
1926 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1927 if (netif_msg_rx_err(pf))
1928 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1929 vf->vf_id);
1930
1931 reset_vf_rx = true;
1932 }
1933
1934 if (reset_vf_tx || reset_vf_rx)
1935 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx,
1936 reset_vf_rx);
1937 }
1938 mutex_unlock(&pf->vfs.table_lock);
1939
1940 ice_print_vfs_mdd_events(pf);
1941 }
1942
1943 /**
1944 * ice_force_phys_link_state - Force the physical link state
1945 * @vsi: VSI to force the physical link state to up/down
1946 * @link_up: true/false indicates to set the physical link to up/down
1947 *
1948 * Force the physical link state by getting the current PHY capabilities from
1949 * hardware and setting the PHY config based on the determined capabilities. If
1950 * link changes a link event will be triggered because both the Enable Automatic
1951 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1952 *
1953 * Returns 0 on success, negative on failure
1954 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1955 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1956 {
1957 struct ice_aqc_get_phy_caps_data *pcaps;
1958 struct ice_aqc_set_phy_cfg_data *cfg;
1959 struct ice_port_info *pi;
1960 struct device *dev;
1961 int retcode;
1962
1963 if (!vsi || !vsi->port_info || !vsi->back)
1964 return -EINVAL;
1965 if (vsi->type != ICE_VSI_PF)
1966 return 0;
1967
1968 dev = ice_pf_to_dev(vsi->back);
1969
1970 pi = vsi->port_info;
1971
1972 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1973 if (!pcaps)
1974 return -ENOMEM;
1975
1976 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1977 NULL);
1978 if (retcode) {
1979 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1980 vsi->vsi_num, retcode);
1981 retcode = -EIO;
1982 goto out;
1983 }
1984
1985 /* No change in link */
1986 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1987 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1988 goto out;
1989
1990 /* Use the current user PHY configuration. The current user PHY
1991 * configuration is initialized during probe from PHY capabilities
1992 * software mode, and updated on set PHY configuration.
1993 */
1994 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1995 if (!cfg) {
1996 retcode = -ENOMEM;
1997 goto out;
1998 }
1999
2000 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2001 if (link_up)
2002 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
2003 else
2004 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
2005
2006 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
2007 if (retcode) {
2008 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2009 vsi->vsi_num, retcode);
2010 retcode = -EIO;
2011 }
2012
2013 kfree(cfg);
2014 out:
2015 kfree(pcaps);
2016 return retcode;
2017 }
2018
2019 /**
2020 * ice_init_nvm_phy_type - Initialize the NVM PHY type
2021 * @pi: port info structure
2022 *
2023 * Initialize nvm_phy_type_[low|high] for link lenient mode support
2024 */
ice_init_nvm_phy_type(struct ice_port_info * pi)2025 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
2026 {
2027 struct ice_aqc_get_phy_caps_data *pcaps;
2028 struct ice_pf *pf = pi->hw->back;
2029 int err;
2030
2031 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2032 if (!pcaps)
2033 return -ENOMEM;
2034
2035 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
2036 pcaps, NULL);
2037
2038 if (err) {
2039 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2040 goto out;
2041 }
2042
2043 pf->nvm_phy_type_hi = pcaps->phy_type_high;
2044 pf->nvm_phy_type_lo = pcaps->phy_type_low;
2045
2046 out:
2047 kfree(pcaps);
2048 return err;
2049 }
2050
2051 /**
2052 * ice_init_link_dflt_override - Initialize link default override
2053 * @pi: port info structure
2054 *
2055 * Initialize link default override and PHY total port shutdown during probe
2056 */
ice_init_link_dflt_override(struct ice_port_info * pi)2057 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2058 {
2059 struct ice_link_default_override_tlv *ldo;
2060 struct ice_pf *pf = pi->hw->back;
2061
2062 ldo = &pf->link_dflt_override;
2063 if (ice_get_link_default_override(ldo, pi))
2064 return;
2065
2066 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2067 return;
2068
2069 /* Enable Total Port Shutdown (override/replace link-down-on-close
2070 * ethtool private flag) for ports with Port Disable bit set.
2071 */
2072 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2073 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2074 }
2075
2076 /**
2077 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2078 * @pi: port info structure
2079 *
2080 * If default override is enabled, initialize the user PHY cfg speed and FEC
2081 * settings using the default override mask from the NVM.
2082 *
2083 * The PHY should only be configured with the default override settings the
2084 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2085 * is used to indicate that the user PHY cfg default override is initialized
2086 * and the PHY has not been configured with the default override settings. The
2087 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2088 * configured.
2089 *
2090 * This function should be called only if the FW doesn't support default
2091 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2092 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)2093 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2094 {
2095 struct ice_link_default_override_tlv *ldo;
2096 struct ice_aqc_set_phy_cfg_data *cfg;
2097 struct ice_phy_info *phy = &pi->phy;
2098 struct ice_pf *pf = pi->hw->back;
2099
2100 ldo = &pf->link_dflt_override;
2101
2102 /* If link default override is enabled, use to mask NVM PHY capabilities
2103 * for speed and FEC default configuration.
2104 */
2105 cfg = &phy->curr_user_phy_cfg;
2106
2107 if (ldo->phy_type_low || ldo->phy_type_high) {
2108 cfg->phy_type_low = pf->nvm_phy_type_lo &
2109 cpu_to_le64(ldo->phy_type_low);
2110 cfg->phy_type_high = pf->nvm_phy_type_hi &
2111 cpu_to_le64(ldo->phy_type_high);
2112 }
2113 cfg->link_fec_opt = ldo->fec_options;
2114 phy->curr_user_fec_req = ICE_FEC_AUTO;
2115
2116 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2117 }
2118
2119 /**
2120 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2121 * @pi: port info structure
2122 *
2123 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2124 * mode to default. The PHY defaults are from get PHY capabilities topology
2125 * with media so call when media is first available. An error is returned if
2126 * called when media is not available. The PHY initialization completed state is
2127 * set here.
2128 *
2129 * These configurations are used when setting PHY
2130 * configuration. The user PHY configuration is updated on set PHY
2131 * configuration. Returns 0 on success, negative on failure
2132 */
ice_init_phy_user_cfg(struct ice_port_info * pi)2133 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2134 {
2135 struct ice_aqc_get_phy_caps_data *pcaps;
2136 struct ice_phy_info *phy = &pi->phy;
2137 struct ice_pf *pf = pi->hw->back;
2138 int err;
2139
2140 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2141 return -EIO;
2142
2143 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2144 if (!pcaps)
2145 return -ENOMEM;
2146
2147 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2148 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2149 pcaps, NULL);
2150 else
2151 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2152 pcaps, NULL);
2153 if (err) {
2154 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2155 goto err_out;
2156 }
2157
2158 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2159
2160 /* check if lenient mode is supported and enabled */
2161 if (ice_fw_supports_link_override(pi->hw) &&
2162 !(pcaps->module_compliance_enforcement &
2163 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2164 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2165
2166 /* if the FW supports default PHY configuration mode, then the driver
2167 * does not have to apply link override settings. If not,
2168 * initialize user PHY configuration with link override values
2169 */
2170 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2171 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2172 ice_init_phy_cfg_dflt_override(pi);
2173 goto out;
2174 }
2175 }
2176
2177 /* if link default override is not enabled, set user flow control and
2178 * FEC settings based on what get_phy_caps returned
2179 */
2180 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2181 pcaps->link_fec_options);
2182 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2183
2184 out:
2185 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2186 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2187 err_out:
2188 kfree(pcaps);
2189 return err;
2190 }
2191
2192 /**
2193 * ice_configure_phy - configure PHY
2194 * @vsi: VSI of PHY
2195 *
2196 * Set the PHY configuration. If the current PHY configuration is the same as
2197 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2198 * configure the based get PHY capabilities for topology with media.
2199 */
ice_configure_phy(struct ice_vsi * vsi)2200 static int ice_configure_phy(struct ice_vsi *vsi)
2201 {
2202 struct device *dev = ice_pf_to_dev(vsi->back);
2203 struct ice_port_info *pi = vsi->port_info;
2204 struct ice_aqc_get_phy_caps_data *pcaps;
2205 struct ice_aqc_set_phy_cfg_data *cfg;
2206 struct ice_phy_info *phy = &pi->phy;
2207 struct ice_pf *pf = vsi->back;
2208 int err;
2209
2210 /* Ensure we have media as we cannot configure a medialess port */
2211 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2212 return -ENOMEDIUM;
2213
2214 ice_print_topo_conflict(vsi);
2215
2216 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2217 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2218 return -EPERM;
2219
2220 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2221 return ice_force_phys_link_state(vsi, true);
2222
2223 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2224 if (!pcaps)
2225 return -ENOMEM;
2226
2227 /* Get current PHY config */
2228 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2229 NULL);
2230 if (err) {
2231 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2232 vsi->vsi_num, err);
2233 goto done;
2234 }
2235
2236 /* If PHY enable link is configured and configuration has not changed,
2237 * there's nothing to do
2238 */
2239 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2240 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2241 goto done;
2242
2243 /* Use PHY topology as baseline for configuration */
2244 memset(pcaps, 0, sizeof(*pcaps));
2245 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2246 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2247 pcaps, NULL);
2248 else
2249 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2250 pcaps, NULL);
2251 if (err) {
2252 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2253 vsi->vsi_num, err);
2254 goto done;
2255 }
2256
2257 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2258 if (!cfg) {
2259 err = -ENOMEM;
2260 goto done;
2261 }
2262
2263 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2264
2265 /* Speed - If default override pending, use curr_user_phy_cfg set in
2266 * ice_init_phy_user_cfg_ldo.
2267 */
2268 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2269 vsi->back->state)) {
2270 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2271 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2272 } else {
2273 u64 phy_low = 0, phy_high = 0;
2274
2275 ice_update_phy_type(&phy_low, &phy_high,
2276 pi->phy.curr_user_speed_req);
2277 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2278 cfg->phy_type_high = pcaps->phy_type_high &
2279 cpu_to_le64(phy_high);
2280 }
2281
2282 /* Can't provide what was requested; use PHY capabilities */
2283 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2284 cfg->phy_type_low = pcaps->phy_type_low;
2285 cfg->phy_type_high = pcaps->phy_type_high;
2286 }
2287
2288 /* FEC */
2289 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2290
2291 /* Can't provide what was requested; use PHY capabilities */
2292 if (cfg->link_fec_opt !=
2293 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2294 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2295 cfg->link_fec_opt = pcaps->link_fec_options;
2296 }
2297
2298 /* Flow Control - always supported; no need to check against
2299 * capabilities
2300 */
2301 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2302
2303 /* Enable link and link update */
2304 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2305
2306 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2307 if (err)
2308 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2309 vsi->vsi_num, err);
2310
2311 kfree(cfg);
2312 done:
2313 kfree(pcaps);
2314 return err;
2315 }
2316
2317 /**
2318 * ice_check_media_subtask - Check for media
2319 * @pf: pointer to PF struct
2320 *
2321 * If media is available, then initialize PHY user configuration if it is not
2322 * been, and configure the PHY if the interface is up.
2323 */
ice_check_media_subtask(struct ice_pf * pf)2324 static void ice_check_media_subtask(struct ice_pf *pf)
2325 {
2326 struct ice_port_info *pi;
2327 struct ice_vsi *vsi;
2328 int err;
2329
2330 /* No need to check for media if it's already present */
2331 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2332 return;
2333
2334 vsi = ice_get_main_vsi(pf);
2335 if (!vsi)
2336 return;
2337
2338 /* Refresh link info and check if media is present */
2339 pi = vsi->port_info;
2340 err = ice_update_link_info(pi);
2341 if (err)
2342 return;
2343
2344 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2345
2346 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2347 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2348 ice_init_phy_user_cfg(pi);
2349
2350 /* PHY settings are reset on media insertion, reconfigure
2351 * PHY to preserve settings.
2352 */
2353 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2354 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2355 return;
2356
2357 err = ice_configure_phy(vsi);
2358 if (!err)
2359 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2360
2361 /* A Link Status Event will be generated; the event handler
2362 * will complete bringing the interface up
2363 */
2364 }
2365 }
2366
ice_service_task_recovery_mode(struct work_struct * work)2367 static void ice_service_task_recovery_mode(struct work_struct *work)
2368 {
2369 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2370
2371 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2372 ice_clean_adminq_subtask(pf);
2373
2374 ice_service_task_complete(pf);
2375
2376 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100));
2377 }
2378
2379 /**
2380 * ice_service_task - manage and run subtasks
2381 * @work: pointer to work_struct contained by the PF struct
2382 */
ice_service_task(struct work_struct * work)2383 static void ice_service_task(struct work_struct *work)
2384 {
2385 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2386 unsigned long start_time = jiffies;
2387
2388 if (pf->health_reporters.tx_hang_buf.tx_ring) {
2389 ice_report_tx_hang(pf);
2390 pf->health_reporters.tx_hang_buf.tx_ring = NULL;
2391 }
2392
2393 ice_reset_subtask(pf);
2394
2395 /* bail if a reset/recovery cycle is pending or rebuild failed */
2396 if (ice_is_reset_in_progress(pf->state) ||
2397 test_bit(ICE_SUSPENDED, pf->state) ||
2398 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2399 ice_service_task_complete(pf);
2400 return;
2401 }
2402
2403 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2404 struct iidc_rdma_event *event;
2405
2406 event = kzalloc(sizeof(*event), GFP_KERNEL);
2407 if (event) {
2408 set_bit(IIDC_RDMA_EVENT_CRIT_ERR, event->type);
2409 /* report the entire OICR value to AUX driver */
2410 swap(event->reg, pf->oicr_err_reg);
2411 ice_send_event_to_aux(pf, event);
2412 kfree(event);
2413 }
2414 }
2415
2416 /* unplug aux dev per request, if an unplug request came in
2417 * while processing a plug request, this will handle it
2418 */
2419 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2420 ice_unplug_aux_dev(pf);
2421
2422 /* Plug aux device per request */
2423 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2424 ice_plug_aux_dev(pf);
2425
2426 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2427 struct iidc_rdma_event *event;
2428
2429 event = kzalloc(sizeof(*event), GFP_KERNEL);
2430 if (event) {
2431 set_bit(IIDC_RDMA_EVENT_AFTER_MTU_CHANGE, event->type);
2432 ice_send_event_to_aux(pf, event);
2433 kfree(event);
2434 }
2435 }
2436
2437 ice_clean_adminq_subtask(pf);
2438 ice_check_media_subtask(pf);
2439 ice_check_for_hang_subtask(pf);
2440 ice_sync_fltr_subtask(pf);
2441 ice_handle_mdd_event(pf);
2442 ice_watchdog_subtask(pf);
2443
2444 if (ice_is_safe_mode(pf)) {
2445 ice_service_task_complete(pf);
2446 return;
2447 }
2448
2449 ice_process_vflr_event(pf);
2450 ice_clean_mailboxq_subtask(pf);
2451 ice_clean_sbq_subtask(pf);
2452 ice_sync_arfs_fltrs(pf);
2453 ice_flush_fdir_ctx(pf);
2454
2455 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2456 ice_service_task_complete(pf);
2457
2458 /* If the tasks have taken longer than one service timer period
2459 * or there is more work to be done, reset the service timer to
2460 * schedule the service task now.
2461 */
2462 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2463 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2464 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2465 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2466 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2467 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2468 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2469 mod_timer(&pf->serv_tmr, jiffies);
2470 }
2471
2472 /**
2473 * ice_set_ctrlq_len - helper function to set controlq length
2474 * @hw: pointer to the HW instance
2475 */
ice_set_ctrlq_len(struct ice_hw * hw)2476 static void ice_set_ctrlq_len(struct ice_hw *hw)
2477 {
2478 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2479 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2480 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2481 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2482 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2483 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2484 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2485 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2486 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2487 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2488 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2489 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2490 }
2491
2492 /**
2493 * ice_schedule_reset - schedule a reset
2494 * @pf: board private structure
2495 * @reset: reset being requested
2496 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2497 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2498 {
2499 struct device *dev = ice_pf_to_dev(pf);
2500
2501 /* bail out if earlier reset has failed */
2502 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2503 dev_dbg(dev, "earlier reset has failed\n");
2504 return -EIO;
2505 }
2506 /* bail if reset/recovery already in progress */
2507 if (ice_is_reset_in_progress(pf->state)) {
2508 dev_dbg(dev, "Reset already in progress\n");
2509 return -EBUSY;
2510 }
2511
2512 switch (reset) {
2513 case ICE_RESET_PFR:
2514 set_bit(ICE_PFR_REQ, pf->state);
2515 break;
2516 case ICE_RESET_CORER:
2517 set_bit(ICE_CORER_REQ, pf->state);
2518 break;
2519 case ICE_RESET_GLOBR:
2520 set_bit(ICE_GLOBR_REQ, pf->state);
2521 break;
2522 default:
2523 return -EINVAL;
2524 }
2525
2526 ice_service_task_schedule(pf);
2527 return 0;
2528 }
2529
2530 /**
2531 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2532 * @vsi: the VSI being configured
2533 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2534 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2535 {
2536 struct ice_hw *hw = &vsi->back->hw;
2537 int i;
2538
2539 ice_for_each_q_vector(vsi, i)
2540 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2541
2542 ice_flush(hw);
2543 return 0;
2544 }
2545
2546 /**
2547 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2548 * @vsi: the VSI being configured
2549 * @basename: name for the vector
2550 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2551 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2552 {
2553 int q_vectors = vsi->num_q_vectors;
2554 struct ice_pf *pf = vsi->back;
2555 struct device *dev;
2556 int rx_int_idx = 0;
2557 int tx_int_idx = 0;
2558 int vector, err;
2559 int irq_num;
2560
2561 dev = ice_pf_to_dev(pf);
2562 for (vector = 0; vector < q_vectors; vector++) {
2563 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2564
2565 irq_num = q_vector->irq.virq;
2566
2567 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2568 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2569 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2570 tx_int_idx++;
2571 } else if (q_vector->rx.rx_ring) {
2572 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2573 "%s-%s-%d", basename, "rx", rx_int_idx++);
2574 } else if (q_vector->tx.tx_ring) {
2575 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2576 "%s-%s-%d", basename, "tx", tx_int_idx++);
2577 } else {
2578 /* skip this unused q_vector */
2579 continue;
2580 }
2581 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2582 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2583 IRQF_SHARED, q_vector->name,
2584 q_vector);
2585 else
2586 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2587 0, q_vector->name, q_vector);
2588 if (err) {
2589 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2590 err);
2591 goto free_q_irqs;
2592 }
2593 }
2594
2595 err = ice_set_cpu_rx_rmap(vsi);
2596 if (err) {
2597 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2598 vsi->vsi_num, ERR_PTR(err));
2599 goto free_q_irqs;
2600 }
2601
2602 vsi->irqs_ready = true;
2603 return 0;
2604
2605 free_q_irqs:
2606 while (vector--) {
2607 irq_num = vsi->q_vectors[vector]->irq.virq;
2608 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2609 }
2610 return err;
2611 }
2612
2613 /**
2614 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2615 * @vsi: VSI to setup Tx rings used by XDP
2616 *
2617 * Return 0 on success and negative value on error
2618 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2619 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2620 {
2621 struct device *dev = ice_pf_to_dev(vsi->back);
2622 struct ice_tx_desc *tx_desc;
2623 int i, j;
2624
2625 ice_for_each_xdp_txq(vsi, i) {
2626 u16 xdp_q_idx = vsi->alloc_txq + i;
2627 struct ice_ring_stats *ring_stats;
2628 struct ice_tx_ring *xdp_ring;
2629
2630 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2631 if (!xdp_ring)
2632 goto free_xdp_rings;
2633
2634 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2635 if (!ring_stats) {
2636 ice_free_tx_ring(xdp_ring);
2637 goto free_xdp_rings;
2638 }
2639
2640 xdp_ring->ring_stats = ring_stats;
2641 xdp_ring->q_index = xdp_q_idx;
2642 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2643 xdp_ring->vsi = vsi;
2644 xdp_ring->netdev = NULL;
2645 xdp_ring->dev = dev;
2646 xdp_ring->count = vsi->num_tx_desc;
2647 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2648 if (ice_setup_tx_ring(xdp_ring))
2649 goto free_xdp_rings;
2650 ice_set_ring_xdp(xdp_ring);
2651 spin_lock_init(&xdp_ring->tx_lock);
2652 for (j = 0; j < xdp_ring->count; j++) {
2653 tx_desc = ICE_TX_DESC(xdp_ring, j);
2654 tx_desc->cmd_type_offset_bsz = 0;
2655 }
2656 }
2657
2658 return 0;
2659
2660 free_xdp_rings:
2661 for (; i >= 0; i--) {
2662 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2663 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2664 vsi->xdp_rings[i]->ring_stats = NULL;
2665 ice_free_tx_ring(vsi->xdp_rings[i]);
2666 }
2667 }
2668 return -ENOMEM;
2669 }
2670
2671 /**
2672 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2673 * @vsi: VSI to set the bpf prog on
2674 * @prog: the bpf prog pointer
2675 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2676 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2677 {
2678 struct bpf_prog *old_prog;
2679 int i;
2680
2681 old_prog = xchg(&vsi->xdp_prog, prog);
2682 ice_for_each_rxq(vsi, i)
2683 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2684
2685 if (old_prog)
2686 bpf_prog_put(old_prog);
2687 }
2688
ice_xdp_ring_from_qid(struct ice_vsi * vsi,int qid)2689 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid)
2690 {
2691 struct ice_q_vector *q_vector;
2692 struct ice_tx_ring *ring;
2693
2694 if (static_key_enabled(&ice_xdp_locking_key))
2695 return vsi->xdp_rings[qid % vsi->num_xdp_txq];
2696
2697 q_vector = vsi->rx_rings[qid]->q_vector;
2698 ice_for_each_tx_ring(ring, q_vector->tx)
2699 if (ice_ring_is_xdp(ring))
2700 return ring;
2701
2702 return NULL;
2703 }
2704
2705 /**
2706 * ice_map_xdp_rings - Map XDP rings to interrupt vectors
2707 * @vsi: the VSI with XDP rings being configured
2708 *
2709 * Map XDP rings to interrupt vectors and perform the configuration steps
2710 * dependent on the mapping.
2711 */
ice_map_xdp_rings(struct ice_vsi * vsi)2712 void ice_map_xdp_rings(struct ice_vsi *vsi)
2713 {
2714 int xdp_rings_rem = vsi->num_xdp_txq;
2715 int v_idx, q_idx;
2716
2717 /* follow the logic from ice_vsi_map_rings_to_vectors */
2718 ice_for_each_q_vector(vsi, v_idx) {
2719 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2720 int xdp_rings_per_v, q_id, q_base;
2721
2722 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2723 vsi->num_q_vectors - v_idx);
2724 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2725
2726 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2727 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2728
2729 xdp_ring->q_vector = q_vector;
2730 xdp_ring->next = q_vector->tx.tx_ring;
2731 q_vector->tx.tx_ring = xdp_ring;
2732 }
2733 xdp_rings_rem -= xdp_rings_per_v;
2734 }
2735
2736 ice_for_each_rxq(vsi, q_idx) {
2737 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi,
2738 q_idx);
2739 ice_tx_xsk_pool(vsi, q_idx);
2740 }
2741 }
2742
2743 /**
2744 * ice_unmap_xdp_rings - Unmap XDP rings from interrupt vectors
2745 * @vsi: the VSI with XDP rings being unmapped
2746 */
ice_unmap_xdp_rings(struct ice_vsi * vsi)2747 static void ice_unmap_xdp_rings(struct ice_vsi *vsi)
2748 {
2749 int v_idx;
2750
2751 ice_for_each_q_vector(vsi, v_idx) {
2752 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2753 struct ice_tx_ring *ring;
2754
2755 ice_for_each_tx_ring(ring, q_vector->tx)
2756 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2757 break;
2758
2759 /* restore the value of last node prior to XDP setup */
2760 q_vector->tx.tx_ring = ring;
2761 }
2762 }
2763
2764 /**
2765 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2766 * @vsi: VSI to bring up Tx rings used by XDP
2767 * @prog: bpf program that will be assigned to VSI
2768 * @cfg_type: create from scratch or restore the existing configuration
2769 *
2770 * Return 0 on success and negative value on error
2771 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog,enum ice_xdp_cfg cfg_type)2772 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2773 enum ice_xdp_cfg cfg_type)
2774 {
2775 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2776 struct ice_pf *pf = vsi->back;
2777 struct ice_qs_cfg xdp_qs_cfg = {
2778 .qs_mutex = &pf->avail_q_mutex,
2779 .pf_map = pf->avail_txqs,
2780 .pf_map_size = pf->max_pf_txqs,
2781 .q_count = vsi->num_xdp_txq,
2782 .scatter_count = ICE_MAX_SCATTER_TXQS,
2783 .vsi_map = vsi->txq_map,
2784 .vsi_map_offset = vsi->alloc_txq,
2785 .mapping_mode = ICE_VSI_MAP_CONTIG
2786 };
2787 struct device *dev;
2788 int status, i;
2789
2790 dev = ice_pf_to_dev(pf);
2791 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2792 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2793 if (!vsi->xdp_rings)
2794 return -ENOMEM;
2795
2796 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2797 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2798 goto err_map_xdp;
2799
2800 if (static_key_enabled(&ice_xdp_locking_key))
2801 netdev_warn(vsi->netdev,
2802 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2803
2804 if (ice_xdp_alloc_setup_rings(vsi))
2805 goto clear_xdp_rings;
2806
2807 /* omit the scheduler update if in reset path; XDP queues will be
2808 * taken into account at the end of ice_vsi_rebuild, where
2809 * ice_cfg_vsi_lan is being called
2810 */
2811 if (cfg_type == ICE_XDP_CFG_PART)
2812 return 0;
2813
2814 ice_map_xdp_rings(vsi);
2815
2816 /* tell the Tx scheduler that right now we have
2817 * additional queues
2818 */
2819 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2820 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2821
2822 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2823 max_txqs);
2824 if (status) {
2825 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2826 status);
2827 goto unmap_xdp_rings;
2828 }
2829
2830 /* assign the prog only when it's not already present on VSI;
2831 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2832 * VSI rebuild that happens under ethtool -L can expose us to
2833 * the bpf_prog refcount issues as we would be swapping same
2834 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2835 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2836 * this is not harmful as dev_xdp_install bumps the refcount
2837 * before calling the op exposed by the driver;
2838 */
2839 if (!ice_is_xdp_ena_vsi(vsi))
2840 ice_vsi_assign_bpf_prog(vsi, prog);
2841
2842 return 0;
2843 unmap_xdp_rings:
2844 ice_unmap_xdp_rings(vsi);
2845 clear_xdp_rings:
2846 ice_for_each_xdp_txq(vsi, i)
2847 if (vsi->xdp_rings[i]) {
2848 kfree_rcu(vsi->xdp_rings[i], rcu);
2849 vsi->xdp_rings[i] = NULL;
2850 }
2851
2852 err_map_xdp:
2853 mutex_lock(&pf->avail_q_mutex);
2854 ice_for_each_xdp_txq(vsi, i) {
2855 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2856 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2857 }
2858 mutex_unlock(&pf->avail_q_mutex);
2859
2860 devm_kfree(dev, vsi->xdp_rings);
2861 vsi->xdp_rings = NULL;
2862
2863 return -ENOMEM;
2864 }
2865
2866 /**
2867 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2868 * @vsi: VSI to remove XDP rings
2869 * @cfg_type: disable XDP permanently or allow it to be restored later
2870 *
2871 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2872 * resources
2873 */
ice_destroy_xdp_rings(struct ice_vsi * vsi,enum ice_xdp_cfg cfg_type)2874 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2875 {
2876 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2877 struct ice_pf *pf = vsi->back;
2878 int i;
2879
2880 /* q_vectors are freed in reset path so there's no point in detaching
2881 * rings
2882 */
2883 if (cfg_type == ICE_XDP_CFG_PART)
2884 goto free_qmap;
2885
2886 ice_unmap_xdp_rings(vsi);
2887
2888 free_qmap:
2889 mutex_lock(&pf->avail_q_mutex);
2890 ice_for_each_xdp_txq(vsi, i) {
2891 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2892 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2893 }
2894 mutex_unlock(&pf->avail_q_mutex);
2895
2896 ice_for_each_xdp_txq(vsi, i)
2897 if (vsi->xdp_rings[i]) {
2898 if (vsi->xdp_rings[i]->desc) {
2899 synchronize_rcu();
2900 ice_free_tx_ring(vsi->xdp_rings[i]);
2901 }
2902 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2903 vsi->xdp_rings[i]->ring_stats = NULL;
2904 kfree_rcu(vsi->xdp_rings[i], rcu);
2905 vsi->xdp_rings[i] = NULL;
2906 }
2907
2908 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2909 vsi->xdp_rings = NULL;
2910
2911 if (static_key_enabled(&ice_xdp_locking_key))
2912 static_branch_dec(&ice_xdp_locking_key);
2913
2914 if (cfg_type == ICE_XDP_CFG_PART)
2915 return 0;
2916
2917 ice_vsi_assign_bpf_prog(vsi, NULL);
2918
2919 /* notify Tx scheduler that we destroyed XDP queues and bring
2920 * back the old number of child nodes
2921 */
2922 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2923 max_txqs[i] = vsi->num_txq;
2924
2925 /* change number of XDP Tx queues to 0 */
2926 vsi->num_xdp_txq = 0;
2927
2928 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2929 max_txqs);
2930 }
2931
2932 /**
2933 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2934 * @vsi: VSI to schedule napi on
2935 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2936 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2937 {
2938 int i;
2939
2940 ice_for_each_rxq(vsi, i) {
2941 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2942
2943 if (READ_ONCE(rx_ring->xsk_pool))
2944 napi_schedule(&rx_ring->q_vector->napi);
2945 }
2946 }
2947
2948 /**
2949 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2950 * @vsi: VSI to determine the count of XDP Tx qs
2951 *
2952 * returns 0 if Tx qs count is higher than at least half of CPU count,
2953 * -ENOMEM otherwise
2954 */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2955 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2956 {
2957 u16 avail = ice_get_avail_txq_count(vsi->back);
2958 u16 cpus = num_possible_cpus();
2959
2960 if (avail < cpus / 2)
2961 return -ENOMEM;
2962
2963 if (vsi->type == ICE_VSI_SF)
2964 avail = vsi->alloc_txq;
2965
2966 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2967
2968 if (vsi->num_xdp_txq < cpus)
2969 static_branch_inc(&ice_xdp_locking_key);
2970
2971 return 0;
2972 }
2973
2974 /**
2975 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2976 * @vsi: Pointer to VSI structure
2977 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)2978 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2979 {
2980 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2981 return ICE_RXBUF_1664;
2982 else
2983 return ICE_RXBUF_3072;
2984 }
2985
2986 /**
2987 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2988 * @vsi: VSI to setup XDP for
2989 * @prog: XDP program
2990 * @extack: netlink extended ack
2991 */
2992 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2993 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2994 struct netlink_ext_ack *extack)
2995 {
2996 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2997 int ret = 0, xdp_ring_err = 0;
2998 bool if_running;
2999
3000 if (prog && !prog->aux->xdp_has_frags) {
3001 if (frame_size > ice_max_xdp_frame_size(vsi)) {
3002 NL_SET_ERR_MSG_MOD(extack,
3003 "MTU is too large for linear frames and XDP prog does not support frags");
3004 return -EOPNOTSUPP;
3005 }
3006 }
3007
3008 /* hot swap progs and avoid toggling link */
3009 if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
3010 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
3011 ice_vsi_assign_bpf_prog(vsi, prog);
3012 return 0;
3013 }
3014
3015 if_running = netif_running(vsi->netdev) &&
3016 !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
3017
3018 /* need to stop netdev while setting up the program for Rx rings */
3019 if (if_running) {
3020 ret = ice_down(vsi);
3021 if (ret) {
3022 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
3023 return ret;
3024 }
3025 }
3026
3027 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
3028 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
3029 if (xdp_ring_err) {
3030 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
3031 goto resume_if;
3032 } else {
3033 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
3034 ICE_XDP_CFG_FULL);
3035 if (xdp_ring_err) {
3036 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
3037 goto resume_if;
3038 }
3039 }
3040 xdp_features_set_redirect_target(vsi->netdev, true);
3041 /* reallocate Rx queues that are used for zero-copy */
3042 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
3043 if (xdp_ring_err)
3044 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
3045 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
3046 xdp_features_clear_redirect_target(vsi->netdev);
3047 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
3048 if (xdp_ring_err)
3049 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
3050 /* reallocate Rx queues that were used for zero-copy */
3051 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
3052 if (xdp_ring_err)
3053 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
3054 }
3055
3056 resume_if:
3057 if (if_running)
3058 ret = ice_up(vsi);
3059
3060 if (!ret && prog)
3061 ice_vsi_rx_napi_schedule(vsi);
3062
3063 return (ret || xdp_ring_err) ? -ENOMEM : 0;
3064 }
3065
3066 /**
3067 * ice_xdp_safe_mode - XDP handler for safe mode
3068 * @dev: netdevice
3069 * @xdp: XDP command
3070 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)3071 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3072 struct netdev_bpf *xdp)
3073 {
3074 NL_SET_ERR_MSG_MOD(xdp->extack,
3075 "Please provide working DDP firmware package in order to use XDP\n"
3076 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3077 return -EOPNOTSUPP;
3078 }
3079
3080 /**
3081 * ice_xdp - implements XDP handler
3082 * @dev: netdevice
3083 * @xdp: XDP command
3084 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)3085 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3086 {
3087 struct ice_netdev_priv *np = netdev_priv(dev);
3088 struct ice_vsi *vsi = np->vsi;
3089 int ret;
3090
3091 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) {
3092 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI");
3093 return -EINVAL;
3094 }
3095
3096 mutex_lock(&vsi->xdp_state_lock);
3097
3098 switch (xdp->command) {
3099 case XDP_SETUP_PROG:
3100 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3101 break;
3102 case XDP_SETUP_XSK_POOL:
3103 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3104 break;
3105 default:
3106 ret = -EINVAL;
3107 }
3108
3109 mutex_unlock(&vsi->xdp_state_lock);
3110 return ret;
3111 }
3112
3113 /**
3114 * ice_ena_misc_vector - enable the non-queue interrupts
3115 * @pf: board private structure
3116 */
ice_ena_misc_vector(struct ice_pf * pf)3117 static void ice_ena_misc_vector(struct ice_pf *pf)
3118 {
3119 struct ice_hw *hw = &pf->hw;
3120 u32 pf_intr_start_offset;
3121 u32 val;
3122
3123 /* Disable anti-spoof detection interrupt to prevent spurious event
3124 * interrupts during a function reset. Anti-spoof functionally is
3125 * still supported.
3126 */
3127 val = rd32(hw, GL_MDCK_TX_TDPU);
3128 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3129 wr32(hw, GL_MDCK_TX_TDPU, val);
3130
3131 /* clear things first */
3132 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3133 rd32(hw, PFINT_OICR); /* read to clear */
3134
3135 val = (PFINT_OICR_ECC_ERR_M |
3136 PFINT_OICR_MAL_DETECT_M |
3137 PFINT_OICR_GRST_M |
3138 PFINT_OICR_PCI_EXCEPTION_M |
3139 PFINT_OICR_VFLR_M |
3140 PFINT_OICR_HMC_ERR_M |
3141 PFINT_OICR_PE_PUSH_M |
3142 PFINT_OICR_PE_CRITERR_M);
3143
3144 wr32(hw, PFINT_OICR_ENA, val);
3145
3146 /* SW_ITR_IDX = 0, but don't change INTENA */
3147 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3148 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3149
3150 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3151 return;
3152 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3153 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3154 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3155 }
3156
3157 /**
3158 * ice_ll_ts_intr - ll_ts interrupt handler
3159 * @irq: interrupt number
3160 * @data: pointer to a q_vector
3161 */
ice_ll_ts_intr(int __always_unused irq,void * data)3162 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3163 {
3164 struct ice_pf *pf = data;
3165 u32 pf_intr_start_offset;
3166 struct ice_ptp_tx *tx;
3167 unsigned long flags;
3168 struct ice_hw *hw;
3169 u32 val;
3170 u8 idx;
3171
3172 hw = &pf->hw;
3173 tx = &pf->ptp.port.tx;
3174 spin_lock_irqsave(&tx->lock, flags);
3175 ice_ptp_complete_tx_single_tstamp(tx);
3176
3177 idx = find_next_bit_wrap(tx->in_use, tx->len,
3178 tx->last_ll_ts_idx_read + 1);
3179 if (idx != tx->len)
3180 ice_ptp_req_tx_single_tstamp(tx, idx);
3181 spin_unlock_irqrestore(&tx->lock, flags);
3182
3183 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3184 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3185 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3186 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3187 val);
3188
3189 return IRQ_HANDLED;
3190 }
3191
3192 /**
3193 * ice_misc_intr - misc interrupt handler
3194 * @irq: interrupt number
3195 * @data: pointer to a q_vector
3196 */
ice_misc_intr(int __always_unused irq,void * data)3197 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3198 {
3199 struct ice_pf *pf = (struct ice_pf *)data;
3200 irqreturn_t ret = IRQ_HANDLED;
3201 struct ice_hw *hw = &pf->hw;
3202 struct device *dev;
3203 u32 oicr, ena_mask;
3204
3205 dev = ice_pf_to_dev(pf);
3206 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3207 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3208 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3209
3210 oicr = rd32(hw, PFINT_OICR);
3211 ena_mask = rd32(hw, PFINT_OICR_ENA);
3212
3213 if (oicr & PFINT_OICR_SWINT_M) {
3214 ena_mask &= ~PFINT_OICR_SWINT_M;
3215 pf->sw_int_count++;
3216 }
3217
3218 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3219 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3220 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3221 }
3222 if (oicr & PFINT_OICR_VFLR_M) {
3223 /* disable any further VFLR event notifications */
3224 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3225 u32 reg = rd32(hw, PFINT_OICR_ENA);
3226
3227 reg &= ~PFINT_OICR_VFLR_M;
3228 wr32(hw, PFINT_OICR_ENA, reg);
3229 } else {
3230 ena_mask &= ~PFINT_OICR_VFLR_M;
3231 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3232 }
3233 }
3234
3235 if (oicr & PFINT_OICR_GRST_M) {
3236 u32 reset;
3237
3238 /* we have a reset warning */
3239 ena_mask &= ~PFINT_OICR_GRST_M;
3240 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3241 rd32(hw, GLGEN_RSTAT));
3242
3243 if (reset == ICE_RESET_CORER)
3244 pf->corer_count++;
3245 else if (reset == ICE_RESET_GLOBR)
3246 pf->globr_count++;
3247 else if (reset == ICE_RESET_EMPR)
3248 pf->empr_count++;
3249 else
3250 dev_dbg(dev, "Invalid reset type %d\n", reset);
3251
3252 /* If a reset cycle isn't already in progress, we set a bit in
3253 * pf->state so that the service task can start a reset/rebuild.
3254 */
3255 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3256 if (reset == ICE_RESET_CORER)
3257 set_bit(ICE_CORER_RECV, pf->state);
3258 else if (reset == ICE_RESET_GLOBR)
3259 set_bit(ICE_GLOBR_RECV, pf->state);
3260 else
3261 set_bit(ICE_EMPR_RECV, pf->state);
3262
3263 /* There are couple of different bits at play here.
3264 * hw->reset_ongoing indicates whether the hardware is
3265 * in reset. This is set to true when a reset interrupt
3266 * is received and set back to false after the driver
3267 * has determined that the hardware is out of reset.
3268 *
3269 * ICE_RESET_OICR_RECV in pf->state indicates
3270 * that a post reset rebuild is required before the
3271 * driver is operational again. This is set above.
3272 *
3273 * As this is the start of the reset/rebuild cycle, set
3274 * both to indicate that.
3275 */
3276 hw->reset_ongoing = true;
3277 }
3278 }
3279
3280 if (oicr & PFINT_OICR_TSYN_TX_M) {
3281 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3282
3283 ret = ice_ptp_ts_irq(pf);
3284 }
3285
3286 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3287 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3288 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3289
3290 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3291
3292 if (ice_pf_src_tmr_owned(pf)) {
3293 /* Save EVENTs from GLTSYN register */
3294 pf->ptp.ext_ts_irq |= gltsyn_stat &
3295 (GLTSYN_STAT_EVENT0_M |
3296 GLTSYN_STAT_EVENT1_M |
3297 GLTSYN_STAT_EVENT2_M);
3298
3299 ice_ptp_extts_event(pf);
3300 }
3301 }
3302
3303 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3304 if (oicr & ICE_AUX_CRIT_ERR) {
3305 pf->oicr_err_reg |= oicr;
3306 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3307 ena_mask &= ~ICE_AUX_CRIT_ERR;
3308 }
3309
3310 /* Report any remaining unexpected interrupts */
3311 oicr &= ena_mask;
3312 if (oicr) {
3313 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3314 /* If a critical error is pending there is no choice but to
3315 * reset the device.
3316 */
3317 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3318 PFINT_OICR_ECC_ERR_M)) {
3319 set_bit(ICE_PFR_REQ, pf->state);
3320 }
3321 }
3322 ice_service_task_schedule(pf);
3323 if (ret == IRQ_HANDLED)
3324 ice_irq_dynamic_ena(hw, NULL, NULL);
3325
3326 return ret;
3327 }
3328
3329 /**
3330 * ice_misc_intr_thread_fn - misc interrupt thread function
3331 * @irq: interrupt number
3332 * @data: pointer to a q_vector
3333 */
ice_misc_intr_thread_fn(int __always_unused irq,void * data)3334 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3335 {
3336 struct ice_pf *pf = data;
3337 struct ice_hw *hw;
3338
3339 hw = &pf->hw;
3340
3341 if (ice_is_reset_in_progress(pf->state))
3342 goto skip_irq;
3343
3344 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3345 /* Process outstanding Tx timestamps. If there is more work,
3346 * re-arm the interrupt to trigger again.
3347 */
3348 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3349 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3350 ice_flush(hw);
3351 }
3352 }
3353
3354 skip_irq:
3355 ice_irq_dynamic_ena(hw, NULL, NULL);
3356
3357 return IRQ_HANDLED;
3358 }
3359
3360 /**
3361 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3362 * @hw: pointer to HW structure
3363 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3364 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3365 {
3366 /* disable Admin queue Interrupt causes */
3367 wr32(hw, PFINT_FW_CTL,
3368 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3369
3370 /* disable Mailbox queue Interrupt causes */
3371 wr32(hw, PFINT_MBX_CTL,
3372 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3373
3374 wr32(hw, PFINT_SB_CTL,
3375 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3376
3377 /* disable Control queue Interrupt causes */
3378 wr32(hw, PFINT_OICR_CTL,
3379 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3380
3381 ice_flush(hw);
3382 }
3383
3384 /**
3385 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3386 * @pf: board private structure
3387 */
ice_free_irq_msix_ll_ts(struct ice_pf * pf)3388 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3389 {
3390 int irq_num = pf->ll_ts_irq.virq;
3391
3392 synchronize_irq(irq_num);
3393 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3394
3395 ice_free_irq(pf, pf->ll_ts_irq);
3396 }
3397
3398 /**
3399 * ice_free_irq_msix_misc - Unroll misc vector setup
3400 * @pf: board private structure
3401 */
ice_free_irq_msix_misc(struct ice_pf * pf)3402 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3403 {
3404 int misc_irq_num = pf->oicr_irq.virq;
3405 struct ice_hw *hw = &pf->hw;
3406
3407 ice_dis_ctrlq_interrupts(hw);
3408
3409 /* disable OICR interrupt */
3410 wr32(hw, PFINT_OICR_ENA, 0);
3411 ice_flush(hw);
3412
3413 synchronize_irq(misc_irq_num);
3414 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3415
3416 ice_free_irq(pf, pf->oicr_irq);
3417 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3418 ice_free_irq_msix_ll_ts(pf);
3419 }
3420
3421 /**
3422 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3423 * @hw: pointer to HW structure
3424 * @reg_idx: HW vector index to associate the control queue interrupts with
3425 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3426 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3427 {
3428 u32 val;
3429
3430 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3431 PFINT_OICR_CTL_CAUSE_ENA_M);
3432 wr32(hw, PFINT_OICR_CTL, val);
3433
3434 /* enable Admin queue Interrupt causes */
3435 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3436 PFINT_FW_CTL_CAUSE_ENA_M);
3437 wr32(hw, PFINT_FW_CTL, val);
3438
3439 /* enable Mailbox queue Interrupt causes */
3440 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3441 PFINT_MBX_CTL_CAUSE_ENA_M);
3442 wr32(hw, PFINT_MBX_CTL, val);
3443
3444 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3445 /* enable Sideband queue Interrupt causes */
3446 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3447 PFINT_SB_CTL_CAUSE_ENA_M);
3448 wr32(hw, PFINT_SB_CTL, val);
3449 }
3450
3451 ice_flush(hw);
3452 }
3453
3454 /**
3455 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3456 * @pf: board private structure
3457 *
3458 * This sets up the handler for MSIX 0, which is used to manage the
3459 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3460 * when in MSI or Legacy interrupt mode.
3461 */
ice_req_irq_msix_misc(struct ice_pf * pf)3462 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3463 {
3464 struct device *dev = ice_pf_to_dev(pf);
3465 struct ice_hw *hw = &pf->hw;
3466 u32 pf_intr_start_offset;
3467 struct msi_map irq;
3468 int err = 0;
3469
3470 if (!pf->int_name[0])
3471 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3472 dev_driver_string(dev), dev_name(dev));
3473
3474 if (!pf->int_name_ll_ts[0])
3475 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3476 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3477 /* Do not request IRQ but do enable OICR interrupt since settings are
3478 * lost during reset. Note that this function is called only during
3479 * rebuild path and not while reset is in progress.
3480 */
3481 if (ice_is_reset_in_progress(pf->state))
3482 goto skip_req_irq;
3483
3484 /* reserve one vector in irq_tracker for misc interrupts */
3485 irq = ice_alloc_irq(pf, false);
3486 if (irq.index < 0)
3487 return irq.index;
3488
3489 pf->oicr_irq = irq;
3490 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3491 ice_misc_intr_thread_fn, 0,
3492 pf->int_name, pf);
3493 if (err) {
3494 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3495 pf->int_name, err);
3496 ice_free_irq(pf, pf->oicr_irq);
3497 return err;
3498 }
3499
3500 /* reserve one vector in irq_tracker for ll_ts interrupt */
3501 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3502 goto skip_req_irq;
3503
3504 irq = ice_alloc_irq(pf, false);
3505 if (irq.index < 0)
3506 return irq.index;
3507
3508 pf->ll_ts_irq = irq;
3509 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3510 pf->int_name_ll_ts, pf);
3511 if (err) {
3512 dev_err(dev, "devm_request_irq for %s failed: %d\n",
3513 pf->int_name_ll_ts, err);
3514 ice_free_irq(pf, pf->ll_ts_irq);
3515 return err;
3516 }
3517
3518 skip_req_irq:
3519 ice_ena_misc_vector(pf);
3520
3521 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3522 /* This enables LL TS interrupt */
3523 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3524 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3525 wr32(hw, PFINT_SB_CTL,
3526 ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3527 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3528 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3529 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3530
3531 ice_flush(hw);
3532 ice_irq_dynamic_ena(hw, NULL, NULL);
3533
3534 return 0;
3535 }
3536
3537 /**
3538 * ice_set_ops - set netdev and ethtools ops for the given netdev
3539 * @vsi: the VSI associated with the new netdev
3540 */
ice_set_ops(struct ice_vsi * vsi)3541 static void ice_set_ops(struct ice_vsi *vsi)
3542 {
3543 struct net_device *netdev = vsi->netdev;
3544 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3545
3546 if (ice_is_safe_mode(pf)) {
3547 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3548 ice_set_ethtool_safe_mode_ops(netdev);
3549 return;
3550 }
3551
3552 netdev->netdev_ops = &ice_netdev_ops;
3553 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3554 netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3555 ice_set_ethtool_ops(netdev);
3556
3557 if (vsi->type != ICE_VSI_PF)
3558 return;
3559
3560 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3561 NETDEV_XDP_ACT_XSK_ZEROCOPY |
3562 NETDEV_XDP_ACT_RX_SG;
3563 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3564 }
3565
3566 /**
3567 * ice_set_netdev_features - set features for the given netdev
3568 * @netdev: netdev instance
3569 */
ice_set_netdev_features(struct net_device * netdev)3570 void ice_set_netdev_features(struct net_device *netdev)
3571 {
3572 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3573 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3574 netdev_features_t csumo_features;
3575 netdev_features_t vlano_features;
3576 netdev_features_t dflt_features;
3577 netdev_features_t tso_features;
3578
3579 if (ice_is_safe_mode(pf)) {
3580 /* safe mode */
3581 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3582 netdev->hw_features = netdev->features;
3583 return;
3584 }
3585
3586 dflt_features = NETIF_F_SG |
3587 NETIF_F_HIGHDMA |
3588 NETIF_F_NTUPLE |
3589 NETIF_F_RXHASH;
3590
3591 csumo_features = NETIF_F_RXCSUM |
3592 NETIF_F_IP_CSUM |
3593 NETIF_F_SCTP_CRC |
3594 NETIF_F_IPV6_CSUM;
3595
3596 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3597 NETIF_F_HW_VLAN_CTAG_TX |
3598 NETIF_F_HW_VLAN_CTAG_RX;
3599
3600 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3601 if (is_dvm_ena)
3602 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3603
3604 tso_features = NETIF_F_TSO |
3605 NETIF_F_TSO_ECN |
3606 NETIF_F_TSO6 |
3607 NETIF_F_GSO_GRE |
3608 NETIF_F_GSO_UDP_TUNNEL |
3609 NETIF_F_GSO_GRE_CSUM |
3610 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3611 NETIF_F_GSO_PARTIAL |
3612 NETIF_F_GSO_IPXIP4 |
3613 NETIF_F_GSO_IPXIP6 |
3614 NETIF_F_GSO_UDP_L4;
3615
3616 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3617 NETIF_F_GSO_GRE_CSUM;
3618 /* set features that user can change */
3619 netdev->hw_features = dflt_features | csumo_features |
3620 vlano_features | tso_features;
3621
3622 /* add support for HW_CSUM on packets with MPLS header */
3623 netdev->mpls_features = NETIF_F_HW_CSUM |
3624 NETIF_F_TSO |
3625 NETIF_F_TSO6;
3626
3627 /* enable features */
3628 netdev->features |= netdev->hw_features;
3629
3630 netdev->hw_features |= NETIF_F_HW_TC;
3631 netdev->hw_features |= NETIF_F_LOOPBACK;
3632
3633 /* encap and VLAN devices inherit default, csumo and tso features */
3634 netdev->hw_enc_features |= dflt_features | csumo_features |
3635 tso_features;
3636 netdev->vlan_features |= dflt_features | csumo_features |
3637 tso_features;
3638
3639 /* advertise support but don't enable by default since only one type of
3640 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3641 * type turns on the other has to be turned off. This is enforced by the
3642 * ice_fix_features() ndo callback.
3643 */
3644 if (is_dvm_ena)
3645 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3646 NETIF_F_HW_VLAN_STAG_TX;
3647
3648 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3649 * be changed at runtime
3650 */
3651 netdev->hw_features |= NETIF_F_RXFCS;
3652
3653 /* Allow core to manage IRQs affinity */
3654 netif_set_affinity_auto(netdev);
3655
3656 /* Mutual exclusivity for TSO and GCS is enforced by the set features
3657 * ndo callback.
3658 */
3659 if (ice_is_feature_supported(pf, ICE_F_GCS))
3660 netdev->hw_features |= NETIF_F_HW_CSUM;
3661
3662 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3663 }
3664
3665 /**
3666 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3667 * @lut: Lookup table
3668 * @rss_table_size: Lookup table size
3669 * @rss_size: Range of queue number for hashing
3670 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3671 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3672 {
3673 u16 i;
3674
3675 for (i = 0; i < rss_table_size; i++)
3676 lut[i] = i % rss_size;
3677 }
3678
3679 /**
3680 * ice_pf_vsi_setup - Set up a PF VSI
3681 * @pf: board private structure
3682 * @pi: pointer to the port_info instance
3683 *
3684 * Returns pointer to the successfully allocated VSI software struct
3685 * on success, otherwise returns NULL on failure.
3686 */
3687 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3688 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3689 {
3690 struct ice_vsi_cfg_params params = {};
3691
3692 params.type = ICE_VSI_PF;
3693 params.port_info = pi;
3694 params.flags = ICE_VSI_FLAG_INIT;
3695
3696 return ice_vsi_setup(pf, ¶ms);
3697 }
3698
3699 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3700 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3701 struct ice_channel *ch)
3702 {
3703 struct ice_vsi_cfg_params params = {};
3704
3705 params.type = ICE_VSI_CHNL;
3706 params.port_info = pi;
3707 params.ch = ch;
3708 params.flags = ICE_VSI_FLAG_INIT;
3709
3710 return ice_vsi_setup(pf, ¶ms);
3711 }
3712
3713 /**
3714 * ice_ctrl_vsi_setup - Set up a control VSI
3715 * @pf: board private structure
3716 * @pi: pointer to the port_info instance
3717 *
3718 * Returns pointer to the successfully allocated VSI software struct
3719 * on success, otherwise returns NULL on failure.
3720 */
3721 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3722 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3723 {
3724 struct ice_vsi_cfg_params params = {};
3725
3726 params.type = ICE_VSI_CTRL;
3727 params.port_info = pi;
3728 params.flags = ICE_VSI_FLAG_INIT;
3729
3730 return ice_vsi_setup(pf, ¶ms);
3731 }
3732
3733 /**
3734 * ice_lb_vsi_setup - Set up a loopback VSI
3735 * @pf: board private structure
3736 * @pi: pointer to the port_info instance
3737 *
3738 * Returns pointer to the successfully allocated VSI software struct
3739 * on success, otherwise returns NULL on failure.
3740 */
3741 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3742 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3743 {
3744 struct ice_vsi_cfg_params params = {};
3745
3746 params.type = ICE_VSI_LB;
3747 params.port_info = pi;
3748 params.flags = ICE_VSI_FLAG_INIT;
3749
3750 return ice_vsi_setup(pf, ¶ms);
3751 }
3752
3753 /**
3754 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3755 * @netdev: network interface to be adjusted
3756 * @proto: VLAN TPID
3757 * @vid: VLAN ID to be added
3758 *
3759 * net_device_ops implementation for adding VLAN IDs
3760 */
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3761 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3762 {
3763 struct ice_netdev_priv *np = netdev_priv(netdev);
3764 struct ice_vsi_vlan_ops *vlan_ops;
3765 struct ice_vsi *vsi = np->vsi;
3766 struct ice_vlan vlan;
3767 int ret;
3768
3769 /* VLAN 0 is added by default during load/reset */
3770 if (!vid)
3771 return 0;
3772
3773 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3774 usleep_range(1000, 2000);
3775
3776 /* Add multicast promisc rule for the VLAN ID to be added if
3777 * all-multicast is currently enabled.
3778 */
3779 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3780 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3781 ICE_MCAST_VLAN_PROMISC_BITS,
3782 vid);
3783 if (ret)
3784 goto finish;
3785 }
3786
3787 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3788
3789 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3790 * packets aren't pruned by the device's internal switch on Rx
3791 */
3792 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3793 ret = vlan_ops->add_vlan(vsi, &vlan);
3794 if (ret)
3795 goto finish;
3796
3797 /* If all-multicast is currently enabled and this VLAN ID is only one
3798 * besides VLAN-0 we have to update look-up type of multicast promisc
3799 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3800 */
3801 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3802 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3803 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3804 ICE_MCAST_PROMISC_BITS, 0);
3805 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3806 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3807 }
3808
3809 finish:
3810 clear_bit(ICE_CFG_BUSY, vsi->state);
3811
3812 return ret;
3813 }
3814
3815 /**
3816 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3817 * @netdev: network interface to be adjusted
3818 * @proto: VLAN TPID
3819 * @vid: VLAN ID to be removed
3820 *
3821 * net_device_ops implementation for removing VLAN IDs
3822 */
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3823 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3824 {
3825 struct ice_netdev_priv *np = netdev_priv(netdev);
3826 struct ice_vsi_vlan_ops *vlan_ops;
3827 struct ice_vsi *vsi = np->vsi;
3828 struct ice_vlan vlan;
3829 int ret;
3830
3831 /* don't allow removal of VLAN 0 */
3832 if (!vid)
3833 return 0;
3834
3835 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3836 usleep_range(1000, 2000);
3837
3838 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3839 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3840 if (ret) {
3841 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3842 vsi->vsi_num);
3843 vsi->current_netdev_flags |= IFF_ALLMULTI;
3844 }
3845
3846 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3847
3848 /* Make sure VLAN delete is successful before updating VLAN
3849 * information
3850 */
3851 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3852 ret = vlan_ops->del_vlan(vsi, &vlan);
3853 if (ret)
3854 goto finish;
3855
3856 /* Remove multicast promisc rule for the removed VLAN ID if
3857 * all-multicast is enabled.
3858 */
3859 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3860 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3861 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3862
3863 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3864 /* Update look-up type of multicast promisc rule for VLAN 0
3865 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3866 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3867 */
3868 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3869 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3870 ICE_MCAST_VLAN_PROMISC_BITS,
3871 0);
3872 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3873 ICE_MCAST_PROMISC_BITS, 0);
3874 }
3875 }
3876
3877 finish:
3878 clear_bit(ICE_CFG_BUSY, vsi->state);
3879
3880 return ret;
3881 }
3882
3883 /**
3884 * ice_rep_indr_tc_block_unbind
3885 * @cb_priv: indirection block private data
3886 */
ice_rep_indr_tc_block_unbind(void * cb_priv)3887 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3888 {
3889 struct ice_indr_block_priv *indr_priv = cb_priv;
3890
3891 list_del(&indr_priv->list);
3892 kfree(indr_priv);
3893 }
3894
3895 /**
3896 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3897 * @vsi: VSI struct which has the netdev
3898 */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3899 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3900 {
3901 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3902
3903 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3904 ice_rep_indr_tc_block_unbind);
3905 }
3906
3907 /**
3908 * ice_tc_indir_block_register - Register TC indirect block notifications
3909 * @vsi: VSI struct which has the netdev
3910 *
3911 * Returns 0 on success, negative value on failure
3912 */
ice_tc_indir_block_register(struct ice_vsi * vsi)3913 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3914 {
3915 struct ice_netdev_priv *np;
3916
3917 if (!vsi || !vsi->netdev)
3918 return -EINVAL;
3919
3920 np = netdev_priv(vsi->netdev);
3921
3922 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3923 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3924 }
3925
3926 /**
3927 * ice_get_avail_q_count - Get count of queues in use
3928 * @pf_qmap: bitmap to get queue use count from
3929 * @lock: pointer to a mutex that protects access to pf_qmap
3930 * @size: size of the bitmap
3931 */
3932 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3933 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3934 {
3935 unsigned long bit;
3936 u16 count = 0;
3937
3938 mutex_lock(lock);
3939 for_each_clear_bit(bit, pf_qmap, size)
3940 count++;
3941 mutex_unlock(lock);
3942
3943 return count;
3944 }
3945
3946 /**
3947 * ice_get_avail_txq_count - Get count of Tx queues in use
3948 * @pf: pointer to an ice_pf instance
3949 */
ice_get_avail_txq_count(struct ice_pf * pf)3950 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3951 {
3952 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3953 pf->max_pf_txqs);
3954 }
3955
3956 /**
3957 * ice_get_avail_rxq_count - Get count of Rx queues in use
3958 * @pf: pointer to an ice_pf instance
3959 */
ice_get_avail_rxq_count(struct ice_pf * pf)3960 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3961 {
3962 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3963 pf->max_pf_rxqs);
3964 }
3965
3966 /**
3967 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3968 * @pf: board private structure to initialize
3969 */
ice_deinit_pf(struct ice_pf * pf)3970 static void ice_deinit_pf(struct ice_pf *pf)
3971 {
3972 ice_service_task_stop(pf);
3973 mutex_destroy(&pf->lag_mutex);
3974 mutex_destroy(&pf->adev_mutex);
3975 mutex_destroy(&pf->sw_mutex);
3976 mutex_destroy(&pf->tc_mutex);
3977 mutex_destroy(&pf->avail_q_mutex);
3978 mutex_destroy(&pf->vfs.table_lock);
3979
3980 if (pf->avail_txqs) {
3981 bitmap_free(pf->avail_txqs);
3982 pf->avail_txqs = NULL;
3983 }
3984
3985 if (pf->avail_rxqs) {
3986 bitmap_free(pf->avail_rxqs);
3987 pf->avail_rxqs = NULL;
3988 }
3989
3990 if (pf->ptp.clock)
3991 ptp_clock_unregister(pf->ptp.clock);
3992
3993 xa_destroy(&pf->dyn_ports);
3994 xa_destroy(&pf->sf_nums);
3995 }
3996
3997 /**
3998 * ice_set_pf_caps - set PFs capability flags
3999 * @pf: pointer to the PF instance
4000 */
ice_set_pf_caps(struct ice_pf * pf)4001 static void ice_set_pf_caps(struct ice_pf *pf)
4002 {
4003 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
4004
4005 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4006 if (func_caps->common_cap.rdma)
4007 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4008 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4009 if (func_caps->common_cap.dcb)
4010 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4011 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4012 if (func_caps->common_cap.sr_iov_1_1) {
4013 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4014 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
4015 ICE_MAX_SRIOV_VFS);
4016 }
4017 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
4018 if (func_caps->common_cap.rss_table_size)
4019 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
4020
4021 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
4022 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
4023 u16 unused;
4024
4025 /* ctrl_vsi_idx will be set to a valid value when flow director
4026 * is setup by ice_init_fdir
4027 */
4028 pf->ctrl_vsi_idx = ICE_NO_VSI;
4029 set_bit(ICE_FLAG_FD_ENA, pf->flags);
4030 /* force guaranteed filter pool for PF */
4031 ice_alloc_fd_guar_item(&pf->hw, &unused,
4032 func_caps->fd_fltr_guar);
4033 /* force shared filter pool for PF */
4034 ice_alloc_fd_shrd_item(&pf->hw, &unused,
4035 func_caps->fd_fltr_best_effort);
4036 }
4037
4038 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4039 if (func_caps->common_cap.ieee_1588)
4040 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4041
4042 pf->max_pf_txqs = func_caps->common_cap.num_txq;
4043 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4044 }
4045
4046 /**
4047 * ice_init_pf - Initialize general software structures (struct ice_pf)
4048 * @pf: board private structure to initialize
4049 */
ice_init_pf(struct ice_pf * pf)4050 static int ice_init_pf(struct ice_pf *pf)
4051 {
4052 ice_set_pf_caps(pf);
4053
4054 mutex_init(&pf->sw_mutex);
4055 mutex_init(&pf->tc_mutex);
4056 mutex_init(&pf->adev_mutex);
4057 mutex_init(&pf->lag_mutex);
4058
4059 INIT_HLIST_HEAD(&pf->aq_wait_list);
4060 spin_lock_init(&pf->aq_wait_lock);
4061 init_waitqueue_head(&pf->aq_wait_queue);
4062
4063 init_waitqueue_head(&pf->reset_wait_queue);
4064
4065 /* setup service timer and periodic service task */
4066 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4067 pf->serv_tmr_period = HZ;
4068 INIT_WORK(&pf->serv_task, ice_service_task);
4069 clear_bit(ICE_SERVICE_SCHED, pf->state);
4070
4071 mutex_init(&pf->avail_q_mutex);
4072 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4073 if (!pf->avail_txqs)
4074 return -ENOMEM;
4075
4076 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4077 if (!pf->avail_rxqs) {
4078 bitmap_free(pf->avail_txqs);
4079 pf->avail_txqs = NULL;
4080 return -ENOMEM;
4081 }
4082
4083 mutex_init(&pf->vfs.table_lock);
4084 hash_init(pf->vfs.table);
4085 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
4086 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH,
4087 ICE_MBX_OVERFLOW_WATERMARK);
4088 else
4089 ice_mbx_init_snapshot(&pf->hw);
4090
4091 xa_init(&pf->dyn_ports);
4092 xa_init(&pf->sf_nums);
4093
4094 return 0;
4095 }
4096
4097 /**
4098 * ice_is_wol_supported - check if WoL is supported
4099 * @hw: pointer to hardware info
4100 *
4101 * Check if WoL is supported based on the HW configuration.
4102 * Returns true if NVM supports and enables WoL for this port, false otherwise
4103 */
ice_is_wol_supported(struct ice_hw * hw)4104 bool ice_is_wol_supported(struct ice_hw *hw)
4105 {
4106 u16 wol_ctrl;
4107
4108 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4109 * word) indicates WoL is not supported on the corresponding PF ID.
4110 */
4111 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4112 return false;
4113
4114 return !(BIT(hw->port_info->lport) & wol_ctrl);
4115 }
4116
4117 /**
4118 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4119 * @vsi: VSI being changed
4120 * @new_rx: new number of Rx queues
4121 * @new_tx: new number of Tx queues
4122 * @locked: is adev device_lock held
4123 *
4124 * Only change the number of queues if new_tx, or new_rx is non-0.
4125 *
4126 * Returns 0 on success.
4127 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx,bool locked)4128 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4129 {
4130 struct ice_pf *pf = vsi->back;
4131 int i, err = 0, timeout = 50;
4132
4133 if (!new_rx && !new_tx)
4134 return -EINVAL;
4135
4136 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4137 timeout--;
4138 if (!timeout)
4139 return -EBUSY;
4140 usleep_range(1000, 2000);
4141 }
4142
4143 if (new_tx)
4144 vsi->req_txq = (u16)new_tx;
4145 if (new_rx)
4146 vsi->req_rxq = (u16)new_rx;
4147
4148 /* set for the next time the netdev is started */
4149 if (!netif_running(vsi->netdev)) {
4150 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4151 if (err)
4152 goto rebuild_err;
4153 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4154 goto done;
4155 }
4156
4157 ice_vsi_close(vsi);
4158 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4159 if (err)
4160 goto rebuild_err;
4161
4162 ice_for_each_traffic_class(i) {
4163 if (vsi->tc_cfg.ena_tc & BIT(i))
4164 netdev_set_tc_queue(vsi->netdev,
4165 vsi->tc_cfg.tc_info[i].netdev_tc,
4166 vsi->tc_cfg.tc_info[i].qcount_tx,
4167 vsi->tc_cfg.tc_info[i].qoffset);
4168 }
4169 ice_pf_dcb_recfg(pf, locked);
4170 ice_vsi_open(vsi);
4171 goto done;
4172
4173 rebuild_err:
4174 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4175 err);
4176 done:
4177 clear_bit(ICE_CFG_BUSY, pf->state);
4178 return err;
4179 }
4180
4181 /**
4182 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4183 * @pf: PF to configure
4184 *
4185 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4186 * VSI can still Tx/Rx VLAN tagged packets.
4187 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4188 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4189 {
4190 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4191 struct ice_vsi_ctx *ctxt;
4192 struct ice_hw *hw;
4193 int status;
4194
4195 if (!vsi)
4196 return;
4197
4198 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4199 if (!ctxt)
4200 return;
4201
4202 hw = &pf->hw;
4203 ctxt->info = vsi->info;
4204
4205 ctxt->info.valid_sections =
4206 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4207 ICE_AQ_VSI_PROP_SECURITY_VALID |
4208 ICE_AQ_VSI_PROP_SW_VALID);
4209
4210 /* disable VLAN anti-spoof */
4211 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4212 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4213
4214 /* disable VLAN pruning and keep all other settings */
4215 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4216
4217 /* allow all VLANs on Tx and don't strip on Rx */
4218 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4219 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4220
4221 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4222 if (status) {
4223 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4224 status, ice_aq_str(hw->adminq.sq_last_status));
4225 } else {
4226 vsi->info.sec_flags = ctxt->info.sec_flags;
4227 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4228 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4229 }
4230
4231 kfree(ctxt);
4232 }
4233
4234 /**
4235 * ice_log_pkg_init - log result of DDP package load
4236 * @hw: pointer to hardware info
4237 * @state: state of package load
4238 */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4239 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4240 {
4241 struct ice_pf *pf = hw->back;
4242 struct device *dev;
4243
4244 dev = ice_pf_to_dev(pf);
4245
4246 switch (state) {
4247 case ICE_DDP_PKG_SUCCESS:
4248 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4249 hw->active_pkg_name,
4250 hw->active_pkg_ver.major,
4251 hw->active_pkg_ver.minor,
4252 hw->active_pkg_ver.update,
4253 hw->active_pkg_ver.draft);
4254 break;
4255 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4256 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4257 hw->active_pkg_name,
4258 hw->active_pkg_ver.major,
4259 hw->active_pkg_ver.minor,
4260 hw->active_pkg_ver.update,
4261 hw->active_pkg_ver.draft);
4262 break;
4263 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4264 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4265 hw->active_pkg_name,
4266 hw->active_pkg_ver.major,
4267 hw->active_pkg_ver.minor,
4268 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4269 break;
4270 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4271 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4272 hw->active_pkg_name,
4273 hw->active_pkg_ver.major,
4274 hw->active_pkg_ver.minor,
4275 hw->active_pkg_ver.update,
4276 hw->active_pkg_ver.draft,
4277 hw->pkg_name,
4278 hw->pkg_ver.major,
4279 hw->pkg_ver.minor,
4280 hw->pkg_ver.update,
4281 hw->pkg_ver.draft);
4282 break;
4283 case ICE_DDP_PKG_FW_MISMATCH:
4284 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4285 break;
4286 case ICE_DDP_PKG_INVALID_FILE:
4287 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4288 break;
4289 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4290 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4291 break;
4292 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4293 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4294 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4295 break;
4296 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4297 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4298 break;
4299 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4300 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4301 break;
4302 case ICE_DDP_PKG_LOAD_ERROR:
4303 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4304 /* poll for reset to complete */
4305 if (ice_check_reset(hw))
4306 dev_err(dev, "Error resetting device. Please reload the driver\n");
4307 break;
4308 case ICE_DDP_PKG_ERR:
4309 default:
4310 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4311 break;
4312 }
4313 }
4314
4315 /**
4316 * ice_load_pkg - load/reload the DDP Package file
4317 * @firmware: firmware structure when firmware requested or NULL for reload
4318 * @pf: pointer to the PF instance
4319 *
4320 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4321 * initialize HW tables.
4322 */
4323 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4324 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4325 {
4326 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4327 struct device *dev = ice_pf_to_dev(pf);
4328 struct ice_hw *hw = &pf->hw;
4329
4330 /* Load DDP Package */
4331 if (firmware && !hw->pkg_copy) {
4332 state = ice_copy_and_init_pkg(hw, firmware->data,
4333 firmware->size);
4334 ice_log_pkg_init(hw, state);
4335 } else if (!firmware && hw->pkg_copy) {
4336 /* Reload package during rebuild after CORER/GLOBR reset */
4337 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4338 ice_log_pkg_init(hw, state);
4339 } else {
4340 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4341 }
4342
4343 if (!ice_is_init_pkg_successful(state)) {
4344 /* Safe Mode */
4345 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4346 return;
4347 }
4348
4349 /* Successful download package is the precondition for advanced
4350 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4351 */
4352 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4353 }
4354
4355 /**
4356 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4357 * @pf: pointer to the PF structure
4358 *
4359 * There is no error returned here because the driver should be able to handle
4360 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4361 * specifically with Tx.
4362 */
ice_verify_cacheline_size(struct ice_pf * pf)4363 static void ice_verify_cacheline_size(struct ice_pf *pf)
4364 {
4365 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4366 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4367 ICE_CACHE_LINE_BYTES);
4368 }
4369
4370 /**
4371 * ice_send_version - update firmware with driver version
4372 * @pf: PF struct
4373 *
4374 * Returns 0 on success, else error code
4375 */
ice_send_version(struct ice_pf * pf)4376 static int ice_send_version(struct ice_pf *pf)
4377 {
4378 struct ice_driver_ver dv;
4379
4380 dv.major_ver = 0xff;
4381 dv.minor_ver = 0xff;
4382 dv.build_ver = 0xff;
4383 dv.subbuild_ver = 0;
4384 strscpy((char *)dv.driver_string, UTS_RELEASE,
4385 sizeof(dv.driver_string));
4386 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4387 }
4388
4389 /**
4390 * ice_init_fdir - Initialize flow director VSI and configuration
4391 * @pf: pointer to the PF instance
4392 *
4393 * returns 0 on success, negative on error
4394 */
ice_init_fdir(struct ice_pf * pf)4395 static int ice_init_fdir(struct ice_pf *pf)
4396 {
4397 struct device *dev = ice_pf_to_dev(pf);
4398 struct ice_vsi *ctrl_vsi;
4399 int err;
4400
4401 /* Side Band Flow Director needs to have a control VSI.
4402 * Allocate it and store it in the PF.
4403 */
4404 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4405 if (!ctrl_vsi) {
4406 dev_dbg(dev, "could not create control VSI\n");
4407 return -ENOMEM;
4408 }
4409
4410 err = ice_vsi_open_ctrl(ctrl_vsi);
4411 if (err) {
4412 dev_dbg(dev, "could not open control VSI\n");
4413 goto err_vsi_open;
4414 }
4415
4416 mutex_init(&pf->hw.fdir_fltr_lock);
4417
4418 err = ice_fdir_create_dflt_rules(pf);
4419 if (err)
4420 goto err_fdir_rule;
4421
4422 return 0;
4423
4424 err_fdir_rule:
4425 ice_fdir_release_flows(&pf->hw);
4426 ice_vsi_close(ctrl_vsi);
4427 err_vsi_open:
4428 ice_vsi_release(ctrl_vsi);
4429 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4430 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4431 pf->ctrl_vsi_idx = ICE_NO_VSI;
4432 }
4433 return err;
4434 }
4435
ice_deinit_fdir(struct ice_pf * pf)4436 static void ice_deinit_fdir(struct ice_pf *pf)
4437 {
4438 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4439
4440 if (!vsi)
4441 return;
4442
4443 ice_vsi_manage_fdir(vsi, false);
4444 ice_vsi_release(vsi);
4445 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4446 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4447 pf->ctrl_vsi_idx = ICE_NO_VSI;
4448 }
4449
4450 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4451 }
4452
4453 /**
4454 * ice_get_opt_fw_name - return optional firmware file name or NULL
4455 * @pf: pointer to the PF instance
4456 */
ice_get_opt_fw_name(struct ice_pf * pf)4457 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4458 {
4459 /* Optional firmware name same as default with additional dash
4460 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4461 */
4462 struct pci_dev *pdev = pf->pdev;
4463 char *opt_fw_filename;
4464 u64 dsn;
4465
4466 /* Determine the name of the optional file using the DSN (two
4467 * dwords following the start of the DSN Capability).
4468 */
4469 dsn = pci_get_dsn(pdev);
4470 if (!dsn)
4471 return NULL;
4472
4473 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4474 if (!opt_fw_filename)
4475 return NULL;
4476
4477 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4478 ICE_DDP_PKG_PATH, dsn);
4479
4480 return opt_fw_filename;
4481 }
4482
4483 /**
4484 * ice_request_fw - Device initialization routine
4485 * @pf: pointer to the PF instance
4486 * @firmware: double pointer to firmware struct
4487 *
4488 * Return: zero when successful, negative values otherwise.
4489 */
ice_request_fw(struct ice_pf * pf,const struct firmware ** firmware)4490 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware)
4491 {
4492 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4493 struct device *dev = ice_pf_to_dev(pf);
4494 int err = 0;
4495
4496 /* optional device-specific DDP (if present) overrides the default DDP
4497 * package file. kernel logs a debug message if the file doesn't exist,
4498 * and warning messages for other errors.
4499 */
4500 if (opt_fw_filename) {
4501 err = firmware_request_nowarn(firmware, opt_fw_filename, dev);
4502 kfree(opt_fw_filename);
4503 if (!err)
4504 return err;
4505 }
4506 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev);
4507 if (err)
4508 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4509
4510 return err;
4511 }
4512
4513 /**
4514 * ice_init_tx_topology - performs Tx topology initialization
4515 * @hw: pointer to the hardware structure
4516 * @firmware: pointer to firmware structure
4517 *
4518 * Return: zero when init was successful, negative values otherwise.
4519 */
4520 static int
ice_init_tx_topology(struct ice_hw * hw,const struct firmware * firmware)4521 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware)
4522 {
4523 u8 num_tx_sched_layers = hw->num_tx_sched_layers;
4524 struct ice_pf *pf = hw->back;
4525 struct device *dev;
4526 int err;
4527
4528 dev = ice_pf_to_dev(pf);
4529 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size);
4530 if (!err) {
4531 if (hw->num_tx_sched_layers > num_tx_sched_layers)
4532 dev_info(dev, "Tx scheduling layers switching feature disabled\n");
4533 else
4534 dev_info(dev, "Tx scheduling layers switching feature enabled\n");
4535 /* if there was a change in topology ice_cfg_tx_topo triggered
4536 * a CORER and we need to re-init hw
4537 */
4538 ice_deinit_hw(hw);
4539 err = ice_init_hw(hw);
4540
4541 return err;
4542 } else if (err == -EIO) {
4543 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n");
4544 }
4545
4546 return 0;
4547 }
4548
4549 /**
4550 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs
4551 * @hw: pointer to the hardware structure
4552 * @pf: pointer to pf structure
4553 *
4554 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor
4555 * formats the PF hardware supports. The exact list of supported RXDIDs
4556 * depends on the loaded DDP package. The IDs can be determined by reading the
4557 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded.
4558 *
4559 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed
4560 * in the DDP package. The 16-byte legacy descriptor is never supported by
4561 * VFs.
4562 */
ice_init_supported_rxdids(struct ice_hw * hw,struct ice_pf * pf)4563 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf)
4564 {
4565 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1);
4566
4567 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
4568 u32 regval;
4569
4570 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
4571 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
4572 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
4573 pf->supported_rxdids |= BIT(i);
4574 }
4575 }
4576
4577 /**
4578 * ice_init_ddp_config - DDP related configuration
4579 * @hw: pointer to the hardware structure
4580 * @pf: pointer to pf structure
4581 *
4582 * This function loads DDP file from the disk, then initializes Tx
4583 * topology. At the end DDP package is loaded on the card.
4584 *
4585 * Return: zero when init was successful, negative values otherwise.
4586 */
ice_init_ddp_config(struct ice_hw * hw,struct ice_pf * pf)4587 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf)
4588 {
4589 struct device *dev = ice_pf_to_dev(pf);
4590 const struct firmware *firmware = NULL;
4591 int err;
4592
4593 err = ice_request_fw(pf, &firmware);
4594 if (err) {
4595 dev_err(dev, "Fail during requesting FW: %d\n", err);
4596 return err;
4597 }
4598
4599 err = ice_init_tx_topology(hw, firmware);
4600 if (err) {
4601 dev_err(dev, "Fail during initialization of Tx topology: %d\n",
4602 err);
4603 release_firmware(firmware);
4604 return err;
4605 }
4606
4607 /* Download firmware to device */
4608 ice_load_pkg(firmware, pf);
4609 release_firmware(firmware);
4610
4611 /* Initialize the supported Rx descriptor IDs after loading DDP */
4612 ice_init_supported_rxdids(hw, pf);
4613
4614 return 0;
4615 }
4616
4617 /**
4618 * ice_print_wake_reason - show the wake up cause in the log
4619 * @pf: pointer to the PF struct
4620 */
ice_print_wake_reason(struct ice_pf * pf)4621 static void ice_print_wake_reason(struct ice_pf *pf)
4622 {
4623 u32 wus = pf->wakeup_reason;
4624 const char *wake_str;
4625
4626 /* if no wake event, nothing to print */
4627 if (!wus)
4628 return;
4629
4630 if (wus & PFPM_WUS_LNKC_M)
4631 wake_str = "Link\n";
4632 else if (wus & PFPM_WUS_MAG_M)
4633 wake_str = "Magic Packet\n";
4634 else if (wus & PFPM_WUS_MNG_M)
4635 wake_str = "Management\n";
4636 else if (wus & PFPM_WUS_FW_RST_WK_M)
4637 wake_str = "Firmware Reset\n";
4638 else
4639 wake_str = "Unknown\n";
4640
4641 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4642 }
4643
4644 /**
4645 * ice_pf_fwlog_update_module - update 1 module
4646 * @pf: pointer to the PF struct
4647 * @log_level: log_level to use for the @module
4648 * @module: module to update
4649 */
ice_pf_fwlog_update_module(struct ice_pf * pf,int log_level,int module)4650 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4651 {
4652 struct ice_hw *hw = &pf->hw;
4653
4654 hw->fwlog_cfg.module_entries[module].log_level = log_level;
4655 }
4656
4657 /**
4658 * ice_register_netdev - register netdev
4659 * @vsi: pointer to the VSI struct
4660 */
ice_register_netdev(struct ice_vsi * vsi)4661 static int ice_register_netdev(struct ice_vsi *vsi)
4662 {
4663 int err;
4664
4665 if (!vsi || !vsi->netdev)
4666 return -EIO;
4667
4668 err = register_netdev(vsi->netdev);
4669 if (err)
4670 return err;
4671
4672 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4673 netif_carrier_off(vsi->netdev);
4674 netif_tx_stop_all_queues(vsi->netdev);
4675
4676 return 0;
4677 }
4678
ice_unregister_netdev(struct ice_vsi * vsi)4679 static void ice_unregister_netdev(struct ice_vsi *vsi)
4680 {
4681 if (!vsi || !vsi->netdev)
4682 return;
4683
4684 unregister_netdev(vsi->netdev);
4685 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4686 }
4687
4688 /**
4689 * ice_cfg_netdev - Allocate, configure and register a netdev
4690 * @vsi: the VSI associated with the new netdev
4691 *
4692 * Returns 0 on success, negative value on failure
4693 */
ice_cfg_netdev(struct ice_vsi * vsi)4694 static int ice_cfg_netdev(struct ice_vsi *vsi)
4695 {
4696 struct ice_netdev_priv *np;
4697 struct net_device *netdev;
4698 u8 mac_addr[ETH_ALEN];
4699
4700 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4701 vsi->alloc_rxq);
4702 if (!netdev)
4703 return -ENOMEM;
4704
4705 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4706 vsi->netdev = netdev;
4707 np = netdev_priv(netdev);
4708 np->vsi = vsi;
4709
4710 ice_set_netdev_features(netdev);
4711 ice_set_ops(vsi);
4712
4713 if (vsi->type == ICE_VSI_PF) {
4714 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4715 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4716 eth_hw_addr_set(netdev, mac_addr);
4717 }
4718
4719 netdev->priv_flags |= IFF_UNICAST_FLT;
4720
4721 /* Setup netdev TC information */
4722 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4723
4724 netdev->max_mtu = ICE_MAX_MTU;
4725
4726 return 0;
4727 }
4728
ice_decfg_netdev(struct ice_vsi * vsi)4729 static void ice_decfg_netdev(struct ice_vsi *vsi)
4730 {
4731 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4732 free_netdev(vsi->netdev);
4733 vsi->netdev = NULL;
4734 }
4735
ice_init_dev(struct ice_pf * pf)4736 int ice_init_dev(struct ice_pf *pf)
4737 {
4738 struct device *dev = ice_pf_to_dev(pf);
4739 struct ice_hw *hw = &pf->hw;
4740 int err;
4741
4742 ice_init_feature_support(pf);
4743
4744 err = ice_init_ddp_config(hw, pf);
4745
4746 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be
4747 * set in pf->state, which will cause ice_is_safe_mode to return
4748 * true
4749 */
4750 if (err || ice_is_safe_mode(pf)) {
4751 /* we already got function/device capabilities but these don't
4752 * reflect what the driver needs to do in safe mode. Instead of
4753 * adding conditional logic everywhere to ignore these
4754 * device/function capabilities, override them.
4755 */
4756 ice_set_safe_mode_caps(hw);
4757 }
4758
4759 err = ice_init_pf(pf);
4760 if (err) {
4761 dev_err(dev, "ice_init_pf failed: %d\n", err);
4762 return err;
4763 }
4764
4765 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4766 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4767 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4768 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4769 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4770 pf->hw.udp_tunnel_nic.tables[0].n_entries =
4771 pf->hw.tnl.valid_count[TNL_VXLAN];
4772 pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4773 UDP_TUNNEL_TYPE_VXLAN;
4774 }
4775 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4776 pf->hw.udp_tunnel_nic.tables[1].n_entries =
4777 pf->hw.tnl.valid_count[TNL_GENEVE];
4778 pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4779 UDP_TUNNEL_TYPE_GENEVE;
4780 }
4781
4782 err = ice_init_interrupt_scheme(pf);
4783 if (err) {
4784 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4785 err = -EIO;
4786 goto unroll_pf_init;
4787 }
4788
4789 /* In case of MSIX we are going to setup the misc vector right here
4790 * to handle admin queue events etc. In case of legacy and MSI
4791 * the misc functionality and queue processing is combined in
4792 * the same vector and that gets setup at open.
4793 */
4794 err = ice_req_irq_msix_misc(pf);
4795 if (err) {
4796 dev_err(dev, "setup of misc vector failed: %d\n", err);
4797 goto unroll_irq_scheme_init;
4798 }
4799
4800 return 0;
4801
4802 unroll_irq_scheme_init:
4803 ice_clear_interrupt_scheme(pf);
4804 unroll_pf_init:
4805 ice_deinit_pf(pf);
4806 return err;
4807 }
4808
ice_deinit_dev(struct ice_pf * pf)4809 void ice_deinit_dev(struct ice_pf *pf)
4810 {
4811 ice_free_irq_msix_misc(pf);
4812 ice_deinit_pf(pf);
4813 ice_deinit_hw(&pf->hw);
4814
4815 /* Service task is already stopped, so call reset directly. */
4816 ice_reset(&pf->hw, ICE_RESET_PFR);
4817 pci_wait_for_pending_transaction(pf->pdev);
4818 ice_clear_interrupt_scheme(pf);
4819 }
4820
ice_init_features(struct ice_pf * pf)4821 static void ice_init_features(struct ice_pf *pf)
4822 {
4823 struct device *dev = ice_pf_to_dev(pf);
4824
4825 if (ice_is_safe_mode(pf))
4826 return;
4827
4828 /* initialize DDP driven features */
4829 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4830 ice_ptp_init(pf);
4831
4832 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4833 ice_gnss_init(pf);
4834
4835 if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4836 ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4837 ice_dpll_init(pf);
4838
4839 /* Note: Flow director init failure is non-fatal to load */
4840 if (ice_init_fdir(pf))
4841 dev_err(dev, "could not initialize flow director\n");
4842
4843 /* Note: DCB init failure is non-fatal to load */
4844 if (ice_init_pf_dcb(pf, false)) {
4845 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4846 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4847 } else {
4848 ice_cfg_lldp_mib_change(&pf->hw, true);
4849 }
4850
4851 if (ice_init_lag(pf))
4852 dev_warn(dev, "Failed to init link aggregation support\n");
4853
4854 ice_hwmon_init(pf);
4855 }
4856
ice_deinit_features(struct ice_pf * pf)4857 static void ice_deinit_features(struct ice_pf *pf)
4858 {
4859 if (ice_is_safe_mode(pf))
4860 return;
4861
4862 ice_deinit_lag(pf);
4863 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4864 ice_cfg_lldp_mib_change(&pf->hw, false);
4865 ice_deinit_fdir(pf);
4866 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4867 ice_gnss_exit(pf);
4868 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4869 ice_ptp_release(pf);
4870 if (test_bit(ICE_FLAG_DPLL, pf->flags))
4871 ice_dpll_deinit(pf);
4872 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4873 xa_destroy(&pf->eswitch.reprs);
4874 }
4875
ice_init_wakeup(struct ice_pf * pf)4876 static void ice_init_wakeup(struct ice_pf *pf)
4877 {
4878 /* Save wakeup reason register for later use */
4879 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4880
4881 /* check for a power management event */
4882 ice_print_wake_reason(pf);
4883
4884 /* clear wake status, all bits */
4885 wr32(&pf->hw, PFPM_WUS, U32_MAX);
4886
4887 /* Disable WoL at init, wait for user to enable */
4888 device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4889 }
4890
ice_init_link(struct ice_pf * pf)4891 static int ice_init_link(struct ice_pf *pf)
4892 {
4893 struct device *dev = ice_pf_to_dev(pf);
4894 int err;
4895
4896 err = ice_init_link_events(pf->hw.port_info);
4897 if (err) {
4898 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4899 return err;
4900 }
4901
4902 /* not a fatal error if this fails */
4903 err = ice_init_nvm_phy_type(pf->hw.port_info);
4904 if (err)
4905 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4906
4907 /* not a fatal error if this fails */
4908 err = ice_update_link_info(pf->hw.port_info);
4909 if (err)
4910 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4911
4912 ice_init_link_dflt_override(pf->hw.port_info);
4913
4914 ice_check_link_cfg_err(pf,
4915 pf->hw.port_info->phy.link_info.link_cfg_err);
4916
4917 /* if media available, initialize PHY settings */
4918 if (pf->hw.port_info->phy.link_info.link_info &
4919 ICE_AQ_MEDIA_AVAILABLE) {
4920 /* not a fatal error if this fails */
4921 err = ice_init_phy_user_cfg(pf->hw.port_info);
4922 if (err)
4923 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4924
4925 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4926 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4927
4928 if (vsi)
4929 ice_configure_phy(vsi);
4930 }
4931 } else {
4932 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4933 }
4934
4935 return err;
4936 }
4937
ice_init_pf_sw(struct ice_pf * pf)4938 static int ice_init_pf_sw(struct ice_pf *pf)
4939 {
4940 bool dvm = ice_is_dvm_ena(&pf->hw);
4941 struct ice_vsi *vsi;
4942 int err;
4943
4944 /* create switch struct for the switch element created by FW on boot */
4945 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4946 if (!pf->first_sw)
4947 return -ENOMEM;
4948
4949 if (pf->hw.evb_veb)
4950 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4951 else
4952 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4953
4954 pf->first_sw->pf = pf;
4955
4956 /* record the sw_id available for later use */
4957 pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4958
4959 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4960 if (err)
4961 goto err_aq_set_port_params;
4962
4963 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4964 if (!vsi) {
4965 err = -ENOMEM;
4966 goto err_pf_vsi_setup;
4967 }
4968
4969 return 0;
4970
4971 err_pf_vsi_setup:
4972 err_aq_set_port_params:
4973 kfree(pf->first_sw);
4974 return err;
4975 }
4976
ice_deinit_pf_sw(struct ice_pf * pf)4977 static void ice_deinit_pf_sw(struct ice_pf *pf)
4978 {
4979 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4980
4981 if (!vsi)
4982 return;
4983
4984 ice_vsi_release(vsi);
4985 kfree(pf->first_sw);
4986 }
4987
ice_alloc_vsis(struct ice_pf * pf)4988 static int ice_alloc_vsis(struct ice_pf *pf)
4989 {
4990 struct device *dev = ice_pf_to_dev(pf);
4991
4992 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4993 if (!pf->num_alloc_vsi)
4994 return -EIO;
4995
4996 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4997 dev_warn(dev,
4998 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4999 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
5000 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
5001 }
5002
5003 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
5004 GFP_KERNEL);
5005 if (!pf->vsi)
5006 return -ENOMEM;
5007
5008 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
5009 sizeof(*pf->vsi_stats), GFP_KERNEL);
5010 if (!pf->vsi_stats) {
5011 devm_kfree(dev, pf->vsi);
5012 return -ENOMEM;
5013 }
5014
5015 return 0;
5016 }
5017
ice_dealloc_vsis(struct ice_pf * pf)5018 static void ice_dealloc_vsis(struct ice_pf *pf)
5019 {
5020 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
5021 pf->vsi_stats = NULL;
5022
5023 pf->num_alloc_vsi = 0;
5024 devm_kfree(ice_pf_to_dev(pf), pf->vsi);
5025 pf->vsi = NULL;
5026 }
5027
ice_init_devlink(struct ice_pf * pf)5028 static int ice_init_devlink(struct ice_pf *pf)
5029 {
5030 int err;
5031
5032 err = ice_devlink_register_params(pf);
5033 if (err)
5034 return err;
5035
5036 ice_devlink_init_regions(pf);
5037 ice_devlink_register(pf);
5038 ice_health_init(pf);
5039
5040 return 0;
5041 }
5042
ice_deinit_devlink(struct ice_pf * pf)5043 static void ice_deinit_devlink(struct ice_pf *pf)
5044 {
5045 ice_health_deinit(pf);
5046 ice_devlink_unregister(pf);
5047 ice_devlink_destroy_regions(pf);
5048 ice_devlink_unregister_params(pf);
5049 }
5050
ice_init(struct ice_pf * pf)5051 static int ice_init(struct ice_pf *pf)
5052 {
5053 int err;
5054
5055 err = ice_init_dev(pf);
5056 if (err)
5057 return err;
5058
5059 if (pf->hw.mac_type == ICE_MAC_E830) {
5060 err = pci_enable_ptm(pf->pdev, NULL);
5061 if (err)
5062 dev_dbg(ice_pf_to_dev(pf), "PCIe PTM not supported by PCIe bus/controller\n");
5063 }
5064
5065 err = ice_alloc_vsis(pf);
5066 if (err)
5067 goto err_alloc_vsis;
5068
5069 err = ice_init_pf_sw(pf);
5070 if (err)
5071 goto err_init_pf_sw;
5072
5073 ice_init_wakeup(pf);
5074
5075 err = ice_init_link(pf);
5076 if (err)
5077 goto err_init_link;
5078
5079 err = ice_send_version(pf);
5080 if (err)
5081 goto err_init_link;
5082
5083 ice_verify_cacheline_size(pf);
5084
5085 if (ice_is_safe_mode(pf))
5086 ice_set_safe_mode_vlan_cfg(pf);
5087 else
5088 /* print PCI link speed and width */
5089 pcie_print_link_status(pf->pdev);
5090
5091 /* ready to go, so clear down state bit */
5092 clear_bit(ICE_DOWN, pf->state);
5093 clear_bit(ICE_SERVICE_DIS, pf->state);
5094
5095 /* since everything is good, start the service timer */
5096 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5097
5098 return 0;
5099
5100 err_init_link:
5101 ice_deinit_pf_sw(pf);
5102 err_init_pf_sw:
5103 ice_dealloc_vsis(pf);
5104 err_alloc_vsis:
5105 ice_deinit_dev(pf);
5106 return err;
5107 }
5108
ice_deinit(struct ice_pf * pf)5109 static void ice_deinit(struct ice_pf *pf)
5110 {
5111 set_bit(ICE_SERVICE_DIS, pf->state);
5112 set_bit(ICE_DOWN, pf->state);
5113
5114 ice_deinit_pf_sw(pf);
5115 ice_dealloc_vsis(pf);
5116 ice_deinit_dev(pf);
5117 }
5118
5119 /**
5120 * ice_load - load pf by init hw and starting VSI
5121 * @pf: pointer to the pf instance
5122 *
5123 * This function has to be called under devl_lock.
5124 */
ice_load(struct ice_pf * pf)5125 int ice_load(struct ice_pf *pf)
5126 {
5127 struct ice_vsi *vsi;
5128 int err;
5129
5130 devl_assert_locked(priv_to_devlink(pf));
5131
5132 vsi = ice_get_main_vsi(pf);
5133
5134 /* init channel list */
5135 INIT_LIST_HEAD(&vsi->ch_list);
5136
5137 err = ice_cfg_netdev(vsi);
5138 if (err)
5139 return err;
5140
5141 /* Setup DCB netlink interface */
5142 ice_dcbnl_setup(vsi);
5143
5144 err = ice_init_mac_fltr(pf);
5145 if (err)
5146 goto err_init_mac_fltr;
5147
5148 err = ice_devlink_create_pf_port(pf);
5149 if (err)
5150 goto err_devlink_create_pf_port;
5151
5152 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
5153
5154 err = ice_register_netdev(vsi);
5155 if (err)
5156 goto err_register_netdev;
5157
5158 err = ice_tc_indir_block_register(vsi);
5159 if (err)
5160 goto err_tc_indir_block_register;
5161
5162 ice_napi_add(vsi);
5163
5164 ice_init_features(pf);
5165
5166 err = ice_init_rdma(pf);
5167 if (err)
5168 goto err_init_rdma;
5169
5170 ice_service_task_restart(pf);
5171
5172 clear_bit(ICE_DOWN, pf->state);
5173
5174 return 0;
5175
5176 err_init_rdma:
5177 ice_deinit_features(pf);
5178 ice_tc_indir_block_unregister(vsi);
5179 err_tc_indir_block_register:
5180 ice_unregister_netdev(vsi);
5181 err_register_netdev:
5182 ice_devlink_destroy_pf_port(pf);
5183 err_devlink_create_pf_port:
5184 err_init_mac_fltr:
5185 ice_decfg_netdev(vsi);
5186 return err;
5187 }
5188
5189 /**
5190 * ice_unload - unload pf by stopping VSI and deinit hw
5191 * @pf: pointer to the pf instance
5192 *
5193 * This function has to be called under devl_lock.
5194 */
ice_unload(struct ice_pf * pf)5195 void ice_unload(struct ice_pf *pf)
5196 {
5197 struct ice_vsi *vsi = ice_get_main_vsi(pf);
5198
5199 devl_assert_locked(priv_to_devlink(pf));
5200
5201 ice_deinit_rdma(pf);
5202 ice_deinit_features(pf);
5203 ice_tc_indir_block_unregister(vsi);
5204 ice_unregister_netdev(vsi);
5205 ice_devlink_destroy_pf_port(pf);
5206 ice_decfg_netdev(vsi);
5207 }
5208
ice_probe_recovery_mode(struct ice_pf * pf)5209 static int ice_probe_recovery_mode(struct ice_pf *pf)
5210 {
5211 struct device *dev = ice_pf_to_dev(pf);
5212 int err;
5213
5214 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n");
5215
5216 INIT_HLIST_HEAD(&pf->aq_wait_list);
5217 spin_lock_init(&pf->aq_wait_lock);
5218 init_waitqueue_head(&pf->aq_wait_queue);
5219
5220 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
5221 pf->serv_tmr_period = HZ;
5222 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode);
5223 clear_bit(ICE_SERVICE_SCHED, pf->state);
5224 err = ice_create_all_ctrlq(&pf->hw);
5225 if (err)
5226 return err;
5227
5228 scoped_guard(devl, priv_to_devlink(pf)) {
5229 err = ice_init_devlink(pf);
5230 if (err)
5231 return err;
5232 }
5233
5234 ice_service_task_restart(pf);
5235
5236 return 0;
5237 }
5238
5239 /**
5240 * ice_probe - Device initialization routine
5241 * @pdev: PCI device information struct
5242 * @ent: entry in ice_pci_tbl
5243 *
5244 * Returns 0 on success, negative on failure
5245 */
5246 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)5247 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5248 {
5249 struct device *dev = &pdev->dev;
5250 struct ice_adapter *adapter;
5251 struct ice_pf *pf;
5252 struct ice_hw *hw;
5253 int err;
5254
5255 if (pdev->is_virtfn) {
5256 dev_err(dev, "can't probe a virtual function\n");
5257 return -EINVAL;
5258 }
5259
5260 /* when under a kdump kernel initiate a reset before enabling the
5261 * device in order to clear out any pending DMA transactions. These
5262 * transactions can cause some systems to machine check when doing
5263 * the pcim_enable_device() below.
5264 */
5265 if (is_kdump_kernel()) {
5266 pci_save_state(pdev);
5267 pci_clear_master(pdev);
5268 err = pcie_flr(pdev);
5269 if (err)
5270 return err;
5271 pci_restore_state(pdev);
5272 }
5273
5274 /* this driver uses devres, see
5275 * Documentation/driver-api/driver-model/devres.rst
5276 */
5277 err = pcim_enable_device(pdev);
5278 if (err)
5279 return err;
5280
5281 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5282 if (err) {
5283 dev_err(dev, "BAR0 I/O map error %d\n", err);
5284 return err;
5285 }
5286
5287 pf = ice_allocate_pf(dev);
5288 if (!pf)
5289 return -ENOMEM;
5290
5291 /* initialize Auxiliary index to invalid value */
5292 pf->aux_idx = -1;
5293
5294 /* set up for high or low DMA */
5295 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5296 if (err) {
5297 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5298 return err;
5299 }
5300
5301 pci_set_master(pdev);
5302 pf->pdev = pdev;
5303 pci_set_drvdata(pdev, pf);
5304 set_bit(ICE_DOWN, pf->state);
5305 /* Disable service task until DOWN bit is cleared */
5306 set_bit(ICE_SERVICE_DIS, pf->state);
5307
5308 hw = &pf->hw;
5309 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5310 pci_save_state(pdev);
5311
5312 hw->back = pf;
5313 hw->port_info = NULL;
5314 hw->vendor_id = pdev->vendor;
5315 hw->device_id = pdev->device;
5316 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5317 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5318 hw->subsystem_device_id = pdev->subsystem_device;
5319 hw->bus.device = PCI_SLOT(pdev->devfn);
5320 hw->bus.func = PCI_FUNC(pdev->devfn);
5321 ice_set_ctrlq_len(hw);
5322
5323 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5324
5325 #ifndef CONFIG_DYNAMIC_DEBUG
5326 if (debug < -1)
5327 hw->debug_mask = debug;
5328 #endif
5329
5330 if (ice_is_recovery_mode(hw))
5331 return ice_probe_recovery_mode(pf);
5332
5333 err = ice_init_hw(hw);
5334 if (err) {
5335 dev_err(dev, "ice_init_hw failed: %d\n", err);
5336 return err;
5337 }
5338
5339 adapter = ice_adapter_get(pdev);
5340 if (IS_ERR(adapter)) {
5341 err = PTR_ERR(adapter);
5342 goto unroll_hw_init;
5343 }
5344 pf->adapter = adapter;
5345
5346 err = ice_init(pf);
5347 if (err)
5348 goto unroll_adapter;
5349
5350 devl_lock(priv_to_devlink(pf));
5351 err = ice_load(pf);
5352 if (err)
5353 goto unroll_init;
5354
5355 err = ice_init_devlink(pf);
5356 if (err)
5357 goto unroll_load;
5358 devl_unlock(priv_to_devlink(pf));
5359
5360 return 0;
5361
5362 unroll_load:
5363 ice_unload(pf);
5364 unroll_init:
5365 devl_unlock(priv_to_devlink(pf));
5366 ice_deinit(pf);
5367 unroll_adapter:
5368 ice_adapter_put(pdev);
5369 unroll_hw_init:
5370 ice_deinit_hw(hw);
5371 return err;
5372 }
5373
5374 /**
5375 * ice_set_wake - enable or disable Wake on LAN
5376 * @pf: pointer to the PF struct
5377 *
5378 * Simple helper for WoL control
5379 */
ice_set_wake(struct ice_pf * pf)5380 static void ice_set_wake(struct ice_pf *pf)
5381 {
5382 struct ice_hw *hw = &pf->hw;
5383 bool wol = pf->wol_ena;
5384
5385 /* clear wake state, otherwise new wake events won't fire */
5386 wr32(hw, PFPM_WUS, U32_MAX);
5387
5388 /* enable / disable APM wake up, no RMW needed */
5389 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5390
5391 /* set magic packet filter enabled */
5392 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5393 }
5394
5395 /**
5396 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5397 * @pf: pointer to the PF struct
5398 *
5399 * Issue firmware command to enable multicast magic wake, making
5400 * sure that any locally administered address (LAA) is used for
5401 * wake, and that PF reset doesn't undo the LAA.
5402 */
ice_setup_mc_magic_wake(struct ice_pf * pf)5403 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5404 {
5405 struct device *dev = ice_pf_to_dev(pf);
5406 struct ice_hw *hw = &pf->hw;
5407 u8 mac_addr[ETH_ALEN];
5408 struct ice_vsi *vsi;
5409 int status;
5410 u8 flags;
5411
5412 if (!pf->wol_ena)
5413 return;
5414
5415 vsi = ice_get_main_vsi(pf);
5416 if (!vsi)
5417 return;
5418
5419 /* Get current MAC address in case it's an LAA */
5420 if (vsi->netdev)
5421 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5422 else
5423 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5424
5425 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5426 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5427 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5428
5429 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5430 if (status)
5431 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5432 status, ice_aq_str(hw->adminq.sq_last_status));
5433 }
5434
5435 /**
5436 * ice_remove - Device removal routine
5437 * @pdev: PCI device information struct
5438 */
ice_remove(struct pci_dev * pdev)5439 static void ice_remove(struct pci_dev *pdev)
5440 {
5441 struct ice_pf *pf = pci_get_drvdata(pdev);
5442 int i;
5443
5444 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5445 if (!ice_is_reset_in_progress(pf->state))
5446 break;
5447 msleep(100);
5448 }
5449
5450 if (ice_is_recovery_mode(&pf->hw)) {
5451 ice_service_task_stop(pf);
5452 scoped_guard(devl, priv_to_devlink(pf)) {
5453 ice_deinit_devlink(pf);
5454 }
5455 return;
5456 }
5457
5458 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5459 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5460 ice_free_vfs(pf);
5461 }
5462
5463 ice_hwmon_exit(pf);
5464
5465 ice_service_task_stop(pf);
5466 ice_aq_cancel_waiting_tasks(pf);
5467 set_bit(ICE_DOWN, pf->state);
5468
5469 if (!ice_is_safe_mode(pf))
5470 ice_remove_arfs(pf);
5471
5472 devl_lock(priv_to_devlink(pf));
5473 ice_dealloc_all_dynamic_ports(pf);
5474 ice_deinit_devlink(pf);
5475
5476 ice_unload(pf);
5477 devl_unlock(priv_to_devlink(pf));
5478
5479 ice_deinit(pf);
5480 ice_vsi_release_all(pf);
5481
5482 ice_setup_mc_magic_wake(pf);
5483 ice_set_wake(pf);
5484
5485 ice_adapter_put(pdev);
5486 }
5487
5488 /**
5489 * ice_shutdown - PCI callback for shutting down device
5490 * @pdev: PCI device information struct
5491 */
ice_shutdown(struct pci_dev * pdev)5492 static void ice_shutdown(struct pci_dev *pdev)
5493 {
5494 struct ice_pf *pf = pci_get_drvdata(pdev);
5495
5496 ice_remove(pdev);
5497
5498 if (system_state == SYSTEM_POWER_OFF) {
5499 pci_wake_from_d3(pdev, pf->wol_ena);
5500 pci_set_power_state(pdev, PCI_D3hot);
5501 }
5502 }
5503
5504 /**
5505 * ice_prepare_for_shutdown - prep for PCI shutdown
5506 * @pf: board private structure
5507 *
5508 * Inform or close all dependent features in prep for PCI device shutdown
5509 */
ice_prepare_for_shutdown(struct ice_pf * pf)5510 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5511 {
5512 struct ice_hw *hw = &pf->hw;
5513 u32 v;
5514
5515 /* Notify VFs of impending reset */
5516 if (ice_check_sq_alive(hw, &hw->mailboxq))
5517 ice_vc_notify_reset(pf);
5518
5519 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5520
5521 /* disable the VSIs and their queues that are not already DOWN */
5522 ice_pf_dis_all_vsi(pf, false);
5523
5524 ice_for_each_vsi(pf, v)
5525 if (pf->vsi[v])
5526 pf->vsi[v]->vsi_num = 0;
5527
5528 ice_shutdown_all_ctrlq(hw, true);
5529 }
5530
5531 /**
5532 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5533 * @pf: board private structure to reinitialize
5534 *
5535 * This routine reinitialize interrupt scheme that was cleared during
5536 * power management suspend callback.
5537 *
5538 * This should be called during resume routine to re-allocate the q_vectors
5539 * and reacquire interrupts.
5540 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5541 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5542 {
5543 struct device *dev = ice_pf_to_dev(pf);
5544 int ret, v;
5545
5546 /* Since we clear MSIX flag during suspend, we need to
5547 * set it back during resume...
5548 */
5549
5550 ret = ice_init_interrupt_scheme(pf);
5551 if (ret) {
5552 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5553 return ret;
5554 }
5555
5556 /* Remap vectors and rings, after successful re-init interrupts */
5557 ice_for_each_vsi(pf, v) {
5558 if (!pf->vsi[v])
5559 continue;
5560
5561 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5562 if (ret)
5563 goto err_reinit;
5564 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5565 rtnl_lock();
5566 ice_vsi_set_napi_queues(pf->vsi[v]);
5567 rtnl_unlock();
5568 }
5569
5570 ret = ice_req_irq_msix_misc(pf);
5571 if (ret) {
5572 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5573 ret);
5574 goto err_reinit;
5575 }
5576
5577 return 0;
5578
5579 err_reinit:
5580 while (v--)
5581 if (pf->vsi[v]) {
5582 rtnl_lock();
5583 ice_vsi_clear_napi_queues(pf->vsi[v]);
5584 rtnl_unlock();
5585 ice_vsi_free_q_vectors(pf->vsi[v]);
5586 }
5587
5588 return ret;
5589 }
5590
5591 /**
5592 * ice_suspend
5593 * @dev: generic device information structure
5594 *
5595 * Power Management callback to quiesce the device and prepare
5596 * for D3 transition.
5597 */
ice_suspend(struct device * dev)5598 static int ice_suspend(struct device *dev)
5599 {
5600 struct pci_dev *pdev = to_pci_dev(dev);
5601 struct ice_pf *pf;
5602 int disabled, v;
5603
5604 pf = pci_get_drvdata(pdev);
5605
5606 if (!ice_pf_state_is_nominal(pf)) {
5607 dev_err(dev, "Device is not ready, no need to suspend it\n");
5608 return -EBUSY;
5609 }
5610
5611 /* Stop watchdog tasks until resume completion.
5612 * Even though it is most likely that the service task is
5613 * disabled if the device is suspended or down, the service task's
5614 * state is controlled by a different state bit, and we should
5615 * store and honor whatever state that bit is in at this point.
5616 */
5617 disabled = ice_service_task_stop(pf);
5618
5619 ice_deinit_rdma(pf);
5620
5621 /* Already suspended?, then there is nothing to do */
5622 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5623 if (!disabled)
5624 ice_service_task_restart(pf);
5625 return 0;
5626 }
5627
5628 if (test_bit(ICE_DOWN, pf->state) ||
5629 ice_is_reset_in_progress(pf->state)) {
5630 dev_err(dev, "can't suspend device in reset or already down\n");
5631 if (!disabled)
5632 ice_service_task_restart(pf);
5633 return 0;
5634 }
5635
5636 ice_setup_mc_magic_wake(pf);
5637
5638 ice_prepare_for_shutdown(pf);
5639
5640 ice_set_wake(pf);
5641
5642 /* Free vectors, clear the interrupt scheme and release IRQs
5643 * for proper hibernation, especially with large number of CPUs.
5644 * Otherwise hibernation might fail when mapping all the vectors back
5645 * to CPU0.
5646 */
5647 ice_free_irq_msix_misc(pf);
5648 ice_for_each_vsi(pf, v) {
5649 if (!pf->vsi[v])
5650 continue;
5651 rtnl_lock();
5652 ice_vsi_clear_napi_queues(pf->vsi[v]);
5653 rtnl_unlock();
5654 ice_vsi_free_q_vectors(pf->vsi[v]);
5655 }
5656 ice_clear_interrupt_scheme(pf);
5657
5658 pci_save_state(pdev);
5659 pci_wake_from_d3(pdev, pf->wol_ena);
5660 pci_set_power_state(pdev, PCI_D3hot);
5661 return 0;
5662 }
5663
5664 /**
5665 * ice_resume - PM callback for waking up from D3
5666 * @dev: generic device information structure
5667 */
ice_resume(struct device * dev)5668 static int ice_resume(struct device *dev)
5669 {
5670 struct pci_dev *pdev = to_pci_dev(dev);
5671 enum ice_reset_req reset_type;
5672 struct ice_pf *pf;
5673 struct ice_hw *hw;
5674 int ret;
5675
5676 pci_set_power_state(pdev, PCI_D0);
5677 pci_restore_state(pdev);
5678 pci_save_state(pdev);
5679
5680 if (!pci_device_is_present(pdev))
5681 return -ENODEV;
5682
5683 ret = pci_enable_device_mem(pdev);
5684 if (ret) {
5685 dev_err(dev, "Cannot enable device after suspend\n");
5686 return ret;
5687 }
5688
5689 pf = pci_get_drvdata(pdev);
5690 hw = &pf->hw;
5691
5692 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5693 ice_print_wake_reason(pf);
5694
5695 /* We cleared the interrupt scheme when we suspended, so we need to
5696 * restore it now to resume device functionality.
5697 */
5698 ret = ice_reinit_interrupt_scheme(pf);
5699 if (ret)
5700 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5701
5702 ret = ice_init_rdma(pf);
5703 if (ret)
5704 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5705 ret);
5706
5707 clear_bit(ICE_DOWN, pf->state);
5708 /* Now perform PF reset and rebuild */
5709 reset_type = ICE_RESET_PFR;
5710 /* re-enable service task for reset, but allow reset to schedule it */
5711 clear_bit(ICE_SERVICE_DIS, pf->state);
5712
5713 if (ice_schedule_reset(pf, reset_type))
5714 dev_err(dev, "Reset during resume failed.\n");
5715
5716 clear_bit(ICE_SUSPENDED, pf->state);
5717 ice_service_task_restart(pf);
5718
5719 /* Restart the service task */
5720 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5721
5722 return 0;
5723 }
5724
5725 /**
5726 * ice_pci_err_detected - warning that PCI error has been detected
5727 * @pdev: PCI device information struct
5728 * @err: the type of PCI error
5729 *
5730 * Called to warn that something happened on the PCI bus and the error handling
5731 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5732 */
5733 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5734 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5735 {
5736 struct ice_pf *pf = pci_get_drvdata(pdev);
5737
5738 if (!pf) {
5739 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5740 __func__, err);
5741 return PCI_ERS_RESULT_DISCONNECT;
5742 }
5743
5744 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5745 ice_service_task_stop(pf);
5746
5747 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5748 set_bit(ICE_PFR_REQ, pf->state);
5749 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5750 }
5751 }
5752
5753 return PCI_ERS_RESULT_NEED_RESET;
5754 }
5755
5756 /**
5757 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5758 * @pdev: PCI device information struct
5759 *
5760 * Called to determine if the driver can recover from the PCI slot reset by
5761 * using a register read to determine if the device is recoverable.
5762 */
ice_pci_err_slot_reset(struct pci_dev * pdev)5763 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5764 {
5765 struct ice_pf *pf = pci_get_drvdata(pdev);
5766 pci_ers_result_t result;
5767 int err;
5768 u32 reg;
5769
5770 err = pci_enable_device_mem(pdev);
5771 if (err) {
5772 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5773 err);
5774 result = PCI_ERS_RESULT_DISCONNECT;
5775 } else {
5776 pci_set_master(pdev);
5777 pci_restore_state(pdev);
5778 pci_save_state(pdev);
5779 pci_wake_from_d3(pdev, false);
5780
5781 /* Check for life */
5782 reg = rd32(&pf->hw, GLGEN_RTRIG);
5783 if (!reg)
5784 result = PCI_ERS_RESULT_RECOVERED;
5785 else
5786 result = PCI_ERS_RESULT_DISCONNECT;
5787 }
5788
5789 return result;
5790 }
5791
5792 /**
5793 * ice_pci_err_resume - restart operations after PCI error recovery
5794 * @pdev: PCI device information struct
5795 *
5796 * Called to allow the driver to bring things back up after PCI error and/or
5797 * reset recovery have finished
5798 */
ice_pci_err_resume(struct pci_dev * pdev)5799 static void ice_pci_err_resume(struct pci_dev *pdev)
5800 {
5801 struct ice_pf *pf = pci_get_drvdata(pdev);
5802
5803 if (!pf) {
5804 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5805 __func__);
5806 return;
5807 }
5808
5809 if (test_bit(ICE_SUSPENDED, pf->state)) {
5810 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5811 __func__);
5812 return;
5813 }
5814
5815 ice_restore_all_vfs_msi_state(pf);
5816
5817 ice_do_reset(pf, ICE_RESET_PFR);
5818 ice_service_task_restart(pf);
5819 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5820 }
5821
5822 /**
5823 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5824 * @pdev: PCI device information struct
5825 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5826 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5827 {
5828 struct ice_pf *pf = pci_get_drvdata(pdev);
5829
5830 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5831 ice_service_task_stop(pf);
5832
5833 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5834 set_bit(ICE_PFR_REQ, pf->state);
5835 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5836 }
5837 }
5838 }
5839
5840 /**
5841 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5842 * @pdev: PCI device information struct
5843 */
ice_pci_err_reset_done(struct pci_dev * pdev)5844 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5845 {
5846 ice_pci_err_resume(pdev);
5847 }
5848
5849 /* ice_pci_tbl - PCI Device ID Table
5850 *
5851 * Wildcard entries (PCI_ANY_ID) should come last
5852 * Last entry must be all 0s
5853 *
5854 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5855 * Class, Class Mask, private data (not used) }
5856 */
5857 static const struct pci_device_id ice_pci_tbl[] = {
5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5884 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
5885 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
5886 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
5887 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
5888 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) },
5889 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) },
5890 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) },
5891 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) },
5892 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), },
5893 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), },
5894 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), },
5895 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), },
5896 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), },
5897 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), },
5898 /* required last entry */
5899 {}
5900 };
5901 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5902
5903 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5904
5905 static const struct pci_error_handlers ice_pci_err_handler = {
5906 .error_detected = ice_pci_err_detected,
5907 .slot_reset = ice_pci_err_slot_reset,
5908 .reset_prepare = ice_pci_err_reset_prepare,
5909 .reset_done = ice_pci_err_reset_done,
5910 .resume = ice_pci_err_resume
5911 };
5912
5913 static struct pci_driver ice_driver = {
5914 .name = KBUILD_MODNAME,
5915 .id_table = ice_pci_tbl,
5916 .probe = ice_probe,
5917 .remove = ice_remove,
5918 .driver.pm = pm_sleep_ptr(&ice_pm_ops),
5919 .shutdown = ice_shutdown,
5920 .sriov_configure = ice_sriov_configure,
5921 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5922 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5923 .err_handler = &ice_pci_err_handler
5924 };
5925
5926 /**
5927 * ice_module_init - Driver registration routine
5928 *
5929 * ice_module_init is the first routine called when the driver is
5930 * loaded. All it does is register with the PCI subsystem.
5931 */
ice_module_init(void)5932 static int __init ice_module_init(void)
5933 {
5934 int status = -ENOMEM;
5935
5936 pr_info("%s\n", ice_driver_string);
5937 pr_info("%s\n", ice_copyright);
5938
5939 ice_adv_lnk_speed_maps_init();
5940
5941 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME);
5942 if (!ice_wq) {
5943 pr_err("Failed to create workqueue\n");
5944 return status;
5945 }
5946
5947 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5948 if (!ice_lag_wq) {
5949 pr_err("Failed to create LAG workqueue\n");
5950 goto err_dest_wq;
5951 }
5952
5953 ice_debugfs_init();
5954
5955 status = pci_register_driver(&ice_driver);
5956 if (status) {
5957 pr_err("failed to register PCI driver, err %d\n", status);
5958 goto err_dest_lag_wq;
5959 }
5960
5961 status = ice_sf_driver_register();
5962 if (status) {
5963 pr_err("Failed to register SF driver, err %d\n", status);
5964 goto err_sf_driver;
5965 }
5966
5967 return 0;
5968
5969 err_sf_driver:
5970 pci_unregister_driver(&ice_driver);
5971 err_dest_lag_wq:
5972 destroy_workqueue(ice_lag_wq);
5973 ice_debugfs_exit();
5974 err_dest_wq:
5975 destroy_workqueue(ice_wq);
5976 return status;
5977 }
5978 module_init(ice_module_init);
5979
5980 /**
5981 * ice_module_exit - Driver exit cleanup routine
5982 *
5983 * ice_module_exit is called just before the driver is removed
5984 * from memory.
5985 */
ice_module_exit(void)5986 static void __exit ice_module_exit(void)
5987 {
5988 ice_sf_driver_unregister();
5989 pci_unregister_driver(&ice_driver);
5990 ice_debugfs_exit();
5991 destroy_workqueue(ice_wq);
5992 destroy_workqueue(ice_lag_wq);
5993 pr_info("module unloaded\n");
5994 }
5995 module_exit(ice_module_exit);
5996
5997 /**
5998 * ice_set_mac_address - NDO callback to set MAC address
5999 * @netdev: network interface device structure
6000 * @pi: pointer to an address structure
6001 *
6002 * Returns 0 on success, negative on failure
6003 */
ice_set_mac_address(struct net_device * netdev,void * pi)6004 static int ice_set_mac_address(struct net_device *netdev, void *pi)
6005 {
6006 struct ice_netdev_priv *np = netdev_priv(netdev);
6007 struct ice_vsi *vsi = np->vsi;
6008 struct ice_pf *pf = vsi->back;
6009 struct ice_hw *hw = &pf->hw;
6010 struct sockaddr *addr = pi;
6011 u8 old_mac[ETH_ALEN];
6012 u8 flags = 0;
6013 u8 *mac;
6014 int err;
6015
6016 mac = (u8 *)addr->sa_data;
6017
6018 if (!is_valid_ether_addr(mac))
6019 return -EADDRNOTAVAIL;
6020
6021 if (test_bit(ICE_DOWN, pf->state) ||
6022 ice_is_reset_in_progress(pf->state)) {
6023 netdev_err(netdev, "can't set mac %pM. device not ready\n",
6024 mac);
6025 return -EBUSY;
6026 }
6027
6028 if (ice_chnl_dmac_fltr_cnt(pf)) {
6029 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
6030 mac);
6031 return -EAGAIN;
6032 }
6033
6034 netif_addr_lock_bh(netdev);
6035 ether_addr_copy(old_mac, netdev->dev_addr);
6036 /* change the netdev's MAC address */
6037 eth_hw_addr_set(netdev, mac);
6038 netif_addr_unlock_bh(netdev);
6039
6040 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
6041 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
6042 if (err && err != -ENOENT) {
6043 err = -EADDRNOTAVAIL;
6044 goto err_update_filters;
6045 }
6046
6047 /* Add filter for new MAC. If filter exists, return success */
6048 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
6049 if (err == -EEXIST) {
6050 /* Although this MAC filter is already present in hardware it's
6051 * possible in some cases (e.g. bonding) that dev_addr was
6052 * modified outside of the driver and needs to be restored back
6053 * to this value.
6054 */
6055 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
6056
6057 return 0;
6058 } else if (err) {
6059 /* error if the new filter addition failed */
6060 err = -EADDRNOTAVAIL;
6061 }
6062
6063 err_update_filters:
6064 if (err) {
6065 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
6066 mac);
6067 netif_addr_lock_bh(netdev);
6068 eth_hw_addr_set(netdev, old_mac);
6069 netif_addr_unlock_bh(netdev);
6070 return err;
6071 }
6072
6073 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
6074 netdev->dev_addr);
6075
6076 /* write new MAC address to the firmware */
6077 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
6078 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
6079 if (err) {
6080 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
6081 mac, err);
6082 }
6083 return 0;
6084 }
6085
6086 /**
6087 * ice_set_rx_mode - NDO callback to set the netdev filters
6088 * @netdev: network interface device structure
6089 */
ice_set_rx_mode(struct net_device * netdev)6090 static void ice_set_rx_mode(struct net_device *netdev)
6091 {
6092 struct ice_netdev_priv *np = netdev_priv(netdev);
6093 struct ice_vsi *vsi = np->vsi;
6094
6095 if (!vsi || ice_is_switchdev_running(vsi->back))
6096 return;
6097
6098 /* Set the flags to synchronize filters
6099 * ndo_set_rx_mode may be triggered even without a change in netdev
6100 * flags
6101 */
6102 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
6103 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
6104 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
6105
6106 /* schedule our worker thread which will take care of
6107 * applying the new filter changes
6108 */
6109 ice_service_task_schedule(vsi->back);
6110 }
6111
6112 /**
6113 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
6114 * @netdev: network interface device structure
6115 * @queue_index: Queue ID
6116 * @maxrate: maximum bandwidth in Mbps
6117 */
6118 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)6119 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
6120 {
6121 struct ice_netdev_priv *np = netdev_priv(netdev);
6122 struct ice_vsi *vsi = np->vsi;
6123 u16 q_handle;
6124 int status;
6125 u8 tc;
6126
6127 /* Validate maxrate requested is within permitted range */
6128 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
6129 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
6130 maxrate, queue_index);
6131 return -EINVAL;
6132 }
6133
6134 q_handle = vsi->tx_rings[queue_index]->q_handle;
6135 tc = ice_dcb_get_tc(vsi, queue_index);
6136
6137 vsi = ice_locate_vsi_using_queue(vsi, queue_index);
6138 if (!vsi) {
6139 netdev_err(netdev, "Invalid VSI for given queue %d\n",
6140 queue_index);
6141 return -EINVAL;
6142 }
6143
6144 /* Set BW back to default, when user set maxrate to 0 */
6145 if (!maxrate)
6146 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6147 q_handle, ICE_MAX_BW);
6148 else
6149 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6150 q_handle, ICE_MAX_BW, maxrate * 1000);
6151 if (status)
6152 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6153 status);
6154
6155 return status;
6156 }
6157
6158 /**
6159 * ice_fdb_add - add an entry to the hardware database
6160 * @ndm: the input from the stack
6161 * @tb: pointer to array of nladdr (unused)
6162 * @dev: the net device pointer
6163 * @addr: the MAC address entry being added
6164 * @vid: VLAN ID
6165 * @flags: instructions from stack about fdb operation
6166 * @notified: whether notification was emitted
6167 * @extack: netlink extended ack
6168 */
6169 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,bool * notified,struct netlink_ext_ack __always_unused * extack)6170 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6171 struct net_device *dev, const unsigned char *addr, u16 vid,
6172 u16 flags, bool *notified,
6173 struct netlink_ext_ack __always_unused *extack)
6174 {
6175 int err;
6176
6177 if (vid) {
6178 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6179 return -EINVAL;
6180 }
6181 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6182 netdev_err(dev, "FDB only supports static addresses\n");
6183 return -EINVAL;
6184 }
6185
6186 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6187 err = dev_uc_add_excl(dev, addr);
6188 else if (is_multicast_ether_addr(addr))
6189 err = dev_mc_add_excl(dev, addr);
6190 else
6191 err = -EINVAL;
6192
6193 /* Only return duplicate errors if NLM_F_EXCL is set */
6194 if (err == -EEXIST && !(flags & NLM_F_EXCL))
6195 err = 0;
6196
6197 return err;
6198 }
6199
6200 /**
6201 * ice_fdb_del - delete an entry from the hardware database
6202 * @ndm: the input from the stack
6203 * @tb: pointer to array of nladdr (unused)
6204 * @dev: the net device pointer
6205 * @addr: the MAC address entry being added
6206 * @vid: VLAN ID
6207 * @notified: whether notification was emitted
6208 * @extack: netlink extended ack
6209 */
6210 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,bool * notified,struct netlink_ext_ack * extack)6211 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6212 struct net_device *dev, const unsigned char *addr,
6213 __always_unused u16 vid, bool *notified,
6214 struct netlink_ext_ack *extack)
6215 {
6216 int err;
6217
6218 if (ndm->ndm_state & NUD_PERMANENT) {
6219 netdev_err(dev, "FDB only supports static addresses\n");
6220 return -EINVAL;
6221 }
6222
6223 if (is_unicast_ether_addr(addr))
6224 err = dev_uc_del(dev, addr);
6225 else if (is_multicast_ether_addr(addr))
6226 err = dev_mc_del(dev, addr);
6227 else
6228 err = -EINVAL;
6229
6230 return err;
6231 }
6232
6233 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6234 NETIF_F_HW_VLAN_CTAG_TX | \
6235 NETIF_F_HW_VLAN_STAG_RX | \
6236 NETIF_F_HW_VLAN_STAG_TX)
6237
6238 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6239 NETIF_F_HW_VLAN_STAG_RX)
6240
6241 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
6242 NETIF_F_HW_VLAN_STAG_FILTER)
6243
6244 /**
6245 * ice_fix_features - fix the netdev features flags based on device limitations
6246 * @netdev: ptr to the netdev that flags are being fixed on
6247 * @features: features that need to be checked and possibly fixed
6248 *
6249 * Make sure any fixups are made to features in this callback. This enables the
6250 * driver to not have to check unsupported configurations throughout the driver
6251 * because that's the responsiblity of this callback.
6252 *
6253 * Single VLAN Mode (SVM) Supported Features:
6254 * NETIF_F_HW_VLAN_CTAG_FILTER
6255 * NETIF_F_HW_VLAN_CTAG_RX
6256 * NETIF_F_HW_VLAN_CTAG_TX
6257 *
6258 * Double VLAN Mode (DVM) Supported Features:
6259 * NETIF_F_HW_VLAN_CTAG_FILTER
6260 * NETIF_F_HW_VLAN_CTAG_RX
6261 * NETIF_F_HW_VLAN_CTAG_TX
6262 *
6263 * NETIF_F_HW_VLAN_STAG_FILTER
6264 * NETIF_HW_VLAN_STAG_RX
6265 * NETIF_HW_VLAN_STAG_TX
6266 *
6267 * Features that need fixing:
6268 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6269 * These are mutually exlusive as the VSI context cannot support multiple
6270 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
6271 * is not done, then default to clearing the requested STAG offload
6272 * settings.
6273 *
6274 * All supported filtering has to be enabled or disabled together. For
6275 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6276 * together. If this is not done, then default to VLAN filtering disabled.
6277 * These are mutually exclusive as there is currently no way to
6278 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6279 * prune rules.
6280 */
6281 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)6282 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6283 {
6284 struct ice_netdev_priv *np = netdev_priv(netdev);
6285 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6286 bool cur_ctag, cur_stag, req_ctag, req_stag;
6287
6288 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6289 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6290 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6291
6292 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6293 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6294 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6295
6296 if (req_vlan_fltr != cur_vlan_fltr) {
6297 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6298 if (req_ctag && req_stag) {
6299 features |= NETIF_VLAN_FILTERING_FEATURES;
6300 } else if (!req_ctag && !req_stag) {
6301 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6302 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
6303 (!cur_stag && req_stag && !cur_ctag)) {
6304 features |= NETIF_VLAN_FILTERING_FEATURES;
6305 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6306 } else if ((cur_ctag && !req_ctag && cur_stag) ||
6307 (cur_stag && !req_stag && cur_ctag)) {
6308 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6309 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6310 }
6311 } else {
6312 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6313 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6314
6315 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6316 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6317 }
6318 }
6319
6320 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6321 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6322 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6323 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6324 NETIF_F_HW_VLAN_STAG_TX);
6325 }
6326
6327 if (!(netdev->features & NETIF_F_RXFCS) &&
6328 (features & NETIF_F_RXFCS) &&
6329 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6330 !ice_vsi_has_non_zero_vlans(np->vsi)) {
6331 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6332 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6333 }
6334
6335 return features;
6336 }
6337
6338 /**
6339 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6340 * @vsi: PF's VSI
6341 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6342 *
6343 * Store current stripped VLAN proto in ring packet context,
6344 * so it can be accessed more efficiently by packet processing code.
6345 */
6346 static void
ice_set_rx_rings_vlan_proto(struct ice_vsi * vsi,__be16 vlan_ethertype)6347 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6348 {
6349 u16 i;
6350
6351 ice_for_each_alloc_rxq(vsi, i)
6352 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6353 }
6354
6355 /**
6356 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6357 * @vsi: PF's VSI
6358 * @features: features used to determine VLAN offload settings
6359 *
6360 * First, determine the vlan_ethertype based on the VLAN offload bits in
6361 * features. Then determine if stripping and insertion should be enabled or
6362 * disabled. Finally enable or disable VLAN stripping and insertion.
6363 */
6364 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)6365 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6366 {
6367 bool enable_stripping = true, enable_insertion = true;
6368 struct ice_vsi_vlan_ops *vlan_ops;
6369 int strip_err = 0, insert_err = 0;
6370 u16 vlan_ethertype = 0;
6371
6372 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6373
6374 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6375 vlan_ethertype = ETH_P_8021AD;
6376 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6377 vlan_ethertype = ETH_P_8021Q;
6378
6379 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6380 enable_stripping = false;
6381 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6382 enable_insertion = false;
6383
6384 if (enable_stripping)
6385 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6386 else
6387 strip_err = vlan_ops->dis_stripping(vsi);
6388
6389 if (enable_insertion)
6390 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6391 else
6392 insert_err = vlan_ops->dis_insertion(vsi);
6393
6394 if (strip_err || insert_err)
6395 return -EIO;
6396
6397 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6398 htons(vlan_ethertype) : 0);
6399
6400 return 0;
6401 }
6402
6403 /**
6404 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6405 * @vsi: PF's VSI
6406 * @features: features used to determine VLAN filtering settings
6407 *
6408 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6409 * features.
6410 */
6411 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)6412 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6413 {
6414 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6415 int err = 0;
6416
6417 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6418 * if either bit is set. In switchdev mode Rx filtering should never be
6419 * enabled.
6420 */
6421 if ((features &
6422 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) &&
6423 !ice_is_eswitch_mode_switchdev(vsi->back))
6424 err = vlan_ops->ena_rx_filtering(vsi);
6425 else
6426 err = vlan_ops->dis_rx_filtering(vsi);
6427
6428 return err;
6429 }
6430
6431 /**
6432 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6433 * @netdev: ptr to the netdev being adjusted
6434 * @features: the feature set that the stack is suggesting
6435 *
6436 * Only update VLAN settings if the requested_vlan_features are different than
6437 * the current_vlan_features.
6438 */
6439 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)6440 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6441 {
6442 netdev_features_t current_vlan_features, requested_vlan_features;
6443 struct ice_netdev_priv *np = netdev_priv(netdev);
6444 struct ice_vsi *vsi = np->vsi;
6445 int err;
6446
6447 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6448 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6449 if (current_vlan_features ^ requested_vlan_features) {
6450 if ((features & NETIF_F_RXFCS) &&
6451 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6452 dev_err(ice_pf_to_dev(vsi->back),
6453 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6454 return -EIO;
6455 }
6456
6457 err = ice_set_vlan_offload_features(vsi, features);
6458 if (err)
6459 return err;
6460 }
6461
6462 current_vlan_features = netdev->features &
6463 NETIF_VLAN_FILTERING_FEATURES;
6464 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6465 if (current_vlan_features ^ requested_vlan_features) {
6466 err = ice_set_vlan_filtering_features(vsi, features);
6467 if (err)
6468 return err;
6469 }
6470
6471 return 0;
6472 }
6473
6474 /**
6475 * ice_set_loopback - turn on/off loopback mode on underlying PF
6476 * @vsi: ptr to VSI
6477 * @ena: flag to indicate the on/off setting
6478 */
ice_set_loopback(struct ice_vsi * vsi,bool ena)6479 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6480 {
6481 bool if_running = netif_running(vsi->netdev);
6482 int ret;
6483
6484 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6485 ret = ice_down(vsi);
6486 if (ret) {
6487 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6488 return ret;
6489 }
6490 }
6491 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6492 if (ret)
6493 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6494 if (if_running)
6495 ret = ice_up(vsi);
6496
6497 return ret;
6498 }
6499
6500 /**
6501 * ice_set_features - set the netdev feature flags
6502 * @netdev: ptr to the netdev being adjusted
6503 * @features: the feature set that the stack is suggesting
6504 */
6505 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)6506 ice_set_features(struct net_device *netdev, netdev_features_t features)
6507 {
6508 netdev_features_t changed = netdev->features ^ features;
6509 struct ice_netdev_priv *np = netdev_priv(netdev);
6510 struct ice_vsi *vsi = np->vsi;
6511 struct ice_pf *pf = vsi->back;
6512 int ret = 0;
6513
6514 /* Don't set any netdev advanced features with device in Safe Mode */
6515 if (ice_is_safe_mode(pf)) {
6516 dev_err(ice_pf_to_dev(pf),
6517 "Device is in Safe Mode - not enabling advanced netdev features\n");
6518 return ret;
6519 }
6520
6521 /* Do not change setting during reset */
6522 if (ice_is_reset_in_progress(pf->state)) {
6523 dev_err(ice_pf_to_dev(pf),
6524 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6525 return -EBUSY;
6526 }
6527
6528 /* Multiple features can be changed in one call so keep features in
6529 * separate if/else statements to guarantee each feature is checked
6530 */
6531 if (changed & NETIF_F_RXHASH)
6532 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6533
6534 ret = ice_set_vlan_features(netdev, features);
6535 if (ret)
6536 return ret;
6537
6538 /* Turn on receive of FCS aka CRC, and after setting this
6539 * flag the packet data will have the 4 byte CRC appended
6540 */
6541 if (changed & NETIF_F_RXFCS) {
6542 if ((features & NETIF_F_RXFCS) &&
6543 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6544 dev_err(ice_pf_to_dev(vsi->back),
6545 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6546 return -EIO;
6547 }
6548
6549 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6550 ret = ice_down_up(vsi);
6551 if (ret)
6552 return ret;
6553 }
6554
6555 if (changed & NETIF_F_NTUPLE) {
6556 bool ena = !!(features & NETIF_F_NTUPLE);
6557
6558 ice_vsi_manage_fdir(vsi, ena);
6559 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6560 }
6561
6562 /* don't turn off hw_tc_offload when ADQ is already enabled */
6563 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6564 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6565 return -EACCES;
6566 }
6567
6568 if (changed & NETIF_F_HW_TC) {
6569 bool ena = !!(features & NETIF_F_HW_TC);
6570
6571 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena);
6572 }
6573
6574 if (changed & NETIF_F_LOOPBACK)
6575 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6576
6577 /* Due to E830 hardware limitations, TSO (NETIF_F_ALL_TSO) with GCS
6578 * (NETIF_F_HW_CSUM) is not supported.
6579 */
6580 if (ice_is_feature_supported(pf, ICE_F_GCS) &&
6581 ((features & NETIF_F_HW_CSUM) && (features & NETIF_F_ALL_TSO))) {
6582 if (netdev->features & NETIF_F_HW_CSUM)
6583 dev_err(ice_pf_to_dev(pf), "To enable TSO, you must first disable HW checksum.\n");
6584 else
6585 dev_err(ice_pf_to_dev(pf), "To enable HW checksum, you must first disable TSO.\n");
6586 return -EIO;
6587 }
6588
6589 return ret;
6590 }
6591
6592 /**
6593 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6594 * @vsi: VSI to setup VLAN properties for
6595 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6596 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6597 {
6598 int err;
6599
6600 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6601 if (err)
6602 return err;
6603
6604 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6605 if (err)
6606 return err;
6607
6608 return ice_vsi_add_vlan_zero(vsi);
6609 }
6610
6611 /**
6612 * ice_vsi_cfg_lan - Setup the VSI lan related config
6613 * @vsi: the VSI being configured
6614 *
6615 * Return 0 on success and negative value on error
6616 */
ice_vsi_cfg_lan(struct ice_vsi * vsi)6617 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6618 {
6619 int err;
6620
6621 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6622 ice_set_rx_mode(vsi->netdev);
6623
6624 err = ice_vsi_vlan_setup(vsi);
6625 if (err)
6626 return err;
6627 }
6628 ice_vsi_cfg_dcb_rings(vsi);
6629
6630 err = ice_vsi_cfg_lan_txqs(vsi);
6631 if (!err && ice_is_xdp_ena_vsi(vsi))
6632 err = ice_vsi_cfg_xdp_txqs(vsi);
6633 if (!err)
6634 err = ice_vsi_cfg_rxqs(vsi);
6635
6636 return err;
6637 }
6638
6639 /* THEORY OF MODERATION:
6640 * The ice driver hardware works differently than the hardware that DIMLIB was
6641 * originally made for. ice hardware doesn't have packet count limits that
6642 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6643 * which is hard-coded to a limit of 250,000 ints/second.
6644 * If not using dynamic moderation, the INTRL value can be modified
6645 * by ethtool rx-usecs-high.
6646 */
6647 struct ice_dim {
6648 /* the throttle rate for interrupts, basically worst case delay before
6649 * an initial interrupt fires, value is stored in microseconds.
6650 */
6651 u16 itr;
6652 };
6653
6654 /* Make a different profile for Rx that doesn't allow quite so aggressive
6655 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6656 * second.
6657 */
6658 static const struct ice_dim rx_profile[] = {
6659 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6660 {8}, /* 125,000 ints/s */
6661 {16}, /* 62,500 ints/s */
6662 {62}, /* 16,129 ints/s */
6663 {126} /* 7,936 ints/s */
6664 };
6665
6666 /* The transmit profile, which has the same sorts of values
6667 * as the previous struct
6668 */
6669 static const struct ice_dim tx_profile[] = {
6670 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6671 {8}, /* 125,000 ints/s */
6672 {40}, /* 16,125 ints/s */
6673 {128}, /* 7,812 ints/s */
6674 {256} /* 3,906 ints/s */
6675 };
6676
ice_tx_dim_work(struct work_struct * work)6677 static void ice_tx_dim_work(struct work_struct *work)
6678 {
6679 struct ice_ring_container *rc;
6680 struct dim *dim;
6681 u16 itr;
6682
6683 dim = container_of(work, struct dim, work);
6684 rc = dim->priv;
6685
6686 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6687
6688 /* look up the values in our local table */
6689 itr = tx_profile[dim->profile_ix].itr;
6690
6691 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6692 ice_write_itr(rc, itr);
6693
6694 dim->state = DIM_START_MEASURE;
6695 }
6696
ice_rx_dim_work(struct work_struct * work)6697 static void ice_rx_dim_work(struct work_struct *work)
6698 {
6699 struct ice_ring_container *rc;
6700 struct dim *dim;
6701 u16 itr;
6702
6703 dim = container_of(work, struct dim, work);
6704 rc = dim->priv;
6705
6706 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6707
6708 /* look up the values in our local table */
6709 itr = rx_profile[dim->profile_ix].itr;
6710
6711 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6712 ice_write_itr(rc, itr);
6713
6714 dim->state = DIM_START_MEASURE;
6715 }
6716
6717 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6718
6719 /**
6720 * ice_init_moderation - set up interrupt moderation
6721 * @q_vector: the vector containing rings to be configured
6722 *
6723 * Set up interrupt moderation registers, with the intent to do the right thing
6724 * when called from reset or from probe, and whether or not dynamic moderation
6725 * is enabled or not. Take special care to write all the registers in both
6726 * dynamic moderation mode or not in order to make sure hardware is in a known
6727 * state.
6728 */
ice_init_moderation(struct ice_q_vector * q_vector)6729 static void ice_init_moderation(struct ice_q_vector *q_vector)
6730 {
6731 struct ice_ring_container *rc;
6732 bool tx_dynamic, rx_dynamic;
6733
6734 rc = &q_vector->tx;
6735 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6736 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6737 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6738 rc->dim.priv = rc;
6739 tx_dynamic = ITR_IS_DYNAMIC(rc);
6740
6741 /* set the initial TX ITR to match the above */
6742 ice_write_itr(rc, tx_dynamic ?
6743 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6744
6745 rc = &q_vector->rx;
6746 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6747 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6748 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6749 rc->dim.priv = rc;
6750 rx_dynamic = ITR_IS_DYNAMIC(rc);
6751
6752 /* set the initial RX ITR to match the above */
6753 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6754 rc->itr_setting);
6755
6756 ice_set_q_vector_intrl(q_vector);
6757 }
6758
6759 /**
6760 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6761 * @vsi: the VSI being configured
6762 */
ice_napi_enable_all(struct ice_vsi * vsi)6763 static void ice_napi_enable_all(struct ice_vsi *vsi)
6764 {
6765 int q_idx;
6766
6767 if (!vsi->netdev)
6768 return;
6769
6770 ice_for_each_q_vector(vsi, q_idx) {
6771 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6772
6773 ice_init_moderation(q_vector);
6774
6775 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6776 napi_enable(&q_vector->napi);
6777 }
6778 }
6779
6780 /**
6781 * ice_up_complete - Finish the last steps of bringing up a connection
6782 * @vsi: The VSI being configured
6783 *
6784 * Return 0 on success and negative value on error
6785 */
ice_up_complete(struct ice_vsi * vsi)6786 static int ice_up_complete(struct ice_vsi *vsi)
6787 {
6788 struct ice_pf *pf = vsi->back;
6789 int err;
6790
6791 ice_vsi_cfg_msix(vsi);
6792
6793 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6794 * Tx queue group list was configured and the context bits were
6795 * programmed using ice_vsi_cfg_txqs
6796 */
6797 err = ice_vsi_start_all_rx_rings(vsi);
6798 if (err)
6799 return err;
6800
6801 clear_bit(ICE_VSI_DOWN, vsi->state);
6802 ice_napi_enable_all(vsi);
6803 ice_vsi_ena_irq(vsi);
6804
6805 if (vsi->port_info &&
6806 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6807 ((vsi->netdev && (vsi->type == ICE_VSI_PF ||
6808 vsi->type == ICE_VSI_SF)))) {
6809 ice_print_link_msg(vsi, true);
6810 netif_tx_start_all_queues(vsi->netdev);
6811 netif_carrier_on(vsi->netdev);
6812 ice_ptp_link_change(pf, true);
6813 }
6814
6815 /* Perform an initial read of the statistics registers now to
6816 * set the baseline so counters are ready when interface is up
6817 */
6818 ice_update_eth_stats(vsi);
6819
6820 if (vsi->type == ICE_VSI_PF)
6821 ice_service_task_schedule(pf);
6822
6823 return 0;
6824 }
6825
6826 /**
6827 * ice_up - Bring the connection back up after being down
6828 * @vsi: VSI being configured
6829 */
ice_up(struct ice_vsi * vsi)6830 int ice_up(struct ice_vsi *vsi)
6831 {
6832 int err;
6833
6834 err = ice_vsi_cfg_lan(vsi);
6835 if (!err)
6836 err = ice_up_complete(vsi);
6837
6838 return err;
6839 }
6840
6841 /**
6842 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6843 * @syncp: pointer to u64_stats_sync
6844 * @stats: stats that pkts and bytes count will be taken from
6845 * @pkts: packets stats counter
6846 * @bytes: bytes stats counter
6847 *
6848 * This function fetches stats from the ring considering the atomic operations
6849 * that needs to be performed to read u64 values in 32 bit machine.
6850 */
6851 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6852 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6853 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6854 {
6855 unsigned int start;
6856
6857 do {
6858 start = u64_stats_fetch_begin(syncp);
6859 *pkts = stats.pkts;
6860 *bytes = stats.bytes;
6861 } while (u64_stats_fetch_retry(syncp, start));
6862 }
6863
6864 /**
6865 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6866 * @vsi: the VSI to be updated
6867 * @vsi_stats: the stats struct to be updated
6868 * @rings: rings to work on
6869 * @count: number of rings
6870 */
6871 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6872 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6873 struct rtnl_link_stats64 *vsi_stats,
6874 struct ice_tx_ring **rings, u16 count)
6875 {
6876 u16 i;
6877
6878 for (i = 0; i < count; i++) {
6879 struct ice_tx_ring *ring;
6880 u64 pkts = 0, bytes = 0;
6881
6882 ring = READ_ONCE(rings[i]);
6883 if (!ring || !ring->ring_stats)
6884 continue;
6885 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6886 ring->ring_stats->stats, &pkts,
6887 &bytes);
6888 vsi_stats->tx_packets += pkts;
6889 vsi_stats->tx_bytes += bytes;
6890 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6891 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6892 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6893 }
6894 }
6895
6896 /**
6897 * ice_update_vsi_ring_stats - Update VSI stats counters
6898 * @vsi: the VSI to be updated
6899 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6900 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6901 {
6902 struct rtnl_link_stats64 *net_stats, *stats_prev;
6903 struct rtnl_link_stats64 *vsi_stats;
6904 struct ice_pf *pf = vsi->back;
6905 u64 pkts, bytes;
6906 int i;
6907
6908 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6909 if (!vsi_stats)
6910 return;
6911
6912 /* reset non-netdev (extended) stats */
6913 vsi->tx_restart = 0;
6914 vsi->tx_busy = 0;
6915 vsi->tx_linearize = 0;
6916 vsi->rx_buf_failed = 0;
6917 vsi->rx_page_failed = 0;
6918
6919 rcu_read_lock();
6920
6921 /* update Tx rings counters */
6922 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6923 vsi->num_txq);
6924
6925 /* update Rx rings counters */
6926 ice_for_each_rxq(vsi, i) {
6927 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6928 struct ice_ring_stats *ring_stats;
6929
6930 ring_stats = ring->ring_stats;
6931 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6932 ring_stats->stats, &pkts,
6933 &bytes);
6934 vsi_stats->rx_packets += pkts;
6935 vsi_stats->rx_bytes += bytes;
6936 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6937 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6938 }
6939
6940 /* update XDP Tx rings counters */
6941 if (ice_is_xdp_ena_vsi(vsi))
6942 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6943 vsi->num_xdp_txq);
6944
6945 rcu_read_unlock();
6946
6947 net_stats = &vsi->net_stats;
6948 stats_prev = &vsi->net_stats_prev;
6949
6950 /* Update netdev counters, but keep in mind that values could start at
6951 * random value after PF reset. And as we increase the reported stat by
6952 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6953 * let's skip this round.
6954 */
6955 if (likely(pf->stat_prev_loaded)) {
6956 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6957 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6958 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6959 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6960 }
6961
6962 stats_prev->tx_packets = vsi_stats->tx_packets;
6963 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6964 stats_prev->rx_packets = vsi_stats->rx_packets;
6965 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6966
6967 kfree(vsi_stats);
6968 }
6969
6970 /**
6971 * ice_update_vsi_stats - Update VSI stats counters
6972 * @vsi: the VSI to be updated
6973 */
ice_update_vsi_stats(struct ice_vsi * vsi)6974 void ice_update_vsi_stats(struct ice_vsi *vsi)
6975 {
6976 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6977 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6978 struct ice_pf *pf = vsi->back;
6979
6980 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6981 test_bit(ICE_CFG_BUSY, pf->state))
6982 return;
6983
6984 /* get stats as recorded by Tx/Rx rings */
6985 ice_update_vsi_ring_stats(vsi);
6986
6987 /* get VSI stats as recorded by the hardware */
6988 ice_update_eth_stats(vsi);
6989
6990 cur_ns->tx_errors = cur_es->tx_errors;
6991 cur_ns->rx_dropped = cur_es->rx_discards;
6992 cur_ns->tx_dropped = cur_es->tx_discards;
6993 cur_ns->multicast = cur_es->rx_multicast;
6994
6995 /* update some more netdev stats if this is main VSI */
6996 if (vsi->type == ICE_VSI_PF) {
6997 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6998 cur_ns->rx_errors = pf->stats.crc_errors +
6999 pf->stats.illegal_bytes +
7000 pf->stats.rx_undersize +
7001 pf->hw_csum_rx_error +
7002 pf->stats.rx_jabber +
7003 pf->stats.rx_fragments +
7004 pf->stats.rx_oversize;
7005 /* record drops from the port level */
7006 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
7007 }
7008 }
7009
7010 /**
7011 * ice_update_pf_stats - Update PF port stats counters
7012 * @pf: PF whose stats needs to be updated
7013 */
ice_update_pf_stats(struct ice_pf * pf)7014 void ice_update_pf_stats(struct ice_pf *pf)
7015 {
7016 struct ice_hw_port_stats *prev_ps, *cur_ps;
7017 struct ice_hw *hw = &pf->hw;
7018 u16 fd_ctr_base;
7019 u8 port;
7020
7021 port = hw->port_info->lport;
7022 prev_ps = &pf->stats_prev;
7023 cur_ps = &pf->stats;
7024
7025 if (ice_is_reset_in_progress(pf->state))
7026 pf->stat_prev_loaded = false;
7027
7028 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
7029 &prev_ps->eth.rx_bytes,
7030 &cur_ps->eth.rx_bytes);
7031
7032 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
7033 &prev_ps->eth.rx_unicast,
7034 &cur_ps->eth.rx_unicast);
7035
7036 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
7037 &prev_ps->eth.rx_multicast,
7038 &cur_ps->eth.rx_multicast);
7039
7040 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
7041 &prev_ps->eth.rx_broadcast,
7042 &cur_ps->eth.rx_broadcast);
7043
7044 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
7045 &prev_ps->eth.rx_discards,
7046 &cur_ps->eth.rx_discards);
7047
7048 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
7049 &prev_ps->eth.tx_bytes,
7050 &cur_ps->eth.tx_bytes);
7051
7052 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
7053 &prev_ps->eth.tx_unicast,
7054 &cur_ps->eth.tx_unicast);
7055
7056 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
7057 &prev_ps->eth.tx_multicast,
7058 &cur_ps->eth.tx_multicast);
7059
7060 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
7061 &prev_ps->eth.tx_broadcast,
7062 &cur_ps->eth.tx_broadcast);
7063
7064 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
7065 &prev_ps->tx_dropped_link_down,
7066 &cur_ps->tx_dropped_link_down);
7067
7068 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
7069 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
7070
7071 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
7072 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
7073
7074 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
7075 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
7076
7077 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
7078 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
7079
7080 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
7081 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
7082
7083 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
7084 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
7085
7086 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
7087 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
7088
7089 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
7090 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
7091
7092 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
7093 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
7094
7095 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
7096 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
7097
7098 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
7099 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
7100
7101 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
7102 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
7103
7104 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
7105 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
7106
7107 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
7108 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
7109
7110 fd_ctr_base = hw->fd_ctr_base;
7111
7112 ice_stat_update40(hw,
7113 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
7114 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
7115 &cur_ps->fd_sb_match);
7116 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
7117 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
7118
7119 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
7120 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
7121
7122 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
7123 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
7124
7125 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
7126 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
7127
7128 ice_update_dcb_stats(pf);
7129
7130 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
7131 &prev_ps->crc_errors, &cur_ps->crc_errors);
7132
7133 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
7134 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
7135
7136 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
7137 &prev_ps->mac_local_faults,
7138 &cur_ps->mac_local_faults);
7139
7140 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
7141 &prev_ps->mac_remote_faults,
7142 &cur_ps->mac_remote_faults);
7143
7144 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
7145 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
7146
7147 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
7148 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
7149
7150 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
7151 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
7152
7153 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
7154 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
7155
7156 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
7157
7158 pf->stat_prev_loaded = true;
7159 }
7160
7161 /**
7162 * ice_get_stats64 - get statistics for network device structure
7163 * @netdev: network interface device structure
7164 * @stats: main device statistics structure
7165 */
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)7166 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7167 {
7168 struct ice_netdev_priv *np = netdev_priv(netdev);
7169 struct rtnl_link_stats64 *vsi_stats;
7170 struct ice_vsi *vsi = np->vsi;
7171
7172 vsi_stats = &vsi->net_stats;
7173
7174 if (!vsi->num_txq || !vsi->num_rxq)
7175 return;
7176
7177 /* netdev packet/byte stats come from ring counter. These are obtained
7178 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7179 * But, only call the update routine and read the registers if VSI is
7180 * not down.
7181 */
7182 if (!test_bit(ICE_VSI_DOWN, vsi->state))
7183 ice_update_vsi_ring_stats(vsi);
7184 stats->tx_packets = vsi_stats->tx_packets;
7185 stats->tx_bytes = vsi_stats->tx_bytes;
7186 stats->rx_packets = vsi_stats->rx_packets;
7187 stats->rx_bytes = vsi_stats->rx_bytes;
7188
7189 /* The rest of the stats can be read from the hardware but instead we
7190 * just return values that the watchdog task has already obtained from
7191 * the hardware.
7192 */
7193 stats->multicast = vsi_stats->multicast;
7194 stats->tx_errors = vsi_stats->tx_errors;
7195 stats->tx_dropped = vsi_stats->tx_dropped;
7196 stats->rx_errors = vsi_stats->rx_errors;
7197 stats->rx_dropped = vsi_stats->rx_dropped;
7198 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7199 stats->rx_length_errors = vsi_stats->rx_length_errors;
7200 }
7201
7202 /**
7203 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7204 * @vsi: VSI having NAPI disabled
7205 */
ice_napi_disable_all(struct ice_vsi * vsi)7206 static void ice_napi_disable_all(struct ice_vsi *vsi)
7207 {
7208 int q_idx;
7209
7210 if (!vsi->netdev)
7211 return;
7212
7213 ice_for_each_q_vector(vsi, q_idx) {
7214 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7215
7216 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7217 napi_disable(&q_vector->napi);
7218
7219 cancel_work_sync(&q_vector->tx.dim.work);
7220 cancel_work_sync(&q_vector->rx.dim.work);
7221 }
7222 }
7223
7224 /**
7225 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
7226 * @vsi: the VSI being un-configured
7227 */
ice_vsi_dis_irq(struct ice_vsi * vsi)7228 static void ice_vsi_dis_irq(struct ice_vsi *vsi)
7229 {
7230 struct ice_pf *pf = vsi->back;
7231 struct ice_hw *hw = &pf->hw;
7232 u32 val;
7233 int i;
7234
7235 /* disable interrupt causation from each Rx queue; Tx queues are
7236 * handled in ice_vsi_stop_tx_ring()
7237 */
7238 if (vsi->rx_rings) {
7239 ice_for_each_rxq(vsi, i) {
7240 if (vsi->rx_rings[i]) {
7241 u16 reg;
7242
7243 reg = vsi->rx_rings[i]->reg_idx;
7244 val = rd32(hw, QINT_RQCTL(reg));
7245 val &= ~QINT_RQCTL_CAUSE_ENA_M;
7246 wr32(hw, QINT_RQCTL(reg), val);
7247 }
7248 }
7249 }
7250
7251 /* disable each interrupt */
7252 ice_for_each_q_vector(vsi, i) {
7253 if (!vsi->q_vectors[i])
7254 continue;
7255 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
7256 }
7257
7258 ice_flush(hw);
7259
7260 /* don't call synchronize_irq() for VF's from the host */
7261 if (vsi->type == ICE_VSI_VF)
7262 return;
7263
7264 ice_for_each_q_vector(vsi, i)
7265 synchronize_irq(vsi->q_vectors[i]->irq.virq);
7266 }
7267
7268 /**
7269 * ice_down - Shutdown the connection
7270 * @vsi: The VSI being stopped
7271 *
7272 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7273 */
ice_down(struct ice_vsi * vsi)7274 int ice_down(struct ice_vsi *vsi)
7275 {
7276 int i, tx_err, rx_err, vlan_err = 0;
7277
7278 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7279
7280 if (vsi->netdev) {
7281 vlan_err = ice_vsi_del_vlan_zero(vsi);
7282 ice_ptp_link_change(vsi->back, false);
7283 netif_carrier_off(vsi->netdev);
7284 netif_tx_disable(vsi->netdev);
7285 }
7286
7287 ice_vsi_dis_irq(vsi);
7288
7289 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7290 if (tx_err)
7291 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7292 vsi->vsi_num, tx_err);
7293 if (!tx_err && vsi->xdp_rings) {
7294 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7295 if (tx_err)
7296 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7297 vsi->vsi_num, tx_err);
7298 }
7299
7300 rx_err = ice_vsi_stop_all_rx_rings(vsi);
7301 if (rx_err)
7302 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7303 vsi->vsi_num, rx_err);
7304
7305 ice_napi_disable_all(vsi);
7306
7307 ice_for_each_txq(vsi, i)
7308 ice_clean_tx_ring(vsi->tx_rings[i]);
7309
7310 if (vsi->xdp_rings)
7311 ice_for_each_xdp_txq(vsi, i)
7312 ice_clean_tx_ring(vsi->xdp_rings[i]);
7313
7314 ice_for_each_rxq(vsi, i)
7315 ice_clean_rx_ring(vsi->rx_rings[i]);
7316
7317 if (tx_err || rx_err || vlan_err) {
7318 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7319 vsi->vsi_num, vsi->vsw->sw_id);
7320 return -EIO;
7321 }
7322
7323 return 0;
7324 }
7325
7326 /**
7327 * ice_down_up - shutdown the VSI connection and bring it up
7328 * @vsi: the VSI to be reconnected
7329 */
ice_down_up(struct ice_vsi * vsi)7330 int ice_down_up(struct ice_vsi *vsi)
7331 {
7332 int ret;
7333
7334 /* if DOWN already set, nothing to do */
7335 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7336 return 0;
7337
7338 ret = ice_down(vsi);
7339 if (ret)
7340 return ret;
7341
7342 ret = ice_up(vsi);
7343 if (ret) {
7344 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7345 return ret;
7346 }
7347
7348 return 0;
7349 }
7350
7351 /**
7352 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7353 * @vsi: VSI having resources allocated
7354 *
7355 * Return 0 on success, negative on failure
7356 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)7357 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7358 {
7359 int i, err = 0;
7360
7361 if (!vsi->num_txq) {
7362 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7363 vsi->vsi_num);
7364 return -EINVAL;
7365 }
7366
7367 ice_for_each_txq(vsi, i) {
7368 struct ice_tx_ring *ring = vsi->tx_rings[i];
7369
7370 if (!ring)
7371 return -EINVAL;
7372
7373 if (vsi->netdev)
7374 ring->netdev = vsi->netdev;
7375 err = ice_setup_tx_ring(ring);
7376 if (err)
7377 break;
7378 }
7379
7380 return err;
7381 }
7382
7383 /**
7384 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7385 * @vsi: VSI having resources allocated
7386 *
7387 * Return 0 on success, negative on failure
7388 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)7389 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7390 {
7391 int i, err = 0;
7392
7393 if (!vsi->num_rxq) {
7394 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7395 vsi->vsi_num);
7396 return -EINVAL;
7397 }
7398
7399 ice_for_each_rxq(vsi, i) {
7400 struct ice_rx_ring *ring = vsi->rx_rings[i];
7401
7402 if (!ring)
7403 return -EINVAL;
7404
7405 if (vsi->netdev)
7406 ring->netdev = vsi->netdev;
7407 err = ice_setup_rx_ring(ring);
7408 if (err)
7409 break;
7410 }
7411
7412 return err;
7413 }
7414
7415 /**
7416 * ice_vsi_open_ctrl - open control VSI for use
7417 * @vsi: the VSI to open
7418 *
7419 * Initialization of the Control VSI
7420 *
7421 * Returns 0 on success, negative value on error
7422 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)7423 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7424 {
7425 char int_name[ICE_INT_NAME_STR_LEN];
7426 struct ice_pf *pf = vsi->back;
7427 struct device *dev;
7428 int err;
7429
7430 dev = ice_pf_to_dev(pf);
7431 /* allocate descriptors */
7432 err = ice_vsi_setup_tx_rings(vsi);
7433 if (err)
7434 goto err_setup_tx;
7435
7436 err = ice_vsi_setup_rx_rings(vsi);
7437 if (err)
7438 goto err_setup_rx;
7439
7440 err = ice_vsi_cfg_lan(vsi);
7441 if (err)
7442 goto err_setup_rx;
7443
7444 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7445 dev_driver_string(dev), dev_name(dev));
7446 err = ice_vsi_req_irq_msix(vsi, int_name);
7447 if (err)
7448 goto err_setup_rx;
7449
7450 ice_vsi_cfg_msix(vsi);
7451
7452 err = ice_vsi_start_all_rx_rings(vsi);
7453 if (err)
7454 goto err_up_complete;
7455
7456 clear_bit(ICE_VSI_DOWN, vsi->state);
7457 ice_vsi_ena_irq(vsi);
7458
7459 return 0;
7460
7461 err_up_complete:
7462 ice_down(vsi);
7463 err_setup_rx:
7464 ice_vsi_free_rx_rings(vsi);
7465 err_setup_tx:
7466 ice_vsi_free_tx_rings(vsi);
7467
7468 return err;
7469 }
7470
7471 /**
7472 * ice_vsi_open - Called when a network interface is made active
7473 * @vsi: the VSI to open
7474 *
7475 * Initialization of the VSI
7476 *
7477 * Returns 0 on success, negative value on error
7478 */
ice_vsi_open(struct ice_vsi * vsi)7479 int ice_vsi_open(struct ice_vsi *vsi)
7480 {
7481 char int_name[ICE_INT_NAME_STR_LEN];
7482 struct ice_pf *pf = vsi->back;
7483 int err;
7484
7485 /* allocate descriptors */
7486 err = ice_vsi_setup_tx_rings(vsi);
7487 if (err)
7488 goto err_setup_tx;
7489
7490 err = ice_vsi_setup_rx_rings(vsi);
7491 if (err)
7492 goto err_setup_rx;
7493
7494 err = ice_vsi_cfg_lan(vsi);
7495 if (err)
7496 goto err_setup_rx;
7497
7498 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7499 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7500 err = ice_vsi_req_irq_msix(vsi, int_name);
7501 if (err)
7502 goto err_setup_rx;
7503
7504 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7505
7506 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) {
7507 /* Notify the stack of the actual queue counts. */
7508 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7509 if (err)
7510 goto err_set_qs;
7511
7512 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7513 if (err)
7514 goto err_set_qs;
7515
7516 ice_vsi_set_napi_queues(vsi);
7517 }
7518
7519 err = ice_up_complete(vsi);
7520 if (err)
7521 goto err_up_complete;
7522
7523 return 0;
7524
7525 err_up_complete:
7526 ice_down(vsi);
7527 err_set_qs:
7528 ice_vsi_free_irq(vsi);
7529 err_setup_rx:
7530 ice_vsi_free_rx_rings(vsi);
7531 err_setup_tx:
7532 ice_vsi_free_tx_rings(vsi);
7533
7534 return err;
7535 }
7536
7537 /**
7538 * ice_vsi_release_all - Delete all VSIs
7539 * @pf: PF from which all VSIs are being removed
7540 */
ice_vsi_release_all(struct ice_pf * pf)7541 static void ice_vsi_release_all(struct ice_pf *pf)
7542 {
7543 int err, i;
7544
7545 if (!pf->vsi)
7546 return;
7547
7548 ice_for_each_vsi(pf, i) {
7549 if (!pf->vsi[i])
7550 continue;
7551
7552 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7553 continue;
7554
7555 err = ice_vsi_release(pf->vsi[i]);
7556 if (err)
7557 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7558 i, err, pf->vsi[i]->vsi_num);
7559 }
7560 }
7561
7562 /**
7563 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7564 * @pf: pointer to the PF instance
7565 * @type: VSI type to rebuild
7566 *
7567 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7568 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)7569 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7570 {
7571 struct device *dev = ice_pf_to_dev(pf);
7572 int i, err;
7573
7574 ice_for_each_vsi(pf, i) {
7575 struct ice_vsi *vsi = pf->vsi[i];
7576
7577 if (!vsi || vsi->type != type)
7578 continue;
7579
7580 /* rebuild the VSI */
7581 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7582 if (err) {
7583 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7584 err, vsi->idx, ice_vsi_type_str(type));
7585 return err;
7586 }
7587
7588 /* replay filters for the VSI */
7589 err = ice_replay_vsi(&pf->hw, vsi->idx);
7590 if (err) {
7591 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7592 err, vsi->idx, ice_vsi_type_str(type));
7593 return err;
7594 }
7595
7596 /* Re-map HW VSI number, using VSI handle that has been
7597 * previously validated in ice_replay_vsi() call above
7598 */
7599 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7600
7601 /* enable the VSI */
7602 err = ice_ena_vsi(vsi, false);
7603 if (err) {
7604 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7605 err, vsi->idx, ice_vsi_type_str(type));
7606 return err;
7607 }
7608
7609 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7610 ice_vsi_type_str(type));
7611 }
7612
7613 return 0;
7614 }
7615
7616 /**
7617 * ice_update_pf_netdev_link - Update PF netdev link status
7618 * @pf: pointer to the PF instance
7619 */
ice_update_pf_netdev_link(struct ice_pf * pf)7620 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7621 {
7622 bool link_up;
7623 int i;
7624
7625 ice_for_each_vsi(pf, i) {
7626 struct ice_vsi *vsi = pf->vsi[i];
7627
7628 if (!vsi || vsi->type != ICE_VSI_PF)
7629 return;
7630
7631 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7632 if (link_up) {
7633 netif_carrier_on(pf->vsi[i]->netdev);
7634 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7635 } else {
7636 netif_carrier_off(pf->vsi[i]->netdev);
7637 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7638 }
7639 }
7640 }
7641
7642 /**
7643 * ice_rebuild - rebuild after reset
7644 * @pf: PF to rebuild
7645 * @reset_type: type of reset
7646 *
7647 * Do not rebuild VF VSI in this flow because that is already handled via
7648 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7649 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7650 * to reset/rebuild all the VF VSI twice.
7651 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)7652 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7653 {
7654 struct ice_vsi *vsi = ice_get_main_vsi(pf);
7655 struct device *dev = ice_pf_to_dev(pf);
7656 struct ice_hw *hw = &pf->hw;
7657 bool dvm;
7658 int err;
7659
7660 if (test_bit(ICE_DOWN, pf->state))
7661 goto clear_recovery;
7662
7663 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7664
7665 #define ICE_EMP_RESET_SLEEP_MS 5000
7666 if (reset_type == ICE_RESET_EMPR) {
7667 /* If an EMP reset has occurred, any previously pending flash
7668 * update will have completed. We no longer know whether or
7669 * not the NVM update EMP reset is restricted.
7670 */
7671 pf->fw_emp_reset_disabled = false;
7672
7673 msleep(ICE_EMP_RESET_SLEEP_MS);
7674 }
7675
7676 err = ice_init_all_ctrlq(hw);
7677 if (err) {
7678 dev_err(dev, "control queues init failed %d\n", err);
7679 goto err_init_ctrlq;
7680 }
7681
7682 /* if DDP was previously loaded successfully */
7683 if (!ice_is_safe_mode(pf)) {
7684 /* reload the SW DB of filter tables */
7685 if (reset_type == ICE_RESET_PFR)
7686 ice_fill_blk_tbls(hw);
7687 else
7688 /* Reload DDP Package after CORER/GLOBR reset */
7689 ice_load_pkg(NULL, pf);
7690 }
7691
7692 err = ice_clear_pf_cfg(hw);
7693 if (err) {
7694 dev_err(dev, "clear PF configuration failed %d\n", err);
7695 goto err_init_ctrlq;
7696 }
7697
7698 ice_clear_pxe_mode(hw);
7699
7700 err = ice_init_nvm(hw);
7701 if (err) {
7702 dev_err(dev, "ice_init_nvm failed %d\n", err);
7703 goto err_init_ctrlq;
7704 }
7705
7706 err = ice_get_caps(hw);
7707 if (err) {
7708 dev_err(dev, "ice_get_caps failed %d\n", err);
7709 goto err_init_ctrlq;
7710 }
7711
7712 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7713 if (err) {
7714 dev_err(dev, "set_mac_cfg failed %d\n", err);
7715 goto err_init_ctrlq;
7716 }
7717
7718 dvm = ice_is_dvm_ena(hw);
7719
7720 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7721 if (err)
7722 goto err_init_ctrlq;
7723
7724 err = ice_sched_init_port(hw->port_info);
7725 if (err)
7726 goto err_sched_init_port;
7727
7728 /* start misc vector */
7729 err = ice_req_irq_msix_misc(pf);
7730 if (err) {
7731 dev_err(dev, "misc vector setup failed: %d\n", err);
7732 goto err_sched_init_port;
7733 }
7734
7735 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7736 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7737 if (!rd32(hw, PFQF_FD_SIZE)) {
7738 u16 unused, guar, b_effort;
7739
7740 guar = hw->func_caps.fd_fltr_guar;
7741 b_effort = hw->func_caps.fd_fltr_best_effort;
7742
7743 /* force guaranteed filter pool for PF */
7744 ice_alloc_fd_guar_item(hw, &unused, guar);
7745 /* force shared filter pool for PF */
7746 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7747 }
7748 }
7749
7750 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7751 ice_dcb_rebuild(pf);
7752
7753 /* If the PF previously had enabled PTP, PTP init needs to happen before
7754 * the VSI rebuild. If not, this causes the PTP link status events to
7755 * fail.
7756 */
7757 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7758 ice_ptp_rebuild(pf, reset_type);
7759
7760 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7761 ice_gnss_init(pf);
7762
7763 /* rebuild PF VSI */
7764 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7765 if (err) {
7766 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7767 goto err_vsi_rebuild;
7768 }
7769
7770 if (reset_type == ICE_RESET_PFR) {
7771 err = ice_rebuild_channels(pf);
7772 if (err) {
7773 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7774 err);
7775 goto err_vsi_rebuild;
7776 }
7777 }
7778
7779 /* If Flow Director is active */
7780 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7781 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7782 if (err) {
7783 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7784 goto err_vsi_rebuild;
7785 }
7786
7787 /* replay HW Flow Director recipes */
7788 if (hw->fdir_prof)
7789 ice_fdir_replay_flows(hw);
7790
7791 /* replay Flow Director filters */
7792 ice_fdir_replay_fltrs(pf);
7793
7794 ice_rebuild_arfs(pf);
7795 }
7796
7797 if (vsi && vsi->netdev)
7798 netif_device_attach(vsi->netdev);
7799
7800 ice_update_pf_netdev_link(pf);
7801
7802 /* tell the firmware we are up */
7803 err = ice_send_version(pf);
7804 if (err) {
7805 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7806 err);
7807 goto err_vsi_rebuild;
7808 }
7809
7810 ice_replay_post(hw);
7811
7812 /* if we get here, reset flow is successful */
7813 clear_bit(ICE_RESET_FAILED, pf->state);
7814
7815 ice_health_clear(pf);
7816
7817 ice_plug_aux_dev(pf);
7818 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7819 ice_lag_rebuild(pf);
7820
7821 /* Restore timestamp mode settings after VSI rebuild */
7822 ice_ptp_restore_timestamp_mode(pf);
7823 return;
7824
7825 err_vsi_rebuild:
7826 err_sched_init_port:
7827 ice_sched_cleanup_all(hw);
7828 err_init_ctrlq:
7829 ice_shutdown_all_ctrlq(hw, false);
7830 set_bit(ICE_RESET_FAILED, pf->state);
7831 clear_recovery:
7832 /* set this bit in PF state to control service task scheduling */
7833 set_bit(ICE_NEEDS_RESTART, pf->state);
7834 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7835 }
7836
7837 /**
7838 * ice_change_mtu - NDO callback to change the MTU
7839 * @netdev: network interface device structure
7840 * @new_mtu: new value for maximum frame size
7841 *
7842 * Returns 0 on success, negative on failure
7843 */
ice_change_mtu(struct net_device * netdev,int new_mtu)7844 int ice_change_mtu(struct net_device *netdev, int new_mtu)
7845 {
7846 struct ice_netdev_priv *np = netdev_priv(netdev);
7847 struct ice_vsi *vsi = np->vsi;
7848 struct ice_pf *pf = vsi->back;
7849 struct bpf_prog *prog;
7850 u8 count = 0;
7851 int err = 0;
7852
7853 if (new_mtu == (int)netdev->mtu) {
7854 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7855 return 0;
7856 }
7857
7858 prog = vsi->xdp_prog;
7859 if (prog && !prog->aux->xdp_has_frags) {
7860 int frame_size = ice_max_xdp_frame_size(vsi);
7861
7862 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7863 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7864 frame_size - ICE_ETH_PKT_HDR_PAD);
7865 return -EINVAL;
7866 }
7867 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7868 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7869 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7870 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7871 return -EINVAL;
7872 }
7873 }
7874
7875 /* if a reset is in progress, wait for some time for it to complete */
7876 do {
7877 if (ice_is_reset_in_progress(pf->state)) {
7878 count++;
7879 usleep_range(1000, 2000);
7880 } else {
7881 break;
7882 }
7883
7884 } while (count < 100);
7885
7886 if (count == 100) {
7887 netdev_err(netdev, "can't change MTU. Device is busy\n");
7888 return -EBUSY;
7889 }
7890
7891 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu);
7892 err = ice_down_up(vsi);
7893 if (err)
7894 return err;
7895
7896 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7897 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7898
7899 return err;
7900 }
7901
7902 /**
7903 * ice_eth_ioctl - Access the hwtstamp interface
7904 * @netdev: network interface device structure
7905 * @ifr: interface request data
7906 * @cmd: ioctl command
7907 */
ice_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)7908 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7909 {
7910 struct ice_netdev_priv *np = netdev_priv(netdev);
7911 struct ice_pf *pf = np->vsi->back;
7912
7913 switch (cmd) {
7914 case SIOCGHWTSTAMP:
7915 return ice_ptp_get_ts_config(pf, ifr);
7916 case SIOCSHWTSTAMP:
7917 return ice_ptp_set_ts_config(pf, ifr);
7918 default:
7919 return -EOPNOTSUPP;
7920 }
7921 }
7922
7923 /**
7924 * ice_aq_str - convert AQ err code to a string
7925 * @aq_err: the AQ error code to convert
7926 */
ice_aq_str(enum ice_aq_err aq_err)7927 const char *ice_aq_str(enum ice_aq_err aq_err)
7928 {
7929 switch (aq_err) {
7930 case ICE_AQ_RC_OK:
7931 return "OK";
7932 case ICE_AQ_RC_EPERM:
7933 return "ICE_AQ_RC_EPERM";
7934 case ICE_AQ_RC_ENOENT:
7935 return "ICE_AQ_RC_ENOENT";
7936 case ICE_AQ_RC_ENOMEM:
7937 return "ICE_AQ_RC_ENOMEM";
7938 case ICE_AQ_RC_EBUSY:
7939 return "ICE_AQ_RC_EBUSY";
7940 case ICE_AQ_RC_EEXIST:
7941 return "ICE_AQ_RC_EEXIST";
7942 case ICE_AQ_RC_EINVAL:
7943 return "ICE_AQ_RC_EINVAL";
7944 case ICE_AQ_RC_ENOSPC:
7945 return "ICE_AQ_RC_ENOSPC";
7946 case ICE_AQ_RC_ENOSYS:
7947 return "ICE_AQ_RC_ENOSYS";
7948 case ICE_AQ_RC_EMODE:
7949 return "ICE_AQ_RC_EMODE";
7950 case ICE_AQ_RC_ENOSEC:
7951 return "ICE_AQ_RC_ENOSEC";
7952 case ICE_AQ_RC_EBADSIG:
7953 return "ICE_AQ_RC_EBADSIG";
7954 case ICE_AQ_RC_ESVN:
7955 return "ICE_AQ_RC_ESVN";
7956 case ICE_AQ_RC_EBADMAN:
7957 return "ICE_AQ_RC_EBADMAN";
7958 case ICE_AQ_RC_EBADBUF:
7959 return "ICE_AQ_RC_EBADBUF";
7960 }
7961
7962 return "ICE_AQ_RC_UNKNOWN";
7963 }
7964
7965 /**
7966 * ice_set_rss_lut - Set RSS LUT
7967 * @vsi: Pointer to VSI structure
7968 * @lut: Lookup table
7969 * @lut_size: Lookup table size
7970 *
7971 * Returns 0 on success, negative on failure
7972 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7973 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7974 {
7975 struct ice_aq_get_set_rss_lut_params params = {};
7976 struct ice_hw *hw = &vsi->back->hw;
7977 int status;
7978
7979 if (!lut)
7980 return -EINVAL;
7981
7982 params.vsi_handle = vsi->idx;
7983 params.lut_size = lut_size;
7984 params.lut_type = vsi->rss_lut_type;
7985 params.lut = lut;
7986
7987 status = ice_aq_set_rss_lut(hw, ¶ms);
7988 if (status)
7989 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7990 status, ice_aq_str(hw->adminq.sq_last_status));
7991
7992 return status;
7993 }
7994
7995 /**
7996 * ice_set_rss_key - Set RSS key
7997 * @vsi: Pointer to the VSI structure
7998 * @seed: RSS hash seed
7999 *
8000 * Returns 0 on success, negative on failure
8001 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)8002 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
8003 {
8004 struct ice_hw *hw = &vsi->back->hw;
8005 int status;
8006
8007 if (!seed)
8008 return -EINVAL;
8009
8010 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
8011 if (status)
8012 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
8013 status, ice_aq_str(hw->adminq.sq_last_status));
8014
8015 return status;
8016 }
8017
8018 /**
8019 * ice_get_rss_lut - Get RSS LUT
8020 * @vsi: Pointer to VSI structure
8021 * @lut: Buffer to store the lookup table entries
8022 * @lut_size: Size of buffer to store the lookup table entries
8023 *
8024 * Returns 0 on success, negative on failure
8025 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)8026 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
8027 {
8028 struct ice_aq_get_set_rss_lut_params params = {};
8029 struct ice_hw *hw = &vsi->back->hw;
8030 int status;
8031
8032 if (!lut)
8033 return -EINVAL;
8034
8035 params.vsi_handle = vsi->idx;
8036 params.lut_size = lut_size;
8037 params.lut_type = vsi->rss_lut_type;
8038 params.lut = lut;
8039
8040 status = ice_aq_get_rss_lut(hw, ¶ms);
8041 if (status)
8042 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
8043 status, ice_aq_str(hw->adminq.sq_last_status));
8044
8045 return status;
8046 }
8047
8048 /**
8049 * ice_get_rss_key - Get RSS key
8050 * @vsi: Pointer to VSI structure
8051 * @seed: Buffer to store the key in
8052 *
8053 * Returns 0 on success, negative on failure
8054 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)8055 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
8056 {
8057 struct ice_hw *hw = &vsi->back->hw;
8058 int status;
8059
8060 if (!seed)
8061 return -EINVAL;
8062
8063 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
8064 if (status)
8065 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
8066 status, ice_aq_str(hw->adminq.sq_last_status));
8067
8068 return status;
8069 }
8070
8071 /**
8072 * ice_set_rss_hfunc - Set RSS HASH function
8073 * @vsi: Pointer to VSI structure
8074 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
8075 *
8076 * Returns 0 on success, negative on failure
8077 */
ice_set_rss_hfunc(struct ice_vsi * vsi,u8 hfunc)8078 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
8079 {
8080 struct ice_hw *hw = &vsi->back->hw;
8081 struct ice_vsi_ctx *ctx;
8082 bool symm;
8083 int err;
8084
8085 if (hfunc == vsi->rss_hfunc)
8086 return 0;
8087
8088 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
8089 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
8090 return -EOPNOTSUPP;
8091
8092 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8093 if (!ctx)
8094 return -ENOMEM;
8095
8096 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
8097 ctx->info.q_opt_rss = vsi->info.q_opt_rss;
8098 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
8099 ctx->info.q_opt_rss |=
8100 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
8101 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
8102 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
8103
8104 err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
8105 if (err) {
8106 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
8107 vsi->vsi_num, err);
8108 } else {
8109 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
8110 vsi->rss_hfunc = hfunc;
8111 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
8112 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
8113 "Symmetric " : "");
8114 }
8115 kfree(ctx);
8116 if (err)
8117 return err;
8118
8119 /* Fix the symmetry setting for all existing RSS configurations */
8120 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
8121 return ice_set_rss_cfg_symm(hw, vsi, symm);
8122 }
8123
8124 /**
8125 * ice_bridge_getlink - Get the hardware bridge mode
8126 * @skb: skb buff
8127 * @pid: process ID
8128 * @seq: RTNL message seq
8129 * @dev: the netdev being configured
8130 * @filter_mask: filter mask passed in
8131 * @nlflags: netlink flags passed in
8132 *
8133 * Return the bridge mode (VEB/VEPA)
8134 */
8135 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)8136 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8137 struct net_device *dev, u32 filter_mask, int nlflags)
8138 {
8139 struct ice_netdev_priv *np = netdev_priv(dev);
8140 struct ice_vsi *vsi = np->vsi;
8141 struct ice_pf *pf = vsi->back;
8142 u16 bmode;
8143
8144 bmode = pf->first_sw->bridge_mode;
8145
8146 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
8147 filter_mask, NULL);
8148 }
8149
8150 /**
8151 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
8152 * @vsi: Pointer to VSI structure
8153 * @bmode: Hardware bridge mode (VEB/VEPA)
8154 *
8155 * Returns 0 on success, negative on failure
8156 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)8157 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
8158 {
8159 struct ice_aqc_vsi_props *vsi_props;
8160 struct ice_hw *hw = &vsi->back->hw;
8161 struct ice_vsi_ctx *ctxt;
8162 int ret;
8163
8164 vsi_props = &vsi->info;
8165
8166 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
8167 if (!ctxt)
8168 return -ENOMEM;
8169
8170 ctxt->info = vsi->info;
8171
8172 if (bmode == BRIDGE_MODE_VEB)
8173 /* change from VEPA to VEB mode */
8174 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8175 else
8176 /* change from VEB to VEPA mode */
8177 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8178 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
8179
8180 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
8181 if (ret) {
8182 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
8183 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
8184 goto out;
8185 }
8186 /* Update sw flags for book keeping */
8187 vsi_props->sw_flags = ctxt->info.sw_flags;
8188
8189 out:
8190 kfree(ctxt);
8191 return ret;
8192 }
8193
8194 /**
8195 * ice_bridge_setlink - Set the hardware bridge mode
8196 * @dev: the netdev being configured
8197 * @nlh: RTNL message
8198 * @flags: bridge setlink flags
8199 * @extack: netlink extended ack
8200 *
8201 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
8202 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
8203 * not already set for all VSIs connected to this switch. And also update the
8204 * unicast switch filter rules for the corresponding switch of the netdev.
8205 */
8206 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)8207 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8208 u16 __always_unused flags,
8209 struct netlink_ext_ack __always_unused *extack)
8210 {
8211 struct ice_netdev_priv *np = netdev_priv(dev);
8212 struct ice_pf *pf = np->vsi->back;
8213 struct nlattr *attr, *br_spec;
8214 struct ice_hw *hw = &pf->hw;
8215 struct ice_sw *pf_sw;
8216 int rem, v, err = 0;
8217
8218 pf_sw = pf->first_sw;
8219 /* find the attribute in the netlink message */
8220 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8221 if (!br_spec)
8222 return -EINVAL;
8223
8224 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
8225 __u16 mode = nla_get_u16(attr);
8226
8227 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8228 return -EINVAL;
8229 /* Continue if bridge mode is not being flipped */
8230 if (mode == pf_sw->bridge_mode)
8231 continue;
8232 /* Iterates through the PF VSI list and update the loopback
8233 * mode of the VSI
8234 */
8235 ice_for_each_vsi(pf, v) {
8236 if (!pf->vsi[v])
8237 continue;
8238 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8239 if (err)
8240 return err;
8241 }
8242
8243 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8244 /* Update the unicast switch filter rules for the corresponding
8245 * switch of the netdev
8246 */
8247 err = ice_update_sw_rule_bridge_mode(hw);
8248 if (err) {
8249 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8250 mode, err,
8251 ice_aq_str(hw->adminq.sq_last_status));
8252 /* revert hw->evb_veb */
8253 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8254 return err;
8255 }
8256
8257 pf_sw->bridge_mode = mode;
8258 }
8259
8260 return 0;
8261 }
8262
8263 /**
8264 * ice_tx_timeout - Respond to a Tx Hang
8265 * @netdev: network interface device structure
8266 * @txqueue: Tx queue
8267 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)8268 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8269 {
8270 struct ice_netdev_priv *np = netdev_priv(netdev);
8271 struct ice_tx_ring *tx_ring = NULL;
8272 struct ice_vsi *vsi = np->vsi;
8273 struct ice_pf *pf = vsi->back;
8274 u32 i;
8275
8276 pf->tx_timeout_count++;
8277
8278 /* Check if PFC is enabled for the TC to which the queue belongs
8279 * to. If yes then Tx timeout is not caused by a hung queue, no
8280 * need to reset and rebuild
8281 */
8282 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8283 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8284 txqueue);
8285 return;
8286 }
8287
8288 /* now that we have an index, find the tx_ring struct */
8289 ice_for_each_txq(vsi, i)
8290 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8291 if (txqueue == vsi->tx_rings[i]->q_index) {
8292 tx_ring = vsi->tx_rings[i];
8293 break;
8294 }
8295
8296 /* Reset recovery level if enough time has elapsed after last timeout.
8297 * Also ensure no new reset action happens before next timeout period.
8298 */
8299 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8300 pf->tx_timeout_recovery_level = 1;
8301 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8302 netdev->watchdog_timeo)))
8303 return;
8304
8305 if (tx_ring) {
8306 struct ice_hw *hw = &pf->hw;
8307 u32 head, intr = 0;
8308
8309 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8310 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8311 /* Read interrupt register */
8312 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8313
8314 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8315 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8316 head, tx_ring->next_to_use, intr);
8317
8318 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr);
8319 }
8320
8321 pf->tx_timeout_last_recovery = jiffies;
8322 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8323 pf->tx_timeout_recovery_level, txqueue);
8324
8325 switch (pf->tx_timeout_recovery_level) {
8326 case 1:
8327 set_bit(ICE_PFR_REQ, pf->state);
8328 break;
8329 case 2:
8330 set_bit(ICE_CORER_REQ, pf->state);
8331 break;
8332 case 3:
8333 set_bit(ICE_GLOBR_REQ, pf->state);
8334 break;
8335 default:
8336 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8337 set_bit(ICE_DOWN, pf->state);
8338 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8339 set_bit(ICE_SERVICE_DIS, pf->state);
8340 break;
8341 }
8342
8343 ice_service_task_schedule(pf);
8344 pf->tx_timeout_recovery_level++;
8345 }
8346
8347 /**
8348 * ice_setup_tc_cls_flower - flower classifier offloads
8349 * @np: net device to configure
8350 * @filter_dev: device on which filter is added
8351 * @cls_flower: offload data
8352 * @ingress: if the rule is added to an ingress block
8353 *
8354 * Return: 0 if the flower was successfully added or deleted,
8355 * negative error code otherwise.
8356 */
8357 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower,bool ingress)8358 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8359 struct net_device *filter_dev,
8360 struct flow_cls_offload *cls_flower,
8361 bool ingress)
8362 {
8363 struct ice_vsi *vsi = np->vsi;
8364
8365 if (cls_flower->common.chain_index)
8366 return -EOPNOTSUPP;
8367
8368 switch (cls_flower->command) {
8369 case FLOW_CLS_REPLACE:
8370 return ice_add_cls_flower(filter_dev, vsi, cls_flower, ingress);
8371 case FLOW_CLS_DESTROY:
8372 return ice_del_cls_flower(vsi, cls_flower);
8373 default:
8374 return -EINVAL;
8375 }
8376 }
8377
8378 /**
8379 * ice_setup_tc_block_cb_ingress - callback handler for ingress TC block
8380 * @type: TC SETUP type
8381 * @type_data: TC flower offload data that contains user input
8382 * @cb_priv: netdev private data
8383 *
8384 * Return: 0 if the setup was successful, negative error code otherwise.
8385 */
8386 static int
ice_setup_tc_block_cb_ingress(enum tc_setup_type type,void * type_data,void * cb_priv)8387 ice_setup_tc_block_cb_ingress(enum tc_setup_type type, void *type_data,
8388 void *cb_priv)
8389 {
8390 struct ice_netdev_priv *np = cb_priv;
8391
8392 switch (type) {
8393 case TC_SETUP_CLSFLOWER:
8394 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8395 type_data, true);
8396 default:
8397 return -EOPNOTSUPP;
8398 }
8399 }
8400
8401 /**
8402 * ice_setup_tc_block_cb_egress - callback handler for egress TC block
8403 * @type: TC SETUP type
8404 * @type_data: TC flower offload data that contains user input
8405 * @cb_priv: netdev private data
8406 *
8407 * Return: 0 if the setup was successful, negative error code otherwise.
8408 */
8409 static int
ice_setup_tc_block_cb_egress(enum tc_setup_type type,void * type_data,void * cb_priv)8410 ice_setup_tc_block_cb_egress(enum tc_setup_type type, void *type_data,
8411 void *cb_priv)
8412 {
8413 struct ice_netdev_priv *np = cb_priv;
8414
8415 switch (type) {
8416 case TC_SETUP_CLSFLOWER:
8417 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8418 type_data, false);
8419 default:
8420 return -EOPNOTSUPP;
8421 }
8422 }
8423
8424 /**
8425 * ice_validate_mqprio_qopt - Validate TCF input parameters
8426 * @vsi: Pointer to VSI
8427 * @mqprio_qopt: input parameters for mqprio queue configuration
8428 *
8429 * This function validates MQPRIO params, such as qcount (power of 2 wherever
8430 * needed), and make sure user doesn't specify qcount and BW rate limit
8431 * for TCs, which are more than "num_tc"
8432 */
8433 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)8434 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8435 struct tc_mqprio_qopt_offload *mqprio_qopt)
8436 {
8437 int non_power_of_2_qcount = 0;
8438 struct ice_pf *pf = vsi->back;
8439 int max_rss_q_cnt = 0;
8440 u64 sum_min_rate = 0;
8441 struct device *dev;
8442 int i, speed;
8443 u8 num_tc;
8444
8445 if (vsi->type != ICE_VSI_PF)
8446 return -EINVAL;
8447
8448 if (mqprio_qopt->qopt.offset[0] != 0 ||
8449 mqprio_qopt->qopt.num_tc < 1 ||
8450 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8451 return -EINVAL;
8452
8453 dev = ice_pf_to_dev(pf);
8454 vsi->ch_rss_size = 0;
8455 num_tc = mqprio_qopt->qopt.num_tc;
8456 speed = ice_get_link_speed_kbps(vsi);
8457
8458 for (i = 0; num_tc; i++) {
8459 int qcount = mqprio_qopt->qopt.count[i];
8460 u64 max_rate, min_rate, rem;
8461
8462 if (!qcount)
8463 return -EINVAL;
8464
8465 if (is_power_of_2(qcount)) {
8466 if (non_power_of_2_qcount &&
8467 qcount > non_power_of_2_qcount) {
8468 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8469 qcount, non_power_of_2_qcount);
8470 return -EINVAL;
8471 }
8472 if (qcount > max_rss_q_cnt)
8473 max_rss_q_cnt = qcount;
8474 } else {
8475 if (non_power_of_2_qcount &&
8476 qcount != non_power_of_2_qcount) {
8477 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8478 qcount, non_power_of_2_qcount);
8479 return -EINVAL;
8480 }
8481 if (qcount < max_rss_q_cnt) {
8482 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8483 qcount, max_rss_q_cnt);
8484 return -EINVAL;
8485 }
8486 max_rss_q_cnt = qcount;
8487 non_power_of_2_qcount = qcount;
8488 }
8489
8490 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8491 * converts the bandwidth rate limit into Bytes/s when
8492 * passing it down to the driver. So convert input bandwidth
8493 * from Bytes/s to Kbps
8494 */
8495 max_rate = mqprio_qopt->max_rate[i];
8496 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8497
8498 /* min_rate is minimum guaranteed rate and it can't be zero */
8499 min_rate = mqprio_qopt->min_rate[i];
8500 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8501 sum_min_rate += min_rate;
8502
8503 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8504 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8505 min_rate, ICE_MIN_BW_LIMIT);
8506 return -EINVAL;
8507 }
8508
8509 if (max_rate && max_rate > speed) {
8510 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8511 i, max_rate, speed);
8512 return -EINVAL;
8513 }
8514
8515 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8516 if (rem) {
8517 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8518 i, ICE_MIN_BW_LIMIT);
8519 return -EINVAL;
8520 }
8521
8522 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8523 if (rem) {
8524 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8525 i, ICE_MIN_BW_LIMIT);
8526 return -EINVAL;
8527 }
8528
8529 /* min_rate can't be more than max_rate, except when max_rate
8530 * is zero (implies max_rate sought is max line rate). In such
8531 * a case min_rate can be more than max.
8532 */
8533 if (max_rate && min_rate > max_rate) {
8534 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8535 min_rate, max_rate);
8536 return -EINVAL;
8537 }
8538
8539 if (i >= mqprio_qopt->qopt.num_tc - 1)
8540 break;
8541 if (mqprio_qopt->qopt.offset[i + 1] !=
8542 (mqprio_qopt->qopt.offset[i] + qcount))
8543 return -EINVAL;
8544 }
8545 if (vsi->num_rxq <
8546 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8547 return -EINVAL;
8548 if (vsi->num_txq <
8549 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8550 return -EINVAL;
8551
8552 if (sum_min_rate && sum_min_rate > (u64)speed) {
8553 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8554 sum_min_rate, speed);
8555 return -EINVAL;
8556 }
8557
8558 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8559 vsi->ch_rss_size = max_rss_q_cnt;
8560
8561 return 0;
8562 }
8563
8564 /**
8565 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8566 * @pf: ptr to PF device
8567 * @vsi: ptr to VSI
8568 */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)8569 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8570 {
8571 struct device *dev = ice_pf_to_dev(pf);
8572 bool added = false;
8573 struct ice_hw *hw;
8574 int flow;
8575
8576 if (!(vsi->num_gfltr || vsi->num_bfltr))
8577 return -EINVAL;
8578
8579 hw = &pf->hw;
8580 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8581 struct ice_fd_hw_prof *prof;
8582 int tun, status;
8583 u64 entry_h;
8584
8585 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8586 hw->fdir_prof[flow]->cnt))
8587 continue;
8588
8589 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8590 enum ice_flow_priority prio;
8591
8592 /* add this VSI to FDir profile for this flow */
8593 prio = ICE_FLOW_PRIO_NORMAL;
8594 prof = hw->fdir_prof[flow];
8595 status = ice_flow_add_entry(hw, ICE_BLK_FD,
8596 prof->prof_id[tun],
8597 prof->vsi_h[0], vsi->idx,
8598 prio, prof->fdir_seg[tun],
8599 &entry_h);
8600 if (status) {
8601 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8602 vsi->idx, flow);
8603 continue;
8604 }
8605
8606 prof->entry_h[prof->cnt][tun] = entry_h;
8607 }
8608
8609 /* store VSI for filter replay and delete */
8610 prof->vsi_h[prof->cnt] = vsi->idx;
8611 prof->cnt++;
8612
8613 added = true;
8614 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8615 flow);
8616 }
8617
8618 if (!added)
8619 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8620
8621 return 0;
8622 }
8623
8624 /**
8625 * ice_add_channel - add a channel by adding VSI
8626 * @pf: ptr to PF device
8627 * @sw_id: underlying HW switching element ID
8628 * @ch: ptr to channel structure
8629 *
8630 * Add a channel (VSI) using add_vsi and queue_map
8631 */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)8632 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8633 {
8634 struct device *dev = ice_pf_to_dev(pf);
8635 struct ice_vsi *vsi;
8636
8637 if (ch->type != ICE_VSI_CHNL) {
8638 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8639 return -EINVAL;
8640 }
8641
8642 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8643 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8644 dev_err(dev, "create chnl VSI failure\n");
8645 return -EINVAL;
8646 }
8647
8648 ice_add_vsi_to_fdir(pf, vsi);
8649
8650 ch->sw_id = sw_id;
8651 ch->vsi_num = vsi->vsi_num;
8652 ch->info.mapping_flags = vsi->info.mapping_flags;
8653 ch->ch_vsi = vsi;
8654 /* set the back pointer of channel for newly created VSI */
8655 vsi->ch = ch;
8656
8657 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8658 sizeof(vsi->info.q_mapping));
8659 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8660 sizeof(vsi->info.tc_mapping));
8661
8662 return 0;
8663 }
8664
8665 /**
8666 * ice_chnl_cfg_res
8667 * @vsi: the VSI being setup
8668 * @ch: ptr to channel structure
8669 *
8670 * Configure channel specific resources such as rings, vector.
8671 */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)8672 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8673 {
8674 int i;
8675
8676 for (i = 0; i < ch->num_txq; i++) {
8677 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8678 struct ice_ring_container *rc;
8679 struct ice_tx_ring *tx_ring;
8680 struct ice_rx_ring *rx_ring;
8681
8682 tx_ring = vsi->tx_rings[ch->base_q + i];
8683 rx_ring = vsi->rx_rings[ch->base_q + i];
8684 if (!tx_ring || !rx_ring)
8685 continue;
8686
8687 /* setup ring being channel enabled */
8688 tx_ring->ch = ch;
8689 rx_ring->ch = ch;
8690
8691 /* following code block sets up vector specific attributes */
8692 tx_q_vector = tx_ring->q_vector;
8693 rx_q_vector = rx_ring->q_vector;
8694 if (!tx_q_vector && !rx_q_vector)
8695 continue;
8696
8697 if (tx_q_vector) {
8698 tx_q_vector->ch = ch;
8699 /* setup Tx and Rx ITR setting if DIM is off */
8700 rc = &tx_q_vector->tx;
8701 if (!ITR_IS_DYNAMIC(rc))
8702 ice_write_itr(rc, rc->itr_setting);
8703 }
8704 if (rx_q_vector) {
8705 rx_q_vector->ch = ch;
8706 /* setup Tx and Rx ITR setting if DIM is off */
8707 rc = &rx_q_vector->rx;
8708 if (!ITR_IS_DYNAMIC(rc))
8709 ice_write_itr(rc, rc->itr_setting);
8710 }
8711 }
8712
8713 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8714 * GLINT_ITR register would have written to perform in-context
8715 * update, hence perform flush
8716 */
8717 if (ch->num_txq || ch->num_rxq)
8718 ice_flush(&vsi->back->hw);
8719 }
8720
8721 /**
8722 * ice_cfg_chnl_all_res - configure channel resources
8723 * @vsi: pte to main_vsi
8724 * @ch: ptr to channel structure
8725 *
8726 * This function configures channel specific resources such as flow-director
8727 * counter index, and other resources such as queues, vectors, ITR settings
8728 */
8729 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8730 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8731 {
8732 /* configure channel (aka ADQ) resources such as queues, vectors,
8733 * ITR settings for channel specific vectors and anything else
8734 */
8735 ice_chnl_cfg_res(vsi, ch);
8736 }
8737
8738 /**
8739 * ice_setup_hw_channel - setup new channel
8740 * @pf: ptr to PF device
8741 * @vsi: the VSI being setup
8742 * @ch: ptr to channel structure
8743 * @sw_id: underlying HW switching element ID
8744 * @type: type of channel to be created (VMDq2/VF)
8745 *
8746 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8747 * and configures Tx rings accordingly
8748 */
8749 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8750 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8751 struct ice_channel *ch, u16 sw_id, u8 type)
8752 {
8753 struct device *dev = ice_pf_to_dev(pf);
8754 int ret;
8755
8756 ch->base_q = vsi->next_base_q;
8757 ch->type = type;
8758
8759 ret = ice_add_channel(pf, sw_id, ch);
8760 if (ret) {
8761 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8762 return ret;
8763 }
8764
8765 /* configure/setup ADQ specific resources */
8766 ice_cfg_chnl_all_res(vsi, ch);
8767
8768 /* make sure to update the next_base_q so that subsequent channel's
8769 * (aka ADQ) VSI queue map is correct
8770 */
8771 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8772 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8773 ch->num_rxq);
8774
8775 return 0;
8776 }
8777
8778 /**
8779 * ice_setup_channel - setup new channel using uplink element
8780 * @pf: ptr to PF device
8781 * @vsi: the VSI being setup
8782 * @ch: ptr to channel structure
8783 *
8784 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8785 * and uplink switching element
8786 */
8787 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8788 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8789 struct ice_channel *ch)
8790 {
8791 struct device *dev = ice_pf_to_dev(pf);
8792 u16 sw_id;
8793 int ret;
8794
8795 if (vsi->type != ICE_VSI_PF) {
8796 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8797 return false;
8798 }
8799
8800 sw_id = pf->first_sw->sw_id;
8801
8802 /* create channel (VSI) */
8803 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8804 if (ret) {
8805 dev_err(dev, "failed to setup hw_channel\n");
8806 return false;
8807 }
8808 dev_dbg(dev, "successfully created channel()\n");
8809
8810 return ch->ch_vsi ? true : false;
8811 }
8812
8813 /**
8814 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8815 * @vsi: VSI to be configured
8816 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8817 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8818 */
8819 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8820 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8821 {
8822 int err;
8823
8824 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8825 if (err)
8826 return err;
8827
8828 return ice_set_max_bw_limit(vsi, max_tx_rate);
8829 }
8830
8831 /**
8832 * ice_create_q_channel - function to create channel
8833 * @vsi: VSI to be configured
8834 * @ch: ptr to channel (it contains channel specific params)
8835 *
8836 * This function creates channel (VSI) using num_queues specified by user,
8837 * reconfigs RSS if needed.
8838 */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8839 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8840 {
8841 struct ice_pf *pf = vsi->back;
8842 struct device *dev;
8843
8844 if (!ch)
8845 return -EINVAL;
8846
8847 dev = ice_pf_to_dev(pf);
8848 if (!ch->num_txq || !ch->num_rxq) {
8849 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8850 return -EINVAL;
8851 }
8852
8853 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8854 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8855 vsi->cnt_q_avail, ch->num_txq);
8856 return -EINVAL;
8857 }
8858
8859 if (!ice_setup_channel(pf, vsi, ch)) {
8860 dev_info(dev, "Failed to setup channel\n");
8861 return -EINVAL;
8862 }
8863 /* configure BW rate limit */
8864 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8865 int ret;
8866
8867 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8868 ch->min_tx_rate);
8869 if (ret)
8870 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8871 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8872 else
8873 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8874 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8875 }
8876
8877 vsi->cnt_q_avail -= ch->num_txq;
8878
8879 return 0;
8880 }
8881
8882 /**
8883 * ice_rem_all_chnl_fltrs - removes all channel filters
8884 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8885 *
8886 * Remove all advanced switch filters only if they are channel specific
8887 * tc-flower based filter
8888 */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8889 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8890 {
8891 struct ice_tc_flower_fltr *fltr;
8892 struct hlist_node *node;
8893
8894 /* to remove all channel filters, iterate an ordered list of filters */
8895 hlist_for_each_entry_safe(fltr, node,
8896 &pf->tc_flower_fltr_list,
8897 tc_flower_node) {
8898 struct ice_rule_query_data rule;
8899 int status;
8900
8901 /* for now process only channel specific filters */
8902 if (!ice_is_chnl_fltr(fltr))
8903 continue;
8904
8905 rule.rid = fltr->rid;
8906 rule.rule_id = fltr->rule_id;
8907 rule.vsi_handle = fltr->dest_vsi_handle;
8908 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8909 if (status) {
8910 if (status == -ENOENT)
8911 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8912 rule.rule_id);
8913 else
8914 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8915 status);
8916 } else if (fltr->dest_vsi) {
8917 /* update advanced switch filter count */
8918 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8919 u32 flags = fltr->flags;
8920
8921 fltr->dest_vsi->num_chnl_fltr--;
8922 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8923 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8924 pf->num_dmac_chnl_fltrs--;
8925 }
8926 }
8927
8928 hlist_del(&fltr->tc_flower_node);
8929 kfree(fltr);
8930 }
8931 }
8932
8933 /**
8934 * ice_remove_q_channels - Remove queue channels for the TCs
8935 * @vsi: VSI to be configured
8936 * @rem_fltr: delete advanced switch filter or not
8937 *
8938 * Remove queue channels for the TCs
8939 */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8940 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8941 {
8942 struct ice_channel *ch, *ch_tmp;
8943 struct ice_pf *pf = vsi->back;
8944 int i;
8945
8946 /* remove all tc-flower based filter if they are channel filters only */
8947 if (rem_fltr)
8948 ice_rem_all_chnl_fltrs(pf);
8949
8950 /* remove ntuple filters since queue configuration is being changed */
8951 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8952 struct ice_hw *hw = &pf->hw;
8953
8954 mutex_lock(&hw->fdir_fltr_lock);
8955 ice_fdir_del_all_fltrs(vsi);
8956 mutex_unlock(&hw->fdir_fltr_lock);
8957 }
8958
8959 /* perform cleanup for channels if they exist */
8960 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8961 struct ice_vsi *ch_vsi;
8962
8963 list_del(&ch->list);
8964 ch_vsi = ch->ch_vsi;
8965 if (!ch_vsi) {
8966 kfree(ch);
8967 continue;
8968 }
8969
8970 /* Reset queue contexts */
8971 for (i = 0; i < ch->num_rxq; i++) {
8972 struct ice_tx_ring *tx_ring;
8973 struct ice_rx_ring *rx_ring;
8974
8975 tx_ring = vsi->tx_rings[ch->base_q + i];
8976 rx_ring = vsi->rx_rings[ch->base_q + i];
8977 if (tx_ring) {
8978 tx_ring->ch = NULL;
8979 if (tx_ring->q_vector)
8980 tx_ring->q_vector->ch = NULL;
8981 }
8982 if (rx_ring) {
8983 rx_ring->ch = NULL;
8984 if (rx_ring->q_vector)
8985 rx_ring->q_vector->ch = NULL;
8986 }
8987 }
8988
8989 /* Release FD resources for the channel VSI */
8990 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8991
8992 /* clear the VSI from scheduler tree */
8993 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8994
8995 /* Delete VSI from FW, PF and HW VSI arrays */
8996 ice_vsi_delete(ch->ch_vsi);
8997
8998 /* free the channel */
8999 kfree(ch);
9000 }
9001
9002 /* clear the channel VSI map which is stored in main VSI */
9003 ice_for_each_chnl_tc(i)
9004 vsi->tc_map_vsi[i] = NULL;
9005
9006 /* reset main VSI's all TC information */
9007 vsi->all_enatc = 0;
9008 vsi->all_numtc = 0;
9009 }
9010
9011 /**
9012 * ice_rebuild_channels - rebuild channel
9013 * @pf: ptr to PF
9014 *
9015 * Recreate channel VSIs and replay filters
9016 */
ice_rebuild_channels(struct ice_pf * pf)9017 static int ice_rebuild_channels(struct ice_pf *pf)
9018 {
9019 struct device *dev = ice_pf_to_dev(pf);
9020 struct ice_vsi *main_vsi;
9021 bool rem_adv_fltr = true;
9022 struct ice_channel *ch;
9023 struct ice_vsi *vsi;
9024 int tc_idx = 1;
9025 int i, err;
9026
9027 main_vsi = ice_get_main_vsi(pf);
9028 if (!main_vsi)
9029 return 0;
9030
9031 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
9032 main_vsi->old_numtc == 1)
9033 return 0; /* nothing to be done */
9034
9035 /* reconfigure main VSI based on old value of TC and cached values
9036 * for MQPRIO opts
9037 */
9038 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
9039 if (err) {
9040 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
9041 main_vsi->old_ena_tc, main_vsi->vsi_num);
9042 return err;
9043 }
9044
9045 /* rebuild ADQ VSIs */
9046 ice_for_each_vsi(pf, i) {
9047 enum ice_vsi_type type;
9048
9049 vsi = pf->vsi[i];
9050 if (!vsi || vsi->type != ICE_VSI_CHNL)
9051 continue;
9052
9053 type = vsi->type;
9054
9055 /* rebuild ADQ VSI */
9056 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
9057 if (err) {
9058 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
9059 ice_vsi_type_str(type), vsi->idx, err);
9060 goto cleanup;
9061 }
9062
9063 /* Re-map HW VSI number, using VSI handle that has been
9064 * previously validated in ice_replay_vsi() call above
9065 */
9066 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
9067
9068 /* replay filters for the VSI */
9069 err = ice_replay_vsi(&pf->hw, vsi->idx);
9070 if (err) {
9071 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
9072 ice_vsi_type_str(type), err, vsi->idx);
9073 rem_adv_fltr = false;
9074 goto cleanup;
9075 }
9076 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
9077 ice_vsi_type_str(type), vsi->idx);
9078
9079 /* store ADQ VSI at correct TC index in main VSI's
9080 * map of TC to VSI
9081 */
9082 main_vsi->tc_map_vsi[tc_idx++] = vsi;
9083 }
9084
9085 /* ADQ VSI(s) has been rebuilt successfully, so setup
9086 * channel for main VSI's Tx and Rx rings
9087 */
9088 list_for_each_entry(ch, &main_vsi->ch_list, list) {
9089 struct ice_vsi *ch_vsi;
9090
9091 ch_vsi = ch->ch_vsi;
9092 if (!ch_vsi)
9093 continue;
9094
9095 /* reconfig channel resources */
9096 ice_cfg_chnl_all_res(main_vsi, ch);
9097
9098 /* replay BW rate limit if it is non-zero */
9099 if (!ch->max_tx_rate && !ch->min_tx_rate)
9100 continue;
9101
9102 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
9103 ch->min_tx_rate);
9104 if (err)
9105 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9106 err, ch->max_tx_rate, ch->min_tx_rate,
9107 ch_vsi->vsi_num);
9108 else
9109 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9110 ch->max_tx_rate, ch->min_tx_rate,
9111 ch_vsi->vsi_num);
9112 }
9113
9114 /* reconfig RSS for main VSI */
9115 if (main_vsi->ch_rss_size)
9116 ice_vsi_cfg_rss_lut_key(main_vsi);
9117
9118 return 0;
9119
9120 cleanup:
9121 ice_remove_q_channels(main_vsi, rem_adv_fltr);
9122 return err;
9123 }
9124
9125 /**
9126 * ice_create_q_channels - Add queue channel for the given TCs
9127 * @vsi: VSI to be configured
9128 *
9129 * Configures queue channel mapping to the given TCs
9130 */
ice_create_q_channels(struct ice_vsi * vsi)9131 static int ice_create_q_channels(struct ice_vsi *vsi)
9132 {
9133 struct ice_pf *pf = vsi->back;
9134 struct ice_channel *ch;
9135 int ret = 0, i;
9136
9137 ice_for_each_chnl_tc(i) {
9138 if (!(vsi->all_enatc & BIT(i)))
9139 continue;
9140
9141 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
9142 if (!ch) {
9143 ret = -ENOMEM;
9144 goto err_free;
9145 }
9146 INIT_LIST_HEAD(&ch->list);
9147 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
9148 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
9149 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
9150 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
9151 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
9152
9153 /* convert to Kbits/s */
9154 if (ch->max_tx_rate)
9155 ch->max_tx_rate = div_u64(ch->max_tx_rate,
9156 ICE_BW_KBPS_DIVISOR);
9157 if (ch->min_tx_rate)
9158 ch->min_tx_rate = div_u64(ch->min_tx_rate,
9159 ICE_BW_KBPS_DIVISOR);
9160
9161 ret = ice_create_q_channel(vsi, ch);
9162 if (ret) {
9163 dev_err(ice_pf_to_dev(pf),
9164 "failed creating channel TC:%d\n", i);
9165 kfree(ch);
9166 goto err_free;
9167 }
9168 list_add_tail(&ch->list, &vsi->ch_list);
9169 vsi->tc_map_vsi[i] = ch->ch_vsi;
9170 dev_dbg(ice_pf_to_dev(pf),
9171 "successfully created channel: VSI %pK\n", ch->ch_vsi);
9172 }
9173 return 0;
9174
9175 err_free:
9176 ice_remove_q_channels(vsi, false);
9177
9178 return ret;
9179 }
9180
9181 /**
9182 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
9183 * @netdev: net device to configure
9184 * @type_data: TC offload data
9185 */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)9186 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
9187 {
9188 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
9189 struct ice_netdev_priv *np = netdev_priv(netdev);
9190 struct ice_vsi *vsi = np->vsi;
9191 struct ice_pf *pf = vsi->back;
9192 u16 mode, ena_tc_qdisc = 0;
9193 int cur_txq, cur_rxq;
9194 u8 hw = 0, num_tcf;
9195 struct device *dev;
9196 int ret, i;
9197
9198 dev = ice_pf_to_dev(pf);
9199 num_tcf = mqprio_qopt->qopt.num_tc;
9200 hw = mqprio_qopt->qopt.hw;
9201 mode = mqprio_qopt->mode;
9202 if (!hw) {
9203 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9204 vsi->ch_rss_size = 0;
9205 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9206 goto config_tcf;
9207 }
9208
9209 /* Generate queue region map for number of TCF requested */
9210 for (i = 0; i < num_tcf; i++)
9211 ena_tc_qdisc |= BIT(i);
9212
9213 switch (mode) {
9214 case TC_MQPRIO_MODE_CHANNEL:
9215
9216 if (pf->hw.port_info->is_custom_tx_enabled) {
9217 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
9218 return -EBUSY;
9219 }
9220 ice_tear_down_devlink_rate_tree(pf);
9221
9222 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
9223 if (ret) {
9224 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
9225 ret);
9226 return ret;
9227 }
9228 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9229 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9230 /* don't assume state of hw_tc_offload during driver load
9231 * and set the flag for TC flower filter if hw_tc_offload
9232 * already ON
9233 */
9234 if (vsi->netdev->features & NETIF_F_HW_TC)
9235 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9236 break;
9237 default:
9238 return -EINVAL;
9239 }
9240
9241 config_tcf:
9242
9243 /* Requesting same TCF configuration as already enabled */
9244 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9245 mode != TC_MQPRIO_MODE_CHANNEL)
9246 return 0;
9247
9248 /* Pause VSI queues */
9249 ice_dis_vsi(vsi, true);
9250
9251 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9252 ice_remove_q_channels(vsi, true);
9253
9254 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9255 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9256 num_online_cpus());
9257 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9258 num_online_cpus());
9259 } else {
9260 /* logic to rebuild VSI, same like ethtool -L */
9261 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9262
9263 for (i = 0; i < num_tcf; i++) {
9264 if (!(ena_tc_qdisc & BIT(i)))
9265 continue;
9266
9267 offset = vsi->mqprio_qopt.qopt.offset[i];
9268 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9269 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9270 }
9271 vsi->req_txq = offset + qcount_tx;
9272 vsi->req_rxq = offset + qcount_rx;
9273
9274 /* store away original rss_size info, so that it gets reused
9275 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9276 * determine, what should be the rss_sizefor main VSI
9277 */
9278 vsi->orig_rss_size = vsi->rss_size;
9279 }
9280
9281 /* save current values of Tx and Rx queues before calling VSI rebuild
9282 * for fallback option
9283 */
9284 cur_txq = vsi->num_txq;
9285 cur_rxq = vsi->num_rxq;
9286
9287 /* proceed with rebuild main VSI using correct number of queues */
9288 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9289 if (ret) {
9290 /* fallback to current number of queues */
9291 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9292 vsi->req_txq = cur_txq;
9293 vsi->req_rxq = cur_rxq;
9294 clear_bit(ICE_RESET_FAILED, pf->state);
9295 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9296 dev_err(dev, "Rebuild of main VSI failed again\n");
9297 return ret;
9298 }
9299 }
9300
9301 vsi->all_numtc = num_tcf;
9302 vsi->all_enatc = ena_tc_qdisc;
9303 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9304 if (ret) {
9305 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9306 vsi->vsi_num);
9307 goto exit;
9308 }
9309
9310 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9311 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9312 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9313
9314 /* set TC0 rate limit if specified */
9315 if (max_tx_rate || min_tx_rate) {
9316 /* convert to Kbits/s */
9317 if (max_tx_rate)
9318 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9319 if (min_tx_rate)
9320 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9321
9322 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9323 if (!ret) {
9324 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9325 max_tx_rate, min_tx_rate, vsi->vsi_num);
9326 } else {
9327 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9328 max_tx_rate, min_tx_rate, vsi->vsi_num);
9329 goto exit;
9330 }
9331 }
9332 ret = ice_create_q_channels(vsi);
9333 if (ret) {
9334 netdev_err(netdev, "failed configuring queue channels\n");
9335 goto exit;
9336 } else {
9337 netdev_dbg(netdev, "successfully configured channels\n");
9338 }
9339 }
9340
9341 if (vsi->ch_rss_size)
9342 ice_vsi_cfg_rss_lut_key(vsi);
9343
9344 exit:
9345 /* if error, reset the all_numtc and all_enatc */
9346 if (ret) {
9347 vsi->all_numtc = 0;
9348 vsi->all_enatc = 0;
9349 }
9350 /* resume VSI */
9351 ice_ena_vsi(vsi, true);
9352
9353 return ret;
9354 }
9355
9356 static LIST_HEAD(ice_block_cb_list);
9357
9358 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)9359 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9360 void *type_data)
9361 {
9362 struct ice_netdev_priv *np = netdev_priv(netdev);
9363 enum flow_block_binder_type binder_type;
9364 struct iidc_rdma_core_dev_info *cdev;
9365 struct ice_pf *pf = np->vsi->back;
9366 flow_setup_cb_t *flower_handler;
9367 bool locked = false;
9368 int err;
9369
9370 switch (type) {
9371 case TC_SETUP_BLOCK:
9372 binder_type =
9373 ((struct flow_block_offload *)type_data)->binder_type;
9374
9375 switch (binder_type) {
9376 case FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS:
9377 flower_handler = ice_setup_tc_block_cb_ingress;
9378 break;
9379 case FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS:
9380 flower_handler = ice_setup_tc_block_cb_egress;
9381 break;
9382 default:
9383 return -EOPNOTSUPP;
9384 }
9385
9386 return flow_block_cb_setup_simple(type_data,
9387 &ice_block_cb_list,
9388 flower_handler,
9389 np, np, false);
9390 case TC_SETUP_QDISC_MQPRIO:
9391 if (ice_is_eswitch_mode_switchdev(pf)) {
9392 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9393 return -EOPNOTSUPP;
9394 }
9395
9396 cdev = pf->cdev_info;
9397 if (cdev && cdev->adev) {
9398 mutex_lock(&pf->adev_mutex);
9399 device_lock(&cdev->adev->dev);
9400 locked = true;
9401 if (cdev->adev->dev.driver) {
9402 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9403 err = -EBUSY;
9404 goto adev_unlock;
9405 }
9406 }
9407
9408 /* setup traffic classifier for receive side */
9409 mutex_lock(&pf->tc_mutex);
9410 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9411 mutex_unlock(&pf->tc_mutex);
9412
9413 adev_unlock:
9414 if (locked) {
9415 device_unlock(&cdev->adev->dev);
9416 mutex_unlock(&pf->adev_mutex);
9417 }
9418 return err;
9419 default:
9420 return -EOPNOTSUPP;
9421 }
9422 return -EOPNOTSUPP;
9423 }
9424
9425 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)9426 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9427 struct net_device *netdev)
9428 {
9429 struct ice_indr_block_priv *cb_priv;
9430
9431 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9432 if (!cb_priv->netdev)
9433 return NULL;
9434 if (cb_priv->netdev == netdev)
9435 return cb_priv;
9436 }
9437 return NULL;
9438 }
9439
9440 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)9441 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9442 void *indr_priv)
9443 {
9444 struct ice_indr_block_priv *priv = indr_priv;
9445 struct ice_netdev_priv *np = priv->np;
9446
9447 switch (type) {
9448 case TC_SETUP_CLSFLOWER:
9449 return ice_setup_tc_cls_flower(np, priv->netdev,
9450 (struct flow_cls_offload *)
9451 type_data, false);
9452 default:
9453 return -EOPNOTSUPP;
9454 }
9455 }
9456
9457 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9458 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9459 struct ice_netdev_priv *np,
9460 struct flow_block_offload *f, void *data,
9461 void (*cleanup)(struct flow_block_cb *block_cb))
9462 {
9463 struct ice_indr_block_priv *indr_priv;
9464 struct flow_block_cb *block_cb;
9465
9466 if (!ice_is_tunnel_supported(netdev) &&
9467 !(is_vlan_dev(netdev) &&
9468 vlan_dev_real_dev(netdev) == np->vsi->netdev))
9469 return -EOPNOTSUPP;
9470
9471 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9472 return -EOPNOTSUPP;
9473
9474 switch (f->command) {
9475 case FLOW_BLOCK_BIND:
9476 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9477 if (indr_priv)
9478 return -EEXIST;
9479
9480 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9481 if (!indr_priv)
9482 return -ENOMEM;
9483
9484 indr_priv->netdev = netdev;
9485 indr_priv->np = np;
9486 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9487
9488 block_cb =
9489 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9490 indr_priv, indr_priv,
9491 ice_rep_indr_tc_block_unbind,
9492 f, netdev, sch, data, np,
9493 cleanup);
9494
9495 if (IS_ERR(block_cb)) {
9496 list_del(&indr_priv->list);
9497 kfree(indr_priv);
9498 return PTR_ERR(block_cb);
9499 }
9500 flow_block_cb_add(block_cb, f);
9501 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9502 break;
9503 case FLOW_BLOCK_UNBIND:
9504 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9505 if (!indr_priv)
9506 return -ENOENT;
9507
9508 block_cb = flow_block_cb_lookup(f->block,
9509 ice_indr_setup_block_cb,
9510 indr_priv);
9511 if (!block_cb)
9512 return -ENOENT;
9513
9514 flow_indr_block_cb_remove(block_cb, f);
9515
9516 list_del(&block_cb->driver_list);
9517 break;
9518 default:
9519 return -EOPNOTSUPP;
9520 }
9521 return 0;
9522 }
9523
9524 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9525 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9526 void *cb_priv, enum tc_setup_type type, void *type_data,
9527 void *data,
9528 void (*cleanup)(struct flow_block_cb *block_cb))
9529 {
9530 switch (type) {
9531 case TC_SETUP_BLOCK:
9532 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9533 data, cleanup);
9534
9535 default:
9536 return -EOPNOTSUPP;
9537 }
9538 }
9539
9540 /**
9541 * ice_open - Called when a network interface becomes active
9542 * @netdev: network interface device structure
9543 *
9544 * The open entry point is called when a network interface is made
9545 * active by the system (IFF_UP). At this point all resources needed
9546 * for transmit and receive operations are allocated, the interrupt
9547 * handler is registered with the OS, the netdev watchdog is enabled,
9548 * and the stack is notified that the interface is ready.
9549 *
9550 * Returns 0 on success, negative value on failure
9551 */
ice_open(struct net_device * netdev)9552 int ice_open(struct net_device *netdev)
9553 {
9554 struct ice_netdev_priv *np = netdev_priv(netdev);
9555 struct ice_pf *pf = np->vsi->back;
9556
9557 if (ice_is_reset_in_progress(pf->state)) {
9558 netdev_err(netdev, "can't open net device while reset is in progress");
9559 return -EBUSY;
9560 }
9561
9562 return ice_open_internal(netdev);
9563 }
9564
9565 /**
9566 * ice_open_internal - Called when a network interface becomes active
9567 * @netdev: network interface device structure
9568 *
9569 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9570 * handling routine
9571 *
9572 * Returns 0 on success, negative value on failure
9573 */
ice_open_internal(struct net_device * netdev)9574 int ice_open_internal(struct net_device *netdev)
9575 {
9576 struct ice_netdev_priv *np = netdev_priv(netdev);
9577 struct ice_vsi *vsi = np->vsi;
9578 struct ice_pf *pf = vsi->back;
9579 struct ice_port_info *pi;
9580 int err;
9581
9582 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9583 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9584 return -EIO;
9585 }
9586
9587 netif_carrier_off(netdev);
9588
9589 pi = vsi->port_info;
9590 err = ice_update_link_info(pi);
9591 if (err) {
9592 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9593 return err;
9594 }
9595
9596 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9597
9598 /* Set PHY if there is media, otherwise, turn off PHY */
9599 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9600 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9601 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9602 err = ice_init_phy_user_cfg(pi);
9603 if (err) {
9604 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9605 err);
9606 return err;
9607 }
9608 }
9609
9610 err = ice_configure_phy(vsi);
9611 if (err) {
9612 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9613 err);
9614 return err;
9615 }
9616 } else {
9617 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9618 ice_set_link(vsi, false);
9619 }
9620
9621 err = ice_vsi_open(vsi);
9622 if (err)
9623 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9624 vsi->vsi_num, vsi->vsw->sw_id);
9625
9626 /* Update existing tunnels information */
9627 udp_tunnel_get_rx_info(netdev);
9628
9629 return err;
9630 }
9631
9632 /**
9633 * ice_stop - Disables a network interface
9634 * @netdev: network interface device structure
9635 *
9636 * The stop entry point is called when an interface is de-activated by the OS,
9637 * and the netdevice enters the DOWN state. The hardware is still under the
9638 * driver's control, but the netdev interface is disabled.
9639 *
9640 * Returns success only - not allowed to fail
9641 */
ice_stop(struct net_device * netdev)9642 int ice_stop(struct net_device *netdev)
9643 {
9644 struct ice_netdev_priv *np = netdev_priv(netdev);
9645 struct ice_vsi *vsi = np->vsi;
9646 struct ice_pf *pf = vsi->back;
9647
9648 if (ice_is_reset_in_progress(pf->state)) {
9649 netdev_err(netdev, "can't stop net device while reset is in progress");
9650 return -EBUSY;
9651 }
9652
9653 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9654 int link_err = ice_force_phys_link_state(vsi, false);
9655
9656 if (link_err) {
9657 if (link_err == -ENOMEDIUM)
9658 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9659 vsi->vsi_num);
9660 else
9661 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9662 vsi->vsi_num, link_err);
9663
9664 ice_vsi_close(vsi);
9665 return -EIO;
9666 }
9667 }
9668
9669 ice_vsi_close(vsi);
9670
9671 return 0;
9672 }
9673
9674 /**
9675 * ice_features_check - Validate encapsulated packet conforms to limits
9676 * @skb: skb buffer
9677 * @netdev: This port's netdev
9678 * @features: Offload features that the stack believes apply
9679 */
9680 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)9681 ice_features_check(struct sk_buff *skb,
9682 struct net_device __always_unused *netdev,
9683 netdev_features_t features)
9684 {
9685 bool gso = skb_is_gso(skb);
9686 size_t len;
9687
9688 /* No point in doing any of this if neither checksum nor GSO are
9689 * being requested for this frame. We can rule out both by just
9690 * checking for CHECKSUM_PARTIAL
9691 */
9692 if (skb->ip_summed != CHECKSUM_PARTIAL)
9693 return features;
9694
9695 /* We cannot support GSO if the MSS is going to be less than
9696 * 64 bytes. If it is then we need to drop support for GSO.
9697 */
9698 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9699 features &= ~NETIF_F_GSO_MASK;
9700
9701 len = skb_network_offset(skb);
9702 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9703 goto out_rm_features;
9704
9705 len = skb_network_header_len(skb);
9706 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9707 goto out_rm_features;
9708
9709 if (skb->encapsulation) {
9710 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9711 * the case of IPIP frames, the transport header pointer is
9712 * after the inner header! So check to make sure that this
9713 * is a GRE or UDP_TUNNEL frame before doing that math.
9714 */
9715 if (gso && (skb_shinfo(skb)->gso_type &
9716 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9717 len = skb_inner_network_header(skb) -
9718 skb_transport_header(skb);
9719 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9720 goto out_rm_features;
9721 }
9722
9723 len = skb_inner_network_header_len(skb);
9724 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9725 goto out_rm_features;
9726 }
9727
9728 return features;
9729 out_rm_features:
9730 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9731 }
9732
9733 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9734 .ndo_open = ice_open,
9735 .ndo_stop = ice_stop,
9736 .ndo_start_xmit = ice_start_xmit,
9737 .ndo_set_mac_address = ice_set_mac_address,
9738 .ndo_validate_addr = eth_validate_addr,
9739 .ndo_change_mtu = ice_change_mtu,
9740 .ndo_get_stats64 = ice_get_stats64,
9741 .ndo_tx_timeout = ice_tx_timeout,
9742 .ndo_bpf = ice_xdp_safe_mode,
9743 };
9744
9745 static const struct net_device_ops ice_netdev_ops = {
9746 .ndo_open = ice_open,
9747 .ndo_stop = ice_stop,
9748 .ndo_start_xmit = ice_start_xmit,
9749 .ndo_select_queue = ice_select_queue,
9750 .ndo_features_check = ice_features_check,
9751 .ndo_fix_features = ice_fix_features,
9752 .ndo_set_rx_mode = ice_set_rx_mode,
9753 .ndo_set_mac_address = ice_set_mac_address,
9754 .ndo_validate_addr = eth_validate_addr,
9755 .ndo_change_mtu = ice_change_mtu,
9756 .ndo_get_stats64 = ice_get_stats64,
9757 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9758 .ndo_eth_ioctl = ice_eth_ioctl,
9759 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9760 .ndo_set_vf_mac = ice_set_vf_mac,
9761 .ndo_get_vf_config = ice_get_vf_cfg,
9762 .ndo_set_vf_trust = ice_set_vf_trust,
9763 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9764 .ndo_set_vf_link_state = ice_set_vf_link_state,
9765 .ndo_get_vf_stats = ice_get_vf_stats,
9766 .ndo_set_vf_rate = ice_set_vf_bw,
9767 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9768 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9769 .ndo_setup_tc = ice_setup_tc,
9770 .ndo_set_features = ice_set_features,
9771 .ndo_bridge_getlink = ice_bridge_getlink,
9772 .ndo_bridge_setlink = ice_bridge_setlink,
9773 .ndo_fdb_add = ice_fdb_add,
9774 .ndo_fdb_del = ice_fdb_del,
9775 #ifdef CONFIG_RFS_ACCEL
9776 .ndo_rx_flow_steer = ice_rx_flow_steer,
9777 #endif
9778 .ndo_tx_timeout = ice_tx_timeout,
9779 .ndo_bpf = ice_xdp,
9780 .ndo_xdp_xmit = ice_xdp_xmit,
9781 .ndo_xsk_wakeup = ice_xsk_wakeup,
9782 };
9783