xref: /linux/drivers/net/ethernet/intel/ice/devlink/devlink.c (revision 0a80e38d0fe1fe7b59c1e93ad908c4148a15926a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation. */
3 
4 #include <linux/vmalloc.h>
5 
6 #include "ice.h"
7 #include "ice_lib.h"
8 #include "devlink.h"
9 #include "port.h"
10 #include "ice_eswitch.h"
11 #include "ice_fw_update.h"
12 #include "ice_dcb_lib.h"
13 #include "ice_sf_eth.h"
14 
15 /* context for devlink info version reporting */
16 struct ice_info_ctx {
17 	char buf[128];
18 	struct ice_orom_info pending_orom;
19 	struct ice_nvm_info pending_nvm;
20 	struct ice_netlist_info pending_netlist;
21 	struct ice_hw_dev_caps dev_caps;
22 };
23 
24 /* The following functions are used to format specific strings for various
25  * devlink info versions. The ctx parameter is used to provide the storage
26  * buffer, as well as any ancillary information calculated when the info
27  * request was made.
28  *
29  * If a version does not exist, for example when attempting to get the
30  * inactive version of flash when there is no pending update, the function
31  * should leave the buffer in the ctx structure empty.
32  */
33 
ice_info_get_dsn(struct ice_pf * pf,struct ice_info_ctx * ctx)34 static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
35 {
36 	u8 dsn[8];
37 
38 	/* Copy the DSN into an array in Big Endian format */
39 	put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
40 
41 	snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
42 }
43 
ice_info_pba(struct ice_pf * pf,struct ice_info_ctx * ctx)44 static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
45 {
46 	struct ice_hw *hw = &pf->hw;
47 	int status;
48 
49 	status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
50 	if (status)
51 		/* We failed to locate the PBA, so just skip this entry */
52 		dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
53 			status);
54 }
55 
ice_info_fw_mgmt(struct ice_pf * pf,struct ice_info_ctx * ctx)56 static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
57 {
58 	struct ice_hw *hw = &pf->hw;
59 
60 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
61 		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
62 }
63 
ice_info_fw_api(struct ice_pf * pf,struct ice_info_ctx * ctx)64 static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
65 {
66 	struct ice_hw *hw = &pf->hw;
67 
68 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
69 		 hw->api_min_ver, hw->api_patch);
70 }
71 
ice_info_fw_build(struct ice_pf * pf,struct ice_info_ctx * ctx)72 static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
73 {
74 	struct ice_hw *hw = &pf->hw;
75 
76 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
77 }
78 
ice_info_orom_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)79 static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
80 {
81 	struct ice_orom_info *orom = &pf->hw.flash.orom;
82 
83 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
84 		 orom->major, orom->build, orom->patch);
85 }
86 
87 static void
ice_info_pending_orom_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)88 ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
89 			  struct ice_info_ctx *ctx)
90 {
91 	struct ice_orom_info *orom = &ctx->pending_orom;
92 
93 	if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
94 		snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
95 			 orom->major, orom->build, orom->patch);
96 }
97 
ice_info_nvm_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)98 static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
99 {
100 	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
101 
102 	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
103 }
104 
105 static void
ice_info_pending_nvm_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)106 ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
107 			 struct ice_info_ctx *ctx)
108 {
109 	struct ice_nvm_info *nvm = &ctx->pending_nvm;
110 
111 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
112 		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
113 			 nvm->major, nvm->minor);
114 }
115 
ice_info_eetrack(struct ice_pf * pf,struct ice_info_ctx * ctx)116 static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
117 {
118 	struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
119 
120 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
121 }
122 
123 static void
ice_info_pending_eetrack(struct ice_pf * pf,struct ice_info_ctx * ctx)124 ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
125 {
126 	struct ice_nvm_info *nvm = &ctx->pending_nvm;
127 
128 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
129 		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
130 }
131 
ice_info_ddp_pkg_name(struct ice_pf * pf,struct ice_info_ctx * ctx)132 static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
133 {
134 	struct ice_hw *hw = &pf->hw;
135 
136 	snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
137 }
138 
139 static void
ice_info_ddp_pkg_version(struct ice_pf * pf,struct ice_info_ctx * ctx)140 ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
141 {
142 	struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
143 
144 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
145 		 pkg->major, pkg->minor, pkg->update, pkg->draft);
146 }
147 
148 static void
ice_info_ddp_pkg_bundle_id(struct ice_pf * pf,struct ice_info_ctx * ctx)149 ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
150 {
151 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
152 }
153 
ice_info_netlist_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)154 static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
155 {
156 	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
157 
158 	/* The netlist version fields are BCD formatted */
159 	snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
160 		 netlist->major, netlist->minor,
161 		 netlist->type >> 16, netlist->type & 0xFFFF,
162 		 netlist->rev, netlist->cust_ver);
163 }
164 
ice_info_netlist_build(struct ice_pf * pf,struct ice_info_ctx * ctx)165 static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
166 {
167 	struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
168 
169 	snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
170 }
171 
172 static void
ice_info_pending_netlist_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)173 ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
174 			     struct ice_info_ctx *ctx)
175 {
176 	struct ice_netlist_info *netlist = &ctx->pending_netlist;
177 
178 	/* The netlist version fields are BCD formatted */
179 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
180 		snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
181 			 netlist->major, netlist->minor,
182 			 netlist->type >> 16, netlist->type & 0xFFFF,
183 			 netlist->rev, netlist->cust_ver);
184 }
185 
186 static void
ice_info_pending_netlist_build(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)187 ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
188 			       struct ice_info_ctx *ctx)
189 {
190 	struct ice_netlist_info *netlist = &ctx->pending_netlist;
191 
192 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
193 		snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
194 }
195 
ice_info_cgu_fw_build(struct ice_pf * pf,struct ice_info_ctx * ctx)196 static void ice_info_cgu_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
197 {
198 	u32 id, cfg_ver, fw_ver;
199 
200 	if (!ice_is_feature_supported(pf, ICE_F_CGU))
201 		return;
202 	if (ice_aq_get_cgu_info(&pf->hw, &id, &cfg_ver, &fw_ver))
203 		return;
204 	snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", id, cfg_ver, fw_ver);
205 }
206 
ice_info_cgu_id(struct ice_pf * pf,struct ice_info_ctx * ctx)207 static void ice_info_cgu_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
208 {
209 	if (!ice_is_feature_supported(pf, ICE_F_CGU))
210 		return;
211 	snprintf(ctx->buf, sizeof(ctx->buf), "%u", pf->hw.cgu_part_number);
212 }
213 
214 #define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
215 #define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
216 #define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
217 
218 /* The combined() macro inserts both the running entry as well as a stored
219  * entry. The running entry will always report the version from the active
220  * handler. The stored entry will first try the pending handler, and fallback
221  * to the active handler if the pending function does not report a version.
222  * The pending handler should check the status of a pending update for the
223  * relevant flash component. It should only fill in the buffer in the case
224  * where a valid pending version is available. This ensures that the related
225  * stored and running versions remain in sync, and that stored versions are
226  * correctly reported as expected.
227  */
228 #define combined(key, active, pending) \
229 	running(key, active), \
230 	stored(key, pending, active)
231 
232 enum ice_version_type {
233 	ICE_VERSION_FIXED,
234 	ICE_VERSION_RUNNING,
235 	ICE_VERSION_STORED,
236 };
237 
238 static const struct ice_devlink_version {
239 	enum ice_version_type type;
240 	const char *key;
241 	void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
242 	void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
243 } ice_devlink_versions[] = {
244 	fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
245 	running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
246 	running("fw.mgmt.api", ice_info_fw_api),
247 	running("fw.mgmt.build", ice_info_fw_build),
248 	combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
249 	combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
250 	combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
251 	running("fw.app.name", ice_info_ddp_pkg_name),
252 	running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
253 	running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
254 	combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
255 	combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
256 	fixed("cgu.id", ice_info_cgu_id),
257 	running("fw.cgu", ice_info_cgu_fw_build),
258 };
259 
260 /**
261  * ice_devlink_info_get - .info_get devlink handler
262  * @devlink: devlink instance structure
263  * @req: the devlink info request
264  * @extack: extended netdev ack structure
265  *
266  * Callback for the devlink .info_get operation. Reports information about the
267  * device.
268  *
269  * Return: zero on success or an error code on failure.
270  */
ice_devlink_info_get(struct devlink * devlink,struct devlink_info_req * req,struct netlink_ext_ack * extack)271 static int ice_devlink_info_get(struct devlink *devlink,
272 				struct devlink_info_req *req,
273 				struct netlink_ext_ack *extack)
274 {
275 	struct ice_pf *pf = devlink_priv(devlink);
276 	struct device *dev = ice_pf_to_dev(pf);
277 	struct ice_hw *hw = &pf->hw;
278 	struct ice_info_ctx *ctx;
279 	size_t i;
280 	int err;
281 
282 	err = ice_wait_for_reset(pf, 10 * HZ);
283 	if (err) {
284 		NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
285 		return err;
286 	}
287 
288 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
289 	if (!ctx)
290 		return -ENOMEM;
291 
292 	/* discover capabilities first */
293 	err = ice_discover_dev_caps(hw, &ctx->dev_caps);
294 	if (err) {
295 		dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
296 			err, libie_aq_str(hw->adminq.sq_last_status));
297 		NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
298 		goto out_free_ctx;
299 	}
300 
301 	if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
302 		err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
303 		if (err) {
304 			dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
305 				err, libie_aq_str(hw->adminq.sq_last_status));
306 
307 			/* disable display of pending Option ROM */
308 			ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
309 		}
310 	}
311 
312 	if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
313 		err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
314 		if (err) {
315 			dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
316 				err, libie_aq_str(hw->adminq.sq_last_status));
317 
318 			/* disable display of pending Option ROM */
319 			ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
320 		}
321 	}
322 
323 	if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
324 		err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
325 		if (err) {
326 			dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
327 				err, libie_aq_str(hw->adminq.sq_last_status));
328 
329 			/* disable display of pending Option ROM */
330 			ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
331 		}
332 	}
333 
334 	ice_info_get_dsn(pf, ctx);
335 
336 	err = devlink_info_serial_number_put(req, ctx->buf);
337 	if (err) {
338 		NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
339 		goto out_free_ctx;
340 	}
341 
342 	for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
343 		enum ice_version_type type = ice_devlink_versions[i].type;
344 		const char *key = ice_devlink_versions[i].key;
345 
346 		memset(ctx->buf, 0, sizeof(ctx->buf));
347 
348 		ice_devlink_versions[i].getter(pf, ctx);
349 
350 		/* If the default getter doesn't report a version, use the
351 		 * fallback function. This is primarily useful in the case of
352 		 * "stored" versions that want to report the same value as the
353 		 * running version in the normal case of no pending update.
354 		 */
355 		if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
356 			ice_devlink_versions[i].fallback(pf, ctx);
357 
358 		/* Do not report missing versions */
359 		if (ctx->buf[0] == '\0')
360 			continue;
361 
362 		switch (type) {
363 		case ICE_VERSION_FIXED:
364 			err = devlink_info_version_fixed_put(req, key, ctx->buf);
365 			if (err) {
366 				NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
367 				goto out_free_ctx;
368 			}
369 			break;
370 		case ICE_VERSION_RUNNING:
371 			err = devlink_info_version_running_put_ext(req, key,
372 								   ctx->buf,
373 								   DEVLINK_INFO_VERSION_TYPE_COMPONENT);
374 			if (err) {
375 				NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
376 				goto out_free_ctx;
377 			}
378 			break;
379 		case ICE_VERSION_STORED:
380 			err = devlink_info_version_stored_put_ext(req, key,
381 								  ctx->buf,
382 								  DEVLINK_INFO_VERSION_TYPE_COMPONENT);
383 			if (err) {
384 				NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
385 				goto out_free_ctx;
386 			}
387 			break;
388 		}
389 	}
390 
391 out_free_ctx:
392 	kfree(ctx);
393 	return err;
394 }
395 
396 /**
397  * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
398  * @pf: pointer to the pf instance
399  * @extack: netlink extended ACK structure
400  *
401  * Allow user to activate new Embedded Management Processor firmware by
402  * issuing device specific EMP reset. Called in response to
403  * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
404  *
405  * Note that teardown and rebuild of the driver state happens automatically as
406  * part of an interrupt and watchdog task. This is because all physical
407  * functions on the device must be able to reset when an EMP reset occurs from
408  * any source.
409  */
410 static int
ice_devlink_reload_empr_start(struct ice_pf * pf,struct netlink_ext_ack * extack)411 ice_devlink_reload_empr_start(struct ice_pf *pf,
412 			      struct netlink_ext_ack *extack)
413 {
414 	struct device *dev = ice_pf_to_dev(pf);
415 	struct ice_hw *hw = &pf->hw;
416 	u8 pending;
417 	int err;
418 
419 	err = ice_get_pending_updates(pf, &pending, extack);
420 	if (err)
421 		return err;
422 
423 	/* pending is a bitmask of which flash banks have a pending update,
424 	 * including the main NVM bank, the Option ROM bank, and the netlist
425 	 * bank. If any of these bits are set, then there is a pending update
426 	 * waiting to be activated.
427 	 */
428 	if (!pending) {
429 		NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
430 		return -ECANCELED;
431 	}
432 
433 	if (pf->fw_emp_reset_disabled) {
434 		NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
435 		return -ECANCELED;
436 	}
437 
438 	dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
439 
440 	err = ice_aq_nvm_update_empr(hw);
441 	if (err) {
442 		dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
443 			err, libie_aq_str(hw->adminq.sq_last_status));
444 		NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
445 		return err;
446 	}
447 
448 	return 0;
449 }
450 
451 /**
452  * ice_devlink_reinit_down - unload given PF
453  * @pf: pointer to the PF struct
454  */
ice_devlink_reinit_down(struct ice_pf * pf)455 static void ice_devlink_reinit_down(struct ice_pf *pf)
456 {
457 	/* No need to take devl_lock, it's already taken by devlink API */
458 	ice_unload(pf);
459 	rtnl_lock();
460 	ice_vsi_decfg(ice_get_main_vsi(pf));
461 	rtnl_unlock();
462 	ice_deinit_pf(pf);
463 	ice_deinit_hw(&pf->hw);
464 	ice_deinit_dev(pf);
465 }
466 
467 /**
468  * ice_devlink_reload_down - prepare for reload
469  * @devlink: pointer to the devlink instance to reload
470  * @netns_change: if true, the network namespace is changing
471  * @action: the action to perform
472  * @limit: limits on what reload should do, such as not resetting
473  * @extack: netlink extended ACK structure
474  */
475 static int
ice_devlink_reload_down(struct devlink * devlink,bool netns_change,enum devlink_reload_action action,enum devlink_reload_limit limit,struct netlink_ext_ack * extack)476 ice_devlink_reload_down(struct devlink *devlink, bool netns_change,
477 			enum devlink_reload_action action,
478 			enum devlink_reload_limit limit,
479 			struct netlink_ext_ack *extack)
480 {
481 	struct ice_pf *pf = devlink_priv(devlink);
482 
483 	switch (action) {
484 	case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
485 		if (ice_is_eswitch_mode_switchdev(pf)) {
486 			NL_SET_ERR_MSG_MOD(extack,
487 					   "Go to legacy mode before doing reinit");
488 			return -EOPNOTSUPP;
489 		}
490 		if (ice_is_adq_active(pf)) {
491 			NL_SET_ERR_MSG_MOD(extack,
492 					   "Turn off ADQ before doing reinit");
493 			return -EOPNOTSUPP;
494 		}
495 		if (ice_has_vfs(pf)) {
496 			NL_SET_ERR_MSG_MOD(extack,
497 					   "Remove all VFs before doing reinit");
498 			return -EOPNOTSUPP;
499 		}
500 		ice_devlink_reinit_down(pf);
501 		return 0;
502 	case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
503 		return ice_devlink_reload_empr_start(pf, extack);
504 	default:
505 		WARN_ON(1);
506 		return -EOPNOTSUPP;
507 	}
508 }
509 
510 /**
511  * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
512  * @pf: pointer to the pf instance
513  * @extack: netlink extended ACK structure
514  *
515  * Wait for driver to finish rebuilding after EMP reset is completed. This
516  * includes time to wait for both the actual device reset as well as the time
517  * for the driver's rebuild to complete.
518  */
519 static int
ice_devlink_reload_empr_finish(struct ice_pf * pf,struct netlink_ext_ack * extack)520 ice_devlink_reload_empr_finish(struct ice_pf *pf,
521 			       struct netlink_ext_ack *extack)
522 {
523 	int err;
524 
525 	err = ice_wait_for_reset(pf, 60 * HZ);
526 	if (err) {
527 		NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
528 		return err;
529 	}
530 
531 	return 0;
532 }
533 
534 /**
535  * ice_get_tx_topo_user_sel - Read user's choice from flash
536  * @pf: pointer to pf structure
537  * @layers: value read from flash will be saved here
538  *
539  * Reads user's preference for Tx Scheduler Topology Tree from PFA TLV.
540  *
541  * Return: zero when read was successful, negative values otherwise.
542  */
ice_get_tx_topo_user_sel(struct ice_pf * pf,uint8_t * layers)543 static int ice_get_tx_topo_user_sel(struct ice_pf *pf, uint8_t *layers)
544 {
545 	struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
546 	struct ice_hw *hw = &pf->hw;
547 	int err;
548 
549 	err = ice_acquire_nvm(hw, ICE_RES_READ);
550 	if (err)
551 		return err;
552 
553 	err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
554 			      sizeof(usr_sel), &usr_sel, true, true, NULL);
555 	if (err)
556 		goto exit_release_res;
557 
558 	if (usr_sel.data & ICE_AQC_NVM_TX_TOPO_USER_SEL)
559 		*layers = ICE_SCHED_5_LAYERS;
560 	else
561 		*layers = ICE_SCHED_9_LAYERS;
562 
563 exit_release_res:
564 	ice_release_nvm(hw);
565 
566 	return err;
567 }
568 
569 /**
570  * ice_update_tx_topo_user_sel - Save user's preference in flash
571  * @pf: pointer to pf structure
572  * @layers: value to be saved in flash
573  *
574  * Variable "layers" defines user's preference about number of layers in Tx
575  * Scheduler Topology Tree. This choice should be stored in PFA TLV field
576  * and be picked up by driver, next time during init.
577  *
578  * Return: zero when save was successful, negative values otherwise.
579  */
ice_update_tx_topo_user_sel(struct ice_pf * pf,int layers)580 static int ice_update_tx_topo_user_sel(struct ice_pf *pf, int layers)
581 {
582 	struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
583 	struct ice_hw *hw = &pf->hw;
584 	int err;
585 
586 	err = ice_acquire_nvm(hw, ICE_RES_WRITE);
587 	if (err)
588 		return err;
589 
590 	err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
591 			      sizeof(usr_sel), &usr_sel, true, true, NULL);
592 	if (err)
593 		goto exit_release_res;
594 
595 	if (layers == ICE_SCHED_5_LAYERS)
596 		usr_sel.data |= ICE_AQC_NVM_TX_TOPO_USER_SEL;
597 	else
598 		usr_sel.data &= ~ICE_AQC_NVM_TX_TOPO_USER_SEL;
599 
600 	err = ice_write_one_nvm_block(pf, ICE_AQC_NVM_TX_TOPO_MOD_ID, 2,
601 				      sizeof(usr_sel.data), &usr_sel.data,
602 				      true, NULL, NULL);
603 exit_release_res:
604 	ice_release_nvm(hw);
605 
606 	return err;
607 }
608 
609 /**
610  * ice_devlink_tx_sched_layers_get - Get tx_scheduling_layers parameter
611  * @devlink: pointer to the devlink instance
612  * @id: the parameter ID to set
613  * @ctx: context to store the parameter value
614  * @extack: netlink extended ACK structure
615  *
616  * Return: zero on success and negative value on failure.
617  */
ice_devlink_tx_sched_layers_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)618 static int ice_devlink_tx_sched_layers_get(struct devlink *devlink, u32 id,
619 					   struct devlink_param_gset_ctx *ctx,
620 					   struct netlink_ext_ack *extack)
621 {
622 	struct ice_pf *pf = devlink_priv(devlink);
623 	int err;
624 
625 	err = ice_get_tx_topo_user_sel(pf, &ctx->val.vu8);
626 	if (err)
627 		return err;
628 
629 	return 0;
630 }
631 
632 /**
633  * ice_devlink_tx_sched_layers_set - Set tx_scheduling_layers parameter
634  * @devlink: pointer to the devlink instance
635  * @id: the parameter ID to set
636  * @ctx: context to get the parameter value
637  * @extack: netlink extended ACK structure
638  *
639  * Return: zero on success and negative value on failure.
640  */
ice_devlink_tx_sched_layers_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)641 static int ice_devlink_tx_sched_layers_set(struct devlink *devlink, u32 id,
642 					   struct devlink_param_gset_ctx *ctx,
643 					   struct netlink_ext_ack *extack)
644 {
645 	struct ice_pf *pf = devlink_priv(devlink);
646 	int err;
647 
648 	err = ice_update_tx_topo_user_sel(pf, ctx->val.vu8);
649 	if (err)
650 		return err;
651 
652 	NL_SET_ERR_MSG_MOD(extack,
653 			   "Tx scheduling layers have been changed on this device. You must do the PCI slot powercycle for the change to take effect.");
654 
655 	return 0;
656 }
657 
658 /**
659  * ice_devlink_tx_sched_layers_validate - Validate passed tx_scheduling_layers
660  *                                        parameter value
661  * @devlink: unused pointer to devlink instance
662  * @id: the parameter ID to validate
663  * @val: value to validate
664  * @extack: netlink extended ACK structure
665  *
666  * Supported values are:
667  * - 5 - five layers Tx Scheduler Topology Tree
668  * - 9 - nine layers Tx Scheduler Topology Tree
669  *
670  * Return: zero when passed parameter value is supported. Negative value on
671  * error.
672  */
ice_devlink_tx_sched_layers_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)673 static int ice_devlink_tx_sched_layers_validate(struct devlink *devlink, u32 id,
674 						union devlink_param_value val,
675 						struct netlink_ext_ack *extack)
676 {
677 	if (val.vu8 != ICE_SCHED_5_LAYERS && val.vu8 != ICE_SCHED_9_LAYERS) {
678 		NL_SET_ERR_MSG_MOD(extack,
679 				   "Wrong number of tx scheduler layers provided.");
680 		return -EINVAL;
681 	}
682 
683 	return 0;
684 }
685 
686 /**
687  * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
688  * @pf: pf struct
689  *
690  * This function tears down tree exported during VF's creation.
691  */
ice_tear_down_devlink_rate_tree(struct ice_pf * pf)692 void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
693 {
694 	struct devlink *devlink;
695 	struct ice_vf *vf;
696 	unsigned int bkt;
697 
698 	devlink = priv_to_devlink(pf);
699 
700 	devl_lock(devlink);
701 	mutex_lock(&pf->vfs.table_lock);
702 	ice_for_each_vf(pf, bkt, vf) {
703 		if (vf->devlink_port.devlink_rate)
704 			devl_rate_leaf_destroy(&vf->devlink_port);
705 	}
706 	mutex_unlock(&pf->vfs.table_lock);
707 
708 	devl_rate_nodes_destroy(devlink);
709 	devl_unlock(devlink);
710 }
711 
712 /**
713  * ice_enable_custom_tx - try to enable custom Tx feature
714  * @pf: pf struct
715  *
716  * This function tries to enable custom Tx feature,
717  * it's not possible to enable it, if DCB or ADQ is active.
718  */
ice_enable_custom_tx(struct ice_pf * pf)719 static bool ice_enable_custom_tx(struct ice_pf *pf)
720 {
721 	struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
722 	struct device *dev = ice_pf_to_dev(pf);
723 
724 	if (pi->is_custom_tx_enabled)
725 		/* already enabled, return true */
726 		return true;
727 
728 	if (ice_is_adq_active(pf)) {
729 		dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
730 		return false;
731 	}
732 
733 	if (ice_is_dcb_active(pf)) {
734 		dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
735 		return false;
736 	}
737 
738 	pi->is_custom_tx_enabled = true;
739 
740 	return true;
741 }
742 
743 /**
744  * ice_traverse_tx_tree - traverse Tx scheduler tree
745  * @devlink: devlink struct
746  * @node: current node, used for recursion
747  * @tc_node: tc_node struct, that is treated as a root
748  * @pf: pf struct
749  *
750  * This function traverses Tx scheduler tree and exports
751  * entire structure to the devlink-rate.
752  */
ice_traverse_tx_tree(struct devlink * devlink,struct ice_sched_node * node,struct ice_sched_node * tc_node,struct ice_pf * pf)753 static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
754 				 struct ice_sched_node *tc_node, struct ice_pf *pf)
755 {
756 	struct devlink_rate *rate_node = NULL;
757 	struct ice_dynamic_port *sf;
758 	struct ice_vf *vf;
759 	int i;
760 
761 	if (node->rate_node)
762 		/* already added, skip to the next */
763 		goto traverse_children;
764 
765 	if (node->parent == tc_node) {
766 		/* create root node */
767 		rate_node = devl_rate_node_create(devlink, node, node->name, NULL);
768 	} else if (node->vsi_handle &&
769 		   pf->vsi[node->vsi_handle]->type == ICE_VSI_VF &&
770 		   pf->vsi[node->vsi_handle]->vf) {
771 		vf = pf->vsi[node->vsi_handle]->vf;
772 		if (!vf->devlink_port.devlink_rate)
773 			/* leaf nodes doesn't have children
774 			 * so we don't set rate_node
775 			 */
776 			devl_rate_leaf_create(&vf->devlink_port, node,
777 					      node->parent->rate_node);
778 	} else if (node->vsi_handle &&
779 		   pf->vsi[node->vsi_handle]->type == ICE_VSI_SF &&
780 		   pf->vsi[node->vsi_handle]->sf) {
781 		sf = pf->vsi[node->vsi_handle]->sf;
782 		if (!sf->devlink_port.devlink_rate)
783 			/* leaf nodes doesn't have children
784 			 * so we don't set rate_node
785 			 */
786 			devl_rate_leaf_create(&sf->devlink_port, node,
787 					      node->parent->rate_node);
788 	} else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
789 		   node->parent->rate_node) {
790 		rate_node = devl_rate_node_create(devlink, node, node->name,
791 						  node->parent->rate_node);
792 	}
793 
794 	if (rate_node && !IS_ERR(rate_node))
795 		node->rate_node = rate_node;
796 
797 traverse_children:
798 	for (i = 0; i < node->num_children; i++)
799 		ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf);
800 }
801 
802 /**
803  * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
804  * @devlink: devlink struct
805  * @vsi: main vsi struct
806  *
807  * This function finds a root node, then calls ice_traverse_tx tree, which
808  * traverses the tree and exports it's contents to devlink rate.
809  */
ice_devlink_rate_init_tx_topology(struct devlink * devlink,struct ice_vsi * vsi)810 int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
811 {
812 	struct ice_port_info *pi = vsi->port_info;
813 	struct ice_sched_node *tc_node;
814 	struct ice_pf *pf = vsi->back;
815 	int i;
816 
817 	tc_node = pi->root->children[0];
818 	mutex_lock(&pi->sched_lock);
819 	for (i = 0; i < tc_node->num_children; i++)
820 		ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf);
821 	mutex_unlock(&pi->sched_lock);
822 
823 	return 0;
824 }
825 
ice_clear_rate_nodes(struct ice_sched_node * node)826 static void ice_clear_rate_nodes(struct ice_sched_node *node)
827 {
828 	node->rate_node = NULL;
829 
830 	for (int i = 0; i < node->num_children; i++)
831 		ice_clear_rate_nodes(node->children[i]);
832 }
833 
834 /**
835  * ice_devlink_rate_clear_tx_topology - clear node->rate_node
836  * @vsi: main vsi struct
837  *
838  * Clear rate_node to cleanup creation of Tx topology.
839  *
840  */
ice_devlink_rate_clear_tx_topology(struct ice_vsi * vsi)841 void ice_devlink_rate_clear_tx_topology(struct ice_vsi *vsi)
842 {
843 	struct ice_port_info *pi = vsi->port_info;
844 
845 	mutex_lock(&pi->sched_lock);
846 	ice_clear_rate_nodes(pi->root->children[0]);
847 	mutex_unlock(&pi->sched_lock);
848 }
849 
850 /**
851  * ice_set_object_tx_share - sets node scheduling parameter
852  * @pi: devlink struct instance
853  * @node: node struct instance
854  * @bw: bandwidth in bytes per second
855  * @extack: extended netdev ack structure
856  *
857  * This function sets ICE_MIN_BW scheduling BW limit.
858  */
ice_set_object_tx_share(struct ice_port_info * pi,struct ice_sched_node * node,u64 bw,struct netlink_ext_ack * extack)859 static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
860 				   u64 bw, struct netlink_ext_ack *extack)
861 {
862 	int status;
863 
864 	mutex_lock(&pi->sched_lock);
865 	/* converts bytes per second to kilo bits per second */
866 	node->tx_share = div_u64(bw, 125);
867 	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share);
868 	mutex_unlock(&pi->sched_lock);
869 
870 	if (status)
871 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
872 
873 	return status;
874 }
875 
876 /**
877  * ice_set_object_tx_max - sets node scheduling parameter
878  * @pi: devlink struct instance
879  * @node: node struct instance
880  * @bw: bandwidth in bytes per second
881  * @extack: extended netdev ack structure
882  *
883  * This function sets ICE_MAX_BW scheduling BW limit.
884  */
ice_set_object_tx_max(struct ice_port_info * pi,struct ice_sched_node * node,u64 bw,struct netlink_ext_ack * extack)885 static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
886 				 u64 bw, struct netlink_ext_ack *extack)
887 {
888 	int status;
889 
890 	mutex_lock(&pi->sched_lock);
891 	/* converts bytes per second value to kilo bits per second */
892 	node->tx_max = div_u64(bw, 125);
893 	status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max);
894 	mutex_unlock(&pi->sched_lock);
895 
896 	if (status)
897 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
898 
899 	return status;
900 }
901 
902 /**
903  * ice_set_object_tx_priority - sets node scheduling parameter
904  * @pi: devlink struct instance
905  * @node: node struct instance
906  * @priority: value representing priority for strict priority arbitration
907  * @extack: extended netdev ack structure
908  *
909  * This function sets priority of node among siblings.
910  */
ice_set_object_tx_priority(struct ice_port_info * pi,struct ice_sched_node * node,u32 priority,struct netlink_ext_ack * extack)911 static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
912 				      u32 priority, struct netlink_ext_ack *extack)
913 {
914 	int status;
915 
916 	if (priority >= 8) {
917 		NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
918 		return -EINVAL;
919 	}
920 
921 	mutex_lock(&pi->sched_lock);
922 	node->tx_priority = priority;
923 	status = ice_sched_set_node_priority(pi, node, node->tx_priority);
924 	mutex_unlock(&pi->sched_lock);
925 
926 	if (status)
927 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
928 
929 	return status;
930 }
931 
932 /**
933  * ice_set_object_tx_weight - sets node scheduling parameter
934  * @pi: devlink struct instance
935  * @node: node struct instance
936  * @weight: value represeting relative weight for WFQ arbitration
937  * @extack: extended netdev ack structure
938  *
939  * This function sets node weight for WFQ algorithm.
940  */
ice_set_object_tx_weight(struct ice_port_info * pi,struct ice_sched_node * node,u32 weight,struct netlink_ext_ack * extack)941 static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
942 				    u32 weight, struct netlink_ext_ack *extack)
943 {
944 	int status;
945 
946 	if (weight > 200 || weight < 1) {
947 		NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
948 		return -EINVAL;
949 	}
950 
951 	mutex_lock(&pi->sched_lock);
952 	node->tx_weight = weight;
953 	status = ice_sched_set_node_weight(pi, node, node->tx_weight);
954 	mutex_unlock(&pi->sched_lock);
955 
956 	if (status)
957 		NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
958 
959 	return status;
960 }
961 
962 /**
963  * ice_get_pi_from_dev_rate - get port info from devlink_rate
964  * @rate_node: devlink struct instance
965  *
966  * This function returns corresponding port_info struct of devlink_rate
967  */
ice_get_pi_from_dev_rate(struct devlink_rate * rate_node)968 static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
969 {
970 	struct ice_pf *pf = devlink_priv(rate_node->devlink);
971 
972 	return ice_get_main_vsi(pf)->port_info;
973 }
974 
ice_devlink_rate_node_new(struct devlink_rate * rate_node,void ** priv,struct netlink_ext_ack * extack)975 static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
976 				     struct netlink_ext_ack *extack)
977 {
978 	struct ice_sched_node *node;
979 	struct ice_port_info *pi;
980 
981 	pi = ice_get_pi_from_dev_rate(rate_node);
982 
983 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
984 		return -EBUSY;
985 
986 	/* preallocate memory for ice_sched_node */
987 	node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL);
988 	if (!node)
989 		return -ENOMEM;
990 
991 	*priv = node;
992 
993 	return 0;
994 }
995 
ice_devlink_rate_node_del(struct devlink_rate * rate_node,void * priv,struct netlink_ext_ack * extack)996 static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
997 				     struct netlink_ext_ack *extack)
998 {
999 	struct ice_sched_node *node, *tc_node;
1000 	struct ice_port_info *pi;
1001 
1002 	pi = ice_get_pi_from_dev_rate(rate_node);
1003 	tc_node = pi->root->children[0];
1004 	node = priv;
1005 
1006 	if (!rate_node->parent || !node || tc_node == node || !extack)
1007 		return 0;
1008 
1009 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1010 		return -EBUSY;
1011 
1012 	/* can't allow to delete a node with children */
1013 	if (node->num_children)
1014 		return -EINVAL;
1015 
1016 	mutex_lock(&pi->sched_lock);
1017 	ice_free_sched_node(pi, node);
1018 	mutex_unlock(&pi->sched_lock);
1019 
1020 	return 0;
1021 }
1022 
ice_devlink_rate_leaf_tx_max_set(struct devlink_rate * rate_leaf,void * priv,u64 tx_max,struct netlink_ext_ack * extack)1023 static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
1024 					    u64 tx_max, struct netlink_ext_ack *extack)
1025 {
1026 	struct ice_sched_node *node = priv;
1027 
1028 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1029 		return -EBUSY;
1030 
1031 	if (!node)
1032 		return 0;
1033 
1034 	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf),
1035 				     node, tx_max, extack);
1036 }
1037 
ice_devlink_rate_leaf_tx_share_set(struct devlink_rate * rate_leaf,void * priv,u64 tx_share,struct netlink_ext_ack * extack)1038 static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
1039 					      u64 tx_share, struct netlink_ext_ack *extack)
1040 {
1041 	struct ice_sched_node *node = priv;
1042 
1043 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1044 		return -EBUSY;
1045 
1046 	if (!node)
1047 		return 0;
1048 
1049 	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node,
1050 				       tx_share, extack);
1051 }
1052 
ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate * rate_leaf,void * priv,u32 tx_priority,struct netlink_ext_ack * extack)1053 static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
1054 						 u32 tx_priority, struct netlink_ext_ack *extack)
1055 {
1056 	struct ice_sched_node *node = priv;
1057 
1058 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1059 		return -EBUSY;
1060 
1061 	if (!node)
1062 		return 0;
1063 
1064 	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node,
1065 					  tx_priority, extack);
1066 }
1067 
ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate * rate_leaf,void * priv,u32 tx_weight,struct netlink_ext_ack * extack)1068 static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
1069 					       u32 tx_weight, struct netlink_ext_ack *extack)
1070 {
1071 	struct ice_sched_node *node = priv;
1072 
1073 	if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1074 		return -EBUSY;
1075 
1076 	if (!node)
1077 		return 0;
1078 
1079 	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node,
1080 					tx_weight, extack);
1081 }
1082 
ice_devlink_rate_node_tx_max_set(struct devlink_rate * rate_node,void * priv,u64 tx_max,struct netlink_ext_ack * extack)1083 static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
1084 					    u64 tx_max, struct netlink_ext_ack *extack)
1085 {
1086 	struct ice_sched_node *node = priv;
1087 
1088 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1089 		return -EBUSY;
1090 
1091 	if (!node)
1092 		return 0;
1093 
1094 	return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node),
1095 				     node, tx_max, extack);
1096 }
1097 
ice_devlink_rate_node_tx_share_set(struct devlink_rate * rate_node,void * priv,u64 tx_share,struct netlink_ext_ack * extack)1098 static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
1099 					      u64 tx_share, struct netlink_ext_ack *extack)
1100 {
1101 	struct ice_sched_node *node = priv;
1102 
1103 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1104 		return -EBUSY;
1105 
1106 	if (!node)
1107 		return 0;
1108 
1109 	return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node),
1110 				       node, tx_share, extack);
1111 }
1112 
ice_devlink_rate_node_tx_priority_set(struct devlink_rate * rate_node,void * priv,u32 tx_priority,struct netlink_ext_ack * extack)1113 static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
1114 						 u32 tx_priority, struct netlink_ext_ack *extack)
1115 {
1116 	struct ice_sched_node *node = priv;
1117 
1118 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1119 		return -EBUSY;
1120 
1121 	if (!node)
1122 		return 0;
1123 
1124 	return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node),
1125 					  node, tx_priority, extack);
1126 }
1127 
ice_devlink_rate_node_tx_weight_set(struct devlink_rate * rate_node,void * priv,u32 tx_weight,struct netlink_ext_ack * extack)1128 static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
1129 					       u32 tx_weight, struct netlink_ext_ack *extack)
1130 {
1131 	struct ice_sched_node *node = priv;
1132 
1133 	if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1134 		return -EBUSY;
1135 
1136 	if (!node)
1137 		return 0;
1138 
1139 	return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node),
1140 					node, tx_weight, extack);
1141 }
1142 
ice_devlink_set_parent(struct devlink_rate * devlink_rate,struct devlink_rate * parent,void * priv,void * parent_priv,struct netlink_ext_ack * extack)1143 static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
1144 				  struct devlink_rate *parent,
1145 				  void *priv, void *parent_priv,
1146 				  struct netlink_ext_ack *extack)
1147 {
1148 	struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate);
1149 	struct ice_sched_node *tc_node, *node, *parent_node;
1150 	u16 num_nodes_added;
1151 	u32 first_node_teid;
1152 	u32 node_teid;
1153 	int status;
1154 
1155 	tc_node = pi->root->children[0];
1156 	node = priv;
1157 
1158 	if (!extack)
1159 		return 0;
1160 
1161 	if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink)))
1162 		return -EBUSY;
1163 
1164 	if (!parent) {
1165 		if (!node || tc_node == node || node->num_children)
1166 			return -EINVAL;
1167 
1168 		mutex_lock(&pi->sched_lock);
1169 		ice_free_sched_node(pi, node);
1170 		mutex_unlock(&pi->sched_lock);
1171 
1172 		return 0;
1173 	}
1174 
1175 	parent_node = parent_priv;
1176 
1177 	/* if the node doesn't exist, create it */
1178 	if (!node->parent) {
1179 		mutex_lock(&pi->sched_lock);
1180 		status = ice_sched_add_elems(pi, tc_node, parent_node,
1181 					     parent_node->tx_sched_layer + 1,
1182 					     1, &num_nodes_added, &first_node_teid,
1183 					     &node);
1184 		mutex_unlock(&pi->sched_lock);
1185 
1186 		if (status) {
1187 			NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
1188 			return status;
1189 		}
1190 
1191 		if (devlink_rate->tx_share)
1192 			ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack);
1193 		if (devlink_rate->tx_max)
1194 			ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack);
1195 		if (devlink_rate->tx_priority)
1196 			ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack);
1197 		if (devlink_rate->tx_weight)
1198 			ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack);
1199 	} else {
1200 		node_teid = le32_to_cpu(node->info.node_teid);
1201 		mutex_lock(&pi->sched_lock);
1202 		status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid);
1203 		mutex_unlock(&pi->sched_lock);
1204 
1205 		if (status)
1206 			NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
1207 	}
1208 
1209 	return status;
1210 }
1211 
ice_set_min_max_msix(struct ice_pf * pf)1212 static void ice_set_min_max_msix(struct ice_pf *pf)
1213 {
1214 	struct devlink *devlink = priv_to_devlink(pf);
1215 	union devlink_param_value val;
1216 	int err;
1217 
1218 	err = devl_param_driverinit_value_get(devlink,
1219 					      DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MIN,
1220 					      &val);
1221 	if (!err)
1222 		pf->msix.min = val.vu32;
1223 
1224 	err = devl_param_driverinit_value_get(devlink,
1225 					      DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MAX,
1226 					      &val);
1227 	if (!err)
1228 		pf->msix.max = val.vu32;
1229 }
1230 
1231 /**
1232  * ice_devlink_reinit_up - do reinit of the given PF
1233  * @pf: pointer to the PF struct
1234  */
ice_devlink_reinit_up(struct ice_pf * pf)1235 static int ice_devlink_reinit_up(struct ice_pf *pf)
1236 {
1237 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
1238 	struct device *dev = ice_pf_to_dev(pf);
1239 	bool need_dev_deinit = false;
1240 	int err;
1241 
1242 	err = ice_init_hw(&pf->hw);
1243 	if (err) {
1244 		dev_err(dev, "ice_init_hw failed: %d\n", err);
1245 		return err;
1246 	}
1247 
1248 	/* load MSI-X values */
1249 	ice_set_min_max_msix(pf);
1250 
1251 	err = ice_init_dev(pf);
1252 	if (err)
1253 		goto unroll_hw_init;
1254 
1255 	err = ice_init_pf(pf);
1256 	if (err) {
1257 		dev_err(dev, "ice_init_pf failed: %d\n", err);
1258 		goto unroll_dev_init;
1259 	}
1260 
1261 	vsi->flags = ICE_VSI_FLAG_INIT;
1262 
1263 	rtnl_lock();
1264 	err = ice_vsi_cfg(vsi);
1265 	rtnl_unlock();
1266 	if (err)
1267 		goto unroll_pf_init;
1268 
1269 	/* No need to take devl_lock, it's already taken by devlink API */
1270 	err = ice_load(pf);
1271 	if (err)
1272 		goto err_load;
1273 
1274 	return 0;
1275 
1276 err_load:
1277 	rtnl_lock();
1278 	ice_vsi_decfg(vsi);
1279 	rtnl_unlock();
1280 unroll_pf_init:
1281 	ice_deinit_pf(pf);
1282 unroll_dev_init:
1283 	need_dev_deinit = true;
1284 unroll_hw_init:
1285 	ice_deinit_hw(&pf->hw);
1286 	if (need_dev_deinit)
1287 		ice_deinit_dev(pf);
1288 	return err;
1289 }
1290 
1291 /**
1292  * ice_devlink_reload_up - do reload up after reinit
1293  * @devlink: pointer to the devlink instance reloading
1294  * @action: the action requested
1295  * @limit: limits imposed by userspace, such as not resetting
1296  * @actions_performed: on return, indicate what actions actually performed
1297  * @extack: netlink extended ACK structure
1298  */
1299 static int
ice_devlink_reload_up(struct devlink * devlink,enum devlink_reload_action action,enum devlink_reload_limit limit,u32 * actions_performed,struct netlink_ext_ack * extack)1300 ice_devlink_reload_up(struct devlink *devlink,
1301 		      enum devlink_reload_action action,
1302 		      enum devlink_reload_limit limit,
1303 		      u32 *actions_performed,
1304 		      struct netlink_ext_ack *extack)
1305 {
1306 	struct ice_pf *pf = devlink_priv(devlink);
1307 
1308 	switch (action) {
1309 	case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
1310 		*actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT);
1311 		return ice_devlink_reinit_up(pf);
1312 	case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
1313 		*actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
1314 		return ice_devlink_reload_empr_finish(pf, extack);
1315 	default:
1316 		WARN_ON(1);
1317 		return -EOPNOTSUPP;
1318 	}
1319 }
1320 
1321 static const struct devlink_ops ice_devlink_ops = {
1322 	.supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
1323 	.reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) |
1324 			  BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
1325 	.reload_down = ice_devlink_reload_down,
1326 	.reload_up = ice_devlink_reload_up,
1327 	.eswitch_mode_get = ice_eswitch_mode_get,
1328 	.eswitch_mode_set = ice_eswitch_mode_set,
1329 	.info_get = ice_devlink_info_get,
1330 	.flash_update = ice_devlink_flash_update,
1331 
1332 	.rate_node_new = ice_devlink_rate_node_new,
1333 	.rate_node_del = ice_devlink_rate_node_del,
1334 
1335 	.rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
1336 	.rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
1337 	.rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
1338 	.rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
1339 
1340 	.rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
1341 	.rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
1342 	.rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
1343 	.rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
1344 
1345 	.rate_leaf_parent_set = ice_devlink_set_parent,
1346 	.rate_node_parent_set = ice_devlink_set_parent,
1347 
1348 	.port_new = ice_devlink_port_new,
1349 };
1350 
1351 static const struct devlink_ops ice_sf_devlink_ops;
1352 
1353 static int
ice_devlink_enable_roce_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1354 ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
1355 			    struct devlink_param_gset_ctx *ctx,
1356 			    struct netlink_ext_ack *extack)
1357 {
1358 	struct ice_pf *pf = devlink_priv(devlink);
1359 	struct iidc_rdma_core_dev_info *cdev;
1360 
1361 	cdev = pf->cdev_info;
1362 	if (!cdev)
1363 		return -ENODEV;
1364 
1365 	ctx->val.vbool = !!(cdev->rdma_protocol & IIDC_RDMA_PROTOCOL_ROCEV2);
1366 
1367 	return 0;
1368 }
1369 
ice_devlink_enable_roce_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1370 static int ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
1371 				       struct devlink_param_gset_ctx *ctx,
1372 				       struct netlink_ext_ack *extack)
1373 {
1374 	struct ice_pf *pf = devlink_priv(devlink);
1375 	struct iidc_rdma_core_dev_info *cdev;
1376 	bool roce_ena = ctx->val.vbool;
1377 	int ret;
1378 
1379 	cdev = pf->cdev_info;
1380 	if (!cdev)
1381 		return -ENODEV;
1382 
1383 	if (!roce_ena) {
1384 		ice_unplug_aux_dev(pf);
1385 		cdev->rdma_protocol &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1386 		return 0;
1387 	}
1388 
1389 	cdev->rdma_protocol |= IIDC_RDMA_PROTOCOL_ROCEV2;
1390 	ret = ice_plug_aux_dev(pf);
1391 	if (ret)
1392 		cdev->rdma_protocol &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1393 
1394 	return ret;
1395 }
1396 
1397 static int
ice_devlink_enable_roce_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1398 ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
1399 				 union devlink_param_value val,
1400 				 struct netlink_ext_ack *extack)
1401 {
1402 	struct ice_pf *pf = devlink_priv(devlink);
1403 	struct iidc_rdma_core_dev_info *cdev;
1404 
1405 	cdev = pf->cdev_info;
1406 	if (!cdev)
1407 		return -ENODEV;
1408 
1409 	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1410 		return -EOPNOTSUPP;
1411 
1412 	if (cdev->rdma_protocol & IIDC_RDMA_PROTOCOL_IWARP) {
1413 		NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1414 		return -EOPNOTSUPP;
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 static int
ice_devlink_enable_iw_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1421 ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
1422 			  struct devlink_param_gset_ctx *ctx,
1423 			  struct netlink_ext_ack *extack)
1424 {
1425 	struct ice_pf *pf = devlink_priv(devlink);
1426 	struct iidc_rdma_core_dev_info *cdev;
1427 
1428 	cdev = pf->cdev_info;
1429 	if (!cdev)
1430 		return -ENODEV;
1431 
1432 	ctx->val.vbool = !!(cdev->rdma_protocol & IIDC_RDMA_PROTOCOL_IWARP);
1433 
1434 	return 0;
1435 }
1436 
ice_devlink_enable_iw_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1437 static int ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
1438 				     struct devlink_param_gset_ctx *ctx,
1439 				     struct netlink_ext_ack *extack)
1440 {
1441 	struct ice_pf *pf = devlink_priv(devlink);
1442 	struct iidc_rdma_core_dev_info *cdev;
1443 	bool iw_ena = ctx->val.vbool;
1444 	int ret;
1445 
1446 	cdev = pf->cdev_info;
1447 	if (!cdev)
1448 		return -ENODEV;
1449 
1450 	if (!iw_ena) {
1451 		ice_unplug_aux_dev(pf);
1452 		cdev->rdma_protocol &= ~IIDC_RDMA_PROTOCOL_IWARP;
1453 		return 0;
1454 	}
1455 
1456 	cdev->rdma_protocol |= IIDC_RDMA_PROTOCOL_IWARP;
1457 	ret = ice_plug_aux_dev(pf);
1458 	if (ret)
1459 		cdev->rdma_protocol &= ~IIDC_RDMA_PROTOCOL_IWARP;
1460 
1461 	return ret;
1462 }
1463 
1464 static int
ice_devlink_enable_iw_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1465 ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
1466 			       union devlink_param_value val,
1467 			       struct netlink_ext_ack *extack)
1468 {
1469 	struct ice_pf *pf = devlink_priv(devlink);
1470 
1471 	if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1472 		return -EOPNOTSUPP;
1473 
1474 	if (pf->cdev_info->rdma_protocol & IIDC_RDMA_PROTOCOL_ROCEV2) {
1475 		NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1476 		return -EOPNOTSUPP;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 #define DEVLINK_LOCAL_FWD_DISABLED_STR "disabled"
1483 #define DEVLINK_LOCAL_FWD_ENABLED_STR "enabled"
1484 #define DEVLINK_LOCAL_FWD_PRIORITIZED_STR "prioritized"
1485 
1486 /**
1487  * ice_devlink_local_fwd_mode_to_str - Get string for local_fwd mode.
1488  * @mode: local forwarding for mode used in port_info struct.
1489  *
1490  * Return: Mode respective string or "Invalid".
1491  */
1492 static const char *
ice_devlink_local_fwd_mode_to_str(enum ice_local_fwd_mode mode)1493 ice_devlink_local_fwd_mode_to_str(enum ice_local_fwd_mode mode)
1494 {
1495 	switch (mode) {
1496 	case ICE_LOCAL_FWD_MODE_ENABLED:
1497 		return DEVLINK_LOCAL_FWD_ENABLED_STR;
1498 	case ICE_LOCAL_FWD_MODE_PRIORITIZED:
1499 		return DEVLINK_LOCAL_FWD_PRIORITIZED_STR;
1500 	case ICE_LOCAL_FWD_MODE_DISABLED:
1501 		return DEVLINK_LOCAL_FWD_DISABLED_STR;
1502 	}
1503 
1504 	return "Invalid";
1505 }
1506 
1507 /**
1508  * ice_devlink_local_fwd_str_to_mode - Get local_fwd mode from string name.
1509  * @mode_str: local forwarding mode string.
1510  *
1511  * Return: Mode value or negative number if invalid.
1512  */
ice_devlink_local_fwd_str_to_mode(const char * mode_str)1513 static int ice_devlink_local_fwd_str_to_mode(const char *mode_str)
1514 {
1515 	if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_ENABLED_STR))
1516 		return ICE_LOCAL_FWD_MODE_ENABLED;
1517 	else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_PRIORITIZED_STR))
1518 		return ICE_LOCAL_FWD_MODE_PRIORITIZED;
1519 	else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_DISABLED_STR))
1520 		return ICE_LOCAL_FWD_MODE_DISABLED;
1521 
1522 	return -EINVAL;
1523 }
1524 
1525 /**
1526  * ice_devlink_local_fwd_get - Get local_fwd parameter.
1527  * @devlink: Pointer to the devlink instance.
1528  * @id: The parameter ID to set.
1529  * @ctx: Context to store the parameter value.
1530  * @extack: netlink extended ACK structure
1531  *
1532  * Return: Zero.
1533  */
ice_devlink_local_fwd_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1534 static int ice_devlink_local_fwd_get(struct devlink *devlink, u32 id,
1535 				     struct devlink_param_gset_ctx *ctx,
1536 				     struct netlink_ext_ack *extack)
1537 {
1538 	struct ice_pf *pf = devlink_priv(devlink);
1539 	struct ice_port_info *pi;
1540 	const char *mode_str;
1541 
1542 	pi = pf->hw.port_info;
1543 	mode_str = ice_devlink_local_fwd_mode_to_str(pi->local_fwd_mode);
1544 	snprintf(ctx->val.vstr, sizeof(ctx->val.vstr), "%s", mode_str);
1545 
1546 	return 0;
1547 }
1548 
1549 /**
1550  * ice_devlink_local_fwd_set - Set local_fwd parameter.
1551  * @devlink: Pointer to the devlink instance.
1552  * @id: The parameter ID to set.
1553  * @ctx: Context to get the parameter value.
1554  * @extack: Netlink extended ACK structure.
1555  *
1556  * Return: Zero.
1557  */
ice_devlink_local_fwd_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1558 static int ice_devlink_local_fwd_set(struct devlink *devlink, u32 id,
1559 				     struct devlink_param_gset_ctx *ctx,
1560 				     struct netlink_ext_ack *extack)
1561 {
1562 	int new_local_fwd_mode = ice_devlink_local_fwd_str_to_mode(ctx->val.vstr);
1563 	struct ice_pf *pf = devlink_priv(devlink);
1564 	struct device *dev = ice_pf_to_dev(pf);
1565 	struct ice_port_info *pi;
1566 
1567 	pi = pf->hw.port_info;
1568 	if (pi->local_fwd_mode != new_local_fwd_mode) {
1569 		pi->local_fwd_mode = new_local_fwd_mode;
1570 		dev_info(dev, "Setting local_fwd to %s\n", ctx->val.vstr);
1571 		ice_schedule_reset(pf, ICE_RESET_CORER);
1572 	}
1573 
1574 	return 0;
1575 }
1576 
1577 /**
1578  * ice_devlink_local_fwd_validate - Validate passed local_fwd parameter value.
1579  * @devlink: Unused pointer to devlink instance.
1580  * @id: The parameter ID to validate.
1581  * @val: Value to validate.
1582  * @extack: Netlink extended ACK structure.
1583  *
1584  * Supported values are:
1585  * "enabled" - local_fwd is enabled, "disabled" - local_fwd is disabled
1586  * "prioritized" - local_fwd traffic is prioritized in scheduling.
1587  *
1588  * Return: Zero when passed parameter value is supported. Negative value on
1589  * error.
1590  */
ice_devlink_local_fwd_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1591 static int ice_devlink_local_fwd_validate(struct devlink *devlink, u32 id,
1592 					  union devlink_param_value val,
1593 					  struct netlink_ext_ack *extack)
1594 {
1595 	if (ice_devlink_local_fwd_str_to_mode(val.vstr) < 0) {
1596 		NL_SET_ERR_MSG_MOD(extack, "Error: Requested value is not supported.");
1597 		return -EINVAL;
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 static int
ice_devlink_msix_max_pf_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1604 ice_devlink_msix_max_pf_validate(struct devlink *devlink, u32 id,
1605 				 union devlink_param_value val,
1606 				 struct netlink_ext_ack *extack)
1607 {
1608 	struct ice_pf *pf = devlink_priv(devlink);
1609 
1610 	if (val.vu32 > pf->hw.func_caps.common_cap.num_msix_vectors)
1611 		return -EINVAL;
1612 
1613 	return 0;
1614 }
1615 
1616 static int
ice_devlink_msix_min_pf_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1617 ice_devlink_msix_min_pf_validate(struct devlink *devlink, u32 id,
1618 				 union devlink_param_value val,
1619 				 struct netlink_ext_ack *extack)
1620 {
1621 	if (val.vu32 < ICE_MIN_MSIX)
1622 		return -EINVAL;
1623 
1624 	return 0;
1625 }
1626 
ice_devlink_enable_rdma_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1627 static int ice_devlink_enable_rdma_validate(struct devlink *devlink, u32 id,
1628 					    union devlink_param_value val,
1629 					    struct netlink_ext_ack *extack)
1630 {
1631 	struct ice_pf *pf = devlink_priv(devlink);
1632 	bool new_state = val.vbool;
1633 
1634 	if (new_state && !test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1635 		return -EOPNOTSUPP;
1636 
1637 	return 0;
1638 }
1639 
1640 enum ice_param_id {
1641 	ICE_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX,
1642 	ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1643 	ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1644 };
1645 
1646 static const struct devlink_param ice_dvl_rdma_params[] = {
1647 	DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1648 			      ice_devlink_enable_roce_get,
1649 			      ice_devlink_enable_roce_set,
1650 			      ice_devlink_enable_roce_validate),
1651 	DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1652 			      ice_devlink_enable_iw_get,
1653 			      ice_devlink_enable_iw_set,
1654 			      ice_devlink_enable_iw_validate),
1655 	DEVLINK_PARAM_GENERIC(ENABLE_RDMA, BIT(DEVLINK_PARAM_CMODE_DRIVERINIT),
1656 			      NULL, NULL, ice_devlink_enable_rdma_validate),
1657 };
1658 
1659 static const struct devlink_param ice_dvl_msix_params[] = {
1660 	DEVLINK_PARAM_GENERIC(MSIX_VEC_PER_PF_MAX,
1661 			      BIT(DEVLINK_PARAM_CMODE_DRIVERINIT),
1662 			      NULL, NULL, ice_devlink_msix_max_pf_validate),
1663 	DEVLINK_PARAM_GENERIC(MSIX_VEC_PER_PF_MIN,
1664 			      BIT(DEVLINK_PARAM_CMODE_DRIVERINIT),
1665 			      NULL, NULL, ice_devlink_msix_min_pf_validate),
1666 };
1667 
1668 static const struct devlink_param ice_dvl_sched_params[] = {
1669 	DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1670 			     "tx_scheduling_layers",
1671 			     DEVLINK_PARAM_TYPE_U8,
1672 			     BIT(DEVLINK_PARAM_CMODE_PERMANENT),
1673 			     ice_devlink_tx_sched_layers_get,
1674 			     ice_devlink_tx_sched_layers_set,
1675 			     ice_devlink_tx_sched_layers_validate),
1676 	DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1677 			     "local_forwarding", DEVLINK_PARAM_TYPE_STRING,
1678 			     BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1679 			     ice_devlink_local_fwd_get,
1680 			     ice_devlink_local_fwd_set,
1681 			     ice_devlink_local_fwd_validate),
1682 };
1683 
ice_devlink_free(void * devlink_ptr)1684 static void ice_devlink_free(void *devlink_ptr)
1685 {
1686 	devlink_free((struct devlink *)devlink_ptr);
1687 }
1688 
1689 /**
1690  * ice_allocate_pf - Allocate devlink and return PF structure pointer
1691  * @dev: the device to allocate for
1692  *
1693  * Allocate a devlink instance for this device and return the private area as
1694  * the PF structure. The devlink memory is kept track of through devres by
1695  * adding an action to remove it when unwinding.
1696  */
ice_allocate_pf(struct device * dev)1697 struct ice_pf *ice_allocate_pf(struct device *dev)
1698 {
1699 	struct devlink *devlink;
1700 
1701 	devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
1702 	if (!devlink)
1703 		return NULL;
1704 
1705 	/* Add an action to teardown the devlink when unwinding the driver */
1706 	if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
1707 		return NULL;
1708 
1709 	return devlink_priv(devlink);
1710 }
1711 
1712 /**
1713  * ice_allocate_sf - Allocate devlink and return SF structure pointer
1714  * @dev: the device to allocate for
1715  * @pf: pointer to the PF structure
1716  *
1717  * Allocate a devlink instance for SF.
1718  *
1719  * Return: ice_sf_priv pointer to allocated memory or ERR_PTR in case of error
1720  */
ice_allocate_sf(struct device * dev,struct ice_pf * pf)1721 struct ice_sf_priv *ice_allocate_sf(struct device *dev, struct ice_pf *pf)
1722 {
1723 	struct devlink *devlink;
1724 	int err;
1725 
1726 	devlink = devlink_alloc(&ice_sf_devlink_ops, sizeof(struct ice_sf_priv),
1727 				dev);
1728 	if (!devlink)
1729 		return ERR_PTR(-ENOMEM);
1730 
1731 	err = devl_nested_devlink_set(priv_to_devlink(pf), devlink);
1732 	if (err) {
1733 		devlink_free(devlink);
1734 		return ERR_PTR(err);
1735 	}
1736 
1737 	return devlink_priv(devlink);
1738 }
1739 
1740 /**
1741  * ice_devlink_register - Register devlink interface for this PF
1742  * @pf: the PF to register the devlink for.
1743  *
1744  * Register the devlink instance associated with this physical function.
1745  *
1746  * Return: zero on success or an error code on failure.
1747  */
ice_devlink_register(struct ice_pf * pf)1748 void ice_devlink_register(struct ice_pf *pf)
1749 {
1750 	struct devlink *devlink = priv_to_devlink(pf);
1751 
1752 	devl_register(devlink);
1753 }
1754 
1755 /**
1756  * ice_devlink_unregister - Unregister devlink resources for this PF.
1757  * @pf: the PF structure to cleanup
1758  *
1759  * Releases resources used by devlink and cleans up associated memory.
1760  */
ice_devlink_unregister(struct ice_pf * pf)1761 void ice_devlink_unregister(struct ice_pf *pf)
1762 {
1763 	devl_unregister(priv_to_devlink(pf));
1764 }
1765 
ice_devlink_register_params(struct ice_pf * pf)1766 int ice_devlink_register_params(struct ice_pf *pf)
1767 {
1768 	struct devlink *devlink = priv_to_devlink(pf);
1769 	union devlink_param_value value;
1770 	struct ice_hw *hw = &pf->hw;
1771 	int status;
1772 
1773 	status = devl_params_register(devlink, ice_dvl_rdma_params,
1774 				      ARRAY_SIZE(ice_dvl_rdma_params));
1775 	if (status)
1776 		return status;
1777 
1778 	status = devl_params_register(devlink, ice_dvl_msix_params,
1779 				      ARRAY_SIZE(ice_dvl_msix_params));
1780 	if (status)
1781 		goto unregister_rdma_params;
1782 
1783 	if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1784 		status = devl_params_register(devlink, ice_dvl_sched_params,
1785 					      ARRAY_SIZE(ice_dvl_sched_params));
1786 	if (status)
1787 		goto unregister_msix_params;
1788 
1789 	value.vu32 = pf->msix.max;
1790 	devl_param_driverinit_value_set(devlink,
1791 					DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MAX,
1792 					value);
1793 	value.vu32 = pf->msix.min;
1794 	devl_param_driverinit_value_set(devlink,
1795 					DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MIN,
1796 					value);
1797 
1798 	value.vbool = test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
1799 	devl_param_driverinit_value_set(devlink,
1800 					DEVLINK_PARAM_GENERIC_ID_ENABLE_RDMA,
1801 					value);
1802 
1803 	return 0;
1804 
1805 unregister_msix_params:
1806 	devl_params_unregister(devlink, ice_dvl_msix_params,
1807 			       ARRAY_SIZE(ice_dvl_msix_params));
1808 unregister_rdma_params:
1809 	devl_params_unregister(devlink, ice_dvl_rdma_params,
1810 			       ARRAY_SIZE(ice_dvl_rdma_params));
1811 	return status;
1812 }
1813 
ice_devlink_unregister_params(struct ice_pf * pf)1814 void ice_devlink_unregister_params(struct ice_pf *pf)
1815 {
1816 	struct devlink *devlink = priv_to_devlink(pf);
1817 	struct ice_hw *hw = &pf->hw;
1818 
1819 	devl_params_unregister(devlink, ice_dvl_rdma_params,
1820 			       ARRAY_SIZE(ice_dvl_rdma_params));
1821 	devl_params_unregister(devlink, ice_dvl_msix_params,
1822 			       ARRAY_SIZE(ice_dvl_msix_params));
1823 
1824 	if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1825 		devl_params_unregister(devlink, ice_dvl_sched_params,
1826 				       ARRAY_SIZE(ice_dvl_sched_params));
1827 }
1828 
1829 #define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1830 
1831 static const struct devlink_region_ops ice_nvm_region_ops;
1832 static const struct devlink_region_ops ice_sram_region_ops;
1833 
1834 /**
1835  * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1836  * @devlink: the devlink instance
1837  * @ops: the devlink region to snapshot
1838  * @extack: extended ACK response structure
1839  * @data: on exit points to snapshot data buffer
1840  *
1841  * This function is called in response to a DEVLINK_CMD_REGION_NEW for either
1842  * the nvm-flash or shadow-ram region.
1843  *
1844  * It captures a snapshot of the NVM or Shadow RAM flash contents. This
1845  * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
1846  * interface.
1847  *
1848  * @returns zero on success, and updates the data pointer. Returns a non-zero
1849  * error code on failure.
1850  */
ice_devlink_nvm_snapshot(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u8 ** data)1851 static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1852 				    const struct devlink_region_ops *ops,
1853 				    struct netlink_ext_ack *extack, u8 **data)
1854 {
1855 	struct ice_pf *pf = devlink_priv(devlink);
1856 	struct device *dev = ice_pf_to_dev(pf);
1857 	struct ice_hw *hw = &pf->hw;
1858 	bool read_shadow_ram;
1859 	u8 *nvm_data, *tmp, i;
1860 	u32 nvm_size, left;
1861 	s8 num_blks;
1862 	int status;
1863 
1864 	if (ops == &ice_nvm_region_ops) {
1865 		read_shadow_ram = false;
1866 		nvm_size = hw->flash.flash_size;
1867 	} else if (ops == &ice_sram_region_ops) {
1868 		read_shadow_ram = true;
1869 		nvm_size = hw->flash.sr_words * 2u;
1870 	} else {
1871 		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1872 		return -EOPNOTSUPP;
1873 	}
1874 
1875 	nvm_data = vzalloc(nvm_size);
1876 	if (!nvm_data)
1877 		return -ENOMEM;
1878 
1879 	num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1880 	tmp = nvm_data;
1881 	left = nvm_size;
1882 
1883 	/* Some systems take longer to read the NVM than others which causes the
1884 	 * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1885 	 * this by breaking the reads of the NVM into smaller chunks that will
1886 	 * probably not take as long. This has some overhead since we are
1887 	 * increasing the number of AQ commands, but it should always work
1888 	 */
1889 	for (i = 0; i < num_blks; i++) {
1890 		u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1891 
1892 		status = ice_acquire_nvm(hw, ICE_RES_READ);
1893 		if (status) {
1894 			dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1895 				status, hw->adminq.sq_last_status);
1896 			NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1897 			vfree(nvm_data);
1898 			return -EIO;
1899 		}
1900 
1901 		status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
1902 					   &read_sz, tmp, read_shadow_ram);
1903 		if (status) {
1904 			dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1905 				read_sz, status, hw->adminq.sq_last_status);
1906 			NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1907 			ice_release_nvm(hw);
1908 			vfree(nvm_data);
1909 			return -EIO;
1910 		}
1911 		ice_release_nvm(hw);
1912 
1913 		tmp += read_sz;
1914 		left -= read_sz;
1915 	}
1916 
1917 	*data = nvm_data;
1918 
1919 	return 0;
1920 }
1921 
1922 /**
1923  * ice_devlink_nvm_read - Read a portion of NVM flash contents
1924  * @devlink: the devlink instance
1925  * @ops: the devlink region to snapshot
1926  * @extack: extended ACK response structure
1927  * @offset: the offset to start at
1928  * @size: the amount to read
1929  * @data: the data buffer to read into
1930  *
1931  * This function is called in response to DEVLINK_CMD_REGION_READ to directly
1932  * read a section of the NVM contents.
1933  *
1934  * It reads from either the nvm-flash or shadow-ram region contents.
1935  *
1936  * @returns zero on success, and updates the data pointer. Returns a non-zero
1937  * error code on failure.
1938  */
ice_devlink_nvm_read(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u64 offset,u32 size,u8 * data)1939 static int ice_devlink_nvm_read(struct devlink *devlink,
1940 				const struct devlink_region_ops *ops,
1941 				struct netlink_ext_ack *extack,
1942 				u64 offset, u32 size, u8 *data)
1943 {
1944 	struct ice_pf *pf = devlink_priv(devlink);
1945 	struct device *dev = ice_pf_to_dev(pf);
1946 	struct ice_hw *hw = &pf->hw;
1947 	bool read_shadow_ram;
1948 	u64 nvm_size;
1949 	int status;
1950 
1951 	if (ops == &ice_nvm_region_ops) {
1952 		read_shadow_ram = false;
1953 		nvm_size = hw->flash.flash_size;
1954 	} else if (ops == &ice_sram_region_ops) {
1955 		read_shadow_ram = true;
1956 		nvm_size = hw->flash.sr_words * 2u;
1957 	} else {
1958 		NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1959 		return -EOPNOTSUPP;
1960 	}
1961 
1962 	if (offset + size >= nvm_size) {
1963 		NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
1964 		return -ERANGE;
1965 	}
1966 
1967 	status = ice_acquire_nvm(hw, ICE_RES_READ);
1968 	if (status) {
1969 		dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1970 			status, hw->adminq.sq_last_status);
1971 		NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1972 		return -EIO;
1973 	}
1974 
1975 	status = ice_read_flat_nvm(hw, (u32)offset, &size, data,
1976 				   read_shadow_ram);
1977 	if (status) {
1978 		dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1979 			size, status, hw->adminq.sq_last_status);
1980 		NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1981 		ice_release_nvm(hw);
1982 		return -EIO;
1983 	}
1984 	ice_release_nvm(hw);
1985 
1986 	return 0;
1987 }
1988 
1989 /**
1990  * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1991  * @devlink: the devlink instance
1992  * @ops: the devlink region being snapshotted
1993  * @extack: extended ACK response structure
1994  * @data: on exit points to snapshot data buffer
1995  *
1996  * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1997  * the device-caps devlink region. It captures a snapshot of the device
1998  * capabilities reported by firmware.
1999  *
2000  * @returns zero on success, and updates the data pointer. Returns a non-zero
2001  * error code on failure.
2002  */
2003 static int
ice_devlink_devcaps_snapshot(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u8 ** data)2004 ice_devlink_devcaps_snapshot(struct devlink *devlink,
2005 			     const struct devlink_region_ops *ops,
2006 			     struct netlink_ext_ack *extack, u8 **data)
2007 {
2008 	struct ice_pf *pf = devlink_priv(devlink);
2009 	struct device *dev = ice_pf_to_dev(pf);
2010 	struct ice_hw *hw = &pf->hw;
2011 	void *devcaps;
2012 	int status;
2013 
2014 	devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
2015 	if (!devcaps)
2016 		return -ENOMEM;
2017 
2018 	status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
2019 				  ice_aqc_opc_list_dev_caps, NULL);
2020 	if (status) {
2021 		dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
2022 			status, hw->adminq.sq_last_status);
2023 		NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
2024 		vfree(devcaps);
2025 		return status;
2026 	}
2027 
2028 	*data = (u8 *)devcaps;
2029 
2030 	return 0;
2031 }
2032 
2033 static const struct devlink_region_ops ice_nvm_region_ops = {
2034 	.name = "nvm-flash",
2035 	.destructor = vfree,
2036 	.snapshot = ice_devlink_nvm_snapshot,
2037 	.read = ice_devlink_nvm_read,
2038 };
2039 
2040 static const struct devlink_region_ops ice_sram_region_ops = {
2041 	.name = "shadow-ram",
2042 	.destructor = vfree,
2043 	.snapshot = ice_devlink_nvm_snapshot,
2044 	.read = ice_devlink_nvm_read,
2045 };
2046 
2047 static const struct devlink_region_ops ice_devcaps_region_ops = {
2048 	.name = "device-caps",
2049 	.destructor = vfree,
2050 	.snapshot = ice_devlink_devcaps_snapshot,
2051 };
2052 
2053 /**
2054  * ice_devlink_init_regions - Initialize devlink regions
2055  * @pf: the PF device structure
2056  *
2057  * Create devlink regions used to enable access to dump the contents of the
2058  * flash memory on the device.
2059  */
ice_devlink_init_regions(struct ice_pf * pf)2060 void ice_devlink_init_regions(struct ice_pf *pf)
2061 {
2062 	struct devlink *devlink = priv_to_devlink(pf);
2063 	struct device *dev = ice_pf_to_dev(pf);
2064 	u64 nvm_size, sram_size;
2065 
2066 	nvm_size = pf->hw.flash.flash_size;
2067 	pf->nvm_region = devl_region_create(devlink, &ice_nvm_region_ops, 1,
2068 					    nvm_size);
2069 	if (IS_ERR(pf->nvm_region)) {
2070 		dev_err(dev, "failed to create NVM devlink region, err %ld\n",
2071 			PTR_ERR(pf->nvm_region));
2072 		pf->nvm_region = NULL;
2073 	}
2074 
2075 	sram_size = pf->hw.flash.sr_words * 2u;
2076 	pf->sram_region = devl_region_create(devlink, &ice_sram_region_ops,
2077 					     1, sram_size);
2078 	if (IS_ERR(pf->sram_region)) {
2079 		dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
2080 			PTR_ERR(pf->sram_region));
2081 		pf->sram_region = NULL;
2082 	}
2083 
2084 	pf->devcaps_region = devl_region_create(devlink,
2085 						&ice_devcaps_region_ops, 10,
2086 						ICE_AQ_MAX_BUF_LEN);
2087 	if (IS_ERR(pf->devcaps_region)) {
2088 		dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
2089 			PTR_ERR(pf->devcaps_region));
2090 		pf->devcaps_region = NULL;
2091 	}
2092 }
2093 
2094 /**
2095  * ice_devlink_destroy_regions - Destroy devlink regions
2096  * @pf: the PF device structure
2097  *
2098  * Remove previously created regions for this PF.
2099  */
ice_devlink_destroy_regions(struct ice_pf * pf)2100 void ice_devlink_destroy_regions(struct ice_pf *pf)
2101 {
2102 	if (pf->nvm_region)
2103 		devl_region_destroy(pf->nvm_region);
2104 
2105 	if (pf->sram_region)
2106 		devl_region_destroy(pf->sram_region);
2107 
2108 	if (pf->devcaps_region)
2109 		devl_region_destroy(pf->devcaps_region);
2110 }
2111