1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "devlink/devlink.h"
17 #include "devlink/port.h"
18 #include "ice_sf_eth.h"
19 #include "ice_hwmon.h"
20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
21 * ice tracepoint functions. This must be done exactly once across the
22 * ice driver.
23 */
24 #define CREATE_TRACE_POINTS
25 #include "ice_trace.h"
26 #include "ice_eswitch.h"
27 #include "ice_tc_lib.h"
28 #include "ice_vsi_vlan_ops.h"
29 #include <net/xdp_sock_drv.h>
30
31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
32 static const char ice_driver_string[] = DRV_SUMMARY;
33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
34
35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
38
39 MODULE_DESCRIPTION(DRV_SUMMARY);
40 MODULE_IMPORT_NS("LIBIE");
41 MODULE_LICENSE("GPL v2");
42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
43
44 static int debug = -1;
45 module_param(debug, int, 0644);
46 #ifndef CONFIG_DYNAMIC_DEBUG
47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
48 #else
49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
50 #endif /* !CONFIG_DYNAMIC_DEBUG */
51
52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
53 EXPORT_SYMBOL(ice_xdp_locking_key);
54
55 /**
56 * ice_hw_to_dev - Get device pointer from the hardware structure
57 * @hw: pointer to the device HW structure
58 *
59 * Used to access the device pointer from compilation units which can't easily
60 * include the definition of struct ice_pf without leading to circular header
61 * dependencies.
62 */
ice_hw_to_dev(struct ice_hw * hw)63 struct device *ice_hw_to_dev(struct ice_hw *hw)
64 {
65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
66
67 return &pf->pdev->dev;
68 }
69
70 static struct workqueue_struct *ice_wq;
71 struct workqueue_struct *ice_lag_wq;
72 static const struct net_device_ops ice_netdev_safe_mode_ops;
73 static const struct net_device_ops ice_netdev_ops;
74
75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
76
77 static void ice_vsi_release_all(struct ice_pf *pf);
78
79 static int ice_rebuild_channels(struct ice_pf *pf);
80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
81
82 static int
83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
84 void *cb_priv, enum tc_setup_type type, void *type_data,
85 void *data,
86 void (*cleanup)(struct flow_block_cb *block_cb));
87
netif_is_ice(const struct net_device * dev)88 bool netif_is_ice(const struct net_device *dev)
89 {
90 return dev && (dev->netdev_ops == &ice_netdev_ops ||
91 dev->netdev_ops == &ice_netdev_safe_mode_ops);
92 }
93
94 /**
95 * ice_get_tx_pending - returns number of Tx descriptors not processed
96 * @ring: the ring of descriptors
97 */
ice_get_tx_pending(struct ice_tx_ring * ring)98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
99 {
100 u16 head, tail;
101
102 head = ring->next_to_clean;
103 tail = ring->next_to_use;
104
105 if (head != tail)
106 return (head < tail) ?
107 tail - head : (tail + ring->count - head);
108 return 0;
109 }
110
111 /**
112 * ice_check_for_hang_subtask - check for and recover hung queues
113 * @pf: pointer to PF struct
114 */
ice_check_for_hang_subtask(struct ice_pf * pf)115 static void ice_check_for_hang_subtask(struct ice_pf *pf)
116 {
117 struct ice_vsi *vsi = NULL;
118 struct ice_hw *hw;
119 unsigned int i;
120 int packets;
121 u32 v;
122
123 ice_for_each_vsi(pf, v)
124 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
125 vsi = pf->vsi[v];
126 break;
127 }
128
129 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
130 return;
131
132 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
133 return;
134
135 hw = &vsi->back->hw;
136
137 ice_for_each_txq(vsi, i) {
138 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
139 struct ice_ring_stats *ring_stats;
140
141 if (!tx_ring)
142 continue;
143 if (ice_ring_ch_enabled(tx_ring))
144 continue;
145
146 ring_stats = tx_ring->ring_stats;
147 if (!ring_stats)
148 continue;
149
150 if (tx_ring->desc) {
151 /* If packet counter has not changed the queue is
152 * likely stalled, so force an interrupt for this
153 * queue.
154 *
155 * prev_pkt would be negative if there was no
156 * pending work.
157 */
158 packets = ring_stats->stats.pkts & INT_MAX;
159 if (ring_stats->tx_stats.prev_pkt == packets) {
160 /* Trigger sw interrupt to revive the queue */
161 ice_trigger_sw_intr(hw, tx_ring->q_vector);
162 continue;
163 }
164
165 /* Memory barrier between read of packet count and call
166 * to ice_get_tx_pending()
167 */
168 smp_rmb();
169 ring_stats->tx_stats.prev_pkt =
170 ice_get_tx_pending(tx_ring) ? packets : -1;
171 }
172 }
173 }
174
175 /**
176 * ice_init_mac_fltr - Set initial MAC filters
177 * @pf: board private structure
178 *
179 * Set initial set of MAC filters for PF VSI; configure filters for permanent
180 * address and broadcast address. If an error is encountered, netdevice will be
181 * unregistered.
182 */
ice_init_mac_fltr(struct ice_pf * pf)183 static int ice_init_mac_fltr(struct ice_pf *pf)
184 {
185 struct ice_vsi *vsi;
186 u8 *perm_addr;
187
188 vsi = ice_get_main_vsi(pf);
189 if (!vsi)
190 return -EINVAL;
191
192 perm_addr = vsi->port_info->mac.perm_addr;
193 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
194 }
195
196 /**
197 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
198 * @netdev: the net device on which the sync is happening
199 * @addr: MAC address to sync
200 *
201 * This is a callback function which is called by the in kernel device sync
202 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
203 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
204 * MAC filters from the hardware.
205 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
207 {
208 struct ice_netdev_priv *np = netdev_priv(netdev);
209 struct ice_vsi *vsi = np->vsi;
210
211 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
212 ICE_FWD_TO_VSI))
213 return -EINVAL;
214
215 return 0;
216 }
217
218 /**
219 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
220 * @netdev: the net device on which the unsync is happening
221 * @addr: MAC address to unsync
222 *
223 * This is a callback function which is called by the in kernel device unsync
224 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
225 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
226 * delete the MAC filters from the hardware.
227 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
229 {
230 struct ice_netdev_priv *np = netdev_priv(netdev);
231 struct ice_vsi *vsi = np->vsi;
232
233 /* Under some circumstances, we might receive a request to delete our
234 * own device address from our uc list. Because we store the device
235 * address in the VSI's MAC filter list, we need to ignore such
236 * requests and not delete our device address from this list.
237 */
238 if (ether_addr_equal(addr, netdev->dev_addr))
239 return 0;
240
241 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
242 ICE_FWD_TO_VSI))
243 return -EINVAL;
244
245 return 0;
246 }
247
248 /**
249 * ice_vsi_fltr_changed - check if filter state changed
250 * @vsi: VSI to be checked
251 *
252 * returns true if filter state has changed, false otherwise.
253 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
255 {
256 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
257 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
258 }
259
260 /**
261 * ice_set_promisc - Enable promiscuous mode for a given PF
262 * @vsi: the VSI being configured
263 * @promisc_m: mask of promiscuous config bits
264 *
265 */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
267 {
268 int status;
269
270 if (vsi->type != ICE_VSI_PF)
271 return 0;
272
273 if (ice_vsi_has_non_zero_vlans(vsi)) {
274 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
275 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
276 promisc_m);
277 } else {
278 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
279 promisc_m, 0);
280 }
281 if (status && status != -EEXIST)
282 return status;
283
284 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
285 vsi->vsi_num, promisc_m);
286 return 0;
287 }
288
289 /**
290 * ice_clear_promisc - Disable promiscuous mode for a given PF
291 * @vsi: the VSI being configured
292 * @promisc_m: mask of promiscuous config bits
293 *
294 */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
296 {
297 int status;
298
299 if (vsi->type != ICE_VSI_PF)
300 return 0;
301
302 if (ice_vsi_has_non_zero_vlans(vsi)) {
303 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
304 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
305 promisc_m);
306 } else {
307 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
308 promisc_m, 0);
309 }
310
311 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
312 vsi->vsi_num, promisc_m);
313 return status;
314 }
315
316 /**
317 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
318 * @vsi: ptr to the VSI
319 *
320 * Push any outstanding VSI filter changes through the AdminQ.
321 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
323 {
324 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
325 struct device *dev = ice_pf_to_dev(vsi->back);
326 struct net_device *netdev = vsi->netdev;
327 bool promisc_forced_on = false;
328 struct ice_pf *pf = vsi->back;
329 struct ice_hw *hw = &pf->hw;
330 u32 changed_flags = 0;
331 int err;
332
333 if (!vsi->netdev)
334 return -EINVAL;
335
336 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
337 usleep_range(1000, 2000);
338
339 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
340 vsi->current_netdev_flags = vsi->netdev->flags;
341
342 INIT_LIST_HEAD(&vsi->tmp_sync_list);
343 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
344
345 if (ice_vsi_fltr_changed(vsi)) {
346 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
347 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
348
349 /* grab the netdev's addr_list_lock */
350 netif_addr_lock_bh(netdev);
351 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
352 ice_add_mac_to_unsync_list);
353 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
354 ice_add_mac_to_unsync_list);
355 /* our temp lists are populated. release lock */
356 netif_addr_unlock_bh(netdev);
357 }
358
359 /* Remove MAC addresses in the unsync list */
360 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
361 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
362 if (err) {
363 netdev_err(netdev, "Failed to delete MAC filters\n");
364 /* if we failed because of alloc failures, just bail */
365 if (err == -ENOMEM)
366 goto out;
367 }
368
369 /* Add MAC addresses in the sync list */
370 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
371 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
372 /* If filter is added successfully or already exists, do not go into
373 * 'if' condition and report it as error. Instead continue processing
374 * rest of the function.
375 */
376 if (err && err != -EEXIST) {
377 netdev_err(netdev, "Failed to add MAC filters\n");
378 /* If there is no more space for new umac filters, VSI
379 * should go into promiscuous mode. There should be some
380 * space reserved for promiscuous filters.
381 */
382 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
383 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
384 vsi->state)) {
385 promisc_forced_on = true;
386 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
387 vsi->vsi_num);
388 } else {
389 goto out;
390 }
391 }
392 err = 0;
393 /* check for changes in promiscuous modes */
394 if (changed_flags & IFF_ALLMULTI) {
395 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
396 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
397 if (err) {
398 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
399 goto out_promisc;
400 }
401 } else {
402 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
403 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
404 if (err) {
405 vsi->current_netdev_flags |= IFF_ALLMULTI;
406 goto out_promisc;
407 }
408 }
409 }
410
411 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
412 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
413 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
414 if (vsi->current_netdev_flags & IFF_PROMISC) {
415 /* Apply Rx filter rule to get traffic from wire */
416 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
417 err = ice_set_dflt_vsi(vsi);
418 if (err && err != -EEXIST) {
419 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
420 err, vsi->vsi_num);
421 vsi->current_netdev_flags &=
422 ~IFF_PROMISC;
423 goto out_promisc;
424 }
425 err = 0;
426 vlan_ops->dis_rx_filtering(vsi);
427
428 /* promiscuous mode implies allmulticast so
429 * that VSIs that are in promiscuous mode are
430 * subscribed to multicast packets coming to
431 * the port
432 */
433 err = ice_set_promisc(vsi,
434 ICE_MCAST_PROMISC_BITS);
435 if (err)
436 goto out_promisc;
437 }
438 } else {
439 /* Clear Rx filter to remove traffic from wire */
440 if (ice_is_vsi_dflt_vsi(vsi)) {
441 err = ice_clear_dflt_vsi(vsi);
442 if (err) {
443 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
444 err, vsi->vsi_num);
445 vsi->current_netdev_flags |=
446 IFF_PROMISC;
447 goto out_promisc;
448 }
449 if (vsi->netdev->features &
450 NETIF_F_HW_VLAN_CTAG_FILTER)
451 vlan_ops->ena_rx_filtering(vsi);
452 }
453
454 /* disable allmulti here, but only if allmulti is not
455 * still enabled for the netdev
456 */
457 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
458 err = ice_clear_promisc(vsi,
459 ICE_MCAST_PROMISC_BITS);
460 if (err) {
461 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
462 err, vsi->vsi_num);
463 }
464 }
465 }
466 }
467 goto exit;
468
469 out_promisc:
470 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
471 goto exit;
472 out:
473 /* if something went wrong then set the changed flag so we try again */
474 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
475 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
476 exit:
477 clear_bit(ICE_CFG_BUSY, vsi->state);
478 return err;
479 }
480
481 /**
482 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
483 * @pf: board private structure
484 */
ice_sync_fltr_subtask(struct ice_pf * pf)485 static void ice_sync_fltr_subtask(struct ice_pf *pf)
486 {
487 int v;
488
489 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
490 return;
491
492 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
493
494 ice_for_each_vsi(pf, v)
495 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
496 ice_vsi_sync_fltr(pf->vsi[v])) {
497 /* come back and try again later */
498 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
499 break;
500 }
501 }
502
503 /**
504 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
505 * @pf: the PF
506 * @locked: is the rtnl_lock already held
507 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
509 {
510 int node;
511 int v;
512
513 ice_for_each_vsi(pf, v)
514 if (pf->vsi[v])
515 ice_dis_vsi(pf->vsi[v], locked);
516
517 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
518 pf->pf_agg_node[node].num_vsis = 0;
519
520 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
521 pf->vf_agg_node[node].num_vsis = 0;
522 }
523
524 /**
525 * ice_prepare_for_reset - prep for reset
526 * @pf: board private structure
527 * @reset_type: reset type requested
528 *
529 * Inform or close all dependent features in prep for reset.
530 */
531 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
533 {
534 struct ice_hw *hw = &pf->hw;
535 struct ice_vsi *vsi;
536 struct ice_vf *vf;
537 unsigned int bkt;
538
539 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
540
541 /* already prepared for reset */
542 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
543 return;
544
545 synchronize_irq(pf->oicr_irq.virq);
546
547 ice_unplug_aux_dev(pf);
548
549 /* Notify VFs of impending reset */
550 if (ice_check_sq_alive(hw, &hw->mailboxq))
551 ice_vc_notify_reset(pf);
552
553 /* Disable VFs until reset is completed */
554 mutex_lock(&pf->vfs.table_lock);
555 ice_for_each_vf(pf, bkt, vf)
556 ice_set_vf_state_dis(vf);
557 mutex_unlock(&pf->vfs.table_lock);
558
559 if (ice_is_eswitch_mode_switchdev(pf)) {
560 rtnl_lock();
561 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
562 rtnl_unlock();
563 }
564
565 /* release ADQ specific HW and SW resources */
566 vsi = ice_get_main_vsi(pf);
567 if (!vsi)
568 goto skip;
569
570 /* to be on safe side, reset orig_rss_size so that normal flow
571 * of deciding rss_size can take precedence
572 */
573 vsi->orig_rss_size = 0;
574
575 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
576 if (reset_type == ICE_RESET_PFR) {
577 vsi->old_ena_tc = vsi->all_enatc;
578 vsi->old_numtc = vsi->all_numtc;
579 } else {
580 ice_remove_q_channels(vsi, true);
581
582 /* for other reset type, do not support channel rebuild
583 * hence reset needed info
584 */
585 vsi->old_ena_tc = 0;
586 vsi->all_enatc = 0;
587 vsi->old_numtc = 0;
588 vsi->all_numtc = 0;
589 vsi->req_txq = 0;
590 vsi->req_rxq = 0;
591 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
592 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
593 }
594 }
595
596 if (vsi->netdev)
597 netif_device_detach(vsi->netdev);
598 skip:
599
600 /* clear SW filtering DB */
601 ice_clear_hw_tbls(hw);
602 /* disable the VSIs and their queues that are not already DOWN */
603 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
604 ice_pf_dis_all_vsi(pf, false);
605
606 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
607 ice_ptp_prepare_for_reset(pf, reset_type);
608
609 if (ice_is_feature_supported(pf, ICE_F_GNSS))
610 ice_gnss_exit(pf);
611
612 if (hw->port_info)
613 ice_sched_clear_port(hw->port_info);
614
615 ice_shutdown_all_ctrlq(hw, false);
616
617 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
618 }
619
620 /**
621 * ice_do_reset - Initiate one of many types of resets
622 * @pf: board private structure
623 * @reset_type: reset type requested before this function was called.
624 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
626 {
627 struct device *dev = ice_pf_to_dev(pf);
628 struct ice_hw *hw = &pf->hw;
629
630 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
631
632 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
633 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
634 reset_type = ICE_RESET_CORER;
635 }
636
637 ice_prepare_for_reset(pf, reset_type);
638
639 /* trigger the reset */
640 if (ice_reset(hw, reset_type)) {
641 dev_err(dev, "reset %d failed\n", reset_type);
642 set_bit(ICE_RESET_FAILED, pf->state);
643 clear_bit(ICE_RESET_OICR_RECV, pf->state);
644 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
645 clear_bit(ICE_PFR_REQ, pf->state);
646 clear_bit(ICE_CORER_REQ, pf->state);
647 clear_bit(ICE_GLOBR_REQ, pf->state);
648 wake_up(&pf->reset_wait_queue);
649 return;
650 }
651
652 /* PFR is a bit of a special case because it doesn't result in an OICR
653 * interrupt. So for PFR, rebuild after the reset and clear the reset-
654 * associated state bits.
655 */
656 if (reset_type == ICE_RESET_PFR) {
657 pf->pfr_count++;
658 ice_rebuild(pf, reset_type);
659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
660 clear_bit(ICE_PFR_REQ, pf->state);
661 wake_up(&pf->reset_wait_queue);
662 ice_reset_all_vfs(pf);
663 }
664 }
665
666 /**
667 * ice_reset_subtask - Set up for resetting the device and driver
668 * @pf: board private structure
669 */
ice_reset_subtask(struct ice_pf * pf)670 static void ice_reset_subtask(struct ice_pf *pf)
671 {
672 enum ice_reset_req reset_type = ICE_RESET_INVAL;
673
674 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
675 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
676 * of reset is pending and sets bits in pf->state indicating the reset
677 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
678 * prepare for pending reset if not already (for PF software-initiated
679 * global resets the software should already be prepared for it as
680 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
681 * by firmware or software on other PFs, that bit is not set so prepare
682 * for the reset now), poll for reset done, rebuild and return.
683 */
684 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
685 /* Perform the largest reset requested */
686 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
687 reset_type = ICE_RESET_CORER;
688 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
689 reset_type = ICE_RESET_GLOBR;
690 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
691 reset_type = ICE_RESET_EMPR;
692 /* return if no valid reset type requested */
693 if (reset_type == ICE_RESET_INVAL)
694 return;
695 ice_prepare_for_reset(pf, reset_type);
696
697 /* make sure we are ready to rebuild */
698 if (ice_check_reset(&pf->hw)) {
699 set_bit(ICE_RESET_FAILED, pf->state);
700 } else {
701 /* done with reset. start rebuild */
702 pf->hw.reset_ongoing = false;
703 ice_rebuild(pf, reset_type);
704 /* clear bit to resume normal operations, but
705 * ICE_NEEDS_RESTART bit is set in case rebuild failed
706 */
707 clear_bit(ICE_RESET_OICR_RECV, pf->state);
708 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
709 clear_bit(ICE_PFR_REQ, pf->state);
710 clear_bit(ICE_CORER_REQ, pf->state);
711 clear_bit(ICE_GLOBR_REQ, pf->state);
712 wake_up(&pf->reset_wait_queue);
713 ice_reset_all_vfs(pf);
714 }
715
716 return;
717 }
718
719 /* No pending resets to finish processing. Check for new resets */
720 if (test_bit(ICE_PFR_REQ, pf->state)) {
721 reset_type = ICE_RESET_PFR;
722 if (pf->lag && pf->lag->bonded) {
723 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
724 reset_type = ICE_RESET_CORER;
725 }
726 }
727 if (test_bit(ICE_CORER_REQ, pf->state))
728 reset_type = ICE_RESET_CORER;
729 if (test_bit(ICE_GLOBR_REQ, pf->state))
730 reset_type = ICE_RESET_GLOBR;
731 /* If no valid reset type requested just return */
732 if (reset_type == ICE_RESET_INVAL)
733 return;
734
735 /* reset if not already down or busy */
736 if (!test_bit(ICE_DOWN, pf->state) &&
737 !test_bit(ICE_CFG_BUSY, pf->state)) {
738 ice_do_reset(pf, reset_type);
739 }
740 }
741
742 /**
743 * ice_print_topo_conflict - print topology conflict message
744 * @vsi: the VSI whose topology status is being checked
745 */
ice_print_topo_conflict(struct ice_vsi * vsi)746 static void ice_print_topo_conflict(struct ice_vsi *vsi)
747 {
748 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
749 case ICE_AQ_LINK_TOPO_CONFLICT:
750 case ICE_AQ_LINK_MEDIA_CONFLICT:
751 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
752 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
753 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
754 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
755 break;
756 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
757 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
758 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
759 else
760 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
761 break;
762 default:
763 break;
764 }
765 }
766
767 /**
768 * ice_print_link_msg - print link up or down message
769 * @vsi: the VSI whose link status is being queried
770 * @isup: boolean for if the link is now up or down
771 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
773 {
774 struct ice_aqc_get_phy_caps_data *caps;
775 const char *an_advertised;
776 const char *fec_req;
777 const char *speed;
778 const char *fec;
779 const char *fc;
780 const char *an;
781 int status;
782
783 if (!vsi)
784 return;
785
786 if (vsi->current_isup == isup)
787 return;
788
789 vsi->current_isup = isup;
790
791 if (!isup) {
792 netdev_info(vsi->netdev, "NIC Link is Down\n");
793 return;
794 }
795
796 switch (vsi->port_info->phy.link_info.link_speed) {
797 case ICE_AQ_LINK_SPEED_200GB:
798 speed = "200 G";
799 break;
800 case ICE_AQ_LINK_SPEED_100GB:
801 speed = "100 G";
802 break;
803 case ICE_AQ_LINK_SPEED_50GB:
804 speed = "50 G";
805 break;
806 case ICE_AQ_LINK_SPEED_40GB:
807 speed = "40 G";
808 break;
809 case ICE_AQ_LINK_SPEED_25GB:
810 speed = "25 G";
811 break;
812 case ICE_AQ_LINK_SPEED_20GB:
813 speed = "20 G";
814 break;
815 case ICE_AQ_LINK_SPEED_10GB:
816 speed = "10 G";
817 break;
818 case ICE_AQ_LINK_SPEED_5GB:
819 speed = "5 G";
820 break;
821 case ICE_AQ_LINK_SPEED_2500MB:
822 speed = "2.5 G";
823 break;
824 case ICE_AQ_LINK_SPEED_1000MB:
825 speed = "1 G";
826 break;
827 case ICE_AQ_LINK_SPEED_100MB:
828 speed = "100 M";
829 break;
830 default:
831 speed = "Unknown ";
832 break;
833 }
834
835 switch (vsi->port_info->fc.current_mode) {
836 case ICE_FC_FULL:
837 fc = "Rx/Tx";
838 break;
839 case ICE_FC_TX_PAUSE:
840 fc = "Tx";
841 break;
842 case ICE_FC_RX_PAUSE:
843 fc = "Rx";
844 break;
845 case ICE_FC_NONE:
846 fc = "None";
847 break;
848 default:
849 fc = "Unknown";
850 break;
851 }
852
853 /* Get FEC mode based on negotiated link info */
854 switch (vsi->port_info->phy.link_info.fec_info) {
855 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
856 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
857 fec = "RS-FEC";
858 break;
859 case ICE_AQ_LINK_25G_KR_FEC_EN:
860 fec = "FC-FEC/BASE-R";
861 break;
862 default:
863 fec = "NONE";
864 break;
865 }
866
867 /* check if autoneg completed, might be false due to not supported */
868 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
869 an = "True";
870 else
871 an = "False";
872
873 /* Get FEC mode requested based on PHY caps last SW configuration */
874 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
875 if (!caps) {
876 fec_req = "Unknown";
877 an_advertised = "Unknown";
878 goto done;
879 }
880
881 status = ice_aq_get_phy_caps(vsi->port_info, false,
882 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
883 if (status)
884 netdev_info(vsi->netdev, "Get phy capability failed.\n");
885
886 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
887
888 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
889 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
890 fec_req = "RS-FEC";
891 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
892 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
893 fec_req = "FC-FEC/BASE-R";
894 else
895 fec_req = "NONE";
896
897 kfree(caps);
898
899 done:
900 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
901 speed, fec_req, fec, an_advertised, an, fc);
902 ice_print_topo_conflict(vsi);
903 }
904
905 /**
906 * ice_vsi_link_event - update the VSI's netdev
907 * @vsi: the VSI on which the link event occurred
908 * @link_up: whether or not the VSI needs to be set up or down
909 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
911 {
912 if (!vsi)
913 return;
914
915 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
916 return;
917
918 if (vsi->type == ICE_VSI_PF) {
919 if (link_up == netif_carrier_ok(vsi->netdev))
920 return;
921
922 if (link_up) {
923 netif_carrier_on(vsi->netdev);
924 netif_tx_wake_all_queues(vsi->netdev);
925 } else {
926 netif_carrier_off(vsi->netdev);
927 netif_tx_stop_all_queues(vsi->netdev);
928 }
929 }
930 }
931
932 /**
933 * ice_set_dflt_mib - send a default config MIB to the FW
934 * @pf: private PF struct
935 *
936 * This function sends a default configuration MIB to the FW.
937 *
938 * If this function errors out at any point, the driver is still able to
939 * function. The main impact is that LFC may not operate as expected.
940 * Therefore an error state in this function should be treated with a DBG
941 * message and continue on with driver rebuild/reenable.
942 */
ice_set_dflt_mib(struct ice_pf * pf)943 static void ice_set_dflt_mib(struct ice_pf *pf)
944 {
945 struct device *dev = ice_pf_to_dev(pf);
946 u8 mib_type, *buf, *lldpmib = NULL;
947 u16 len, typelen, offset = 0;
948 struct ice_lldp_org_tlv *tlv;
949 struct ice_hw *hw = &pf->hw;
950 u32 ouisubtype;
951
952 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
953 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
954 if (!lldpmib) {
955 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
956 __func__);
957 return;
958 }
959
960 /* Add ETS CFG TLV */
961 tlv = (struct ice_lldp_org_tlv *)lldpmib;
962 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
963 ICE_IEEE_ETS_TLV_LEN);
964 tlv->typelen = htons(typelen);
965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
966 ICE_IEEE_SUBTYPE_ETS_CFG);
967 tlv->ouisubtype = htonl(ouisubtype);
968
969 buf = tlv->tlvinfo;
970 buf[0] = 0;
971
972 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
973 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
974 * Octets 13 - 20 are TSA values - leave as zeros
975 */
976 buf[5] = 0x64;
977 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
978 offset += len + 2;
979 tlv = (struct ice_lldp_org_tlv *)
980 ((char *)tlv + sizeof(tlv->typelen) + len);
981
982 /* Add ETS REC TLV */
983 buf = tlv->tlvinfo;
984 tlv->typelen = htons(typelen);
985
986 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
987 ICE_IEEE_SUBTYPE_ETS_REC);
988 tlv->ouisubtype = htonl(ouisubtype);
989
990 /* First octet of buf is reserved
991 * Octets 1 - 4 map UP to TC - all UPs map to zero
992 * Octets 5 - 12 are BW values - set TC 0 to 100%.
993 * Octets 13 - 20 are TSA value - leave as zeros
994 */
995 buf[5] = 0x64;
996 offset += len + 2;
997 tlv = (struct ice_lldp_org_tlv *)
998 ((char *)tlv + sizeof(tlv->typelen) + len);
999
1000 /* Add PFC CFG TLV */
1001 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1002 ICE_IEEE_PFC_TLV_LEN);
1003 tlv->typelen = htons(typelen);
1004
1005 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1006 ICE_IEEE_SUBTYPE_PFC_CFG);
1007 tlv->ouisubtype = htonl(ouisubtype);
1008
1009 /* Octet 1 left as all zeros - PFC disabled */
1010 buf[0] = 0x08;
1011 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1012 offset += len + 2;
1013
1014 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1015 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1016
1017 kfree(lldpmib);
1018 }
1019
1020 /**
1021 * ice_check_phy_fw_load - check if PHY FW load failed
1022 * @pf: pointer to PF struct
1023 * @link_cfg_err: bitmap from the link info structure
1024 *
1025 * check if external PHY FW load failed and print an error message if it did
1026 */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1028 {
1029 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1030 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1031 return;
1032 }
1033
1034 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1035 return;
1036
1037 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1038 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1039 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1040 }
1041 }
1042
1043 /**
1044 * ice_check_module_power
1045 * @pf: pointer to PF struct
1046 * @link_cfg_err: bitmap from the link info structure
1047 *
1048 * check module power level returned by a previous call to aq_get_link_info
1049 * and print error messages if module power level is not supported
1050 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1052 {
1053 /* if module power level is supported, clear the flag */
1054 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1055 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1056 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1057 return;
1058 }
1059
1060 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1061 * above block didn't clear this bit, there's nothing to do
1062 */
1063 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1064 return;
1065
1066 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1067 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1068 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1069 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1070 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1071 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1072 }
1073 }
1074
1075 /**
1076 * ice_check_link_cfg_err - check if link configuration failed
1077 * @pf: pointer to the PF struct
1078 * @link_cfg_err: bitmap from the link info structure
1079 *
1080 * print if any link configuration failure happens due to the value in the
1081 * link_cfg_err parameter in the link info structure
1082 */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1084 {
1085 ice_check_module_power(pf, link_cfg_err);
1086 ice_check_phy_fw_load(pf, link_cfg_err);
1087 }
1088
1089 /**
1090 * ice_link_event - process the link event
1091 * @pf: PF that the link event is associated with
1092 * @pi: port_info for the port that the link event is associated with
1093 * @link_up: true if the physical link is up and false if it is down
1094 * @link_speed: current link speed received from the link event
1095 *
1096 * Returns 0 on success and negative on failure
1097 */
1098 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1100 u16 link_speed)
1101 {
1102 struct device *dev = ice_pf_to_dev(pf);
1103 struct ice_phy_info *phy_info;
1104 struct ice_vsi *vsi;
1105 u16 old_link_speed;
1106 bool old_link;
1107 int status;
1108
1109 phy_info = &pi->phy;
1110 phy_info->link_info_old = phy_info->link_info;
1111
1112 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1113 old_link_speed = phy_info->link_info_old.link_speed;
1114
1115 /* update the link info structures and re-enable link events,
1116 * don't bail on failure due to other book keeping needed
1117 */
1118 status = ice_update_link_info(pi);
1119 if (status)
1120 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1121 pi->lport, status,
1122 ice_aq_str(pi->hw->adminq.sq_last_status));
1123
1124 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1125
1126 /* Check if the link state is up after updating link info, and treat
1127 * this event as an UP event since the link is actually UP now.
1128 */
1129 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1130 link_up = true;
1131
1132 vsi = ice_get_main_vsi(pf);
1133 if (!vsi || !vsi->port_info)
1134 return -EINVAL;
1135
1136 /* turn off PHY if media was removed */
1137 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1138 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1139 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1140 ice_set_link(vsi, false);
1141 }
1142
1143 /* if the old link up/down and speed is the same as the new */
1144 if (link_up == old_link && link_speed == old_link_speed)
1145 return 0;
1146
1147 ice_ptp_link_change(pf, link_up);
1148
1149 if (ice_is_dcb_active(pf)) {
1150 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1151 ice_dcb_rebuild(pf);
1152 } else {
1153 if (link_up)
1154 ice_set_dflt_mib(pf);
1155 }
1156 ice_vsi_link_event(vsi, link_up);
1157 ice_print_link_msg(vsi, link_up);
1158
1159 ice_vc_notify_link_state(pf);
1160
1161 return 0;
1162 }
1163
1164 /**
1165 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1166 * @pf: board private structure
1167 */
ice_watchdog_subtask(struct ice_pf * pf)1168 static void ice_watchdog_subtask(struct ice_pf *pf)
1169 {
1170 int i;
1171
1172 /* if interface is down do nothing */
1173 if (test_bit(ICE_DOWN, pf->state) ||
1174 test_bit(ICE_CFG_BUSY, pf->state))
1175 return;
1176
1177 /* make sure we don't do these things too often */
1178 if (time_before(jiffies,
1179 pf->serv_tmr_prev + pf->serv_tmr_period))
1180 return;
1181
1182 pf->serv_tmr_prev = jiffies;
1183
1184 /* Update the stats for active netdevs so the network stack
1185 * can look at updated numbers whenever it cares to
1186 */
1187 ice_update_pf_stats(pf);
1188 ice_for_each_vsi(pf, i)
1189 if (pf->vsi[i] && pf->vsi[i]->netdev)
1190 ice_update_vsi_stats(pf->vsi[i]);
1191 }
1192
1193 /**
1194 * ice_init_link_events - enable/initialize link events
1195 * @pi: pointer to the port_info instance
1196 *
1197 * Returns -EIO on failure, 0 on success
1198 */
ice_init_link_events(struct ice_port_info * pi)1199 static int ice_init_link_events(struct ice_port_info *pi)
1200 {
1201 u16 mask;
1202
1203 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1204 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1205 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1206
1207 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1209 pi->lport);
1210 return -EIO;
1211 }
1212
1213 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1215 pi->lport);
1216 return -EIO;
1217 }
1218
1219 return 0;
1220 }
1221
1222 /**
1223 * ice_handle_link_event - handle link event via ARQ
1224 * @pf: PF that the link event is associated with
1225 * @event: event structure containing link status info
1226 */
1227 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1228 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1229 {
1230 struct ice_aqc_get_link_status_data *link_data;
1231 struct ice_port_info *port_info;
1232 int status;
1233
1234 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1235 port_info = pf->hw.port_info;
1236 if (!port_info)
1237 return -EINVAL;
1238
1239 status = ice_link_event(pf, port_info,
1240 !!(link_data->link_info & ICE_AQ_LINK_UP),
1241 le16_to_cpu(link_data->link_speed));
1242 if (status)
1243 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1244 status);
1245
1246 return status;
1247 }
1248
1249 /**
1250 * ice_get_fwlog_data - copy the FW log data from ARQ event
1251 * @pf: PF that the FW log event is associated with
1252 * @event: event structure containing FW log data
1253 */
1254 static void
ice_get_fwlog_data(struct ice_pf * pf,struct ice_rq_event_info * event)1255 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1256 {
1257 struct ice_fwlog_data *fwlog;
1258 struct ice_hw *hw = &pf->hw;
1259
1260 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1261
1262 memset(fwlog->data, 0, PAGE_SIZE);
1263 fwlog->data_size = le16_to_cpu(event->desc.datalen);
1264
1265 memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1266 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1267
1268 if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1269 /* the rings are full so bump the head to create room */
1270 ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1271 hw->fwlog_ring.size);
1272 }
1273 }
1274
1275 /**
1276 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1277 * @pf: pointer to the PF private structure
1278 * @task: intermediate helper storage and identifier for waiting
1279 * @opcode: the opcode to wait for
1280 *
1281 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1282 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1283 *
1284 * Calls are separated to allow caller registering for event before sending
1285 * the command, which mitigates a race between registering and FW responding.
1286 *
1287 * To obtain only the descriptor contents, pass an task->event with null
1288 * msg_buf. If the complete data buffer is desired, allocate the
1289 * task->event.msg_buf with enough space ahead of time.
1290 */
ice_aq_prep_for_event(struct ice_pf * pf,struct ice_aq_task * task,u16 opcode)1291 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1292 u16 opcode)
1293 {
1294 INIT_HLIST_NODE(&task->entry);
1295 task->opcode = opcode;
1296 task->state = ICE_AQ_TASK_WAITING;
1297
1298 spin_lock_bh(&pf->aq_wait_lock);
1299 hlist_add_head(&task->entry, &pf->aq_wait_list);
1300 spin_unlock_bh(&pf->aq_wait_lock);
1301 }
1302
1303 /**
1304 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1305 * @pf: pointer to the PF private structure
1306 * @task: ptr prepared by ice_aq_prep_for_event()
1307 * @timeout: how long to wait, in jiffies
1308 *
1309 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1310 * current thread will be put to sleep until the specified event occurs or
1311 * until the given timeout is reached.
1312 *
1313 * Returns: zero on success, or a negative error code on failure.
1314 */
ice_aq_wait_for_event(struct ice_pf * pf,struct ice_aq_task * task,unsigned long timeout)1315 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1316 unsigned long timeout)
1317 {
1318 enum ice_aq_task_state *state = &task->state;
1319 struct device *dev = ice_pf_to_dev(pf);
1320 unsigned long start = jiffies;
1321 long ret;
1322 int err;
1323
1324 ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1325 *state != ICE_AQ_TASK_WAITING,
1326 timeout);
1327 switch (*state) {
1328 case ICE_AQ_TASK_NOT_PREPARED:
1329 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1330 err = -EINVAL;
1331 break;
1332 case ICE_AQ_TASK_WAITING:
1333 err = ret < 0 ? ret : -ETIMEDOUT;
1334 break;
1335 case ICE_AQ_TASK_CANCELED:
1336 err = ret < 0 ? ret : -ECANCELED;
1337 break;
1338 case ICE_AQ_TASK_COMPLETE:
1339 err = ret < 0 ? ret : 0;
1340 break;
1341 default:
1342 WARN(1, "Unexpected AdminQ wait task state %u", *state);
1343 err = -EINVAL;
1344 break;
1345 }
1346
1347 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1348 jiffies_to_msecs(jiffies - start),
1349 jiffies_to_msecs(timeout),
1350 task->opcode);
1351
1352 spin_lock_bh(&pf->aq_wait_lock);
1353 hlist_del(&task->entry);
1354 spin_unlock_bh(&pf->aq_wait_lock);
1355
1356 return err;
1357 }
1358
1359 /**
1360 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1361 * @pf: pointer to the PF private structure
1362 * @opcode: the opcode of the event
1363 * @event: the event to check
1364 *
1365 * Loops over the current list of pending threads waiting for an AdminQ event.
1366 * For each matching task, copy the contents of the event into the task
1367 * structure and wake up the thread.
1368 *
1369 * If multiple threads wait for the same opcode, they will all be woken up.
1370 *
1371 * Note that event->msg_buf will only be duplicated if the event has a buffer
1372 * with enough space already allocated. Otherwise, only the descriptor and
1373 * message length will be copied.
1374 *
1375 * Returns: true if an event was found, false otherwise
1376 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1377 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1378 struct ice_rq_event_info *event)
1379 {
1380 struct ice_rq_event_info *task_ev;
1381 struct ice_aq_task *task;
1382 bool found = false;
1383
1384 spin_lock_bh(&pf->aq_wait_lock);
1385 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1386 if (task->state != ICE_AQ_TASK_WAITING)
1387 continue;
1388 if (task->opcode != opcode)
1389 continue;
1390
1391 task_ev = &task->event;
1392 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1393 task_ev->msg_len = event->msg_len;
1394
1395 /* Only copy the data buffer if a destination was set */
1396 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1397 memcpy(task_ev->msg_buf, event->msg_buf,
1398 event->buf_len);
1399 task_ev->buf_len = event->buf_len;
1400 }
1401
1402 task->state = ICE_AQ_TASK_COMPLETE;
1403 found = true;
1404 }
1405 spin_unlock_bh(&pf->aq_wait_lock);
1406
1407 if (found)
1408 wake_up(&pf->aq_wait_queue);
1409 }
1410
1411 /**
1412 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1413 * @pf: the PF private structure
1414 *
1415 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1416 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1417 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1418 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1419 {
1420 struct ice_aq_task *task;
1421
1422 spin_lock_bh(&pf->aq_wait_lock);
1423 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1424 task->state = ICE_AQ_TASK_CANCELED;
1425 spin_unlock_bh(&pf->aq_wait_lock);
1426
1427 wake_up(&pf->aq_wait_queue);
1428 }
1429
1430 #define ICE_MBX_OVERFLOW_WATERMARK 64
1431
1432 /**
1433 * __ice_clean_ctrlq - helper function to clean controlq rings
1434 * @pf: ptr to struct ice_pf
1435 * @q_type: specific Control queue type
1436 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1437 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1438 {
1439 struct device *dev = ice_pf_to_dev(pf);
1440 struct ice_rq_event_info event;
1441 struct ice_hw *hw = &pf->hw;
1442 struct ice_ctl_q_info *cq;
1443 u16 pending, i = 0;
1444 const char *qtype;
1445 u32 oldval, val;
1446
1447 /* Do not clean control queue if/when PF reset fails */
1448 if (test_bit(ICE_RESET_FAILED, pf->state))
1449 return 0;
1450
1451 switch (q_type) {
1452 case ICE_CTL_Q_ADMIN:
1453 cq = &hw->adminq;
1454 qtype = "Admin";
1455 break;
1456 case ICE_CTL_Q_SB:
1457 cq = &hw->sbq;
1458 qtype = "Sideband";
1459 break;
1460 case ICE_CTL_Q_MAILBOX:
1461 cq = &hw->mailboxq;
1462 qtype = "Mailbox";
1463 /* we are going to try to detect a malicious VF, so set the
1464 * state to begin detection
1465 */
1466 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1467 break;
1468 default:
1469 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1470 return 0;
1471 }
1472
1473 /* check for error indications - PF_xx_AxQLEN register layout for
1474 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1475 */
1476 val = rd32(hw, cq->rq.len);
1477 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1478 PF_FW_ARQLEN_ARQCRIT_M)) {
1479 oldval = val;
1480 if (val & PF_FW_ARQLEN_ARQVFE_M)
1481 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1482 qtype);
1483 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1484 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1485 qtype);
1486 }
1487 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1488 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1489 qtype);
1490 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1491 PF_FW_ARQLEN_ARQCRIT_M);
1492 if (oldval != val)
1493 wr32(hw, cq->rq.len, val);
1494 }
1495
1496 val = rd32(hw, cq->sq.len);
1497 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1498 PF_FW_ATQLEN_ATQCRIT_M)) {
1499 oldval = val;
1500 if (val & PF_FW_ATQLEN_ATQVFE_M)
1501 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1502 qtype);
1503 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1504 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1505 qtype);
1506 }
1507 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1508 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1509 qtype);
1510 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1511 PF_FW_ATQLEN_ATQCRIT_M);
1512 if (oldval != val)
1513 wr32(hw, cq->sq.len, val);
1514 }
1515
1516 event.buf_len = cq->rq_buf_size;
1517 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1518 if (!event.msg_buf)
1519 return 0;
1520
1521 do {
1522 struct ice_mbx_data data = {};
1523 u16 opcode;
1524 int ret;
1525
1526 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1527 if (ret == -EALREADY)
1528 break;
1529 if (ret) {
1530 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1531 ret);
1532 break;
1533 }
1534
1535 opcode = le16_to_cpu(event.desc.opcode);
1536
1537 /* Notify any thread that might be waiting for this event */
1538 ice_aq_check_events(pf, opcode, &event);
1539
1540 switch (opcode) {
1541 case ice_aqc_opc_get_link_status:
1542 if (ice_handle_link_event(pf, &event))
1543 dev_err(dev, "Could not handle link event\n");
1544 break;
1545 case ice_aqc_opc_event_lan_overflow:
1546 ice_vf_lan_overflow_event(pf, &event);
1547 break;
1548 case ice_mbx_opc_send_msg_to_pf:
1549 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) {
1550 ice_vc_process_vf_msg(pf, &event, NULL);
1551 ice_mbx_vf_dec_trig_e830(hw, &event);
1552 } else {
1553 u16 val = hw->mailboxq.num_rq_entries;
1554
1555 data.max_num_msgs_mbx = val;
1556 val = ICE_MBX_OVERFLOW_WATERMARK;
1557 data.async_watermark_val = val;
1558 data.num_msg_proc = i;
1559 data.num_pending_arq = pending;
1560
1561 ice_vc_process_vf_msg(pf, &event, &data);
1562 }
1563 break;
1564 case ice_aqc_opc_fw_logs_event:
1565 ice_get_fwlog_data(pf, &event);
1566 break;
1567 case ice_aqc_opc_lldp_set_mib_change:
1568 ice_dcb_process_lldp_set_mib_change(pf, &event);
1569 break;
1570 case ice_aqc_opc_get_health_status:
1571 ice_process_health_status_event(pf, &event);
1572 break;
1573 default:
1574 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1575 qtype, opcode);
1576 break;
1577 }
1578 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1579
1580 kfree(event.msg_buf);
1581
1582 return pending && (i == ICE_DFLT_IRQ_WORK);
1583 }
1584
1585 /**
1586 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1587 * @hw: pointer to hardware info
1588 * @cq: control queue information
1589 *
1590 * returns true if there are pending messages in a queue, false if there aren't
1591 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1592 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1593 {
1594 u16 ntu;
1595
1596 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1597 return cq->rq.next_to_clean != ntu;
1598 }
1599
1600 /**
1601 * ice_clean_adminq_subtask - clean the AdminQ rings
1602 * @pf: board private structure
1603 */
ice_clean_adminq_subtask(struct ice_pf * pf)1604 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1605 {
1606 struct ice_hw *hw = &pf->hw;
1607
1608 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1609 return;
1610
1611 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1612 return;
1613
1614 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1615
1616 /* There might be a situation where new messages arrive to a control
1617 * queue between processing the last message and clearing the
1618 * EVENT_PENDING bit. So before exiting, check queue head again (using
1619 * ice_ctrlq_pending) and process new messages if any.
1620 */
1621 if (ice_ctrlq_pending(hw, &hw->adminq))
1622 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1623
1624 ice_flush(hw);
1625 }
1626
1627 /**
1628 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1629 * @pf: board private structure
1630 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1631 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1632 {
1633 struct ice_hw *hw = &pf->hw;
1634
1635 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1636 return;
1637
1638 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1639 return;
1640
1641 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1642
1643 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1644 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1645
1646 ice_flush(hw);
1647 }
1648
1649 /**
1650 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1651 * @pf: board private structure
1652 */
ice_clean_sbq_subtask(struct ice_pf * pf)1653 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1654 {
1655 struct ice_hw *hw = &pf->hw;
1656
1657 /* if mac_type is not generic, sideband is not supported
1658 * and there's nothing to do here
1659 */
1660 if (!ice_is_generic_mac(hw)) {
1661 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1662 return;
1663 }
1664
1665 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1666 return;
1667
1668 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1669 return;
1670
1671 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1672
1673 if (ice_ctrlq_pending(hw, &hw->sbq))
1674 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1675
1676 ice_flush(hw);
1677 }
1678
1679 /**
1680 * ice_service_task_schedule - schedule the service task to wake up
1681 * @pf: board private structure
1682 *
1683 * If not already scheduled, this puts the task into the work queue.
1684 */
ice_service_task_schedule(struct ice_pf * pf)1685 void ice_service_task_schedule(struct ice_pf *pf)
1686 {
1687 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1688 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1689 !test_bit(ICE_NEEDS_RESTART, pf->state))
1690 queue_work(ice_wq, &pf->serv_task);
1691 }
1692
1693 /**
1694 * ice_service_task_complete - finish up the service task
1695 * @pf: board private structure
1696 */
ice_service_task_complete(struct ice_pf * pf)1697 static void ice_service_task_complete(struct ice_pf *pf)
1698 {
1699 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1700
1701 /* force memory (pf->state) to sync before next service task */
1702 smp_mb__before_atomic();
1703 clear_bit(ICE_SERVICE_SCHED, pf->state);
1704 }
1705
1706 /**
1707 * ice_service_task_stop - stop service task and cancel works
1708 * @pf: board private structure
1709 *
1710 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1711 * 1 otherwise.
1712 */
ice_service_task_stop(struct ice_pf * pf)1713 static int ice_service_task_stop(struct ice_pf *pf)
1714 {
1715 int ret;
1716
1717 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1718
1719 if (pf->serv_tmr.function)
1720 del_timer_sync(&pf->serv_tmr);
1721 if (pf->serv_task.func)
1722 cancel_work_sync(&pf->serv_task);
1723
1724 clear_bit(ICE_SERVICE_SCHED, pf->state);
1725 return ret;
1726 }
1727
1728 /**
1729 * ice_service_task_restart - restart service task and schedule works
1730 * @pf: board private structure
1731 *
1732 * This function is needed for suspend and resume works (e.g WoL scenario)
1733 */
ice_service_task_restart(struct ice_pf * pf)1734 static void ice_service_task_restart(struct ice_pf *pf)
1735 {
1736 clear_bit(ICE_SERVICE_DIS, pf->state);
1737 ice_service_task_schedule(pf);
1738 }
1739
1740 /**
1741 * ice_service_timer - timer callback to schedule service task
1742 * @t: pointer to timer_list
1743 */
ice_service_timer(struct timer_list * t)1744 static void ice_service_timer(struct timer_list *t)
1745 {
1746 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1747
1748 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1749 ice_service_task_schedule(pf);
1750 }
1751
1752 /**
1753 * ice_mdd_maybe_reset_vf - reset VF after MDD event
1754 * @pf: pointer to the PF structure
1755 * @vf: pointer to the VF structure
1756 * @reset_vf_tx: whether Tx MDD has occurred
1757 * @reset_vf_rx: whether Rx MDD has occurred
1758 *
1759 * Since the queue can get stuck on VF MDD events, the PF can be configured to
1760 * automatically reset the VF by enabling the private ethtool flag
1761 * mdd-auto-reset-vf.
1762 */
ice_mdd_maybe_reset_vf(struct ice_pf * pf,struct ice_vf * vf,bool reset_vf_tx,bool reset_vf_rx)1763 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf,
1764 bool reset_vf_tx, bool reset_vf_rx)
1765 {
1766 struct device *dev = ice_pf_to_dev(pf);
1767
1768 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1769 return;
1770
1771 /* VF MDD event counters will be cleared by reset, so print the event
1772 * prior to reset.
1773 */
1774 if (reset_vf_tx)
1775 ice_print_vf_tx_mdd_event(vf);
1776
1777 if (reset_vf_rx)
1778 ice_print_vf_rx_mdd_event(vf);
1779
1780 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n",
1781 pf->hw.pf_id, vf->vf_id);
1782 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1783 }
1784
1785 /**
1786 * ice_handle_mdd_event - handle malicious driver detect event
1787 * @pf: pointer to the PF structure
1788 *
1789 * Called from service task. OICR interrupt handler indicates MDD event.
1790 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1791 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1792 * disable the queue, the PF can be configured to reset the VF using ethtool
1793 * private flag mdd-auto-reset-vf.
1794 */
ice_handle_mdd_event(struct ice_pf * pf)1795 static void ice_handle_mdd_event(struct ice_pf *pf)
1796 {
1797 struct device *dev = ice_pf_to_dev(pf);
1798 struct ice_hw *hw = &pf->hw;
1799 struct ice_vf *vf;
1800 unsigned int bkt;
1801 u32 reg;
1802
1803 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1804 /* Since the VF MDD event logging is rate limited, check if
1805 * there are pending MDD events.
1806 */
1807 ice_print_vfs_mdd_events(pf);
1808 return;
1809 }
1810
1811 /* find what triggered an MDD event */
1812 reg = rd32(hw, GL_MDET_TX_PQM);
1813 if (reg & GL_MDET_TX_PQM_VALID_M) {
1814 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1815 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1816 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1817 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1818
1819 if (netif_msg_tx_err(pf))
1820 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1821 event, queue, pf_num, vf_num);
1822 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num,
1823 event, queue);
1824 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1825 }
1826
1827 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1828 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1829 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1830 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1831 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1832 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1833
1834 if (netif_msg_tx_err(pf))
1835 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1836 event, queue, pf_num, vf_num);
1837 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num,
1838 event, queue);
1839 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1840 }
1841
1842 reg = rd32(hw, GL_MDET_RX);
1843 if (reg & GL_MDET_RX_VALID_M) {
1844 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1845 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1846 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1847 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1848
1849 if (netif_msg_rx_err(pf))
1850 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1851 event, queue, pf_num, vf_num);
1852 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event,
1853 queue);
1854 wr32(hw, GL_MDET_RX, 0xffffffff);
1855 }
1856
1857 /* check to see if this PF caused an MDD event */
1858 reg = rd32(hw, PF_MDET_TX_PQM);
1859 if (reg & PF_MDET_TX_PQM_VALID_M) {
1860 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1861 if (netif_msg_tx_err(pf))
1862 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1863 }
1864
1865 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1866 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1867 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1868 if (netif_msg_tx_err(pf))
1869 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1870 }
1871
1872 reg = rd32(hw, PF_MDET_RX);
1873 if (reg & PF_MDET_RX_VALID_M) {
1874 wr32(hw, PF_MDET_RX, 0xFFFF);
1875 if (netif_msg_rx_err(pf))
1876 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1877 }
1878
1879 /* Check to see if one of the VFs caused an MDD event, and then
1880 * increment counters and set print pending
1881 */
1882 mutex_lock(&pf->vfs.table_lock);
1883 ice_for_each_vf(pf, bkt, vf) {
1884 bool reset_vf_tx = false, reset_vf_rx = false;
1885
1886 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1887 if (reg & VP_MDET_TX_PQM_VALID_M) {
1888 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1889 vf->mdd_tx_events.count++;
1890 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1891 if (netif_msg_tx_err(pf))
1892 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1893 vf->vf_id);
1894
1895 reset_vf_tx = true;
1896 }
1897
1898 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1899 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1900 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1901 vf->mdd_tx_events.count++;
1902 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1903 if (netif_msg_tx_err(pf))
1904 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1905 vf->vf_id);
1906
1907 reset_vf_tx = true;
1908 }
1909
1910 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1911 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1912 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1913 vf->mdd_tx_events.count++;
1914 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1915 if (netif_msg_tx_err(pf))
1916 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1917 vf->vf_id);
1918
1919 reset_vf_tx = true;
1920 }
1921
1922 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1923 if (reg & VP_MDET_RX_VALID_M) {
1924 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1925 vf->mdd_rx_events.count++;
1926 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1927 if (netif_msg_rx_err(pf))
1928 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1929 vf->vf_id);
1930
1931 reset_vf_rx = true;
1932 }
1933
1934 if (reset_vf_tx || reset_vf_rx)
1935 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx,
1936 reset_vf_rx);
1937 }
1938 mutex_unlock(&pf->vfs.table_lock);
1939
1940 ice_print_vfs_mdd_events(pf);
1941 }
1942
1943 /**
1944 * ice_force_phys_link_state - Force the physical link state
1945 * @vsi: VSI to force the physical link state to up/down
1946 * @link_up: true/false indicates to set the physical link to up/down
1947 *
1948 * Force the physical link state by getting the current PHY capabilities from
1949 * hardware and setting the PHY config based on the determined capabilities. If
1950 * link changes a link event will be triggered because both the Enable Automatic
1951 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1952 *
1953 * Returns 0 on success, negative on failure
1954 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1955 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1956 {
1957 struct ice_aqc_get_phy_caps_data *pcaps;
1958 struct ice_aqc_set_phy_cfg_data *cfg;
1959 struct ice_port_info *pi;
1960 struct device *dev;
1961 int retcode;
1962
1963 if (!vsi || !vsi->port_info || !vsi->back)
1964 return -EINVAL;
1965 if (vsi->type != ICE_VSI_PF)
1966 return 0;
1967
1968 dev = ice_pf_to_dev(vsi->back);
1969
1970 pi = vsi->port_info;
1971
1972 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1973 if (!pcaps)
1974 return -ENOMEM;
1975
1976 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1977 NULL);
1978 if (retcode) {
1979 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1980 vsi->vsi_num, retcode);
1981 retcode = -EIO;
1982 goto out;
1983 }
1984
1985 /* No change in link */
1986 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1987 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1988 goto out;
1989
1990 /* Use the current user PHY configuration. The current user PHY
1991 * configuration is initialized during probe from PHY capabilities
1992 * software mode, and updated on set PHY configuration.
1993 */
1994 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1995 if (!cfg) {
1996 retcode = -ENOMEM;
1997 goto out;
1998 }
1999
2000 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2001 if (link_up)
2002 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
2003 else
2004 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
2005
2006 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
2007 if (retcode) {
2008 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2009 vsi->vsi_num, retcode);
2010 retcode = -EIO;
2011 }
2012
2013 kfree(cfg);
2014 out:
2015 kfree(pcaps);
2016 return retcode;
2017 }
2018
2019 /**
2020 * ice_init_nvm_phy_type - Initialize the NVM PHY type
2021 * @pi: port info structure
2022 *
2023 * Initialize nvm_phy_type_[low|high] for link lenient mode support
2024 */
ice_init_nvm_phy_type(struct ice_port_info * pi)2025 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
2026 {
2027 struct ice_aqc_get_phy_caps_data *pcaps;
2028 struct ice_pf *pf = pi->hw->back;
2029 int err;
2030
2031 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2032 if (!pcaps)
2033 return -ENOMEM;
2034
2035 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
2036 pcaps, NULL);
2037
2038 if (err) {
2039 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2040 goto out;
2041 }
2042
2043 pf->nvm_phy_type_hi = pcaps->phy_type_high;
2044 pf->nvm_phy_type_lo = pcaps->phy_type_low;
2045
2046 out:
2047 kfree(pcaps);
2048 return err;
2049 }
2050
2051 /**
2052 * ice_init_link_dflt_override - Initialize link default override
2053 * @pi: port info structure
2054 *
2055 * Initialize link default override and PHY total port shutdown during probe
2056 */
ice_init_link_dflt_override(struct ice_port_info * pi)2057 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2058 {
2059 struct ice_link_default_override_tlv *ldo;
2060 struct ice_pf *pf = pi->hw->back;
2061
2062 ldo = &pf->link_dflt_override;
2063 if (ice_get_link_default_override(ldo, pi))
2064 return;
2065
2066 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2067 return;
2068
2069 /* Enable Total Port Shutdown (override/replace link-down-on-close
2070 * ethtool private flag) for ports with Port Disable bit set.
2071 */
2072 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2073 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2074 }
2075
2076 /**
2077 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2078 * @pi: port info structure
2079 *
2080 * If default override is enabled, initialize the user PHY cfg speed and FEC
2081 * settings using the default override mask from the NVM.
2082 *
2083 * The PHY should only be configured with the default override settings the
2084 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2085 * is used to indicate that the user PHY cfg default override is initialized
2086 * and the PHY has not been configured with the default override settings. The
2087 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2088 * configured.
2089 *
2090 * This function should be called only if the FW doesn't support default
2091 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2092 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)2093 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2094 {
2095 struct ice_link_default_override_tlv *ldo;
2096 struct ice_aqc_set_phy_cfg_data *cfg;
2097 struct ice_phy_info *phy = &pi->phy;
2098 struct ice_pf *pf = pi->hw->back;
2099
2100 ldo = &pf->link_dflt_override;
2101
2102 /* If link default override is enabled, use to mask NVM PHY capabilities
2103 * for speed and FEC default configuration.
2104 */
2105 cfg = &phy->curr_user_phy_cfg;
2106
2107 if (ldo->phy_type_low || ldo->phy_type_high) {
2108 cfg->phy_type_low = pf->nvm_phy_type_lo &
2109 cpu_to_le64(ldo->phy_type_low);
2110 cfg->phy_type_high = pf->nvm_phy_type_hi &
2111 cpu_to_le64(ldo->phy_type_high);
2112 }
2113 cfg->link_fec_opt = ldo->fec_options;
2114 phy->curr_user_fec_req = ICE_FEC_AUTO;
2115
2116 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2117 }
2118
2119 /**
2120 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2121 * @pi: port info structure
2122 *
2123 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2124 * mode to default. The PHY defaults are from get PHY capabilities topology
2125 * with media so call when media is first available. An error is returned if
2126 * called when media is not available. The PHY initialization completed state is
2127 * set here.
2128 *
2129 * These configurations are used when setting PHY
2130 * configuration. The user PHY configuration is updated on set PHY
2131 * configuration. Returns 0 on success, negative on failure
2132 */
ice_init_phy_user_cfg(struct ice_port_info * pi)2133 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2134 {
2135 struct ice_aqc_get_phy_caps_data *pcaps;
2136 struct ice_phy_info *phy = &pi->phy;
2137 struct ice_pf *pf = pi->hw->back;
2138 int err;
2139
2140 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2141 return -EIO;
2142
2143 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2144 if (!pcaps)
2145 return -ENOMEM;
2146
2147 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2148 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2149 pcaps, NULL);
2150 else
2151 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2152 pcaps, NULL);
2153 if (err) {
2154 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2155 goto err_out;
2156 }
2157
2158 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2159
2160 /* check if lenient mode is supported and enabled */
2161 if (ice_fw_supports_link_override(pi->hw) &&
2162 !(pcaps->module_compliance_enforcement &
2163 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2164 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2165
2166 /* if the FW supports default PHY configuration mode, then the driver
2167 * does not have to apply link override settings. If not,
2168 * initialize user PHY configuration with link override values
2169 */
2170 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2171 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2172 ice_init_phy_cfg_dflt_override(pi);
2173 goto out;
2174 }
2175 }
2176
2177 /* if link default override is not enabled, set user flow control and
2178 * FEC settings based on what get_phy_caps returned
2179 */
2180 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2181 pcaps->link_fec_options);
2182 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2183
2184 out:
2185 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2186 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2187 err_out:
2188 kfree(pcaps);
2189 return err;
2190 }
2191
2192 /**
2193 * ice_configure_phy - configure PHY
2194 * @vsi: VSI of PHY
2195 *
2196 * Set the PHY configuration. If the current PHY configuration is the same as
2197 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2198 * configure the based get PHY capabilities for topology with media.
2199 */
ice_configure_phy(struct ice_vsi * vsi)2200 static int ice_configure_phy(struct ice_vsi *vsi)
2201 {
2202 struct device *dev = ice_pf_to_dev(vsi->back);
2203 struct ice_port_info *pi = vsi->port_info;
2204 struct ice_aqc_get_phy_caps_data *pcaps;
2205 struct ice_aqc_set_phy_cfg_data *cfg;
2206 struct ice_phy_info *phy = &pi->phy;
2207 struct ice_pf *pf = vsi->back;
2208 int err;
2209
2210 /* Ensure we have media as we cannot configure a medialess port */
2211 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2212 return -ENOMEDIUM;
2213
2214 ice_print_topo_conflict(vsi);
2215
2216 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2217 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2218 return -EPERM;
2219
2220 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2221 return ice_force_phys_link_state(vsi, true);
2222
2223 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2224 if (!pcaps)
2225 return -ENOMEM;
2226
2227 /* Get current PHY config */
2228 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2229 NULL);
2230 if (err) {
2231 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2232 vsi->vsi_num, err);
2233 goto done;
2234 }
2235
2236 /* If PHY enable link is configured and configuration has not changed,
2237 * there's nothing to do
2238 */
2239 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2240 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2241 goto done;
2242
2243 /* Use PHY topology as baseline for configuration */
2244 memset(pcaps, 0, sizeof(*pcaps));
2245 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2246 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2247 pcaps, NULL);
2248 else
2249 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2250 pcaps, NULL);
2251 if (err) {
2252 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2253 vsi->vsi_num, err);
2254 goto done;
2255 }
2256
2257 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2258 if (!cfg) {
2259 err = -ENOMEM;
2260 goto done;
2261 }
2262
2263 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2264
2265 /* Speed - If default override pending, use curr_user_phy_cfg set in
2266 * ice_init_phy_user_cfg_ldo.
2267 */
2268 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2269 vsi->back->state)) {
2270 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2271 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2272 } else {
2273 u64 phy_low = 0, phy_high = 0;
2274
2275 ice_update_phy_type(&phy_low, &phy_high,
2276 pi->phy.curr_user_speed_req);
2277 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2278 cfg->phy_type_high = pcaps->phy_type_high &
2279 cpu_to_le64(phy_high);
2280 }
2281
2282 /* Can't provide what was requested; use PHY capabilities */
2283 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2284 cfg->phy_type_low = pcaps->phy_type_low;
2285 cfg->phy_type_high = pcaps->phy_type_high;
2286 }
2287
2288 /* FEC */
2289 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2290
2291 /* Can't provide what was requested; use PHY capabilities */
2292 if (cfg->link_fec_opt !=
2293 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2294 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2295 cfg->link_fec_opt = pcaps->link_fec_options;
2296 }
2297
2298 /* Flow Control - always supported; no need to check against
2299 * capabilities
2300 */
2301 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2302
2303 /* Enable link and link update */
2304 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2305
2306 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2307 if (err)
2308 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2309 vsi->vsi_num, err);
2310
2311 kfree(cfg);
2312 done:
2313 kfree(pcaps);
2314 return err;
2315 }
2316
2317 /**
2318 * ice_check_media_subtask - Check for media
2319 * @pf: pointer to PF struct
2320 *
2321 * If media is available, then initialize PHY user configuration if it is not
2322 * been, and configure the PHY if the interface is up.
2323 */
ice_check_media_subtask(struct ice_pf * pf)2324 static void ice_check_media_subtask(struct ice_pf *pf)
2325 {
2326 struct ice_port_info *pi;
2327 struct ice_vsi *vsi;
2328 int err;
2329
2330 /* No need to check for media if it's already present */
2331 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2332 return;
2333
2334 vsi = ice_get_main_vsi(pf);
2335 if (!vsi)
2336 return;
2337
2338 /* Refresh link info and check if media is present */
2339 pi = vsi->port_info;
2340 err = ice_update_link_info(pi);
2341 if (err)
2342 return;
2343
2344 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2345
2346 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2347 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2348 ice_init_phy_user_cfg(pi);
2349
2350 /* PHY settings are reset on media insertion, reconfigure
2351 * PHY to preserve settings.
2352 */
2353 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2354 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2355 return;
2356
2357 err = ice_configure_phy(vsi);
2358 if (!err)
2359 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2360
2361 /* A Link Status Event will be generated; the event handler
2362 * will complete bringing the interface up
2363 */
2364 }
2365 }
2366
ice_service_task_recovery_mode(struct work_struct * work)2367 static void ice_service_task_recovery_mode(struct work_struct *work)
2368 {
2369 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2370
2371 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2372 ice_clean_adminq_subtask(pf);
2373
2374 ice_service_task_complete(pf);
2375
2376 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100));
2377 }
2378
2379 /**
2380 * ice_service_task - manage and run subtasks
2381 * @work: pointer to work_struct contained by the PF struct
2382 */
ice_service_task(struct work_struct * work)2383 static void ice_service_task(struct work_struct *work)
2384 {
2385 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2386 unsigned long start_time = jiffies;
2387
2388 if (pf->health_reporters.tx_hang_buf.tx_ring) {
2389 ice_report_tx_hang(pf);
2390 pf->health_reporters.tx_hang_buf.tx_ring = NULL;
2391 }
2392
2393 ice_reset_subtask(pf);
2394
2395 /* bail if a reset/recovery cycle is pending or rebuild failed */
2396 if (ice_is_reset_in_progress(pf->state) ||
2397 test_bit(ICE_SUSPENDED, pf->state) ||
2398 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2399 ice_service_task_complete(pf);
2400 return;
2401 }
2402
2403 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2404 struct iidc_event *event;
2405
2406 event = kzalloc(sizeof(*event), GFP_KERNEL);
2407 if (event) {
2408 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2409 /* report the entire OICR value to AUX driver */
2410 swap(event->reg, pf->oicr_err_reg);
2411 ice_send_event_to_aux(pf, event);
2412 kfree(event);
2413 }
2414 }
2415
2416 /* unplug aux dev per request, if an unplug request came in
2417 * while processing a plug request, this will handle it
2418 */
2419 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2420 ice_unplug_aux_dev(pf);
2421
2422 /* Plug aux device per request */
2423 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2424 ice_plug_aux_dev(pf);
2425
2426 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2427 struct iidc_event *event;
2428
2429 event = kzalloc(sizeof(*event), GFP_KERNEL);
2430 if (event) {
2431 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2432 ice_send_event_to_aux(pf, event);
2433 kfree(event);
2434 }
2435 }
2436
2437 ice_clean_adminq_subtask(pf);
2438 ice_check_media_subtask(pf);
2439 ice_check_for_hang_subtask(pf);
2440 ice_sync_fltr_subtask(pf);
2441 ice_handle_mdd_event(pf);
2442 ice_watchdog_subtask(pf);
2443
2444 if (ice_is_safe_mode(pf)) {
2445 ice_service_task_complete(pf);
2446 return;
2447 }
2448
2449 ice_process_vflr_event(pf);
2450 ice_clean_mailboxq_subtask(pf);
2451 ice_clean_sbq_subtask(pf);
2452 ice_sync_arfs_fltrs(pf);
2453 ice_flush_fdir_ctx(pf);
2454
2455 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2456 ice_service_task_complete(pf);
2457
2458 /* If the tasks have taken longer than one service timer period
2459 * or there is more work to be done, reset the service timer to
2460 * schedule the service task now.
2461 */
2462 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2463 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2464 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2465 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2466 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2467 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2468 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2469 mod_timer(&pf->serv_tmr, jiffies);
2470 }
2471
2472 /**
2473 * ice_set_ctrlq_len - helper function to set controlq length
2474 * @hw: pointer to the HW instance
2475 */
ice_set_ctrlq_len(struct ice_hw * hw)2476 static void ice_set_ctrlq_len(struct ice_hw *hw)
2477 {
2478 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2479 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2480 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2481 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2482 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2483 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2484 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2485 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2486 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2487 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2488 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2489 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2490 }
2491
2492 /**
2493 * ice_schedule_reset - schedule a reset
2494 * @pf: board private structure
2495 * @reset: reset being requested
2496 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2497 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2498 {
2499 struct device *dev = ice_pf_to_dev(pf);
2500
2501 /* bail out if earlier reset has failed */
2502 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2503 dev_dbg(dev, "earlier reset has failed\n");
2504 return -EIO;
2505 }
2506 /* bail if reset/recovery already in progress */
2507 if (ice_is_reset_in_progress(pf->state)) {
2508 dev_dbg(dev, "Reset already in progress\n");
2509 return -EBUSY;
2510 }
2511
2512 switch (reset) {
2513 case ICE_RESET_PFR:
2514 set_bit(ICE_PFR_REQ, pf->state);
2515 break;
2516 case ICE_RESET_CORER:
2517 set_bit(ICE_CORER_REQ, pf->state);
2518 break;
2519 case ICE_RESET_GLOBR:
2520 set_bit(ICE_GLOBR_REQ, pf->state);
2521 break;
2522 default:
2523 return -EINVAL;
2524 }
2525
2526 ice_service_task_schedule(pf);
2527 return 0;
2528 }
2529
2530 /**
2531 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2532 * @vsi: the VSI being configured
2533 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2534 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2535 {
2536 struct ice_hw *hw = &vsi->back->hw;
2537 int i;
2538
2539 ice_for_each_q_vector(vsi, i)
2540 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2541
2542 ice_flush(hw);
2543 return 0;
2544 }
2545
2546 /**
2547 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2548 * @vsi: the VSI being configured
2549 * @basename: name for the vector
2550 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2551 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2552 {
2553 int q_vectors = vsi->num_q_vectors;
2554 struct ice_pf *pf = vsi->back;
2555 struct device *dev;
2556 int rx_int_idx = 0;
2557 int tx_int_idx = 0;
2558 int vector, err;
2559 int irq_num;
2560
2561 dev = ice_pf_to_dev(pf);
2562 for (vector = 0; vector < q_vectors; vector++) {
2563 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2564
2565 irq_num = q_vector->irq.virq;
2566
2567 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2568 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2569 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2570 tx_int_idx++;
2571 } else if (q_vector->rx.rx_ring) {
2572 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2573 "%s-%s-%d", basename, "rx", rx_int_idx++);
2574 } else if (q_vector->tx.tx_ring) {
2575 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2576 "%s-%s-%d", basename, "tx", tx_int_idx++);
2577 } else {
2578 /* skip this unused q_vector */
2579 continue;
2580 }
2581 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2582 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2583 IRQF_SHARED, q_vector->name,
2584 q_vector);
2585 else
2586 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2587 0, q_vector->name, q_vector);
2588 if (err) {
2589 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2590 err);
2591 goto free_q_irqs;
2592 }
2593 }
2594
2595 err = ice_set_cpu_rx_rmap(vsi);
2596 if (err) {
2597 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2598 vsi->vsi_num, ERR_PTR(err));
2599 goto free_q_irqs;
2600 }
2601
2602 vsi->irqs_ready = true;
2603 return 0;
2604
2605 free_q_irqs:
2606 while (vector--) {
2607 irq_num = vsi->q_vectors[vector]->irq.virq;
2608 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2609 }
2610 return err;
2611 }
2612
2613 /**
2614 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2615 * @vsi: VSI to setup Tx rings used by XDP
2616 *
2617 * Return 0 on success and negative value on error
2618 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2619 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2620 {
2621 struct device *dev = ice_pf_to_dev(vsi->back);
2622 struct ice_tx_desc *tx_desc;
2623 int i, j;
2624
2625 ice_for_each_xdp_txq(vsi, i) {
2626 u16 xdp_q_idx = vsi->alloc_txq + i;
2627 struct ice_ring_stats *ring_stats;
2628 struct ice_tx_ring *xdp_ring;
2629
2630 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2631 if (!xdp_ring)
2632 goto free_xdp_rings;
2633
2634 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2635 if (!ring_stats) {
2636 ice_free_tx_ring(xdp_ring);
2637 goto free_xdp_rings;
2638 }
2639
2640 xdp_ring->ring_stats = ring_stats;
2641 xdp_ring->q_index = xdp_q_idx;
2642 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2643 xdp_ring->vsi = vsi;
2644 xdp_ring->netdev = NULL;
2645 xdp_ring->dev = dev;
2646 xdp_ring->count = vsi->num_tx_desc;
2647 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2648 if (ice_setup_tx_ring(xdp_ring))
2649 goto free_xdp_rings;
2650 ice_set_ring_xdp(xdp_ring);
2651 spin_lock_init(&xdp_ring->tx_lock);
2652 for (j = 0; j < xdp_ring->count; j++) {
2653 tx_desc = ICE_TX_DESC(xdp_ring, j);
2654 tx_desc->cmd_type_offset_bsz = 0;
2655 }
2656 }
2657
2658 return 0;
2659
2660 free_xdp_rings:
2661 for (; i >= 0; i--) {
2662 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2663 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2664 vsi->xdp_rings[i]->ring_stats = NULL;
2665 ice_free_tx_ring(vsi->xdp_rings[i]);
2666 }
2667 }
2668 return -ENOMEM;
2669 }
2670
2671 /**
2672 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2673 * @vsi: VSI to set the bpf prog on
2674 * @prog: the bpf prog pointer
2675 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2676 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2677 {
2678 struct bpf_prog *old_prog;
2679 int i;
2680
2681 old_prog = xchg(&vsi->xdp_prog, prog);
2682 ice_for_each_rxq(vsi, i)
2683 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2684
2685 if (old_prog)
2686 bpf_prog_put(old_prog);
2687 }
2688
ice_xdp_ring_from_qid(struct ice_vsi * vsi,int qid)2689 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid)
2690 {
2691 struct ice_q_vector *q_vector;
2692 struct ice_tx_ring *ring;
2693
2694 if (static_key_enabled(&ice_xdp_locking_key))
2695 return vsi->xdp_rings[qid % vsi->num_xdp_txq];
2696
2697 q_vector = vsi->rx_rings[qid]->q_vector;
2698 ice_for_each_tx_ring(ring, q_vector->tx)
2699 if (ice_ring_is_xdp(ring))
2700 return ring;
2701
2702 return NULL;
2703 }
2704
2705 /**
2706 * ice_map_xdp_rings - Map XDP rings to interrupt vectors
2707 * @vsi: the VSI with XDP rings being configured
2708 *
2709 * Map XDP rings to interrupt vectors and perform the configuration steps
2710 * dependent on the mapping.
2711 */
ice_map_xdp_rings(struct ice_vsi * vsi)2712 void ice_map_xdp_rings(struct ice_vsi *vsi)
2713 {
2714 int xdp_rings_rem = vsi->num_xdp_txq;
2715 int v_idx, q_idx;
2716
2717 /* follow the logic from ice_vsi_map_rings_to_vectors */
2718 ice_for_each_q_vector(vsi, v_idx) {
2719 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2720 int xdp_rings_per_v, q_id, q_base;
2721
2722 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2723 vsi->num_q_vectors - v_idx);
2724 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2725
2726 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2727 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2728
2729 xdp_ring->q_vector = q_vector;
2730 xdp_ring->next = q_vector->tx.tx_ring;
2731 q_vector->tx.tx_ring = xdp_ring;
2732 }
2733 xdp_rings_rem -= xdp_rings_per_v;
2734 }
2735
2736 ice_for_each_rxq(vsi, q_idx) {
2737 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi,
2738 q_idx);
2739 ice_tx_xsk_pool(vsi, q_idx);
2740 }
2741 }
2742
2743 /**
2744 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2745 * @vsi: VSI to bring up Tx rings used by XDP
2746 * @prog: bpf program that will be assigned to VSI
2747 * @cfg_type: create from scratch or restore the existing configuration
2748 *
2749 * Return 0 on success and negative value on error
2750 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog,enum ice_xdp_cfg cfg_type)2751 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2752 enum ice_xdp_cfg cfg_type)
2753 {
2754 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2755 struct ice_pf *pf = vsi->back;
2756 struct ice_qs_cfg xdp_qs_cfg = {
2757 .qs_mutex = &pf->avail_q_mutex,
2758 .pf_map = pf->avail_txqs,
2759 .pf_map_size = pf->max_pf_txqs,
2760 .q_count = vsi->num_xdp_txq,
2761 .scatter_count = ICE_MAX_SCATTER_TXQS,
2762 .vsi_map = vsi->txq_map,
2763 .vsi_map_offset = vsi->alloc_txq,
2764 .mapping_mode = ICE_VSI_MAP_CONTIG
2765 };
2766 struct device *dev;
2767 int status, i;
2768
2769 dev = ice_pf_to_dev(pf);
2770 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2771 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2772 if (!vsi->xdp_rings)
2773 return -ENOMEM;
2774
2775 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2776 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2777 goto err_map_xdp;
2778
2779 if (static_key_enabled(&ice_xdp_locking_key))
2780 netdev_warn(vsi->netdev,
2781 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2782
2783 if (ice_xdp_alloc_setup_rings(vsi))
2784 goto clear_xdp_rings;
2785
2786 /* omit the scheduler update if in reset path; XDP queues will be
2787 * taken into account at the end of ice_vsi_rebuild, where
2788 * ice_cfg_vsi_lan is being called
2789 */
2790 if (cfg_type == ICE_XDP_CFG_PART)
2791 return 0;
2792
2793 ice_map_xdp_rings(vsi);
2794
2795 /* tell the Tx scheduler that right now we have
2796 * additional queues
2797 */
2798 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2799 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2800
2801 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2802 max_txqs);
2803 if (status) {
2804 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2805 status);
2806 goto clear_xdp_rings;
2807 }
2808
2809 /* assign the prog only when it's not already present on VSI;
2810 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2811 * VSI rebuild that happens under ethtool -L can expose us to
2812 * the bpf_prog refcount issues as we would be swapping same
2813 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2814 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2815 * this is not harmful as dev_xdp_install bumps the refcount
2816 * before calling the op exposed by the driver;
2817 */
2818 if (!ice_is_xdp_ena_vsi(vsi))
2819 ice_vsi_assign_bpf_prog(vsi, prog);
2820
2821 return 0;
2822 clear_xdp_rings:
2823 ice_for_each_xdp_txq(vsi, i)
2824 if (vsi->xdp_rings[i]) {
2825 kfree_rcu(vsi->xdp_rings[i], rcu);
2826 vsi->xdp_rings[i] = NULL;
2827 }
2828
2829 err_map_xdp:
2830 mutex_lock(&pf->avail_q_mutex);
2831 ice_for_each_xdp_txq(vsi, i) {
2832 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2833 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2834 }
2835 mutex_unlock(&pf->avail_q_mutex);
2836
2837 devm_kfree(dev, vsi->xdp_rings);
2838 return -ENOMEM;
2839 }
2840
2841 /**
2842 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2843 * @vsi: VSI to remove XDP rings
2844 * @cfg_type: disable XDP permanently or allow it to be restored later
2845 *
2846 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2847 * resources
2848 */
ice_destroy_xdp_rings(struct ice_vsi * vsi,enum ice_xdp_cfg cfg_type)2849 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2850 {
2851 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2852 struct ice_pf *pf = vsi->back;
2853 int i, v_idx;
2854
2855 /* q_vectors are freed in reset path so there's no point in detaching
2856 * rings
2857 */
2858 if (cfg_type == ICE_XDP_CFG_PART)
2859 goto free_qmap;
2860
2861 ice_for_each_q_vector(vsi, v_idx) {
2862 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2863 struct ice_tx_ring *ring;
2864
2865 ice_for_each_tx_ring(ring, q_vector->tx)
2866 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2867 break;
2868
2869 /* restore the value of last node prior to XDP setup */
2870 q_vector->tx.tx_ring = ring;
2871 }
2872
2873 free_qmap:
2874 mutex_lock(&pf->avail_q_mutex);
2875 ice_for_each_xdp_txq(vsi, i) {
2876 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2877 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2878 }
2879 mutex_unlock(&pf->avail_q_mutex);
2880
2881 ice_for_each_xdp_txq(vsi, i)
2882 if (vsi->xdp_rings[i]) {
2883 if (vsi->xdp_rings[i]->desc) {
2884 synchronize_rcu();
2885 ice_free_tx_ring(vsi->xdp_rings[i]);
2886 }
2887 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2888 vsi->xdp_rings[i]->ring_stats = NULL;
2889 kfree_rcu(vsi->xdp_rings[i], rcu);
2890 vsi->xdp_rings[i] = NULL;
2891 }
2892
2893 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2894 vsi->xdp_rings = NULL;
2895
2896 if (static_key_enabled(&ice_xdp_locking_key))
2897 static_branch_dec(&ice_xdp_locking_key);
2898
2899 if (cfg_type == ICE_XDP_CFG_PART)
2900 return 0;
2901
2902 ice_vsi_assign_bpf_prog(vsi, NULL);
2903
2904 /* notify Tx scheduler that we destroyed XDP queues and bring
2905 * back the old number of child nodes
2906 */
2907 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2908 max_txqs[i] = vsi->num_txq;
2909
2910 /* change number of XDP Tx queues to 0 */
2911 vsi->num_xdp_txq = 0;
2912
2913 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2914 max_txqs);
2915 }
2916
2917 /**
2918 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2919 * @vsi: VSI to schedule napi on
2920 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2921 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2922 {
2923 int i;
2924
2925 ice_for_each_rxq(vsi, i) {
2926 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2927
2928 if (READ_ONCE(rx_ring->xsk_pool))
2929 napi_schedule(&rx_ring->q_vector->napi);
2930 }
2931 }
2932
2933 /**
2934 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2935 * @vsi: VSI to determine the count of XDP Tx qs
2936 *
2937 * returns 0 if Tx qs count is higher than at least half of CPU count,
2938 * -ENOMEM otherwise
2939 */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2940 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2941 {
2942 u16 avail = ice_get_avail_txq_count(vsi->back);
2943 u16 cpus = num_possible_cpus();
2944
2945 if (avail < cpus / 2)
2946 return -ENOMEM;
2947
2948 if (vsi->type == ICE_VSI_SF)
2949 avail = vsi->alloc_txq;
2950
2951 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2952
2953 if (vsi->num_xdp_txq < cpus)
2954 static_branch_inc(&ice_xdp_locking_key);
2955
2956 return 0;
2957 }
2958
2959 /**
2960 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2961 * @vsi: Pointer to VSI structure
2962 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)2963 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2964 {
2965 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2966 return ICE_RXBUF_1664;
2967 else
2968 return ICE_RXBUF_3072;
2969 }
2970
2971 /**
2972 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2973 * @vsi: VSI to setup XDP for
2974 * @prog: XDP program
2975 * @extack: netlink extended ack
2976 */
2977 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2978 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2979 struct netlink_ext_ack *extack)
2980 {
2981 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2982 int ret = 0, xdp_ring_err = 0;
2983 bool if_running;
2984
2985 if (prog && !prog->aux->xdp_has_frags) {
2986 if (frame_size > ice_max_xdp_frame_size(vsi)) {
2987 NL_SET_ERR_MSG_MOD(extack,
2988 "MTU is too large for linear frames and XDP prog does not support frags");
2989 return -EOPNOTSUPP;
2990 }
2991 }
2992
2993 /* hot swap progs and avoid toggling link */
2994 if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
2995 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
2996 ice_vsi_assign_bpf_prog(vsi, prog);
2997 return 0;
2998 }
2999
3000 if_running = netif_running(vsi->netdev) &&
3001 !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
3002
3003 /* need to stop netdev while setting up the program for Rx rings */
3004 if (if_running) {
3005 ret = ice_down(vsi);
3006 if (ret) {
3007 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
3008 return ret;
3009 }
3010 }
3011
3012 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
3013 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
3014 if (xdp_ring_err) {
3015 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
3016 } else {
3017 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
3018 ICE_XDP_CFG_FULL);
3019 if (xdp_ring_err)
3020 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
3021 }
3022 xdp_features_set_redirect_target(vsi->netdev, true);
3023 /* reallocate Rx queues that are used for zero-copy */
3024 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
3025 if (xdp_ring_err)
3026 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
3027 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
3028 xdp_features_clear_redirect_target(vsi->netdev);
3029 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
3030 if (xdp_ring_err)
3031 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
3032 /* reallocate Rx queues that were used for zero-copy */
3033 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
3034 if (xdp_ring_err)
3035 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
3036 }
3037
3038 if (if_running)
3039 ret = ice_up(vsi);
3040
3041 if (!ret && prog)
3042 ice_vsi_rx_napi_schedule(vsi);
3043
3044 return (ret || xdp_ring_err) ? -ENOMEM : 0;
3045 }
3046
3047 /**
3048 * ice_xdp_safe_mode - XDP handler for safe mode
3049 * @dev: netdevice
3050 * @xdp: XDP command
3051 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)3052 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3053 struct netdev_bpf *xdp)
3054 {
3055 NL_SET_ERR_MSG_MOD(xdp->extack,
3056 "Please provide working DDP firmware package in order to use XDP\n"
3057 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3058 return -EOPNOTSUPP;
3059 }
3060
3061 /**
3062 * ice_xdp - implements XDP handler
3063 * @dev: netdevice
3064 * @xdp: XDP command
3065 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)3066 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3067 {
3068 struct ice_netdev_priv *np = netdev_priv(dev);
3069 struct ice_vsi *vsi = np->vsi;
3070 int ret;
3071
3072 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) {
3073 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI");
3074 return -EINVAL;
3075 }
3076
3077 mutex_lock(&vsi->xdp_state_lock);
3078
3079 switch (xdp->command) {
3080 case XDP_SETUP_PROG:
3081 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3082 break;
3083 case XDP_SETUP_XSK_POOL:
3084 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3085 break;
3086 default:
3087 ret = -EINVAL;
3088 }
3089
3090 mutex_unlock(&vsi->xdp_state_lock);
3091 return ret;
3092 }
3093
3094 /**
3095 * ice_ena_misc_vector - enable the non-queue interrupts
3096 * @pf: board private structure
3097 */
ice_ena_misc_vector(struct ice_pf * pf)3098 static void ice_ena_misc_vector(struct ice_pf *pf)
3099 {
3100 struct ice_hw *hw = &pf->hw;
3101 u32 pf_intr_start_offset;
3102 u32 val;
3103
3104 /* Disable anti-spoof detection interrupt to prevent spurious event
3105 * interrupts during a function reset. Anti-spoof functionally is
3106 * still supported.
3107 */
3108 val = rd32(hw, GL_MDCK_TX_TDPU);
3109 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3110 wr32(hw, GL_MDCK_TX_TDPU, val);
3111
3112 /* clear things first */
3113 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3114 rd32(hw, PFINT_OICR); /* read to clear */
3115
3116 val = (PFINT_OICR_ECC_ERR_M |
3117 PFINT_OICR_MAL_DETECT_M |
3118 PFINT_OICR_GRST_M |
3119 PFINT_OICR_PCI_EXCEPTION_M |
3120 PFINT_OICR_VFLR_M |
3121 PFINT_OICR_HMC_ERR_M |
3122 PFINT_OICR_PE_PUSH_M |
3123 PFINT_OICR_PE_CRITERR_M);
3124
3125 wr32(hw, PFINT_OICR_ENA, val);
3126
3127 /* SW_ITR_IDX = 0, but don't change INTENA */
3128 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3129 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3130
3131 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3132 return;
3133 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3134 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3135 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3136 }
3137
3138 /**
3139 * ice_ll_ts_intr - ll_ts interrupt handler
3140 * @irq: interrupt number
3141 * @data: pointer to a q_vector
3142 */
ice_ll_ts_intr(int __always_unused irq,void * data)3143 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3144 {
3145 struct ice_pf *pf = data;
3146 u32 pf_intr_start_offset;
3147 struct ice_ptp_tx *tx;
3148 unsigned long flags;
3149 struct ice_hw *hw;
3150 u32 val;
3151 u8 idx;
3152
3153 hw = &pf->hw;
3154 tx = &pf->ptp.port.tx;
3155 spin_lock_irqsave(&tx->lock, flags);
3156 ice_ptp_complete_tx_single_tstamp(tx);
3157
3158 idx = find_next_bit_wrap(tx->in_use, tx->len,
3159 tx->last_ll_ts_idx_read + 1);
3160 if (idx != tx->len)
3161 ice_ptp_req_tx_single_tstamp(tx, idx);
3162 spin_unlock_irqrestore(&tx->lock, flags);
3163
3164 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3165 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3166 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3167 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3168 val);
3169
3170 return IRQ_HANDLED;
3171 }
3172
3173 /**
3174 * ice_misc_intr - misc interrupt handler
3175 * @irq: interrupt number
3176 * @data: pointer to a q_vector
3177 */
ice_misc_intr(int __always_unused irq,void * data)3178 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3179 {
3180 struct ice_pf *pf = (struct ice_pf *)data;
3181 irqreturn_t ret = IRQ_HANDLED;
3182 struct ice_hw *hw = &pf->hw;
3183 struct device *dev;
3184 u32 oicr, ena_mask;
3185
3186 dev = ice_pf_to_dev(pf);
3187 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3188 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3189 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3190
3191 oicr = rd32(hw, PFINT_OICR);
3192 ena_mask = rd32(hw, PFINT_OICR_ENA);
3193
3194 if (oicr & PFINT_OICR_SWINT_M) {
3195 ena_mask &= ~PFINT_OICR_SWINT_M;
3196 pf->sw_int_count++;
3197 }
3198
3199 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3200 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3201 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3202 }
3203 if (oicr & PFINT_OICR_VFLR_M) {
3204 /* disable any further VFLR event notifications */
3205 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3206 u32 reg = rd32(hw, PFINT_OICR_ENA);
3207
3208 reg &= ~PFINT_OICR_VFLR_M;
3209 wr32(hw, PFINT_OICR_ENA, reg);
3210 } else {
3211 ena_mask &= ~PFINT_OICR_VFLR_M;
3212 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3213 }
3214 }
3215
3216 if (oicr & PFINT_OICR_GRST_M) {
3217 u32 reset;
3218
3219 /* we have a reset warning */
3220 ena_mask &= ~PFINT_OICR_GRST_M;
3221 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3222 rd32(hw, GLGEN_RSTAT));
3223
3224 if (reset == ICE_RESET_CORER)
3225 pf->corer_count++;
3226 else if (reset == ICE_RESET_GLOBR)
3227 pf->globr_count++;
3228 else if (reset == ICE_RESET_EMPR)
3229 pf->empr_count++;
3230 else
3231 dev_dbg(dev, "Invalid reset type %d\n", reset);
3232
3233 /* If a reset cycle isn't already in progress, we set a bit in
3234 * pf->state so that the service task can start a reset/rebuild.
3235 */
3236 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3237 if (reset == ICE_RESET_CORER)
3238 set_bit(ICE_CORER_RECV, pf->state);
3239 else if (reset == ICE_RESET_GLOBR)
3240 set_bit(ICE_GLOBR_RECV, pf->state);
3241 else
3242 set_bit(ICE_EMPR_RECV, pf->state);
3243
3244 /* There are couple of different bits at play here.
3245 * hw->reset_ongoing indicates whether the hardware is
3246 * in reset. This is set to true when a reset interrupt
3247 * is received and set back to false after the driver
3248 * has determined that the hardware is out of reset.
3249 *
3250 * ICE_RESET_OICR_RECV in pf->state indicates
3251 * that a post reset rebuild is required before the
3252 * driver is operational again. This is set above.
3253 *
3254 * As this is the start of the reset/rebuild cycle, set
3255 * both to indicate that.
3256 */
3257 hw->reset_ongoing = true;
3258 }
3259 }
3260
3261 if (oicr & PFINT_OICR_TSYN_TX_M) {
3262 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3263
3264 ret = ice_ptp_ts_irq(pf);
3265 }
3266
3267 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3268 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3269 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3270
3271 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3272
3273 if (ice_pf_src_tmr_owned(pf)) {
3274 /* Save EVENTs from GLTSYN register */
3275 pf->ptp.ext_ts_irq |= gltsyn_stat &
3276 (GLTSYN_STAT_EVENT0_M |
3277 GLTSYN_STAT_EVENT1_M |
3278 GLTSYN_STAT_EVENT2_M);
3279
3280 ice_ptp_extts_event(pf);
3281 }
3282 }
3283
3284 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3285 if (oicr & ICE_AUX_CRIT_ERR) {
3286 pf->oicr_err_reg |= oicr;
3287 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3288 ena_mask &= ~ICE_AUX_CRIT_ERR;
3289 }
3290
3291 /* Report any remaining unexpected interrupts */
3292 oicr &= ena_mask;
3293 if (oicr) {
3294 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3295 /* If a critical error is pending there is no choice but to
3296 * reset the device.
3297 */
3298 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3299 PFINT_OICR_ECC_ERR_M)) {
3300 set_bit(ICE_PFR_REQ, pf->state);
3301 }
3302 }
3303 ice_service_task_schedule(pf);
3304 if (ret == IRQ_HANDLED)
3305 ice_irq_dynamic_ena(hw, NULL, NULL);
3306
3307 return ret;
3308 }
3309
3310 /**
3311 * ice_misc_intr_thread_fn - misc interrupt thread function
3312 * @irq: interrupt number
3313 * @data: pointer to a q_vector
3314 */
ice_misc_intr_thread_fn(int __always_unused irq,void * data)3315 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3316 {
3317 struct ice_pf *pf = data;
3318 struct ice_hw *hw;
3319
3320 hw = &pf->hw;
3321
3322 if (ice_is_reset_in_progress(pf->state))
3323 goto skip_irq;
3324
3325 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3326 /* Process outstanding Tx timestamps. If there is more work,
3327 * re-arm the interrupt to trigger again.
3328 */
3329 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3330 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3331 ice_flush(hw);
3332 }
3333 }
3334
3335 skip_irq:
3336 ice_irq_dynamic_ena(hw, NULL, NULL);
3337
3338 return IRQ_HANDLED;
3339 }
3340
3341 /**
3342 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3343 * @hw: pointer to HW structure
3344 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3345 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3346 {
3347 /* disable Admin queue Interrupt causes */
3348 wr32(hw, PFINT_FW_CTL,
3349 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3350
3351 /* disable Mailbox queue Interrupt causes */
3352 wr32(hw, PFINT_MBX_CTL,
3353 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3354
3355 wr32(hw, PFINT_SB_CTL,
3356 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3357
3358 /* disable Control queue Interrupt causes */
3359 wr32(hw, PFINT_OICR_CTL,
3360 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3361
3362 ice_flush(hw);
3363 }
3364
3365 /**
3366 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3367 * @pf: board private structure
3368 */
ice_free_irq_msix_ll_ts(struct ice_pf * pf)3369 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3370 {
3371 int irq_num = pf->ll_ts_irq.virq;
3372
3373 synchronize_irq(irq_num);
3374 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3375
3376 ice_free_irq(pf, pf->ll_ts_irq);
3377 }
3378
3379 /**
3380 * ice_free_irq_msix_misc - Unroll misc vector setup
3381 * @pf: board private structure
3382 */
ice_free_irq_msix_misc(struct ice_pf * pf)3383 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3384 {
3385 int misc_irq_num = pf->oicr_irq.virq;
3386 struct ice_hw *hw = &pf->hw;
3387
3388 ice_dis_ctrlq_interrupts(hw);
3389
3390 /* disable OICR interrupt */
3391 wr32(hw, PFINT_OICR_ENA, 0);
3392 ice_flush(hw);
3393
3394 synchronize_irq(misc_irq_num);
3395 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3396
3397 ice_free_irq(pf, pf->oicr_irq);
3398 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3399 ice_free_irq_msix_ll_ts(pf);
3400 }
3401
3402 /**
3403 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3404 * @hw: pointer to HW structure
3405 * @reg_idx: HW vector index to associate the control queue interrupts with
3406 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3407 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3408 {
3409 u32 val;
3410
3411 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3412 PFINT_OICR_CTL_CAUSE_ENA_M);
3413 wr32(hw, PFINT_OICR_CTL, val);
3414
3415 /* enable Admin queue Interrupt causes */
3416 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3417 PFINT_FW_CTL_CAUSE_ENA_M);
3418 wr32(hw, PFINT_FW_CTL, val);
3419
3420 /* enable Mailbox queue Interrupt causes */
3421 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3422 PFINT_MBX_CTL_CAUSE_ENA_M);
3423 wr32(hw, PFINT_MBX_CTL, val);
3424
3425 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3426 /* enable Sideband queue Interrupt causes */
3427 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3428 PFINT_SB_CTL_CAUSE_ENA_M);
3429 wr32(hw, PFINT_SB_CTL, val);
3430 }
3431
3432 ice_flush(hw);
3433 }
3434
3435 /**
3436 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3437 * @pf: board private structure
3438 *
3439 * This sets up the handler for MSIX 0, which is used to manage the
3440 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3441 * when in MSI or Legacy interrupt mode.
3442 */
ice_req_irq_msix_misc(struct ice_pf * pf)3443 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3444 {
3445 struct device *dev = ice_pf_to_dev(pf);
3446 struct ice_hw *hw = &pf->hw;
3447 u32 pf_intr_start_offset;
3448 struct msi_map irq;
3449 int err = 0;
3450
3451 if (!pf->int_name[0])
3452 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3453 dev_driver_string(dev), dev_name(dev));
3454
3455 if (!pf->int_name_ll_ts[0])
3456 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3457 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3458 /* Do not request IRQ but do enable OICR interrupt since settings are
3459 * lost during reset. Note that this function is called only during
3460 * rebuild path and not while reset is in progress.
3461 */
3462 if (ice_is_reset_in_progress(pf->state))
3463 goto skip_req_irq;
3464
3465 /* reserve one vector in irq_tracker for misc interrupts */
3466 irq = ice_alloc_irq(pf, false);
3467 if (irq.index < 0)
3468 return irq.index;
3469
3470 pf->oicr_irq = irq;
3471 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3472 ice_misc_intr_thread_fn, 0,
3473 pf->int_name, pf);
3474 if (err) {
3475 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3476 pf->int_name, err);
3477 ice_free_irq(pf, pf->oicr_irq);
3478 return err;
3479 }
3480
3481 /* reserve one vector in irq_tracker for ll_ts interrupt */
3482 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3483 goto skip_req_irq;
3484
3485 irq = ice_alloc_irq(pf, false);
3486 if (irq.index < 0)
3487 return irq.index;
3488
3489 pf->ll_ts_irq = irq;
3490 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3491 pf->int_name_ll_ts, pf);
3492 if (err) {
3493 dev_err(dev, "devm_request_irq for %s failed: %d\n",
3494 pf->int_name_ll_ts, err);
3495 ice_free_irq(pf, pf->ll_ts_irq);
3496 return err;
3497 }
3498
3499 skip_req_irq:
3500 ice_ena_misc_vector(pf);
3501
3502 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3503 /* This enables LL TS interrupt */
3504 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3505 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3506 wr32(hw, PFINT_SB_CTL,
3507 ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3508 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3509 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3510 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3511
3512 ice_flush(hw);
3513 ice_irq_dynamic_ena(hw, NULL, NULL);
3514
3515 return 0;
3516 }
3517
3518 /**
3519 * ice_set_ops - set netdev and ethtools ops for the given netdev
3520 * @vsi: the VSI associated with the new netdev
3521 */
ice_set_ops(struct ice_vsi * vsi)3522 static void ice_set_ops(struct ice_vsi *vsi)
3523 {
3524 struct net_device *netdev = vsi->netdev;
3525 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3526
3527 if (ice_is_safe_mode(pf)) {
3528 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3529 ice_set_ethtool_safe_mode_ops(netdev);
3530 return;
3531 }
3532
3533 netdev->netdev_ops = &ice_netdev_ops;
3534 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3535 netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3536 ice_set_ethtool_ops(netdev);
3537
3538 if (vsi->type != ICE_VSI_PF)
3539 return;
3540
3541 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3542 NETDEV_XDP_ACT_XSK_ZEROCOPY |
3543 NETDEV_XDP_ACT_RX_SG;
3544 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3545 }
3546
3547 /**
3548 * ice_set_netdev_features - set features for the given netdev
3549 * @netdev: netdev instance
3550 */
ice_set_netdev_features(struct net_device * netdev)3551 void ice_set_netdev_features(struct net_device *netdev)
3552 {
3553 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3554 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3555 netdev_features_t csumo_features;
3556 netdev_features_t vlano_features;
3557 netdev_features_t dflt_features;
3558 netdev_features_t tso_features;
3559
3560 if (ice_is_safe_mode(pf)) {
3561 /* safe mode */
3562 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3563 netdev->hw_features = netdev->features;
3564 return;
3565 }
3566
3567 dflt_features = NETIF_F_SG |
3568 NETIF_F_HIGHDMA |
3569 NETIF_F_NTUPLE |
3570 NETIF_F_RXHASH;
3571
3572 csumo_features = NETIF_F_RXCSUM |
3573 NETIF_F_IP_CSUM |
3574 NETIF_F_SCTP_CRC |
3575 NETIF_F_IPV6_CSUM;
3576
3577 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3578 NETIF_F_HW_VLAN_CTAG_TX |
3579 NETIF_F_HW_VLAN_CTAG_RX;
3580
3581 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3582 if (is_dvm_ena)
3583 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3584
3585 tso_features = NETIF_F_TSO |
3586 NETIF_F_TSO_ECN |
3587 NETIF_F_TSO6 |
3588 NETIF_F_GSO_GRE |
3589 NETIF_F_GSO_UDP_TUNNEL |
3590 NETIF_F_GSO_GRE_CSUM |
3591 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3592 NETIF_F_GSO_PARTIAL |
3593 NETIF_F_GSO_IPXIP4 |
3594 NETIF_F_GSO_IPXIP6 |
3595 NETIF_F_GSO_UDP_L4;
3596
3597 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3598 NETIF_F_GSO_GRE_CSUM;
3599 /* set features that user can change */
3600 netdev->hw_features = dflt_features | csumo_features |
3601 vlano_features | tso_features;
3602
3603 /* add support for HW_CSUM on packets with MPLS header */
3604 netdev->mpls_features = NETIF_F_HW_CSUM |
3605 NETIF_F_TSO |
3606 NETIF_F_TSO6;
3607
3608 /* enable features */
3609 netdev->features |= netdev->hw_features;
3610
3611 netdev->hw_features |= NETIF_F_HW_TC;
3612 netdev->hw_features |= NETIF_F_LOOPBACK;
3613
3614 /* encap and VLAN devices inherit default, csumo and tso features */
3615 netdev->hw_enc_features |= dflt_features | csumo_features |
3616 tso_features;
3617 netdev->vlan_features |= dflt_features | csumo_features |
3618 tso_features;
3619
3620 /* advertise support but don't enable by default since only one type of
3621 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3622 * type turns on the other has to be turned off. This is enforced by the
3623 * ice_fix_features() ndo callback.
3624 */
3625 if (is_dvm_ena)
3626 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3627 NETIF_F_HW_VLAN_STAG_TX;
3628
3629 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3630 * be changed at runtime
3631 */
3632 netdev->hw_features |= NETIF_F_RXFCS;
3633
3634 /* Allow core to manage IRQs affinity */
3635 netif_set_affinity_auto(netdev);
3636
3637 /* Mutual exclusivity for TSO and GCS is enforced by the set features
3638 * ndo callback.
3639 */
3640 if (ice_is_feature_supported(pf, ICE_F_GCS))
3641 netdev->hw_features |= NETIF_F_HW_CSUM;
3642
3643 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3644 }
3645
3646 /**
3647 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3648 * @lut: Lookup table
3649 * @rss_table_size: Lookup table size
3650 * @rss_size: Range of queue number for hashing
3651 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3652 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3653 {
3654 u16 i;
3655
3656 for (i = 0; i < rss_table_size; i++)
3657 lut[i] = i % rss_size;
3658 }
3659
3660 /**
3661 * ice_pf_vsi_setup - Set up a PF VSI
3662 * @pf: board private structure
3663 * @pi: pointer to the port_info instance
3664 *
3665 * Returns pointer to the successfully allocated VSI software struct
3666 * on success, otherwise returns NULL on failure.
3667 */
3668 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3669 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3670 {
3671 struct ice_vsi_cfg_params params = {};
3672
3673 params.type = ICE_VSI_PF;
3674 params.port_info = pi;
3675 params.flags = ICE_VSI_FLAG_INIT;
3676
3677 return ice_vsi_setup(pf, ¶ms);
3678 }
3679
3680 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3681 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3682 struct ice_channel *ch)
3683 {
3684 struct ice_vsi_cfg_params params = {};
3685
3686 params.type = ICE_VSI_CHNL;
3687 params.port_info = pi;
3688 params.ch = ch;
3689 params.flags = ICE_VSI_FLAG_INIT;
3690
3691 return ice_vsi_setup(pf, ¶ms);
3692 }
3693
3694 /**
3695 * ice_ctrl_vsi_setup - Set up a control VSI
3696 * @pf: board private structure
3697 * @pi: pointer to the port_info instance
3698 *
3699 * Returns pointer to the successfully allocated VSI software struct
3700 * on success, otherwise returns NULL on failure.
3701 */
3702 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3703 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3704 {
3705 struct ice_vsi_cfg_params params = {};
3706
3707 params.type = ICE_VSI_CTRL;
3708 params.port_info = pi;
3709 params.flags = ICE_VSI_FLAG_INIT;
3710
3711 return ice_vsi_setup(pf, ¶ms);
3712 }
3713
3714 /**
3715 * ice_lb_vsi_setup - Set up a loopback VSI
3716 * @pf: board private structure
3717 * @pi: pointer to the port_info instance
3718 *
3719 * Returns pointer to the successfully allocated VSI software struct
3720 * on success, otherwise returns NULL on failure.
3721 */
3722 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3723 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3724 {
3725 struct ice_vsi_cfg_params params = {};
3726
3727 params.type = ICE_VSI_LB;
3728 params.port_info = pi;
3729 params.flags = ICE_VSI_FLAG_INIT;
3730
3731 return ice_vsi_setup(pf, ¶ms);
3732 }
3733
3734 /**
3735 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3736 * @netdev: network interface to be adjusted
3737 * @proto: VLAN TPID
3738 * @vid: VLAN ID to be added
3739 *
3740 * net_device_ops implementation for adding VLAN IDs
3741 */
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3742 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3743 {
3744 struct ice_netdev_priv *np = netdev_priv(netdev);
3745 struct ice_vsi_vlan_ops *vlan_ops;
3746 struct ice_vsi *vsi = np->vsi;
3747 struct ice_vlan vlan;
3748 int ret;
3749
3750 /* VLAN 0 is added by default during load/reset */
3751 if (!vid)
3752 return 0;
3753
3754 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3755 usleep_range(1000, 2000);
3756
3757 /* Add multicast promisc rule for the VLAN ID to be added if
3758 * all-multicast is currently enabled.
3759 */
3760 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3761 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3762 ICE_MCAST_VLAN_PROMISC_BITS,
3763 vid);
3764 if (ret)
3765 goto finish;
3766 }
3767
3768 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3769
3770 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3771 * packets aren't pruned by the device's internal switch on Rx
3772 */
3773 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3774 ret = vlan_ops->add_vlan(vsi, &vlan);
3775 if (ret)
3776 goto finish;
3777
3778 /* If all-multicast is currently enabled and this VLAN ID is only one
3779 * besides VLAN-0 we have to update look-up type of multicast promisc
3780 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3781 */
3782 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3783 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3784 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3785 ICE_MCAST_PROMISC_BITS, 0);
3786 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3787 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3788 }
3789
3790 finish:
3791 clear_bit(ICE_CFG_BUSY, vsi->state);
3792
3793 return ret;
3794 }
3795
3796 /**
3797 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3798 * @netdev: network interface to be adjusted
3799 * @proto: VLAN TPID
3800 * @vid: VLAN ID to be removed
3801 *
3802 * net_device_ops implementation for removing VLAN IDs
3803 */
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3804 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3805 {
3806 struct ice_netdev_priv *np = netdev_priv(netdev);
3807 struct ice_vsi_vlan_ops *vlan_ops;
3808 struct ice_vsi *vsi = np->vsi;
3809 struct ice_vlan vlan;
3810 int ret;
3811
3812 /* don't allow removal of VLAN 0 */
3813 if (!vid)
3814 return 0;
3815
3816 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3817 usleep_range(1000, 2000);
3818
3819 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3820 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3821 if (ret) {
3822 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3823 vsi->vsi_num);
3824 vsi->current_netdev_flags |= IFF_ALLMULTI;
3825 }
3826
3827 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3828
3829 /* Make sure VLAN delete is successful before updating VLAN
3830 * information
3831 */
3832 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3833 ret = vlan_ops->del_vlan(vsi, &vlan);
3834 if (ret)
3835 goto finish;
3836
3837 /* Remove multicast promisc rule for the removed VLAN ID if
3838 * all-multicast is enabled.
3839 */
3840 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3841 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3842 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3843
3844 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3845 /* Update look-up type of multicast promisc rule for VLAN 0
3846 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3847 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3848 */
3849 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3850 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3851 ICE_MCAST_VLAN_PROMISC_BITS,
3852 0);
3853 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3854 ICE_MCAST_PROMISC_BITS, 0);
3855 }
3856 }
3857
3858 finish:
3859 clear_bit(ICE_CFG_BUSY, vsi->state);
3860
3861 return ret;
3862 }
3863
3864 /**
3865 * ice_rep_indr_tc_block_unbind
3866 * @cb_priv: indirection block private data
3867 */
ice_rep_indr_tc_block_unbind(void * cb_priv)3868 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3869 {
3870 struct ice_indr_block_priv *indr_priv = cb_priv;
3871
3872 list_del(&indr_priv->list);
3873 kfree(indr_priv);
3874 }
3875
3876 /**
3877 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3878 * @vsi: VSI struct which has the netdev
3879 */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3880 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3881 {
3882 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3883
3884 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3885 ice_rep_indr_tc_block_unbind);
3886 }
3887
3888 /**
3889 * ice_tc_indir_block_register - Register TC indirect block notifications
3890 * @vsi: VSI struct which has the netdev
3891 *
3892 * Returns 0 on success, negative value on failure
3893 */
ice_tc_indir_block_register(struct ice_vsi * vsi)3894 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3895 {
3896 struct ice_netdev_priv *np;
3897
3898 if (!vsi || !vsi->netdev)
3899 return -EINVAL;
3900
3901 np = netdev_priv(vsi->netdev);
3902
3903 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3904 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3905 }
3906
3907 /**
3908 * ice_get_avail_q_count - Get count of queues in use
3909 * @pf_qmap: bitmap to get queue use count from
3910 * @lock: pointer to a mutex that protects access to pf_qmap
3911 * @size: size of the bitmap
3912 */
3913 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3914 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3915 {
3916 unsigned long bit;
3917 u16 count = 0;
3918
3919 mutex_lock(lock);
3920 for_each_clear_bit(bit, pf_qmap, size)
3921 count++;
3922 mutex_unlock(lock);
3923
3924 return count;
3925 }
3926
3927 /**
3928 * ice_get_avail_txq_count - Get count of Tx queues in use
3929 * @pf: pointer to an ice_pf instance
3930 */
ice_get_avail_txq_count(struct ice_pf * pf)3931 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3932 {
3933 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3934 pf->max_pf_txqs);
3935 }
3936
3937 /**
3938 * ice_get_avail_rxq_count - Get count of Rx queues in use
3939 * @pf: pointer to an ice_pf instance
3940 */
ice_get_avail_rxq_count(struct ice_pf * pf)3941 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3942 {
3943 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3944 pf->max_pf_rxqs);
3945 }
3946
3947 /**
3948 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3949 * @pf: board private structure to initialize
3950 */
ice_deinit_pf(struct ice_pf * pf)3951 static void ice_deinit_pf(struct ice_pf *pf)
3952 {
3953 ice_service_task_stop(pf);
3954 mutex_destroy(&pf->lag_mutex);
3955 mutex_destroy(&pf->adev_mutex);
3956 mutex_destroy(&pf->sw_mutex);
3957 mutex_destroy(&pf->tc_mutex);
3958 mutex_destroy(&pf->avail_q_mutex);
3959 mutex_destroy(&pf->vfs.table_lock);
3960
3961 if (pf->avail_txqs) {
3962 bitmap_free(pf->avail_txqs);
3963 pf->avail_txqs = NULL;
3964 }
3965
3966 if (pf->avail_rxqs) {
3967 bitmap_free(pf->avail_rxqs);
3968 pf->avail_rxqs = NULL;
3969 }
3970
3971 if (pf->ptp.clock)
3972 ptp_clock_unregister(pf->ptp.clock);
3973
3974 xa_destroy(&pf->dyn_ports);
3975 xa_destroy(&pf->sf_nums);
3976 }
3977
3978 /**
3979 * ice_set_pf_caps - set PFs capability flags
3980 * @pf: pointer to the PF instance
3981 */
ice_set_pf_caps(struct ice_pf * pf)3982 static void ice_set_pf_caps(struct ice_pf *pf)
3983 {
3984 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3985
3986 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3987 if (func_caps->common_cap.rdma)
3988 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3989 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3990 if (func_caps->common_cap.dcb)
3991 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3992 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3993 if (func_caps->common_cap.sr_iov_1_1) {
3994 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3995 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3996 ICE_MAX_SRIOV_VFS);
3997 }
3998 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3999 if (func_caps->common_cap.rss_table_size)
4000 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
4001
4002 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
4003 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
4004 u16 unused;
4005
4006 /* ctrl_vsi_idx will be set to a valid value when flow director
4007 * is setup by ice_init_fdir
4008 */
4009 pf->ctrl_vsi_idx = ICE_NO_VSI;
4010 set_bit(ICE_FLAG_FD_ENA, pf->flags);
4011 /* force guaranteed filter pool for PF */
4012 ice_alloc_fd_guar_item(&pf->hw, &unused,
4013 func_caps->fd_fltr_guar);
4014 /* force shared filter pool for PF */
4015 ice_alloc_fd_shrd_item(&pf->hw, &unused,
4016 func_caps->fd_fltr_best_effort);
4017 }
4018
4019 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4020 if (func_caps->common_cap.ieee_1588)
4021 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4022
4023 pf->max_pf_txqs = func_caps->common_cap.num_txq;
4024 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4025 }
4026
4027 /**
4028 * ice_init_pf - Initialize general software structures (struct ice_pf)
4029 * @pf: board private structure to initialize
4030 */
ice_init_pf(struct ice_pf * pf)4031 static int ice_init_pf(struct ice_pf *pf)
4032 {
4033 ice_set_pf_caps(pf);
4034
4035 mutex_init(&pf->sw_mutex);
4036 mutex_init(&pf->tc_mutex);
4037 mutex_init(&pf->adev_mutex);
4038 mutex_init(&pf->lag_mutex);
4039
4040 INIT_HLIST_HEAD(&pf->aq_wait_list);
4041 spin_lock_init(&pf->aq_wait_lock);
4042 init_waitqueue_head(&pf->aq_wait_queue);
4043
4044 init_waitqueue_head(&pf->reset_wait_queue);
4045
4046 /* setup service timer and periodic service task */
4047 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4048 pf->serv_tmr_period = HZ;
4049 INIT_WORK(&pf->serv_task, ice_service_task);
4050 clear_bit(ICE_SERVICE_SCHED, pf->state);
4051
4052 mutex_init(&pf->avail_q_mutex);
4053 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4054 if (!pf->avail_txqs)
4055 return -ENOMEM;
4056
4057 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4058 if (!pf->avail_rxqs) {
4059 bitmap_free(pf->avail_txqs);
4060 pf->avail_txqs = NULL;
4061 return -ENOMEM;
4062 }
4063
4064 mutex_init(&pf->vfs.table_lock);
4065 hash_init(pf->vfs.table);
4066 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
4067 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH,
4068 ICE_MBX_OVERFLOW_WATERMARK);
4069 else
4070 ice_mbx_init_snapshot(&pf->hw);
4071
4072 xa_init(&pf->dyn_ports);
4073 xa_init(&pf->sf_nums);
4074
4075 return 0;
4076 }
4077
4078 /**
4079 * ice_is_wol_supported - check if WoL is supported
4080 * @hw: pointer to hardware info
4081 *
4082 * Check if WoL is supported based on the HW configuration.
4083 * Returns true if NVM supports and enables WoL for this port, false otherwise
4084 */
ice_is_wol_supported(struct ice_hw * hw)4085 bool ice_is_wol_supported(struct ice_hw *hw)
4086 {
4087 u16 wol_ctrl;
4088
4089 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4090 * word) indicates WoL is not supported on the corresponding PF ID.
4091 */
4092 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4093 return false;
4094
4095 return !(BIT(hw->port_info->lport) & wol_ctrl);
4096 }
4097
4098 /**
4099 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4100 * @vsi: VSI being changed
4101 * @new_rx: new number of Rx queues
4102 * @new_tx: new number of Tx queues
4103 * @locked: is adev device_lock held
4104 *
4105 * Only change the number of queues if new_tx, or new_rx is non-0.
4106 *
4107 * Returns 0 on success.
4108 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx,bool locked)4109 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4110 {
4111 struct ice_pf *pf = vsi->back;
4112 int i, err = 0, timeout = 50;
4113
4114 if (!new_rx && !new_tx)
4115 return -EINVAL;
4116
4117 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4118 timeout--;
4119 if (!timeout)
4120 return -EBUSY;
4121 usleep_range(1000, 2000);
4122 }
4123
4124 if (new_tx)
4125 vsi->req_txq = (u16)new_tx;
4126 if (new_rx)
4127 vsi->req_rxq = (u16)new_rx;
4128
4129 /* set for the next time the netdev is started */
4130 if (!netif_running(vsi->netdev)) {
4131 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4132 if (err)
4133 goto rebuild_err;
4134 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4135 goto done;
4136 }
4137
4138 ice_vsi_close(vsi);
4139 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4140 if (err)
4141 goto rebuild_err;
4142
4143 ice_for_each_traffic_class(i) {
4144 if (vsi->tc_cfg.ena_tc & BIT(i))
4145 netdev_set_tc_queue(vsi->netdev,
4146 vsi->tc_cfg.tc_info[i].netdev_tc,
4147 vsi->tc_cfg.tc_info[i].qcount_tx,
4148 vsi->tc_cfg.tc_info[i].qoffset);
4149 }
4150 ice_pf_dcb_recfg(pf, locked);
4151 ice_vsi_open(vsi);
4152 goto done;
4153
4154 rebuild_err:
4155 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4156 err);
4157 done:
4158 clear_bit(ICE_CFG_BUSY, pf->state);
4159 return err;
4160 }
4161
4162 /**
4163 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4164 * @pf: PF to configure
4165 *
4166 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4167 * VSI can still Tx/Rx VLAN tagged packets.
4168 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4169 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4170 {
4171 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4172 struct ice_vsi_ctx *ctxt;
4173 struct ice_hw *hw;
4174 int status;
4175
4176 if (!vsi)
4177 return;
4178
4179 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4180 if (!ctxt)
4181 return;
4182
4183 hw = &pf->hw;
4184 ctxt->info = vsi->info;
4185
4186 ctxt->info.valid_sections =
4187 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4188 ICE_AQ_VSI_PROP_SECURITY_VALID |
4189 ICE_AQ_VSI_PROP_SW_VALID);
4190
4191 /* disable VLAN anti-spoof */
4192 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4193 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4194
4195 /* disable VLAN pruning and keep all other settings */
4196 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4197
4198 /* allow all VLANs on Tx and don't strip on Rx */
4199 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4200 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4201
4202 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4203 if (status) {
4204 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4205 status, ice_aq_str(hw->adminq.sq_last_status));
4206 } else {
4207 vsi->info.sec_flags = ctxt->info.sec_flags;
4208 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4209 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4210 }
4211
4212 kfree(ctxt);
4213 }
4214
4215 /**
4216 * ice_log_pkg_init - log result of DDP package load
4217 * @hw: pointer to hardware info
4218 * @state: state of package load
4219 */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4220 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4221 {
4222 struct ice_pf *pf = hw->back;
4223 struct device *dev;
4224
4225 dev = ice_pf_to_dev(pf);
4226
4227 switch (state) {
4228 case ICE_DDP_PKG_SUCCESS:
4229 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4230 hw->active_pkg_name,
4231 hw->active_pkg_ver.major,
4232 hw->active_pkg_ver.minor,
4233 hw->active_pkg_ver.update,
4234 hw->active_pkg_ver.draft);
4235 break;
4236 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4237 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4238 hw->active_pkg_name,
4239 hw->active_pkg_ver.major,
4240 hw->active_pkg_ver.minor,
4241 hw->active_pkg_ver.update,
4242 hw->active_pkg_ver.draft);
4243 break;
4244 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4245 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4246 hw->active_pkg_name,
4247 hw->active_pkg_ver.major,
4248 hw->active_pkg_ver.minor,
4249 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4250 break;
4251 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4252 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4253 hw->active_pkg_name,
4254 hw->active_pkg_ver.major,
4255 hw->active_pkg_ver.minor,
4256 hw->active_pkg_ver.update,
4257 hw->active_pkg_ver.draft,
4258 hw->pkg_name,
4259 hw->pkg_ver.major,
4260 hw->pkg_ver.minor,
4261 hw->pkg_ver.update,
4262 hw->pkg_ver.draft);
4263 break;
4264 case ICE_DDP_PKG_FW_MISMATCH:
4265 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4266 break;
4267 case ICE_DDP_PKG_INVALID_FILE:
4268 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4269 break;
4270 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4271 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4272 break;
4273 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4274 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4275 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4276 break;
4277 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4278 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4279 break;
4280 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4281 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4282 break;
4283 case ICE_DDP_PKG_LOAD_ERROR:
4284 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4285 /* poll for reset to complete */
4286 if (ice_check_reset(hw))
4287 dev_err(dev, "Error resetting device. Please reload the driver\n");
4288 break;
4289 case ICE_DDP_PKG_ERR:
4290 default:
4291 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4292 break;
4293 }
4294 }
4295
4296 /**
4297 * ice_load_pkg - load/reload the DDP Package file
4298 * @firmware: firmware structure when firmware requested or NULL for reload
4299 * @pf: pointer to the PF instance
4300 *
4301 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4302 * initialize HW tables.
4303 */
4304 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4305 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4306 {
4307 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4308 struct device *dev = ice_pf_to_dev(pf);
4309 struct ice_hw *hw = &pf->hw;
4310
4311 /* Load DDP Package */
4312 if (firmware && !hw->pkg_copy) {
4313 state = ice_copy_and_init_pkg(hw, firmware->data,
4314 firmware->size);
4315 ice_log_pkg_init(hw, state);
4316 } else if (!firmware && hw->pkg_copy) {
4317 /* Reload package during rebuild after CORER/GLOBR reset */
4318 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4319 ice_log_pkg_init(hw, state);
4320 } else {
4321 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4322 }
4323
4324 if (!ice_is_init_pkg_successful(state)) {
4325 /* Safe Mode */
4326 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4327 return;
4328 }
4329
4330 /* Successful download package is the precondition for advanced
4331 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4332 */
4333 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4334 }
4335
4336 /**
4337 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4338 * @pf: pointer to the PF structure
4339 *
4340 * There is no error returned here because the driver should be able to handle
4341 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4342 * specifically with Tx.
4343 */
ice_verify_cacheline_size(struct ice_pf * pf)4344 static void ice_verify_cacheline_size(struct ice_pf *pf)
4345 {
4346 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4347 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4348 ICE_CACHE_LINE_BYTES);
4349 }
4350
4351 /**
4352 * ice_send_version - update firmware with driver version
4353 * @pf: PF struct
4354 *
4355 * Returns 0 on success, else error code
4356 */
ice_send_version(struct ice_pf * pf)4357 static int ice_send_version(struct ice_pf *pf)
4358 {
4359 struct ice_driver_ver dv;
4360
4361 dv.major_ver = 0xff;
4362 dv.minor_ver = 0xff;
4363 dv.build_ver = 0xff;
4364 dv.subbuild_ver = 0;
4365 strscpy((char *)dv.driver_string, UTS_RELEASE,
4366 sizeof(dv.driver_string));
4367 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4368 }
4369
4370 /**
4371 * ice_init_fdir - Initialize flow director VSI and configuration
4372 * @pf: pointer to the PF instance
4373 *
4374 * returns 0 on success, negative on error
4375 */
ice_init_fdir(struct ice_pf * pf)4376 static int ice_init_fdir(struct ice_pf *pf)
4377 {
4378 struct device *dev = ice_pf_to_dev(pf);
4379 struct ice_vsi *ctrl_vsi;
4380 int err;
4381
4382 /* Side Band Flow Director needs to have a control VSI.
4383 * Allocate it and store it in the PF.
4384 */
4385 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4386 if (!ctrl_vsi) {
4387 dev_dbg(dev, "could not create control VSI\n");
4388 return -ENOMEM;
4389 }
4390
4391 err = ice_vsi_open_ctrl(ctrl_vsi);
4392 if (err) {
4393 dev_dbg(dev, "could not open control VSI\n");
4394 goto err_vsi_open;
4395 }
4396
4397 mutex_init(&pf->hw.fdir_fltr_lock);
4398
4399 err = ice_fdir_create_dflt_rules(pf);
4400 if (err)
4401 goto err_fdir_rule;
4402
4403 return 0;
4404
4405 err_fdir_rule:
4406 ice_fdir_release_flows(&pf->hw);
4407 ice_vsi_close(ctrl_vsi);
4408 err_vsi_open:
4409 ice_vsi_release(ctrl_vsi);
4410 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4411 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4412 pf->ctrl_vsi_idx = ICE_NO_VSI;
4413 }
4414 return err;
4415 }
4416
ice_deinit_fdir(struct ice_pf * pf)4417 static void ice_deinit_fdir(struct ice_pf *pf)
4418 {
4419 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4420
4421 if (!vsi)
4422 return;
4423
4424 ice_vsi_manage_fdir(vsi, false);
4425 ice_vsi_release(vsi);
4426 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4427 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4428 pf->ctrl_vsi_idx = ICE_NO_VSI;
4429 }
4430
4431 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4432 }
4433
4434 /**
4435 * ice_get_opt_fw_name - return optional firmware file name or NULL
4436 * @pf: pointer to the PF instance
4437 */
ice_get_opt_fw_name(struct ice_pf * pf)4438 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4439 {
4440 /* Optional firmware name same as default with additional dash
4441 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4442 */
4443 struct pci_dev *pdev = pf->pdev;
4444 char *opt_fw_filename;
4445 u64 dsn;
4446
4447 /* Determine the name of the optional file using the DSN (two
4448 * dwords following the start of the DSN Capability).
4449 */
4450 dsn = pci_get_dsn(pdev);
4451 if (!dsn)
4452 return NULL;
4453
4454 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4455 if (!opt_fw_filename)
4456 return NULL;
4457
4458 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4459 ICE_DDP_PKG_PATH, dsn);
4460
4461 return opt_fw_filename;
4462 }
4463
4464 /**
4465 * ice_request_fw - Device initialization routine
4466 * @pf: pointer to the PF instance
4467 * @firmware: double pointer to firmware struct
4468 *
4469 * Return: zero when successful, negative values otherwise.
4470 */
ice_request_fw(struct ice_pf * pf,const struct firmware ** firmware)4471 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware)
4472 {
4473 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4474 struct device *dev = ice_pf_to_dev(pf);
4475 int err = 0;
4476
4477 /* optional device-specific DDP (if present) overrides the default DDP
4478 * package file. kernel logs a debug message if the file doesn't exist,
4479 * and warning messages for other errors.
4480 */
4481 if (opt_fw_filename) {
4482 err = firmware_request_nowarn(firmware, opt_fw_filename, dev);
4483 kfree(opt_fw_filename);
4484 if (!err)
4485 return err;
4486 }
4487 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev);
4488 if (err)
4489 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4490
4491 return err;
4492 }
4493
4494 /**
4495 * ice_init_tx_topology - performs Tx topology initialization
4496 * @hw: pointer to the hardware structure
4497 * @firmware: pointer to firmware structure
4498 *
4499 * Return: zero when init was successful, negative values otherwise.
4500 */
4501 static int
ice_init_tx_topology(struct ice_hw * hw,const struct firmware * firmware)4502 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware)
4503 {
4504 u8 num_tx_sched_layers = hw->num_tx_sched_layers;
4505 struct ice_pf *pf = hw->back;
4506 struct device *dev;
4507 int err;
4508
4509 dev = ice_pf_to_dev(pf);
4510 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size);
4511 if (!err) {
4512 if (hw->num_tx_sched_layers > num_tx_sched_layers)
4513 dev_info(dev, "Tx scheduling layers switching feature disabled\n");
4514 else
4515 dev_info(dev, "Tx scheduling layers switching feature enabled\n");
4516 /* if there was a change in topology ice_cfg_tx_topo triggered
4517 * a CORER and we need to re-init hw
4518 */
4519 ice_deinit_hw(hw);
4520 err = ice_init_hw(hw);
4521
4522 return err;
4523 } else if (err == -EIO) {
4524 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n");
4525 }
4526
4527 return 0;
4528 }
4529
4530 /**
4531 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs
4532 * @hw: pointer to the hardware structure
4533 * @pf: pointer to pf structure
4534 *
4535 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor
4536 * formats the PF hardware supports. The exact list of supported RXDIDs
4537 * depends on the loaded DDP package. The IDs can be determined by reading the
4538 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded.
4539 *
4540 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed
4541 * in the DDP package. The 16-byte legacy descriptor is never supported by
4542 * VFs.
4543 */
ice_init_supported_rxdids(struct ice_hw * hw,struct ice_pf * pf)4544 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf)
4545 {
4546 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1);
4547
4548 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
4549 u32 regval;
4550
4551 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
4552 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
4553 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
4554 pf->supported_rxdids |= BIT(i);
4555 }
4556 }
4557
4558 /**
4559 * ice_init_ddp_config - DDP related configuration
4560 * @hw: pointer to the hardware structure
4561 * @pf: pointer to pf structure
4562 *
4563 * This function loads DDP file from the disk, then initializes Tx
4564 * topology. At the end DDP package is loaded on the card.
4565 *
4566 * Return: zero when init was successful, negative values otherwise.
4567 */
ice_init_ddp_config(struct ice_hw * hw,struct ice_pf * pf)4568 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf)
4569 {
4570 struct device *dev = ice_pf_to_dev(pf);
4571 const struct firmware *firmware = NULL;
4572 int err;
4573
4574 err = ice_request_fw(pf, &firmware);
4575 if (err) {
4576 dev_err(dev, "Fail during requesting FW: %d\n", err);
4577 return err;
4578 }
4579
4580 err = ice_init_tx_topology(hw, firmware);
4581 if (err) {
4582 dev_err(dev, "Fail during initialization of Tx topology: %d\n",
4583 err);
4584 release_firmware(firmware);
4585 return err;
4586 }
4587
4588 /* Download firmware to device */
4589 ice_load_pkg(firmware, pf);
4590 release_firmware(firmware);
4591
4592 /* Initialize the supported Rx descriptor IDs after loading DDP */
4593 ice_init_supported_rxdids(hw, pf);
4594
4595 return 0;
4596 }
4597
4598 /**
4599 * ice_print_wake_reason - show the wake up cause in the log
4600 * @pf: pointer to the PF struct
4601 */
ice_print_wake_reason(struct ice_pf * pf)4602 static void ice_print_wake_reason(struct ice_pf *pf)
4603 {
4604 u32 wus = pf->wakeup_reason;
4605 const char *wake_str;
4606
4607 /* if no wake event, nothing to print */
4608 if (!wus)
4609 return;
4610
4611 if (wus & PFPM_WUS_LNKC_M)
4612 wake_str = "Link\n";
4613 else if (wus & PFPM_WUS_MAG_M)
4614 wake_str = "Magic Packet\n";
4615 else if (wus & PFPM_WUS_MNG_M)
4616 wake_str = "Management\n";
4617 else if (wus & PFPM_WUS_FW_RST_WK_M)
4618 wake_str = "Firmware Reset\n";
4619 else
4620 wake_str = "Unknown\n";
4621
4622 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4623 }
4624
4625 /**
4626 * ice_pf_fwlog_update_module - update 1 module
4627 * @pf: pointer to the PF struct
4628 * @log_level: log_level to use for the @module
4629 * @module: module to update
4630 */
ice_pf_fwlog_update_module(struct ice_pf * pf,int log_level,int module)4631 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4632 {
4633 struct ice_hw *hw = &pf->hw;
4634
4635 hw->fwlog_cfg.module_entries[module].log_level = log_level;
4636 }
4637
4638 /**
4639 * ice_register_netdev - register netdev
4640 * @vsi: pointer to the VSI struct
4641 */
ice_register_netdev(struct ice_vsi * vsi)4642 static int ice_register_netdev(struct ice_vsi *vsi)
4643 {
4644 int err;
4645
4646 if (!vsi || !vsi->netdev)
4647 return -EIO;
4648
4649 err = register_netdev(vsi->netdev);
4650 if (err)
4651 return err;
4652
4653 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4654 netif_carrier_off(vsi->netdev);
4655 netif_tx_stop_all_queues(vsi->netdev);
4656
4657 return 0;
4658 }
4659
ice_unregister_netdev(struct ice_vsi * vsi)4660 static void ice_unregister_netdev(struct ice_vsi *vsi)
4661 {
4662 if (!vsi || !vsi->netdev)
4663 return;
4664
4665 unregister_netdev(vsi->netdev);
4666 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4667 }
4668
4669 /**
4670 * ice_cfg_netdev - Allocate, configure and register a netdev
4671 * @vsi: the VSI associated with the new netdev
4672 *
4673 * Returns 0 on success, negative value on failure
4674 */
ice_cfg_netdev(struct ice_vsi * vsi)4675 static int ice_cfg_netdev(struct ice_vsi *vsi)
4676 {
4677 struct ice_netdev_priv *np;
4678 struct net_device *netdev;
4679 u8 mac_addr[ETH_ALEN];
4680
4681 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4682 vsi->alloc_rxq);
4683 if (!netdev)
4684 return -ENOMEM;
4685
4686 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4687 vsi->netdev = netdev;
4688 np = netdev_priv(netdev);
4689 np->vsi = vsi;
4690
4691 ice_set_netdev_features(netdev);
4692 ice_set_ops(vsi);
4693
4694 if (vsi->type == ICE_VSI_PF) {
4695 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4696 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4697 eth_hw_addr_set(netdev, mac_addr);
4698 }
4699
4700 netdev->priv_flags |= IFF_UNICAST_FLT;
4701
4702 /* Setup netdev TC information */
4703 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4704
4705 netdev->max_mtu = ICE_MAX_MTU;
4706
4707 return 0;
4708 }
4709
ice_decfg_netdev(struct ice_vsi * vsi)4710 static void ice_decfg_netdev(struct ice_vsi *vsi)
4711 {
4712 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4713 free_netdev(vsi->netdev);
4714 vsi->netdev = NULL;
4715 }
4716
ice_init_dev(struct ice_pf * pf)4717 int ice_init_dev(struct ice_pf *pf)
4718 {
4719 struct device *dev = ice_pf_to_dev(pf);
4720 struct ice_hw *hw = &pf->hw;
4721 int err;
4722
4723 ice_init_feature_support(pf);
4724
4725 err = ice_init_ddp_config(hw, pf);
4726
4727 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be
4728 * set in pf->state, which will cause ice_is_safe_mode to return
4729 * true
4730 */
4731 if (err || ice_is_safe_mode(pf)) {
4732 /* we already got function/device capabilities but these don't
4733 * reflect what the driver needs to do in safe mode. Instead of
4734 * adding conditional logic everywhere to ignore these
4735 * device/function capabilities, override them.
4736 */
4737 ice_set_safe_mode_caps(hw);
4738 }
4739
4740 err = ice_init_pf(pf);
4741 if (err) {
4742 dev_err(dev, "ice_init_pf failed: %d\n", err);
4743 return err;
4744 }
4745
4746 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4747 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4748 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4749 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4750 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4751 pf->hw.udp_tunnel_nic.tables[0].n_entries =
4752 pf->hw.tnl.valid_count[TNL_VXLAN];
4753 pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4754 UDP_TUNNEL_TYPE_VXLAN;
4755 }
4756 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4757 pf->hw.udp_tunnel_nic.tables[1].n_entries =
4758 pf->hw.tnl.valid_count[TNL_GENEVE];
4759 pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4760 UDP_TUNNEL_TYPE_GENEVE;
4761 }
4762
4763 err = ice_init_interrupt_scheme(pf);
4764 if (err) {
4765 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4766 err = -EIO;
4767 goto unroll_pf_init;
4768 }
4769
4770 /* In case of MSIX we are going to setup the misc vector right here
4771 * to handle admin queue events etc. In case of legacy and MSI
4772 * the misc functionality and queue processing is combined in
4773 * the same vector and that gets setup at open.
4774 */
4775 err = ice_req_irq_msix_misc(pf);
4776 if (err) {
4777 dev_err(dev, "setup of misc vector failed: %d\n", err);
4778 goto unroll_irq_scheme_init;
4779 }
4780
4781 return 0;
4782
4783 unroll_irq_scheme_init:
4784 ice_clear_interrupt_scheme(pf);
4785 unroll_pf_init:
4786 ice_deinit_pf(pf);
4787 return err;
4788 }
4789
ice_deinit_dev(struct ice_pf * pf)4790 void ice_deinit_dev(struct ice_pf *pf)
4791 {
4792 ice_free_irq_msix_misc(pf);
4793 ice_deinit_pf(pf);
4794 ice_deinit_hw(&pf->hw);
4795
4796 /* Service task is already stopped, so call reset directly. */
4797 ice_reset(&pf->hw, ICE_RESET_PFR);
4798 pci_wait_for_pending_transaction(pf->pdev);
4799 ice_clear_interrupt_scheme(pf);
4800 }
4801
ice_init_features(struct ice_pf * pf)4802 static void ice_init_features(struct ice_pf *pf)
4803 {
4804 struct device *dev = ice_pf_to_dev(pf);
4805
4806 if (ice_is_safe_mode(pf))
4807 return;
4808
4809 /* initialize DDP driven features */
4810 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4811 ice_ptp_init(pf);
4812
4813 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4814 ice_gnss_init(pf);
4815
4816 if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4817 ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4818 ice_dpll_init(pf);
4819
4820 /* Note: Flow director init failure is non-fatal to load */
4821 if (ice_init_fdir(pf))
4822 dev_err(dev, "could not initialize flow director\n");
4823
4824 /* Note: DCB init failure is non-fatal to load */
4825 if (ice_init_pf_dcb(pf, false)) {
4826 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4827 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4828 } else {
4829 ice_cfg_lldp_mib_change(&pf->hw, true);
4830 }
4831
4832 if (ice_init_lag(pf))
4833 dev_warn(dev, "Failed to init link aggregation support\n");
4834
4835 ice_hwmon_init(pf);
4836 }
4837
ice_deinit_features(struct ice_pf * pf)4838 static void ice_deinit_features(struct ice_pf *pf)
4839 {
4840 if (ice_is_safe_mode(pf))
4841 return;
4842
4843 ice_deinit_lag(pf);
4844 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4845 ice_cfg_lldp_mib_change(&pf->hw, false);
4846 ice_deinit_fdir(pf);
4847 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4848 ice_gnss_exit(pf);
4849 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4850 ice_ptp_release(pf);
4851 if (test_bit(ICE_FLAG_DPLL, pf->flags))
4852 ice_dpll_deinit(pf);
4853 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4854 xa_destroy(&pf->eswitch.reprs);
4855 }
4856
ice_init_wakeup(struct ice_pf * pf)4857 static void ice_init_wakeup(struct ice_pf *pf)
4858 {
4859 /* Save wakeup reason register for later use */
4860 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4861
4862 /* check for a power management event */
4863 ice_print_wake_reason(pf);
4864
4865 /* clear wake status, all bits */
4866 wr32(&pf->hw, PFPM_WUS, U32_MAX);
4867
4868 /* Disable WoL at init, wait for user to enable */
4869 device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4870 }
4871
ice_init_link(struct ice_pf * pf)4872 static int ice_init_link(struct ice_pf *pf)
4873 {
4874 struct device *dev = ice_pf_to_dev(pf);
4875 int err;
4876
4877 err = ice_init_link_events(pf->hw.port_info);
4878 if (err) {
4879 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4880 return err;
4881 }
4882
4883 /* not a fatal error if this fails */
4884 err = ice_init_nvm_phy_type(pf->hw.port_info);
4885 if (err)
4886 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4887
4888 /* not a fatal error if this fails */
4889 err = ice_update_link_info(pf->hw.port_info);
4890 if (err)
4891 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4892
4893 ice_init_link_dflt_override(pf->hw.port_info);
4894
4895 ice_check_link_cfg_err(pf,
4896 pf->hw.port_info->phy.link_info.link_cfg_err);
4897
4898 /* if media available, initialize PHY settings */
4899 if (pf->hw.port_info->phy.link_info.link_info &
4900 ICE_AQ_MEDIA_AVAILABLE) {
4901 /* not a fatal error if this fails */
4902 err = ice_init_phy_user_cfg(pf->hw.port_info);
4903 if (err)
4904 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4905
4906 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4907 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4908
4909 if (vsi)
4910 ice_configure_phy(vsi);
4911 }
4912 } else {
4913 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4914 }
4915
4916 return err;
4917 }
4918
ice_init_pf_sw(struct ice_pf * pf)4919 static int ice_init_pf_sw(struct ice_pf *pf)
4920 {
4921 bool dvm = ice_is_dvm_ena(&pf->hw);
4922 struct ice_vsi *vsi;
4923 int err;
4924
4925 /* create switch struct for the switch element created by FW on boot */
4926 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4927 if (!pf->first_sw)
4928 return -ENOMEM;
4929
4930 if (pf->hw.evb_veb)
4931 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4932 else
4933 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4934
4935 pf->first_sw->pf = pf;
4936
4937 /* record the sw_id available for later use */
4938 pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4939
4940 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4941 if (err)
4942 goto err_aq_set_port_params;
4943
4944 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4945 if (!vsi) {
4946 err = -ENOMEM;
4947 goto err_pf_vsi_setup;
4948 }
4949
4950 return 0;
4951
4952 err_pf_vsi_setup:
4953 err_aq_set_port_params:
4954 kfree(pf->first_sw);
4955 return err;
4956 }
4957
ice_deinit_pf_sw(struct ice_pf * pf)4958 static void ice_deinit_pf_sw(struct ice_pf *pf)
4959 {
4960 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4961
4962 if (!vsi)
4963 return;
4964
4965 ice_vsi_release(vsi);
4966 kfree(pf->first_sw);
4967 }
4968
ice_alloc_vsis(struct ice_pf * pf)4969 static int ice_alloc_vsis(struct ice_pf *pf)
4970 {
4971 struct device *dev = ice_pf_to_dev(pf);
4972
4973 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4974 if (!pf->num_alloc_vsi)
4975 return -EIO;
4976
4977 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4978 dev_warn(dev,
4979 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4980 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4981 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4982 }
4983
4984 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4985 GFP_KERNEL);
4986 if (!pf->vsi)
4987 return -ENOMEM;
4988
4989 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4990 sizeof(*pf->vsi_stats), GFP_KERNEL);
4991 if (!pf->vsi_stats) {
4992 devm_kfree(dev, pf->vsi);
4993 return -ENOMEM;
4994 }
4995
4996 return 0;
4997 }
4998
ice_dealloc_vsis(struct ice_pf * pf)4999 static void ice_dealloc_vsis(struct ice_pf *pf)
5000 {
5001 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
5002 pf->vsi_stats = NULL;
5003
5004 pf->num_alloc_vsi = 0;
5005 devm_kfree(ice_pf_to_dev(pf), pf->vsi);
5006 pf->vsi = NULL;
5007 }
5008
ice_init_devlink(struct ice_pf * pf)5009 static int ice_init_devlink(struct ice_pf *pf)
5010 {
5011 int err;
5012
5013 err = ice_devlink_register_params(pf);
5014 if (err)
5015 return err;
5016
5017 ice_devlink_init_regions(pf);
5018 ice_devlink_register(pf);
5019 ice_health_init(pf);
5020
5021 return 0;
5022 }
5023
ice_deinit_devlink(struct ice_pf * pf)5024 static void ice_deinit_devlink(struct ice_pf *pf)
5025 {
5026 ice_health_deinit(pf);
5027 ice_devlink_unregister(pf);
5028 ice_devlink_destroy_regions(pf);
5029 ice_devlink_unregister_params(pf);
5030 }
5031
ice_init(struct ice_pf * pf)5032 static int ice_init(struct ice_pf *pf)
5033 {
5034 int err;
5035
5036 err = ice_init_dev(pf);
5037 if (err)
5038 return err;
5039
5040 if (pf->hw.mac_type == ICE_MAC_E830) {
5041 err = pci_enable_ptm(pf->pdev, NULL);
5042 if (err)
5043 dev_dbg(ice_pf_to_dev(pf), "PCIe PTM not supported by PCIe bus/controller\n");
5044 }
5045
5046 err = ice_alloc_vsis(pf);
5047 if (err)
5048 goto err_alloc_vsis;
5049
5050 err = ice_init_pf_sw(pf);
5051 if (err)
5052 goto err_init_pf_sw;
5053
5054 ice_init_wakeup(pf);
5055
5056 err = ice_init_link(pf);
5057 if (err)
5058 goto err_init_link;
5059
5060 err = ice_send_version(pf);
5061 if (err)
5062 goto err_init_link;
5063
5064 ice_verify_cacheline_size(pf);
5065
5066 if (ice_is_safe_mode(pf))
5067 ice_set_safe_mode_vlan_cfg(pf);
5068 else
5069 /* print PCI link speed and width */
5070 pcie_print_link_status(pf->pdev);
5071
5072 /* ready to go, so clear down state bit */
5073 clear_bit(ICE_DOWN, pf->state);
5074 clear_bit(ICE_SERVICE_DIS, pf->state);
5075
5076 /* since everything is good, start the service timer */
5077 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5078
5079 return 0;
5080
5081 err_init_link:
5082 ice_deinit_pf_sw(pf);
5083 err_init_pf_sw:
5084 ice_dealloc_vsis(pf);
5085 err_alloc_vsis:
5086 ice_deinit_dev(pf);
5087 return err;
5088 }
5089
ice_deinit(struct ice_pf * pf)5090 static void ice_deinit(struct ice_pf *pf)
5091 {
5092 set_bit(ICE_SERVICE_DIS, pf->state);
5093 set_bit(ICE_DOWN, pf->state);
5094
5095 ice_deinit_pf_sw(pf);
5096 ice_dealloc_vsis(pf);
5097 ice_deinit_dev(pf);
5098 }
5099
5100 /**
5101 * ice_load - load pf by init hw and starting VSI
5102 * @pf: pointer to the pf instance
5103 *
5104 * This function has to be called under devl_lock.
5105 */
ice_load(struct ice_pf * pf)5106 int ice_load(struct ice_pf *pf)
5107 {
5108 struct ice_vsi *vsi;
5109 int err;
5110
5111 devl_assert_locked(priv_to_devlink(pf));
5112
5113 vsi = ice_get_main_vsi(pf);
5114
5115 /* init channel list */
5116 INIT_LIST_HEAD(&vsi->ch_list);
5117
5118 err = ice_cfg_netdev(vsi);
5119 if (err)
5120 return err;
5121
5122 /* Setup DCB netlink interface */
5123 ice_dcbnl_setup(vsi);
5124
5125 err = ice_init_mac_fltr(pf);
5126 if (err)
5127 goto err_init_mac_fltr;
5128
5129 err = ice_devlink_create_pf_port(pf);
5130 if (err)
5131 goto err_devlink_create_pf_port;
5132
5133 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
5134
5135 err = ice_register_netdev(vsi);
5136 if (err)
5137 goto err_register_netdev;
5138
5139 err = ice_tc_indir_block_register(vsi);
5140 if (err)
5141 goto err_tc_indir_block_register;
5142
5143 ice_napi_add(vsi);
5144
5145 ice_init_features(pf);
5146
5147 err = ice_init_rdma(pf);
5148 if (err)
5149 goto err_init_rdma;
5150
5151 ice_service_task_restart(pf);
5152
5153 clear_bit(ICE_DOWN, pf->state);
5154
5155 return 0;
5156
5157 err_init_rdma:
5158 ice_deinit_features(pf);
5159 ice_tc_indir_block_unregister(vsi);
5160 err_tc_indir_block_register:
5161 ice_unregister_netdev(vsi);
5162 err_register_netdev:
5163 ice_devlink_destroy_pf_port(pf);
5164 err_devlink_create_pf_port:
5165 err_init_mac_fltr:
5166 ice_decfg_netdev(vsi);
5167 return err;
5168 }
5169
5170 /**
5171 * ice_unload - unload pf by stopping VSI and deinit hw
5172 * @pf: pointer to the pf instance
5173 *
5174 * This function has to be called under devl_lock.
5175 */
ice_unload(struct ice_pf * pf)5176 void ice_unload(struct ice_pf *pf)
5177 {
5178 struct ice_vsi *vsi = ice_get_main_vsi(pf);
5179
5180 devl_assert_locked(priv_to_devlink(pf));
5181
5182 ice_deinit_rdma(pf);
5183 ice_deinit_features(pf);
5184 ice_tc_indir_block_unregister(vsi);
5185 ice_unregister_netdev(vsi);
5186 ice_devlink_destroy_pf_port(pf);
5187 ice_decfg_netdev(vsi);
5188 }
5189
ice_probe_recovery_mode(struct ice_pf * pf)5190 static int ice_probe_recovery_mode(struct ice_pf *pf)
5191 {
5192 struct device *dev = ice_pf_to_dev(pf);
5193 int err;
5194
5195 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n");
5196
5197 INIT_HLIST_HEAD(&pf->aq_wait_list);
5198 spin_lock_init(&pf->aq_wait_lock);
5199 init_waitqueue_head(&pf->aq_wait_queue);
5200
5201 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
5202 pf->serv_tmr_period = HZ;
5203 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode);
5204 clear_bit(ICE_SERVICE_SCHED, pf->state);
5205 err = ice_create_all_ctrlq(&pf->hw);
5206 if (err)
5207 return err;
5208
5209 scoped_guard(devl, priv_to_devlink(pf)) {
5210 err = ice_init_devlink(pf);
5211 if (err)
5212 return err;
5213 }
5214
5215 ice_service_task_restart(pf);
5216
5217 return 0;
5218 }
5219
5220 /**
5221 * ice_probe - Device initialization routine
5222 * @pdev: PCI device information struct
5223 * @ent: entry in ice_pci_tbl
5224 *
5225 * Returns 0 on success, negative on failure
5226 */
5227 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)5228 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5229 {
5230 struct device *dev = &pdev->dev;
5231 struct ice_adapter *adapter;
5232 struct ice_pf *pf;
5233 struct ice_hw *hw;
5234 int err;
5235
5236 if (pdev->is_virtfn) {
5237 dev_err(dev, "can't probe a virtual function\n");
5238 return -EINVAL;
5239 }
5240
5241 /* when under a kdump kernel initiate a reset before enabling the
5242 * device in order to clear out any pending DMA transactions. These
5243 * transactions can cause some systems to machine check when doing
5244 * the pcim_enable_device() below.
5245 */
5246 if (is_kdump_kernel()) {
5247 pci_save_state(pdev);
5248 pci_clear_master(pdev);
5249 err = pcie_flr(pdev);
5250 if (err)
5251 return err;
5252 pci_restore_state(pdev);
5253 }
5254
5255 /* this driver uses devres, see
5256 * Documentation/driver-api/driver-model/devres.rst
5257 */
5258 err = pcim_enable_device(pdev);
5259 if (err)
5260 return err;
5261
5262 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5263 if (err) {
5264 dev_err(dev, "BAR0 I/O map error %d\n", err);
5265 return err;
5266 }
5267
5268 pf = ice_allocate_pf(dev);
5269 if (!pf)
5270 return -ENOMEM;
5271
5272 /* initialize Auxiliary index to invalid value */
5273 pf->aux_idx = -1;
5274
5275 /* set up for high or low DMA */
5276 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5277 if (err) {
5278 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5279 return err;
5280 }
5281
5282 pci_set_master(pdev);
5283 pf->pdev = pdev;
5284 pci_set_drvdata(pdev, pf);
5285 set_bit(ICE_DOWN, pf->state);
5286 /* Disable service task until DOWN bit is cleared */
5287 set_bit(ICE_SERVICE_DIS, pf->state);
5288
5289 hw = &pf->hw;
5290 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5291 pci_save_state(pdev);
5292
5293 hw->back = pf;
5294 hw->port_info = NULL;
5295 hw->vendor_id = pdev->vendor;
5296 hw->device_id = pdev->device;
5297 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5298 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5299 hw->subsystem_device_id = pdev->subsystem_device;
5300 hw->bus.device = PCI_SLOT(pdev->devfn);
5301 hw->bus.func = PCI_FUNC(pdev->devfn);
5302 ice_set_ctrlq_len(hw);
5303
5304 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5305
5306 #ifndef CONFIG_DYNAMIC_DEBUG
5307 if (debug < -1)
5308 hw->debug_mask = debug;
5309 #endif
5310
5311 if (ice_is_recovery_mode(hw))
5312 return ice_probe_recovery_mode(pf);
5313
5314 err = ice_init_hw(hw);
5315 if (err) {
5316 dev_err(dev, "ice_init_hw failed: %d\n", err);
5317 return err;
5318 }
5319
5320 adapter = ice_adapter_get(pdev);
5321 if (IS_ERR(adapter)) {
5322 err = PTR_ERR(adapter);
5323 goto unroll_hw_init;
5324 }
5325 pf->adapter = adapter;
5326
5327 err = ice_init(pf);
5328 if (err)
5329 goto unroll_adapter;
5330
5331 devl_lock(priv_to_devlink(pf));
5332 err = ice_load(pf);
5333 if (err)
5334 goto unroll_init;
5335
5336 err = ice_init_devlink(pf);
5337 if (err)
5338 goto unroll_load;
5339 devl_unlock(priv_to_devlink(pf));
5340
5341 return 0;
5342
5343 unroll_load:
5344 ice_unload(pf);
5345 unroll_init:
5346 devl_unlock(priv_to_devlink(pf));
5347 ice_deinit(pf);
5348 unroll_adapter:
5349 ice_adapter_put(pdev);
5350 unroll_hw_init:
5351 ice_deinit_hw(hw);
5352 return err;
5353 }
5354
5355 /**
5356 * ice_set_wake - enable or disable Wake on LAN
5357 * @pf: pointer to the PF struct
5358 *
5359 * Simple helper for WoL control
5360 */
ice_set_wake(struct ice_pf * pf)5361 static void ice_set_wake(struct ice_pf *pf)
5362 {
5363 struct ice_hw *hw = &pf->hw;
5364 bool wol = pf->wol_ena;
5365
5366 /* clear wake state, otherwise new wake events won't fire */
5367 wr32(hw, PFPM_WUS, U32_MAX);
5368
5369 /* enable / disable APM wake up, no RMW needed */
5370 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5371
5372 /* set magic packet filter enabled */
5373 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5374 }
5375
5376 /**
5377 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5378 * @pf: pointer to the PF struct
5379 *
5380 * Issue firmware command to enable multicast magic wake, making
5381 * sure that any locally administered address (LAA) is used for
5382 * wake, and that PF reset doesn't undo the LAA.
5383 */
ice_setup_mc_magic_wake(struct ice_pf * pf)5384 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5385 {
5386 struct device *dev = ice_pf_to_dev(pf);
5387 struct ice_hw *hw = &pf->hw;
5388 u8 mac_addr[ETH_ALEN];
5389 struct ice_vsi *vsi;
5390 int status;
5391 u8 flags;
5392
5393 if (!pf->wol_ena)
5394 return;
5395
5396 vsi = ice_get_main_vsi(pf);
5397 if (!vsi)
5398 return;
5399
5400 /* Get current MAC address in case it's an LAA */
5401 if (vsi->netdev)
5402 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5403 else
5404 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5405
5406 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5407 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5408 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5409
5410 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5411 if (status)
5412 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5413 status, ice_aq_str(hw->adminq.sq_last_status));
5414 }
5415
5416 /**
5417 * ice_remove - Device removal routine
5418 * @pdev: PCI device information struct
5419 */
ice_remove(struct pci_dev * pdev)5420 static void ice_remove(struct pci_dev *pdev)
5421 {
5422 struct ice_pf *pf = pci_get_drvdata(pdev);
5423 int i;
5424
5425 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5426 if (!ice_is_reset_in_progress(pf->state))
5427 break;
5428 msleep(100);
5429 }
5430
5431 if (ice_is_recovery_mode(&pf->hw)) {
5432 ice_service_task_stop(pf);
5433 scoped_guard(devl, priv_to_devlink(pf)) {
5434 ice_deinit_devlink(pf);
5435 }
5436 return;
5437 }
5438
5439 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5440 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5441 ice_free_vfs(pf);
5442 }
5443
5444 ice_hwmon_exit(pf);
5445
5446 ice_service_task_stop(pf);
5447 ice_aq_cancel_waiting_tasks(pf);
5448 set_bit(ICE_DOWN, pf->state);
5449
5450 if (!ice_is_safe_mode(pf))
5451 ice_remove_arfs(pf);
5452
5453 devl_lock(priv_to_devlink(pf));
5454 ice_dealloc_all_dynamic_ports(pf);
5455 ice_deinit_devlink(pf);
5456
5457 ice_unload(pf);
5458 devl_unlock(priv_to_devlink(pf));
5459
5460 ice_deinit(pf);
5461 ice_vsi_release_all(pf);
5462
5463 ice_setup_mc_magic_wake(pf);
5464 ice_set_wake(pf);
5465
5466 ice_adapter_put(pdev);
5467 }
5468
5469 /**
5470 * ice_shutdown - PCI callback for shutting down device
5471 * @pdev: PCI device information struct
5472 */
ice_shutdown(struct pci_dev * pdev)5473 static void ice_shutdown(struct pci_dev *pdev)
5474 {
5475 struct ice_pf *pf = pci_get_drvdata(pdev);
5476
5477 ice_remove(pdev);
5478
5479 if (system_state == SYSTEM_POWER_OFF) {
5480 pci_wake_from_d3(pdev, pf->wol_ena);
5481 pci_set_power_state(pdev, PCI_D3hot);
5482 }
5483 }
5484
5485 /**
5486 * ice_prepare_for_shutdown - prep for PCI shutdown
5487 * @pf: board private structure
5488 *
5489 * Inform or close all dependent features in prep for PCI device shutdown
5490 */
ice_prepare_for_shutdown(struct ice_pf * pf)5491 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5492 {
5493 struct ice_hw *hw = &pf->hw;
5494 u32 v;
5495
5496 /* Notify VFs of impending reset */
5497 if (ice_check_sq_alive(hw, &hw->mailboxq))
5498 ice_vc_notify_reset(pf);
5499
5500 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5501
5502 /* disable the VSIs and their queues that are not already DOWN */
5503 ice_pf_dis_all_vsi(pf, false);
5504
5505 ice_for_each_vsi(pf, v)
5506 if (pf->vsi[v])
5507 pf->vsi[v]->vsi_num = 0;
5508
5509 ice_shutdown_all_ctrlq(hw, true);
5510 }
5511
5512 /**
5513 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5514 * @pf: board private structure to reinitialize
5515 *
5516 * This routine reinitialize interrupt scheme that was cleared during
5517 * power management suspend callback.
5518 *
5519 * This should be called during resume routine to re-allocate the q_vectors
5520 * and reacquire interrupts.
5521 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5522 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5523 {
5524 struct device *dev = ice_pf_to_dev(pf);
5525 int ret, v;
5526
5527 /* Since we clear MSIX flag during suspend, we need to
5528 * set it back during resume...
5529 */
5530
5531 ret = ice_init_interrupt_scheme(pf);
5532 if (ret) {
5533 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5534 return ret;
5535 }
5536
5537 /* Remap vectors and rings, after successful re-init interrupts */
5538 ice_for_each_vsi(pf, v) {
5539 if (!pf->vsi[v])
5540 continue;
5541
5542 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5543 if (ret)
5544 goto err_reinit;
5545 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5546 rtnl_lock();
5547 ice_vsi_set_napi_queues(pf->vsi[v]);
5548 rtnl_unlock();
5549 }
5550
5551 ret = ice_req_irq_msix_misc(pf);
5552 if (ret) {
5553 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5554 ret);
5555 goto err_reinit;
5556 }
5557
5558 return 0;
5559
5560 err_reinit:
5561 while (v--)
5562 if (pf->vsi[v]) {
5563 rtnl_lock();
5564 ice_vsi_clear_napi_queues(pf->vsi[v]);
5565 rtnl_unlock();
5566 ice_vsi_free_q_vectors(pf->vsi[v]);
5567 }
5568
5569 return ret;
5570 }
5571
5572 /**
5573 * ice_suspend
5574 * @dev: generic device information structure
5575 *
5576 * Power Management callback to quiesce the device and prepare
5577 * for D3 transition.
5578 */
ice_suspend(struct device * dev)5579 static int ice_suspend(struct device *dev)
5580 {
5581 struct pci_dev *pdev = to_pci_dev(dev);
5582 struct ice_pf *pf;
5583 int disabled, v;
5584
5585 pf = pci_get_drvdata(pdev);
5586
5587 if (!ice_pf_state_is_nominal(pf)) {
5588 dev_err(dev, "Device is not ready, no need to suspend it\n");
5589 return -EBUSY;
5590 }
5591
5592 /* Stop watchdog tasks until resume completion.
5593 * Even though it is most likely that the service task is
5594 * disabled if the device is suspended or down, the service task's
5595 * state is controlled by a different state bit, and we should
5596 * store and honor whatever state that bit is in at this point.
5597 */
5598 disabled = ice_service_task_stop(pf);
5599
5600 ice_deinit_rdma(pf);
5601
5602 /* Already suspended?, then there is nothing to do */
5603 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5604 if (!disabled)
5605 ice_service_task_restart(pf);
5606 return 0;
5607 }
5608
5609 if (test_bit(ICE_DOWN, pf->state) ||
5610 ice_is_reset_in_progress(pf->state)) {
5611 dev_err(dev, "can't suspend device in reset or already down\n");
5612 if (!disabled)
5613 ice_service_task_restart(pf);
5614 return 0;
5615 }
5616
5617 ice_setup_mc_magic_wake(pf);
5618
5619 ice_prepare_for_shutdown(pf);
5620
5621 ice_set_wake(pf);
5622
5623 /* Free vectors, clear the interrupt scheme and release IRQs
5624 * for proper hibernation, especially with large number of CPUs.
5625 * Otherwise hibernation might fail when mapping all the vectors back
5626 * to CPU0.
5627 */
5628 ice_free_irq_msix_misc(pf);
5629 ice_for_each_vsi(pf, v) {
5630 if (!pf->vsi[v])
5631 continue;
5632 rtnl_lock();
5633 ice_vsi_clear_napi_queues(pf->vsi[v]);
5634 rtnl_unlock();
5635 ice_vsi_free_q_vectors(pf->vsi[v]);
5636 }
5637 ice_clear_interrupt_scheme(pf);
5638
5639 pci_save_state(pdev);
5640 pci_wake_from_d3(pdev, pf->wol_ena);
5641 pci_set_power_state(pdev, PCI_D3hot);
5642 return 0;
5643 }
5644
5645 /**
5646 * ice_resume - PM callback for waking up from D3
5647 * @dev: generic device information structure
5648 */
ice_resume(struct device * dev)5649 static int ice_resume(struct device *dev)
5650 {
5651 struct pci_dev *pdev = to_pci_dev(dev);
5652 enum ice_reset_req reset_type;
5653 struct ice_pf *pf;
5654 struct ice_hw *hw;
5655 int ret;
5656
5657 pci_set_power_state(pdev, PCI_D0);
5658 pci_restore_state(pdev);
5659 pci_save_state(pdev);
5660
5661 if (!pci_device_is_present(pdev))
5662 return -ENODEV;
5663
5664 ret = pci_enable_device_mem(pdev);
5665 if (ret) {
5666 dev_err(dev, "Cannot enable device after suspend\n");
5667 return ret;
5668 }
5669
5670 pf = pci_get_drvdata(pdev);
5671 hw = &pf->hw;
5672
5673 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5674 ice_print_wake_reason(pf);
5675
5676 /* We cleared the interrupt scheme when we suspended, so we need to
5677 * restore it now to resume device functionality.
5678 */
5679 ret = ice_reinit_interrupt_scheme(pf);
5680 if (ret)
5681 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5682
5683 ret = ice_init_rdma(pf);
5684 if (ret)
5685 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5686 ret);
5687
5688 clear_bit(ICE_DOWN, pf->state);
5689 /* Now perform PF reset and rebuild */
5690 reset_type = ICE_RESET_PFR;
5691 /* re-enable service task for reset, but allow reset to schedule it */
5692 clear_bit(ICE_SERVICE_DIS, pf->state);
5693
5694 if (ice_schedule_reset(pf, reset_type))
5695 dev_err(dev, "Reset during resume failed.\n");
5696
5697 clear_bit(ICE_SUSPENDED, pf->state);
5698 ice_service_task_restart(pf);
5699
5700 /* Restart the service task */
5701 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5702
5703 return 0;
5704 }
5705
5706 /**
5707 * ice_pci_err_detected - warning that PCI error has been detected
5708 * @pdev: PCI device information struct
5709 * @err: the type of PCI error
5710 *
5711 * Called to warn that something happened on the PCI bus and the error handling
5712 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5713 */
5714 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5715 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5716 {
5717 struct ice_pf *pf = pci_get_drvdata(pdev);
5718
5719 if (!pf) {
5720 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5721 __func__, err);
5722 return PCI_ERS_RESULT_DISCONNECT;
5723 }
5724
5725 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5726 ice_service_task_stop(pf);
5727
5728 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5729 set_bit(ICE_PFR_REQ, pf->state);
5730 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5731 }
5732 }
5733
5734 return PCI_ERS_RESULT_NEED_RESET;
5735 }
5736
5737 /**
5738 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5739 * @pdev: PCI device information struct
5740 *
5741 * Called to determine if the driver can recover from the PCI slot reset by
5742 * using a register read to determine if the device is recoverable.
5743 */
ice_pci_err_slot_reset(struct pci_dev * pdev)5744 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5745 {
5746 struct ice_pf *pf = pci_get_drvdata(pdev);
5747 pci_ers_result_t result;
5748 int err;
5749 u32 reg;
5750
5751 err = pci_enable_device_mem(pdev);
5752 if (err) {
5753 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5754 err);
5755 result = PCI_ERS_RESULT_DISCONNECT;
5756 } else {
5757 pci_set_master(pdev);
5758 pci_restore_state(pdev);
5759 pci_save_state(pdev);
5760 pci_wake_from_d3(pdev, false);
5761
5762 /* Check for life */
5763 reg = rd32(&pf->hw, GLGEN_RTRIG);
5764 if (!reg)
5765 result = PCI_ERS_RESULT_RECOVERED;
5766 else
5767 result = PCI_ERS_RESULT_DISCONNECT;
5768 }
5769
5770 return result;
5771 }
5772
5773 /**
5774 * ice_pci_err_resume - restart operations after PCI error recovery
5775 * @pdev: PCI device information struct
5776 *
5777 * Called to allow the driver to bring things back up after PCI error and/or
5778 * reset recovery have finished
5779 */
ice_pci_err_resume(struct pci_dev * pdev)5780 static void ice_pci_err_resume(struct pci_dev *pdev)
5781 {
5782 struct ice_pf *pf = pci_get_drvdata(pdev);
5783
5784 if (!pf) {
5785 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5786 __func__);
5787 return;
5788 }
5789
5790 if (test_bit(ICE_SUSPENDED, pf->state)) {
5791 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5792 __func__);
5793 return;
5794 }
5795
5796 ice_restore_all_vfs_msi_state(pf);
5797
5798 ice_do_reset(pf, ICE_RESET_PFR);
5799 ice_service_task_restart(pf);
5800 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5801 }
5802
5803 /**
5804 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5805 * @pdev: PCI device information struct
5806 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5807 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5808 {
5809 struct ice_pf *pf = pci_get_drvdata(pdev);
5810
5811 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5812 ice_service_task_stop(pf);
5813
5814 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5815 set_bit(ICE_PFR_REQ, pf->state);
5816 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5817 }
5818 }
5819 }
5820
5821 /**
5822 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5823 * @pdev: PCI device information struct
5824 */
ice_pci_err_reset_done(struct pci_dev * pdev)5825 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5826 {
5827 ice_pci_err_resume(pdev);
5828 }
5829
5830 /* ice_pci_tbl - PCI Device ID Table
5831 *
5832 * Wildcard entries (PCI_ANY_ID) should come last
5833 * Last entry must be all 0s
5834 *
5835 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5836 * Class, Class Mask, private data (not used) }
5837 */
5838 static const struct pci_device_id ice_pci_tbl[] = {
5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) },
5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) },
5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) },
5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) },
5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), },
5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), },
5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), },
5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), },
5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), },
5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), },
5879 /* required last entry */
5880 {}
5881 };
5882 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5883
5884 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5885
5886 static const struct pci_error_handlers ice_pci_err_handler = {
5887 .error_detected = ice_pci_err_detected,
5888 .slot_reset = ice_pci_err_slot_reset,
5889 .reset_prepare = ice_pci_err_reset_prepare,
5890 .reset_done = ice_pci_err_reset_done,
5891 .resume = ice_pci_err_resume
5892 };
5893
5894 static struct pci_driver ice_driver = {
5895 .name = KBUILD_MODNAME,
5896 .id_table = ice_pci_tbl,
5897 .probe = ice_probe,
5898 .remove = ice_remove,
5899 .driver.pm = pm_sleep_ptr(&ice_pm_ops),
5900 .shutdown = ice_shutdown,
5901 .sriov_configure = ice_sriov_configure,
5902 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5903 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5904 .err_handler = &ice_pci_err_handler
5905 };
5906
5907 /**
5908 * ice_module_init - Driver registration routine
5909 *
5910 * ice_module_init is the first routine called when the driver is
5911 * loaded. All it does is register with the PCI subsystem.
5912 */
ice_module_init(void)5913 static int __init ice_module_init(void)
5914 {
5915 int status = -ENOMEM;
5916
5917 pr_info("%s\n", ice_driver_string);
5918 pr_info("%s\n", ice_copyright);
5919
5920 ice_adv_lnk_speed_maps_init();
5921
5922 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME);
5923 if (!ice_wq) {
5924 pr_err("Failed to create workqueue\n");
5925 return status;
5926 }
5927
5928 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5929 if (!ice_lag_wq) {
5930 pr_err("Failed to create LAG workqueue\n");
5931 goto err_dest_wq;
5932 }
5933
5934 ice_debugfs_init();
5935
5936 status = pci_register_driver(&ice_driver);
5937 if (status) {
5938 pr_err("failed to register PCI driver, err %d\n", status);
5939 goto err_dest_lag_wq;
5940 }
5941
5942 status = ice_sf_driver_register();
5943 if (status) {
5944 pr_err("Failed to register SF driver, err %d\n", status);
5945 goto err_sf_driver;
5946 }
5947
5948 return 0;
5949
5950 err_sf_driver:
5951 pci_unregister_driver(&ice_driver);
5952 err_dest_lag_wq:
5953 destroy_workqueue(ice_lag_wq);
5954 ice_debugfs_exit();
5955 err_dest_wq:
5956 destroy_workqueue(ice_wq);
5957 return status;
5958 }
5959 module_init(ice_module_init);
5960
5961 /**
5962 * ice_module_exit - Driver exit cleanup routine
5963 *
5964 * ice_module_exit is called just before the driver is removed
5965 * from memory.
5966 */
ice_module_exit(void)5967 static void __exit ice_module_exit(void)
5968 {
5969 ice_sf_driver_unregister();
5970 pci_unregister_driver(&ice_driver);
5971 ice_debugfs_exit();
5972 destroy_workqueue(ice_wq);
5973 destroy_workqueue(ice_lag_wq);
5974 pr_info("module unloaded\n");
5975 }
5976 module_exit(ice_module_exit);
5977
5978 /**
5979 * ice_set_mac_address - NDO callback to set MAC address
5980 * @netdev: network interface device structure
5981 * @pi: pointer to an address structure
5982 *
5983 * Returns 0 on success, negative on failure
5984 */
ice_set_mac_address(struct net_device * netdev,void * pi)5985 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5986 {
5987 struct ice_netdev_priv *np = netdev_priv(netdev);
5988 struct ice_vsi *vsi = np->vsi;
5989 struct ice_pf *pf = vsi->back;
5990 struct ice_hw *hw = &pf->hw;
5991 struct sockaddr *addr = pi;
5992 u8 old_mac[ETH_ALEN];
5993 u8 flags = 0;
5994 u8 *mac;
5995 int err;
5996
5997 mac = (u8 *)addr->sa_data;
5998
5999 if (!is_valid_ether_addr(mac))
6000 return -EADDRNOTAVAIL;
6001
6002 if (test_bit(ICE_DOWN, pf->state) ||
6003 ice_is_reset_in_progress(pf->state)) {
6004 netdev_err(netdev, "can't set mac %pM. device not ready\n",
6005 mac);
6006 return -EBUSY;
6007 }
6008
6009 if (ice_chnl_dmac_fltr_cnt(pf)) {
6010 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
6011 mac);
6012 return -EAGAIN;
6013 }
6014
6015 netif_addr_lock_bh(netdev);
6016 ether_addr_copy(old_mac, netdev->dev_addr);
6017 /* change the netdev's MAC address */
6018 eth_hw_addr_set(netdev, mac);
6019 netif_addr_unlock_bh(netdev);
6020
6021 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
6022 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
6023 if (err && err != -ENOENT) {
6024 err = -EADDRNOTAVAIL;
6025 goto err_update_filters;
6026 }
6027
6028 /* Add filter for new MAC. If filter exists, return success */
6029 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
6030 if (err == -EEXIST) {
6031 /* Although this MAC filter is already present in hardware it's
6032 * possible in some cases (e.g. bonding) that dev_addr was
6033 * modified outside of the driver and needs to be restored back
6034 * to this value.
6035 */
6036 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
6037
6038 return 0;
6039 } else if (err) {
6040 /* error if the new filter addition failed */
6041 err = -EADDRNOTAVAIL;
6042 }
6043
6044 err_update_filters:
6045 if (err) {
6046 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
6047 mac);
6048 netif_addr_lock_bh(netdev);
6049 eth_hw_addr_set(netdev, old_mac);
6050 netif_addr_unlock_bh(netdev);
6051 return err;
6052 }
6053
6054 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
6055 netdev->dev_addr);
6056
6057 /* write new MAC address to the firmware */
6058 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
6059 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
6060 if (err) {
6061 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
6062 mac, err);
6063 }
6064 return 0;
6065 }
6066
6067 /**
6068 * ice_set_rx_mode - NDO callback to set the netdev filters
6069 * @netdev: network interface device structure
6070 */
ice_set_rx_mode(struct net_device * netdev)6071 static void ice_set_rx_mode(struct net_device *netdev)
6072 {
6073 struct ice_netdev_priv *np = netdev_priv(netdev);
6074 struct ice_vsi *vsi = np->vsi;
6075
6076 if (!vsi || ice_is_switchdev_running(vsi->back))
6077 return;
6078
6079 /* Set the flags to synchronize filters
6080 * ndo_set_rx_mode may be triggered even without a change in netdev
6081 * flags
6082 */
6083 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
6084 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
6085 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
6086
6087 /* schedule our worker thread which will take care of
6088 * applying the new filter changes
6089 */
6090 ice_service_task_schedule(vsi->back);
6091 }
6092
6093 /**
6094 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
6095 * @netdev: network interface device structure
6096 * @queue_index: Queue ID
6097 * @maxrate: maximum bandwidth in Mbps
6098 */
6099 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)6100 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
6101 {
6102 struct ice_netdev_priv *np = netdev_priv(netdev);
6103 struct ice_vsi *vsi = np->vsi;
6104 u16 q_handle;
6105 int status;
6106 u8 tc;
6107
6108 /* Validate maxrate requested is within permitted range */
6109 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
6110 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
6111 maxrate, queue_index);
6112 return -EINVAL;
6113 }
6114
6115 q_handle = vsi->tx_rings[queue_index]->q_handle;
6116 tc = ice_dcb_get_tc(vsi, queue_index);
6117
6118 vsi = ice_locate_vsi_using_queue(vsi, queue_index);
6119 if (!vsi) {
6120 netdev_err(netdev, "Invalid VSI for given queue %d\n",
6121 queue_index);
6122 return -EINVAL;
6123 }
6124
6125 /* Set BW back to default, when user set maxrate to 0 */
6126 if (!maxrate)
6127 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6128 q_handle, ICE_MAX_BW);
6129 else
6130 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6131 q_handle, ICE_MAX_BW, maxrate * 1000);
6132 if (status)
6133 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6134 status);
6135
6136 return status;
6137 }
6138
6139 /**
6140 * ice_fdb_add - add an entry to the hardware database
6141 * @ndm: the input from the stack
6142 * @tb: pointer to array of nladdr (unused)
6143 * @dev: the net device pointer
6144 * @addr: the MAC address entry being added
6145 * @vid: VLAN ID
6146 * @flags: instructions from stack about fdb operation
6147 * @notified: whether notification was emitted
6148 * @extack: netlink extended ack
6149 */
6150 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,bool * notified,struct netlink_ext_ack __always_unused * extack)6151 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6152 struct net_device *dev, const unsigned char *addr, u16 vid,
6153 u16 flags, bool *notified,
6154 struct netlink_ext_ack __always_unused *extack)
6155 {
6156 int err;
6157
6158 if (vid) {
6159 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6160 return -EINVAL;
6161 }
6162 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6163 netdev_err(dev, "FDB only supports static addresses\n");
6164 return -EINVAL;
6165 }
6166
6167 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6168 err = dev_uc_add_excl(dev, addr);
6169 else if (is_multicast_ether_addr(addr))
6170 err = dev_mc_add_excl(dev, addr);
6171 else
6172 err = -EINVAL;
6173
6174 /* Only return duplicate errors if NLM_F_EXCL is set */
6175 if (err == -EEXIST && !(flags & NLM_F_EXCL))
6176 err = 0;
6177
6178 return err;
6179 }
6180
6181 /**
6182 * ice_fdb_del - delete an entry from the hardware database
6183 * @ndm: the input from the stack
6184 * @tb: pointer to array of nladdr (unused)
6185 * @dev: the net device pointer
6186 * @addr: the MAC address entry being added
6187 * @vid: VLAN ID
6188 * @notified: whether notification was emitted
6189 * @extack: netlink extended ack
6190 */
6191 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,bool * notified,struct netlink_ext_ack * extack)6192 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6193 struct net_device *dev, const unsigned char *addr,
6194 __always_unused u16 vid, bool *notified,
6195 struct netlink_ext_ack *extack)
6196 {
6197 int err;
6198
6199 if (ndm->ndm_state & NUD_PERMANENT) {
6200 netdev_err(dev, "FDB only supports static addresses\n");
6201 return -EINVAL;
6202 }
6203
6204 if (is_unicast_ether_addr(addr))
6205 err = dev_uc_del(dev, addr);
6206 else if (is_multicast_ether_addr(addr))
6207 err = dev_mc_del(dev, addr);
6208 else
6209 err = -EINVAL;
6210
6211 return err;
6212 }
6213
6214 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6215 NETIF_F_HW_VLAN_CTAG_TX | \
6216 NETIF_F_HW_VLAN_STAG_RX | \
6217 NETIF_F_HW_VLAN_STAG_TX)
6218
6219 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6220 NETIF_F_HW_VLAN_STAG_RX)
6221
6222 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
6223 NETIF_F_HW_VLAN_STAG_FILTER)
6224
6225 /**
6226 * ice_fix_features - fix the netdev features flags based on device limitations
6227 * @netdev: ptr to the netdev that flags are being fixed on
6228 * @features: features that need to be checked and possibly fixed
6229 *
6230 * Make sure any fixups are made to features in this callback. This enables the
6231 * driver to not have to check unsupported configurations throughout the driver
6232 * because that's the responsiblity of this callback.
6233 *
6234 * Single VLAN Mode (SVM) Supported Features:
6235 * NETIF_F_HW_VLAN_CTAG_FILTER
6236 * NETIF_F_HW_VLAN_CTAG_RX
6237 * NETIF_F_HW_VLAN_CTAG_TX
6238 *
6239 * Double VLAN Mode (DVM) Supported Features:
6240 * NETIF_F_HW_VLAN_CTAG_FILTER
6241 * NETIF_F_HW_VLAN_CTAG_RX
6242 * NETIF_F_HW_VLAN_CTAG_TX
6243 *
6244 * NETIF_F_HW_VLAN_STAG_FILTER
6245 * NETIF_HW_VLAN_STAG_RX
6246 * NETIF_HW_VLAN_STAG_TX
6247 *
6248 * Features that need fixing:
6249 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6250 * These are mutually exlusive as the VSI context cannot support multiple
6251 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
6252 * is not done, then default to clearing the requested STAG offload
6253 * settings.
6254 *
6255 * All supported filtering has to be enabled or disabled together. For
6256 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6257 * together. If this is not done, then default to VLAN filtering disabled.
6258 * These are mutually exclusive as there is currently no way to
6259 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6260 * prune rules.
6261 */
6262 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)6263 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6264 {
6265 struct ice_netdev_priv *np = netdev_priv(netdev);
6266 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6267 bool cur_ctag, cur_stag, req_ctag, req_stag;
6268
6269 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6270 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6271 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6272
6273 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6274 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6275 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6276
6277 if (req_vlan_fltr != cur_vlan_fltr) {
6278 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6279 if (req_ctag && req_stag) {
6280 features |= NETIF_VLAN_FILTERING_FEATURES;
6281 } else if (!req_ctag && !req_stag) {
6282 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6283 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
6284 (!cur_stag && req_stag && !cur_ctag)) {
6285 features |= NETIF_VLAN_FILTERING_FEATURES;
6286 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6287 } else if ((cur_ctag && !req_ctag && cur_stag) ||
6288 (cur_stag && !req_stag && cur_ctag)) {
6289 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6290 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6291 }
6292 } else {
6293 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6294 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6295
6296 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6297 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6298 }
6299 }
6300
6301 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6302 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6303 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6304 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6305 NETIF_F_HW_VLAN_STAG_TX);
6306 }
6307
6308 if (!(netdev->features & NETIF_F_RXFCS) &&
6309 (features & NETIF_F_RXFCS) &&
6310 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6311 !ice_vsi_has_non_zero_vlans(np->vsi)) {
6312 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6313 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6314 }
6315
6316 return features;
6317 }
6318
6319 /**
6320 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6321 * @vsi: PF's VSI
6322 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6323 *
6324 * Store current stripped VLAN proto in ring packet context,
6325 * so it can be accessed more efficiently by packet processing code.
6326 */
6327 static void
ice_set_rx_rings_vlan_proto(struct ice_vsi * vsi,__be16 vlan_ethertype)6328 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6329 {
6330 u16 i;
6331
6332 ice_for_each_alloc_rxq(vsi, i)
6333 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6334 }
6335
6336 /**
6337 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6338 * @vsi: PF's VSI
6339 * @features: features used to determine VLAN offload settings
6340 *
6341 * First, determine the vlan_ethertype based on the VLAN offload bits in
6342 * features. Then determine if stripping and insertion should be enabled or
6343 * disabled. Finally enable or disable VLAN stripping and insertion.
6344 */
6345 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)6346 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6347 {
6348 bool enable_stripping = true, enable_insertion = true;
6349 struct ice_vsi_vlan_ops *vlan_ops;
6350 int strip_err = 0, insert_err = 0;
6351 u16 vlan_ethertype = 0;
6352
6353 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6354
6355 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6356 vlan_ethertype = ETH_P_8021AD;
6357 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6358 vlan_ethertype = ETH_P_8021Q;
6359
6360 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6361 enable_stripping = false;
6362 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6363 enable_insertion = false;
6364
6365 if (enable_stripping)
6366 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6367 else
6368 strip_err = vlan_ops->dis_stripping(vsi);
6369
6370 if (enable_insertion)
6371 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6372 else
6373 insert_err = vlan_ops->dis_insertion(vsi);
6374
6375 if (strip_err || insert_err)
6376 return -EIO;
6377
6378 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6379 htons(vlan_ethertype) : 0);
6380
6381 return 0;
6382 }
6383
6384 /**
6385 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6386 * @vsi: PF's VSI
6387 * @features: features used to determine VLAN filtering settings
6388 *
6389 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6390 * features.
6391 */
6392 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)6393 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6394 {
6395 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6396 int err = 0;
6397
6398 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6399 * if either bit is set. In switchdev mode Rx filtering should never be
6400 * enabled.
6401 */
6402 if ((features &
6403 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) &&
6404 !ice_is_eswitch_mode_switchdev(vsi->back))
6405 err = vlan_ops->ena_rx_filtering(vsi);
6406 else
6407 err = vlan_ops->dis_rx_filtering(vsi);
6408
6409 return err;
6410 }
6411
6412 /**
6413 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6414 * @netdev: ptr to the netdev being adjusted
6415 * @features: the feature set that the stack is suggesting
6416 *
6417 * Only update VLAN settings if the requested_vlan_features are different than
6418 * the current_vlan_features.
6419 */
6420 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)6421 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6422 {
6423 netdev_features_t current_vlan_features, requested_vlan_features;
6424 struct ice_netdev_priv *np = netdev_priv(netdev);
6425 struct ice_vsi *vsi = np->vsi;
6426 int err;
6427
6428 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6429 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6430 if (current_vlan_features ^ requested_vlan_features) {
6431 if ((features & NETIF_F_RXFCS) &&
6432 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6433 dev_err(ice_pf_to_dev(vsi->back),
6434 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6435 return -EIO;
6436 }
6437
6438 err = ice_set_vlan_offload_features(vsi, features);
6439 if (err)
6440 return err;
6441 }
6442
6443 current_vlan_features = netdev->features &
6444 NETIF_VLAN_FILTERING_FEATURES;
6445 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6446 if (current_vlan_features ^ requested_vlan_features) {
6447 err = ice_set_vlan_filtering_features(vsi, features);
6448 if (err)
6449 return err;
6450 }
6451
6452 return 0;
6453 }
6454
6455 /**
6456 * ice_set_loopback - turn on/off loopback mode on underlying PF
6457 * @vsi: ptr to VSI
6458 * @ena: flag to indicate the on/off setting
6459 */
ice_set_loopback(struct ice_vsi * vsi,bool ena)6460 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6461 {
6462 bool if_running = netif_running(vsi->netdev);
6463 int ret;
6464
6465 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6466 ret = ice_down(vsi);
6467 if (ret) {
6468 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6469 return ret;
6470 }
6471 }
6472 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6473 if (ret)
6474 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6475 if (if_running)
6476 ret = ice_up(vsi);
6477
6478 return ret;
6479 }
6480
6481 /**
6482 * ice_set_features - set the netdev feature flags
6483 * @netdev: ptr to the netdev being adjusted
6484 * @features: the feature set that the stack is suggesting
6485 */
6486 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)6487 ice_set_features(struct net_device *netdev, netdev_features_t features)
6488 {
6489 netdev_features_t changed = netdev->features ^ features;
6490 struct ice_netdev_priv *np = netdev_priv(netdev);
6491 struct ice_vsi *vsi = np->vsi;
6492 struct ice_pf *pf = vsi->back;
6493 int ret = 0;
6494
6495 /* Don't set any netdev advanced features with device in Safe Mode */
6496 if (ice_is_safe_mode(pf)) {
6497 dev_err(ice_pf_to_dev(pf),
6498 "Device is in Safe Mode - not enabling advanced netdev features\n");
6499 return ret;
6500 }
6501
6502 /* Do not change setting during reset */
6503 if (ice_is_reset_in_progress(pf->state)) {
6504 dev_err(ice_pf_to_dev(pf),
6505 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6506 return -EBUSY;
6507 }
6508
6509 /* Multiple features can be changed in one call so keep features in
6510 * separate if/else statements to guarantee each feature is checked
6511 */
6512 if (changed & NETIF_F_RXHASH)
6513 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6514
6515 ret = ice_set_vlan_features(netdev, features);
6516 if (ret)
6517 return ret;
6518
6519 /* Turn on receive of FCS aka CRC, and after setting this
6520 * flag the packet data will have the 4 byte CRC appended
6521 */
6522 if (changed & NETIF_F_RXFCS) {
6523 if ((features & NETIF_F_RXFCS) &&
6524 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6525 dev_err(ice_pf_to_dev(vsi->back),
6526 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6527 return -EIO;
6528 }
6529
6530 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6531 ret = ice_down_up(vsi);
6532 if (ret)
6533 return ret;
6534 }
6535
6536 if (changed & NETIF_F_NTUPLE) {
6537 bool ena = !!(features & NETIF_F_NTUPLE);
6538
6539 ice_vsi_manage_fdir(vsi, ena);
6540 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6541 }
6542
6543 /* don't turn off hw_tc_offload when ADQ is already enabled */
6544 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6545 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6546 return -EACCES;
6547 }
6548
6549 if (changed & NETIF_F_HW_TC) {
6550 bool ena = !!(features & NETIF_F_HW_TC);
6551
6552 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena);
6553 }
6554
6555 if (changed & NETIF_F_LOOPBACK)
6556 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6557
6558 /* Due to E830 hardware limitations, TSO (NETIF_F_ALL_TSO) with GCS
6559 * (NETIF_F_HW_CSUM) is not supported.
6560 */
6561 if (ice_is_feature_supported(pf, ICE_F_GCS) &&
6562 ((features & NETIF_F_HW_CSUM) && (features & NETIF_F_ALL_TSO))) {
6563 if (netdev->features & NETIF_F_HW_CSUM)
6564 dev_err(ice_pf_to_dev(pf), "To enable TSO, you must first disable HW checksum.\n");
6565 else
6566 dev_err(ice_pf_to_dev(pf), "To enable HW checksum, you must first disable TSO.\n");
6567 return -EIO;
6568 }
6569
6570 return ret;
6571 }
6572
6573 /**
6574 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6575 * @vsi: VSI to setup VLAN properties for
6576 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6577 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6578 {
6579 int err;
6580
6581 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6582 if (err)
6583 return err;
6584
6585 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6586 if (err)
6587 return err;
6588
6589 return ice_vsi_add_vlan_zero(vsi);
6590 }
6591
6592 /**
6593 * ice_vsi_cfg_lan - Setup the VSI lan related config
6594 * @vsi: the VSI being configured
6595 *
6596 * Return 0 on success and negative value on error
6597 */
ice_vsi_cfg_lan(struct ice_vsi * vsi)6598 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6599 {
6600 int err;
6601
6602 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6603 ice_set_rx_mode(vsi->netdev);
6604
6605 err = ice_vsi_vlan_setup(vsi);
6606 if (err)
6607 return err;
6608 }
6609 ice_vsi_cfg_dcb_rings(vsi);
6610
6611 err = ice_vsi_cfg_lan_txqs(vsi);
6612 if (!err && ice_is_xdp_ena_vsi(vsi))
6613 err = ice_vsi_cfg_xdp_txqs(vsi);
6614 if (!err)
6615 err = ice_vsi_cfg_rxqs(vsi);
6616
6617 return err;
6618 }
6619
6620 /* THEORY OF MODERATION:
6621 * The ice driver hardware works differently than the hardware that DIMLIB was
6622 * originally made for. ice hardware doesn't have packet count limits that
6623 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6624 * which is hard-coded to a limit of 250,000 ints/second.
6625 * If not using dynamic moderation, the INTRL value can be modified
6626 * by ethtool rx-usecs-high.
6627 */
6628 struct ice_dim {
6629 /* the throttle rate for interrupts, basically worst case delay before
6630 * an initial interrupt fires, value is stored in microseconds.
6631 */
6632 u16 itr;
6633 };
6634
6635 /* Make a different profile for Rx that doesn't allow quite so aggressive
6636 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6637 * second.
6638 */
6639 static const struct ice_dim rx_profile[] = {
6640 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6641 {8}, /* 125,000 ints/s */
6642 {16}, /* 62,500 ints/s */
6643 {62}, /* 16,129 ints/s */
6644 {126} /* 7,936 ints/s */
6645 };
6646
6647 /* The transmit profile, which has the same sorts of values
6648 * as the previous struct
6649 */
6650 static const struct ice_dim tx_profile[] = {
6651 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6652 {8}, /* 125,000 ints/s */
6653 {40}, /* 16,125 ints/s */
6654 {128}, /* 7,812 ints/s */
6655 {256} /* 3,906 ints/s */
6656 };
6657
ice_tx_dim_work(struct work_struct * work)6658 static void ice_tx_dim_work(struct work_struct *work)
6659 {
6660 struct ice_ring_container *rc;
6661 struct dim *dim;
6662 u16 itr;
6663
6664 dim = container_of(work, struct dim, work);
6665 rc = dim->priv;
6666
6667 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6668
6669 /* look up the values in our local table */
6670 itr = tx_profile[dim->profile_ix].itr;
6671
6672 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6673 ice_write_itr(rc, itr);
6674
6675 dim->state = DIM_START_MEASURE;
6676 }
6677
ice_rx_dim_work(struct work_struct * work)6678 static void ice_rx_dim_work(struct work_struct *work)
6679 {
6680 struct ice_ring_container *rc;
6681 struct dim *dim;
6682 u16 itr;
6683
6684 dim = container_of(work, struct dim, work);
6685 rc = dim->priv;
6686
6687 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6688
6689 /* look up the values in our local table */
6690 itr = rx_profile[dim->profile_ix].itr;
6691
6692 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6693 ice_write_itr(rc, itr);
6694
6695 dim->state = DIM_START_MEASURE;
6696 }
6697
6698 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6699
6700 /**
6701 * ice_init_moderation - set up interrupt moderation
6702 * @q_vector: the vector containing rings to be configured
6703 *
6704 * Set up interrupt moderation registers, with the intent to do the right thing
6705 * when called from reset or from probe, and whether or not dynamic moderation
6706 * is enabled or not. Take special care to write all the registers in both
6707 * dynamic moderation mode or not in order to make sure hardware is in a known
6708 * state.
6709 */
ice_init_moderation(struct ice_q_vector * q_vector)6710 static void ice_init_moderation(struct ice_q_vector *q_vector)
6711 {
6712 struct ice_ring_container *rc;
6713 bool tx_dynamic, rx_dynamic;
6714
6715 rc = &q_vector->tx;
6716 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6717 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6718 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6719 rc->dim.priv = rc;
6720 tx_dynamic = ITR_IS_DYNAMIC(rc);
6721
6722 /* set the initial TX ITR to match the above */
6723 ice_write_itr(rc, tx_dynamic ?
6724 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6725
6726 rc = &q_vector->rx;
6727 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6728 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6729 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6730 rc->dim.priv = rc;
6731 rx_dynamic = ITR_IS_DYNAMIC(rc);
6732
6733 /* set the initial RX ITR to match the above */
6734 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6735 rc->itr_setting);
6736
6737 ice_set_q_vector_intrl(q_vector);
6738 }
6739
6740 /**
6741 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6742 * @vsi: the VSI being configured
6743 */
ice_napi_enable_all(struct ice_vsi * vsi)6744 static void ice_napi_enable_all(struct ice_vsi *vsi)
6745 {
6746 int q_idx;
6747
6748 if (!vsi->netdev)
6749 return;
6750
6751 ice_for_each_q_vector(vsi, q_idx) {
6752 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6753
6754 ice_init_moderation(q_vector);
6755
6756 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6757 napi_enable(&q_vector->napi);
6758 }
6759 }
6760
6761 /**
6762 * ice_up_complete - Finish the last steps of bringing up a connection
6763 * @vsi: The VSI being configured
6764 *
6765 * Return 0 on success and negative value on error
6766 */
ice_up_complete(struct ice_vsi * vsi)6767 static int ice_up_complete(struct ice_vsi *vsi)
6768 {
6769 struct ice_pf *pf = vsi->back;
6770 int err;
6771
6772 ice_vsi_cfg_msix(vsi);
6773
6774 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6775 * Tx queue group list was configured and the context bits were
6776 * programmed using ice_vsi_cfg_txqs
6777 */
6778 err = ice_vsi_start_all_rx_rings(vsi);
6779 if (err)
6780 return err;
6781
6782 clear_bit(ICE_VSI_DOWN, vsi->state);
6783 ice_napi_enable_all(vsi);
6784 ice_vsi_ena_irq(vsi);
6785
6786 if (vsi->port_info &&
6787 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6788 ((vsi->netdev && (vsi->type == ICE_VSI_PF ||
6789 vsi->type == ICE_VSI_SF)))) {
6790 ice_print_link_msg(vsi, true);
6791 netif_tx_start_all_queues(vsi->netdev);
6792 netif_carrier_on(vsi->netdev);
6793 ice_ptp_link_change(pf, true);
6794 }
6795
6796 /* Perform an initial read of the statistics registers now to
6797 * set the baseline so counters are ready when interface is up
6798 */
6799 ice_update_eth_stats(vsi);
6800
6801 if (vsi->type == ICE_VSI_PF)
6802 ice_service_task_schedule(pf);
6803
6804 return 0;
6805 }
6806
6807 /**
6808 * ice_up - Bring the connection back up after being down
6809 * @vsi: VSI being configured
6810 */
ice_up(struct ice_vsi * vsi)6811 int ice_up(struct ice_vsi *vsi)
6812 {
6813 int err;
6814
6815 err = ice_vsi_cfg_lan(vsi);
6816 if (!err)
6817 err = ice_up_complete(vsi);
6818
6819 return err;
6820 }
6821
6822 /**
6823 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6824 * @syncp: pointer to u64_stats_sync
6825 * @stats: stats that pkts and bytes count will be taken from
6826 * @pkts: packets stats counter
6827 * @bytes: bytes stats counter
6828 *
6829 * This function fetches stats from the ring considering the atomic operations
6830 * that needs to be performed to read u64 values in 32 bit machine.
6831 */
6832 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6833 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6834 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6835 {
6836 unsigned int start;
6837
6838 do {
6839 start = u64_stats_fetch_begin(syncp);
6840 *pkts = stats.pkts;
6841 *bytes = stats.bytes;
6842 } while (u64_stats_fetch_retry(syncp, start));
6843 }
6844
6845 /**
6846 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6847 * @vsi: the VSI to be updated
6848 * @vsi_stats: the stats struct to be updated
6849 * @rings: rings to work on
6850 * @count: number of rings
6851 */
6852 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6853 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6854 struct rtnl_link_stats64 *vsi_stats,
6855 struct ice_tx_ring **rings, u16 count)
6856 {
6857 u16 i;
6858
6859 for (i = 0; i < count; i++) {
6860 struct ice_tx_ring *ring;
6861 u64 pkts = 0, bytes = 0;
6862
6863 ring = READ_ONCE(rings[i]);
6864 if (!ring || !ring->ring_stats)
6865 continue;
6866 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6867 ring->ring_stats->stats, &pkts,
6868 &bytes);
6869 vsi_stats->tx_packets += pkts;
6870 vsi_stats->tx_bytes += bytes;
6871 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6872 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6873 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6874 }
6875 }
6876
6877 /**
6878 * ice_update_vsi_ring_stats - Update VSI stats counters
6879 * @vsi: the VSI to be updated
6880 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6881 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6882 {
6883 struct rtnl_link_stats64 *net_stats, *stats_prev;
6884 struct rtnl_link_stats64 *vsi_stats;
6885 struct ice_pf *pf = vsi->back;
6886 u64 pkts, bytes;
6887 int i;
6888
6889 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6890 if (!vsi_stats)
6891 return;
6892
6893 /* reset non-netdev (extended) stats */
6894 vsi->tx_restart = 0;
6895 vsi->tx_busy = 0;
6896 vsi->tx_linearize = 0;
6897 vsi->rx_buf_failed = 0;
6898 vsi->rx_page_failed = 0;
6899
6900 rcu_read_lock();
6901
6902 /* update Tx rings counters */
6903 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6904 vsi->num_txq);
6905
6906 /* update Rx rings counters */
6907 ice_for_each_rxq(vsi, i) {
6908 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6909 struct ice_ring_stats *ring_stats;
6910
6911 ring_stats = ring->ring_stats;
6912 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6913 ring_stats->stats, &pkts,
6914 &bytes);
6915 vsi_stats->rx_packets += pkts;
6916 vsi_stats->rx_bytes += bytes;
6917 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6918 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6919 }
6920
6921 /* update XDP Tx rings counters */
6922 if (ice_is_xdp_ena_vsi(vsi))
6923 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6924 vsi->num_xdp_txq);
6925
6926 rcu_read_unlock();
6927
6928 net_stats = &vsi->net_stats;
6929 stats_prev = &vsi->net_stats_prev;
6930
6931 /* Update netdev counters, but keep in mind that values could start at
6932 * random value after PF reset. And as we increase the reported stat by
6933 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6934 * let's skip this round.
6935 */
6936 if (likely(pf->stat_prev_loaded)) {
6937 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6938 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6939 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6940 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6941 }
6942
6943 stats_prev->tx_packets = vsi_stats->tx_packets;
6944 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6945 stats_prev->rx_packets = vsi_stats->rx_packets;
6946 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6947
6948 kfree(vsi_stats);
6949 }
6950
6951 /**
6952 * ice_update_vsi_stats - Update VSI stats counters
6953 * @vsi: the VSI to be updated
6954 */
ice_update_vsi_stats(struct ice_vsi * vsi)6955 void ice_update_vsi_stats(struct ice_vsi *vsi)
6956 {
6957 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6958 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6959 struct ice_pf *pf = vsi->back;
6960
6961 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6962 test_bit(ICE_CFG_BUSY, pf->state))
6963 return;
6964
6965 /* get stats as recorded by Tx/Rx rings */
6966 ice_update_vsi_ring_stats(vsi);
6967
6968 /* get VSI stats as recorded by the hardware */
6969 ice_update_eth_stats(vsi);
6970
6971 cur_ns->tx_errors = cur_es->tx_errors;
6972 cur_ns->rx_dropped = cur_es->rx_discards;
6973 cur_ns->tx_dropped = cur_es->tx_discards;
6974 cur_ns->multicast = cur_es->rx_multicast;
6975
6976 /* update some more netdev stats if this is main VSI */
6977 if (vsi->type == ICE_VSI_PF) {
6978 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6979 cur_ns->rx_errors = pf->stats.crc_errors +
6980 pf->stats.illegal_bytes +
6981 pf->stats.rx_undersize +
6982 pf->hw_csum_rx_error +
6983 pf->stats.rx_jabber +
6984 pf->stats.rx_fragments +
6985 pf->stats.rx_oversize;
6986 /* record drops from the port level */
6987 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6988 }
6989 }
6990
6991 /**
6992 * ice_update_pf_stats - Update PF port stats counters
6993 * @pf: PF whose stats needs to be updated
6994 */
ice_update_pf_stats(struct ice_pf * pf)6995 void ice_update_pf_stats(struct ice_pf *pf)
6996 {
6997 struct ice_hw_port_stats *prev_ps, *cur_ps;
6998 struct ice_hw *hw = &pf->hw;
6999 u16 fd_ctr_base;
7000 u8 port;
7001
7002 port = hw->port_info->lport;
7003 prev_ps = &pf->stats_prev;
7004 cur_ps = &pf->stats;
7005
7006 if (ice_is_reset_in_progress(pf->state))
7007 pf->stat_prev_loaded = false;
7008
7009 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
7010 &prev_ps->eth.rx_bytes,
7011 &cur_ps->eth.rx_bytes);
7012
7013 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
7014 &prev_ps->eth.rx_unicast,
7015 &cur_ps->eth.rx_unicast);
7016
7017 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
7018 &prev_ps->eth.rx_multicast,
7019 &cur_ps->eth.rx_multicast);
7020
7021 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
7022 &prev_ps->eth.rx_broadcast,
7023 &cur_ps->eth.rx_broadcast);
7024
7025 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
7026 &prev_ps->eth.rx_discards,
7027 &cur_ps->eth.rx_discards);
7028
7029 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
7030 &prev_ps->eth.tx_bytes,
7031 &cur_ps->eth.tx_bytes);
7032
7033 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
7034 &prev_ps->eth.tx_unicast,
7035 &cur_ps->eth.tx_unicast);
7036
7037 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
7038 &prev_ps->eth.tx_multicast,
7039 &cur_ps->eth.tx_multicast);
7040
7041 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
7042 &prev_ps->eth.tx_broadcast,
7043 &cur_ps->eth.tx_broadcast);
7044
7045 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
7046 &prev_ps->tx_dropped_link_down,
7047 &cur_ps->tx_dropped_link_down);
7048
7049 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
7050 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
7051
7052 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
7053 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
7054
7055 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
7056 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
7057
7058 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
7059 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
7060
7061 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
7062 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
7063
7064 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
7065 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
7066
7067 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
7068 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
7069
7070 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
7071 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
7072
7073 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
7074 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
7075
7076 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
7077 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
7078
7079 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
7080 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
7081
7082 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
7083 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
7084
7085 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
7086 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
7087
7088 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
7089 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
7090
7091 fd_ctr_base = hw->fd_ctr_base;
7092
7093 ice_stat_update40(hw,
7094 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
7095 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
7096 &cur_ps->fd_sb_match);
7097 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
7098 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
7099
7100 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
7101 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
7102
7103 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
7104 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
7105
7106 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
7107 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
7108
7109 ice_update_dcb_stats(pf);
7110
7111 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
7112 &prev_ps->crc_errors, &cur_ps->crc_errors);
7113
7114 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
7115 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
7116
7117 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
7118 &prev_ps->mac_local_faults,
7119 &cur_ps->mac_local_faults);
7120
7121 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
7122 &prev_ps->mac_remote_faults,
7123 &cur_ps->mac_remote_faults);
7124
7125 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
7126 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
7127
7128 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
7129 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
7130
7131 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
7132 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
7133
7134 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
7135 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
7136
7137 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
7138
7139 pf->stat_prev_loaded = true;
7140 }
7141
7142 /**
7143 * ice_get_stats64 - get statistics for network device structure
7144 * @netdev: network interface device structure
7145 * @stats: main device statistics structure
7146 */
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)7147 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7148 {
7149 struct ice_netdev_priv *np = netdev_priv(netdev);
7150 struct rtnl_link_stats64 *vsi_stats;
7151 struct ice_vsi *vsi = np->vsi;
7152
7153 vsi_stats = &vsi->net_stats;
7154
7155 if (!vsi->num_txq || !vsi->num_rxq)
7156 return;
7157
7158 /* netdev packet/byte stats come from ring counter. These are obtained
7159 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7160 * But, only call the update routine and read the registers if VSI is
7161 * not down.
7162 */
7163 if (!test_bit(ICE_VSI_DOWN, vsi->state))
7164 ice_update_vsi_ring_stats(vsi);
7165 stats->tx_packets = vsi_stats->tx_packets;
7166 stats->tx_bytes = vsi_stats->tx_bytes;
7167 stats->rx_packets = vsi_stats->rx_packets;
7168 stats->rx_bytes = vsi_stats->rx_bytes;
7169
7170 /* The rest of the stats can be read from the hardware but instead we
7171 * just return values that the watchdog task has already obtained from
7172 * the hardware.
7173 */
7174 stats->multicast = vsi_stats->multicast;
7175 stats->tx_errors = vsi_stats->tx_errors;
7176 stats->tx_dropped = vsi_stats->tx_dropped;
7177 stats->rx_errors = vsi_stats->rx_errors;
7178 stats->rx_dropped = vsi_stats->rx_dropped;
7179 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7180 stats->rx_length_errors = vsi_stats->rx_length_errors;
7181 }
7182
7183 /**
7184 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7185 * @vsi: VSI having NAPI disabled
7186 */
ice_napi_disable_all(struct ice_vsi * vsi)7187 static void ice_napi_disable_all(struct ice_vsi *vsi)
7188 {
7189 int q_idx;
7190
7191 if (!vsi->netdev)
7192 return;
7193
7194 ice_for_each_q_vector(vsi, q_idx) {
7195 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7196
7197 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7198 napi_disable(&q_vector->napi);
7199
7200 cancel_work_sync(&q_vector->tx.dim.work);
7201 cancel_work_sync(&q_vector->rx.dim.work);
7202 }
7203 }
7204
7205 /**
7206 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
7207 * @vsi: the VSI being un-configured
7208 */
ice_vsi_dis_irq(struct ice_vsi * vsi)7209 static void ice_vsi_dis_irq(struct ice_vsi *vsi)
7210 {
7211 struct ice_pf *pf = vsi->back;
7212 struct ice_hw *hw = &pf->hw;
7213 u32 val;
7214 int i;
7215
7216 /* disable interrupt causation from each Rx queue; Tx queues are
7217 * handled in ice_vsi_stop_tx_ring()
7218 */
7219 if (vsi->rx_rings) {
7220 ice_for_each_rxq(vsi, i) {
7221 if (vsi->rx_rings[i]) {
7222 u16 reg;
7223
7224 reg = vsi->rx_rings[i]->reg_idx;
7225 val = rd32(hw, QINT_RQCTL(reg));
7226 val &= ~QINT_RQCTL_CAUSE_ENA_M;
7227 wr32(hw, QINT_RQCTL(reg), val);
7228 }
7229 }
7230 }
7231
7232 /* disable each interrupt */
7233 ice_for_each_q_vector(vsi, i) {
7234 if (!vsi->q_vectors[i])
7235 continue;
7236 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
7237 }
7238
7239 ice_flush(hw);
7240
7241 /* don't call synchronize_irq() for VF's from the host */
7242 if (vsi->type == ICE_VSI_VF)
7243 return;
7244
7245 ice_for_each_q_vector(vsi, i)
7246 synchronize_irq(vsi->q_vectors[i]->irq.virq);
7247 }
7248
7249 /**
7250 * ice_down - Shutdown the connection
7251 * @vsi: The VSI being stopped
7252 *
7253 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7254 */
ice_down(struct ice_vsi * vsi)7255 int ice_down(struct ice_vsi *vsi)
7256 {
7257 int i, tx_err, rx_err, vlan_err = 0;
7258
7259 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7260
7261 if (vsi->netdev) {
7262 vlan_err = ice_vsi_del_vlan_zero(vsi);
7263 ice_ptp_link_change(vsi->back, false);
7264 netif_carrier_off(vsi->netdev);
7265 netif_tx_disable(vsi->netdev);
7266 }
7267
7268 ice_vsi_dis_irq(vsi);
7269
7270 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7271 if (tx_err)
7272 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7273 vsi->vsi_num, tx_err);
7274 if (!tx_err && vsi->xdp_rings) {
7275 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7276 if (tx_err)
7277 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7278 vsi->vsi_num, tx_err);
7279 }
7280
7281 rx_err = ice_vsi_stop_all_rx_rings(vsi);
7282 if (rx_err)
7283 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7284 vsi->vsi_num, rx_err);
7285
7286 ice_napi_disable_all(vsi);
7287
7288 ice_for_each_txq(vsi, i)
7289 ice_clean_tx_ring(vsi->tx_rings[i]);
7290
7291 if (vsi->xdp_rings)
7292 ice_for_each_xdp_txq(vsi, i)
7293 ice_clean_tx_ring(vsi->xdp_rings[i]);
7294
7295 ice_for_each_rxq(vsi, i)
7296 ice_clean_rx_ring(vsi->rx_rings[i]);
7297
7298 if (tx_err || rx_err || vlan_err) {
7299 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7300 vsi->vsi_num, vsi->vsw->sw_id);
7301 return -EIO;
7302 }
7303
7304 return 0;
7305 }
7306
7307 /**
7308 * ice_down_up - shutdown the VSI connection and bring it up
7309 * @vsi: the VSI to be reconnected
7310 */
ice_down_up(struct ice_vsi * vsi)7311 int ice_down_up(struct ice_vsi *vsi)
7312 {
7313 int ret;
7314
7315 /* if DOWN already set, nothing to do */
7316 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7317 return 0;
7318
7319 ret = ice_down(vsi);
7320 if (ret)
7321 return ret;
7322
7323 ret = ice_up(vsi);
7324 if (ret) {
7325 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7326 return ret;
7327 }
7328
7329 return 0;
7330 }
7331
7332 /**
7333 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7334 * @vsi: VSI having resources allocated
7335 *
7336 * Return 0 on success, negative on failure
7337 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)7338 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7339 {
7340 int i, err = 0;
7341
7342 if (!vsi->num_txq) {
7343 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7344 vsi->vsi_num);
7345 return -EINVAL;
7346 }
7347
7348 ice_for_each_txq(vsi, i) {
7349 struct ice_tx_ring *ring = vsi->tx_rings[i];
7350
7351 if (!ring)
7352 return -EINVAL;
7353
7354 if (vsi->netdev)
7355 ring->netdev = vsi->netdev;
7356 err = ice_setup_tx_ring(ring);
7357 if (err)
7358 break;
7359 }
7360
7361 return err;
7362 }
7363
7364 /**
7365 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7366 * @vsi: VSI having resources allocated
7367 *
7368 * Return 0 on success, negative on failure
7369 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)7370 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7371 {
7372 int i, err = 0;
7373
7374 if (!vsi->num_rxq) {
7375 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7376 vsi->vsi_num);
7377 return -EINVAL;
7378 }
7379
7380 ice_for_each_rxq(vsi, i) {
7381 struct ice_rx_ring *ring = vsi->rx_rings[i];
7382
7383 if (!ring)
7384 return -EINVAL;
7385
7386 if (vsi->netdev)
7387 ring->netdev = vsi->netdev;
7388 err = ice_setup_rx_ring(ring);
7389 if (err)
7390 break;
7391 }
7392
7393 return err;
7394 }
7395
7396 /**
7397 * ice_vsi_open_ctrl - open control VSI for use
7398 * @vsi: the VSI to open
7399 *
7400 * Initialization of the Control VSI
7401 *
7402 * Returns 0 on success, negative value on error
7403 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)7404 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7405 {
7406 char int_name[ICE_INT_NAME_STR_LEN];
7407 struct ice_pf *pf = vsi->back;
7408 struct device *dev;
7409 int err;
7410
7411 dev = ice_pf_to_dev(pf);
7412 /* allocate descriptors */
7413 err = ice_vsi_setup_tx_rings(vsi);
7414 if (err)
7415 goto err_setup_tx;
7416
7417 err = ice_vsi_setup_rx_rings(vsi);
7418 if (err)
7419 goto err_setup_rx;
7420
7421 err = ice_vsi_cfg_lan(vsi);
7422 if (err)
7423 goto err_setup_rx;
7424
7425 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7426 dev_driver_string(dev), dev_name(dev));
7427 err = ice_vsi_req_irq_msix(vsi, int_name);
7428 if (err)
7429 goto err_setup_rx;
7430
7431 ice_vsi_cfg_msix(vsi);
7432
7433 err = ice_vsi_start_all_rx_rings(vsi);
7434 if (err)
7435 goto err_up_complete;
7436
7437 clear_bit(ICE_VSI_DOWN, vsi->state);
7438 ice_vsi_ena_irq(vsi);
7439
7440 return 0;
7441
7442 err_up_complete:
7443 ice_down(vsi);
7444 err_setup_rx:
7445 ice_vsi_free_rx_rings(vsi);
7446 err_setup_tx:
7447 ice_vsi_free_tx_rings(vsi);
7448
7449 return err;
7450 }
7451
7452 /**
7453 * ice_vsi_open - Called when a network interface is made active
7454 * @vsi: the VSI to open
7455 *
7456 * Initialization of the VSI
7457 *
7458 * Returns 0 on success, negative value on error
7459 */
ice_vsi_open(struct ice_vsi * vsi)7460 int ice_vsi_open(struct ice_vsi *vsi)
7461 {
7462 char int_name[ICE_INT_NAME_STR_LEN];
7463 struct ice_pf *pf = vsi->back;
7464 int err;
7465
7466 /* allocate descriptors */
7467 err = ice_vsi_setup_tx_rings(vsi);
7468 if (err)
7469 goto err_setup_tx;
7470
7471 err = ice_vsi_setup_rx_rings(vsi);
7472 if (err)
7473 goto err_setup_rx;
7474
7475 err = ice_vsi_cfg_lan(vsi);
7476 if (err)
7477 goto err_setup_rx;
7478
7479 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7480 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7481 err = ice_vsi_req_irq_msix(vsi, int_name);
7482 if (err)
7483 goto err_setup_rx;
7484
7485 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7486
7487 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) {
7488 /* Notify the stack of the actual queue counts. */
7489 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7490 if (err)
7491 goto err_set_qs;
7492
7493 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7494 if (err)
7495 goto err_set_qs;
7496
7497 ice_vsi_set_napi_queues(vsi);
7498 }
7499
7500 err = ice_up_complete(vsi);
7501 if (err)
7502 goto err_up_complete;
7503
7504 return 0;
7505
7506 err_up_complete:
7507 ice_down(vsi);
7508 err_set_qs:
7509 ice_vsi_free_irq(vsi);
7510 err_setup_rx:
7511 ice_vsi_free_rx_rings(vsi);
7512 err_setup_tx:
7513 ice_vsi_free_tx_rings(vsi);
7514
7515 return err;
7516 }
7517
7518 /**
7519 * ice_vsi_release_all - Delete all VSIs
7520 * @pf: PF from which all VSIs are being removed
7521 */
ice_vsi_release_all(struct ice_pf * pf)7522 static void ice_vsi_release_all(struct ice_pf *pf)
7523 {
7524 int err, i;
7525
7526 if (!pf->vsi)
7527 return;
7528
7529 ice_for_each_vsi(pf, i) {
7530 if (!pf->vsi[i])
7531 continue;
7532
7533 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7534 continue;
7535
7536 err = ice_vsi_release(pf->vsi[i]);
7537 if (err)
7538 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7539 i, err, pf->vsi[i]->vsi_num);
7540 }
7541 }
7542
7543 /**
7544 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7545 * @pf: pointer to the PF instance
7546 * @type: VSI type to rebuild
7547 *
7548 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7549 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)7550 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7551 {
7552 struct device *dev = ice_pf_to_dev(pf);
7553 int i, err;
7554
7555 ice_for_each_vsi(pf, i) {
7556 struct ice_vsi *vsi = pf->vsi[i];
7557
7558 if (!vsi || vsi->type != type)
7559 continue;
7560
7561 /* rebuild the VSI */
7562 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7563 if (err) {
7564 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7565 err, vsi->idx, ice_vsi_type_str(type));
7566 return err;
7567 }
7568
7569 /* replay filters for the VSI */
7570 err = ice_replay_vsi(&pf->hw, vsi->idx);
7571 if (err) {
7572 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7573 err, vsi->idx, ice_vsi_type_str(type));
7574 return err;
7575 }
7576
7577 /* Re-map HW VSI number, using VSI handle that has been
7578 * previously validated in ice_replay_vsi() call above
7579 */
7580 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7581
7582 /* enable the VSI */
7583 err = ice_ena_vsi(vsi, false);
7584 if (err) {
7585 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7586 err, vsi->idx, ice_vsi_type_str(type));
7587 return err;
7588 }
7589
7590 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7591 ice_vsi_type_str(type));
7592 }
7593
7594 return 0;
7595 }
7596
7597 /**
7598 * ice_update_pf_netdev_link - Update PF netdev link status
7599 * @pf: pointer to the PF instance
7600 */
ice_update_pf_netdev_link(struct ice_pf * pf)7601 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7602 {
7603 bool link_up;
7604 int i;
7605
7606 ice_for_each_vsi(pf, i) {
7607 struct ice_vsi *vsi = pf->vsi[i];
7608
7609 if (!vsi || vsi->type != ICE_VSI_PF)
7610 return;
7611
7612 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7613 if (link_up) {
7614 netif_carrier_on(pf->vsi[i]->netdev);
7615 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7616 } else {
7617 netif_carrier_off(pf->vsi[i]->netdev);
7618 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7619 }
7620 }
7621 }
7622
7623 /**
7624 * ice_rebuild - rebuild after reset
7625 * @pf: PF to rebuild
7626 * @reset_type: type of reset
7627 *
7628 * Do not rebuild VF VSI in this flow because that is already handled via
7629 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7630 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7631 * to reset/rebuild all the VF VSI twice.
7632 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)7633 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7634 {
7635 struct ice_vsi *vsi = ice_get_main_vsi(pf);
7636 struct device *dev = ice_pf_to_dev(pf);
7637 struct ice_hw *hw = &pf->hw;
7638 bool dvm;
7639 int err;
7640
7641 if (test_bit(ICE_DOWN, pf->state))
7642 goto clear_recovery;
7643
7644 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7645
7646 #define ICE_EMP_RESET_SLEEP_MS 5000
7647 if (reset_type == ICE_RESET_EMPR) {
7648 /* If an EMP reset has occurred, any previously pending flash
7649 * update will have completed. We no longer know whether or
7650 * not the NVM update EMP reset is restricted.
7651 */
7652 pf->fw_emp_reset_disabled = false;
7653
7654 msleep(ICE_EMP_RESET_SLEEP_MS);
7655 }
7656
7657 err = ice_init_all_ctrlq(hw);
7658 if (err) {
7659 dev_err(dev, "control queues init failed %d\n", err);
7660 goto err_init_ctrlq;
7661 }
7662
7663 /* if DDP was previously loaded successfully */
7664 if (!ice_is_safe_mode(pf)) {
7665 /* reload the SW DB of filter tables */
7666 if (reset_type == ICE_RESET_PFR)
7667 ice_fill_blk_tbls(hw);
7668 else
7669 /* Reload DDP Package after CORER/GLOBR reset */
7670 ice_load_pkg(NULL, pf);
7671 }
7672
7673 err = ice_clear_pf_cfg(hw);
7674 if (err) {
7675 dev_err(dev, "clear PF configuration failed %d\n", err);
7676 goto err_init_ctrlq;
7677 }
7678
7679 ice_clear_pxe_mode(hw);
7680
7681 err = ice_init_nvm(hw);
7682 if (err) {
7683 dev_err(dev, "ice_init_nvm failed %d\n", err);
7684 goto err_init_ctrlq;
7685 }
7686
7687 err = ice_get_caps(hw);
7688 if (err) {
7689 dev_err(dev, "ice_get_caps failed %d\n", err);
7690 goto err_init_ctrlq;
7691 }
7692
7693 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7694 if (err) {
7695 dev_err(dev, "set_mac_cfg failed %d\n", err);
7696 goto err_init_ctrlq;
7697 }
7698
7699 dvm = ice_is_dvm_ena(hw);
7700
7701 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7702 if (err)
7703 goto err_init_ctrlq;
7704
7705 err = ice_sched_init_port(hw->port_info);
7706 if (err)
7707 goto err_sched_init_port;
7708
7709 /* start misc vector */
7710 err = ice_req_irq_msix_misc(pf);
7711 if (err) {
7712 dev_err(dev, "misc vector setup failed: %d\n", err);
7713 goto err_sched_init_port;
7714 }
7715
7716 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7717 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7718 if (!rd32(hw, PFQF_FD_SIZE)) {
7719 u16 unused, guar, b_effort;
7720
7721 guar = hw->func_caps.fd_fltr_guar;
7722 b_effort = hw->func_caps.fd_fltr_best_effort;
7723
7724 /* force guaranteed filter pool for PF */
7725 ice_alloc_fd_guar_item(hw, &unused, guar);
7726 /* force shared filter pool for PF */
7727 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7728 }
7729 }
7730
7731 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7732 ice_dcb_rebuild(pf);
7733
7734 /* If the PF previously had enabled PTP, PTP init needs to happen before
7735 * the VSI rebuild. If not, this causes the PTP link status events to
7736 * fail.
7737 */
7738 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7739 ice_ptp_rebuild(pf, reset_type);
7740
7741 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7742 ice_gnss_init(pf);
7743
7744 /* rebuild PF VSI */
7745 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7746 if (err) {
7747 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7748 goto err_vsi_rebuild;
7749 }
7750
7751 if (reset_type == ICE_RESET_PFR) {
7752 err = ice_rebuild_channels(pf);
7753 if (err) {
7754 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7755 err);
7756 goto err_vsi_rebuild;
7757 }
7758 }
7759
7760 /* If Flow Director is active */
7761 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7762 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7763 if (err) {
7764 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7765 goto err_vsi_rebuild;
7766 }
7767
7768 /* replay HW Flow Director recipes */
7769 if (hw->fdir_prof)
7770 ice_fdir_replay_flows(hw);
7771
7772 /* replay Flow Director filters */
7773 ice_fdir_replay_fltrs(pf);
7774
7775 ice_rebuild_arfs(pf);
7776 }
7777
7778 if (vsi && vsi->netdev)
7779 netif_device_attach(vsi->netdev);
7780
7781 ice_update_pf_netdev_link(pf);
7782
7783 /* tell the firmware we are up */
7784 err = ice_send_version(pf);
7785 if (err) {
7786 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7787 err);
7788 goto err_vsi_rebuild;
7789 }
7790
7791 ice_replay_post(hw);
7792
7793 /* if we get here, reset flow is successful */
7794 clear_bit(ICE_RESET_FAILED, pf->state);
7795
7796 ice_health_clear(pf);
7797
7798 ice_plug_aux_dev(pf);
7799 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7800 ice_lag_rebuild(pf);
7801
7802 /* Restore timestamp mode settings after VSI rebuild */
7803 ice_ptp_restore_timestamp_mode(pf);
7804 return;
7805
7806 err_vsi_rebuild:
7807 err_sched_init_port:
7808 ice_sched_cleanup_all(hw);
7809 err_init_ctrlq:
7810 ice_shutdown_all_ctrlq(hw, false);
7811 set_bit(ICE_RESET_FAILED, pf->state);
7812 clear_recovery:
7813 /* set this bit in PF state to control service task scheduling */
7814 set_bit(ICE_NEEDS_RESTART, pf->state);
7815 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7816 }
7817
7818 /**
7819 * ice_change_mtu - NDO callback to change the MTU
7820 * @netdev: network interface device structure
7821 * @new_mtu: new value for maximum frame size
7822 *
7823 * Returns 0 on success, negative on failure
7824 */
ice_change_mtu(struct net_device * netdev,int new_mtu)7825 int ice_change_mtu(struct net_device *netdev, int new_mtu)
7826 {
7827 struct ice_netdev_priv *np = netdev_priv(netdev);
7828 struct ice_vsi *vsi = np->vsi;
7829 struct ice_pf *pf = vsi->back;
7830 struct bpf_prog *prog;
7831 u8 count = 0;
7832 int err = 0;
7833
7834 if (new_mtu == (int)netdev->mtu) {
7835 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7836 return 0;
7837 }
7838
7839 prog = vsi->xdp_prog;
7840 if (prog && !prog->aux->xdp_has_frags) {
7841 int frame_size = ice_max_xdp_frame_size(vsi);
7842
7843 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7844 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7845 frame_size - ICE_ETH_PKT_HDR_PAD);
7846 return -EINVAL;
7847 }
7848 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7849 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7850 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7851 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7852 return -EINVAL;
7853 }
7854 }
7855
7856 /* if a reset is in progress, wait for some time for it to complete */
7857 do {
7858 if (ice_is_reset_in_progress(pf->state)) {
7859 count++;
7860 usleep_range(1000, 2000);
7861 } else {
7862 break;
7863 }
7864
7865 } while (count < 100);
7866
7867 if (count == 100) {
7868 netdev_err(netdev, "can't change MTU. Device is busy\n");
7869 return -EBUSY;
7870 }
7871
7872 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu);
7873 err = ice_down_up(vsi);
7874 if (err)
7875 return err;
7876
7877 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7878 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7879
7880 return err;
7881 }
7882
7883 /**
7884 * ice_eth_ioctl - Access the hwtstamp interface
7885 * @netdev: network interface device structure
7886 * @ifr: interface request data
7887 * @cmd: ioctl command
7888 */
ice_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)7889 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7890 {
7891 struct ice_netdev_priv *np = netdev_priv(netdev);
7892 struct ice_pf *pf = np->vsi->back;
7893
7894 switch (cmd) {
7895 case SIOCGHWTSTAMP:
7896 return ice_ptp_get_ts_config(pf, ifr);
7897 case SIOCSHWTSTAMP:
7898 return ice_ptp_set_ts_config(pf, ifr);
7899 default:
7900 return -EOPNOTSUPP;
7901 }
7902 }
7903
7904 /**
7905 * ice_aq_str - convert AQ err code to a string
7906 * @aq_err: the AQ error code to convert
7907 */
ice_aq_str(enum ice_aq_err aq_err)7908 const char *ice_aq_str(enum ice_aq_err aq_err)
7909 {
7910 switch (aq_err) {
7911 case ICE_AQ_RC_OK:
7912 return "OK";
7913 case ICE_AQ_RC_EPERM:
7914 return "ICE_AQ_RC_EPERM";
7915 case ICE_AQ_RC_ENOENT:
7916 return "ICE_AQ_RC_ENOENT";
7917 case ICE_AQ_RC_ENOMEM:
7918 return "ICE_AQ_RC_ENOMEM";
7919 case ICE_AQ_RC_EBUSY:
7920 return "ICE_AQ_RC_EBUSY";
7921 case ICE_AQ_RC_EEXIST:
7922 return "ICE_AQ_RC_EEXIST";
7923 case ICE_AQ_RC_EINVAL:
7924 return "ICE_AQ_RC_EINVAL";
7925 case ICE_AQ_RC_ENOSPC:
7926 return "ICE_AQ_RC_ENOSPC";
7927 case ICE_AQ_RC_ENOSYS:
7928 return "ICE_AQ_RC_ENOSYS";
7929 case ICE_AQ_RC_EMODE:
7930 return "ICE_AQ_RC_EMODE";
7931 case ICE_AQ_RC_ENOSEC:
7932 return "ICE_AQ_RC_ENOSEC";
7933 case ICE_AQ_RC_EBADSIG:
7934 return "ICE_AQ_RC_EBADSIG";
7935 case ICE_AQ_RC_ESVN:
7936 return "ICE_AQ_RC_ESVN";
7937 case ICE_AQ_RC_EBADMAN:
7938 return "ICE_AQ_RC_EBADMAN";
7939 case ICE_AQ_RC_EBADBUF:
7940 return "ICE_AQ_RC_EBADBUF";
7941 }
7942
7943 return "ICE_AQ_RC_UNKNOWN";
7944 }
7945
7946 /**
7947 * ice_set_rss_lut - Set RSS LUT
7948 * @vsi: Pointer to VSI structure
7949 * @lut: Lookup table
7950 * @lut_size: Lookup table size
7951 *
7952 * Returns 0 on success, negative on failure
7953 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7954 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7955 {
7956 struct ice_aq_get_set_rss_lut_params params = {};
7957 struct ice_hw *hw = &vsi->back->hw;
7958 int status;
7959
7960 if (!lut)
7961 return -EINVAL;
7962
7963 params.vsi_handle = vsi->idx;
7964 params.lut_size = lut_size;
7965 params.lut_type = vsi->rss_lut_type;
7966 params.lut = lut;
7967
7968 status = ice_aq_set_rss_lut(hw, ¶ms);
7969 if (status)
7970 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7971 status, ice_aq_str(hw->adminq.sq_last_status));
7972
7973 return status;
7974 }
7975
7976 /**
7977 * ice_set_rss_key - Set RSS key
7978 * @vsi: Pointer to the VSI structure
7979 * @seed: RSS hash seed
7980 *
7981 * Returns 0 on success, negative on failure
7982 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)7983 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7984 {
7985 struct ice_hw *hw = &vsi->back->hw;
7986 int status;
7987
7988 if (!seed)
7989 return -EINVAL;
7990
7991 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7992 if (status)
7993 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7994 status, ice_aq_str(hw->adminq.sq_last_status));
7995
7996 return status;
7997 }
7998
7999 /**
8000 * ice_get_rss_lut - Get RSS LUT
8001 * @vsi: Pointer to VSI structure
8002 * @lut: Buffer to store the lookup table entries
8003 * @lut_size: Size of buffer to store the lookup table entries
8004 *
8005 * Returns 0 on success, negative on failure
8006 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)8007 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
8008 {
8009 struct ice_aq_get_set_rss_lut_params params = {};
8010 struct ice_hw *hw = &vsi->back->hw;
8011 int status;
8012
8013 if (!lut)
8014 return -EINVAL;
8015
8016 params.vsi_handle = vsi->idx;
8017 params.lut_size = lut_size;
8018 params.lut_type = vsi->rss_lut_type;
8019 params.lut = lut;
8020
8021 status = ice_aq_get_rss_lut(hw, ¶ms);
8022 if (status)
8023 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
8024 status, ice_aq_str(hw->adminq.sq_last_status));
8025
8026 return status;
8027 }
8028
8029 /**
8030 * ice_get_rss_key - Get RSS key
8031 * @vsi: Pointer to VSI structure
8032 * @seed: Buffer to store the key in
8033 *
8034 * Returns 0 on success, negative on failure
8035 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)8036 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
8037 {
8038 struct ice_hw *hw = &vsi->back->hw;
8039 int status;
8040
8041 if (!seed)
8042 return -EINVAL;
8043
8044 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
8045 if (status)
8046 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
8047 status, ice_aq_str(hw->adminq.sq_last_status));
8048
8049 return status;
8050 }
8051
8052 /**
8053 * ice_set_rss_hfunc - Set RSS HASH function
8054 * @vsi: Pointer to VSI structure
8055 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
8056 *
8057 * Returns 0 on success, negative on failure
8058 */
ice_set_rss_hfunc(struct ice_vsi * vsi,u8 hfunc)8059 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
8060 {
8061 struct ice_hw *hw = &vsi->back->hw;
8062 struct ice_vsi_ctx *ctx;
8063 bool symm;
8064 int err;
8065
8066 if (hfunc == vsi->rss_hfunc)
8067 return 0;
8068
8069 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
8070 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
8071 return -EOPNOTSUPP;
8072
8073 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8074 if (!ctx)
8075 return -ENOMEM;
8076
8077 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
8078 ctx->info.q_opt_rss = vsi->info.q_opt_rss;
8079 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
8080 ctx->info.q_opt_rss |=
8081 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
8082 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
8083 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
8084
8085 err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
8086 if (err) {
8087 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
8088 vsi->vsi_num, err);
8089 } else {
8090 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
8091 vsi->rss_hfunc = hfunc;
8092 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
8093 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
8094 "Symmetric " : "");
8095 }
8096 kfree(ctx);
8097 if (err)
8098 return err;
8099
8100 /* Fix the symmetry setting for all existing RSS configurations */
8101 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
8102 return ice_set_rss_cfg_symm(hw, vsi, symm);
8103 }
8104
8105 /**
8106 * ice_bridge_getlink - Get the hardware bridge mode
8107 * @skb: skb buff
8108 * @pid: process ID
8109 * @seq: RTNL message seq
8110 * @dev: the netdev being configured
8111 * @filter_mask: filter mask passed in
8112 * @nlflags: netlink flags passed in
8113 *
8114 * Return the bridge mode (VEB/VEPA)
8115 */
8116 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)8117 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8118 struct net_device *dev, u32 filter_mask, int nlflags)
8119 {
8120 struct ice_netdev_priv *np = netdev_priv(dev);
8121 struct ice_vsi *vsi = np->vsi;
8122 struct ice_pf *pf = vsi->back;
8123 u16 bmode;
8124
8125 bmode = pf->first_sw->bridge_mode;
8126
8127 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
8128 filter_mask, NULL);
8129 }
8130
8131 /**
8132 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
8133 * @vsi: Pointer to VSI structure
8134 * @bmode: Hardware bridge mode (VEB/VEPA)
8135 *
8136 * Returns 0 on success, negative on failure
8137 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)8138 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
8139 {
8140 struct ice_aqc_vsi_props *vsi_props;
8141 struct ice_hw *hw = &vsi->back->hw;
8142 struct ice_vsi_ctx *ctxt;
8143 int ret;
8144
8145 vsi_props = &vsi->info;
8146
8147 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
8148 if (!ctxt)
8149 return -ENOMEM;
8150
8151 ctxt->info = vsi->info;
8152
8153 if (bmode == BRIDGE_MODE_VEB)
8154 /* change from VEPA to VEB mode */
8155 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8156 else
8157 /* change from VEB to VEPA mode */
8158 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8159 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
8160
8161 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
8162 if (ret) {
8163 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
8164 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
8165 goto out;
8166 }
8167 /* Update sw flags for book keeping */
8168 vsi_props->sw_flags = ctxt->info.sw_flags;
8169
8170 out:
8171 kfree(ctxt);
8172 return ret;
8173 }
8174
8175 /**
8176 * ice_bridge_setlink - Set the hardware bridge mode
8177 * @dev: the netdev being configured
8178 * @nlh: RTNL message
8179 * @flags: bridge setlink flags
8180 * @extack: netlink extended ack
8181 *
8182 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
8183 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
8184 * not already set for all VSIs connected to this switch. And also update the
8185 * unicast switch filter rules for the corresponding switch of the netdev.
8186 */
8187 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)8188 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8189 u16 __always_unused flags,
8190 struct netlink_ext_ack __always_unused *extack)
8191 {
8192 struct ice_netdev_priv *np = netdev_priv(dev);
8193 struct ice_pf *pf = np->vsi->back;
8194 struct nlattr *attr, *br_spec;
8195 struct ice_hw *hw = &pf->hw;
8196 struct ice_sw *pf_sw;
8197 int rem, v, err = 0;
8198
8199 pf_sw = pf->first_sw;
8200 /* find the attribute in the netlink message */
8201 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8202 if (!br_spec)
8203 return -EINVAL;
8204
8205 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
8206 __u16 mode = nla_get_u16(attr);
8207
8208 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8209 return -EINVAL;
8210 /* Continue if bridge mode is not being flipped */
8211 if (mode == pf_sw->bridge_mode)
8212 continue;
8213 /* Iterates through the PF VSI list and update the loopback
8214 * mode of the VSI
8215 */
8216 ice_for_each_vsi(pf, v) {
8217 if (!pf->vsi[v])
8218 continue;
8219 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8220 if (err)
8221 return err;
8222 }
8223
8224 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8225 /* Update the unicast switch filter rules for the corresponding
8226 * switch of the netdev
8227 */
8228 err = ice_update_sw_rule_bridge_mode(hw);
8229 if (err) {
8230 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8231 mode, err,
8232 ice_aq_str(hw->adminq.sq_last_status));
8233 /* revert hw->evb_veb */
8234 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8235 return err;
8236 }
8237
8238 pf_sw->bridge_mode = mode;
8239 }
8240
8241 return 0;
8242 }
8243
8244 /**
8245 * ice_tx_timeout - Respond to a Tx Hang
8246 * @netdev: network interface device structure
8247 * @txqueue: Tx queue
8248 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)8249 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8250 {
8251 struct ice_netdev_priv *np = netdev_priv(netdev);
8252 struct ice_tx_ring *tx_ring = NULL;
8253 struct ice_vsi *vsi = np->vsi;
8254 struct ice_pf *pf = vsi->back;
8255 u32 i;
8256
8257 pf->tx_timeout_count++;
8258
8259 /* Check if PFC is enabled for the TC to which the queue belongs
8260 * to. If yes then Tx timeout is not caused by a hung queue, no
8261 * need to reset and rebuild
8262 */
8263 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8264 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8265 txqueue);
8266 return;
8267 }
8268
8269 /* now that we have an index, find the tx_ring struct */
8270 ice_for_each_txq(vsi, i)
8271 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8272 if (txqueue == vsi->tx_rings[i]->q_index) {
8273 tx_ring = vsi->tx_rings[i];
8274 break;
8275 }
8276
8277 /* Reset recovery level if enough time has elapsed after last timeout.
8278 * Also ensure no new reset action happens before next timeout period.
8279 */
8280 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8281 pf->tx_timeout_recovery_level = 1;
8282 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8283 netdev->watchdog_timeo)))
8284 return;
8285
8286 if (tx_ring) {
8287 struct ice_hw *hw = &pf->hw;
8288 u32 head, intr = 0;
8289
8290 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8291 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8292 /* Read interrupt register */
8293 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8294
8295 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8296 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8297 head, tx_ring->next_to_use, intr);
8298
8299 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr);
8300 }
8301
8302 pf->tx_timeout_last_recovery = jiffies;
8303 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8304 pf->tx_timeout_recovery_level, txqueue);
8305
8306 switch (pf->tx_timeout_recovery_level) {
8307 case 1:
8308 set_bit(ICE_PFR_REQ, pf->state);
8309 break;
8310 case 2:
8311 set_bit(ICE_CORER_REQ, pf->state);
8312 break;
8313 case 3:
8314 set_bit(ICE_GLOBR_REQ, pf->state);
8315 break;
8316 default:
8317 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8318 set_bit(ICE_DOWN, pf->state);
8319 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8320 set_bit(ICE_SERVICE_DIS, pf->state);
8321 break;
8322 }
8323
8324 ice_service_task_schedule(pf);
8325 pf->tx_timeout_recovery_level++;
8326 }
8327
8328 /**
8329 * ice_setup_tc_cls_flower - flower classifier offloads
8330 * @np: net device to configure
8331 * @filter_dev: device on which filter is added
8332 * @cls_flower: offload data
8333 */
8334 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower)8335 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8336 struct net_device *filter_dev,
8337 struct flow_cls_offload *cls_flower)
8338 {
8339 struct ice_vsi *vsi = np->vsi;
8340
8341 if (cls_flower->common.chain_index)
8342 return -EOPNOTSUPP;
8343
8344 switch (cls_flower->command) {
8345 case FLOW_CLS_REPLACE:
8346 return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8347 case FLOW_CLS_DESTROY:
8348 return ice_del_cls_flower(vsi, cls_flower);
8349 default:
8350 return -EINVAL;
8351 }
8352 }
8353
8354 /**
8355 * ice_setup_tc_block_cb - callback handler registered for TC block
8356 * @type: TC SETUP type
8357 * @type_data: TC flower offload data that contains user input
8358 * @cb_priv: netdev private data
8359 */
8360 static int
ice_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)8361 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8362 {
8363 struct ice_netdev_priv *np = cb_priv;
8364
8365 switch (type) {
8366 case TC_SETUP_CLSFLOWER:
8367 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8368 type_data);
8369 default:
8370 return -EOPNOTSUPP;
8371 }
8372 }
8373
8374 /**
8375 * ice_validate_mqprio_qopt - Validate TCF input parameters
8376 * @vsi: Pointer to VSI
8377 * @mqprio_qopt: input parameters for mqprio queue configuration
8378 *
8379 * This function validates MQPRIO params, such as qcount (power of 2 wherever
8380 * needed), and make sure user doesn't specify qcount and BW rate limit
8381 * for TCs, which are more than "num_tc"
8382 */
8383 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)8384 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8385 struct tc_mqprio_qopt_offload *mqprio_qopt)
8386 {
8387 int non_power_of_2_qcount = 0;
8388 struct ice_pf *pf = vsi->back;
8389 int max_rss_q_cnt = 0;
8390 u64 sum_min_rate = 0;
8391 struct device *dev;
8392 int i, speed;
8393 u8 num_tc;
8394
8395 if (vsi->type != ICE_VSI_PF)
8396 return -EINVAL;
8397
8398 if (mqprio_qopt->qopt.offset[0] != 0 ||
8399 mqprio_qopt->qopt.num_tc < 1 ||
8400 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8401 return -EINVAL;
8402
8403 dev = ice_pf_to_dev(pf);
8404 vsi->ch_rss_size = 0;
8405 num_tc = mqprio_qopt->qopt.num_tc;
8406 speed = ice_get_link_speed_kbps(vsi);
8407
8408 for (i = 0; num_tc; i++) {
8409 int qcount = mqprio_qopt->qopt.count[i];
8410 u64 max_rate, min_rate, rem;
8411
8412 if (!qcount)
8413 return -EINVAL;
8414
8415 if (is_power_of_2(qcount)) {
8416 if (non_power_of_2_qcount &&
8417 qcount > non_power_of_2_qcount) {
8418 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8419 qcount, non_power_of_2_qcount);
8420 return -EINVAL;
8421 }
8422 if (qcount > max_rss_q_cnt)
8423 max_rss_q_cnt = qcount;
8424 } else {
8425 if (non_power_of_2_qcount &&
8426 qcount != non_power_of_2_qcount) {
8427 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8428 qcount, non_power_of_2_qcount);
8429 return -EINVAL;
8430 }
8431 if (qcount < max_rss_q_cnt) {
8432 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8433 qcount, max_rss_q_cnt);
8434 return -EINVAL;
8435 }
8436 max_rss_q_cnt = qcount;
8437 non_power_of_2_qcount = qcount;
8438 }
8439
8440 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8441 * converts the bandwidth rate limit into Bytes/s when
8442 * passing it down to the driver. So convert input bandwidth
8443 * from Bytes/s to Kbps
8444 */
8445 max_rate = mqprio_qopt->max_rate[i];
8446 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8447
8448 /* min_rate is minimum guaranteed rate and it can't be zero */
8449 min_rate = mqprio_qopt->min_rate[i];
8450 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8451 sum_min_rate += min_rate;
8452
8453 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8454 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8455 min_rate, ICE_MIN_BW_LIMIT);
8456 return -EINVAL;
8457 }
8458
8459 if (max_rate && max_rate > speed) {
8460 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8461 i, max_rate, speed);
8462 return -EINVAL;
8463 }
8464
8465 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8466 if (rem) {
8467 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8468 i, ICE_MIN_BW_LIMIT);
8469 return -EINVAL;
8470 }
8471
8472 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8473 if (rem) {
8474 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8475 i, ICE_MIN_BW_LIMIT);
8476 return -EINVAL;
8477 }
8478
8479 /* min_rate can't be more than max_rate, except when max_rate
8480 * is zero (implies max_rate sought is max line rate). In such
8481 * a case min_rate can be more than max.
8482 */
8483 if (max_rate && min_rate > max_rate) {
8484 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8485 min_rate, max_rate);
8486 return -EINVAL;
8487 }
8488
8489 if (i >= mqprio_qopt->qopt.num_tc - 1)
8490 break;
8491 if (mqprio_qopt->qopt.offset[i + 1] !=
8492 (mqprio_qopt->qopt.offset[i] + qcount))
8493 return -EINVAL;
8494 }
8495 if (vsi->num_rxq <
8496 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8497 return -EINVAL;
8498 if (vsi->num_txq <
8499 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8500 return -EINVAL;
8501
8502 if (sum_min_rate && sum_min_rate > (u64)speed) {
8503 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8504 sum_min_rate, speed);
8505 return -EINVAL;
8506 }
8507
8508 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8509 vsi->ch_rss_size = max_rss_q_cnt;
8510
8511 return 0;
8512 }
8513
8514 /**
8515 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8516 * @pf: ptr to PF device
8517 * @vsi: ptr to VSI
8518 */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)8519 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8520 {
8521 struct device *dev = ice_pf_to_dev(pf);
8522 bool added = false;
8523 struct ice_hw *hw;
8524 int flow;
8525
8526 if (!(vsi->num_gfltr || vsi->num_bfltr))
8527 return -EINVAL;
8528
8529 hw = &pf->hw;
8530 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8531 struct ice_fd_hw_prof *prof;
8532 int tun, status;
8533 u64 entry_h;
8534
8535 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8536 hw->fdir_prof[flow]->cnt))
8537 continue;
8538
8539 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8540 enum ice_flow_priority prio;
8541
8542 /* add this VSI to FDir profile for this flow */
8543 prio = ICE_FLOW_PRIO_NORMAL;
8544 prof = hw->fdir_prof[flow];
8545 status = ice_flow_add_entry(hw, ICE_BLK_FD,
8546 prof->prof_id[tun],
8547 prof->vsi_h[0], vsi->idx,
8548 prio, prof->fdir_seg[tun],
8549 &entry_h);
8550 if (status) {
8551 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8552 vsi->idx, flow);
8553 continue;
8554 }
8555
8556 prof->entry_h[prof->cnt][tun] = entry_h;
8557 }
8558
8559 /* store VSI for filter replay and delete */
8560 prof->vsi_h[prof->cnt] = vsi->idx;
8561 prof->cnt++;
8562
8563 added = true;
8564 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8565 flow);
8566 }
8567
8568 if (!added)
8569 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8570
8571 return 0;
8572 }
8573
8574 /**
8575 * ice_add_channel - add a channel by adding VSI
8576 * @pf: ptr to PF device
8577 * @sw_id: underlying HW switching element ID
8578 * @ch: ptr to channel structure
8579 *
8580 * Add a channel (VSI) using add_vsi and queue_map
8581 */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)8582 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8583 {
8584 struct device *dev = ice_pf_to_dev(pf);
8585 struct ice_vsi *vsi;
8586
8587 if (ch->type != ICE_VSI_CHNL) {
8588 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8589 return -EINVAL;
8590 }
8591
8592 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8593 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8594 dev_err(dev, "create chnl VSI failure\n");
8595 return -EINVAL;
8596 }
8597
8598 ice_add_vsi_to_fdir(pf, vsi);
8599
8600 ch->sw_id = sw_id;
8601 ch->vsi_num = vsi->vsi_num;
8602 ch->info.mapping_flags = vsi->info.mapping_flags;
8603 ch->ch_vsi = vsi;
8604 /* set the back pointer of channel for newly created VSI */
8605 vsi->ch = ch;
8606
8607 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8608 sizeof(vsi->info.q_mapping));
8609 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8610 sizeof(vsi->info.tc_mapping));
8611
8612 return 0;
8613 }
8614
8615 /**
8616 * ice_chnl_cfg_res
8617 * @vsi: the VSI being setup
8618 * @ch: ptr to channel structure
8619 *
8620 * Configure channel specific resources such as rings, vector.
8621 */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)8622 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8623 {
8624 int i;
8625
8626 for (i = 0; i < ch->num_txq; i++) {
8627 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8628 struct ice_ring_container *rc;
8629 struct ice_tx_ring *tx_ring;
8630 struct ice_rx_ring *rx_ring;
8631
8632 tx_ring = vsi->tx_rings[ch->base_q + i];
8633 rx_ring = vsi->rx_rings[ch->base_q + i];
8634 if (!tx_ring || !rx_ring)
8635 continue;
8636
8637 /* setup ring being channel enabled */
8638 tx_ring->ch = ch;
8639 rx_ring->ch = ch;
8640
8641 /* following code block sets up vector specific attributes */
8642 tx_q_vector = tx_ring->q_vector;
8643 rx_q_vector = rx_ring->q_vector;
8644 if (!tx_q_vector && !rx_q_vector)
8645 continue;
8646
8647 if (tx_q_vector) {
8648 tx_q_vector->ch = ch;
8649 /* setup Tx and Rx ITR setting if DIM is off */
8650 rc = &tx_q_vector->tx;
8651 if (!ITR_IS_DYNAMIC(rc))
8652 ice_write_itr(rc, rc->itr_setting);
8653 }
8654 if (rx_q_vector) {
8655 rx_q_vector->ch = ch;
8656 /* setup Tx and Rx ITR setting if DIM is off */
8657 rc = &rx_q_vector->rx;
8658 if (!ITR_IS_DYNAMIC(rc))
8659 ice_write_itr(rc, rc->itr_setting);
8660 }
8661 }
8662
8663 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8664 * GLINT_ITR register would have written to perform in-context
8665 * update, hence perform flush
8666 */
8667 if (ch->num_txq || ch->num_rxq)
8668 ice_flush(&vsi->back->hw);
8669 }
8670
8671 /**
8672 * ice_cfg_chnl_all_res - configure channel resources
8673 * @vsi: pte to main_vsi
8674 * @ch: ptr to channel structure
8675 *
8676 * This function configures channel specific resources such as flow-director
8677 * counter index, and other resources such as queues, vectors, ITR settings
8678 */
8679 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8680 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8681 {
8682 /* configure channel (aka ADQ) resources such as queues, vectors,
8683 * ITR settings for channel specific vectors and anything else
8684 */
8685 ice_chnl_cfg_res(vsi, ch);
8686 }
8687
8688 /**
8689 * ice_setup_hw_channel - setup new channel
8690 * @pf: ptr to PF device
8691 * @vsi: the VSI being setup
8692 * @ch: ptr to channel structure
8693 * @sw_id: underlying HW switching element ID
8694 * @type: type of channel to be created (VMDq2/VF)
8695 *
8696 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8697 * and configures Tx rings accordingly
8698 */
8699 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8700 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8701 struct ice_channel *ch, u16 sw_id, u8 type)
8702 {
8703 struct device *dev = ice_pf_to_dev(pf);
8704 int ret;
8705
8706 ch->base_q = vsi->next_base_q;
8707 ch->type = type;
8708
8709 ret = ice_add_channel(pf, sw_id, ch);
8710 if (ret) {
8711 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8712 return ret;
8713 }
8714
8715 /* configure/setup ADQ specific resources */
8716 ice_cfg_chnl_all_res(vsi, ch);
8717
8718 /* make sure to update the next_base_q so that subsequent channel's
8719 * (aka ADQ) VSI queue map is correct
8720 */
8721 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8722 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8723 ch->num_rxq);
8724
8725 return 0;
8726 }
8727
8728 /**
8729 * ice_setup_channel - setup new channel using uplink element
8730 * @pf: ptr to PF device
8731 * @vsi: the VSI being setup
8732 * @ch: ptr to channel structure
8733 *
8734 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8735 * and uplink switching element
8736 */
8737 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8738 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8739 struct ice_channel *ch)
8740 {
8741 struct device *dev = ice_pf_to_dev(pf);
8742 u16 sw_id;
8743 int ret;
8744
8745 if (vsi->type != ICE_VSI_PF) {
8746 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8747 return false;
8748 }
8749
8750 sw_id = pf->first_sw->sw_id;
8751
8752 /* create channel (VSI) */
8753 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8754 if (ret) {
8755 dev_err(dev, "failed to setup hw_channel\n");
8756 return false;
8757 }
8758 dev_dbg(dev, "successfully created channel()\n");
8759
8760 return ch->ch_vsi ? true : false;
8761 }
8762
8763 /**
8764 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8765 * @vsi: VSI to be configured
8766 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8767 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8768 */
8769 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8770 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8771 {
8772 int err;
8773
8774 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8775 if (err)
8776 return err;
8777
8778 return ice_set_max_bw_limit(vsi, max_tx_rate);
8779 }
8780
8781 /**
8782 * ice_create_q_channel - function to create channel
8783 * @vsi: VSI to be configured
8784 * @ch: ptr to channel (it contains channel specific params)
8785 *
8786 * This function creates channel (VSI) using num_queues specified by user,
8787 * reconfigs RSS if needed.
8788 */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8789 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8790 {
8791 struct ice_pf *pf = vsi->back;
8792 struct device *dev;
8793
8794 if (!ch)
8795 return -EINVAL;
8796
8797 dev = ice_pf_to_dev(pf);
8798 if (!ch->num_txq || !ch->num_rxq) {
8799 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8800 return -EINVAL;
8801 }
8802
8803 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8804 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8805 vsi->cnt_q_avail, ch->num_txq);
8806 return -EINVAL;
8807 }
8808
8809 if (!ice_setup_channel(pf, vsi, ch)) {
8810 dev_info(dev, "Failed to setup channel\n");
8811 return -EINVAL;
8812 }
8813 /* configure BW rate limit */
8814 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8815 int ret;
8816
8817 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8818 ch->min_tx_rate);
8819 if (ret)
8820 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8821 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8822 else
8823 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8824 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8825 }
8826
8827 vsi->cnt_q_avail -= ch->num_txq;
8828
8829 return 0;
8830 }
8831
8832 /**
8833 * ice_rem_all_chnl_fltrs - removes all channel filters
8834 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8835 *
8836 * Remove all advanced switch filters only if they are channel specific
8837 * tc-flower based filter
8838 */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8839 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8840 {
8841 struct ice_tc_flower_fltr *fltr;
8842 struct hlist_node *node;
8843
8844 /* to remove all channel filters, iterate an ordered list of filters */
8845 hlist_for_each_entry_safe(fltr, node,
8846 &pf->tc_flower_fltr_list,
8847 tc_flower_node) {
8848 struct ice_rule_query_data rule;
8849 int status;
8850
8851 /* for now process only channel specific filters */
8852 if (!ice_is_chnl_fltr(fltr))
8853 continue;
8854
8855 rule.rid = fltr->rid;
8856 rule.rule_id = fltr->rule_id;
8857 rule.vsi_handle = fltr->dest_vsi_handle;
8858 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8859 if (status) {
8860 if (status == -ENOENT)
8861 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8862 rule.rule_id);
8863 else
8864 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8865 status);
8866 } else if (fltr->dest_vsi) {
8867 /* update advanced switch filter count */
8868 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8869 u32 flags = fltr->flags;
8870
8871 fltr->dest_vsi->num_chnl_fltr--;
8872 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8873 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8874 pf->num_dmac_chnl_fltrs--;
8875 }
8876 }
8877
8878 hlist_del(&fltr->tc_flower_node);
8879 kfree(fltr);
8880 }
8881 }
8882
8883 /**
8884 * ice_remove_q_channels - Remove queue channels for the TCs
8885 * @vsi: VSI to be configured
8886 * @rem_fltr: delete advanced switch filter or not
8887 *
8888 * Remove queue channels for the TCs
8889 */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8890 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8891 {
8892 struct ice_channel *ch, *ch_tmp;
8893 struct ice_pf *pf = vsi->back;
8894 int i;
8895
8896 /* remove all tc-flower based filter if they are channel filters only */
8897 if (rem_fltr)
8898 ice_rem_all_chnl_fltrs(pf);
8899
8900 /* remove ntuple filters since queue configuration is being changed */
8901 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8902 struct ice_hw *hw = &pf->hw;
8903
8904 mutex_lock(&hw->fdir_fltr_lock);
8905 ice_fdir_del_all_fltrs(vsi);
8906 mutex_unlock(&hw->fdir_fltr_lock);
8907 }
8908
8909 /* perform cleanup for channels if they exist */
8910 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8911 struct ice_vsi *ch_vsi;
8912
8913 list_del(&ch->list);
8914 ch_vsi = ch->ch_vsi;
8915 if (!ch_vsi) {
8916 kfree(ch);
8917 continue;
8918 }
8919
8920 /* Reset queue contexts */
8921 for (i = 0; i < ch->num_rxq; i++) {
8922 struct ice_tx_ring *tx_ring;
8923 struct ice_rx_ring *rx_ring;
8924
8925 tx_ring = vsi->tx_rings[ch->base_q + i];
8926 rx_ring = vsi->rx_rings[ch->base_q + i];
8927 if (tx_ring) {
8928 tx_ring->ch = NULL;
8929 if (tx_ring->q_vector)
8930 tx_ring->q_vector->ch = NULL;
8931 }
8932 if (rx_ring) {
8933 rx_ring->ch = NULL;
8934 if (rx_ring->q_vector)
8935 rx_ring->q_vector->ch = NULL;
8936 }
8937 }
8938
8939 /* Release FD resources for the channel VSI */
8940 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8941
8942 /* clear the VSI from scheduler tree */
8943 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8944
8945 /* Delete VSI from FW, PF and HW VSI arrays */
8946 ice_vsi_delete(ch->ch_vsi);
8947
8948 /* free the channel */
8949 kfree(ch);
8950 }
8951
8952 /* clear the channel VSI map which is stored in main VSI */
8953 ice_for_each_chnl_tc(i)
8954 vsi->tc_map_vsi[i] = NULL;
8955
8956 /* reset main VSI's all TC information */
8957 vsi->all_enatc = 0;
8958 vsi->all_numtc = 0;
8959 }
8960
8961 /**
8962 * ice_rebuild_channels - rebuild channel
8963 * @pf: ptr to PF
8964 *
8965 * Recreate channel VSIs and replay filters
8966 */
ice_rebuild_channels(struct ice_pf * pf)8967 static int ice_rebuild_channels(struct ice_pf *pf)
8968 {
8969 struct device *dev = ice_pf_to_dev(pf);
8970 struct ice_vsi *main_vsi;
8971 bool rem_adv_fltr = true;
8972 struct ice_channel *ch;
8973 struct ice_vsi *vsi;
8974 int tc_idx = 1;
8975 int i, err;
8976
8977 main_vsi = ice_get_main_vsi(pf);
8978 if (!main_vsi)
8979 return 0;
8980
8981 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8982 main_vsi->old_numtc == 1)
8983 return 0; /* nothing to be done */
8984
8985 /* reconfigure main VSI based on old value of TC and cached values
8986 * for MQPRIO opts
8987 */
8988 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8989 if (err) {
8990 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8991 main_vsi->old_ena_tc, main_vsi->vsi_num);
8992 return err;
8993 }
8994
8995 /* rebuild ADQ VSIs */
8996 ice_for_each_vsi(pf, i) {
8997 enum ice_vsi_type type;
8998
8999 vsi = pf->vsi[i];
9000 if (!vsi || vsi->type != ICE_VSI_CHNL)
9001 continue;
9002
9003 type = vsi->type;
9004
9005 /* rebuild ADQ VSI */
9006 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
9007 if (err) {
9008 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
9009 ice_vsi_type_str(type), vsi->idx, err);
9010 goto cleanup;
9011 }
9012
9013 /* Re-map HW VSI number, using VSI handle that has been
9014 * previously validated in ice_replay_vsi() call above
9015 */
9016 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
9017
9018 /* replay filters for the VSI */
9019 err = ice_replay_vsi(&pf->hw, vsi->idx);
9020 if (err) {
9021 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
9022 ice_vsi_type_str(type), err, vsi->idx);
9023 rem_adv_fltr = false;
9024 goto cleanup;
9025 }
9026 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
9027 ice_vsi_type_str(type), vsi->idx);
9028
9029 /* store ADQ VSI at correct TC index in main VSI's
9030 * map of TC to VSI
9031 */
9032 main_vsi->tc_map_vsi[tc_idx++] = vsi;
9033 }
9034
9035 /* ADQ VSI(s) has been rebuilt successfully, so setup
9036 * channel for main VSI's Tx and Rx rings
9037 */
9038 list_for_each_entry(ch, &main_vsi->ch_list, list) {
9039 struct ice_vsi *ch_vsi;
9040
9041 ch_vsi = ch->ch_vsi;
9042 if (!ch_vsi)
9043 continue;
9044
9045 /* reconfig channel resources */
9046 ice_cfg_chnl_all_res(main_vsi, ch);
9047
9048 /* replay BW rate limit if it is non-zero */
9049 if (!ch->max_tx_rate && !ch->min_tx_rate)
9050 continue;
9051
9052 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
9053 ch->min_tx_rate);
9054 if (err)
9055 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9056 err, ch->max_tx_rate, ch->min_tx_rate,
9057 ch_vsi->vsi_num);
9058 else
9059 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9060 ch->max_tx_rate, ch->min_tx_rate,
9061 ch_vsi->vsi_num);
9062 }
9063
9064 /* reconfig RSS for main VSI */
9065 if (main_vsi->ch_rss_size)
9066 ice_vsi_cfg_rss_lut_key(main_vsi);
9067
9068 return 0;
9069
9070 cleanup:
9071 ice_remove_q_channels(main_vsi, rem_adv_fltr);
9072 return err;
9073 }
9074
9075 /**
9076 * ice_create_q_channels - Add queue channel for the given TCs
9077 * @vsi: VSI to be configured
9078 *
9079 * Configures queue channel mapping to the given TCs
9080 */
ice_create_q_channels(struct ice_vsi * vsi)9081 static int ice_create_q_channels(struct ice_vsi *vsi)
9082 {
9083 struct ice_pf *pf = vsi->back;
9084 struct ice_channel *ch;
9085 int ret = 0, i;
9086
9087 ice_for_each_chnl_tc(i) {
9088 if (!(vsi->all_enatc & BIT(i)))
9089 continue;
9090
9091 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
9092 if (!ch) {
9093 ret = -ENOMEM;
9094 goto err_free;
9095 }
9096 INIT_LIST_HEAD(&ch->list);
9097 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
9098 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
9099 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
9100 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
9101 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
9102
9103 /* convert to Kbits/s */
9104 if (ch->max_tx_rate)
9105 ch->max_tx_rate = div_u64(ch->max_tx_rate,
9106 ICE_BW_KBPS_DIVISOR);
9107 if (ch->min_tx_rate)
9108 ch->min_tx_rate = div_u64(ch->min_tx_rate,
9109 ICE_BW_KBPS_DIVISOR);
9110
9111 ret = ice_create_q_channel(vsi, ch);
9112 if (ret) {
9113 dev_err(ice_pf_to_dev(pf),
9114 "failed creating channel TC:%d\n", i);
9115 kfree(ch);
9116 goto err_free;
9117 }
9118 list_add_tail(&ch->list, &vsi->ch_list);
9119 vsi->tc_map_vsi[i] = ch->ch_vsi;
9120 dev_dbg(ice_pf_to_dev(pf),
9121 "successfully created channel: VSI %pK\n", ch->ch_vsi);
9122 }
9123 return 0;
9124
9125 err_free:
9126 ice_remove_q_channels(vsi, false);
9127
9128 return ret;
9129 }
9130
9131 /**
9132 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
9133 * @netdev: net device to configure
9134 * @type_data: TC offload data
9135 */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)9136 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
9137 {
9138 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
9139 struct ice_netdev_priv *np = netdev_priv(netdev);
9140 struct ice_vsi *vsi = np->vsi;
9141 struct ice_pf *pf = vsi->back;
9142 u16 mode, ena_tc_qdisc = 0;
9143 int cur_txq, cur_rxq;
9144 u8 hw = 0, num_tcf;
9145 struct device *dev;
9146 int ret, i;
9147
9148 dev = ice_pf_to_dev(pf);
9149 num_tcf = mqprio_qopt->qopt.num_tc;
9150 hw = mqprio_qopt->qopt.hw;
9151 mode = mqprio_qopt->mode;
9152 if (!hw) {
9153 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9154 vsi->ch_rss_size = 0;
9155 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9156 goto config_tcf;
9157 }
9158
9159 /* Generate queue region map for number of TCF requested */
9160 for (i = 0; i < num_tcf; i++)
9161 ena_tc_qdisc |= BIT(i);
9162
9163 switch (mode) {
9164 case TC_MQPRIO_MODE_CHANNEL:
9165
9166 if (pf->hw.port_info->is_custom_tx_enabled) {
9167 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
9168 return -EBUSY;
9169 }
9170 ice_tear_down_devlink_rate_tree(pf);
9171
9172 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
9173 if (ret) {
9174 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
9175 ret);
9176 return ret;
9177 }
9178 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9179 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9180 /* don't assume state of hw_tc_offload during driver load
9181 * and set the flag for TC flower filter if hw_tc_offload
9182 * already ON
9183 */
9184 if (vsi->netdev->features & NETIF_F_HW_TC)
9185 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9186 break;
9187 default:
9188 return -EINVAL;
9189 }
9190
9191 config_tcf:
9192
9193 /* Requesting same TCF configuration as already enabled */
9194 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9195 mode != TC_MQPRIO_MODE_CHANNEL)
9196 return 0;
9197
9198 /* Pause VSI queues */
9199 ice_dis_vsi(vsi, true);
9200
9201 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9202 ice_remove_q_channels(vsi, true);
9203
9204 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9205 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9206 num_online_cpus());
9207 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9208 num_online_cpus());
9209 } else {
9210 /* logic to rebuild VSI, same like ethtool -L */
9211 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9212
9213 for (i = 0; i < num_tcf; i++) {
9214 if (!(ena_tc_qdisc & BIT(i)))
9215 continue;
9216
9217 offset = vsi->mqprio_qopt.qopt.offset[i];
9218 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9219 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9220 }
9221 vsi->req_txq = offset + qcount_tx;
9222 vsi->req_rxq = offset + qcount_rx;
9223
9224 /* store away original rss_size info, so that it gets reused
9225 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9226 * determine, what should be the rss_sizefor main VSI
9227 */
9228 vsi->orig_rss_size = vsi->rss_size;
9229 }
9230
9231 /* save current values of Tx and Rx queues before calling VSI rebuild
9232 * for fallback option
9233 */
9234 cur_txq = vsi->num_txq;
9235 cur_rxq = vsi->num_rxq;
9236
9237 /* proceed with rebuild main VSI using correct number of queues */
9238 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9239 if (ret) {
9240 /* fallback to current number of queues */
9241 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9242 vsi->req_txq = cur_txq;
9243 vsi->req_rxq = cur_rxq;
9244 clear_bit(ICE_RESET_FAILED, pf->state);
9245 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9246 dev_err(dev, "Rebuild of main VSI failed again\n");
9247 return ret;
9248 }
9249 }
9250
9251 vsi->all_numtc = num_tcf;
9252 vsi->all_enatc = ena_tc_qdisc;
9253 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9254 if (ret) {
9255 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9256 vsi->vsi_num);
9257 goto exit;
9258 }
9259
9260 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9261 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9262 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9263
9264 /* set TC0 rate limit if specified */
9265 if (max_tx_rate || min_tx_rate) {
9266 /* convert to Kbits/s */
9267 if (max_tx_rate)
9268 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9269 if (min_tx_rate)
9270 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9271
9272 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9273 if (!ret) {
9274 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9275 max_tx_rate, min_tx_rate, vsi->vsi_num);
9276 } else {
9277 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9278 max_tx_rate, min_tx_rate, vsi->vsi_num);
9279 goto exit;
9280 }
9281 }
9282 ret = ice_create_q_channels(vsi);
9283 if (ret) {
9284 netdev_err(netdev, "failed configuring queue channels\n");
9285 goto exit;
9286 } else {
9287 netdev_dbg(netdev, "successfully configured channels\n");
9288 }
9289 }
9290
9291 if (vsi->ch_rss_size)
9292 ice_vsi_cfg_rss_lut_key(vsi);
9293
9294 exit:
9295 /* if error, reset the all_numtc and all_enatc */
9296 if (ret) {
9297 vsi->all_numtc = 0;
9298 vsi->all_enatc = 0;
9299 }
9300 /* resume VSI */
9301 ice_ena_vsi(vsi, true);
9302
9303 return ret;
9304 }
9305
9306 static LIST_HEAD(ice_block_cb_list);
9307
9308 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)9309 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9310 void *type_data)
9311 {
9312 struct ice_netdev_priv *np = netdev_priv(netdev);
9313 struct ice_pf *pf = np->vsi->back;
9314 bool locked = false;
9315 int err;
9316
9317 switch (type) {
9318 case TC_SETUP_BLOCK:
9319 return flow_block_cb_setup_simple(type_data,
9320 &ice_block_cb_list,
9321 ice_setup_tc_block_cb,
9322 np, np, true);
9323 case TC_SETUP_QDISC_MQPRIO:
9324 if (ice_is_eswitch_mode_switchdev(pf)) {
9325 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9326 return -EOPNOTSUPP;
9327 }
9328
9329 if (pf->adev) {
9330 mutex_lock(&pf->adev_mutex);
9331 device_lock(&pf->adev->dev);
9332 locked = true;
9333 if (pf->adev->dev.driver) {
9334 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9335 err = -EBUSY;
9336 goto adev_unlock;
9337 }
9338 }
9339
9340 /* setup traffic classifier for receive side */
9341 mutex_lock(&pf->tc_mutex);
9342 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9343 mutex_unlock(&pf->tc_mutex);
9344
9345 adev_unlock:
9346 if (locked) {
9347 device_unlock(&pf->adev->dev);
9348 mutex_unlock(&pf->adev_mutex);
9349 }
9350 return err;
9351 default:
9352 return -EOPNOTSUPP;
9353 }
9354 return -EOPNOTSUPP;
9355 }
9356
9357 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)9358 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9359 struct net_device *netdev)
9360 {
9361 struct ice_indr_block_priv *cb_priv;
9362
9363 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9364 if (!cb_priv->netdev)
9365 return NULL;
9366 if (cb_priv->netdev == netdev)
9367 return cb_priv;
9368 }
9369 return NULL;
9370 }
9371
9372 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)9373 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9374 void *indr_priv)
9375 {
9376 struct ice_indr_block_priv *priv = indr_priv;
9377 struct ice_netdev_priv *np = priv->np;
9378
9379 switch (type) {
9380 case TC_SETUP_CLSFLOWER:
9381 return ice_setup_tc_cls_flower(np, priv->netdev,
9382 (struct flow_cls_offload *)
9383 type_data);
9384 default:
9385 return -EOPNOTSUPP;
9386 }
9387 }
9388
9389 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9390 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9391 struct ice_netdev_priv *np,
9392 struct flow_block_offload *f, void *data,
9393 void (*cleanup)(struct flow_block_cb *block_cb))
9394 {
9395 struct ice_indr_block_priv *indr_priv;
9396 struct flow_block_cb *block_cb;
9397
9398 if (!ice_is_tunnel_supported(netdev) &&
9399 !(is_vlan_dev(netdev) &&
9400 vlan_dev_real_dev(netdev) == np->vsi->netdev))
9401 return -EOPNOTSUPP;
9402
9403 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9404 return -EOPNOTSUPP;
9405
9406 switch (f->command) {
9407 case FLOW_BLOCK_BIND:
9408 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9409 if (indr_priv)
9410 return -EEXIST;
9411
9412 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9413 if (!indr_priv)
9414 return -ENOMEM;
9415
9416 indr_priv->netdev = netdev;
9417 indr_priv->np = np;
9418 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9419
9420 block_cb =
9421 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9422 indr_priv, indr_priv,
9423 ice_rep_indr_tc_block_unbind,
9424 f, netdev, sch, data, np,
9425 cleanup);
9426
9427 if (IS_ERR(block_cb)) {
9428 list_del(&indr_priv->list);
9429 kfree(indr_priv);
9430 return PTR_ERR(block_cb);
9431 }
9432 flow_block_cb_add(block_cb, f);
9433 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9434 break;
9435 case FLOW_BLOCK_UNBIND:
9436 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9437 if (!indr_priv)
9438 return -ENOENT;
9439
9440 block_cb = flow_block_cb_lookup(f->block,
9441 ice_indr_setup_block_cb,
9442 indr_priv);
9443 if (!block_cb)
9444 return -ENOENT;
9445
9446 flow_indr_block_cb_remove(block_cb, f);
9447
9448 list_del(&block_cb->driver_list);
9449 break;
9450 default:
9451 return -EOPNOTSUPP;
9452 }
9453 return 0;
9454 }
9455
9456 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9457 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9458 void *cb_priv, enum tc_setup_type type, void *type_data,
9459 void *data,
9460 void (*cleanup)(struct flow_block_cb *block_cb))
9461 {
9462 switch (type) {
9463 case TC_SETUP_BLOCK:
9464 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9465 data, cleanup);
9466
9467 default:
9468 return -EOPNOTSUPP;
9469 }
9470 }
9471
9472 /**
9473 * ice_open - Called when a network interface becomes active
9474 * @netdev: network interface device structure
9475 *
9476 * The open entry point is called when a network interface is made
9477 * active by the system (IFF_UP). At this point all resources needed
9478 * for transmit and receive operations are allocated, the interrupt
9479 * handler is registered with the OS, the netdev watchdog is enabled,
9480 * and the stack is notified that the interface is ready.
9481 *
9482 * Returns 0 on success, negative value on failure
9483 */
ice_open(struct net_device * netdev)9484 int ice_open(struct net_device *netdev)
9485 {
9486 struct ice_netdev_priv *np = netdev_priv(netdev);
9487 struct ice_pf *pf = np->vsi->back;
9488
9489 if (ice_is_reset_in_progress(pf->state)) {
9490 netdev_err(netdev, "can't open net device while reset is in progress");
9491 return -EBUSY;
9492 }
9493
9494 return ice_open_internal(netdev);
9495 }
9496
9497 /**
9498 * ice_open_internal - Called when a network interface becomes active
9499 * @netdev: network interface device structure
9500 *
9501 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9502 * handling routine
9503 *
9504 * Returns 0 on success, negative value on failure
9505 */
ice_open_internal(struct net_device * netdev)9506 int ice_open_internal(struct net_device *netdev)
9507 {
9508 struct ice_netdev_priv *np = netdev_priv(netdev);
9509 struct ice_vsi *vsi = np->vsi;
9510 struct ice_pf *pf = vsi->back;
9511 struct ice_port_info *pi;
9512 int err;
9513
9514 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9515 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9516 return -EIO;
9517 }
9518
9519 netif_carrier_off(netdev);
9520
9521 pi = vsi->port_info;
9522 err = ice_update_link_info(pi);
9523 if (err) {
9524 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9525 return err;
9526 }
9527
9528 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9529
9530 /* Set PHY if there is media, otherwise, turn off PHY */
9531 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9532 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9533 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9534 err = ice_init_phy_user_cfg(pi);
9535 if (err) {
9536 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9537 err);
9538 return err;
9539 }
9540 }
9541
9542 err = ice_configure_phy(vsi);
9543 if (err) {
9544 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9545 err);
9546 return err;
9547 }
9548 } else {
9549 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9550 ice_set_link(vsi, false);
9551 }
9552
9553 err = ice_vsi_open(vsi);
9554 if (err)
9555 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9556 vsi->vsi_num, vsi->vsw->sw_id);
9557
9558 /* Update existing tunnels information */
9559 udp_tunnel_get_rx_info(netdev);
9560
9561 return err;
9562 }
9563
9564 /**
9565 * ice_stop - Disables a network interface
9566 * @netdev: network interface device structure
9567 *
9568 * The stop entry point is called when an interface is de-activated by the OS,
9569 * and the netdevice enters the DOWN state. The hardware is still under the
9570 * driver's control, but the netdev interface is disabled.
9571 *
9572 * Returns success only - not allowed to fail
9573 */
ice_stop(struct net_device * netdev)9574 int ice_stop(struct net_device *netdev)
9575 {
9576 struct ice_netdev_priv *np = netdev_priv(netdev);
9577 struct ice_vsi *vsi = np->vsi;
9578 struct ice_pf *pf = vsi->back;
9579
9580 if (ice_is_reset_in_progress(pf->state)) {
9581 netdev_err(netdev, "can't stop net device while reset is in progress");
9582 return -EBUSY;
9583 }
9584
9585 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9586 int link_err = ice_force_phys_link_state(vsi, false);
9587
9588 if (link_err) {
9589 if (link_err == -ENOMEDIUM)
9590 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9591 vsi->vsi_num);
9592 else
9593 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9594 vsi->vsi_num, link_err);
9595
9596 ice_vsi_close(vsi);
9597 return -EIO;
9598 }
9599 }
9600
9601 ice_vsi_close(vsi);
9602
9603 return 0;
9604 }
9605
9606 /**
9607 * ice_features_check - Validate encapsulated packet conforms to limits
9608 * @skb: skb buffer
9609 * @netdev: This port's netdev
9610 * @features: Offload features that the stack believes apply
9611 */
9612 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)9613 ice_features_check(struct sk_buff *skb,
9614 struct net_device __always_unused *netdev,
9615 netdev_features_t features)
9616 {
9617 bool gso = skb_is_gso(skb);
9618 size_t len;
9619
9620 /* No point in doing any of this if neither checksum nor GSO are
9621 * being requested for this frame. We can rule out both by just
9622 * checking for CHECKSUM_PARTIAL
9623 */
9624 if (skb->ip_summed != CHECKSUM_PARTIAL)
9625 return features;
9626
9627 /* We cannot support GSO if the MSS is going to be less than
9628 * 64 bytes. If it is then we need to drop support for GSO.
9629 */
9630 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9631 features &= ~NETIF_F_GSO_MASK;
9632
9633 len = skb_network_offset(skb);
9634 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9635 goto out_rm_features;
9636
9637 len = skb_network_header_len(skb);
9638 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9639 goto out_rm_features;
9640
9641 if (skb->encapsulation) {
9642 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9643 * the case of IPIP frames, the transport header pointer is
9644 * after the inner header! So check to make sure that this
9645 * is a GRE or UDP_TUNNEL frame before doing that math.
9646 */
9647 if (gso && (skb_shinfo(skb)->gso_type &
9648 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9649 len = skb_inner_network_header(skb) -
9650 skb_transport_header(skb);
9651 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9652 goto out_rm_features;
9653 }
9654
9655 len = skb_inner_network_header_len(skb);
9656 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9657 goto out_rm_features;
9658 }
9659
9660 return features;
9661 out_rm_features:
9662 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9663 }
9664
9665 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9666 .ndo_open = ice_open,
9667 .ndo_stop = ice_stop,
9668 .ndo_start_xmit = ice_start_xmit,
9669 .ndo_set_mac_address = ice_set_mac_address,
9670 .ndo_validate_addr = eth_validate_addr,
9671 .ndo_change_mtu = ice_change_mtu,
9672 .ndo_get_stats64 = ice_get_stats64,
9673 .ndo_tx_timeout = ice_tx_timeout,
9674 .ndo_bpf = ice_xdp_safe_mode,
9675 };
9676
9677 static const struct net_device_ops ice_netdev_ops = {
9678 .ndo_open = ice_open,
9679 .ndo_stop = ice_stop,
9680 .ndo_start_xmit = ice_start_xmit,
9681 .ndo_select_queue = ice_select_queue,
9682 .ndo_features_check = ice_features_check,
9683 .ndo_fix_features = ice_fix_features,
9684 .ndo_set_rx_mode = ice_set_rx_mode,
9685 .ndo_set_mac_address = ice_set_mac_address,
9686 .ndo_validate_addr = eth_validate_addr,
9687 .ndo_change_mtu = ice_change_mtu,
9688 .ndo_get_stats64 = ice_get_stats64,
9689 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9690 .ndo_eth_ioctl = ice_eth_ioctl,
9691 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9692 .ndo_set_vf_mac = ice_set_vf_mac,
9693 .ndo_get_vf_config = ice_get_vf_cfg,
9694 .ndo_set_vf_trust = ice_set_vf_trust,
9695 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9696 .ndo_set_vf_link_state = ice_set_vf_link_state,
9697 .ndo_get_vf_stats = ice_get_vf_stats,
9698 .ndo_set_vf_rate = ice_set_vf_bw,
9699 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9700 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9701 .ndo_setup_tc = ice_setup_tc,
9702 .ndo_set_features = ice_set_features,
9703 .ndo_bridge_getlink = ice_bridge_getlink,
9704 .ndo_bridge_setlink = ice_bridge_setlink,
9705 .ndo_fdb_add = ice_fdb_add,
9706 .ndo_fdb_del = ice_fdb_del,
9707 #ifdef CONFIG_RFS_ACCEL
9708 .ndo_rx_flow_steer = ice_rx_flow_steer,
9709 #endif
9710 .ndo_tx_timeout = ice_tx_timeout,
9711 .ndo_bpf = ice_xdp,
9712 .ndo_xdp_xmit = ice_xdp_xmit,
9713 .ndo_xsk_wakeup = ice_xsk_wakeup,
9714 };
9715