1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation. */
3
4 #include <linux/vmalloc.h>
5
6 #include "ice.h"
7 #include "ice_lib.h"
8 #include "devlink.h"
9 #include "port.h"
10 #include "ice_eswitch.h"
11 #include "ice_fw_update.h"
12 #include "ice_dcb_lib.h"
13 #include "ice_sf_eth.h"
14
15 /* context for devlink info version reporting */
16 struct ice_info_ctx {
17 char buf[128];
18 struct ice_orom_info pending_orom;
19 struct ice_nvm_info pending_nvm;
20 struct ice_netlist_info pending_netlist;
21 struct ice_hw_dev_caps dev_caps;
22 };
23
24 /* The following functions are used to format specific strings for various
25 * devlink info versions. The ctx parameter is used to provide the storage
26 * buffer, as well as any ancillary information calculated when the info
27 * request was made.
28 *
29 * If a version does not exist, for example when attempting to get the
30 * inactive version of flash when there is no pending update, the function
31 * should leave the buffer in the ctx structure empty.
32 */
33
ice_info_get_dsn(struct ice_pf * pf,struct ice_info_ctx * ctx)34 static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
35 {
36 u8 dsn[8];
37
38 /* Copy the DSN into an array in Big Endian format */
39 put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
40
41 snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
42 }
43
ice_info_pba(struct ice_pf * pf,struct ice_info_ctx * ctx)44 static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
45 {
46 struct ice_hw *hw = &pf->hw;
47 int status;
48
49 status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
50 if (status)
51 /* We failed to locate the PBA, so just skip this entry */
52 dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
53 status);
54 }
55
ice_info_fw_mgmt(struct ice_pf * pf,struct ice_info_ctx * ctx)56 static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
57 {
58 struct ice_hw *hw = &pf->hw;
59
60 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
61 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
62 }
63
ice_info_fw_api(struct ice_pf * pf,struct ice_info_ctx * ctx)64 static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
65 {
66 struct ice_hw *hw = &pf->hw;
67
68 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
69 hw->api_min_ver, hw->api_patch);
70 }
71
ice_info_fw_build(struct ice_pf * pf,struct ice_info_ctx * ctx)72 static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
73 {
74 struct ice_hw *hw = &pf->hw;
75
76 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
77 }
78
ice_info_orom_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)79 static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
80 {
81 struct ice_orom_info *orom = &pf->hw.flash.orom;
82
83 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
84 orom->major, orom->build, orom->patch);
85 }
86
87 static void
ice_info_pending_orom_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)88 ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
89 struct ice_info_ctx *ctx)
90 {
91 struct ice_orom_info *orom = &ctx->pending_orom;
92
93 if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
94 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
95 orom->major, orom->build, orom->patch);
96 }
97
ice_info_nvm_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)98 static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
99 {
100 struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
101
102 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
103 }
104
105 static void
ice_info_pending_nvm_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)106 ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
107 struct ice_info_ctx *ctx)
108 {
109 struct ice_nvm_info *nvm = &ctx->pending_nvm;
110
111 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
112 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
113 nvm->major, nvm->minor);
114 }
115
ice_info_eetrack(struct ice_pf * pf,struct ice_info_ctx * ctx)116 static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
117 {
118 struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
119
120 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
121 }
122
123 static void
ice_info_pending_eetrack(struct ice_pf * pf,struct ice_info_ctx * ctx)124 ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
125 {
126 struct ice_nvm_info *nvm = &ctx->pending_nvm;
127
128 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
129 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
130 }
131
ice_info_ddp_pkg_name(struct ice_pf * pf,struct ice_info_ctx * ctx)132 static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
133 {
134 struct ice_hw *hw = &pf->hw;
135
136 snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
137 }
138
139 static void
ice_info_ddp_pkg_version(struct ice_pf * pf,struct ice_info_ctx * ctx)140 ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
141 {
142 struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
143
144 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
145 pkg->major, pkg->minor, pkg->update, pkg->draft);
146 }
147
148 static void
ice_info_ddp_pkg_bundle_id(struct ice_pf * pf,struct ice_info_ctx * ctx)149 ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
150 {
151 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
152 }
153
ice_info_netlist_ver(struct ice_pf * pf,struct ice_info_ctx * ctx)154 static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
155 {
156 struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
157
158 /* The netlist version fields are BCD formatted */
159 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
160 netlist->major, netlist->minor,
161 netlist->type >> 16, netlist->type & 0xFFFF,
162 netlist->rev, netlist->cust_ver);
163 }
164
ice_info_netlist_build(struct ice_pf * pf,struct ice_info_ctx * ctx)165 static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
166 {
167 struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
168
169 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
170 }
171
172 static void
ice_info_pending_netlist_ver(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)173 ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
174 struct ice_info_ctx *ctx)
175 {
176 struct ice_netlist_info *netlist = &ctx->pending_netlist;
177
178 /* The netlist version fields are BCD formatted */
179 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
180 snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
181 netlist->major, netlist->minor,
182 netlist->type >> 16, netlist->type & 0xFFFF,
183 netlist->rev, netlist->cust_ver);
184 }
185
186 static void
ice_info_pending_netlist_build(struct ice_pf __always_unused * pf,struct ice_info_ctx * ctx)187 ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
188 struct ice_info_ctx *ctx)
189 {
190 struct ice_netlist_info *netlist = &ctx->pending_netlist;
191
192 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
193 snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
194 }
195
ice_info_cgu_fw_build(struct ice_pf * pf,struct ice_info_ctx * ctx)196 static void ice_info_cgu_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
197 {
198 u32 id, cfg_ver, fw_ver;
199
200 if (!ice_is_feature_supported(pf, ICE_F_CGU))
201 return;
202 if (ice_aq_get_cgu_info(&pf->hw, &id, &cfg_ver, &fw_ver))
203 return;
204 snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", id, cfg_ver, fw_ver);
205 }
206
ice_info_cgu_id(struct ice_pf * pf,struct ice_info_ctx * ctx)207 static void ice_info_cgu_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
208 {
209 if (!ice_is_feature_supported(pf, ICE_F_CGU))
210 return;
211 snprintf(ctx->buf, sizeof(ctx->buf), "%u", pf->hw.cgu_part_number);
212 }
213
214 #define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
215 #define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
216 #define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
217
218 /* The combined() macro inserts both the running entry as well as a stored
219 * entry. The running entry will always report the version from the active
220 * handler. The stored entry will first try the pending handler, and fallback
221 * to the active handler if the pending function does not report a version.
222 * The pending handler should check the status of a pending update for the
223 * relevant flash component. It should only fill in the buffer in the case
224 * where a valid pending version is available. This ensures that the related
225 * stored and running versions remain in sync, and that stored versions are
226 * correctly reported as expected.
227 */
228 #define combined(key, active, pending) \
229 running(key, active), \
230 stored(key, pending, active)
231
232 enum ice_version_type {
233 ICE_VERSION_FIXED,
234 ICE_VERSION_RUNNING,
235 ICE_VERSION_STORED,
236 };
237
238 static const struct ice_devlink_version {
239 enum ice_version_type type;
240 const char *key;
241 void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
242 void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
243 } ice_devlink_versions[] = {
244 fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
245 running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
246 running("fw.mgmt.api", ice_info_fw_api),
247 running("fw.mgmt.build", ice_info_fw_build),
248 combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
249 combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
250 combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
251 running("fw.app.name", ice_info_ddp_pkg_name),
252 running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
253 running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
254 combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
255 combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
256 fixed("cgu.id", ice_info_cgu_id),
257 running("fw.cgu", ice_info_cgu_fw_build),
258 };
259
260 /**
261 * ice_devlink_info_get - .info_get devlink handler
262 * @devlink: devlink instance structure
263 * @req: the devlink info request
264 * @extack: extended netdev ack structure
265 *
266 * Callback for the devlink .info_get operation. Reports information about the
267 * device.
268 *
269 * Return: zero on success or an error code on failure.
270 */
ice_devlink_info_get(struct devlink * devlink,struct devlink_info_req * req,struct netlink_ext_ack * extack)271 static int ice_devlink_info_get(struct devlink *devlink,
272 struct devlink_info_req *req,
273 struct netlink_ext_ack *extack)
274 {
275 struct ice_pf *pf = devlink_priv(devlink);
276 struct device *dev = ice_pf_to_dev(pf);
277 struct ice_hw *hw = &pf->hw;
278 struct ice_info_ctx *ctx;
279 size_t i;
280 int err;
281
282 err = ice_wait_for_reset(pf, 10 * HZ);
283 if (err) {
284 NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
285 return err;
286 }
287
288 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
289 if (!ctx)
290 return -ENOMEM;
291
292 /* discover capabilities first */
293 err = ice_discover_dev_caps(hw, &ctx->dev_caps);
294 if (err) {
295 dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
296 err, ice_aq_str(hw->adminq.sq_last_status));
297 NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
298 goto out_free_ctx;
299 }
300
301 if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
302 err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
303 if (err) {
304 dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
305 err, ice_aq_str(hw->adminq.sq_last_status));
306
307 /* disable display of pending Option ROM */
308 ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
309 }
310 }
311
312 if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
313 err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
314 if (err) {
315 dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
316 err, ice_aq_str(hw->adminq.sq_last_status));
317
318 /* disable display of pending Option ROM */
319 ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
320 }
321 }
322
323 if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
324 err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
325 if (err) {
326 dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
327 err, ice_aq_str(hw->adminq.sq_last_status));
328
329 /* disable display of pending Option ROM */
330 ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
331 }
332 }
333
334 ice_info_get_dsn(pf, ctx);
335
336 err = devlink_info_serial_number_put(req, ctx->buf);
337 if (err) {
338 NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
339 goto out_free_ctx;
340 }
341
342 for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
343 enum ice_version_type type = ice_devlink_versions[i].type;
344 const char *key = ice_devlink_versions[i].key;
345
346 memset(ctx->buf, 0, sizeof(ctx->buf));
347
348 ice_devlink_versions[i].getter(pf, ctx);
349
350 /* If the default getter doesn't report a version, use the
351 * fallback function. This is primarily useful in the case of
352 * "stored" versions that want to report the same value as the
353 * running version in the normal case of no pending update.
354 */
355 if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
356 ice_devlink_versions[i].fallback(pf, ctx);
357
358 /* Do not report missing versions */
359 if (ctx->buf[0] == '\0')
360 continue;
361
362 switch (type) {
363 case ICE_VERSION_FIXED:
364 err = devlink_info_version_fixed_put(req, key, ctx->buf);
365 if (err) {
366 NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
367 goto out_free_ctx;
368 }
369 break;
370 case ICE_VERSION_RUNNING:
371 err = devlink_info_version_running_put_ext(req, key,
372 ctx->buf,
373 DEVLINK_INFO_VERSION_TYPE_COMPONENT);
374 if (err) {
375 NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
376 goto out_free_ctx;
377 }
378 break;
379 case ICE_VERSION_STORED:
380 err = devlink_info_version_stored_put_ext(req, key,
381 ctx->buf,
382 DEVLINK_INFO_VERSION_TYPE_COMPONENT);
383 if (err) {
384 NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
385 goto out_free_ctx;
386 }
387 break;
388 }
389 }
390
391 out_free_ctx:
392 kfree(ctx);
393 return err;
394 }
395
396 /**
397 * ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
398 * @pf: pointer to the pf instance
399 * @extack: netlink extended ACK structure
400 *
401 * Allow user to activate new Embedded Management Processor firmware by
402 * issuing device specific EMP reset. Called in response to
403 * a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
404 *
405 * Note that teardown and rebuild of the driver state happens automatically as
406 * part of an interrupt and watchdog task. This is because all physical
407 * functions on the device must be able to reset when an EMP reset occurs from
408 * any source.
409 */
410 static int
ice_devlink_reload_empr_start(struct ice_pf * pf,struct netlink_ext_ack * extack)411 ice_devlink_reload_empr_start(struct ice_pf *pf,
412 struct netlink_ext_ack *extack)
413 {
414 struct device *dev = ice_pf_to_dev(pf);
415 struct ice_hw *hw = &pf->hw;
416 u8 pending;
417 int err;
418
419 err = ice_get_pending_updates(pf, &pending, extack);
420 if (err)
421 return err;
422
423 /* pending is a bitmask of which flash banks have a pending update,
424 * including the main NVM bank, the Option ROM bank, and the netlist
425 * bank. If any of these bits are set, then there is a pending update
426 * waiting to be activated.
427 */
428 if (!pending) {
429 NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
430 return -ECANCELED;
431 }
432
433 if (pf->fw_emp_reset_disabled) {
434 NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
435 return -ECANCELED;
436 }
437
438 dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
439
440 err = ice_aq_nvm_update_empr(hw);
441 if (err) {
442 dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
443 err, ice_aq_str(hw->adminq.sq_last_status));
444 NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
445 return err;
446 }
447
448 return 0;
449 }
450
451 /**
452 * ice_devlink_reinit_down - unload given PF
453 * @pf: pointer to the PF struct
454 */
ice_devlink_reinit_down(struct ice_pf * pf)455 static void ice_devlink_reinit_down(struct ice_pf *pf)
456 {
457 /* No need to take devl_lock, it's already taken by devlink API */
458 ice_unload(pf);
459 rtnl_lock();
460 ice_vsi_decfg(ice_get_main_vsi(pf));
461 rtnl_unlock();
462 ice_deinit_dev(pf);
463 }
464
465 /**
466 * ice_devlink_reload_down - prepare for reload
467 * @devlink: pointer to the devlink instance to reload
468 * @netns_change: if true, the network namespace is changing
469 * @action: the action to perform
470 * @limit: limits on what reload should do, such as not resetting
471 * @extack: netlink extended ACK structure
472 */
473 static int
ice_devlink_reload_down(struct devlink * devlink,bool netns_change,enum devlink_reload_action action,enum devlink_reload_limit limit,struct netlink_ext_ack * extack)474 ice_devlink_reload_down(struct devlink *devlink, bool netns_change,
475 enum devlink_reload_action action,
476 enum devlink_reload_limit limit,
477 struct netlink_ext_ack *extack)
478 {
479 struct ice_pf *pf = devlink_priv(devlink);
480
481 switch (action) {
482 case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
483 if (ice_is_eswitch_mode_switchdev(pf)) {
484 NL_SET_ERR_MSG_MOD(extack,
485 "Go to legacy mode before doing reinit");
486 return -EOPNOTSUPP;
487 }
488 if (ice_is_adq_active(pf)) {
489 NL_SET_ERR_MSG_MOD(extack,
490 "Turn off ADQ before doing reinit");
491 return -EOPNOTSUPP;
492 }
493 if (ice_has_vfs(pf)) {
494 NL_SET_ERR_MSG_MOD(extack,
495 "Remove all VFs before doing reinit");
496 return -EOPNOTSUPP;
497 }
498 ice_devlink_reinit_down(pf);
499 return 0;
500 case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
501 return ice_devlink_reload_empr_start(pf, extack);
502 default:
503 WARN_ON(1);
504 return -EOPNOTSUPP;
505 }
506 }
507
508 /**
509 * ice_devlink_reload_empr_finish - Wait for EMP reset to finish
510 * @pf: pointer to the pf instance
511 * @extack: netlink extended ACK structure
512 *
513 * Wait for driver to finish rebuilding after EMP reset is completed. This
514 * includes time to wait for both the actual device reset as well as the time
515 * for the driver's rebuild to complete.
516 */
517 static int
ice_devlink_reload_empr_finish(struct ice_pf * pf,struct netlink_ext_ack * extack)518 ice_devlink_reload_empr_finish(struct ice_pf *pf,
519 struct netlink_ext_ack *extack)
520 {
521 int err;
522
523 err = ice_wait_for_reset(pf, 60 * HZ);
524 if (err) {
525 NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
526 return err;
527 }
528
529 return 0;
530 }
531
532 /**
533 * ice_get_tx_topo_user_sel - Read user's choice from flash
534 * @pf: pointer to pf structure
535 * @layers: value read from flash will be saved here
536 *
537 * Reads user's preference for Tx Scheduler Topology Tree from PFA TLV.
538 *
539 * Return: zero when read was successful, negative values otherwise.
540 */
ice_get_tx_topo_user_sel(struct ice_pf * pf,uint8_t * layers)541 static int ice_get_tx_topo_user_sel(struct ice_pf *pf, uint8_t *layers)
542 {
543 struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
544 struct ice_hw *hw = &pf->hw;
545 int err;
546
547 err = ice_acquire_nvm(hw, ICE_RES_READ);
548 if (err)
549 return err;
550
551 err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
552 sizeof(usr_sel), &usr_sel, true, true, NULL);
553 if (err)
554 goto exit_release_res;
555
556 if (usr_sel.data & ICE_AQC_NVM_TX_TOPO_USER_SEL)
557 *layers = ICE_SCHED_5_LAYERS;
558 else
559 *layers = ICE_SCHED_9_LAYERS;
560
561 exit_release_res:
562 ice_release_nvm(hw);
563
564 return err;
565 }
566
567 /**
568 * ice_update_tx_topo_user_sel - Save user's preference in flash
569 * @pf: pointer to pf structure
570 * @layers: value to be saved in flash
571 *
572 * Variable "layers" defines user's preference about number of layers in Tx
573 * Scheduler Topology Tree. This choice should be stored in PFA TLV field
574 * and be picked up by driver, next time during init.
575 *
576 * Return: zero when save was successful, negative values otherwise.
577 */
ice_update_tx_topo_user_sel(struct ice_pf * pf,int layers)578 static int ice_update_tx_topo_user_sel(struct ice_pf *pf, int layers)
579 {
580 struct ice_aqc_nvm_tx_topo_user_sel usr_sel = {};
581 struct ice_hw *hw = &pf->hw;
582 int err;
583
584 err = ice_acquire_nvm(hw, ICE_RES_WRITE);
585 if (err)
586 return err;
587
588 err = ice_aq_read_nvm(hw, ICE_AQC_NVM_TX_TOPO_MOD_ID, 0,
589 sizeof(usr_sel), &usr_sel, true, true, NULL);
590 if (err)
591 goto exit_release_res;
592
593 if (layers == ICE_SCHED_5_LAYERS)
594 usr_sel.data |= ICE_AQC_NVM_TX_TOPO_USER_SEL;
595 else
596 usr_sel.data &= ~ICE_AQC_NVM_TX_TOPO_USER_SEL;
597
598 err = ice_write_one_nvm_block(pf, ICE_AQC_NVM_TX_TOPO_MOD_ID, 2,
599 sizeof(usr_sel.data), &usr_sel.data,
600 true, NULL, NULL);
601 exit_release_res:
602 ice_release_nvm(hw);
603
604 return err;
605 }
606
607 /**
608 * ice_devlink_tx_sched_layers_get - Get tx_scheduling_layers parameter
609 * @devlink: pointer to the devlink instance
610 * @id: the parameter ID to set
611 * @ctx: context to store the parameter value
612 *
613 * Return: zero on success and negative value on failure.
614 */
ice_devlink_tx_sched_layers_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)615 static int ice_devlink_tx_sched_layers_get(struct devlink *devlink, u32 id,
616 struct devlink_param_gset_ctx *ctx)
617 {
618 struct ice_pf *pf = devlink_priv(devlink);
619 int err;
620
621 err = ice_get_tx_topo_user_sel(pf, &ctx->val.vu8);
622 if (err)
623 return err;
624
625 return 0;
626 }
627
628 /**
629 * ice_devlink_tx_sched_layers_set - Set tx_scheduling_layers parameter
630 * @devlink: pointer to the devlink instance
631 * @id: the parameter ID to set
632 * @ctx: context to get the parameter value
633 * @extack: netlink extended ACK structure
634 *
635 * Return: zero on success and negative value on failure.
636 */
ice_devlink_tx_sched_layers_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)637 static int ice_devlink_tx_sched_layers_set(struct devlink *devlink, u32 id,
638 struct devlink_param_gset_ctx *ctx,
639 struct netlink_ext_ack *extack)
640 {
641 struct ice_pf *pf = devlink_priv(devlink);
642 int err;
643
644 err = ice_update_tx_topo_user_sel(pf, ctx->val.vu8);
645 if (err)
646 return err;
647
648 NL_SET_ERR_MSG_MOD(extack,
649 "Tx scheduling layers have been changed on this device. You must do the PCI slot powercycle for the change to take effect.");
650
651 return 0;
652 }
653
654 /**
655 * ice_devlink_tx_sched_layers_validate - Validate passed tx_scheduling_layers
656 * parameter value
657 * @devlink: unused pointer to devlink instance
658 * @id: the parameter ID to validate
659 * @val: value to validate
660 * @extack: netlink extended ACK structure
661 *
662 * Supported values are:
663 * - 5 - five layers Tx Scheduler Topology Tree
664 * - 9 - nine layers Tx Scheduler Topology Tree
665 *
666 * Return: zero when passed parameter value is supported. Negative value on
667 * error.
668 */
ice_devlink_tx_sched_layers_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)669 static int ice_devlink_tx_sched_layers_validate(struct devlink *devlink, u32 id,
670 union devlink_param_value val,
671 struct netlink_ext_ack *extack)
672 {
673 if (val.vu8 != ICE_SCHED_5_LAYERS && val.vu8 != ICE_SCHED_9_LAYERS) {
674 NL_SET_ERR_MSG_MOD(extack,
675 "Wrong number of tx scheduler layers provided.");
676 return -EINVAL;
677 }
678
679 return 0;
680 }
681
682 /**
683 * ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
684 * @pf: pf struct
685 *
686 * This function tears down tree exported during VF's creation.
687 */
ice_tear_down_devlink_rate_tree(struct ice_pf * pf)688 void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
689 {
690 struct devlink *devlink;
691 struct ice_vf *vf;
692 unsigned int bkt;
693
694 devlink = priv_to_devlink(pf);
695
696 devl_lock(devlink);
697 mutex_lock(&pf->vfs.table_lock);
698 ice_for_each_vf(pf, bkt, vf) {
699 if (vf->devlink_port.devlink_rate)
700 devl_rate_leaf_destroy(&vf->devlink_port);
701 }
702 mutex_unlock(&pf->vfs.table_lock);
703
704 devl_rate_nodes_destroy(devlink);
705 devl_unlock(devlink);
706 }
707
708 /**
709 * ice_enable_custom_tx - try to enable custom Tx feature
710 * @pf: pf struct
711 *
712 * This function tries to enable custom Tx feature,
713 * it's not possible to enable it, if DCB or ADQ is active.
714 */
ice_enable_custom_tx(struct ice_pf * pf)715 static bool ice_enable_custom_tx(struct ice_pf *pf)
716 {
717 struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
718 struct device *dev = ice_pf_to_dev(pf);
719
720 if (pi->is_custom_tx_enabled)
721 /* already enabled, return true */
722 return true;
723
724 if (ice_is_adq_active(pf)) {
725 dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
726 return false;
727 }
728
729 if (ice_is_dcb_active(pf)) {
730 dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
731 return false;
732 }
733
734 pi->is_custom_tx_enabled = true;
735
736 return true;
737 }
738
739 /**
740 * ice_traverse_tx_tree - traverse Tx scheduler tree
741 * @devlink: devlink struct
742 * @node: current node, used for recursion
743 * @tc_node: tc_node struct, that is treated as a root
744 * @pf: pf struct
745 *
746 * This function traverses Tx scheduler tree and exports
747 * entire structure to the devlink-rate.
748 */
ice_traverse_tx_tree(struct devlink * devlink,struct ice_sched_node * node,struct ice_sched_node * tc_node,struct ice_pf * pf)749 static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
750 struct ice_sched_node *tc_node, struct ice_pf *pf)
751 {
752 struct devlink_rate *rate_node = NULL;
753 struct ice_dynamic_port *sf;
754 struct ice_vf *vf;
755 int i;
756
757 if (node->rate_node)
758 /* already added, skip to the next */
759 goto traverse_children;
760
761 if (node->parent == tc_node) {
762 /* create root node */
763 rate_node = devl_rate_node_create(devlink, node, node->name, NULL);
764 } else if (node->vsi_handle &&
765 pf->vsi[node->vsi_handle]->type == ICE_VSI_VF &&
766 pf->vsi[node->vsi_handle]->vf) {
767 vf = pf->vsi[node->vsi_handle]->vf;
768 if (!vf->devlink_port.devlink_rate)
769 /* leaf nodes doesn't have children
770 * so we don't set rate_node
771 */
772 devl_rate_leaf_create(&vf->devlink_port, node,
773 node->parent->rate_node);
774 } else if (node->vsi_handle &&
775 pf->vsi[node->vsi_handle]->type == ICE_VSI_SF &&
776 pf->vsi[node->vsi_handle]->sf) {
777 sf = pf->vsi[node->vsi_handle]->sf;
778 if (!sf->devlink_port.devlink_rate)
779 /* leaf nodes doesn't have children
780 * so we don't set rate_node
781 */
782 devl_rate_leaf_create(&sf->devlink_port, node,
783 node->parent->rate_node);
784 } else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
785 node->parent->rate_node) {
786 rate_node = devl_rate_node_create(devlink, node, node->name,
787 node->parent->rate_node);
788 }
789
790 if (rate_node && !IS_ERR(rate_node))
791 node->rate_node = rate_node;
792
793 traverse_children:
794 for (i = 0; i < node->num_children; i++)
795 ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf);
796 }
797
798 /**
799 * ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
800 * @devlink: devlink struct
801 * @vsi: main vsi struct
802 *
803 * This function finds a root node, then calls ice_traverse_tx tree, which
804 * traverses the tree and exports it's contents to devlink rate.
805 */
ice_devlink_rate_init_tx_topology(struct devlink * devlink,struct ice_vsi * vsi)806 int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
807 {
808 struct ice_port_info *pi = vsi->port_info;
809 struct ice_sched_node *tc_node;
810 struct ice_pf *pf = vsi->back;
811 int i;
812
813 tc_node = pi->root->children[0];
814 mutex_lock(&pi->sched_lock);
815 for (i = 0; i < tc_node->num_children; i++)
816 ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf);
817 mutex_unlock(&pi->sched_lock);
818
819 return 0;
820 }
821
ice_clear_rate_nodes(struct ice_sched_node * node)822 static void ice_clear_rate_nodes(struct ice_sched_node *node)
823 {
824 node->rate_node = NULL;
825
826 for (int i = 0; i < node->num_children; i++)
827 ice_clear_rate_nodes(node->children[i]);
828 }
829
830 /**
831 * ice_devlink_rate_clear_tx_topology - clear node->rate_node
832 * @vsi: main vsi struct
833 *
834 * Clear rate_node to cleanup creation of Tx topology.
835 *
836 */
ice_devlink_rate_clear_tx_topology(struct ice_vsi * vsi)837 void ice_devlink_rate_clear_tx_topology(struct ice_vsi *vsi)
838 {
839 struct ice_port_info *pi = vsi->port_info;
840
841 mutex_lock(&pi->sched_lock);
842 ice_clear_rate_nodes(pi->root->children[0]);
843 mutex_unlock(&pi->sched_lock);
844 }
845
846 /**
847 * ice_set_object_tx_share - sets node scheduling parameter
848 * @pi: devlink struct instance
849 * @node: node struct instance
850 * @bw: bandwidth in bytes per second
851 * @extack: extended netdev ack structure
852 *
853 * This function sets ICE_MIN_BW scheduling BW limit.
854 */
ice_set_object_tx_share(struct ice_port_info * pi,struct ice_sched_node * node,u64 bw,struct netlink_ext_ack * extack)855 static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
856 u64 bw, struct netlink_ext_ack *extack)
857 {
858 int status;
859
860 mutex_lock(&pi->sched_lock);
861 /* converts bytes per second to kilo bits per second */
862 node->tx_share = div_u64(bw, 125);
863 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share);
864 mutex_unlock(&pi->sched_lock);
865
866 if (status)
867 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
868
869 return status;
870 }
871
872 /**
873 * ice_set_object_tx_max - sets node scheduling parameter
874 * @pi: devlink struct instance
875 * @node: node struct instance
876 * @bw: bandwidth in bytes per second
877 * @extack: extended netdev ack structure
878 *
879 * This function sets ICE_MAX_BW scheduling BW limit.
880 */
ice_set_object_tx_max(struct ice_port_info * pi,struct ice_sched_node * node,u64 bw,struct netlink_ext_ack * extack)881 static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
882 u64 bw, struct netlink_ext_ack *extack)
883 {
884 int status;
885
886 mutex_lock(&pi->sched_lock);
887 /* converts bytes per second value to kilo bits per second */
888 node->tx_max = div_u64(bw, 125);
889 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max);
890 mutex_unlock(&pi->sched_lock);
891
892 if (status)
893 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
894
895 return status;
896 }
897
898 /**
899 * ice_set_object_tx_priority - sets node scheduling parameter
900 * @pi: devlink struct instance
901 * @node: node struct instance
902 * @priority: value representing priority for strict priority arbitration
903 * @extack: extended netdev ack structure
904 *
905 * This function sets priority of node among siblings.
906 */
ice_set_object_tx_priority(struct ice_port_info * pi,struct ice_sched_node * node,u32 priority,struct netlink_ext_ack * extack)907 static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
908 u32 priority, struct netlink_ext_ack *extack)
909 {
910 int status;
911
912 if (priority >= 8) {
913 NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
914 return -EINVAL;
915 }
916
917 mutex_lock(&pi->sched_lock);
918 node->tx_priority = priority;
919 status = ice_sched_set_node_priority(pi, node, node->tx_priority);
920 mutex_unlock(&pi->sched_lock);
921
922 if (status)
923 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
924
925 return status;
926 }
927
928 /**
929 * ice_set_object_tx_weight - sets node scheduling parameter
930 * @pi: devlink struct instance
931 * @node: node struct instance
932 * @weight: value represeting relative weight for WFQ arbitration
933 * @extack: extended netdev ack structure
934 *
935 * This function sets node weight for WFQ algorithm.
936 */
ice_set_object_tx_weight(struct ice_port_info * pi,struct ice_sched_node * node,u32 weight,struct netlink_ext_ack * extack)937 static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
938 u32 weight, struct netlink_ext_ack *extack)
939 {
940 int status;
941
942 if (weight > 200 || weight < 1) {
943 NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
944 return -EINVAL;
945 }
946
947 mutex_lock(&pi->sched_lock);
948 node->tx_weight = weight;
949 status = ice_sched_set_node_weight(pi, node, node->tx_weight);
950 mutex_unlock(&pi->sched_lock);
951
952 if (status)
953 NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
954
955 return status;
956 }
957
958 /**
959 * ice_get_pi_from_dev_rate - get port info from devlink_rate
960 * @rate_node: devlink struct instance
961 *
962 * This function returns corresponding port_info struct of devlink_rate
963 */
ice_get_pi_from_dev_rate(struct devlink_rate * rate_node)964 static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
965 {
966 struct ice_pf *pf = devlink_priv(rate_node->devlink);
967
968 return ice_get_main_vsi(pf)->port_info;
969 }
970
ice_devlink_rate_node_new(struct devlink_rate * rate_node,void ** priv,struct netlink_ext_ack * extack)971 static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
972 struct netlink_ext_ack *extack)
973 {
974 struct ice_sched_node *node;
975 struct ice_port_info *pi;
976
977 pi = ice_get_pi_from_dev_rate(rate_node);
978
979 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
980 return -EBUSY;
981
982 /* preallocate memory for ice_sched_node */
983 node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL);
984 if (!node)
985 return -ENOMEM;
986
987 *priv = node;
988
989 return 0;
990 }
991
ice_devlink_rate_node_del(struct devlink_rate * rate_node,void * priv,struct netlink_ext_ack * extack)992 static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
993 struct netlink_ext_ack *extack)
994 {
995 struct ice_sched_node *node, *tc_node;
996 struct ice_port_info *pi;
997
998 pi = ice_get_pi_from_dev_rate(rate_node);
999 tc_node = pi->root->children[0];
1000 node = priv;
1001
1002 if (!rate_node->parent || !node || tc_node == node || !extack)
1003 return 0;
1004
1005 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1006 return -EBUSY;
1007
1008 /* can't allow to delete a node with children */
1009 if (node->num_children)
1010 return -EINVAL;
1011
1012 mutex_lock(&pi->sched_lock);
1013 ice_free_sched_node(pi, node);
1014 mutex_unlock(&pi->sched_lock);
1015
1016 return 0;
1017 }
1018
ice_devlink_rate_leaf_tx_max_set(struct devlink_rate * rate_leaf,void * priv,u64 tx_max,struct netlink_ext_ack * extack)1019 static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
1020 u64 tx_max, struct netlink_ext_ack *extack)
1021 {
1022 struct ice_sched_node *node = priv;
1023
1024 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1025 return -EBUSY;
1026
1027 if (!node)
1028 return 0;
1029
1030 return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf),
1031 node, tx_max, extack);
1032 }
1033
ice_devlink_rate_leaf_tx_share_set(struct devlink_rate * rate_leaf,void * priv,u64 tx_share,struct netlink_ext_ack * extack)1034 static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
1035 u64 tx_share, struct netlink_ext_ack *extack)
1036 {
1037 struct ice_sched_node *node = priv;
1038
1039 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1040 return -EBUSY;
1041
1042 if (!node)
1043 return 0;
1044
1045 return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node,
1046 tx_share, extack);
1047 }
1048
ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate * rate_leaf,void * priv,u32 tx_priority,struct netlink_ext_ack * extack)1049 static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
1050 u32 tx_priority, struct netlink_ext_ack *extack)
1051 {
1052 struct ice_sched_node *node = priv;
1053
1054 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1055 return -EBUSY;
1056
1057 if (!node)
1058 return 0;
1059
1060 return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node,
1061 tx_priority, extack);
1062 }
1063
ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate * rate_leaf,void * priv,u32 tx_weight,struct netlink_ext_ack * extack)1064 static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
1065 u32 tx_weight, struct netlink_ext_ack *extack)
1066 {
1067 struct ice_sched_node *node = priv;
1068
1069 if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
1070 return -EBUSY;
1071
1072 if (!node)
1073 return 0;
1074
1075 return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node,
1076 tx_weight, extack);
1077 }
1078
ice_devlink_rate_node_tx_max_set(struct devlink_rate * rate_node,void * priv,u64 tx_max,struct netlink_ext_ack * extack)1079 static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
1080 u64 tx_max, struct netlink_ext_ack *extack)
1081 {
1082 struct ice_sched_node *node = priv;
1083
1084 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1085 return -EBUSY;
1086
1087 if (!node)
1088 return 0;
1089
1090 return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node),
1091 node, tx_max, extack);
1092 }
1093
ice_devlink_rate_node_tx_share_set(struct devlink_rate * rate_node,void * priv,u64 tx_share,struct netlink_ext_ack * extack)1094 static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
1095 u64 tx_share, struct netlink_ext_ack *extack)
1096 {
1097 struct ice_sched_node *node = priv;
1098
1099 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1100 return -EBUSY;
1101
1102 if (!node)
1103 return 0;
1104
1105 return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node),
1106 node, tx_share, extack);
1107 }
1108
ice_devlink_rate_node_tx_priority_set(struct devlink_rate * rate_node,void * priv,u32 tx_priority,struct netlink_ext_ack * extack)1109 static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
1110 u32 tx_priority, struct netlink_ext_ack *extack)
1111 {
1112 struct ice_sched_node *node = priv;
1113
1114 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1115 return -EBUSY;
1116
1117 if (!node)
1118 return 0;
1119
1120 return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node),
1121 node, tx_priority, extack);
1122 }
1123
ice_devlink_rate_node_tx_weight_set(struct devlink_rate * rate_node,void * priv,u32 tx_weight,struct netlink_ext_ack * extack)1124 static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
1125 u32 tx_weight, struct netlink_ext_ack *extack)
1126 {
1127 struct ice_sched_node *node = priv;
1128
1129 if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
1130 return -EBUSY;
1131
1132 if (!node)
1133 return 0;
1134
1135 return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node),
1136 node, tx_weight, extack);
1137 }
1138
ice_devlink_set_parent(struct devlink_rate * devlink_rate,struct devlink_rate * parent,void * priv,void * parent_priv,struct netlink_ext_ack * extack)1139 static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
1140 struct devlink_rate *parent,
1141 void *priv, void *parent_priv,
1142 struct netlink_ext_ack *extack)
1143 {
1144 struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate);
1145 struct ice_sched_node *tc_node, *node, *parent_node;
1146 u16 num_nodes_added;
1147 u32 first_node_teid;
1148 u32 node_teid;
1149 int status;
1150
1151 tc_node = pi->root->children[0];
1152 node = priv;
1153
1154 if (!extack)
1155 return 0;
1156
1157 if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink)))
1158 return -EBUSY;
1159
1160 if (!parent) {
1161 if (!node || tc_node == node || node->num_children)
1162 return -EINVAL;
1163
1164 mutex_lock(&pi->sched_lock);
1165 ice_free_sched_node(pi, node);
1166 mutex_unlock(&pi->sched_lock);
1167
1168 return 0;
1169 }
1170
1171 parent_node = parent_priv;
1172
1173 /* if the node doesn't exist, create it */
1174 if (!node->parent) {
1175 mutex_lock(&pi->sched_lock);
1176 status = ice_sched_add_elems(pi, tc_node, parent_node,
1177 parent_node->tx_sched_layer + 1,
1178 1, &num_nodes_added, &first_node_teid,
1179 &node);
1180 mutex_unlock(&pi->sched_lock);
1181
1182 if (status) {
1183 NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
1184 return status;
1185 }
1186
1187 if (devlink_rate->tx_share)
1188 ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack);
1189 if (devlink_rate->tx_max)
1190 ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack);
1191 if (devlink_rate->tx_priority)
1192 ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack);
1193 if (devlink_rate->tx_weight)
1194 ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack);
1195 } else {
1196 node_teid = le32_to_cpu(node->info.node_teid);
1197 mutex_lock(&pi->sched_lock);
1198 status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid);
1199 mutex_unlock(&pi->sched_lock);
1200
1201 if (status)
1202 NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
1203 }
1204
1205 return status;
1206 }
1207
ice_set_min_max_msix(struct ice_pf * pf)1208 static void ice_set_min_max_msix(struct ice_pf *pf)
1209 {
1210 struct devlink *devlink = priv_to_devlink(pf);
1211 union devlink_param_value val;
1212 int err;
1213
1214 err = devl_param_driverinit_value_get(devlink,
1215 DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MIN,
1216 &val);
1217 if (!err)
1218 pf->msix.min = val.vu32;
1219
1220 err = devl_param_driverinit_value_get(devlink,
1221 DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MAX,
1222 &val);
1223 if (!err)
1224 pf->msix.max = val.vu32;
1225 }
1226
1227 /**
1228 * ice_devlink_reinit_up - do reinit of the given PF
1229 * @pf: pointer to the PF struct
1230 */
ice_devlink_reinit_up(struct ice_pf * pf)1231 static int ice_devlink_reinit_up(struct ice_pf *pf)
1232 {
1233 struct ice_vsi *vsi = ice_get_main_vsi(pf);
1234 int err;
1235
1236 err = ice_init_hw(&pf->hw);
1237 if (err) {
1238 dev_err(ice_pf_to_dev(pf), "ice_init_hw failed: %d\n", err);
1239 return err;
1240 }
1241
1242 /* load MSI-X values */
1243 ice_set_min_max_msix(pf);
1244
1245 err = ice_init_dev(pf);
1246 if (err)
1247 goto unroll_hw_init;
1248
1249 vsi->flags = ICE_VSI_FLAG_INIT;
1250
1251 rtnl_lock();
1252 err = ice_vsi_cfg(vsi);
1253 rtnl_unlock();
1254 if (err)
1255 goto err_vsi_cfg;
1256
1257 /* No need to take devl_lock, it's already taken by devlink API */
1258 err = ice_load(pf);
1259 if (err)
1260 goto err_load;
1261
1262 return 0;
1263
1264 err_load:
1265 rtnl_lock();
1266 ice_vsi_decfg(vsi);
1267 rtnl_unlock();
1268 err_vsi_cfg:
1269 ice_deinit_dev(pf);
1270 unroll_hw_init:
1271 ice_deinit_hw(&pf->hw);
1272 return err;
1273 }
1274
1275 /**
1276 * ice_devlink_reload_up - do reload up after reinit
1277 * @devlink: pointer to the devlink instance reloading
1278 * @action: the action requested
1279 * @limit: limits imposed by userspace, such as not resetting
1280 * @actions_performed: on return, indicate what actions actually performed
1281 * @extack: netlink extended ACK structure
1282 */
1283 static int
ice_devlink_reload_up(struct devlink * devlink,enum devlink_reload_action action,enum devlink_reload_limit limit,u32 * actions_performed,struct netlink_ext_ack * extack)1284 ice_devlink_reload_up(struct devlink *devlink,
1285 enum devlink_reload_action action,
1286 enum devlink_reload_limit limit,
1287 u32 *actions_performed,
1288 struct netlink_ext_ack *extack)
1289 {
1290 struct ice_pf *pf = devlink_priv(devlink);
1291
1292 switch (action) {
1293 case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
1294 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT);
1295 return ice_devlink_reinit_up(pf);
1296 case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
1297 *actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
1298 return ice_devlink_reload_empr_finish(pf, extack);
1299 default:
1300 WARN_ON(1);
1301 return -EOPNOTSUPP;
1302 }
1303 }
1304
1305 static const struct devlink_ops ice_devlink_ops = {
1306 .supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
1307 .reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) |
1308 BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
1309 .reload_down = ice_devlink_reload_down,
1310 .reload_up = ice_devlink_reload_up,
1311 .eswitch_mode_get = ice_eswitch_mode_get,
1312 .eswitch_mode_set = ice_eswitch_mode_set,
1313 .info_get = ice_devlink_info_get,
1314 .flash_update = ice_devlink_flash_update,
1315
1316 .rate_node_new = ice_devlink_rate_node_new,
1317 .rate_node_del = ice_devlink_rate_node_del,
1318
1319 .rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
1320 .rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
1321 .rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
1322 .rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
1323
1324 .rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
1325 .rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
1326 .rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
1327 .rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
1328
1329 .rate_leaf_parent_set = ice_devlink_set_parent,
1330 .rate_node_parent_set = ice_devlink_set_parent,
1331
1332 .port_new = ice_devlink_port_new,
1333 };
1334
1335 static const struct devlink_ops ice_sf_devlink_ops;
1336
1337 static int
ice_devlink_enable_roce_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1338 ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
1339 struct devlink_param_gset_ctx *ctx)
1340 {
1341 struct ice_pf *pf = devlink_priv(devlink);
1342 struct iidc_rdma_core_dev_info *cdev;
1343
1344 cdev = pf->cdev_info;
1345 if (!cdev)
1346 return -ENODEV;
1347
1348 ctx->val.vbool = !!(cdev->rdma_protocol & IIDC_RDMA_PROTOCOL_ROCEV2);
1349
1350 return 0;
1351 }
1352
ice_devlink_enable_roce_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1353 static int ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
1354 struct devlink_param_gset_ctx *ctx,
1355 struct netlink_ext_ack *extack)
1356 {
1357 struct ice_pf *pf = devlink_priv(devlink);
1358 struct iidc_rdma_core_dev_info *cdev;
1359 bool roce_ena = ctx->val.vbool;
1360 int ret;
1361
1362 cdev = pf->cdev_info;
1363 if (!cdev)
1364 return -ENODEV;
1365
1366 if (!roce_ena) {
1367 ice_unplug_aux_dev(pf);
1368 cdev->rdma_protocol &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1369 return 0;
1370 }
1371
1372 cdev->rdma_protocol |= IIDC_RDMA_PROTOCOL_ROCEV2;
1373 ret = ice_plug_aux_dev(pf);
1374 if (ret)
1375 cdev->rdma_protocol &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
1376
1377 return ret;
1378 }
1379
1380 static int
ice_devlink_enable_roce_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1381 ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
1382 union devlink_param_value val,
1383 struct netlink_ext_ack *extack)
1384 {
1385 struct ice_pf *pf = devlink_priv(devlink);
1386 struct iidc_rdma_core_dev_info *cdev;
1387
1388 cdev = pf->cdev_info;
1389 if (!cdev)
1390 return -ENODEV;
1391
1392 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1393 return -EOPNOTSUPP;
1394
1395 if (cdev->rdma_protocol & IIDC_RDMA_PROTOCOL_IWARP) {
1396 NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1397 return -EOPNOTSUPP;
1398 }
1399
1400 return 0;
1401 }
1402
1403 static int
ice_devlink_enable_iw_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1404 ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
1405 struct devlink_param_gset_ctx *ctx)
1406 {
1407 struct ice_pf *pf = devlink_priv(devlink);
1408 struct iidc_rdma_core_dev_info *cdev;
1409
1410 cdev = pf->cdev_info;
1411 if (!cdev)
1412 return -ENODEV;
1413
1414 ctx->val.vbool = !!(cdev->rdma_protocol & IIDC_RDMA_PROTOCOL_IWARP);
1415
1416 return 0;
1417 }
1418
ice_devlink_enable_iw_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1419 static int ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
1420 struct devlink_param_gset_ctx *ctx,
1421 struct netlink_ext_ack *extack)
1422 {
1423 struct ice_pf *pf = devlink_priv(devlink);
1424 struct iidc_rdma_core_dev_info *cdev;
1425 bool iw_ena = ctx->val.vbool;
1426 int ret;
1427
1428 cdev = pf->cdev_info;
1429 if (!cdev)
1430 return -ENODEV;
1431
1432 if (!iw_ena) {
1433 ice_unplug_aux_dev(pf);
1434 cdev->rdma_protocol &= ~IIDC_RDMA_PROTOCOL_IWARP;
1435 return 0;
1436 }
1437
1438 cdev->rdma_protocol |= IIDC_RDMA_PROTOCOL_IWARP;
1439 ret = ice_plug_aux_dev(pf);
1440 if (ret)
1441 cdev->rdma_protocol &= ~IIDC_RDMA_PROTOCOL_IWARP;
1442
1443 return ret;
1444 }
1445
1446 static int
ice_devlink_enable_iw_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1447 ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
1448 union devlink_param_value val,
1449 struct netlink_ext_ack *extack)
1450 {
1451 struct ice_pf *pf = devlink_priv(devlink);
1452
1453 if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1454 return -EOPNOTSUPP;
1455
1456 if (pf->cdev_info->rdma_protocol & IIDC_RDMA_PROTOCOL_ROCEV2) {
1457 NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
1458 return -EOPNOTSUPP;
1459 }
1460
1461 return 0;
1462 }
1463
1464 #define DEVLINK_LOCAL_FWD_DISABLED_STR "disabled"
1465 #define DEVLINK_LOCAL_FWD_ENABLED_STR "enabled"
1466 #define DEVLINK_LOCAL_FWD_PRIORITIZED_STR "prioritized"
1467
1468 /**
1469 * ice_devlink_local_fwd_mode_to_str - Get string for local_fwd mode.
1470 * @mode: local forwarding for mode used in port_info struct.
1471 *
1472 * Return: Mode respective string or "Invalid".
1473 */
1474 static const char *
ice_devlink_local_fwd_mode_to_str(enum ice_local_fwd_mode mode)1475 ice_devlink_local_fwd_mode_to_str(enum ice_local_fwd_mode mode)
1476 {
1477 switch (mode) {
1478 case ICE_LOCAL_FWD_MODE_ENABLED:
1479 return DEVLINK_LOCAL_FWD_ENABLED_STR;
1480 case ICE_LOCAL_FWD_MODE_PRIORITIZED:
1481 return DEVLINK_LOCAL_FWD_PRIORITIZED_STR;
1482 case ICE_LOCAL_FWD_MODE_DISABLED:
1483 return DEVLINK_LOCAL_FWD_DISABLED_STR;
1484 }
1485
1486 return "Invalid";
1487 }
1488
1489 /**
1490 * ice_devlink_local_fwd_str_to_mode - Get local_fwd mode from string name.
1491 * @mode_str: local forwarding mode string.
1492 *
1493 * Return: Mode value or negative number if invalid.
1494 */
ice_devlink_local_fwd_str_to_mode(const char * mode_str)1495 static int ice_devlink_local_fwd_str_to_mode(const char *mode_str)
1496 {
1497 if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_ENABLED_STR))
1498 return ICE_LOCAL_FWD_MODE_ENABLED;
1499 else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_PRIORITIZED_STR))
1500 return ICE_LOCAL_FWD_MODE_PRIORITIZED;
1501 else if (!strcmp(mode_str, DEVLINK_LOCAL_FWD_DISABLED_STR))
1502 return ICE_LOCAL_FWD_MODE_DISABLED;
1503
1504 return -EINVAL;
1505 }
1506
1507 /**
1508 * ice_devlink_local_fwd_get - Get local_fwd parameter.
1509 * @devlink: Pointer to the devlink instance.
1510 * @id: The parameter ID to set.
1511 * @ctx: Context to store the parameter value.
1512 *
1513 * Return: Zero.
1514 */
ice_devlink_local_fwd_get(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx)1515 static int ice_devlink_local_fwd_get(struct devlink *devlink, u32 id,
1516 struct devlink_param_gset_ctx *ctx)
1517 {
1518 struct ice_pf *pf = devlink_priv(devlink);
1519 struct ice_port_info *pi;
1520 const char *mode_str;
1521
1522 pi = pf->hw.port_info;
1523 mode_str = ice_devlink_local_fwd_mode_to_str(pi->local_fwd_mode);
1524 snprintf(ctx->val.vstr, sizeof(ctx->val.vstr), "%s", mode_str);
1525
1526 return 0;
1527 }
1528
1529 /**
1530 * ice_devlink_local_fwd_set - Set local_fwd parameter.
1531 * @devlink: Pointer to the devlink instance.
1532 * @id: The parameter ID to set.
1533 * @ctx: Context to get the parameter value.
1534 * @extack: Netlink extended ACK structure.
1535 *
1536 * Return: Zero.
1537 */
ice_devlink_local_fwd_set(struct devlink * devlink,u32 id,struct devlink_param_gset_ctx * ctx,struct netlink_ext_ack * extack)1538 static int ice_devlink_local_fwd_set(struct devlink *devlink, u32 id,
1539 struct devlink_param_gset_ctx *ctx,
1540 struct netlink_ext_ack *extack)
1541 {
1542 int new_local_fwd_mode = ice_devlink_local_fwd_str_to_mode(ctx->val.vstr);
1543 struct ice_pf *pf = devlink_priv(devlink);
1544 struct device *dev = ice_pf_to_dev(pf);
1545 struct ice_port_info *pi;
1546
1547 pi = pf->hw.port_info;
1548 if (pi->local_fwd_mode != new_local_fwd_mode) {
1549 pi->local_fwd_mode = new_local_fwd_mode;
1550 dev_info(dev, "Setting local_fwd to %s\n", ctx->val.vstr);
1551 ice_schedule_reset(pf, ICE_RESET_CORER);
1552 }
1553
1554 return 0;
1555 }
1556
1557 /**
1558 * ice_devlink_local_fwd_validate - Validate passed local_fwd parameter value.
1559 * @devlink: Unused pointer to devlink instance.
1560 * @id: The parameter ID to validate.
1561 * @val: Value to validate.
1562 * @extack: Netlink extended ACK structure.
1563 *
1564 * Supported values are:
1565 * "enabled" - local_fwd is enabled, "disabled" - local_fwd is disabled
1566 * "prioritized" - local_fwd traffic is prioritized in scheduling.
1567 *
1568 * Return: Zero when passed parameter value is supported. Negative value on
1569 * error.
1570 */
ice_devlink_local_fwd_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1571 static int ice_devlink_local_fwd_validate(struct devlink *devlink, u32 id,
1572 union devlink_param_value val,
1573 struct netlink_ext_ack *extack)
1574 {
1575 if (ice_devlink_local_fwd_str_to_mode(val.vstr) < 0) {
1576 NL_SET_ERR_MSG_MOD(extack, "Error: Requested value is not supported.");
1577 return -EINVAL;
1578 }
1579
1580 return 0;
1581 }
1582
1583 static int
ice_devlink_msix_max_pf_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1584 ice_devlink_msix_max_pf_validate(struct devlink *devlink, u32 id,
1585 union devlink_param_value val,
1586 struct netlink_ext_ack *extack)
1587 {
1588 struct ice_pf *pf = devlink_priv(devlink);
1589
1590 if (val.vu32 > pf->hw.func_caps.common_cap.num_msix_vectors)
1591 return -EINVAL;
1592
1593 return 0;
1594 }
1595
1596 static int
ice_devlink_msix_min_pf_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1597 ice_devlink_msix_min_pf_validate(struct devlink *devlink, u32 id,
1598 union devlink_param_value val,
1599 struct netlink_ext_ack *extack)
1600 {
1601 if (val.vu32 < ICE_MIN_MSIX)
1602 return -EINVAL;
1603
1604 return 0;
1605 }
1606
ice_devlink_enable_rdma_validate(struct devlink * devlink,u32 id,union devlink_param_value val,struct netlink_ext_ack * extack)1607 static int ice_devlink_enable_rdma_validate(struct devlink *devlink, u32 id,
1608 union devlink_param_value val,
1609 struct netlink_ext_ack *extack)
1610 {
1611 struct ice_pf *pf = devlink_priv(devlink);
1612 bool new_state = val.vbool;
1613
1614 if (new_state && !test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
1615 return -EOPNOTSUPP;
1616
1617 return 0;
1618 }
1619
1620 enum ice_param_id {
1621 ICE_DEVLINK_PARAM_ID_BASE = DEVLINK_PARAM_GENERIC_ID_MAX,
1622 ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1623 ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1624 };
1625
1626 static const struct devlink_param ice_dvl_rdma_params[] = {
1627 DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1628 ice_devlink_enable_roce_get,
1629 ice_devlink_enable_roce_set,
1630 ice_devlink_enable_roce_validate),
1631 DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1632 ice_devlink_enable_iw_get,
1633 ice_devlink_enable_iw_set,
1634 ice_devlink_enable_iw_validate),
1635 DEVLINK_PARAM_GENERIC(ENABLE_RDMA, BIT(DEVLINK_PARAM_CMODE_DRIVERINIT),
1636 NULL, NULL, ice_devlink_enable_rdma_validate),
1637 };
1638
1639 static const struct devlink_param ice_dvl_msix_params[] = {
1640 DEVLINK_PARAM_GENERIC(MSIX_VEC_PER_PF_MAX,
1641 BIT(DEVLINK_PARAM_CMODE_DRIVERINIT),
1642 NULL, NULL, ice_devlink_msix_max_pf_validate),
1643 DEVLINK_PARAM_GENERIC(MSIX_VEC_PER_PF_MIN,
1644 BIT(DEVLINK_PARAM_CMODE_DRIVERINIT),
1645 NULL, NULL, ice_devlink_msix_min_pf_validate),
1646 };
1647
1648 static const struct devlink_param ice_dvl_sched_params[] = {
1649 DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_TX_SCHED_LAYERS,
1650 "tx_scheduling_layers",
1651 DEVLINK_PARAM_TYPE_U8,
1652 BIT(DEVLINK_PARAM_CMODE_PERMANENT),
1653 ice_devlink_tx_sched_layers_get,
1654 ice_devlink_tx_sched_layers_set,
1655 ice_devlink_tx_sched_layers_validate),
1656 DEVLINK_PARAM_DRIVER(ICE_DEVLINK_PARAM_ID_LOCAL_FWD,
1657 "local_forwarding", DEVLINK_PARAM_TYPE_STRING,
1658 BIT(DEVLINK_PARAM_CMODE_RUNTIME),
1659 ice_devlink_local_fwd_get,
1660 ice_devlink_local_fwd_set,
1661 ice_devlink_local_fwd_validate),
1662 };
1663
ice_devlink_free(void * devlink_ptr)1664 static void ice_devlink_free(void *devlink_ptr)
1665 {
1666 devlink_free((struct devlink *)devlink_ptr);
1667 }
1668
1669 /**
1670 * ice_allocate_pf - Allocate devlink and return PF structure pointer
1671 * @dev: the device to allocate for
1672 *
1673 * Allocate a devlink instance for this device and return the private area as
1674 * the PF structure. The devlink memory is kept track of through devres by
1675 * adding an action to remove it when unwinding.
1676 */
ice_allocate_pf(struct device * dev)1677 struct ice_pf *ice_allocate_pf(struct device *dev)
1678 {
1679 struct devlink *devlink;
1680
1681 devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
1682 if (!devlink)
1683 return NULL;
1684
1685 /* Add an action to teardown the devlink when unwinding the driver */
1686 if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
1687 return NULL;
1688
1689 return devlink_priv(devlink);
1690 }
1691
1692 /**
1693 * ice_allocate_sf - Allocate devlink and return SF structure pointer
1694 * @dev: the device to allocate for
1695 * @pf: pointer to the PF structure
1696 *
1697 * Allocate a devlink instance for SF.
1698 *
1699 * Return: ice_sf_priv pointer to allocated memory or ERR_PTR in case of error
1700 */
ice_allocate_sf(struct device * dev,struct ice_pf * pf)1701 struct ice_sf_priv *ice_allocate_sf(struct device *dev, struct ice_pf *pf)
1702 {
1703 struct devlink *devlink;
1704 int err;
1705
1706 devlink = devlink_alloc(&ice_sf_devlink_ops, sizeof(struct ice_sf_priv),
1707 dev);
1708 if (!devlink)
1709 return ERR_PTR(-ENOMEM);
1710
1711 err = devl_nested_devlink_set(priv_to_devlink(pf), devlink);
1712 if (err) {
1713 devlink_free(devlink);
1714 return ERR_PTR(err);
1715 }
1716
1717 return devlink_priv(devlink);
1718 }
1719
1720 /**
1721 * ice_devlink_register - Register devlink interface for this PF
1722 * @pf: the PF to register the devlink for.
1723 *
1724 * Register the devlink instance associated with this physical function.
1725 *
1726 * Return: zero on success or an error code on failure.
1727 */
ice_devlink_register(struct ice_pf * pf)1728 void ice_devlink_register(struct ice_pf *pf)
1729 {
1730 struct devlink *devlink = priv_to_devlink(pf);
1731
1732 devl_register(devlink);
1733 }
1734
1735 /**
1736 * ice_devlink_unregister - Unregister devlink resources for this PF.
1737 * @pf: the PF structure to cleanup
1738 *
1739 * Releases resources used by devlink and cleans up associated memory.
1740 */
ice_devlink_unregister(struct ice_pf * pf)1741 void ice_devlink_unregister(struct ice_pf *pf)
1742 {
1743 devl_unregister(priv_to_devlink(pf));
1744 }
1745
ice_devlink_register_params(struct ice_pf * pf)1746 int ice_devlink_register_params(struct ice_pf *pf)
1747 {
1748 struct devlink *devlink = priv_to_devlink(pf);
1749 union devlink_param_value value;
1750 struct ice_hw *hw = &pf->hw;
1751 int status;
1752
1753 status = devl_params_register(devlink, ice_dvl_rdma_params,
1754 ARRAY_SIZE(ice_dvl_rdma_params));
1755 if (status)
1756 return status;
1757
1758 status = devl_params_register(devlink, ice_dvl_msix_params,
1759 ARRAY_SIZE(ice_dvl_msix_params));
1760 if (status)
1761 goto unregister_rdma_params;
1762
1763 if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1764 status = devl_params_register(devlink, ice_dvl_sched_params,
1765 ARRAY_SIZE(ice_dvl_sched_params));
1766 if (status)
1767 goto unregister_msix_params;
1768
1769 value.vu32 = pf->msix.max;
1770 devl_param_driverinit_value_set(devlink,
1771 DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MAX,
1772 value);
1773 value.vu32 = pf->msix.min;
1774 devl_param_driverinit_value_set(devlink,
1775 DEVLINK_PARAM_GENERIC_ID_MSIX_VEC_PER_PF_MIN,
1776 value);
1777
1778 value.vbool = test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
1779 devl_param_driverinit_value_set(devlink,
1780 DEVLINK_PARAM_GENERIC_ID_ENABLE_RDMA,
1781 value);
1782
1783 return 0;
1784
1785 unregister_msix_params:
1786 devl_params_unregister(devlink, ice_dvl_msix_params,
1787 ARRAY_SIZE(ice_dvl_msix_params));
1788 unregister_rdma_params:
1789 devl_params_unregister(devlink, ice_dvl_rdma_params,
1790 ARRAY_SIZE(ice_dvl_rdma_params));
1791 return status;
1792 }
1793
ice_devlink_unregister_params(struct ice_pf * pf)1794 void ice_devlink_unregister_params(struct ice_pf *pf)
1795 {
1796 struct devlink *devlink = priv_to_devlink(pf);
1797 struct ice_hw *hw = &pf->hw;
1798
1799 devl_params_unregister(devlink, ice_dvl_rdma_params,
1800 ARRAY_SIZE(ice_dvl_rdma_params));
1801 devl_params_unregister(devlink, ice_dvl_msix_params,
1802 ARRAY_SIZE(ice_dvl_msix_params));
1803
1804 if (hw->func_caps.common_cap.tx_sched_topo_comp_mode_en)
1805 devl_params_unregister(devlink, ice_dvl_sched_params,
1806 ARRAY_SIZE(ice_dvl_sched_params));
1807 }
1808
1809 #define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
1810
1811 static const struct devlink_region_ops ice_nvm_region_ops;
1812 static const struct devlink_region_ops ice_sram_region_ops;
1813
1814 /**
1815 * ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
1816 * @devlink: the devlink instance
1817 * @ops: the devlink region to snapshot
1818 * @extack: extended ACK response structure
1819 * @data: on exit points to snapshot data buffer
1820 *
1821 * This function is called in response to a DEVLINK_CMD_REGION_NEW for either
1822 * the nvm-flash or shadow-ram region.
1823 *
1824 * It captures a snapshot of the NVM or Shadow RAM flash contents. This
1825 * snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
1826 * interface.
1827 *
1828 * @returns zero on success, and updates the data pointer. Returns a non-zero
1829 * error code on failure.
1830 */
ice_devlink_nvm_snapshot(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u8 ** data)1831 static int ice_devlink_nvm_snapshot(struct devlink *devlink,
1832 const struct devlink_region_ops *ops,
1833 struct netlink_ext_ack *extack, u8 **data)
1834 {
1835 struct ice_pf *pf = devlink_priv(devlink);
1836 struct device *dev = ice_pf_to_dev(pf);
1837 struct ice_hw *hw = &pf->hw;
1838 bool read_shadow_ram;
1839 u8 *nvm_data, *tmp, i;
1840 u32 nvm_size, left;
1841 s8 num_blks;
1842 int status;
1843
1844 if (ops == &ice_nvm_region_ops) {
1845 read_shadow_ram = false;
1846 nvm_size = hw->flash.flash_size;
1847 } else if (ops == &ice_sram_region_ops) {
1848 read_shadow_ram = true;
1849 nvm_size = hw->flash.sr_words * 2u;
1850 } else {
1851 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1852 return -EOPNOTSUPP;
1853 }
1854
1855 nvm_data = vzalloc(nvm_size);
1856 if (!nvm_data)
1857 return -ENOMEM;
1858
1859 num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
1860 tmp = nvm_data;
1861 left = nvm_size;
1862
1863 /* Some systems take longer to read the NVM than others which causes the
1864 * FW to reclaim the NVM lock before the entire NVM has been read. Fix
1865 * this by breaking the reads of the NVM into smaller chunks that will
1866 * probably not take as long. This has some overhead since we are
1867 * increasing the number of AQ commands, but it should always work
1868 */
1869 for (i = 0; i < num_blks; i++) {
1870 u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
1871
1872 status = ice_acquire_nvm(hw, ICE_RES_READ);
1873 if (status) {
1874 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1875 status, hw->adminq.sq_last_status);
1876 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1877 vfree(nvm_data);
1878 return -EIO;
1879 }
1880
1881 status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
1882 &read_sz, tmp, read_shadow_ram);
1883 if (status) {
1884 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1885 read_sz, status, hw->adminq.sq_last_status);
1886 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1887 ice_release_nvm(hw);
1888 vfree(nvm_data);
1889 return -EIO;
1890 }
1891 ice_release_nvm(hw);
1892
1893 tmp += read_sz;
1894 left -= read_sz;
1895 }
1896
1897 *data = nvm_data;
1898
1899 return 0;
1900 }
1901
1902 /**
1903 * ice_devlink_nvm_read - Read a portion of NVM flash contents
1904 * @devlink: the devlink instance
1905 * @ops: the devlink region to snapshot
1906 * @extack: extended ACK response structure
1907 * @offset: the offset to start at
1908 * @size: the amount to read
1909 * @data: the data buffer to read into
1910 *
1911 * This function is called in response to DEVLINK_CMD_REGION_READ to directly
1912 * read a section of the NVM contents.
1913 *
1914 * It reads from either the nvm-flash or shadow-ram region contents.
1915 *
1916 * @returns zero on success, and updates the data pointer. Returns a non-zero
1917 * error code on failure.
1918 */
ice_devlink_nvm_read(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u64 offset,u32 size,u8 * data)1919 static int ice_devlink_nvm_read(struct devlink *devlink,
1920 const struct devlink_region_ops *ops,
1921 struct netlink_ext_ack *extack,
1922 u64 offset, u32 size, u8 *data)
1923 {
1924 struct ice_pf *pf = devlink_priv(devlink);
1925 struct device *dev = ice_pf_to_dev(pf);
1926 struct ice_hw *hw = &pf->hw;
1927 bool read_shadow_ram;
1928 u64 nvm_size;
1929 int status;
1930
1931 if (ops == &ice_nvm_region_ops) {
1932 read_shadow_ram = false;
1933 nvm_size = hw->flash.flash_size;
1934 } else if (ops == &ice_sram_region_ops) {
1935 read_shadow_ram = true;
1936 nvm_size = hw->flash.sr_words * 2u;
1937 } else {
1938 NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
1939 return -EOPNOTSUPP;
1940 }
1941
1942 if (offset + size >= nvm_size) {
1943 NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
1944 return -ERANGE;
1945 }
1946
1947 status = ice_acquire_nvm(hw, ICE_RES_READ);
1948 if (status) {
1949 dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
1950 status, hw->adminq.sq_last_status);
1951 NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
1952 return -EIO;
1953 }
1954
1955 status = ice_read_flat_nvm(hw, (u32)offset, &size, data,
1956 read_shadow_ram);
1957 if (status) {
1958 dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
1959 size, status, hw->adminq.sq_last_status);
1960 NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
1961 ice_release_nvm(hw);
1962 return -EIO;
1963 }
1964 ice_release_nvm(hw);
1965
1966 return 0;
1967 }
1968
1969 /**
1970 * ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
1971 * @devlink: the devlink instance
1972 * @ops: the devlink region being snapshotted
1973 * @extack: extended ACK response structure
1974 * @data: on exit points to snapshot data buffer
1975 *
1976 * This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
1977 * the device-caps devlink region. It captures a snapshot of the device
1978 * capabilities reported by firmware.
1979 *
1980 * @returns zero on success, and updates the data pointer. Returns a non-zero
1981 * error code on failure.
1982 */
1983 static int
ice_devlink_devcaps_snapshot(struct devlink * devlink,const struct devlink_region_ops * ops,struct netlink_ext_ack * extack,u8 ** data)1984 ice_devlink_devcaps_snapshot(struct devlink *devlink,
1985 const struct devlink_region_ops *ops,
1986 struct netlink_ext_ack *extack, u8 **data)
1987 {
1988 struct ice_pf *pf = devlink_priv(devlink);
1989 struct device *dev = ice_pf_to_dev(pf);
1990 struct ice_hw *hw = &pf->hw;
1991 void *devcaps;
1992 int status;
1993
1994 devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
1995 if (!devcaps)
1996 return -ENOMEM;
1997
1998 status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
1999 ice_aqc_opc_list_dev_caps, NULL);
2000 if (status) {
2001 dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
2002 status, hw->adminq.sq_last_status);
2003 NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
2004 vfree(devcaps);
2005 return status;
2006 }
2007
2008 *data = (u8 *)devcaps;
2009
2010 return 0;
2011 }
2012
2013 static const struct devlink_region_ops ice_nvm_region_ops = {
2014 .name = "nvm-flash",
2015 .destructor = vfree,
2016 .snapshot = ice_devlink_nvm_snapshot,
2017 .read = ice_devlink_nvm_read,
2018 };
2019
2020 static const struct devlink_region_ops ice_sram_region_ops = {
2021 .name = "shadow-ram",
2022 .destructor = vfree,
2023 .snapshot = ice_devlink_nvm_snapshot,
2024 .read = ice_devlink_nvm_read,
2025 };
2026
2027 static const struct devlink_region_ops ice_devcaps_region_ops = {
2028 .name = "device-caps",
2029 .destructor = vfree,
2030 .snapshot = ice_devlink_devcaps_snapshot,
2031 };
2032
2033 /**
2034 * ice_devlink_init_regions - Initialize devlink regions
2035 * @pf: the PF device structure
2036 *
2037 * Create devlink regions used to enable access to dump the contents of the
2038 * flash memory on the device.
2039 */
ice_devlink_init_regions(struct ice_pf * pf)2040 void ice_devlink_init_regions(struct ice_pf *pf)
2041 {
2042 struct devlink *devlink = priv_to_devlink(pf);
2043 struct device *dev = ice_pf_to_dev(pf);
2044 u64 nvm_size, sram_size;
2045
2046 nvm_size = pf->hw.flash.flash_size;
2047 pf->nvm_region = devl_region_create(devlink, &ice_nvm_region_ops, 1,
2048 nvm_size);
2049 if (IS_ERR(pf->nvm_region)) {
2050 dev_err(dev, "failed to create NVM devlink region, err %ld\n",
2051 PTR_ERR(pf->nvm_region));
2052 pf->nvm_region = NULL;
2053 }
2054
2055 sram_size = pf->hw.flash.sr_words * 2u;
2056 pf->sram_region = devl_region_create(devlink, &ice_sram_region_ops,
2057 1, sram_size);
2058 if (IS_ERR(pf->sram_region)) {
2059 dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
2060 PTR_ERR(pf->sram_region));
2061 pf->sram_region = NULL;
2062 }
2063
2064 pf->devcaps_region = devl_region_create(devlink,
2065 &ice_devcaps_region_ops, 10,
2066 ICE_AQ_MAX_BUF_LEN);
2067 if (IS_ERR(pf->devcaps_region)) {
2068 dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
2069 PTR_ERR(pf->devcaps_region));
2070 pf->devcaps_region = NULL;
2071 }
2072 }
2073
2074 /**
2075 * ice_devlink_destroy_regions - Destroy devlink regions
2076 * @pf: the PF device structure
2077 *
2078 * Remove previously created regions for this PF.
2079 */
ice_devlink_destroy_regions(struct ice_pf * pf)2080 void ice_devlink_destroy_regions(struct ice_pf *pf)
2081 {
2082 if (pf->nvm_region)
2083 devl_region_destroy(pf->nvm_region);
2084
2085 if (pf->sram_region)
2086 devl_region_destroy(pf->sram_region);
2087
2088 if (pf->devcaps_region)
2089 devl_region_destroy(pf->devcaps_region);
2090 }
2091