1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /* Copyright (c) 2024, Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * 3. Neither the name of the Intel Corporation nor the names of its
16 * contributors may be used to endorse or promote products derived from
17 * this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /**
33 * @file ice_lib.c
34 * @brief Generic device setup and sysctl functions
35 *
36 * Library of generic device functions not specific to the networking stack.
37 *
38 * This includes hardware initialization functions, as well as handlers for
39 * many of the device sysctls used to probe driver status or tune specific
40 * behaviors.
41 */
42
43 #include "ice_lib.h"
44 #include "ice_iflib.h"
45 #ifdef PCI_IOV
46 #include "ice_iov.h"
47 #endif
48 #include <dev/pci/pcivar.h>
49 #include <dev/pci/pcireg.h>
50 #include <machine/resource.h>
51 #include <net/if_dl.h>
52 #include <sys/firmware.h>
53 #include <sys/priv.h>
54 #include <sys/limits.h>
55
56 /**
57 * @var M_ICE
58 * @brief main ice driver allocation type
59 *
60 * malloc(9) allocation type used by the majority of memory allocations in the
61 * ice driver.
62 */
63 MALLOC_DEFINE(M_ICE, "ice", "Intel(R) 100Gb Network Driver lib allocations");
64
65 /*
66 * Helper function prototypes
67 */
68 static int ice_get_next_vsi(struct ice_vsi **all_vsi, int size);
69 static void ice_set_default_vsi_ctx(struct ice_vsi_ctx *ctx);
70 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctx, enum ice_vsi_type type);
71 static int ice_setup_vsi_qmap(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx);
72 static int ice_setup_tx_ctx(struct ice_tx_queue *txq,
73 struct ice_tlan_ctx *tlan_ctx, u16 pf_q);
74 static int ice_setup_rx_ctx(struct ice_rx_queue *rxq);
75 static int ice_is_rxq_ready(struct ice_hw *hw, int pf_q, u32 *reg);
76 static void ice_free_fltr_list(struct ice_list_head *list);
77 static int ice_add_mac_to_list(struct ice_vsi *vsi, struct ice_list_head *list,
78 const u8 *addr, enum ice_sw_fwd_act_type action);
79 static void ice_check_ctrlq_errors(struct ice_softc *sc, const char *qname,
80 struct ice_ctl_q_info *cq);
81 static void ice_process_link_event(struct ice_softc *sc, struct ice_rq_event_info *e);
82 static void ice_process_ctrlq_event(struct ice_softc *sc, const char *qname,
83 struct ice_rq_event_info *event);
84 static void ice_nvm_version_str(struct ice_hw *hw, struct sbuf *buf);
85 static void ice_update_port_oversize(struct ice_softc *sc, u64 rx_errors);
86 static void ice_active_pkg_version_str(struct ice_hw *hw, struct sbuf *buf);
87 static void ice_os_pkg_version_str(struct ice_hw *hw, struct sbuf *buf);
88 static bool ice_filter_is_mcast(struct ice_vsi *vsi, struct ice_fltr_info *info);
89 static u_int ice_sync_one_mcast_filter(void *p, struct sockaddr_dl *sdl, u_int errors);
90 static void ice_add_debug_tunables(struct ice_softc *sc);
91 static void ice_add_debug_sysctls(struct ice_softc *sc);
92 static void ice_vsi_set_rss_params(struct ice_vsi *vsi);
93 static void ice_get_default_rss_key(u8 *seed);
94 static int ice_set_rss_key(struct ice_vsi *vsi);
95 static int ice_set_rss_lut(struct ice_vsi *vsi);
96 static void ice_set_rss_flow_flds(struct ice_vsi *vsi);
97 static void ice_clean_vsi_rss_cfg(struct ice_vsi *vsi);
98 static const char *ice_aq_speed_to_str(struct ice_port_info *pi);
99 static const char *ice_requested_fec_mode(struct ice_port_info *pi);
100 static const char *ice_negotiated_fec_mode(struct ice_port_info *pi);
101 static const char *ice_autoneg_mode(struct ice_port_info *pi);
102 static const char *ice_flowcontrol_mode(struct ice_port_info *pi);
103 static void ice_print_bus_link_data(device_t dev, struct ice_hw *hw);
104 static void ice_set_pci_link_status_data(struct ice_hw *hw, u16 link_status);
105 static uint8_t ice_pcie_bandwidth_check(struct ice_softc *sc);
106 static uint64_t ice_pcie_bus_speed_to_rate(enum ice_pcie_bus_speed speed);
107 static int ice_pcie_lnk_width_to_int(enum ice_pcie_link_width width);
108 static uint64_t ice_phy_types_to_max_rate(struct ice_port_info *pi);
109 static void ice_add_sysctls_sw_stats(struct ice_vsi *vsi,
110 struct sysctl_ctx_list *ctx,
111 struct sysctl_oid *parent);
112 static void
113 ice_add_sysctls_mac_pfc_one_stat(struct sysctl_ctx_list *ctx,
114 struct sysctl_oid_list *parent_list,
115 u64* pfc_stat_location,
116 const char *node_name,
117 const char *descr);
118 static void ice_add_sysctls_mac_pfc_stats(struct sysctl_ctx_list *ctx,
119 struct sysctl_oid *parent,
120 struct ice_hw_port_stats *stats);
121 static void ice_setup_vsi_common(struct ice_softc *sc, struct ice_vsi *vsi,
122 enum ice_vsi_type type, int idx,
123 bool dynamic);
124 static void ice_handle_mib_change_event(struct ice_softc *sc,
125 struct ice_rq_event_info *event);
126 static void
127 ice_handle_lan_overflow_event(struct ice_softc *sc,
128 struct ice_rq_event_info *event);
129 static int ice_add_ethertype_to_list(struct ice_vsi *vsi,
130 struct ice_list_head *list,
131 u16 ethertype, u16 direction,
132 enum ice_sw_fwd_act_type action);
133 static void ice_del_rx_lldp_filter(struct ice_softc *sc);
134 static u16 ice_aq_phy_types_to_link_speeds(u64 phy_type_low,
135 u64 phy_type_high);
136 struct ice_phy_data;
137 static int
138 ice_intersect_phy_types_and_speeds(struct ice_softc *sc,
139 struct ice_phy_data *phy_data);
140 static int
141 ice_apply_saved_phy_req_to_cfg(struct ice_softc *sc,
142 struct ice_aqc_set_phy_cfg_data *cfg);
143 static int
144 ice_apply_saved_fec_req_to_cfg(struct ice_softc *sc,
145 struct ice_aqc_set_phy_cfg_data *cfg);
146 static void
147 ice_apply_saved_fc_req_to_cfg(struct ice_port_info *pi,
148 struct ice_aqc_set_phy_cfg_data *cfg);
149 static void
150 ice_print_ldo_tlv(struct ice_softc *sc,
151 struct ice_link_default_override_tlv *tlv);
152 static void
153 ice_sysctl_speeds_to_aq_phy_types(u16 sysctl_speeds, u64 *phy_type_low,
154 u64 *phy_type_high);
155 static u16 ice_apply_supported_speed_filter(u16 report_speeds, u8 mod_type);
156 static void
157 ice_handle_health_status_event(struct ice_softc *sc,
158 struct ice_rq_event_info *event);
159 static void
160 ice_print_health_status_string(device_t dev,
161 struct ice_aqc_health_status_elem *elem);
162 static void
163 ice_debug_print_mib_change_event(struct ice_softc *sc,
164 struct ice_rq_event_info *event);
165 static bool ice_check_ets_bw(u8 *table);
166 static u8 ice_dcb_get_num_tc(struct ice_dcbx_cfg *dcbcfg);
167 static bool
168 ice_dcb_needs_reconfig(struct ice_softc *sc, struct ice_dcbx_cfg *old_cfg,
169 struct ice_dcbx_cfg *new_cfg);
170 static void ice_dcb_recfg(struct ice_softc *sc);
171 static u8 ice_dcb_tc_contig(u8 tc_map);
172 static int ice_ets_str_to_tbl(const char *str, u8 *table, u8 limit);
173 static int ice_pf_vsi_cfg_tc(struct ice_softc *sc, u8 tc_map);
174 static void ice_sbuf_print_ets_cfg(struct sbuf *sbuf, const char *name,
175 struct ice_dcb_ets_cfg *ets);
176 static void ice_stop_pf_vsi(struct ice_softc *sc);
177 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt);
178 static int ice_config_pfc(struct ice_softc *sc, u8 new_mode);
179 void
180 ice_add_dscp2tc_map_sysctls(struct ice_softc *sc,
181 struct sysctl_ctx_list *ctx,
182 struct sysctl_oid_list *ctx_list);
183 static void ice_set_default_local_mib_settings(struct ice_softc *sc);
184 static bool ice_dscp_is_mapped(struct ice_dcbx_cfg *dcbcfg);
185 static void ice_start_dcbx_agent(struct ice_softc *sc);
186 static u16 ice_fw_debug_dump_print_cluster(struct ice_softc *sc,
187 struct sbuf *sbuf, u16 cluster_id);
188 static void ice_fw_debug_dump_print_clusters(struct ice_softc *sc,
189 struct sbuf *sbuf);
190 static void ice_remove_vsi_mirroring(struct ice_vsi *vsi);
191 static int ice_get_tx_rx_equalizations(struct ice_hw *hw, u8 serdes_num,
192 struct ice_serdes_equalization *ptr);
193 static int ice_fec_counter_read(struct ice_hw *hw, u32 receiver_id,
194 u32 reg_offset, u16 *output);
195 static int ice_get_port_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
196 struct ice_fec_stats_to_sysctl *fec_stats);
197 static bool ice_is_serdes_muxed(struct ice_hw *hw);
198 static int ice_get_maxspeed(struct ice_hw *hw, u8 lport, u8 *max_speed);
199 static int ice_update_port_topology(u8 lport,
200 struct ice_port_topology *port_topology,
201 bool is_muxed);
202 static int ice_get_port_topology(struct ice_hw *hw, u8 lport,
203 struct ice_port_topology *port_topology);
204
205 static int ice_module_init(void);
206 static int ice_module_exit(void);
207
208 /*
209 * package version comparison functions
210 */
211 static bool pkg_ver_empty(struct ice_pkg_ver *pkg_ver, u8 *pkg_name);
212 static int pkg_ver_compatible(struct ice_pkg_ver *pkg_ver);
213
214 /*
215 * dynamic sysctl handlers
216 */
217 static int ice_sysctl_show_fw(SYSCTL_HANDLER_ARGS);
218 static int ice_sysctl_pkg_version(SYSCTL_HANDLER_ARGS);
219 static int ice_sysctl_os_pkg_version(SYSCTL_HANDLER_ARGS);
220 static int ice_sysctl_dump_mac_filters(SYSCTL_HANDLER_ARGS);
221 static int ice_sysctl_dump_vlan_filters(SYSCTL_HANDLER_ARGS);
222 static int ice_sysctl_dump_ethertype_filters(SYSCTL_HANDLER_ARGS);
223 static int ice_sysctl_dump_ethertype_mac_filters(SYSCTL_HANDLER_ARGS);
224 static int ice_sysctl_current_speed(SYSCTL_HANDLER_ARGS);
225 static int ice_sysctl_request_reset(SYSCTL_HANDLER_ARGS);
226 static int ice_sysctl_dump_state_flags(SYSCTL_HANDLER_ARGS);
227 static int ice_sysctl_fec_config(SYSCTL_HANDLER_ARGS);
228 static int ice_sysctl_fc_config(SYSCTL_HANDLER_ARGS);
229 static int ice_sysctl_negotiated_fc(SYSCTL_HANDLER_ARGS);
230 static int ice_sysctl_negotiated_fec(SYSCTL_HANDLER_ARGS);
231 static int ice_sysctl_phy_type_low(SYSCTL_HANDLER_ARGS);
232 static int ice_sysctl_phy_type_high(SYSCTL_HANDLER_ARGS);
233 static int __ice_sysctl_phy_type_handler(SYSCTL_HANDLER_ARGS,
234 bool is_phy_type_high);
235 static int ice_sysctl_advertise_speed(SYSCTL_HANDLER_ARGS);
236 static int ice_sysctl_rx_itr(SYSCTL_HANDLER_ARGS);
237 static int ice_sysctl_tx_itr(SYSCTL_HANDLER_ARGS);
238 static int ice_sysctl_fw_lldp_agent(SYSCTL_HANDLER_ARGS);
239 static int ice_sysctl_fw_cur_lldp_persist_status(SYSCTL_HANDLER_ARGS);
240 static int ice_sysctl_fw_dflt_lldp_persist_status(SYSCTL_HANDLER_ARGS);
241 static int ice_sysctl_phy_caps(SYSCTL_HANDLER_ARGS, u8 report_mode);
242 static int ice_sysctl_phy_sw_caps(SYSCTL_HANDLER_ARGS);
243 static int ice_sysctl_phy_nvm_caps(SYSCTL_HANDLER_ARGS);
244 static int ice_sysctl_phy_topo_caps(SYSCTL_HANDLER_ARGS);
245 static int ice_sysctl_phy_link_status(SYSCTL_HANDLER_ARGS);
246 static int ice_sysctl_read_i2c_diag_data(SYSCTL_HANDLER_ARGS);
247 static int ice_sysctl_tx_cso_stat(SYSCTL_HANDLER_ARGS);
248 static int ice_sysctl_rx_cso_stat(SYSCTL_HANDLER_ARGS);
249 static int ice_sysctl_pba_number(SYSCTL_HANDLER_ARGS);
250 static int ice_sysctl_rx_errors_stat(SYSCTL_HANDLER_ARGS);
251 static int ice_sysctl_dump_dcbx_cfg(SYSCTL_HANDLER_ARGS);
252 static int ice_sysctl_dump_vsi_cfg(SYSCTL_HANDLER_ARGS);
253 static int ice_sysctl_dump_phy_stats(SYSCTL_HANDLER_ARGS);
254 static int ice_sysctl_ets_min_rate(SYSCTL_HANDLER_ARGS);
255 static int ice_sysctl_up2tc_map(SYSCTL_HANDLER_ARGS);
256 static int ice_sysctl_pfc_config(SYSCTL_HANDLER_ARGS);
257 static int ice_sysctl_query_port_ets(SYSCTL_HANDLER_ARGS);
258 static int ice_sysctl_dscp2tc_map(SYSCTL_HANDLER_ARGS);
259 static int ice_sysctl_pfc_mode(SYSCTL_HANDLER_ARGS);
260 static int ice_sysctl_fw_debug_dump_cluster_setting(SYSCTL_HANDLER_ARGS);
261 static int ice_sysctl_fw_debug_dump_do_dump(SYSCTL_HANDLER_ARGS);
262 static int ice_sysctl_allow_no_fec_mod_in_auto(SYSCTL_HANDLER_ARGS);
263 static int ice_sysctl_set_link_active(SYSCTL_HANDLER_ARGS);
264 static int ice_sysctl_debug_set_link(SYSCTL_HANDLER_ARGS);
265 static int ice_sysctl_temperature(SYSCTL_HANDLER_ARGS);
266 static int ice_sysctl_create_mirror_interface(SYSCTL_HANDLER_ARGS);
267 static int ice_sysctl_destroy_mirror_interface(SYSCTL_HANDLER_ARGS);
268
269 /**
270 * ice_map_bar - Map PCIe BAR memory
271 * @dev: the PCIe device
272 * @bar: the BAR info structure
273 * @bar_num: PCIe BAR number
274 *
275 * Maps the specified PCIe BAR. Stores the mapping data in struct
276 * ice_bar_info.
277 */
278 int
ice_map_bar(device_t dev,struct ice_bar_info * bar,int bar_num)279 ice_map_bar(device_t dev, struct ice_bar_info *bar, int bar_num)
280 {
281 if (bar->res != NULL) {
282 device_printf(dev, "PCI BAR%d already mapped\n", bar_num);
283 return (EDOOFUS);
284 }
285
286 bar->rid = PCIR_BAR(bar_num);
287 bar->res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &bar->rid,
288 RF_ACTIVE);
289 if (!bar->res) {
290 device_printf(dev, "PCI BAR%d mapping failed\n", bar_num);
291 return (ENXIO);
292 }
293
294 bar->tag = rman_get_bustag(bar->res);
295 bar->handle = rman_get_bushandle(bar->res);
296 bar->size = rman_get_size(bar->res);
297
298 return (0);
299 }
300
301 /**
302 * ice_free_bar - Free PCIe BAR memory
303 * @dev: the PCIe device
304 * @bar: the BAR info structure
305 *
306 * Frees the specified PCIe BAR, releasing its resources.
307 */
308 void
ice_free_bar(device_t dev,struct ice_bar_info * bar)309 ice_free_bar(device_t dev, struct ice_bar_info *bar)
310 {
311 if (bar->res != NULL)
312 bus_release_resource(dev, SYS_RES_MEMORY, bar->rid, bar->res);
313 bar->res = NULL;
314 }
315
316 /**
317 * ice_set_ctrlq_len - Configure ctrlq lengths for a device
318 * @hw: the device hardware structure
319 *
320 * Configures the control queues for the given device, setting up the
321 * specified lengths, prior to initializing hardware.
322 */
323 void
ice_set_ctrlq_len(struct ice_hw * hw)324 ice_set_ctrlq_len(struct ice_hw *hw)
325 {
326 hw->adminq.num_rq_entries = ICE_AQ_LEN;
327 hw->adminq.num_sq_entries = ICE_AQ_LEN;
328 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
329 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
330
331 hw->mailboxq.num_rq_entries = ICE_MBXQ_LEN;
332 hw->mailboxq.num_sq_entries = ICE_MBXQ_LEN;
333 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
334 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
335
336 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
337 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
338 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
339 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
340 }
341
342 /**
343 * ice_get_next_vsi - Get the next available VSI slot
344 * @all_vsi: the VSI list
345 * @size: the size of the VSI list
346 *
347 * Returns the index to the first available VSI slot. Will return size (one
348 * past the last index) if there are no slots available.
349 */
350 static int
ice_get_next_vsi(struct ice_vsi ** all_vsi,int size)351 ice_get_next_vsi(struct ice_vsi **all_vsi, int size)
352 {
353 int i;
354
355 for (i = 0; i < size; i++) {
356 if (all_vsi[i] == NULL)
357 return i;
358 }
359
360 return size;
361 }
362
363 /**
364 * ice_setup_vsi_common - Common VSI setup for both dynamic and static VSIs
365 * @sc: the device private softc structure
366 * @vsi: the VSI to setup
367 * @type: the VSI type of the new VSI
368 * @idx: the index in the all_vsi array to use
369 * @dynamic: whether this VSI memory was dynamically allocated
370 *
371 * Perform setup for a VSI that is common to both dynamically allocated VSIs
372 * and the static PF VSI which is embedded in the softc structure.
373 */
374 static void
ice_setup_vsi_common(struct ice_softc * sc,struct ice_vsi * vsi,enum ice_vsi_type type,int idx,bool dynamic)375 ice_setup_vsi_common(struct ice_softc *sc, struct ice_vsi *vsi,
376 enum ice_vsi_type type, int idx, bool dynamic)
377 {
378 /* Store important values in VSI struct */
379 vsi->type = type;
380 vsi->sc = sc;
381 vsi->idx = idx;
382 sc->all_vsi[idx] = vsi;
383 vsi->dynamic = dynamic;
384
385 /* Set default mirroring rule information */
386 vsi->rule_mir_ingress = ICE_INVAL_MIRROR_RULE_ID;
387 vsi->rule_mir_egress = ICE_INVAL_MIRROR_RULE_ID;
388
389 /* Setup the VSI tunables now */
390 ice_add_vsi_tunables(vsi, sc->vsi_sysctls);
391 }
392
393 /**
394 * ice_alloc_vsi - Allocate a dynamic VSI
395 * @sc: device softc structure
396 * @type: VSI type
397 *
398 * Allocates a new dynamic VSI structure and inserts it into the VSI list.
399 */
400 struct ice_vsi *
ice_alloc_vsi(struct ice_softc * sc,enum ice_vsi_type type)401 ice_alloc_vsi(struct ice_softc *sc, enum ice_vsi_type type)
402 {
403 struct ice_vsi *vsi;
404 int idx;
405
406 /* Find an open index for a new VSI to be allocated. If the returned
407 * index is >= the num_available_vsi then it means no slot is
408 * available.
409 */
410 idx = ice_get_next_vsi(sc->all_vsi, sc->num_available_vsi);
411 if (idx >= sc->num_available_vsi) {
412 device_printf(sc->dev, "No available VSI slots\n");
413 return NULL;
414 }
415
416 vsi = (struct ice_vsi *)malloc(sizeof(*vsi), M_ICE, M_NOWAIT | M_ZERO);
417 if (!vsi) {
418 device_printf(sc->dev, "Unable to allocate VSI memory\n");
419 return NULL;
420 }
421
422 ice_setup_vsi_common(sc, vsi, type, idx, true);
423
424 return vsi;
425 }
426
427 /**
428 * ice_setup_pf_vsi - Setup the PF VSI
429 * @sc: the device private softc
430 *
431 * Setup the PF VSI structure which is embedded as sc->pf_vsi in the device
432 * private softc. Unlike other VSIs, the PF VSI memory is allocated as part of
433 * the softc memory, instead of being dynamically allocated at creation.
434 */
435 void
ice_setup_pf_vsi(struct ice_softc * sc)436 ice_setup_pf_vsi(struct ice_softc *sc)
437 {
438 ice_setup_vsi_common(sc, &sc->pf_vsi, ICE_VSI_PF, 0, false);
439 }
440
441 /**
442 * ice_alloc_vsi_qmap
443 * @vsi: VSI structure
444 * @max_tx_queues: Number of transmit queues to identify
445 * @max_rx_queues: Number of receive queues to identify
446 *
447 * Allocates a max_[t|r]x_queues array of words for the VSI where each
448 * word contains the index of the queue it represents. In here, all
449 * words are initialized to an index of ICE_INVALID_RES_IDX, indicating
450 * all queues for this VSI are not yet assigned an index and thus,
451 * not ready for use.
452 *
453 */
454 void
ice_alloc_vsi_qmap(struct ice_vsi * vsi,const int max_tx_queues,const int max_rx_queues)455 ice_alloc_vsi_qmap(struct ice_vsi *vsi, const int max_tx_queues,
456 const int max_rx_queues)
457 {
458 int i;
459
460 MPASS(max_tx_queues > 0);
461 MPASS(max_rx_queues > 0);
462
463 /* Allocate Tx queue mapping memory */
464 vsi->tx_qmap = malloc(sizeof(u16) * max_tx_queues, M_ICE, M_WAITOK);
465
466 /* Allocate Rx queue mapping memory */
467 vsi->rx_qmap = malloc(sizeof(u16) * max_rx_queues, M_ICE, M_WAITOK);
468
469 /* Mark every queue map as invalid to start with */
470 for (i = 0; i < max_tx_queues; i++) {
471 vsi->tx_qmap[i] = ICE_INVALID_RES_IDX;
472 }
473 for (i = 0; i < max_rx_queues; i++) {
474 vsi->rx_qmap[i] = ICE_INVALID_RES_IDX;
475 }
476 }
477
478 /**
479 * ice_free_vsi_qmaps - Free the PF qmaps associated with a VSI
480 * @vsi: the VSI private structure
481 *
482 * Frees the PF qmaps associated with the given VSI. Generally this will be
483 * called by ice_release_vsi, but may need to be called during attach cleanup,
484 * depending on when the qmaps were allocated.
485 */
486 void
ice_free_vsi_qmaps(struct ice_vsi * vsi)487 ice_free_vsi_qmaps(struct ice_vsi *vsi)
488 {
489 struct ice_softc *sc = vsi->sc;
490
491 if (vsi->tx_qmap) {
492 ice_resmgr_release_map(&sc->tx_qmgr, vsi->tx_qmap,
493 vsi->num_tx_queues);
494 free(vsi->tx_qmap, M_ICE);
495 vsi->tx_qmap = NULL;
496 }
497
498 if (vsi->rx_qmap) {
499 ice_resmgr_release_map(&sc->rx_qmgr, vsi->rx_qmap,
500 vsi->num_rx_queues);
501 free(vsi->rx_qmap, M_ICE);
502 vsi->rx_qmap = NULL;
503 }
504 }
505
506 /**
507 * ice_set_default_vsi_ctx - Setup default VSI context parameters
508 * @ctx: the VSI context to initialize
509 *
510 * Initialize and prepare a default VSI context for configuring a new VSI.
511 */
512 static void
ice_set_default_vsi_ctx(struct ice_vsi_ctx * ctx)513 ice_set_default_vsi_ctx(struct ice_vsi_ctx *ctx)
514 {
515 u32 table = 0;
516
517 memset(&ctx->info, 0, sizeof(ctx->info));
518 /* VSI will be allocated from shared pool */
519 ctx->alloc_from_pool = true;
520 /* Enable source pruning by default */
521 ctx->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
522 /* Traffic from VSI can be sent to LAN */
523 ctx->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
524 /* Allow all packets untagged/tagged */
525 ctx->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
526 ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
527 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
528 /* Show VLAN/UP from packets in Rx descriptors */
529 ctx->info.inner_vlan_flags |= ((ICE_AQ_VSI_INNER_VLAN_EMODE_STR_BOTH &
530 ICE_AQ_VSI_INNER_VLAN_EMODE_M) >>
531 ICE_AQ_VSI_INNER_VLAN_EMODE_S);
532 /* Have 1:1 UP mapping for both ingress/egress tables */
533 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
534 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
535 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
536 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
537 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
538 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
539 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
540 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
541 ctx->info.ingress_table = CPU_TO_LE32(table);
542 ctx->info.egress_table = CPU_TO_LE32(table);
543 /* Have 1:1 UP mapping for outer to inner UP table */
544 ctx->info.outer_up_table = CPU_TO_LE32(table);
545 /* No Outer tag support, so outer_vlan_flags remains zero */
546 }
547
548 /**
549 * ice_set_rss_vsi_ctx - Setup VSI context parameters for RSS
550 * @ctx: the VSI context to configure
551 * @type: the VSI type
552 *
553 * Configures the VSI context for RSS, based on the VSI type.
554 */
555 static void
ice_set_rss_vsi_ctx(struct ice_vsi_ctx * ctx,enum ice_vsi_type type)556 ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctx, enum ice_vsi_type type)
557 {
558 u8 lut_type, hash_type;
559
560 switch (type) {
561 case ICE_VSI_PF:
562 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
563 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
564 break;
565 case ICE_VSI_VF:
566 case ICE_VSI_VMDQ2:
567 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
568 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
569 break;
570 default:
571 /* Other VSI types do not support RSS */
572 return;
573 }
574
575 ctx->info.q_opt_rss = (((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
576 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
577 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
578 ICE_AQ_VSI_Q_OPT_RSS_HASH_M));
579 }
580
581 /**
582 * ice_setup_vsi_qmap - Setup the queue mapping for a VSI
583 * @vsi: the VSI to configure
584 * @ctx: the VSI context to configure
585 *
586 * Configures the context for the given VSI, setting up how the firmware
587 * should map the queues for this VSI.
588 *
589 * @pre vsi->qmap_type is set to a valid type
590 */
591 static int
ice_setup_vsi_qmap(struct ice_vsi * vsi,struct ice_vsi_ctx * ctx)592 ice_setup_vsi_qmap(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
593 {
594 int pow = 0;
595 u16 qmap;
596
597 MPASS(vsi->rx_qmap != NULL);
598
599 switch (vsi->qmap_type) {
600 case ICE_RESMGR_ALLOC_CONTIGUOUS:
601 ctx->info.mapping_flags |= CPU_TO_LE16(ICE_AQ_VSI_Q_MAP_CONTIG);
602
603 ctx->info.q_mapping[0] = CPU_TO_LE16(vsi->rx_qmap[0]);
604 ctx->info.q_mapping[1] = CPU_TO_LE16(vsi->num_rx_queues);
605
606 break;
607 case ICE_RESMGR_ALLOC_SCATTERED:
608 ctx->info.mapping_flags |= CPU_TO_LE16(ICE_AQ_VSI_Q_MAP_NONCONTIG);
609
610 for (int i = 0; i < vsi->num_rx_queues; i++)
611 ctx->info.q_mapping[i] = CPU_TO_LE16(vsi->rx_qmap[i]);
612 break;
613 default:
614 return (EOPNOTSUPP);
615 }
616
617 /* Calculate the next power-of-2 of number of queues */
618 if (vsi->num_rx_queues)
619 pow = flsl(vsi->num_rx_queues - 1);
620
621 /* Assign all the queues to traffic class zero */
622 qmap = (pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M;
623 ctx->info.tc_mapping[0] = CPU_TO_LE16(qmap);
624
625 /* Fill out default driver TC queue info for VSI */
626 vsi->tc_info[0].qoffset = 0;
627 vsi->tc_info[0].qcount_rx = vsi->num_rx_queues;
628 vsi->tc_info[0].qcount_tx = vsi->num_tx_queues;
629 for (int i = 1; i < ICE_MAX_TRAFFIC_CLASS; i++) {
630 vsi->tc_info[i].qoffset = 0;
631 vsi->tc_info[i].qcount_rx = 1;
632 vsi->tc_info[i].qcount_tx = 1;
633 }
634 vsi->tc_map = 0x1;
635
636 return 0;
637 }
638
639 /**
640 * ice_setup_vsi_mirroring -- Setup a VSI for mirroring PF VSI traffic
641 * @vsi: VSI to setup
642 *
643 * @pre vsi->mirror_src_vsi is set to the SW VSI num that traffic is to be
644 * mirrored from
645 *
646 * Returns 0 on success, EINVAL on failure.
647 */
648 int
ice_setup_vsi_mirroring(struct ice_vsi * vsi)649 ice_setup_vsi_mirroring(struct ice_vsi *vsi)
650 {
651 struct ice_mir_rule_buf rule = { };
652 struct ice_softc *sc = vsi->sc;
653 struct ice_hw *hw = &sc->hw;
654 device_t dev = sc->dev;
655 int status;
656 u16 rule_id, dest_vsi;
657 u16 count = 1;
658
659 rule.vsi_idx = ice_get_hw_vsi_num(hw, vsi->mirror_src_vsi);
660 rule.add = true;
661
662 dest_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
663 rule_id = ICE_INVAL_MIRROR_RULE_ID;
664 status = ice_aq_add_update_mir_rule(hw, ICE_AQC_RULE_TYPE_VPORT_INGRESS,
665 dest_vsi, count, &rule, NULL,
666 &rule_id);
667 if (status) {
668 device_printf(dev,
669 "Could not add INGRESS rule for mirror vsi %d to vsi %d, err %s aq_err %s\n",
670 rule.vsi_idx, dest_vsi, ice_status_str(status),
671 ice_aq_str(hw->adminq.sq_last_status));
672 return (EINVAL);
673 }
674
675 vsi->rule_mir_ingress = rule_id;
676
677 rule_id = ICE_INVAL_MIRROR_RULE_ID;
678 status = ice_aq_add_update_mir_rule(hw, ICE_AQC_RULE_TYPE_VPORT_EGRESS,
679 dest_vsi, count, &rule, NULL, &rule_id);
680 if (status) {
681 device_printf(dev,
682 "Could not add EGRESS rule for mirror vsi %d to vsi %d, err %s aq_err %s\n",
683 rule.vsi_idx, dest_vsi, ice_status_str(status),
684 ice_aq_str(hw->adminq.sq_last_status));
685 return (EINVAL);
686 }
687
688 vsi->rule_mir_egress = rule_id;
689
690 return (0);
691 }
692
693 /**
694 * ice_remove_vsi_mirroring -- Teardown any VSI mirroring rules
695 * @vsi: VSI to remove mirror rules from
696 */
697 static void
ice_remove_vsi_mirroring(struct ice_vsi * vsi)698 ice_remove_vsi_mirroring(struct ice_vsi *vsi)
699 {
700 struct ice_hw *hw = &vsi->sc->hw;
701 int status = 0;
702 bool keep_alloc = false;
703
704 if (vsi->rule_mir_ingress != ICE_INVAL_MIRROR_RULE_ID)
705 status = ice_aq_delete_mir_rule(hw, vsi->rule_mir_ingress, keep_alloc, NULL);
706
707 if (status)
708 device_printf(vsi->sc->dev, "Could not remove mirror VSI ingress rule, err %s aq_err %s\n",
709 ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
710
711 status = 0;
712
713 if (vsi->rule_mir_egress != ICE_INVAL_MIRROR_RULE_ID)
714 status = ice_aq_delete_mir_rule(hw, vsi->rule_mir_egress, keep_alloc, NULL);
715
716 if (status)
717 device_printf(vsi->sc->dev, "Could not remove mirror VSI egress rule, err %s aq_err %s\n",
718 ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
719 }
720
721 /**
722 * ice_initialize_vsi - Initialize a VSI for use
723 * @vsi: the vsi to initialize
724 *
725 * Initialize a VSI over the adminq and prepare it for operation.
726 *
727 * @pre vsi->num_tx_queues is set
728 * @pre vsi->num_rx_queues is set
729 */
730 int
ice_initialize_vsi(struct ice_vsi * vsi)731 ice_initialize_vsi(struct ice_vsi *vsi)
732 {
733 struct ice_vsi_ctx ctx = { 0 };
734 struct ice_hw *hw = &vsi->sc->hw;
735 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
736 int status;
737 int err;
738
739 /* For now, we only have code supporting PF VSIs */
740 switch (vsi->type) {
741 case ICE_VSI_PF:
742 ctx.flags = ICE_AQ_VSI_TYPE_PF;
743 break;
744 case ICE_VSI_VMDQ2:
745 ctx.flags = ICE_AQ_VSI_TYPE_VMDQ2;
746 break;
747 #ifdef PCI_IOV
748 case ICE_VSI_VF:
749 ctx.flags = ICE_AQ_VSI_TYPE_VF;
750 ctx.vf_num = vsi->vf_num;
751 break;
752 #endif
753 default:
754 return (ENODEV);
755 }
756
757 ice_set_default_vsi_ctx(&ctx);
758 ice_set_rss_vsi_ctx(&ctx, vsi->type);
759
760 /* XXX: VSIs of other types may need different port info? */
761 ctx.info.sw_id = hw->port_info->sw_id;
762
763 /* Set some RSS parameters based on the VSI type */
764 ice_vsi_set_rss_params(vsi);
765
766 /* Initialize the Rx queue mapping for this VSI */
767 err = ice_setup_vsi_qmap(vsi, &ctx);
768 if (err) {
769 return err;
770 }
771
772 /* (Re-)add VSI to HW VSI handle list */
773 status = ice_add_vsi(hw, vsi->idx, &ctx, NULL);
774 if (status != 0) {
775 device_printf(vsi->sc->dev,
776 "Add VSI AQ call failed, err %s aq_err %s\n",
777 ice_status_str(status),
778 ice_aq_str(hw->adminq.sq_last_status));
779 return (EIO);
780 }
781 vsi->info = ctx.info;
782
783 /* Initialize VSI with just 1 TC to start */
784 max_txqs[0] = vsi->num_tx_queues;
785
786 status = ice_cfg_vsi_lan(hw->port_info, vsi->idx,
787 ICE_DFLT_TRAFFIC_CLASS, max_txqs);
788 if (status) {
789 device_printf(vsi->sc->dev,
790 "Failed VSI lan queue config, err %s aq_err %s\n",
791 ice_status_str(status),
792 ice_aq_str(hw->adminq.sq_last_status));
793 ice_deinit_vsi(vsi);
794 return (ENODEV);
795 }
796
797 /* Reset VSI stats */
798 ice_reset_vsi_stats(vsi);
799
800 return 0;
801 }
802
803 /**
804 * ice_deinit_vsi - Tell firmware to release resources for a VSI
805 * @vsi: the VSI to release
806 *
807 * Helper function which requests the firmware to release the hardware
808 * resources associated with a given VSI.
809 */
810 void
ice_deinit_vsi(struct ice_vsi * vsi)811 ice_deinit_vsi(struct ice_vsi *vsi)
812 {
813 struct ice_vsi_ctx ctx = { 0 };
814 struct ice_softc *sc = vsi->sc;
815 struct ice_hw *hw = &sc->hw;
816 int status;
817
818 /* Assert that the VSI pointer matches in the list */
819 MPASS(vsi == sc->all_vsi[vsi->idx]);
820
821 ctx.info = vsi->info;
822
823 status = ice_rm_vsi_lan_cfg(hw->port_info, vsi->idx);
824 if (status) {
825 /*
826 * This should only fail if the VSI handle is invalid, or if
827 * any of the nodes have leaf nodes which are still in use.
828 */
829 device_printf(sc->dev,
830 "Unable to remove scheduler nodes for VSI %d, err %s\n",
831 vsi->idx, ice_status_str(status));
832 }
833
834 /* Tell firmware to release the VSI resources */
835 status = ice_free_vsi(hw, vsi->idx, &ctx, false, NULL);
836 if (status != 0) {
837 device_printf(sc->dev,
838 "Free VSI %u AQ call failed, err %s aq_err %s\n",
839 vsi->idx, ice_status_str(status),
840 ice_aq_str(hw->adminq.sq_last_status));
841 }
842 }
843
844 /**
845 * ice_release_vsi - Release resources associated with a VSI
846 * @vsi: the VSI to release
847 *
848 * Release software and firmware resources associated with a VSI. Release the
849 * queue managers associated with this VSI. Also free the VSI structure memory
850 * if the VSI was allocated dynamically using ice_alloc_vsi().
851 */
852 void
ice_release_vsi(struct ice_vsi * vsi)853 ice_release_vsi(struct ice_vsi *vsi)
854 {
855 struct ice_softc *sc = vsi->sc;
856 int idx = vsi->idx;
857
858 /* Assert that the VSI pointer matches in the list */
859 MPASS(vsi == sc->all_vsi[idx]);
860
861 /* Cleanup RSS configuration */
862 if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_RSS))
863 ice_clean_vsi_rss_cfg(vsi);
864
865 ice_del_vsi_sysctl_ctx(vsi);
866
867 /* Remove the configured mirror rule, if it exists */
868 ice_remove_vsi_mirroring(vsi);
869
870 /*
871 * If we unload the driver after a reset fails, we do not need to do
872 * this step.
873 */
874 if (!ice_test_state(&sc->state, ICE_STATE_RESET_FAILED))
875 ice_deinit_vsi(vsi);
876
877 ice_free_vsi_qmaps(vsi);
878
879 if (vsi->dynamic) {
880 free(sc->all_vsi[idx], M_ICE);
881 }
882
883 sc->all_vsi[idx] = NULL;
884 }
885
886 /**
887 * ice_aq_speed_to_rate - Convert AdminQ speed enum to baudrate
888 * @pi: port info data
889 *
890 * Returns the baudrate value for the current link speed of a given port.
891 */
892 uint64_t
ice_aq_speed_to_rate(struct ice_port_info * pi)893 ice_aq_speed_to_rate(struct ice_port_info *pi)
894 {
895 switch (pi->phy.link_info.link_speed) {
896 case ICE_AQ_LINK_SPEED_200GB:
897 return IF_Gbps(200);
898 case ICE_AQ_LINK_SPEED_100GB:
899 return IF_Gbps(100);
900 case ICE_AQ_LINK_SPEED_50GB:
901 return IF_Gbps(50);
902 case ICE_AQ_LINK_SPEED_40GB:
903 return IF_Gbps(40);
904 case ICE_AQ_LINK_SPEED_25GB:
905 return IF_Gbps(25);
906 case ICE_AQ_LINK_SPEED_10GB:
907 return IF_Gbps(10);
908 case ICE_AQ_LINK_SPEED_5GB:
909 return IF_Gbps(5);
910 case ICE_AQ_LINK_SPEED_2500MB:
911 return IF_Mbps(2500);
912 case ICE_AQ_LINK_SPEED_1000MB:
913 return IF_Mbps(1000);
914 case ICE_AQ_LINK_SPEED_100MB:
915 return IF_Mbps(100);
916 case ICE_AQ_LINK_SPEED_10MB:
917 return IF_Mbps(10);
918 case ICE_AQ_LINK_SPEED_UNKNOWN:
919 default:
920 /* return 0 if we don't know the link speed */
921 return 0;
922 }
923 }
924
925 /**
926 * ice_aq_speed_to_str - Convert AdminQ speed enum to string representation
927 * @pi: port info data
928 *
929 * Returns the string representation of the current link speed for a given
930 * port.
931 */
932 static const char *
ice_aq_speed_to_str(struct ice_port_info * pi)933 ice_aq_speed_to_str(struct ice_port_info *pi)
934 {
935 switch (pi->phy.link_info.link_speed) {
936 case ICE_AQ_LINK_SPEED_200GB:
937 return "200 Gbps";
938 case ICE_AQ_LINK_SPEED_100GB:
939 return "100 Gbps";
940 case ICE_AQ_LINK_SPEED_50GB:
941 return "50 Gbps";
942 case ICE_AQ_LINK_SPEED_40GB:
943 return "40 Gbps";
944 case ICE_AQ_LINK_SPEED_25GB:
945 return "25 Gbps";
946 case ICE_AQ_LINK_SPEED_20GB:
947 return "20 Gbps";
948 case ICE_AQ_LINK_SPEED_10GB:
949 return "10 Gbps";
950 case ICE_AQ_LINK_SPEED_5GB:
951 return "5 Gbps";
952 case ICE_AQ_LINK_SPEED_2500MB:
953 return "2.5 Gbps";
954 case ICE_AQ_LINK_SPEED_1000MB:
955 return "1 Gbps";
956 case ICE_AQ_LINK_SPEED_100MB:
957 return "100 Mbps";
958 case ICE_AQ_LINK_SPEED_10MB:
959 return "10 Mbps";
960 case ICE_AQ_LINK_SPEED_UNKNOWN:
961 default:
962 return "Unknown speed";
963 }
964 }
965
966 /**
967 * ice_get_phy_type_low - Get media associated with phy_type_low
968 * @phy_type_low: the low 64bits of phy_type from the AdminQ
969 *
970 * Given the lower 64bits of the phy_type from the hardware, return the
971 * ifm_active bit associated. Return IFM_UNKNOWN when phy_type_low is unknown.
972 * Note that only one of ice_get_phy_type_low or ice_get_phy_type_high should
973 * be called. If phy_type_low is zero, call ice_phy_type_high.
974 */
975 int
ice_get_phy_type_low(uint64_t phy_type_low)976 ice_get_phy_type_low(uint64_t phy_type_low)
977 {
978 switch (phy_type_low) {
979 case ICE_PHY_TYPE_LOW_100BASE_TX:
980 return IFM_100_TX;
981 case ICE_PHY_TYPE_LOW_100M_SGMII:
982 return IFM_100_SGMII;
983 case ICE_PHY_TYPE_LOW_1000BASE_T:
984 return IFM_1000_T;
985 case ICE_PHY_TYPE_LOW_1000BASE_SX:
986 return IFM_1000_SX;
987 case ICE_PHY_TYPE_LOW_1000BASE_LX:
988 return IFM_1000_LX;
989 case ICE_PHY_TYPE_LOW_1000BASE_KX:
990 return IFM_1000_KX;
991 case ICE_PHY_TYPE_LOW_1G_SGMII:
992 return IFM_1000_SGMII;
993 case ICE_PHY_TYPE_LOW_2500BASE_T:
994 return IFM_2500_T;
995 case ICE_PHY_TYPE_LOW_2500BASE_X:
996 return IFM_2500_X;
997 case ICE_PHY_TYPE_LOW_2500BASE_KX:
998 return IFM_2500_KX;
999 case ICE_PHY_TYPE_LOW_5GBASE_T:
1000 return IFM_5000_T;
1001 case ICE_PHY_TYPE_LOW_5GBASE_KR:
1002 return IFM_5000_KR;
1003 case ICE_PHY_TYPE_LOW_10GBASE_T:
1004 return IFM_10G_T;
1005 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
1006 return IFM_10G_TWINAX;
1007 case ICE_PHY_TYPE_LOW_10GBASE_SR:
1008 return IFM_10G_SR;
1009 case ICE_PHY_TYPE_LOW_10GBASE_LR:
1010 return IFM_10G_LR;
1011 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
1012 return IFM_10G_KR;
1013 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
1014 return IFM_10G_AOC;
1015 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
1016 return IFM_10G_SFI;
1017 case ICE_PHY_TYPE_LOW_25GBASE_T:
1018 return IFM_25G_T;
1019 case ICE_PHY_TYPE_LOW_25GBASE_CR:
1020 return IFM_25G_CR;
1021 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
1022 return IFM_25G_CR_S;
1023 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
1024 return IFM_25G_CR1;
1025 case ICE_PHY_TYPE_LOW_25GBASE_SR:
1026 return IFM_25G_SR;
1027 case ICE_PHY_TYPE_LOW_25GBASE_LR:
1028 return IFM_25G_LR;
1029 case ICE_PHY_TYPE_LOW_25GBASE_KR:
1030 return IFM_25G_KR;
1031 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
1032 return IFM_25G_KR_S;
1033 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
1034 return IFM_25G_KR1;
1035 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
1036 return IFM_25G_AOC;
1037 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
1038 return IFM_25G_AUI;
1039 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
1040 return IFM_40G_CR4;
1041 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
1042 return IFM_40G_SR4;
1043 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
1044 return IFM_40G_LR4;
1045 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
1046 return IFM_40G_KR4;
1047 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
1048 return IFM_40G_XLAUI_AC;
1049 case ICE_PHY_TYPE_LOW_40G_XLAUI:
1050 return IFM_40G_XLAUI;
1051 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
1052 return IFM_50G_CR2;
1053 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
1054 return IFM_50G_SR2;
1055 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
1056 return IFM_50G_LR2;
1057 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
1058 return IFM_50G_KR2;
1059 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
1060 return IFM_50G_LAUI2_AC;
1061 case ICE_PHY_TYPE_LOW_50G_LAUI2:
1062 return IFM_50G_LAUI2;
1063 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
1064 return IFM_50G_AUI2_AC;
1065 case ICE_PHY_TYPE_LOW_50G_AUI2:
1066 return IFM_50G_AUI2;
1067 case ICE_PHY_TYPE_LOW_50GBASE_CP:
1068 return IFM_50G_CP;
1069 case ICE_PHY_TYPE_LOW_50GBASE_SR:
1070 return IFM_50G_SR;
1071 case ICE_PHY_TYPE_LOW_50GBASE_FR:
1072 return IFM_50G_FR;
1073 case ICE_PHY_TYPE_LOW_50GBASE_LR:
1074 return IFM_50G_LR;
1075 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
1076 return IFM_50G_KR_PAM4;
1077 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
1078 return IFM_50G_AUI1_AC;
1079 case ICE_PHY_TYPE_LOW_50G_AUI1:
1080 return IFM_50G_AUI1;
1081 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
1082 return IFM_100G_CR4;
1083 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
1084 return IFM_100G_SR4;
1085 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
1086 return IFM_100G_LR4;
1087 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
1088 return IFM_100G_KR4;
1089 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
1090 return IFM_100G_CAUI4_AC;
1091 case ICE_PHY_TYPE_LOW_100G_CAUI4:
1092 return IFM_100G_CAUI4;
1093 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
1094 return IFM_100G_AUI4_AC;
1095 case ICE_PHY_TYPE_LOW_100G_AUI4:
1096 return IFM_100G_AUI4;
1097 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
1098 return IFM_100G_CR_PAM4;
1099 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
1100 return IFM_100G_KR_PAM4;
1101 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
1102 return IFM_100G_CP2;
1103 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
1104 return IFM_100G_SR2;
1105 case ICE_PHY_TYPE_LOW_100GBASE_DR:
1106 return IFM_100G_DR;
1107 default:
1108 return IFM_UNKNOWN;
1109 }
1110 }
1111
1112 /**
1113 * ice_get_phy_type_high - Get media associated with phy_type_high
1114 * @phy_type_high: the upper 64bits of phy_type from the AdminQ
1115 *
1116 * Given the upper 64bits of the phy_type from the hardware, return the
1117 * ifm_active bit associated. Return IFM_UNKNOWN on an unknown value. Note
1118 * that only one of ice_get_phy_type_low or ice_get_phy_type_high should be
1119 * called. If phy_type_high is zero, call ice_get_phy_type_low.
1120 */
1121 int
ice_get_phy_type_high(uint64_t phy_type_high)1122 ice_get_phy_type_high(uint64_t phy_type_high)
1123 {
1124 switch (phy_type_high) {
1125 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
1126 return IFM_100G_KR2_PAM4;
1127 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
1128 return IFM_100G_CAUI2_AC;
1129 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
1130 return IFM_100G_CAUI2;
1131 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
1132 return IFM_100G_AUI2_AC;
1133 case ICE_PHY_TYPE_HIGH_100G_AUI2:
1134 return IFM_100G_AUI2;
1135 case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
1136 return IFM_200G_CR4_PAM4;
1137 case ICE_PHY_TYPE_HIGH_200G_SR4:
1138 return IFM_200G_SR4;
1139 case ICE_PHY_TYPE_HIGH_200G_FR4:
1140 return IFM_200G_FR4;
1141 case ICE_PHY_TYPE_HIGH_200G_LR4:
1142 return IFM_200G_LR4;
1143 case ICE_PHY_TYPE_HIGH_200G_DR4:
1144 return IFM_200G_DR4;
1145 case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
1146 return IFM_200G_KR4_PAM4;
1147 case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
1148 return IFM_200G_AUI4_AC;
1149 case ICE_PHY_TYPE_HIGH_200G_AUI4:
1150 return IFM_200G_AUI4;
1151 case ICE_PHY_TYPE_HIGH_200G_AUI8_AOC_ACC:
1152 return IFM_200G_AUI8_AC;
1153 case ICE_PHY_TYPE_HIGH_200G_AUI8:
1154 return IFM_200G_AUI8;
1155 default:
1156 return IFM_UNKNOWN;
1157 }
1158 }
1159
1160 /**
1161 * ice_phy_types_to_max_rate - Returns port's max supported baudrate
1162 * @pi: port info struct
1163 *
1164 * ice_aq_get_phy_caps() w/ ICE_AQC_REPORT_TOPO_CAP_MEDIA parameter needs
1165 * to have been called before this function for it to work.
1166 */
1167 static uint64_t
ice_phy_types_to_max_rate(struct ice_port_info * pi)1168 ice_phy_types_to_max_rate(struct ice_port_info *pi)
1169 {
1170 uint64_t phy_low = pi->phy.phy_type_low;
1171 uint64_t phy_high = pi->phy.phy_type_high;
1172 uint64_t max_rate = 0;
1173 int bit;
1174
1175 /*
1176 * These are based on the indices used in the BIT() macros for
1177 * ICE_PHY_TYPE_LOW_*
1178 */
1179 static const uint64_t phy_rates[] = {
1180 IF_Mbps(100),
1181 IF_Mbps(100),
1182 IF_Gbps(1ULL),
1183 IF_Gbps(1ULL),
1184 IF_Gbps(1ULL),
1185 IF_Gbps(1ULL),
1186 IF_Gbps(1ULL),
1187 IF_Mbps(2500ULL),
1188 IF_Mbps(2500ULL),
1189 IF_Mbps(2500ULL),
1190 IF_Gbps(5ULL),
1191 IF_Gbps(5ULL),
1192 IF_Gbps(10ULL),
1193 IF_Gbps(10ULL),
1194 IF_Gbps(10ULL),
1195 IF_Gbps(10ULL),
1196 IF_Gbps(10ULL),
1197 IF_Gbps(10ULL),
1198 IF_Gbps(10ULL),
1199 IF_Gbps(25ULL),
1200 IF_Gbps(25ULL),
1201 IF_Gbps(25ULL),
1202 IF_Gbps(25ULL),
1203 IF_Gbps(25ULL),
1204 IF_Gbps(25ULL),
1205 IF_Gbps(25ULL),
1206 IF_Gbps(25ULL),
1207 IF_Gbps(25ULL),
1208 IF_Gbps(25ULL),
1209 IF_Gbps(25ULL),
1210 IF_Gbps(40ULL),
1211 IF_Gbps(40ULL),
1212 IF_Gbps(40ULL),
1213 IF_Gbps(40ULL),
1214 IF_Gbps(40ULL),
1215 IF_Gbps(40ULL),
1216 IF_Gbps(50ULL),
1217 IF_Gbps(50ULL),
1218 IF_Gbps(50ULL),
1219 IF_Gbps(50ULL),
1220 IF_Gbps(50ULL),
1221 IF_Gbps(50ULL),
1222 IF_Gbps(50ULL),
1223 IF_Gbps(50ULL),
1224 IF_Gbps(50ULL),
1225 IF_Gbps(50ULL),
1226 IF_Gbps(50ULL),
1227 IF_Gbps(50ULL),
1228 IF_Gbps(50ULL),
1229 IF_Gbps(50ULL),
1230 IF_Gbps(50ULL),
1231 IF_Gbps(100ULL),
1232 IF_Gbps(100ULL),
1233 IF_Gbps(100ULL),
1234 IF_Gbps(100ULL),
1235 IF_Gbps(100ULL),
1236 IF_Gbps(100ULL),
1237 IF_Gbps(100ULL),
1238 IF_Gbps(100ULL),
1239 IF_Gbps(100ULL),
1240 IF_Gbps(100ULL),
1241 IF_Gbps(100ULL),
1242 IF_Gbps(100ULL),
1243 IF_Gbps(100ULL),
1244 /* These rates are for ICE_PHY_TYPE_HIGH_* */
1245 IF_Gbps(100ULL),
1246 IF_Gbps(100ULL),
1247 IF_Gbps(100ULL),
1248 IF_Gbps(100ULL),
1249 IF_Gbps(100ULL),
1250 IF_Gbps(200ULL),
1251 IF_Gbps(200ULL),
1252 IF_Gbps(200ULL),
1253 IF_Gbps(200ULL),
1254 IF_Gbps(200ULL),
1255 IF_Gbps(200ULL),
1256 IF_Gbps(200ULL),
1257 IF_Gbps(200ULL),
1258 IF_Gbps(200ULL),
1259 IF_Gbps(200ULL),
1260 };
1261
1262 /* coverity[address_of] */
1263 for_each_set_bit(bit, &phy_high, 64)
1264 if ((bit + 64) < (int)ARRAY_SIZE(phy_rates))
1265 max_rate = uqmax(max_rate, phy_rates[(bit + 64)]);
1266
1267 /* coverity[address_of] */
1268 for_each_set_bit(bit, &phy_low, 64)
1269 max_rate = uqmax(max_rate, phy_rates[bit]);
1270
1271 return (max_rate);
1272 }
1273
1274 /* The if_media type is split over the original 5 bit media variant field,
1275 * along with extended types using up extra bits in the options section.
1276 * We want to convert this split number into a bitmap index, so we reverse the
1277 * calculation of IFM_X here.
1278 */
1279 #define IFM_IDX(x) (((x) & IFM_TMASK) | \
1280 (((x) & IFM_ETH_XTYPE) >> IFM_ETH_XSHIFT))
1281
1282 /**
1283 * ice_add_media_types - Add supported media types to the media structure
1284 * @sc: ice private softc structure
1285 * @media: ifmedia structure to setup
1286 *
1287 * Looks up the supported phy types, and initializes the various media types
1288 * available.
1289 *
1290 * @pre this function must be protected from being called while another thread
1291 * is accessing the ifmedia types.
1292 */
1293 int
ice_add_media_types(struct ice_softc * sc,struct ifmedia * media)1294 ice_add_media_types(struct ice_softc *sc, struct ifmedia *media)
1295 {
1296 struct ice_aqc_get_phy_caps_data pcaps = { 0 };
1297 struct ice_port_info *pi = sc->hw.port_info;
1298 int status;
1299 uint64_t phy_low, phy_high;
1300 int bit;
1301
1302 ASSERT_CFG_LOCKED(sc);
1303
1304 /* the maximum possible media type index is 511. We probably don't
1305 * need most of this space, but this ensures future compatibility when
1306 * additional media types are used.
1307 */
1308 ice_declare_bitmap(already_added, 511);
1309
1310 /* Remove all previous media types */
1311 ifmedia_removeall(media);
1312
1313 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
1314 &pcaps, NULL);
1315 if (status) {
1316 device_printf(sc->dev,
1317 "%s: ice_aq_get_phy_caps (ACTIVE) failed; status %s, aq_err %s\n",
1318 __func__, ice_status_str(status),
1319 ice_aq_str(sc->hw.adminq.sq_last_status));
1320 return (status);
1321 }
1322 phy_low = le64toh(pcaps.phy_type_low);
1323 phy_high = le64toh(pcaps.phy_type_high);
1324
1325 /* make sure the added bitmap is zero'd */
1326 memset(already_added, 0, sizeof(already_added));
1327
1328 /* coverity[address_of] */
1329 for_each_set_bit(bit, &phy_low, 64) {
1330 uint64_t type = BIT_ULL(bit);
1331 int ostype;
1332
1333 /* get the OS media type */
1334 ostype = ice_get_phy_type_low(type);
1335
1336 /* don't bother adding the unknown type */
1337 if (ostype == IFM_UNKNOWN)
1338 continue;
1339
1340 /* only add each media type to the list once */
1341 if (ice_is_bit_set(already_added, IFM_IDX(ostype)))
1342 continue;
1343
1344 ifmedia_add(media, IFM_ETHER | ostype, 0, NULL);
1345 ice_set_bit(IFM_IDX(ostype), already_added);
1346 }
1347
1348 /* coverity[address_of] */
1349 for_each_set_bit(bit, &phy_high, 64) {
1350 uint64_t type = BIT_ULL(bit);
1351 int ostype;
1352
1353 /* get the OS media type */
1354 ostype = ice_get_phy_type_high(type);
1355
1356 /* don't bother adding the unknown type */
1357 if (ostype == IFM_UNKNOWN)
1358 continue;
1359
1360 /* only add each media type to the list once */
1361 if (ice_is_bit_set(already_added, IFM_IDX(ostype)))
1362 continue;
1363
1364 ifmedia_add(media, IFM_ETHER | ostype, 0, NULL);
1365 ice_set_bit(IFM_IDX(ostype), already_added);
1366 }
1367
1368 /* Use autoselect media by default */
1369 ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL);
1370 ifmedia_set(media, IFM_ETHER | IFM_AUTO);
1371
1372 return (0);
1373 }
1374
1375 /**
1376 * ice_configure_rxq_interrupt - Configure HW Rx queue for an MSI-X interrupt
1377 * @hw: ice hw structure
1378 * @rxqid: Rx queue index in PF space
1379 * @vector: MSI-X vector index in PF/VF space
1380 * @itr_idx: ITR index to use for interrupt
1381 *
1382 * @remark ice_flush() may need to be called after this
1383 */
1384 void
ice_configure_rxq_interrupt(struct ice_hw * hw,u16 rxqid,u16 vector,u8 itr_idx)1385 ice_configure_rxq_interrupt(struct ice_hw *hw, u16 rxqid, u16 vector, u8 itr_idx)
1386 {
1387 u32 val;
1388
1389 MPASS(itr_idx <= ICE_ITR_NONE);
1390
1391 val = (QINT_RQCTL_CAUSE_ENA_M |
1392 (itr_idx << QINT_RQCTL_ITR_INDX_S) |
1393 (vector << QINT_RQCTL_MSIX_INDX_S));
1394 wr32(hw, QINT_RQCTL(rxqid), val);
1395 }
1396
1397 /**
1398 * ice_configure_all_rxq_interrupts - Configure HW Rx queues for MSI-X interrupts
1399 * @vsi: the VSI to configure
1400 *
1401 * Called when setting up MSI-X interrupts to configure the Rx hardware queues.
1402 */
1403 void
ice_configure_all_rxq_interrupts(struct ice_vsi * vsi)1404 ice_configure_all_rxq_interrupts(struct ice_vsi *vsi)
1405 {
1406 struct ice_hw *hw = &vsi->sc->hw;
1407 int i;
1408
1409 for (i = 0; i < vsi->num_rx_queues; i++) {
1410 struct ice_rx_queue *rxq = &vsi->rx_queues[i];
1411
1412 ice_configure_rxq_interrupt(hw, vsi->rx_qmap[rxq->me],
1413 rxq->irqv->me, ICE_RX_ITR);
1414
1415 ice_debug(hw, ICE_DBG_INIT,
1416 "RXQ(%d) intr enable: me %d rxqid %d vector %d\n",
1417 i, rxq->me, vsi->rx_qmap[rxq->me], rxq->irqv->me);
1418 }
1419
1420 ice_flush(hw);
1421 }
1422
1423 /**
1424 * ice_configure_txq_interrupt - Configure HW Tx queue for an MSI-X interrupt
1425 * @hw: ice hw structure
1426 * @txqid: Tx queue index in PF space
1427 * @vector: MSI-X vector index in PF/VF space
1428 * @itr_idx: ITR index to use for interrupt
1429 *
1430 * @remark ice_flush() may need to be called after this
1431 */
1432 void
ice_configure_txq_interrupt(struct ice_hw * hw,u16 txqid,u16 vector,u8 itr_idx)1433 ice_configure_txq_interrupt(struct ice_hw *hw, u16 txqid, u16 vector, u8 itr_idx)
1434 {
1435 u32 val;
1436
1437 MPASS(itr_idx <= ICE_ITR_NONE);
1438
1439 val = (QINT_TQCTL_CAUSE_ENA_M |
1440 (itr_idx << QINT_TQCTL_ITR_INDX_S) |
1441 (vector << QINT_TQCTL_MSIX_INDX_S));
1442 wr32(hw, QINT_TQCTL(txqid), val);
1443 }
1444
1445 /**
1446 * ice_configure_all_txq_interrupts - Configure HW Tx queues for MSI-X interrupts
1447 * @vsi: the VSI to configure
1448 *
1449 * Called when setting up MSI-X interrupts to configure the Tx hardware queues.
1450 */
1451 void
ice_configure_all_txq_interrupts(struct ice_vsi * vsi)1452 ice_configure_all_txq_interrupts(struct ice_vsi *vsi)
1453 {
1454 struct ice_hw *hw = &vsi->sc->hw;
1455 int i;
1456
1457 for (i = 0; i < vsi->num_tx_queues; i++) {
1458 struct ice_tx_queue *txq = &vsi->tx_queues[i];
1459
1460 ice_configure_txq_interrupt(hw, vsi->tx_qmap[txq->me],
1461 txq->irqv->me, ICE_TX_ITR);
1462 }
1463
1464 ice_flush(hw);
1465 }
1466
1467 /**
1468 * ice_flush_rxq_interrupts - Unconfigure Hw Rx queues MSI-X interrupt cause
1469 * @vsi: the VSI to configure
1470 *
1471 * Unset the CAUSE_ENA flag of the TQCTL register for each queue, then trigger
1472 * a software interrupt on that cause. This is required as part of the Rx
1473 * queue disable logic to dissociate the Rx queue from the interrupt.
1474 *
1475 * Note: this function must be called prior to disabling Rx queues with
1476 * ice_control_all_rx_queues, otherwise the Rx queue may not be disabled properly.
1477 */
1478 void
ice_flush_rxq_interrupts(struct ice_vsi * vsi)1479 ice_flush_rxq_interrupts(struct ice_vsi *vsi)
1480 {
1481 struct ice_hw *hw = &vsi->sc->hw;
1482 int i;
1483
1484 for (i = 0; i < vsi->num_rx_queues; i++) {
1485 struct ice_rx_queue *rxq = &vsi->rx_queues[i];
1486 u32 reg, val;
1487
1488 /* Clear the CAUSE_ENA flag */
1489 reg = vsi->rx_qmap[rxq->me];
1490 val = rd32(hw, QINT_RQCTL(reg));
1491 val &= ~QINT_RQCTL_CAUSE_ENA_M;
1492 wr32(hw, QINT_RQCTL(reg), val);
1493
1494 ice_flush(hw);
1495
1496 /* Trigger a software interrupt to complete interrupt
1497 * dissociation.
1498 */
1499 wr32(hw, GLINT_DYN_CTL(rxq->irqv->me),
1500 GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
1501 }
1502 }
1503
1504 /**
1505 * ice_flush_txq_interrupts - Unconfigure Hw Tx queues MSI-X interrupt cause
1506 * @vsi: the VSI to configure
1507 *
1508 * Unset the CAUSE_ENA flag of the TQCTL register for each queue, then trigger
1509 * a software interrupt on that cause. This is required as part of the Tx
1510 * queue disable logic to dissociate the Tx queue from the interrupt.
1511 *
1512 * Note: this function must be called prior to ice_vsi_disable_tx, otherwise
1513 * the Tx queue disable may not complete properly.
1514 */
1515 void
ice_flush_txq_interrupts(struct ice_vsi * vsi)1516 ice_flush_txq_interrupts(struct ice_vsi *vsi)
1517 {
1518 struct ice_hw *hw = &vsi->sc->hw;
1519 int i;
1520
1521 for (i = 0; i < vsi->num_tx_queues; i++) {
1522 struct ice_tx_queue *txq = &vsi->tx_queues[i];
1523 u32 reg, val;
1524
1525 /* Clear the CAUSE_ENA flag */
1526 reg = vsi->tx_qmap[txq->me];
1527 val = rd32(hw, QINT_TQCTL(reg));
1528 val &= ~QINT_TQCTL_CAUSE_ENA_M;
1529 wr32(hw, QINT_TQCTL(reg), val);
1530
1531 ice_flush(hw);
1532
1533 /* Trigger a software interrupt to complete interrupt
1534 * dissociation.
1535 */
1536 wr32(hw, GLINT_DYN_CTL(txq->irqv->me),
1537 GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
1538 }
1539 }
1540
1541 /**
1542 * ice_configure_rx_itr - Configure the Rx ITR settings for this VSI
1543 * @vsi: the VSI to configure
1544 *
1545 * Program the hardware ITR registers with the settings for this VSI.
1546 */
1547 void
ice_configure_rx_itr(struct ice_vsi * vsi)1548 ice_configure_rx_itr(struct ice_vsi *vsi)
1549 {
1550 struct ice_hw *hw = &vsi->sc->hw;
1551 int i;
1552
1553 /* TODO: Handle per-queue/per-vector ITR? */
1554
1555 for (i = 0; i < vsi->num_rx_queues; i++) {
1556 struct ice_rx_queue *rxq = &vsi->rx_queues[i];
1557
1558 wr32(hw, GLINT_ITR(ICE_RX_ITR, rxq->irqv->me),
1559 ice_itr_to_reg(hw, vsi->rx_itr));
1560 }
1561
1562 ice_flush(hw);
1563 }
1564
1565 /**
1566 * ice_configure_tx_itr - Configure the Tx ITR settings for this VSI
1567 * @vsi: the VSI to configure
1568 *
1569 * Program the hardware ITR registers with the settings for this VSI.
1570 */
1571 void
ice_configure_tx_itr(struct ice_vsi * vsi)1572 ice_configure_tx_itr(struct ice_vsi *vsi)
1573 {
1574 struct ice_hw *hw = &vsi->sc->hw;
1575 int i;
1576
1577 /* TODO: Handle per-queue/per-vector ITR? */
1578
1579 for (i = 0; i < vsi->num_tx_queues; i++) {
1580 struct ice_tx_queue *txq = &vsi->tx_queues[i];
1581
1582 wr32(hw, GLINT_ITR(ICE_TX_ITR, txq->irqv->me),
1583 ice_itr_to_reg(hw, vsi->tx_itr));
1584 }
1585
1586 ice_flush(hw);
1587 }
1588
1589 /**
1590 * ice_setup_tx_ctx - Setup an ice_tlan_ctx structure for a queue
1591 * @txq: the Tx queue to configure
1592 * @tlan_ctx: the Tx LAN queue context structure to initialize
1593 * @pf_q: real queue number
1594 */
1595 static int
ice_setup_tx_ctx(struct ice_tx_queue * txq,struct ice_tlan_ctx * tlan_ctx,u16 pf_q)1596 ice_setup_tx_ctx(struct ice_tx_queue *txq, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
1597 {
1598 struct ice_vsi *vsi = txq->vsi;
1599 struct ice_softc *sc = vsi->sc;
1600 struct ice_hw *hw = &sc->hw;
1601
1602 tlan_ctx->port_num = hw->port_info->lport;
1603
1604 /* number of descriptors in the queue */
1605 tlan_ctx->qlen = txq->desc_count;
1606
1607 /* set the transmit queue base address, defined in 128 byte units */
1608 tlan_ctx->base = txq->tx_paddr >> 7;
1609
1610 tlan_ctx->pf_num = hw->pf_id;
1611
1612 switch (vsi->type) {
1613 case ICE_VSI_PF:
1614 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
1615 break;
1616 case ICE_VSI_VMDQ2:
1617 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
1618 break;
1619 #ifdef PCI_IOV
1620 case ICE_VSI_VF:
1621 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
1622 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_num;
1623 break;
1624 #endif
1625 default:
1626 return (ENODEV);
1627 }
1628
1629 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
1630
1631 /* Enable TSO */
1632 tlan_ctx->tso_ena = 1;
1633 tlan_ctx->internal_usage_flag = 1;
1634
1635 tlan_ctx->tso_qnum = pf_q;
1636
1637 /*
1638 * Stick with the older legacy Tx queue interface, instead of the new
1639 * advanced queue interface.
1640 */
1641 tlan_ctx->legacy_int = 1;
1642
1643 /* Descriptor WB mode */
1644 tlan_ctx->wb_mode = 0;
1645
1646 return (0);
1647 }
1648
1649 /**
1650 * ice_cfg_vsi_for_tx - Configure the hardware for Tx
1651 * @vsi: the VSI to configure
1652 *
1653 * Configure the device Tx queues through firmware AdminQ commands. After
1654 * this, Tx queues will be ready for transmit.
1655 */
1656 int
ice_cfg_vsi_for_tx(struct ice_vsi * vsi)1657 ice_cfg_vsi_for_tx(struct ice_vsi *vsi)
1658 {
1659 struct ice_aqc_add_tx_qgrp *qg;
1660 struct ice_hw *hw = &vsi->sc->hw;
1661 device_t dev = vsi->sc->dev;
1662 int status;
1663 int i;
1664 int err = 0;
1665 u16 qg_size, pf_q;
1666
1667 qg_size = ice_struct_size(qg, txqs, 1);
1668 qg = (struct ice_aqc_add_tx_qgrp *)malloc(qg_size, M_ICE, M_NOWAIT|M_ZERO);
1669 if (!qg)
1670 return (ENOMEM);
1671
1672 qg->num_txqs = 1;
1673
1674 for (i = 0; i < vsi->num_tx_queues; i++) {
1675 struct ice_tlan_ctx tlan_ctx = { 0 };
1676 struct ice_tx_queue *txq = &vsi->tx_queues[i];
1677
1678 /* Last configured queue */
1679 if (txq->desc_count == 0)
1680 break;
1681
1682 pf_q = vsi->tx_qmap[txq->me];
1683 qg->txqs[0].txq_id = htole16(pf_q);
1684
1685 err = ice_setup_tx_ctx(txq, &tlan_ctx, pf_q);
1686 if (err)
1687 goto free_txqg;
1688
1689 ice_set_ctx(hw, (u8 *)&tlan_ctx, qg->txqs[0].txq_ctx,
1690 ice_tlan_ctx_info);
1691
1692 status = ice_ena_vsi_txq(hw->port_info, vsi->idx, txq->tc,
1693 txq->q_handle, 1, qg, qg_size, NULL);
1694 if (status) {
1695 device_printf(dev,
1696 "Failed to set LAN Tx queue %d (TC %d, handle %d) context, err %s aq_err %s\n",
1697 i, txq->tc, txq->q_handle,
1698 ice_status_str(status),
1699 ice_aq_str(hw->adminq.sq_last_status));
1700 err = ENODEV;
1701 goto free_txqg;
1702 }
1703
1704 /* Keep track of the Tx queue TEID */
1705 if (pf_q == le16toh(qg->txqs[0].txq_id))
1706 txq->q_teid = le32toh(qg->txqs[0].q_teid);
1707 }
1708
1709 free_txqg:
1710 free(qg, M_ICE);
1711
1712 return (err);
1713 }
1714
1715 /**
1716 * ice_setup_rx_ctx - Setup an Rx context structure for a receive queue
1717 * @rxq: the receive queue to program
1718 *
1719 * Setup an Rx queue context structure and program it into the hardware
1720 * registers. This is a necessary step for enabling the Rx queue.
1721 *
1722 * @pre the VSI associated with this queue must have initialized mbuf_sz
1723 */
1724 static int
ice_setup_rx_ctx(struct ice_rx_queue * rxq)1725 ice_setup_rx_ctx(struct ice_rx_queue *rxq)
1726 {
1727 struct ice_rlan_ctx rlan_ctx = {0};
1728 struct ice_vsi *vsi = rxq->vsi;
1729 struct ice_softc *sc = vsi->sc;
1730 struct ice_hw *hw = &sc->hw;
1731 int status;
1732 u32 rxdid = ICE_RXDID_FLEX_NIC;
1733 u32 regval;
1734 u16 pf_q;
1735
1736 pf_q = vsi->rx_qmap[rxq->me];
1737
1738 /* set the receive queue base address, defined in 128 byte units */
1739 rlan_ctx.base = rxq->rx_paddr >> 7;
1740
1741 rlan_ctx.qlen = rxq->desc_count;
1742
1743 rlan_ctx.dbuf = vsi->mbuf_sz >> ICE_RLAN_CTX_DBUF_S;
1744
1745 /* use 32 byte descriptors */
1746 rlan_ctx.dsize = 1;
1747
1748 /* Strip the Ethernet CRC bytes before the packet is posted to the
1749 * host memory.
1750 */
1751 rlan_ctx.crcstrip = 1;
1752
1753 rlan_ctx.l2tsel = 1;
1754
1755 /* don't do header splitting */
1756 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
1757 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
1758 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
1759
1760 /* strip VLAN from inner headers */
1761 rlan_ctx.showiv = 1;
1762
1763 rlan_ctx.rxmax = min(vsi->max_frame_size,
1764 ICE_MAX_RX_SEGS * vsi->mbuf_sz);
1765
1766 rlan_ctx.lrxqthresh = 1;
1767
1768 if (vsi->type != ICE_VSI_VF) {
1769 regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1770 regval &= ~QRXFLXP_CNTXT_RXDID_IDX_M;
1771 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1772 QRXFLXP_CNTXT_RXDID_IDX_M;
1773
1774 regval &= ~QRXFLXP_CNTXT_RXDID_PRIO_M;
1775 regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1776 QRXFLXP_CNTXT_RXDID_PRIO_M;
1777
1778 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1779 }
1780
1781 status = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
1782 if (status) {
1783 device_printf(sc->dev,
1784 "Failed to set LAN Rx queue context, err %s aq_err %s\n",
1785 ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
1786 return (EIO);
1787 }
1788
1789 wr32(hw, rxq->tail, 0);
1790
1791 return 0;
1792 }
1793
1794 /**
1795 * ice_cfg_vsi_for_rx - Configure the hardware for Rx
1796 * @vsi: the VSI to configure
1797 *
1798 * Prepare an Rx context descriptor and configure the device to receive
1799 * traffic.
1800 *
1801 * @pre the VSI must have initialized mbuf_sz
1802 */
1803 int
ice_cfg_vsi_for_rx(struct ice_vsi * vsi)1804 ice_cfg_vsi_for_rx(struct ice_vsi *vsi)
1805 {
1806 int i, err;
1807
1808 for (i = 0; i < vsi->num_rx_queues; i++) {
1809 MPASS(vsi->mbuf_sz > 0);
1810 /* Last configured queue */
1811 if (vsi->rx_queues[i].desc_count == 0)
1812 break;
1813
1814 err = ice_setup_rx_ctx(&vsi->rx_queues[i]);
1815 if (err)
1816 return err;
1817 }
1818
1819 return (0);
1820 }
1821
1822 /**
1823 * ice_is_rxq_ready - Check if an Rx queue is ready
1824 * @hw: ice hw structure
1825 * @pf_q: absolute PF queue index to check
1826 * @reg: on successful return, contains qrx_ctrl contents
1827 *
1828 * Reads the QRX_CTRL register and verifies if the queue is in a consistent
1829 * state. That is, QENA_REQ matches QENA_STAT. Used to check before making
1830 * a request to change the queue, as well as to verify the request has
1831 * finished. The queue should change status within a few microseconds, so we
1832 * use a small delay while polling the register.
1833 *
1834 * Returns an error code if the queue does not update after a few retries.
1835 */
1836 static int
ice_is_rxq_ready(struct ice_hw * hw,int pf_q,u32 * reg)1837 ice_is_rxq_ready(struct ice_hw *hw, int pf_q, u32 *reg)
1838 {
1839 u32 qrx_ctrl, qena_req, qena_stat;
1840 int i;
1841
1842 for (i = 0; i < ICE_Q_WAIT_RETRY_LIMIT; i++) {
1843 qrx_ctrl = rd32(hw, QRX_CTRL(pf_q));
1844 qena_req = (qrx_ctrl >> QRX_CTRL_QENA_REQ_S) & 1;
1845 qena_stat = (qrx_ctrl >> QRX_CTRL_QENA_STAT_S) & 1;
1846
1847 /* if the request and status bits equal, then the queue is
1848 * fully disabled or enabled.
1849 */
1850 if (qena_req == qena_stat) {
1851 *reg = qrx_ctrl;
1852 return (0);
1853 }
1854
1855 /* wait a few microseconds before we check again */
1856 DELAY(10);
1857 }
1858
1859 return (ETIMEDOUT);
1860 }
1861
1862 /**
1863 * ice_control_rx_queue - Configure hardware to start or stop an Rx queue
1864 * @vsi: VSI containing queue to enable/disable
1865 * @qidx: Queue index in VSI space
1866 * @enable: true to enable queue, false to disable
1867 *
1868 * Control the Rx queue through the QRX_CTRL register, enabling or disabling
1869 * it. Wait for the appropriate time to ensure that the queue has actually
1870 * reached the expected state.
1871 */
1872 int
ice_control_rx_queue(struct ice_vsi * vsi,u16 qidx,bool enable)1873 ice_control_rx_queue(struct ice_vsi *vsi, u16 qidx, bool enable)
1874 {
1875 struct ice_hw *hw = &vsi->sc->hw;
1876 device_t dev = vsi->sc->dev;
1877 u32 qrx_ctrl = 0;
1878 int err;
1879
1880 struct ice_rx_queue *rxq = &vsi->rx_queues[qidx];
1881 int pf_q = vsi->rx_qmap[rxq->me];
1882
1883 err = ice_is_rxq_ready(hw, pf_q, &qrx_ctrl);
1884 if (err) {
1885 device_printf(dev,
1886 "Rx queue %d is not ready\n",
1887 pf_q);
1888 return err;
1889 }
1890
1891 /* Skip if the queue is already in correct state */
1892 if (enable == !!(qrx_ctrl & QRX_CTRL_QENA_STAT_M))
1893 return (0);
1894
1895 if (enable)
1896 qrx_ctrl |= QRX_CTRL_QENA_REQ_M;
1897 else
1898 qrx_ctrl &= ~QRX_CTRL_QENA_REQ_M;
1899 wr32(hw, QRX_CTRL(pf_q), qrx_ctrl);
1900
1901 /* wait for the queue to finalize the request */
1902 err = ice_is_rxq_ready(hw, pf_q, &qrx_ctrl);
1903 if (err) {
1904 device_printf(dev,
1905 "Rx queue %d %sable timeout\n",
1906 pf_q, (enable ? "en" : "dis"));
1907 return err;
1908 }
1909
1910 /* this should never happen */
1911 if (enable != !!(qrx_ctrl & QRX_CTRL_QENA_STAT_M)) {
1912 device_printf(dev,
1913 "Rx queue %d invalid state\n",
1914 pf_q);
1915 return (EDOOFUS);
1916 }
1917
1918 return (0);
1919 }
1920
1921 /**
1922 * ice_control_all_rx_queues - Configure hardware to start or stop the Rx queues
1923 * @vsi: VSI to enable/disable queues
1924 * @enable: true to enable queues, false to disable
1925 *
1926 * Control the Rx queues through the QRX_CTRL register, enabling or disabling
1927 * them. Wait for the appropriate time to ensure that the queues have actually
1928 * reached the expected state.
1929 */
1930 int
ice_control_all_rx_queues(struct ice_vsi * vsi,bool enable)1931 ice_control_all_rx_queues(struct ice_vsi *vsi, bool enable)
1932 {
1933 int i, err;
1934
1935 /* TODO: amortize waits by changing all queues up front and then
1936 * checking their status afterwards. This will become more necessary
1937 * when we have a large number of queues.
1938 */
1939 for (i = 0; i < vsi->num_rx_queues; i++) {
1940 err = ice_control_rx_queue(vsi, i, enable);
1941 if (err)
1942 break;
1943 }
1944
1945 return (0);
1946 }
1947
1948 /**
1949 * ice_add_mac_to_list - Add MAC filter to a MAC filter list
1950 * @vsi: the VSI to forward to
1951 * @list: list which contains MAC filter entries
1952 * @addr: the MAC address to be added
1953 * @action: filter action to perform on match
1954 *
1955 * Adds a MAC address filter to the list which will be forwarded to firmware
1956 * to add a series of MAC address filters.
1957 *
1958 * Returns 0 on success, and an error code on failure.
1959 *
1960 */
1961 static int
ice_add_mac_to_list(struct ice_vsi * vsi,struct ice_list_head * list,const u8 * addr,enum ice_sw_fwd_act_type action)1962 ice_add_mac_to_list(struct ice_vsi *vsi, struct ice_list_head *list,
1963 const u8 *addr, enum ice_sw_fwd_act_type action)
1964 {
1965 struct ice_fltr_list_entry *entry;
1966
1967 entry = (__typeof(entry))malloc(sizeof(*entry), M_ICE, M_NOWAIT|M_ZERO);
1968 if (!entry)
1969 return (ENOMEM);
1970
1971 entry->fltr_info.flag = ICE_FLTR_TX;
1972 entry->fltr_info.src_id = ICE_SRC_ID_VSI;
1973 entry->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
1974 entry->fltr_info.fltr_act = action;
1975 entry->fltr_info.vsi_handle = vsi->idx;
1976 bcopy(addr, entry->fltr_info.l_data.mac.mac_addr, ETHER_ADDR_LEN);
1977
1978 LIST_ADD(&entry->list_entry, list);
1979
1980 return 0;
1981 }
1982
1983 /**
1984 * ice_free_fltr_list - Free memory associated with a MAC address list
1985 * @list: the list to free
1986 *
1987 * Free the memory of each entry associated with the list.
1988 */
1989 static void
ice_free_fltr_list(struct ice_list_head * list)1990 ice_free_fltr_list(struct ice_list_head *list)
1991 {
1992 struct ice_fltr_list_entry *e, *tmp;
1993
1994 LIST_FOR_EACH_ENTRY_SAFE(e, tmp, list, ice_fltr_list_entry, list_entry) {
1995 LIST_DEL(&e->list_entry);
1996 free(e, M_ICE);
1997 }
1998 }
1999
2000 /**
2001 * ice_add_vsi_mac_filter - Add a MAC address filter for a VSI
2002 * @vsi: the VSI to add the filter for
2003 * @addr: MAC address to add a filter for
2004 *
2005 * Add a MAC address filter for a given VSI. This is a wrapper around
2006 * ice_add_mac to simplify the interface. First, it only accepts a single
2007 * address, so we don't have to mess around with the list setup in other
2008 * functions. Second, it ignores the ICE_ERR_ALREADY_EXISTS error, so that
2009 * callers don't need to worry about attempting to add the same filter twice.
2010 */
2011 int
ice_add_vsi_mac_filter(struct ice_vsi * vsi,const u8 * addr)2012 ice_add_vsi_mac_filter(struct ice_vsi *vsi, const u8 *addr)
2013 {
2014 struct ice_list_head mac_addr_list;
2015 struct ice_hw *hw = &vsi->sc->hw;
2016 device_t dev = vsi->sc->dev;
2017 int status;
2018 int err = 0;
2019
2020 INIT_LIST_HEAD(&mac_addr_list);
2021
2022 err = ice_add_mac_to_list(vsi, &mac_addr_list, addr, ICE_FWD_TO_VSI);
2023 if (err)
2024 goto free_mac_list;
2025
2026 status = ice_add_mac(hw, &mac_addr_list);
2027 if (status == ICE_ERR_ALREADY_EXISTS) {
2028 ; /* Don't complain if we try to add a filter that already exists */
2029 } else if (status) {
2030 device_printf(dev,
2031 "Failed to add a filter for MAC %6D, err %s aq_err %s\n",
2032 addr, ":",
2033 ice_status_str(status),
2034 ice_aq_str(hw->adminq.sq_last_status));
2035 err = (EIO);
2036 }
2037
2038 free_mac_list:
2039 ice_free_fltr_list(&mac_addr_list);
2040 return err;
2041 }
2042
2043 /**
2044 * ice_cfg_pf_default_mac_filters - Setup default unicast and broadcast addrs
2045 * @sc: device softc structure
2046 *
2047 * Program the default unicast and broadcast filters for the PF VSI.
2048 */
2049 int
ice_cfg_pf_default_mac_filters(struct ice_softc * sc)2050 ice_cfg_pf_default_mac_filters(struct ice_softc *sc)
2051 {
2052 struct ice_vsi *vsi = &sc->pf_vsi;
2053 struct ice_hw *hw = &sc->hw;
2054 int err;
2055
2056 /* Add the LAN MAC address */
2057 err = ice_add_vsi_mac_filter(vsi, hw->port_info->mac.lan_addr);
2058 if (err)
2059 return err;
2060
2061 /* Add the broadcast address */
2062 err = ice_add_vsi_mac_filter(vsi, broadcastaddr);
2063 if (err)
2064 return err;
2065
2066 return (0);
2067 }
2068
2069 /**
2070 * ice_remove_vsi_mac_filter - Remove a MAC address filter for a VSI
2071 * @vsi: the VSI to add the filter for
2072 * @addr: MAC address to remove a filter for
2073 *
2074 * Remove a MAC address filter from a given VSI. This is a wrapper around
2075 * ice_remove_mac to simplify the interface. First, it only accepts a single
2076 * address, so we don't have to mess around with the list setup in other
2077 * functions. Second, it ignores the ICE_ERR_DOES_NOT_EXIST error, so that
2078 * callers don't need to worry about attempting to remove filters which
2079 * haven't yet been added.
2080 */
2081 int
ice_remove_vsi_mac_filter(struct ice_vsi * vsi,const u8 * addr)2082 ice_remove_vsi_mac_filter(struct ice_vsi *vsi, const u8 *addr)
2083 {
2084 struct ice_list_head mac_addr_list;
2085 struct ice_hw *hw = &vsi->sc->hw;
2086 device_t dev = vsi->sc->dev;
2087 int status;
2088 int err = 0;
2089
2090 INIT_LIST_HEAD(&mac_addr_list);
2091
2092 err = ice_add_mac_to_list(vsi, &mac_addr_list, addr, ICE_FWD_TO_VSI);
2093 if (err)
2094 goto free_mac_list;
2095
2096 status = ice_remove_mac(hw, &mac_addr_list);
2097 if (status == ICE_ERR_DOES_NOT_EXIST) {
2098 ; /* Don't complain if we try to remove a filter that doesn't exist */
2099 } else if (status) {
2100 device_printf(dev,
2101 "Failed to remove a filter for MAC %6D, err %s aq_err %s\n",
2102 addr, ":",
2103 ice_status_str(status),
2104 ice_aq_str(hw->adminq.sq_last_status));
2105 err = (EIO);
2106 }
2107
2108 free_mac_list:
2109 ice_free_fltr_list(&mac_addr_list);
2110 return err;
2111 }
2112
2113 /**
2114 * ice_rm_pf_default_mac_filters - Remove default unicast and broadcast addrs
2115 * @sc: device softc structure
2116 *
2117 * Remove the default unicast and broadcast filters from the PF VSI.
2118 */
2119 int
ice_rm_pf_default_mac_filters(struct ice_softc * sc)2120 ice_rm_pf_default_mac_filters(struct ice_softc *sc)
2121 {
2122 struct ice_vsi *vsi = &sc->pf_vsi;
2123 struct ice_hw *hw = &sc->hw;
2124 int err;
2125
2126 /* Remove the LAN MAC address */
2127 err = ice_remove_vsi_mac_filter(vsi, hw->port_info->mac.lan_addr);
2128 if (err)
2129 return err;
2130
2131 /* Remove the broadcast address */
2132 err = ice_remove_vsi_mac_filter(vsi, broadcastaddr);
2133 if (err)
2134 return (EIO);
2135
2136 return (0);
2137 }
2138
2139 /**
2140 * ice_check_ctrlq_errors - Check for and report controlq errors
2141 * @sc: device private structure
2142 * @qname: name of the controlq
2143 * @cq: the controlq to check
2144 *
2145 * Check and report controlq errors. Currently all we do is report them to the
2146 * kernel message log, but we might want to improve this in the future, such
2147 * as to keep track of statistics.
2148 */
2149 static void
ice_check_ctrlq_errors(struct ice_softc * sc,const char * qname,struct ice_ctl_q_info * cq)2150 ice_check_ctrlq_errors(struct ice_softc *sc, const char *qname,
2151 struct ice_ctl_q_info *cq)
2152 {
2153 struct ice_hw *hw = &sc->hw;
2154 u32 val;
2155
2156 /* Check for error indications. Note that all the controlqs use the
2157 * same register layout, so we use the PF_FW_AxQLEN defines only.
2158 */
2159 val = rd32(hw, cq->rq.len);
2160 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
2161 PF_FW_ARQLEN_ARQCRIT_M)) {
2162 if (val & PF_FW_ARQLEN_ARQVFE_M)
2163 device_printf(sc->dev,
2164 "%s Receive Queue VF Error detected\n", qname);
2165 if (val & PF_FW_ARQLEN_ARQOVFL_M)
2166 device_printf(sc->dev,
2167 "%s Receive Queue Overflow Error detected\n",
2168 qname);
2169 if (val & PF_FW_ARQLEN_ARQCRIT_M)
2170 device_printf(sc->dev,
2171 "%s Receive Queue Critical Error detected\n",
2172 qname);
2173 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
2174 PF_FW_ARQLEN_ARQCRIT_M);
2175 wr32(hw, cq->rq.len, val);
2176 }
2177
2178 val = rd32(hw, cq->sq.len);
2179 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
2180 PF_FW_ATQLEN_ATQCRIT_M)) {
2181 if (val & PF_FW_ATQLEN_ATQVFE_M)
2182 device_printf(sc->dev,
2183 "%s Send Queue VF Error detected\n", qname);
2184 if (val & PF_FW_ATQLEN_ATQOVFL_M)
2185 device_printf(sc->dev,
2186 "%s Send Queue Overflow Error detected\n",
2187 qname);
2188 if (val & PF_FW_ATQLEN_ATQCRIT_M)
2189 device_printf(sc->dev,
2190 "%s Send Queue Critical Error detected\n",
2191 qname);
2192 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
2193 PF_FW_ATQLEN_ATQCRIT_M);
2194 wr32(hw, cq->sq.len, val);
2195 }
2196 }
2197
2198 /**
2199 * ice_process_link_event - Process a link event indication from firmware
2200 * @sc: device softc structure
2201 * @e: the received event data
2202 *
2203 * Gets the current link status from hardware, and may print a message if an
2204 * unqualified is detected.
2205 */
2206 static void
ice_process_link_event(struct ice_softc * sc,struct ice_rq_event_info __invariant_only * e)2207 ice_process_link_event(struct ice_softc *sc,
2208 struct ice_rq_event_info __invariant_only *e)
2209 {
2210 struct ice_port_info *pi = sc->hw.port_info;
2211 struct ice_hw *hw = &sc->hw;
2212 device_t dev = sc->dev;
2213 int status;
2214
2215 /* Sanity check that the data length isn't too small */
2216 MPASS(le16toh(e->desc.datalen) >= ICE_GET_LINK_STATUS_DATALEN_V1);
2217
2218 /*
2219 * Even though the adapter gets link status information inside the
2220 * event, it needs to send a Get Link Status AQ command in order
2221 * to re-enable link events.
2222 */
2223 pi->phy.get_link_info = true;
2224 ice_get_link_status(pi, &sc->link_up);
2225
2226 if (pi->phy.link_info.topo_media_conflict &
2227 (ICE_AQ_LINK_TOPO_CONFLICT | ICE_AQ_LINK_MEDIA_CONFLICT |
2228 ICE_AQ_LINK_TOPO_CORRUPT))
2229 device_printf(dev,
2230 "Possible mis-configuration of the Ethernet port detected; please use the Intel (R) Ethernet Port Configuration Tool utility to address the issue.\n");
2231
2232 if ((pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) &&
2233 !(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) {
2234 if (!(pi->phy.link_info.an_info & ICE_AQ_QUALIFIED_MODULE))
2235 device_printf(dev,
2236 "Link is disabled on this device because an unsupported module type was detected! Refer to the Intel (R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
2237 if (pi->phy.link_info.link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED)
2238 device_printf(dev,
2239 "The module's power requirements exceed the device's power supply. Cannot start link.\n");
2240 if (pi->phy.link_info.link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT)
2241 device_printf(dev,
2242 "The installed module is incompatible with the device's NVM image. Cannot start link.\n");
2243 }
2244
2245 if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
2246 if (!ice_testandset_state(&sc->state, ICE_STATE_NO_MEDIA)) {
2247 status = ice_aq_set_link_restart_an(pi, false, NULL);
2248 if (status && hw->adminq.sq_last_status != ICE_AQ_RC_EMODE)
2249 device_printf(dev,
2250 "%s: ice_aq_set_link_restart_an: status %s, aq_err %s\n",
2251 __func__, ice_status_str(status),
2252 ice_aq_str(hw->adminq.sq_last_status));
2253 }
2254 }
2255 /* ICE_STATE_NO_MEDIA is cleared when polling task detects media */
2256
2257 /* Indicate that link status must be reported again */
2258 ice_clear_state(&sc->state, ICE_STATE_LINK_STATUS_REPORTED);
2259
2260 /* OS link info is updated elsewhere */
2261 }
2262
2263 /**
2264 * ice_process_ctrlq_event - Respond to a controlq event
2265 * @sc: device private structure
2266 * @qname: the name for this controlq
2267 * @event: the event to process
2268 *
2269 * Perform actions in response to various controlq event notifications.
2270 */
2271 static void
ice_process_ctrlq_event(struct ice_softc * sc,const char * qname,struct ice_rq_event_info * event)2272 ice_process_ctrlq_event(struct ice_softc *sc, const char *qname,
2273 struct ice_rq_event_info *event)
2274 {
2275 u16 opcode;
2276
2277 opcode = le16toh(event->desc.opcode);
2278
2279 switch (opcode) {
2280 case ice_aqc_opc_get_link_status:
2281 ice_process_link_event(sc, event);
2282 break;
2283 #ifdef PCI_IOV
2284 case ice_mbx_opc_send_msg_to_pf:
2285 ice_vc_handle_vf_msg(sc, event);
2286 break;
2287 #endif
2288 case ice_aqc_opc_fw_logs_event:
2289 ice_handle_fw_log_event(sc, &event->desc, event->msg_buf);
2290 break;
2291 case ice_aqc_opc_lldp_set_mib_change:
2292 ice_handle_mib_change_event(sc, event);
2293 break;
2294 case ice_aqc_opc_event_lan_overflow:
2295 ice_handle_lan_overflow_event(sc, event);
2296 break;
2297 case ice_aqc_opc_get_health_status:
2298 ice_handle_health_status_event(sc, event);
2299 break;
2300 default:
2301 device_printf(sc->dev,
2302 "%s Receive Queue unhandled event 0x%04x ignored\n",
2303 qname, opcode);
2304 }
2305 }
2306
2307 /**
2308 * ice_process_ctrlq - helper function to process controlq rings
2309 * @sc: device private structure
2310 * @q_type: specific control queue type
2311 * @pending: return parameter to track remaining events
2312 *
2313 * Process controlq events for a given control queue type. Returns zero on
2314 * success, and an error code on failure. If successful, pending is the number
2315 * of remaining events left in the queue.
2316 */
2317 int
ice_process_ctrlq(struct ice_softc * sc,enum ice_ctl_q q_type,u16 * pending)2318 ice_process_ctrlq(struct ice_softc *sc, enum ice_ctl_q q_type, u16 *pending)
2319 {
2320 struct ice_rq_event_info event = { { 0 } };
2321 struct ice_hw *hw = &sc->hw;
2322 struct ice_ctl_q_info *cq;
2323 int status;
2324 const char *qname;
2325 int loop = 0;
2326
2327 switch (q_type) {
2328 case ICE_CTL_Q_ADMIN:
2329 cq = &hw->adminq;
2330 qname = "Admin";
2331 break;
2332 case ICE_CTL_Q_SB:
2333 cq = &hw->sbq;
2334 qname = "Sideband";
2335 break;
2336 case ICE_CTL_Q_MAILBOX:
2337 cq = &hw->mailboxq;
2338 qname = "Mailbox";
2339 break;
2340 default:
2341 device_printf(sc->dev,
2342 "Unknown control queue type 0x%x\n",
2343 q_type);
2344 return 0;
2345 }
2346
2347 ice_check_ctrlq_errors(sc, qname, cq);
2348
2349 /*
2350 * Control queue processing happens during the admin task which may be
2351 * holding a non-sleepable lock, so we *must* use M_NOWAIT here.
2352 */
2353 event.buf_len = cq->rq_buf_size;
2354 event.msg_buf = (u8 *)malloc(event.buf_len, M_ICE, M_ZERO | M_NOWAIT);
2355 if (!event.msg_buf) {
2356 device_printf(sc->dev,
2357 "Unable to allocate memory for %s Receive Queue event\n",
2358 qname);
2359 return (ENOMEM);
2360 }
2361
2362 do {
2363 status = ice_clean_rq_elem(hw, cq, &event, pending);
2364 if (status == ICE_ERR_AQ_NO_WORK)
2365 break;
2366 if (status) {
2367 device_printf(sc->dev,
2368 "%s Receive Queue event error %s\n",
2369 qname, ice_status_str(status));
2370 free(event.msg_buf, M_ICE);
2371 return (EIO);
2372 }
2373 /* XXX should we separate this handler by controlq type? */
2374 ice_process_ctrlq_event(sc, qname, &event);
2375 } while (*pending && (++loop < ICE_CTRLQ_WORK_LIMIT));
2376
2377 free(event.msg_buf, M_ICE);
2378
2379 return 0;
2380 }
2381
2382 /**
2383 * pkg_ver_empty - Check if a package version is empty
2384 * @pkg_ver: the package version to check
2385 * @pkg_name: the package name to check
2386 *
2387 * Checks if the package version structure is empty. We consider a package
2388 * version as empty if none of the versions are non-zero and the name string
2389 * is null as well.
2390 *
2391 * This is used to check if the package version was initialized by the driver,
2392 * as we do not expect an actual DDP package file to have a zero'd version and
2393 * name.
2394 *
2395 * @returns true if the package version is valid, or false otherwise.
2396 */
2397 static bool
pkg_ver_empty(struct ice_pkg_ver * pkg_ver,u8 * pkg_name)2398 pkg_ver_empty(struct ice_pkg_ver *pkg_ver, u8 *pkg_name)
2399 {
2400 return (pkg_name[0] == '\0' &&
2401 pkg_ver->major == 0 &&
2402 pkg_ver->minor == 0 &&
2403 pkg_ver->update == 0 &&
2404 pkg_ver->draft == 0);
2405 }
2406
2407 /**
2408 * pkg_ver_compatible - Check if the package version is compatible
2409 * @pkg_ver: the package version to check
2410 *
2411 * Compares the package version number to the driver's expected major/minor
2412 * version. Returns an integer indicating whether the version is older, newer,
2413 * or compatible with the driver.
2414 *
2415 * @returns 0 if the package version is compatible, -1 if the package version
2416 * is older, and 1 if the package version is newer than the driver version.
2417 */
2418 static int
pkg_ver_compatible(struct ice_pkg_ver * pkg_ver)2419 pkg_ver_compatible(struct ice_pkg_ver *pkg_ver)
2420 {
2421 if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ)
2422 return (1); /* newer */
2423 else if ((pkg_ver->major == ICE_PKG_SUPP_VER_MAJ) &&
2424 (pkg_ver->minor > ICE_PKG_SUPP_VER_MNR))
2425 return (1); /* newer */
2426 else if ((pkg_ver->major == ICE_PKG_SUPP_VER_MAJ) &&
2427 (pkg_ver->minor == ICE_PKG_SUPP_VER_MNR))
2428 return (0); /* compatible */
2429 else
2430 return (-1); /* older */
2431 }
2432
2433 /**
2434 * ice_os_pkg_version_str - Format OS package version info into a sbuf
2435 * @hw: device hw structure
2436 * @buf: string buffer to store name/version string
2437 *
2438 * Formats the name and version of the OS DDP package as found in the ice_ddp
2439 * module into a string.
2440 *
2441 * @remark This will almost always be the same as the active package, but
2442 * could be different in some cases. Use ice_active_pkg_version_str to get the
2443 * version of the active DDP package.
2444 */
2445 static void
ice_os_pkg_version_str(struct ice_hw * hw,struct sbuf * buf)2446 ice_os_pkg_version_str(struct ice_hw *hw, struct sbuf *buf)
2447 {
2448 char name_buf[ICE_PKG_NAME_SIZE];
2449
2450 /* If the OS DDP package info is empty, use "None" */
2451 if (pkg_ver_empty(&hw->pkg_ver, hw->pkg_name)) {
2452 sbuf_printf(buf, "None");
2453 return;
2454 }
2455
2456 /*
2457 * This should already be null-terminated, but since this is a raw
2458 * value from an external source, strlcpy() into a new buffer to
2459 * make sure.
2460 */
2461 bzero(name_buf, sizeof(name_buf));
2462 strlcpy(name_buf, (char *)hw->pkg_name, ICE_PKG_NAME_SIZE);
2463
2464 sbuf_printf(buf, "%s version %u.%u.%u.%u",
2465 name_buf,
2466 hw->pkg_ver.major,
2467 hw->pkg_ver.minor,
2468 hw->pkg_ver.update,
2469 hw->pkg_ver.draft);
2470 }
2471
2472 /**
2473 * ice_active_pkg_version_str - Format active package version info into a sbuf
2474 * @hw: device hw structure
2475 * @buf: string buffer to store name/version string
2476 *
2477 * Formats the name and version of the active DDP package info into a string
2478 * buffer for use.
2479 */
2480 static void
ice_active_pkg_version_str(struct ice_hw * hw,struct sbuf * buf)2481 ice_active_pkg_version_str(struct ice_hw *hw, struct sbuf *buf)
2482 {
2483 char name_buf[ICE_PKG_NAME_SIZE];
2484
2485 /* If the active DDP package info is empty, use "None" */
2486 if (pkg_ver_empty(&hw->active_pkg_ver, hw->active_pkg_name)) {
2487 sbuf_printf(buf, "None");
2488 return;
2489 }
2490
2491 /*
2492 * This should already be null-terminated, but since this is a raw
2493 * value from an external source, strlcpy() into a new buffer to
2494 * make sure.
2495 */
2496 bzero(name_buf, sizeof(name_buf));
2497 strlcpy(name_buf, (char *)hw->active_pkg_name, ICE_PKG_NAME_SIZE);
2498
2499 sbuf_printf(buf, "%s version %u.%u.%u.%u",
2500 name_buf,
2501 hw->active_pkg_ver.major,
2502 hw->active_pkg_ver.minor,
2503 hw->active_pkg_ver.update,
2504 hw->active_pkg_ver.draft);
2505
2506 if (hw->active_track_id != 0)
2507 sbuf_printf(buf, ", track id 0x%08x", hw->active_track_id);
2508 }
2509
2510 /**
2511 * ice_nvm_version_str - Format the NVM version information into a sbuf
2512 * @hw: device hw structure
2513 * @buf: string buffer to store version string
2514 *
2515 * Formats the NVM information including firmware version, API version, NVM
2516 * version, the EETRACK id, and OEM specific version information into a string
2517 * buffer.
2518 */
2519 static void
ice_nvm_version_str(struct ice_hw * hw,struct sbuf * buf)2520 ice_nvm_version_str(struct ice_hw *hw, struct sbuf *buf)
2521 {
2522 struct ice_nvm_info *nvm = &hw->flash.nvm;
2523 struct ice_orom_info *orom = &hw->flash.orom;
2524 struct ice_netlist_info *netlist = &hw->flash.netlist;
2525
2526 /* Note that the netlist versions are stored in packed Binary Coded
2527 * Decimal format. The use of '%x' will correctly display these as
2528 * decimal numbers. This works because every 4 bits will be displayed
2529 * as a hexadecimal digit, and the BCD format will only use the values
2530 * 0-9.
2531 */
2532 sbuf_printf(buf,
2533 "fw %u.%u.%u api %u.%u nvm %x.%02x etid %08x netlist %x.%x.%x-%x.%x.%x.%04x oem %u.%u.%u",
2534 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch,
2535 hw->api_maj_ver, hw->api_min_ver,
2536 nvm->major, nvm->minor, nvm->eetrack,
2537 netlist->major, netlist->minor,
2538 netlist->type >> 16, netlist->type & 0xFFFF,
2539 netlist->rev, netlist->cust_ver, netlist->hash,
2540 orom->major, orom->build, orom->patch);
2541 }
2542
2543 /**
2544 * ice_print_nvm_version - Print the NVM info to the kernel message log
2545 * @sc: the device softc structure
2546 *
2547 * Format and print an NVM version string using ice_nvm_version_str().
2548 */
2549 void
ice_print_nvm_version(struct ice_softc * sc)2550 ice_print_nvm_version(struct ice_softc *sc)
2551 {
2552 struct ice_hw *hw = &sc->hw;
2553 device_t dev = sc->dev;
2554 struct sbuf *sbuf;
2555
2556 sbuf = sbuf_new_auto();
2557 ice_nvm_version_str(hw, sbuf);
2558 sbuf_finish(sbuf);
2559 device_printf(dev, "%s\n", sbuf_data(sbuf));
2560 sbuf_delete(sbuf);
2561 }
2562
2563 /**
2564 * ice_update_port_oversize - Update port oversize stats
2565 * @sc: device private structure
2566 * @rx_errors: VSI error drops
2567 *
2568 * Add ERROR_CNT from GLV_REPC VSI register and rx_oversize stats counter
2569 */
2570 static void
ice_update_port_oversize(struct ice_softc * sc,u64 rx_errors)2571 ice_update_port_oversize(struct ice_softc *sc, u64 rx_errors)
2572 {
2573 struct ice_hw_port_stats *cur_ps;
2574 cur_ps = &sc->stats.cur;
2575
2576 sc->soft_stats.rx_roc_error = rx_errors + cur_ps->rx_oversize;
2577 }
2578
2579 /**
2580 * ice_update_vsi_hw_stats - Update VSI-specific ethernet statistics counters
2581 * @vsi: the VSI to be updated
2582 *
2583 * Reads hardware stats and updates the ice_vsi_hw_stats tracking structure with
2584 * the updated values.
2585 */
2586 void
ice_update_vsi_hw_stats(struct ice_vsi * vsi)2587 ice_update_vsi_hw_stats(struct ice_vsi *vsi)
2588 {
2589 struct ice_eth_stats *prev_es, *cur_es;
2590 struct ice_hw *hw = &vsi->sc->hw;
2591 u16 vsi_num;
2592
2593 if (!ice_is_vsi_valid(hw, vsi->idx))
2594 return;
2595
2596 vsi_num = ice_get_hw_vsi_num(hw, vsi->idx); /* HW absolute index of a VSI */
2597 prev_es = &vsi->hw_stats.prev;
2598 cur_es = &vsi->hw_stats.cur;
2599
2600 #define ICE_VSI_STAT40(name, location) \
2601 ice_stat_update40(hw, name ## L(vsi_num), \
2602 vsi->hw_stats.offsets_loaded, \
2603 &prev_es->location, &cur_es->location)
2604
2605 #define ICE_VSI_STAT32(name, location) \
2606 ice_stat_update32(hw, name(vsi_num), \
2607 vsi->hw_stats.offsets_loaded, \
2608 &prev_es->location, &cur_es->location)
2609
2610 ICE_VSI_STAT40(GLV_GORC, rx_bytes);
2611 ICE_VSI_STAT40(GLV_UPRC, rx_unicast);
2612 ICE_VSI_STAT40(GLV_MPRC, rx_multicast);
2613 ICE_VSI_STAT40(GLV_BPRC, rx_broadcast);
2614 ICE_VSI_STAT32(GLV_RDPC, rx_discards);
2615 ICE_VSI_STAT40(GLV_GOTC, tx_bytes);
2616 ICE_VSI_STAT40(GLV_UPTC, tx_unicast);
2617 ICE_VSI_STAT40(GLV_MPTC, tx_multicast);
2618 ICE_VSI_STAT40(GLV_BPTC, tx_broadcast);
2619 ICE_VSI_STAT32(GLV_TEPC, tx_errors);
2620
2621 ice_stat_update_repc(hw, vsi->idx, vsi->hw_stats.offsets_loaded,
2622 cur_es);
2623 ice_update_port_oversize(vsi->sc, cur_es->rx_errors);
2624 #undef ICE_VSI_STAT40
2625 #undef ICE_VSI_STAT32
2626
2627 vsi->hw_stats.offsets_loaded = true;
2628 }
2629
2630 /**
2631 * ice_reset_vsi_stats - Reset VSI statistics counters
2632 * @vsi: VSI structure
2633 *
2634 * Resets the software tracking counters for the VSI statistics, and indicate
2635 * that the offsets haven't been loaded. This is intended to be called
2636 * post-reset so that VSI statistics count from zero again.
2637 */
2638 void
ice_reset_vsi_stats(struct ice_vsi * vsi)2639 ice_reset_vsi_stats(struct ice_vsi *vsi)
2640 {
2641 /* Reset HW stats */
2642 memset(&vsi->hw_stats.prev, 0, sizeof(vsi->hw_stats.prev));
2643 memset(&vsi->hw_stats.cur, 0, sizeof(vsi->hw_stats.cur));
2644 vsi->hw_stats.offsets_loaded = false;
2645 }
2646
2647 /**
2648 * ice_update_pf_stats - Update port stats counters
2649 * @sc: device private softc structure
2650 *
2651 * Reads hardware statistics registers and updates the software tracking
2652 * structure with new values.
2653 */
2654 void
ice_update_pf_stats(struct ice_softc * sc)2655 ice_update_pf_stats(struct ice_softc *sc)
2656 {
2657 struct ice_hw_port_stats *prev_ps, *cur_ps;
2658 struct ice_hw *hw = &sc->hw;
2659 u8 lport;
2660
2661 MPASS(hw->port_info);
2662
2663 prev_ps = &sc->stats.prev;
2664 cur_ps = &sc->stats.cur;
2665 lport = hw->port_info->lport;
2666
2667 #define ICE_PF_STAT_PFC(name, location, index) \
2668 ice_stat_update40(hw, name(lport, index), \
2669 sc->stats.offsets_loaded, \
2670 &prev_ps->location[index], &cur_ps->location[index])
2671
2672 #define ICE_PF_STAT40(name, location) \
2673 ice_stat_update40(hw, name ## L(lport), \
2674 sc->stats.offsets_loaded, \
2675 &prev_ps->location, &cur_ps->location)
2676
2677 #define ICE_PF_STAT32(name, location) \
2678 ice_stat_update32(hw, name(lport), \
2679 sc->stats.offsets_loaded, \
2680 &prev_ps->location, &cur_ps->location)
2681
2682 ICE_PF_STAT40(GLPRT_GORC, eth.rx_bytes);
2683 ICE_PF_STAT40(GLPRT_UPRC, eth.rx_unicast);
2684 ICE_PF_STAT40(GLPRT_MPRC, eth.rx_multicast);
2685 ICE_PF_STAT40(GLPRT_BPRC, eth.rx_broadcast);
2686 ICE_PF_STAT40(GLPRT_GOTC, eth.tx_bytes);
2687 ICE_PF_STAT40(GLPRT_UPTC, eth.tx_unicast);
2688 ICE_PF_STAT40(GLPRT_MPTC, eth.tx_multicast);
2689 ICE_PF_STAT40(GLPRT_BPTC, eth.tx_broadcast);
2690 /* This stat register doesn't have an lport */
2691 ice_stat_update32(hw, PRTRPB_RDPC,
2692 sc->stats.offsets_loaded,
2693 &prev_ps->eth.rx_discards, &cur_ps->eth.rx_discards);
2694
2695 ICE_PF_STAT32(GLPRT_TDOLD, tx_dropped_link_down);
2696 ICE_PF_STAT40(GLPRT_PRC64, rx_size_64);
2697 ICE_PF_STAT40(GLPRT_PRC127, rx_size_127);
2698 ICE_PF_STAT40(GLPRT_PRC255, rx_size_255);
2699 ICE_PF_STAT40(GLPRT_PRC511, rx_size_511);
2700 ICE_PF_STAT40(GLPRT_PRC1023, rx_size_1023);
2701 ICE_PF_STAT40(GLPRT_PRC1522, rx_size_1522);
2702 ICE_PF_STAT40(GLPRT_PRC9522, rx_size_big);
2703 ICE_PF_STAT40(GLPRT_PTC64, tx_size_64);
2704 ICE_PF_STAT40(GLPRT_PTC127, tx_size_127);
2705 ICE_PF_STAT40(GLPRT_PTC255, tx_size_255);
2706 ICE_PF_STAT40(GLPRT_PTC511, tx_size_511);
2707 ICE_PF_STAT40(GLPRT_PTC1023, tx_size_1023);
2708 ICE_PF_STAT40(GLPRT_PTC1522, tx_size_1522);
2709 ICE_PF_STAT40(GLPRT_PTC9522, tx_size_big);
2710
2711 /* Update Priority Flow Control Stats */
2712 for (int i = 0; i <= GLPRT_PXOFFRXC_MAX_INDEX; i++) {
2713 ICE_PF_STAT_PFC(GLPRT_PXONRXC, priority_xon_rx, i);
2714 ICE_PF_STAT_PFC(GLPRT_PXOFFRXC, priority_xoff_rx, i);
2715 ICE_PF_STAT_PFC(GLPRT_PXONTXC, priority_xon_tx, i);
2716 ICE_PF_STAT_PFC(GLPRT_PXOFFTXC, priority_xoff_tx, i);
2717 ICE_PF_STAT_PFC(GLPRT_RXON2OFFCNT, priority_xon_2_xoff, i);
2718 }
2719
2720 ICE_PF_STAT32(GLPRT_LXONRXC, link_xon_rx);
2721 ICE_PF_STAT32(GLPRT_LXOFFRXC, link_xoff_rx);
2722 ICE_PF_STAT32(GLPRT_LXONTXC, link_xon_tx);
2723 ICE_PF_STAT32(GLPRT_LXOFFTXC, link_xoff_tx);
2724 ICE_PF_STAT32(GLPRT_CRCERRS, crc_errors);
2725 ICE_PF_STAT32(GLPRT_ILLERRC, illegal_bytes);
2726 ICE_PF_STAT32(GLPRT_MLFC, mac_local_faults);
2727 ICE_PF_STAT32(GLPRT_MRFC, mac_remote_faults);
2728 ICE_PF_STAT32(GLPRT_RLEC, rx_len_errors);
2729 ICE_PF_STAT32(GLPRT_RUC, rx_undersize);
2730 ICE_PF_STAT32(GLPRT_RFC, rx_fragments);
2731 ICE_PF_STAT32(GLPRT_ROC, rx_oversize);
2732 ICE_PF_STAT32(GLPRT_RJC, rx_jabber);
2733
2734 #undef ICE_PF_STAT40
2735 #undef ICE_PF_STAT32
2736 #undef ICE_PF_STAT_PFC
2737
2738 sc->stats.offsets_loaded = true;
2739 }
2740
2741 /**
2742 * ice_reset_pf_stats - Reset port stats counters
2743 * @sc: Device private softc structure
2744 *
2745 * Reset software tracking values for statistics to zero, and indicate that
2746 * offsets haven't been loaded. Intended to be called after a device reset so
2747 * that statistics count from zero again.
2748 */
2749 void
ice_reset_pf_stats(struct ice_softc * sc)2750 ice_reset_pf_stats(struct ice_softc *sc)
2751 {
2752 memset(&sc->stats.prev, 0, sizeof(sc->stats.prev));
2753 memset(&sc->stats.cur, 0, sizeof(sc->stats.cur));
2754 sc->stats.offsets_loaded = false;
2755 }
2756
2757 /**
2758 * ice_sysctl_show_fw - sysctl callback to show firmware information
2759 * @oidp: sysctl oid structure
2760 * @arg1: pointer to private data structure
2761 * @arg2: unused
2762 * @req: sysctl request pointer
2763 *
2764 * Callback for the fw_version sysctl, to display the current firmware
2765 * information found at hardware init time.
2766 */
2767 static int
ice_sysctl_show_fw(SYSCTL_HANDLER_ARGS)2768 ice_sysctl_show_fw(SYSCTL_HANDLER_ARGS)
2769 {
2770 struct ice_softc *sc = (struct ice_softc *)arg1;
2771 struct ice_hw *hw = &sc->hw;
2772 struct sbuf *sbuf;
2773
2774 UNREFERENCED_PARAMETER(oidp);
2775 UNREFERENCED_PARAMETER(arg2);
2776
2777 if (ice_driver_is_detaching(sc))
2778 return (ESHUTDOWN);
2779
2780 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
2781 ice_nvm_version_str(hw, sbuf);
2782 sbuf_finish(sbuf);
2783 sbuf_delete(sbuf);
2784
2785 return (0);
2786 }
2787
2788 /**
2789 * ice_sysctl_pba_number - sysctl callback to show PBA number
2790 * @oidp: sysctl oid structure
2791 * @arg1: pointer to private data structure
2792 * @arg2: unused
2793 * @req: sysctl request pointer
2794 *
2795 * Callback for the pba_number sysctl, used to read the Product Board Assembly
2796 * number for this device.
2797 */
2798 static int
ice_sysctl_pba_number(SYSCTL_HANDLER_ARGS)2799 ice_sysctl_pba_number(SYSCTL_HANDLER_ARGS)
2800 {
2801 struct ice_softc *sc = (struct ice_softc *)arg1;
2802 struct ice_hw *hw = &sc->hw;
2803 device_t dev = sc->dev;
2804 u8 pba_string[32] = "";
2805 int status;
2806
2807 UNREFERENCED_PARAMETER(arg2);
2808
2809 if (ice_driver_is_detaching(sc))
2810 return (ESHUTDOWN);
2811
2812 status = ice_read_pba_string(hw, pba_string, sizeof(pba_string));
2813 if (status) {
2814 device_printf(dev,
2815 "%s: failed to read PBA string from NVM; status %s, aq_err %s\n",
2816 __func__, ice_status_str(status),
2817 ice_aq_str(hw->adminq.sq_last_status));
2818 return (EIO);
2819 }
2820
2821 return sysctl_handle_string(oidp, pba_string, sizeof(pba_string), req);
2822 }
2823
2824 /**
2825 * ice_sysctl_pkg_version - sysctl to show the active package version info
2826 * @oidp: sysctl oid structure
2827 * @arg1: pointer to private data structure
2828 * @arg2: unused
2829 * @req: sysctl request pointer
2830 *
2831 * Callback for the pkg_version sysctl, to display the active DDP package name
2832 * and version information.
2833 */
2834 static int
ice_sysctl_pkg_version(SYSCTL_HANDLER_ARGS)2835 ice_sysctl_pkg_version(SYSCTL_HANDLER_ARGS)
2836 {
2837 struct ice_softc *sc = (struct ice_softc *)arg1;
2838 struct ice_hw *hw = &sc->hw;
2839 struct sbuf *sbuf;
2840
2841 UNREFERENCED_PARAMETER(oidp);
2842 UNREFERENCED_PARAMETER(arg2);
2843
2844 if (ice_driver_is_detaching(sc))
2845 return (ESHUTDOWN);
2846
2847 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
2848 ice_active_pkg_version_str(hw, sbuf);
2849 sbuf_finish(sbuf);
2850 sbuf_delete(sbuf);
2851
2852 return (0);
2853 }
2854
2855 /**
2856 * ice_sysctl_os_pkg_version - sysctl to show the OS package version info
2857 * @oidp: sysctl oid structure
2858 * @arg1: pointer to private data structure
2859 * @arg2: unused
2860 * @req: sysctl request pointer
2861 *
2862 * Callback for the pkg_version sysctl, to display the OS DDP package name and
2863 * version info found in the ice_ddp module.
2864 */
2865 static int
ice_sysctl_os_pkg_version(SYSCTL_HANDLER_ARGS)2866 ice_sysctl_os_pkg_version(SYSCTL_HANDLER_ARGS)
2867 {
2868 struct ice_softc *sc = (struct ice_softc *)arg1;
2869 struct ice_hw *hw = &sc->hw;
2870 struct sbuf *sbuf;
2871
2872 UNREFERENCED_PARAMETER(oidp);
2873 UNREFERENCED_PARAMETER(arg2);
2874
2875 if (ice_driver_is_detaching(sc))
2876 return (ESHUTDOWN);
2877
2878 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
2879 ice_os_pkg_version_str(hw, sbuf);
2880 sbuf_finish(sbuf);
2881 sbuf_delete(sbuf);
2882
2883 return (0);
2884 }
2885
2886 /**
2887 * ice_sysctl_current_speed - sysctl callback to show current link speed
2888 * @oidp: sysctl oid structure
2889 * @arg1: pointer to private data structure
2890 * @arg2: unused
2891 * @req: sysctl request pointer
2892 *
2893 * Callback for the current_speed sysctl, to display the string representing
2894 * the current link speed.
2895 */
2896 static int
ice_sysctl_current_speed(SYSCTL_HANDLER_ARGS)2897 ice_sysctl_current_speed(SYSCTL_HANDLER_ARGS)
2898 {
2899 struct ice_softc *sc = (struct ice_softc *)arg1;
2900 struct ice_hw *hw = &sc->hw;
2901 struct sbuf *sbuf;
2902
2903 UNREFERENCED_PARAMETER(oidp);
2904 UNREFERENCED_PARAMETER(arg2);
2905
2906 if (ice_driver_is_detaching(sc))
2907 return (ESHUTDOWN);
2908
2909 sbuf = sbuf_new_for_sysctl(NULL, NULL, 10, req);
2910 sbuf_printf(sbuf, "%s", ice_aq_speed_to_str(hw->port_info));
2911 sbuf_finish(sbuf);
2912 sbuf_delete(sbuf);
2913
2914 return (0);
2915 }
2916
2917 /**
2918 * @var phy_link_speeds
2919 * @brief PHY link speed conversion array
2920 *
2921 * Array of link speeds to convert ICE_PHY_TYPE_LOW and ICE_PHY_TYPE_HIGH into
2922 * link speeds used by the link speed sysctls.
2923 *
2924 * @remark these are based on the indices used in the BIT() macros for the
2925 * ICE_PHY_TYPE_LOW_* and ICE_PHY_TYPE_HIGH_* definitions.
2926 */
2927 static const uint16_t phy_link_speeds[] = {
2928 ICE_AQ_LINK_SPEED_100MB,
2929 ICE_AQ_LINK_SPEED_100MB,
2930 ICE_AQ_LINK_SPEED_1000MB,
2931 ICE_AQ_LINK_SPEED_1000MB,
2932 ICE_AQ_LINK_SPEED_1000MB,
2933 ICE_AQ_LINK_SPEED_1000MB,
2934 ICE_AQ_LINK_SPEED_1000MB,
2935 ICE_AQ_LINK_SPEED_2500MB,
2936 ICE_AQ_LINK_SPEED_2500MB,
2937 ICE_AQ_LINK_SPEED_2500MB,
2938 ICE_AQ_LINK_SPEED_5GB,
2939 ICE_AQ_LINK_SPEED_5GB,
2940 ICE_AQ_LINK_SPEED_10GB,
2941 ICE_AQ_LINK_SPEED_10GB,
2942 ICE_AQ_LINK_SPEED_10GB,
2943 ICE_AQ_LINK_SPEED_10GB,
2944 ICE_AQ_LINK_SPEED_10GB,
2945 ICE_AQ_LINK_SPEED_10GB,
2946 ICE_AQ_LINK_SPEED_10GB,
2947 ICE_AQ_LINK_SPEED_25GB,
2948 ICE_AQ_LINK_SPEED_25GB,
2949 ICE_AQ_LINK_SPEED_25GB,
2950 ICE_AQ_LINK_SPEED_25GB,
2951 ICE_AQ_LINK_SPEED_25GB,
2952 ICE_AQ_LINK_SPEED_25GB,
2953 ICE_AQ_LINK_SPEED_25GB,
2954 ICE_AQ_LINK_SPEED_25GB,
2955 ICE_AQ_LINK_SPEED_25GB,
2956 ICE_AQ_LINK_SPEED_25GB,
2957 ICE_AQ_LINK_SPEED_25GB,
2958 ICE_AQ_LINK_SPEED_40GB,
2959 ICE_AQ_LINK_SPEED_40GB,
2960 ICE_AQ_LINK_SPEED_40GB,
2961 ICE_AQ_LINK_SPEED_40GB,
2962 ICE_AQ_LINK_SPEED_40GB,
2963 ICE_AQ_LINK_SPEED_40GB,
2964 ICE_AQ_LINK_SPEED_50GB,
2965 ICE_AQ_LINK_SPEED_50GB,
2966 ICE_AQ_LINK_SPEED_50GB,
2967 ICE_AQ_LINK_SPEED_50GB,
2968 ICE_AQ_LINK_SPEED_50GB,
2969 ICE_AQ_LINK_SPEED_50GB,
2970 ICE_AQ_LINK_SPEED_50GB,
2971 ICE_AQ_LINK_SPEED_50GB,
2972 ICE_AQ_LINK_SPEED_50GB,
2973 ICE_AQ_LINK_SPEED_50GB,
2974 ICE_AQ_LINK_SPEED_50GB,
2975 ICE_AQ_LINK_SPEED_50GB,
2976 ICE_AQ_LINK_SPEED_50GB,
2977 ICE_AQ_LINK_SPEED_50GB,
2978 ICE_AQ_LINK_SPEED_50GB,
2979 ICE_AQ_LINK_SPEED_100GB,
2980 ICE_AQ_LINK_SPEED_100GB,
2981 ICE_AQ_LINK_SPEED_100GB,
2982 ICE_AQ_LINK_SPEED_100GB,
2983 ICE_AQ_LINK_SPEED_100GB,
2984 ICE_AQ_LINK_SPEED_100GB,
2985 ICE_AQ_LINK_SPEED_100GB,
2986 ICE_AQ_LINK_SPEED_100GB,
2987 ICE_AQ_LINK_SPEED_100GB,
2988 ICE_AQ_LINK_SPEED_100GB,
2989 ICE_AQ_LINK_SPEED_100GB,
2990 ICE_AQ_LINK_SPEED_100GB,
2991 ICE_AQ_LINK_SPEED_100GB,
2992 /* These rates are for ICE_PHY_TYPE_HIGH_* */
2993 ICE_AQ_LINK_SPEED_100GB,
2994 ICE_AQ_LINK_SPEED_100GB,
2995 ICE_AQ_LINK_SPEED_100GB,
2996 ICE_AQ_LINK_SPEED_100GB,
2997 ICE_AQ_LINK_SPEED_100GB,
2998 ICE_AQ_LINK_SPEED_200GB,
2999 ICE_AQ_LINK_SPEED_200GB,
3000 ICE_AQ_LINK_SPEED_200GB,
3001 ICE_AQ_LINK_SPEED_200GB,
3002 ICE_AQ_LINK_SPEED_200GB,
3003 ICE_AQ_LINK_SPEED_200GB,
3004 ICE_AQ_LINK_SPEED_200GB,
3005 ICE_AQ_LINK_SPEED_200GB,
3006 ICE_AQ_LINK_SPEED_200GB,
3007 ICE_AQ_LINK_SPEED_200GB,
3008 };
3009
3010 #define ICE_SYSCTL_HELP_ADVERTISE_SPEED \
3011 "\nControl advertised link speed." \
3012 "\nFlags:" \
3013 "\n\t 0x0 - Auto" \
3014 "\n\t 0x1 - 10 Mb" \
3015 "\n\t 0x2 - 100 Mb" \
3016 "\n\t 0x4 - 1G" \
3017 "\n\t 0x8 - 2.5G" \
3018 "\n\t 0x10 - 5G" \
3019 "\n\t 0x20 - 10G" \
3020 "\n\t 0x40 - 20G" \
3021 "\n\t 0x80 - 25G" \
3022 "\n\t 0x100 - 40G" \
3023 "\n\t 0x200 - 50G" \
3024 "\n\t 0x400 - 100G" \
3025 "\n\t 0x800 - 200G" \
3026 "\n\t0x8000 - Unknown" \
3027 "\n\t" \
3028 "\nUse \"sysctl -x\" to view flags properly."
3029
3030 #define ICE_PHYS_100MB \
3031 (ICE_PHY_TYPE_LOW_100BASE_TX | \
3032 ICE_PHY_TYPE_LOW_100M_SGMII)
3033 #define ICE_PHYS_1000MB \
3034 (ICE_PHY_TYPE_LOW_1000BASE_T | \
3035 ICE_PHY_TYPE_LOW_1000BASE_SX | \
3036 ICE_PHY_TYPE_LOW_1000BASE_LX | \
3037 ICE_PHY_TYPE_LOW_1000BASE_KX | \
3038 ICE_PHY_TYPE_LOW_1G_SGMII)
3039 #define ICE_PHYS_2500MB \
3040 (ICE_PHY_TYPE_LOW_2500BASE_T | \
3041 ICE_PHY_TYPE_LOW_2500BASE_X | \
3042 ICE_PHY_TYPE_LOW_2500BASE_KX)
3043 #define ICE_PHYS_5GB \
3044 (ICE_PHY_TYPE_LOW_5GBASE_T | \
3045 ICE_PHY_TYPE_LOW_5GBASE_KR)
3046 #define ICE_PHYS_10GB \
3047 (ICE_PHY_TYPE_LOW_10GBASE_T | \
3048 ICE_PHY_TYPE_LOW_10G_SFI_DA | \
3049 ICE_PHY_TYPE_LOW_10GBASE_SR | \
3050 ICE_PHY_TYPE_LOW_10GBASE_LR | \
3051 ICE_PHY_TYPE_LOW_10GBASE_KR_CR1 | \
3052 ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC | \
3053 ICE_PHY_TYPE_LOW_10G_SFI_C2C)
3054 #define ICE_PHYS_25GB \
3055 (ICE_PHY_TYPE_LOW_25GBASE_T | \
3056 ICE_PHY_TYPE_LOW_25GBASE_CR | \
3057 ICE_PHY_TYPE_LOW_25GBASE_CR_S | \
3058 ICE_PHY_TYPE_LOW_25GBASE_CR1 | \
3059 ICE_PHY_TYPE_LOW_25GBASE_SR | \
3060 ICE_PHY_TYPE_LOW_25GBASE_LR | \
3061 ICE_PHY_TYPE_LOW_25GBASE_KR | \
3062 ICE_PHY_TYPE_LOW_25GBASE_KR_S | \
3063 ICE_PHY_TYPE_LOW_25GBASE_KR1 | \
3064 ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC | \
3065 ICE_PHY_TYPE_LOW_25G_AUI_C2C)
3066 #define ICE_PHYS_40GB \
3067 (ICE_PHY_TYPE_LOW_40GBASE_CR4 | \
3068 ICE_PHY_TYPE_LOW_40GBASE_SR4 | \
3069 ICE_PHY_TYPE_LOW_40GBASE_LR4 | \
3070 ICE_PHY_TYPE_LOW_40GBASE_KR4 | \
3071 ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC | \
3072 ICE_PHY_TYPE_LOW_40G_XLAUI)
3073 #define ICE_PHYS_50GB \
3074 (ICE_PHY_TYPE_LOW_50GBASE_CR2 | \
3075 ICE_PHY_TYPE_LOW_50GBASE_SR2 | \
3076 ICE_PHY_TYPE_LOW_50GBASE_LR2 | \
3077 ICE_PHY_TYPE_LOW_50GBASE_KR2 | \
3078 ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC | \
3079 ICE_PHY_TYPE_LOW_50G_LAUI2 | \
3080 ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC | \
3081 ICE_PHY_TYPE_LOW_50G_AUI2 | \
3082 ICE_PHY_TYPE_LOW_50GBASE_CP | \
3083 ICE_PHY_TYPE_LOW_50GBASE_SR | \
3084 ICE_PHY_TYPE_LOW_50GBASE_FR | \
3085 ICE_PHY_TYPE_LOW_50GBASE_LR | \
3086 ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4 | \
3087 ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC | \
3088 ICE_PHY_TYPE_LOW_50G_AUI1)
3089 #define ICE_PHYS_100GB_LOW \
3090 (ICE_PHY_TYPE_LOW_100GBASE_CR4 | \
3091 ICE_PHY_TYPE_LOW_100GBASE_SR4 | \
3092 ICE_PHY_TYPE_LOW_100GBASE_LR4 | \
3093 ICE_PHY_TYPE_LOW_100GBASE_KR4 | \
3094 ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC | \
3095 ICE_PHY_TYPE_LOW_100G_CAUI4 | \
3096 ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC | \
3097 ICE_PHY_TYPE_LOW_100G_AUI4 | \
3098 ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4 | \
3099 ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4 | \
3100 ICE_PHY_TYPE_LOW_100GBASE_CP2 | \
3101 ICE_PHY_TYPE_LOW_100GBASE_SR2 | \
3102 ICE_PHY_TYPE_LOW_100GBASE_DR)
3103 #define ICE_PHYS_100GB_HIGH \
3104 (ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4 | \
3105 ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC | \
3106 ICE_PHY_TYPE_HIGH_100G_CAUI2 | \
3107 ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC | \
3108 ICE_PHY_TYPE_HIGH_100G_AUI2)
3109 #define ICE_PHYS_200GB \
3110 (ICE_PHY_TYPE_HIGH_200G_CR4_PAM4 | \
3111 ICE_PHY_TYPE_HIGH_200G_SR4 | \
3112 ICE_PHY_TYPE_HIGH_200G_FR4 | \
3113 ICE_PHY_TYPE_HIGH_200G_LR4 | \
3114 ICE_PHY_TYPE_HIGH_200G_DR4 | \
3115 ICE_PHY_TYPE_HIGH_200G_KR4_PAM4 | \
3116 ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC | \
3117 ICE_PHY_TYPE_HIGH_200G_AUI4 | \
3118 ICE_PHY_TYPE_HIGH_200G_AUI8_AOC_ACC | \
3119 ICE_PHY_TYPE_HIGH_200G_AUI8)
3120
3121 /**
3122 * ice_aq_phy_types_to_link_speeds - Convert the PHY Types to speeds
3123 * @phy_type_low: lower 64-bit PHY Type bitmask
3124 * @phy_type_high: upper 64-bit PHY Type bitmask
3125 *
3126 * Convert the PHY Type fields from Get PHY Abilities and Set PHY Config into
3127 * link speed flags. If phy_type_high has an unknown PHY type, then the return
3128 * value will include the "ICE_AQ_LINK_SPEED_UNKNOWN" flag as well.
3129 */
3130 static u16
ice_aq_phy_types_to_link_speeds(u64 phy_type_low,u64 phy_type_high)3131 ice_aq_phy_types_to_link_speeds(u64 phy_type_low, u64 phy_type_high)
3132 {
3133 u16 sysctl_speeds = 0;
3134 int bit;
3135
3136 /* coverity[address_of] */
3137 for_each_set_bit(bit, &phy_type_low, 64)
3138 sysctl_speeds |= phy_link_speeds[bit];
3139
3140 /* coverity[address_of] */
3141 for_each_set_bit(bit, &phy_type_high, 64) {
3142 if ((bit + 64) < (int)ARRAY_SIZE(phy_link_speeds))
3143 sysctl_speeds |= phy_link_speeds[bit + 64];
3144 else
3145 sysctl_speeds |= ICE_AQ_LINK_SPEED_UNKNOWN;
3146 }
3147
3148 return (sysctl_speeds);
3149 }
3150
3151 /**
3152 * ice_sysctl_speeds_to_aq_phy_types - Convert sysctl speed flags to AQ PHY flags
3153 * @sysctl_speeds: 16-bit sysctl speeds or AQ_LINK_SPEED flags
3154 * @phy_type_low: output parameter for lower AQ PHY flags
3155 * @phy_type_high: output parameter for higher AQ PHY flags
3156 *
3157 * Converts the given link speed flags into AQ PHY type flag sets appropriate
3158 * for use in a Set PHY Config command.
3159 */
3160 static void
ice_sysctl_speeds_to_aq_phy_types(u16 sysctl_speeds,u64 * phy_type_low,u64 * phy_type_high)3161 ice_sysctl_speeds_to_aq_phy_types(u16 sysctl_speeds, u64 *phy_type_low,
3162 u64 *phy_type_high)
3163 {
3164 *phy_type_low = 0, *phy_type_high = 0;
3165
3166 if (sysctl_speeds & ICE_AQ_LINK_SPEED_100MB)
3167 *phy_type_low |= ICE_PHYS_100MB;
3168 if (sysctl_speeds & ICE_AQ_LINK_SPEED_1000MB)
3169 *phy_type_low |= ICE_PHYS_1000MB;
3170 if (sysctl_speeds & ICE_AQ_LINK_SPEED_2500MB)
3171 *phy_type_low |= ICE_PHYS_2500MB;
3172 if (sysctl_speeds & ICE_AQ_LINK_SPEED_5GB)
3173 *phy_type_low |= ICE_PHYS_5GB;
3174 if (sysctl_speeds & ICE_AQ_LINK_SPEED_10GB)
3175 *phy_type_low |= ICE_PHYS_10GB;
3176 if (sysctl_speeds & ICE_AQ_LINK_SPEED_25GB)
3177 *phy_type_low |= ICE_PHYS_25GB;
3178 if (sysctl_speeds & ICE_AQ_LINK_SPEED_40GB)
3179 *phy_type_low |= ICE_PHYS_40GB;
3180 if (sysctl_speeds & ICE_AQ_LINK_SPEED_50GB)
3181 *phy_type_low |= ICE_PHYS_50GB;
3182 if (sysctl_speeds & ICE_AQ_LINK_SPEED_100GB) {
3183 *phy_type_low |= ICE_PHYS_100GB_LOW;
3184 *phy_type_high |= ICE_PHYS_100GB_HIGH;
3185 }
3186 if (sysctl_speeds & ICE_AQ_LINK_SPEED_200GB)
3187 *phy_type_high |= ICE_PHYS_200GB;
3188 }
3189
3190 /**
3191 * @struct ice_phy_data
3192 * @brief PHY caps and link speeds
3193 *
3194 * Buffer providing report mode and user speeds;
3195 * returning intersection of PHY types and speeds.
3196 */
3197 struct ice_phy_data {
3198 u64 phy_low_orig; /* PHY low quad from report */
3199 u64 phy_high_orig; /* PHY high quad from report */
3200 u64 phy_low_intr; /* PHY low quad intersection with user speeds */
3201 u64 phy_high_intr; /* PHY high quad intersection with user speeds */
3202 u16 user_speeds_orig; /* Input from caller - See ICE_AQ_LINK_SPEED_* */
3203 u16 user_speeds_intr; /* Intersect with report speeds */
3204 u8 report_mode; /* See ICE_AQC_REPORT_* */
3205 };
3206
3207 /**
3208 * ice_intersect_phy_types_and_speeds - Return intersection of link speeds
3209 * @sc: device private structure
3210 * @phy_data: device PHY data
3211 *
3212 * On read: Displays the currently supported speeds
3213 * On write: Sets the device's supported speeds
3214 * Valid input flags: see ICE_SYSCTL_HELP_ADVERTISE_SPEED
3215 */
3216 static int
ice_intersect_phy_types_and_speeds(struct ice_softc * sc,struct ice_phy_data * phy_data)3217 ice_intersect_phy_types_and_speeds(struct ice_softc *sc,
3218 struct ice_phy_data *phy_data)
3219 {
3220 struct ice_aqc_get_phy_caps_data pcaps = { 0 };
3221 const char *report_types[5] = { "w/o MEDIA",
3222 "w/MEDIA",
3223 "ACTIVE",
3224 "EDOOFUS", /* Not used */
3225 "DFLT" };
3226 struct ice_hw *hw = &sc->hw;
3227 struct ice_port_info *pi = hw->port_info;
3228 int status;
3229 u16 report_speeds, temp_speeds;
3230 u8 report_type;
3231 bool apply_speed_filter = false;
3232
3233 switch (phy_data->report_mode) {
3234 case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
3235 case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
3236 case ICE_AQC_REPORT_ACTIVE_CFG:
3237 case ICE_AQC_REPORT_DFLT_CFG:
3238 report_type = phy_data->report_mode >> 1;
3239 break;
3240 default:
3241 device_printf(sc->dev,
3242 "%s: phy_data.report_mode \"%u\" doesn't exist\n",
3243 __func__, phy_data->report_mode);
3244 return (EINVAL);
3245 }
3246
3247 /* 0 is treated as "Auto"; the driver will handle selecting the
3248 * correct speeds. Including, in some cases, applying an override
3249 * if provided.
3250 */
3251 if (phy_data->user_speeds_orig == 0)
3252 phy_data->user_speeds_orig = USHRT_MAX;
3253 else if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_LENIENT_LINK_MODE))
3254 apply_speed_filter = true;
3255
3256 status = ice_aq_get_phy_caps(pi, false, phy_data->report_mode, &pcaps, NULL);
3257 if (status) {
3258 device_printf(sc->dev,
3259 "%s: ice_aq_get_phy_caps (%s) failed; status %s, aq_err %s\n",
3260 __func__, report_types[report_type],
3261 ice_status_str(status),
3262 ice_aq_str(sc->hw.adminq.sq_last_status));
3263 return (EIO);
3264 }
3265
3266 phy_data->phy_low_orig = le64toh(pcaps.phy_type_low);
3267 phy_data->phy_high_orig = le64toh(pcaps.phy_type_high);
3268 report_speeds = ice_aq_phy_types_to_link_speeds(phy_data->phy_low_orig,
3269 phy_data->phy_high_orig);
3270 if (apply_speed_filter) {
3271 temp_speeds = ice_apply_supported_speed_filter(report_speeds,
3272 pcaps.module_type[0]);
3273 if ((phy_data->user_speeds_orig & temp_speeds) == 0) {
3274 device_printf(sc->dev,
3275 "User-specified speeds (\"0x%04X\") not supported\n",
3276 phy_data->user_speeds_orig);
3277 return (EINVAL);
3278 }
3279 report_speeds = temp_speeds;
3280 }
3281 ice_sysctl_speeds_to_aq_phy_types(phy_data->user_speeds_orig,
3282 &phy_data->phy_low_intr, &phy_data->phy_high_intr);
3283 phy_data->user_speeds_intr = phy_data->user_speeds_orig & report_speeds;
3284 phy_data->phy_low_intr &= phy_data->phy_low_orig;
3285 phy_data->phy_high_intr &= phy_data->phy_high_orig;
3286
3287 return (0);
3288 }
3289
3290 /**
3291 * ice_sysctl_advertise_speed - Display/change link speeds supported by port
3292 * @oidp: sysctl oid structure
3293 * @arg1: pointer to private data structure
3294 * @arg2: unused
3295 * @req: sysctl request pointer
3296 *
3297 * On read: Displays the currently supported speeds
3298 * On write: Sets the device's supported speeds
3299 * Valid input flags: see ICE_SYSCTL_HELP_ADVERTISE_SPEED
3300 */
3301 static int
ice_sysctl_advertise_speed(SYSCTL_HANDLER_ARGS)3302 ice_sysctl_advertise_speed(SYSCTL_HANDLER_ARGS)
3303 {
3304 struct ice_softc *sc = (struct ice_softc *)arg1;
3305 struct ice_port_info *pi = sc->hw.port_info;
3306 struct ice_phy_data phy_data = { 0 };
3307 device_t dev = sc->dev;
3308 u16 sysctl_speeds;
3309 int ret;
3310
3311 UNREFERENCED_PARAMETER(arg2);
3312
3313 if (ice_driver_is_detaching(sc))
3314 return (ESHUTDOWN);
3315
3316 /* Get the current speeds from the adapter's "active" configuration. */
3317 phy_data.report_mode = ICE_AQC_REPORT_ACTIVE_CFG;
3318 ret = ice_intersect_phy_types_and_speeds(sc, &phy_data);
3319 if (ret) {
3320 /* Error message already printed within function */
3321 return (ret);
3322 }
3323
3324 sysctl_speeds = phy_data.user_speeds_intr;
3325
3326 ret = sysctl_handle_16(oidp, &sysctl_speeds, 0, req);
3327 if ((ret) || (req->newptr == NULL))
3328 return (ret);
3329
3330 if (sysctl_speeds > ICE_SYSCTL_SPEEDS_VALID_RANGE) {
3331 device_printf(dev,
3332 "%s: \"%u\" is outside of the range of acceptable values.\n",
3333 __func__, sysctl_speeds);
3334 return (EINVAL);
3335 }
3336
3337 pi->phy.curr_user_speed_req = sysctl_speeds;
3338
3339 if (!ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN) &&
3340 !sc->link_up && !(if_getflags(sc->ifp) & IFF_UP))
3341 return 0;
3342
3343 /* Apply settings requested by user */
3344 return ice_apply_saved_phy_cfg(sc, ICE_APPLY_LS);
3345 }
3346
3347 #define ICE_SYSCTL_HELP_FEC_CONFIG \
3348 "\nDisplay or set the port's requested FEC mode." \
3349 "\n\tauto - " ICE_FEC_STRING_AUTO \
3350 "\n\tfc - " ICE_FEC_STRING_BASER \
3351 "\n\trs - " ICE_FEC_STRING_RS \
3352 "\n\tnone - " ICE_FEC_STRING_NONE \
3353 "\nEither of the left or right strings above can be used to set the requested mode."
3354
3355 /**
3356 * ice_sysctl_fec_config - Display/change the configured FEC mode
3357 * @oidp: sysctl oid structure
3358 * @arg1: pointer to private data structure
3359 * @arg2: unused
3360 * @req: sysctl request pointer
3361 *
3362 * On read: Displays the configured FEC mode
3363 * On write: Sets the device's FEC mode to the input string, if it's valid.
3364 * Valid input strings: see ICE_SYSCTL_HELP_FEC_CONFIG
3365 */
3366 static int
ice_sysctl_fec_config(SYSCTL_HANDLER_ARGS)3367 ice_sysctl_fec_config(SYSCTL_HANDLER_ARGS)
3368 {
3369 struct ice_softc *sc = (struct ice_softc *)arg1;
3370 struct ice_port_info *pi = sc->hw.port_info;
3371 enum ice_fec_mode new_mode;
3372 device_t dev = sc->dev;
3373 char req_fec[32];
3374 int ret;
3375
3376 UNREFERENCED_PARAMETER(arg2);
3377
3378 if (ice_driver_is_detaching(sc))
3379 return (ESHUTDOWN);
3380
3381 bzero(req_fec, sizeof(req_fec));
3382 strlcpy(req_fec, ice_requested_fec_mode(pi), sizeof(req_fec));
3383
3384 ret = sysctl_handle_string(oidp, req_fec, sizeof(req_fec), req);
3385 if ((ret) || (req->newptr == NULL))
3386 return (ret);
3387
3388 if (strcmp(req_fec, "auto") == 0 ||
3389 strcmp(req_fec, ice_fec_str(ICE_FEC_AUTO)) == 0) {
3390 if (sc->allow_no_fec_mod_in_auto)
3391 new_mode = ICE_FEC_DIS_AUTO;
3392 else
3393 new_mode = ICE_FEC_AUTO;
3394 } else if (strcmp(req_fec, "fc") == 0 ||
3395 strcmp(req_fec, ice_fec_str(ICE_FEC_BASER)) == 0) {
3396 new_mode = ICE_FEC_BASER;
3397 } else if (strcmp(req_fec, "rs") == 0 ||
3398 strcmp(req_fec, ice_fec_str(ICE_FEC_RS)) == 0) {
3399 new_mode = ICE_FEC_RS;
3400 } else if (strcmp(req_fec, "none") == 0 ||
3401 strcmp(req_fec, ice_fec_str(ICE_FEC_NONE)) == 0) {
3402 new_mode = ICE_FEC_NONE;
3403 } else {
3404 device_printf(dev,
3405 "%s: \"%s\" is not a valid FEC mode\n",
3406 __func__, req_fec);
3407 return (EINVAL);
3408 }
3409
3410 /* Cache user FEC mode for later link ups */
3411 pi->phy.curr_user_fec_req = new_mode;
3412
3413 if (!ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN) && !sc->link_up)
3414 return 0;
3415
3416 /* Apply settings requested by user */
3417 return ice_apply_saved_phy_cfg(sc, ICE_APPLY_FEC);
3418 }
3419
3420 /**
3421 * ice_sysctl_negotiated_fec - Display the negotiated FEC mode on the link
3422 * @oidp: sysctl oid structure
3423 * @arg1: pointer to private data structure
3424 * @arg2: unused
3425 * @req: sysctl request pointer
3426 *
3427 * On read: Displays the negotiated FEC mode, in a string
3428 */
3429 static int
ice_sysctl_negotiated_fec(SYSCTL_HANDLER_ARGS)3430 ice_sysctl_negotiated_fec(SYSCTL_HANDLER_ARGS)
3431 {
3432 struct ice_softc *sc = (struct ice_softc *)arg1;
3433 struct ice_hw *hw = &sc->hw;
3434 char neg_fec[32];
3435 int ret;
3436
3437 UNREFERENCED_PARAMETER(arg2);
3438
3439 if (ice_driver_is_detaching(sc))
3440 return (ESHUTDOWN);
3441
3442 /* Copy const string into a buffer to drop const qualifier */
3443 bzero(neg_fec, sizeof(neg_fec));
3444 strlcpy(neg_fec, ice_negotiated_fec_mode(hw->port_info), sizeof(neg_fec));
3445
3446 ret = sysctl_handle_string(oidp, neg_fec, 0, req);
3447 if (req->newptr != NULL)
3448 return (EPERM);
3449
3450 return (ret);
3451 }
3452
3453 #define ICE_SYSCTL_HELP_FC_CONFIG \
3454 "\nDisplay or set the port's advertised flow control mode.\n" \
3455 "\t0 - " ICE_FC_STRING_NONE \
3456 "\n\t1 - " ICE_FC_STRING_RX \
3457 "\n\t2 - " ICE_FC_STRING_TX \
3458 "\n\t3 - " ICE_FC_STRING_FULL \
3459 "\nEither the numbers or the strings above can be used to set the advertised mode."
3460
3461 /**
3462 * ice_sysctl_fc_config - Display/change the advertised flow control mode
3463 * @oidp: sysctl oid structure
3464 * @arg1: pointer to private data structure
3465 * @arg2: unused
3466 * @req: sysctl request pointer
3467 *
3468 * On read: Displays the configured flow control mode
3469 * On write: Sets the device's flow control mode to the input, if it's valid.
3470 * Valid input strings: see ICE_SYSCTL_HELP_FC_CONFIG
3471 */
3472 static int
ice_sysctl_fc_config(SYSCTL_HANDLER_ARGS)3473 ice_sysctl_fc_config(SYSCTL_HANDLER_ARGS)
3474 {
3475 struct ice_softc *sc = (struct ice_softc *)arg1;
3476 struct ice_port_info *pi = sc->hw.port_info;
3477 struct ice_aqc_get_phy_caps_data pcaps = { 0 };
3478 enum ice_fc_mode old_mode, new_mode;
3479 struct ice_hw *hw = &sc->hw;
3480 device_t dev = sc->dev;
3481 int status;
3482 int ret, fc_num;
3483 bool mode_set = false;
3484 struct sbuf buf;
3485 char *fc_str_end;
3486 char fc_str[32];
3487
3488 UNREFERENCED_PARAMETER(arg2);
3489
3490 if (ice_driver_is_detaching(sc))
3491 return (ESHUTDOWN);
3492
3493 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3494 &pcaps, NULL);
3495 if (status) {
3496 device_printf(dev,
3497 "%s: ice_aq_get_phy_caps failed; status %s, aq_err %s\n",
3498 __func__, ice_status_str(status),
3499 ice_aq_str(hw->adminq.sq_last_status));
3500 return (EIO);
3501 }
3502
3503 /* Convert HW response format to SW enum value */
3504 if ((pcaps.caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE) &&
3505 (pcaps.caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE))
3506 old_mode = ICE_FC_FULL;
3507 else if (pcaps.caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3508 old_mode = ICE_FC_TX_PAUSE;
3509 else if (pcaps.caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3510 old_mode = ICE_FC_RX_PAUSE;
3511 else
3512 old_mode = ICE_FC_NONE;
3513
3514 /* Create "old" string for output */
3515 bzero(fc_str, sizeof(fc_str));
3516 sbuf_new_for_sysctl(&buf, fc_str, sizeof(fc_str), req);
3517 sbuf_printf(&buf, "%d<%s>", old_mode, ice_fc_str(old_mode));
3518 sbuf_finish(&buf);
3519 sbuf_delete(&buf);
3520
3521 ret = sysctl_handle_string(oidp, fc_str, sizeof(fc_str), req);
3522 if ((ret) || (req->newptr == NULL))
3523 return (ret);
3524
3525 /* Try to parse input as a string, first */
3526 if (strcasecmp(ice_fc_str(ICE_FC_FULL), fc_str) == 0) {
3527 new_mode = ICE_FC_FULL;
3528 mode_set = true;
3529 }
3530 else if (strcasecmp(ice_fc_str(ICE_FC_TX_PAUSE), fc_str) == 0) {
3531 new_mode = ICE_FC_TX_PAUSE;
3532 mode_set = true;
3533 }
3534 else if (strcasecmp(ice_fc_str(ICE_FC_RX_PAUSE), fc_str) == 0) {
3535 new_mode = ICE_FC_RX_PAUSE;
3536 mode_set = true;
3537 }
3538 else if (strcasecmp(ice_fc_str(ICE_FC_NONE), fc_str) == 0) {
3539 new_mode = ICE_FC_NONE;
3540 mode_set = true;
3541 }
3542
3543 /*
3544 * Then check if it's an integer, for compatibility with the method
3545 * used in older drivers.
3546 */
3547 if (!mode_set) {
3548 fc_num = strtol(fc_str, &fc_str_end, 0);
3549 if (fc_str_end == fc_str)
3550 fc_num = -1;
3551 switch (fc_num) {
3552 case 3:
3553 new_mode = ICE_FC_FULL;
3554 break;
3555 case 2:
3556 new_mode = ICE_FC_TX_PAUSE;
3557 break;
3558 case 1:
3559 new_mode = ICE_FC_RX_PAUSE;
3560 break;
3561 case 0:
3562 new_mode = ICE_FC_NONE;
3563 break;
3564 default:
3565 device_printf(dev,
3566 "%s: \"%s\" is not a valid flow control mode\n",
3567 __func__, fc_str);
3568 return (EINVAL);
3569 }
3570 }
3571
3572 /* Save flow control mode from user */
3573 pi->phy.curr_user_fc_req = new_mode;
3574
3575 /* Turn off Priority Flow Control when Link Flow Control is enabled */
3576 if ((hw->port_info->qos_cfg.is_sw_lldp) &&
3577 (hw->port_info->qos_cfg.local_dcbx_cfg.pfc.pfcena != 0) &&
3578 (new_mode != ICE_FC_NONE)) {
3579 ret = ice_config_pfc(sc, 0x0);
3580 if (ret)
3581 return (ret);
3582 }
3583
3584 if (!ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN) && !sc->link_up)
3585 return 0;
3586
3587 /* Apply settings requested by user */
3588 return ice_apply_saved_phy_cfg(sc, ICE_APPLY_FC);
3589 }
3590
3591 /**
3592 * ice_sysctl_negotiated_fc - Display currently negotiated FC mode
3593 * @oidp: sysctl oid structure
3594 * @arg1: pointer to private data structure
3595 * @arg2: unused
3596 * @req: sysctl request pointer
3597 *
3598 * On read: Displays the currently negotiated flow control settings.
3599 *
3600 * If link is not established, this will report ICE_FC_NONE, as no flow
3601 * control is negotiated while link is down.
3602 */
3603 static int
ice_sysctl_negotiated_fc(SYSCTL_HANDLER_ARGS)3604 ice_sysctl_negotiated_fc(SYSCTL_HANDLER_ARGS)
3605 {
3606 struct ice_softc *sc = (struct ice_softc *)arg1;
3607 struct ice_port_info *pi = sc->hw.port_info;
3608 const char *negotiated_fc;
3609
3610 UNREFERENCED_PARAMETER(arg2);
3611
3612 if (ice_driver_is_detaching(sc))
3613 return (ESHUTDOWN);
3614
3615 negotiated_fc = ice_flowcontrol_mode(pi);
3616
3617 return sysctl_handle_string(oidp, __DECONST(char *, negotiated_fc), 0, req);
3618 }
3619
3620 /**
3621 * __ice_sysctl_phy_type_handler - Display/change supported PHY types/speeds
3622 * @oidp: sysctl oid structure
3623 * @arg1: pointer to private data structure
3624 * @arg2: unused
3625 * @req: sysctl request pointer
3626 * @is_phy_type_high: if true, handle the high PHY type instead of the low PHY type
3627 *
3628 * Private handler for phy_type_high and phy_type_low sysctls.
3629 */
3630 static int
__ice_sysctl_phy_type_handler(SYSCTL_HANDLER_ARGS,bool is_phy_type_high)3631 __ice_sysctl_phy_type_handler(SYSCTL_HANDLER_ARGS, bool is_phy_type_high)
3632 {
3633 struct ice_softc *sc = (struct ice_softc *)arg1;
3634 struct ice_aqc_get_phy_caps_data pcaps = { 0 };
3635 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3636 struct ice_hw *hw = &sc->hw;
3637 device_t dev = sc->dev;
3638 int status;
3639 uint64_t types;
3640 int ret;
3641
3642 UNREFERENCED_PARAMETER(arg2);
3643
3644 if (ice_driver_is_detaching(sc))
3645 return (ESHUTDOWN);
3646
3647 status = ice_aq_get_phy_caps(hw->port_info, false, ICE_AQC_REPORT_ACTIVE_CFG,
3648 &pcaps, NULL);
3649 if (status) {
3650 device_printf(dev,
3651 "%s: ice_aq_get_phy_caps failed; status %s, aq_err %s\n",
3652 __func__, ice_status_str(status),
3653 ice_aq_str(hw->adminq.sq_last_status));
3654 return (EIO);
3655 }
3656
3657 if (is_phy_type_high)
3658 types = pcaps.phy_type_high;
3659 else
3660 types = pcaps.phy_type_low;
3661
3662 ret = sysctl_handle_64(oidp, &types, sizeof(types), req);
3663 if ((ret) || (req->newptr == NULL))
3664 return (ret);
3665
3666 ice_copy_phy_caps_to_cfg(hw->port_info, &pcaps, &cfg);
3667
3668 if (is_phy_type_high)
3669 cfg.phy_type_high = types & hw->port_info->phy.phy_type_high;
3670 else
3671 cfg.phy_type_low = types & hw->port_info->phy.phy_type_low;
3672 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3673
3674 status = ice_aq_set_phy_cfg(hw, hw->port_info, &cfg, NULL);
3675 if (status) {
3676 device_printf(dev,
3677 "%s: ice_aq_set_phy_cfg failed; status %s, aq_err %s\n",
3678 __func__, ice_status_str(status),
3679 ice_aq_str(hw->adminq.sq_last_status));
3680 return (EIO);
3681 }
3682
3683 return (0);
3684
3685 }
3686
3687 /**
3688 * ice_sysctl_phy_type_low - Display/change supported lower PHY types/speeds
3689 * @oidp: sysctl oid structure
3690 * @arg1: pointer to private data structure
3691 * @arg2: unused
3692 * @req: sysctl request pointer
3693 *
3694 * On read: Displays the currently supported lower PHY types
3695 * On write: Sets the device's supported low PHY types
3696 */
3697 static int
ice_sysctl_phy_type_low(SYSCTL_HANDLER_ARGS)3698 ice_sysctl_phy_type_low(SYSCTL_HANDLER_ARGS)
3699 {
3700 return __ice_sysctl_phy_type_handler(oidp, arg1, arg2, req, false);
3701 }
3702
3703 /**
3704 * ice_sysctl_phy_type_high - Display/change supported higher PHY types/speeds
3705 * @oidp: sysctl oid structure
3706 * @arg1: pointer to private data structure
3707 * @arg2: unused
3708 * @req: sysctl request pointer
3709 *
3710 * On read: Displays the currently supported higher PHY types
3711 * On write: Sets the device's supported high PHY types
3712 */
3713 static int
ice_sysctl_phy_type_high(SYSCTL_HANDLER_ARGS)3714 ice_sysctl_phy_type_high(SYSCTL_HANDLER_ARGS)
3715 {
3716 return __ice_sysctl_phy_type_handler(oidp, arg1, arg2, req, true);
3717 }
3718
3719 /**
3720 * ice_sysctl_phy_caps - Display response from Get PHY abililties
3721 * @oidp: sysctl oid structure
3722 * @arg1: pointer to private data structure
3723 * @arg2: unused
3724 * @req: sysctl request pointer
3725 * @report_mode: the mode to report
3726 *
3727 * On read: Display the response from Get PHY abillities with the given report
3728 * mode.
3729 */
3730 static int
ice_sysctl_phy_caps(SYSCTL_HANDLER_ARGS,u8 report_mode)3731 ice_sysctl_phy_caps(SYSCTL_HANDLER_ARGS, u8 report_mode)
3732 {
3733 struct ice_softc *sc = (struct ice_softc *)arg1;
3734 struct ice_aqc_get_phy_caps_data pcaps = { 0 };
3735 struct ice_hw *hw = &sc->hw;
3736 struct ice_port_info *pi = hw->port_info;
3737 device_t dev = sc->dev;
3738 int status;
3739 int ret;
3740
3741 UNREFERENCED_PARAMETER(arg2);
3742
3743 ret = priv_check(curthread, PRIV_DRIVER);
3744 if (ret)
3745 return (ret);
3746
3747 if (ice_driver_is_detaching(sc))
3748 return (ESHUTDOWN);
3749
3750 status = ice_aq_get_phy_caps(pi, true, report_mode, &pcaps, NULL);
3751 if (status) {
3752 device_printf(dev,
3753 "%s: ice_aq_get_phy_caps failed; status %s, aq_err %s\n",
3754 __func__, ice_status_str(status),
3755 ice_aq_str(hw->adminq.sq_last_status));
3756 return (EIO);
3757 }
3758
3759 ret = sysctl_handle_opaque(oidp, &pcaps, sizeof(pcaps), req);
3760 if (req->newptr != NULL)
3761 return (EPERM);
3762
3763 return (ret);
3764 }
3765
3766 /**
3767 * ice_sysctl_phy_sw_caps - Display response from Get PHY abililties
3768 * @oidp: sysctl oid structure
3769 * @arg1: pointer to private data structure
3770 * @arg2: unused
3771 * @req: sysctl request pointer
3772 *
3773 * On read: Display the response from Get PHY abillities reporting the last
3774 * software configuration.
3775 */
3776 static int
ice_sysctl_phy_sw_caps(SYSCTL_HANDLER_ARGS)3777 ice_sysctl_phy_sw_caps(SYSCTL_HANDLER_ARGS)
3778 {
3779 return ice_sysctl_phy_caps(oidp, arg1, arg2, req,
3780 ICE_AQC_REPORT_ACTIVE_CFG);
3781 }
3782
3783 /**
3784 * ice_sysctl_phy_nvm_caps - Display response from Get PHY abililties
3785 * @oidp: sysctl oid structure
3786 * @arg1: pointer to private data structure
3787 * @arg2: unused
3788 * @req: sysctl request pointer
3789 *
3790 * On read: Display the response from Get PHY abillities reporting the NVM
3791 * configuration.
3792 */
3793 static int
ice_sysctl_phy_nvm_caps(SYSCTL_HANDLER_ARGS)3794 ice_sysctl_phy_nvm_caps(SYSCTL_HANDLER_ARGS)
3795 {
3796 return ice_sysctl_phy_caps(oidp, arg1, arg2, req,
3797 ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA);
3798 }
3799
3800 /**
3801 * ice_sysctl_phy_topo_caps - Display response from Get PHY abililties
3802 * @oidp: sysctl oid structure
3803 * @arg1: pointer to private data structure
3804 * @arg2: unused
3805 * @req: sysctl request pointer
3806 *
3807 * On read: Display the response from Get PHY abillities reporting the
3808 * topology configuration.
3809 */
3810 static int
ice_sysctl_phy_topo_caps(SYSCTL_HANDLER_ARGS)3811 ice_sysctl_phy_topo_caps(SYSCTL_HANDLER_ARGS)
3812 {
3813 return ice_sysctl_phy_caps(oidp, arg1, arg2, req,
3814 ICE_AQC_REPORT_TOPO_CAP_MEDIA);
3815 }
3816
3817 /**
3818 * ice_sysctl_phy_link_status - Display response from Get Link Status
3819 * @oidp: sysctl oid structure
3820 * @arg1: pointer to private data structure
3821 * @arg2: unused
3822 * @req: sysctl request pointer
3823 *
3824 * On read: Display the response from firmware for the Get Link Status
3825 * request.
3826 */
3827 static int
ice_sysctl_phy_link_status(SYSCTL_HANDLER_ARGS)3828 ice_sysctl_phy_link_status(SYSCTL_HANDLER_ARGS)
3829 {
3830 struct ice_aqc_get_link_status_data link_data = { 0 };
3831 struct ice_softc *sc = (struct ice_softc *)arg1;
3832 struct ice_hw *hw = &sc->hw;
3833 struct ice_port_info *pi = hw->port_info;
3834 struct ice_aqc_get_link_status *resp;
3835 struct ice_aq_desc desc;
3836 device_t dev = sc->dev;
3837 int status;
3838 int ret;
3839
3840 UNREFERENCED_PARAMETER(arg2);
3841
3842 /*
3843 * Ensure that only contexts with driver privilege are allowed to
3844 * access this information
3845 */
3846 ret = priv_check(curthread, PRIV_DRIVER);
3847 if (ret)
3848 return (ret);
3849
3850 if (ice_driver_is_detaching(sc))
3851 return (ESHUTDOWN);
3852
3853 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
3854 resp = &desc.params.get_link_status;
3855 resp->lport_num = pi->lport;
3856
3857 status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), NULL);
3858 if (status) {
3859 device_printf(dev,
3860 "%s: ice_aq_send_cmd failed; status %s, aq_err %s\n",
3861 __func__, ice_status_str(status),
3862 ice_aq_str(hw->adminq.sq_last_status));
3863 return (EIO);
3864 }
3865
3866 ret = sysctl_handle_opaque(oidp, &link_data, sizeof(link_data), req);
3867 if (req->newptr != NULL)
3868 return (EPERM);
3869
3870 return (ret);
3871 }
3872
3873 /**
3874 * ice_sysctl_fw_cur_lldp_persist_status - Display current FW LLDP status
3875 * @oidp: sysctl oid structure
3876 * @arg1: pointer to private softc structure
3877 * @arg2: unused
3878 * @req: sysctl request pointer
3879 *
3880 * On read: Displays current persistent LLDP status.
3881 */
3882 static int
ice_sysctl_fw_cur_lldp_persist_status(SYSCTL_HANDLER_ARGS)3883 ice_sysctl_fw_cur_lldp_persist_status(SYSCTL_HANDLER_ARGS)
3884 {
3885 struct ice_softc *sc = (struct ice_softc *)arg1;
3886 struct ice_hw *hw = &sc->hw;
3887 device_t dev = sc->dev;
3888 int status;
3889 struct sbuf *sbuf;
3890 u32 lldp_state;
3891
3892 UNREFERENCED_PARAMETER(arg2);
3893 UNREFERENCED_PARAMETER(oidp);
3894
3895 if (ice_driver_is_detaching(sc))
3896 return (ESHUTDOWN);
3897
3898 status = ice_get_cur_lldp_persist_status(hw, &lldp_state);
3899 if (status) {
3900 device_printf(dev,
3901 "Could not acquire current LLDP persistence status, err %s aq_err %s\n",
3902 ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
3903 return (EIO);
3904 }
3905
3906 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
3907 sbuf_printf(sbuf, "%s", ice_fw_lldp_status(lldp_state));
3908 sbuf_finish(sbuf);
3909 sbuf_delete(sbuf);
3910
3911 return (0);
3912 }
3913
3914 /**
3915 * ice_sysctl_fw_dflt_lldp_persist_status - Display default FW LLDP status
3916 * @oidp: sysctl oid structure
3917 * @arg1: pointer to private softc structure
3918 * @arg2: unused
3919 * @req: sysctl request pointer
3920 *
3921 * On read: Displays default persistent LLDP status.
3922 */
3923 static int
ice_sysctl_fw_dflt_lldp_persist_status(SYSCTL_HANDLER_ARGS)3924 ice_sysctl_fw_dflt_lldp_persist_status(SYSCTL_HANDLER_ARGS)
3925 {
3926 struct ice_softc *sc = (struct ice_softc *)arg1;
3927 struct ice_hw *hw = &sc->hw;
3928 device_t dev = sc->dev;
3929 int status;
3930 struct sbuf *sbuf;
3931 u32 lldp_state;
3932
3933 UNREFERENCED_PARAMETER(arg2);
3934 UNREFERENCED_PARAMETER(oidp);
3935
3936 if (ice_driver_is_detaching(sc))
3937 return (ESHUTDOWN);
3938
3939 status = ice_get_dflt_lldp_persist_status(hw, &lldp_state);
3940 if (status) {
3941 device_printf(dev,
3942 "Could not acquire default LLDP persistence status, err %s aq_err %s\n",
3943 ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
3944 return (EIO);
3945 }
3946
3947 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
3948 sbuf_printf(sbuf, "%s", ice_fw_lldp_status(lldp_state));
3949 sbuf_finish(sbuf);
3950 sbuf_delete(sbuf);
3951
3952 return (0);
3953 }
3954
3955 /**
3956 * ice_dscp_is_mapped - Check for non-zero DSCP to TC mappings
3957 * @dcbcfg: Configuration struct to check for mappings in
3958 *
3959 * @return true if there exists a non-zero DSCP to TC mapping
3960 * inside the input DCB configuration struct.
3961 */
3962 static bool
ice_dscp_is_mapped(struct ice_dcbx_cfg * dcbcfg)3963 ice_dscp_is_mapped(struct ice_dcbx_cfg *dcbcfg)
3964 {
3965 for (int i = 0; i < ICE_DSCP_NUM_VAL; i++)
3966 if (dcbcfg->dscp_map[i] != 0)
3967 return (true);
3968
3969 return (false);
3970 }
3971
3972 #define ICE_SYSCTL_HELP_FW_LLDP_AGENT \
3973 "\nDisplay or change FW LLDP agent state:" \
3974 "\n\t0 - disabled" \
3975 "\n\t1 - enabled"
3976
3977 /**
3978 * ice_sysctl_fw_lldp_agent - Display or change the FW LLDP agent status
3979 * @oidp: sysctl oid structure
3980 * @arg1: pointer to private softc structure
3981 * @arg2: unused
3982 * @req: sysctl request pointer
3983 *
3984 * On read: Displays whether the FW LLDP agent is running
3985 * On write: Persistently enables or disables the FW LLDP agent
3986 */
3987 static int
ice_sysctl_fw_lldp_agent(SYSCTL_HANDLER_ARGS)3988 ice_sysctl_fw_lldp_agent(SYSCTL_HANDLER_ARGS)
3989 {
3990 struct ice_softc *sc = (struct ice_softc *)arg1;
3991 struct ice_dcbx_cfg *local_dcbx_cfg;
3992 struct ice_hw *hw = &sc->hw;
3993 device_t dev = sc->dev;
3994 int status;
3995 int ret;
3996 u32 old_state;
3997 u8 fw_lldp_enabled;
3998 bool retried_start_lldp = false;
3999
4000 UNREFERENCED_PARAMETER(arg2);
4001
4002 if (ice_driver_is_detaching(sc))
4003 return (ESHUTDOWN);
4004
4005 status = ice_get_cur_lldp_persist_status(hw, &old_state);
4006 if (status) {
4007 device_printf(dev,
4008 "Could not acquire current LLDP persistence status, err %s aq_err %s\n",
4009 ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
4010 return (EIO);
4011 }
4012
4013 if (old_state > ICE_LLDP_ADMINSTATUS_ENA_RXTX) {
4014 status = ice_get_dflt_lldp_persist_status(hw, &old_state);
4015 if (status) {
4016 device_printf(dev,
4017 "Could not acquire default LLDP persistence status, err %s aq_err %s\n",
4018 ice_status_str(status),
4019 ice_aq_str(hw->adminq.sq_last_status));
4020 return (EIO);
4021 }
4022 }
4023 if (old_state == 0)
4024 fw_lldp_enabled = false;
4025 else
4026 fw_lldp_enabled = true;
4027
4028 ret = sysctl_handle_bool(oidp, &fw_lldp_enabled, 0, req);
4029 if ((ret) || (req->newptr == NULL))
4030 return (ret);
4031
4032 if (old_state == 0 && fw_lldp_enabled == false)
4033 return (0);
4034
4035 if (old_state != 0 && fw_lldp_enabled == true)
4036 return (0);
4037
4038 /* Block transition to FW LLDP if DSCP mode is enabled */
4039 local_dcbx_cfg = &hw->port_info->qos_cfg.local_dcbx_cfg;
4040 if ((local_dcbx_cfg->pfc_mode == ICE_QOS_MODE_DSCP) ||
4041 ice_dscp_is_mapped(local_dcbx_cfg)) {
4042 device_printf(dev,
4043 "Cannot enable FW-LLDP agent while DSCP QoS is active.\n");
4044 return (EOPNOTSUPP);
4045 }
4046
4047 if (fw_lldp_enabled == false) {
4048 status = ice_aq_stop_lldp(hw, true, true, NULL);
4049 /* EPERM is returned if the LLDP agent is already shutdown */
4050 if (status && hw->adminq.sq_last_status != ICE_AQ_RC_EPERM) {
4051 device_printf(dev,
4052 "%s: ice_aq_stop_lldp failed; status %s, aq_err %s\n",
4053 __func__, ice_status_str(status),
4054 ice_aq_str(hw->adminq.sq_last_status));
4055 return (EIO);
4056 }
4057 ice_aq_set_dcb_parameters(hw, true, NULL);
4058 hw->port_info->qos_cfg.is_sw_lldp = true;
4059 ice_add_rx_lldp_filter(sc);
4060 } else {
4061 ice_del_rx_lldp_filter(sc);
4062 retry_start_lldp:
4063 status = ice_aq_start_lldp(hw, true, NULL);
4064 if (status) {
4065 switch (hw->adminq.sq_last_status) {
4066 /* EEXIST is returned if the LLDP agent is already started */
4067 case ICE_AQ_RC_EEXIST:
4068 break;
4069 case ICE_AQ_RC_EAGAIN:
4070 /* Retry command after a 2 second wait */
4071 if (retried_start_lldp == false) {
4072 retried_start_lldp = true;
4073 pause("slldp", ICE_START_LLDP_RETRY_WAIT);
4074 goto retry_start_lldp;
4075 }
4076 /* Fallthrough */
4077 default:
4078 device_printf(dev,
4079 "%s: ice_aq_start_lldp failed; status %s, aq_err %s\n",
4080 __func__, ice_status_str(status),
4081 ice_aq_str(hw->adminq.sq_last_status));
4082 return (EIO);
4083 }
4084 }
4085 ice_start_dcbx_agent(sc);
4086
4087 /* Init DCB needs to be done during enabling LLDP to properly
4088 * propagate the configuration.
4089 */
4090 status = ice_init_dcb(hw, true);
4091 if (status) {
4092 device_printf(dev,
4093 "%s: ice_init_dcb failed; status %s, aq_err %s\n",
4094 __func__, ice_status_str(status),
4095 ice_aq_str(hw->adminq.sq_last_status));
4096 hw->port_info->qos_cfg.dcbx_status = ICE_DCBX_STATUS_NOT_STARTED;
4097 }
4098 }
4099
4100 return (ret);
4101 }
4102
4103 #define ICE_SYSCTL_HELP_ETS_MIN_RATE \
4104 "\nIn FW DCB mode (fw_lldp_agent=1), displays the current ETS bandwidth table." \
4105 "\nIn SW DCB mode, displays and allows setting the table." \
4106 "\nInput must be in the format e.g. 30,10,10,10,10,10,10,10" \
4107 "\nWhere the bandwidth total must add up to 100"
4108
4109 /**
4110 * ice_sysctl_ets_min_rate - Report/configure ETS bandwidth
4111 * @oidp: sysctl oid structure
4112 * @arg1: pointer to private data structure
4113 * @arg2: unused
4114 * @req: sysctl request pointer
4115 *
4116 * Returns the current ETS TC bandwidth table
4117 * cached by the driver.
4118 *
4119 * In SW DCB mode this sysctl also accepts a value that will
4120 * be sent to the firmware for configuration.
4121 */
4122 static int
ice_sysctl_ets_min_rate(SYSCTL_HANDLER_ARGS)4123 ice_sysctl_ets_min_rate(SYSCTL_HANDLER_ARGS)
4124 {
4125 struct ice_softc *sc = (struct ice_softc *)arg1;
4126 struct ice_dcbx_cfg *local_dcbx_cfg;
4127 struct ice_port_info *pi;
4128 struct ice_hw *hw = &sc->hw;
4129 device_t dev = sc->dev;
4130 int status;
4131 struct sbuf *sbuf;
4132 int ret;
4133
4134 /* Store input rates from user */
4135 char ets_user_buf[128] = "";
4136 u8 new_ets_table[ICE_MAX_TRAFFIC_CLASS] = {};
4137
4138 UNREFERENCED_PARAMETER(arg2);
4139
4140 if (ice_driver_is_detaching(sc))
4141 return (ESHUTDOWN);
4142
4143 if (req->oldptr == NULL && req->newptr == NULL) {
4144 ret = SYSCTL_OUT(req, 0, 128);
4145 return (ret);
4146 }
4147
4148 pi = hw->port_info;
4149 local_dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
4150
4151 sbuf = sbuf_new(NULL, ets_user_buf, 128, SBUF_FIXEDLEN | SBUF_INCLUDENUL);
4152
4153 /* Format ETS BW data for output */
4154 for (int i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
4155 sbuf_printf(sbuf, "%d", local_dcbx_cfg->etscfg.tcbwtable[i]);
4156 if (i != ICE_MAX_TRAFFIC_CLASS - 1)
4157 sbuf_printf(sbuf, ",");
4158 }
4159
4160 sbuf_finish(sbuf);
4161 sbuf_delete(sbuf);
4162
4163 /* Read in the new ETS values */
4164 ret = sysctl_handle_string(oidp, ets_user_buf, sizeof(ets_user_buf), req);
4165 if ((ret) || (req->newptr == NULL))
4166 return (ret);
4167
4168 /* Don't allow setting changes in FW DCB mode */
4169 if (!hw->port_info->qos_cfg.is_sw_lldp)
4170 return (EPERM);
4171
4172 ret = ice_ets_str_to_tbl(ets_user_buf, new_ets_table, 100);
4173 if (ret) {
4174 device_printf(dev, "%s: Could not parse input BW table: %s\n",
4175 __func__, ets_user_buf);
4176 return (ret);
4177 }
4178
4179 if (!ice_check_ets_bw(new_ets_table)) {
4180 device_printf(dev, "%s: Bandwidth sum does not equal 100: %s\n",
4181 __func__, ets_user_buf);
4182 return (EINVAL);
4183 }
4184
4185 memcpy(local_dcbx_cfg->etscfg.tcbwtable, new_ets_table,
4186 sizeof(new_ets_table));
4187
4188 /* If BW > 0, then set TSA entry to 2 */
4189 for (int i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
4190 if (new_ets_table[i] > 0)
4191 local_dcbx_cfg->etscfg.tsatable[i] = 2;
4192 else
4193 local_dcbx_cfg->etscfg.tsatable[i] = 0;
4194 }
4195 local_dcbx_cfg->etscfg.willing = 0;
4196 local_dcbx_cfg->etsrec = local_dcbx_cfg->etscfg;
4197 local_dcbx_cfg->app_mode = ICE_DCBX_APPS_NON_WILLING;
4198
4199 status = ice_set_dcb_cfg(pi);
4200 if (status) {
4201 device_printf(dev,
4202 "%s: Failed to set DCB config; status %s, aq_err %s\n",
4203 __func__, ice_status_str(status),
4204 ice_aq_str(hw->adminq.sq_last_status));
4205 return (EIO);
4206 }
4207
4208 ice_do_dcb_reconfig(sc, false);
4209
4210 return (0);
4211 }
4212
4213 #define ICE_SYSCTL_HELP_UP2TC_MAP \
4214 "\nIn FW DCB mode (fw_lldp_agent=1), displays the current ETS priority assignment table." \
4215 "\nIn SW DCB mode, displays and allows setting the table." \
4216 "\nInput must be in this format: 0,1,2,3,4,5,6,7" \
4217 "\nWhere the 1st number is the TC for UP0, 2nd number is the TC for UP1, etc"
4218
4219 /**
4220 * ice_sysctl_up2tc_map - Report or configure UP2TC mapping
4221 * @oidp: sysctl oid structure
4222 * @arg1: pointer to private data structure
4223 * @arg2: unused
4224 * @req: sysctl request pointer
4225 *
4226 * In FW DCB mode, returns the current ETS prio table /
4227 * UP2TC mapping from the local MIB.
4228 *
4229 * In SW DCB mode this sysctl also accepts a value that will
4230 * be sent to the firmware for configuration.
4231 */
4232 static int
ice_sysctl_up2tc_map(SYSCTL_HANDLER_ARGS)4233 ice_sysctl_up2tc_map(SYSCTL_HANDLER_ARGS)
4234 {
4235 struct ice_softc *sc = (struct ice_softc *)arg1;
4236 struct ice_dcbx_cfg *local_dcbx_cfg;
4237 struct ice_port_info *pi;
4238 struct ice_hw *hw = &sc->hw;
4239 device_t dev = sc->dev;
4240 int status;
4241 struct sbuf *sbuf;
4242 int ret;
4243
4244 /* Store input rates from user */
4245 char up2tc_user_buf[128] = "";
4246 /* This array is indexed by UP, not TC */
4247 u8 new_up2tc[ICE_MAX_TRAFFIC_CLASS] = {};
4248
4249 UNREFERENCED_PARAMETER(arg2);
4250
4251 if (ice_driver_is_detaching(sc))
4252 return (ESHUTDOWN);
4253
4254 if (req->oldptr == NULL && req->newptr == NULL) {
4255 ret = SYSCTL_OUT(req, 0, 128);
4256 return (ret);
4257 }
4258
4259 pi = hw->port_info;
4260 local_dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
4261
4262 sbuf = sbuf_new(NULL, up2tc_user_buf, 128, SBUF_FIXEDLEN | SBUF_INCLUDENUL);
4263
4264 /* Format ETS Priority Mapping Table for output */
4265 for (int i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
4266 sbuf_printf(sbuf, "%d", local_dcbx_cfg->etscfg.prio_table[i]);
4267 if (i != ICE_MAX_TRAFFIC_CLASS - 1)
4268 sbuf_printf(sbuf, ",");
4269 }
4270
4271 sbuf_finish(sbuf);
4272 sbuf_delete(sbuf);
4273
4274 /* Read in the new ETS priority mapping */
4275 ret = sysctl_handle_string(oidp, up2tc_user_buf, sizeof(up2tc_user_buf), req);
4276 if ((ret) || (req->newptr == NULL))
4277 return (ret);
4278
4279 /* Don't allow setting changes in FW DCB mode */
4280 if (!hw->port_info->qos_cfg.is_sw_lldp)
4281 return (EPERM);
4282
4283 ret = ice_ets_str_to_tbl(up2tc_user_buf, new_up2tc,
4284 ICE_MAX_TRAFFIC_CLASS - 1);
4285 if (ret) {
4286 device_printf(dev, "%s: Could not parse input priority assignment table: %s\n",
4287 __func__, up2tc_user_buf);
4288 return (ret);
4289 }
4290
4291 /* Prepare updated ETS CFG/REC TLVs */
4292 memcpy(local_dcbx_cfg->etscfg.prio_table, new_up2tc,
4293 sizeof(new_up2tc));
4294 memcpy(local_dcbx_cfg->etsrec.prio_table, new_up2tc,
4295 sizeof(new_up2tc));
4296
4297 status = ice_set_dcb_cfg(pi);
4298 if (status) {
4299 device_printf(dev,
4300 "%s: Failed to set DCB config; status %s, aq_err %s\n",
4301 __func__, ice_status_str(status),
4302 ice_aq_str(hw->adminq.sq_last_status));
4303 return (EIO);
4304 }
4305
4306 ice_do_dcb_reconfig(sc, false);
4307
4308 return (0);
4309 }
4310
4311 /**
4312 * ice_config_pfc - helper function to set PFC config in FW
4313 * @sc: device private structure
4314 * @new_mode: bit flags indicating PFC status for TCs
4315 *
4316 * @pre must be in SW DCB mode
4317 *
4318 * Configures the driver's local PFC TLV and sends it to the
4319 * FW for configuration, then reconfigures the driver/VSI
4320 * for DCB if needed.
4321 */
4322 static int
ice_config_pfc(struct ice_softc * sc,u8 new_mode)4323 ice_config_pfc(struct ice_softc *sc, u8 new_mode)
4324 {
4325 struct ice_dcbx_cfg *local_dcbx_cfg;
4326 struct ice_hw *hw = &sc->hw;
4327 struct ice_port_info *pi;
4328 device_t dev = sc->dev;
4329 int status;
4330
4331 pi = hw->port_info;
4332 local_dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
4333
4334 /* Prepare updated PFC TLV */
4335 local_dcbx_cfg->pfc.pfcena = new_mode;
4336 local_dcbx_cfg->pfc.pfccap = ICE_MAX_TRAFFIC_CLASS;
4337 local_dcbx_cfg->pfc.willing = 0;
4338 local_dcbx_cfg->pfc.mbc = 0;
4339
4340 /* Warn if PFC is being disabled with RoCE v2 in use */
4341 if (new_mode == 0 && sc->rdma_entry.attached)
4342 device_printf(dev,
4343 "WARNING: Recommended that Priority Flow Control is enabled when RoCEv2 is in use\n");
4344
4345 status = ice_set_dcb_cfg(pi);
4346 if (status) {
4347 device_printf(dev,
4348 "%s: Failed to set DCB config; status %s, aq_err %s\n",
4349 __func__, ice_status_str(status),
4350 ice_aq_str(hw->adminq.sq_last_status));
4351 return (EIO);
4352 }
4353
4354 ice_do_dcb_reconfig(sc, false);
4355
4356 return (0);
4357 }
4358
4359 #define ICE_SYSCTL_HELP_PFC_CONFIG \
4360 "\nIn FW DCB mode (fw_lldp_agent=1), displays the current Priority Flow Control configuration" \
4361 "\nIn SW DCB mode, displays and allows setting the configuration" \
4362 "\nInput/Output is in this format: 0xff" \
4363 "\nWhere bit position # enables/disables PFC for that Traffic Class #"
4364
4365 /**
4366 * ice_sysctl_pfc_config - Report or configure enabled PFC TCs
4367 * @oidp: sysctl oid structure
4368 * @arg1: pointer to private data structure
4369 * @arg2: unused
4370 * @req: sysctl request pointer
4371 *
4372 * In FW DCB mode, returns a bitmap containing the current TCs
4373 * that have PFC enabled on them.
4374 *
4375 * In SW DCB mode this sysctl also accepts a value that will
4376 * be sent to the firmware for configuration.
4377 */
4378 static int
ice_sysctl_pfc_config(SYSCTL_HANDLER_ARGS)4379 ice_sysctl_pfc_config(SYSCTL_HANDLER_ARGS)
4380 {
4381 struct ice_softc *sc = (struct ice_softc *)arg1;
4382 struct ice_dcbx_cfg *local_dcbx_cfg;
4383 struct ice_port_info *pi;
4384 struct ice_hw *hw = &sc->hw;
4385 int ret;
4386
4387 /* Store input flags from user */
4388 u8 user_pfc;
4389
4390 UNREFERENCED_PARAMETER(arg2);
4391
4392 if (ice_driver_is_detaching(sc))
4393 return (ESHUTDOWN);
4394
4395 if (req->oldptr == NULL && req->newptr == NULL) {
4396 ret = SYSCTL_OUT(req, 0, sizeof(u8));
4397 return (ret);
4398 }
4399
4400 pi = hw->port_info;
4401 local_dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
4402
4403 /* Format current PFC enable setting for output */
4404 user_pfc = local_dcbx_cfg->pfc.pfcena;
4405
4406 /* Read in the new PFC config */
4407 ret = sysctl_handle_8(oidp, &user_pfc, 0, req);
4408 if ((ret) || (req->newptr == NULL))
4409 return (ret);
4410
4411 /* Don't allow setting changes in FW DCB mode */
4412 if (!hw->port_info->qos_cfg.is_sw_lldp)
4413 return (EPERM);
4414
4415 /* If LFC is active and PFC is going to be turned on, turn LFC off */
4416 if (user_pfc != 0 && pi->phy.curr_user_fc_req != ICE_FC_NONE) {
4417 pi->phy.curr_user_fc_req = ICE_FC_NONE;
4418 if (ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN) ||
4419 sc->link_up) {
4420 ret = ice_apply_saved_phy_cfg(sc, ICE_APPLY_FC);
4421 if (ret)
4422 return (ret);
4423 }
4424 }
4425
4426 return ice_config_pfc(sc, user_pfc);
4427 }
4428
4429 #define ICE_SYSCTL_HELP_PFC_MODE \
4430 "\nDisplay and set the current QoS mode for the firmware" \
4431 "\n\t0: VLAN UP mode" \
4432 "\n\t1: DSCP mode"
4433
4434 /**
4435 * ice_sysctl_pfc_mode
4436 * @oidp: sysctl oid structure
4437 * @arg1: pointer to private data structure
4438 * @arg2: unused
4439 * @req: sysctl request pointer
4440 *
4441 * Gets and sets whether the port is in DSCP or VLAN PCP-based
4442 * PFC mode. This is also used to set whether DSCP or VLAN PCP
4443 * -based settings are configured for DCB.
4444 */
4445 static int
ice_sysctl_pfc_mode(SYSCTL_HANDLER_ARGS)4446 ice_sysctl_pfc_mode(SYSCTL_HANDLER_ARGS)
4447 {
4448 struct ice_softc *sc = (struct ice_softc *)arg1;
4449 struct ice_dcbx_cfg *local_dcbx_cfg;
4450 struct ice_port_info *pi;
4451 struct ice_hw *hw = &sc->hw;
4452 device_t dev = sc->dev;
4453 int status;
4454 u8 user_pfc_mode, aq_pfc_mode;
4455 int ret;
4456
4457 UNREFERENCED_PARAMETER(arg2);
4458
4459 if (ice_driver_is_detaching(sc))
4460 return (ESHUTDOWN);
4461
4462 if (req->oldptr == NULL && req->newptr == NULL) {
4463 ret = SYSCTL_OUT(req, 0, sizeof(u8));
4464 return (ret);
4465 }
4466
4467 pi = hw->port_info;
4468 local_dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
4469
4470 user_pfc_mode = local_dcbx_cfg->pfc_mode;
4471
4472 /* Read in the new mode */
4473 ret = sysctl_handle_8(oidp, &user_pfc_mode, 0, req);
4474 if ((ret) || (req->newptr == NULL))
4475 return (ret);
4476
4477 /* Don't allow setting changes in FW DCB mode */
4478 if (!hw->port_info->qos_cfg.is_sw_lldp)
4479 return (EPERM);
4480
4481 /* Currently, there are only two modes */
4482 switch (user_pfc_mode) {
4483 case 0:
4484 aq_pfc_mode = ICE_AQC_PFC_VLAN_BASED_PFC;
4485 break;
4486 case 1:
4487 aq_pfc_mode = ICE_AQC_PFC_DSCP_BASED_PFC;
4488 break;
4489 default:
4490 device_printf(dev,
4491 "%s: Valid input range is 0-1 (input %d)\n",
4492 __func__, user_pfc_mode);
4493 return (EINVAL);
4494 }
4495
4496 status = ice_aq_set_pfc_mode(hw, aq_pfc_mode, NULL);
4497 if (status == ICE_ERR_NOT_SUPPORTED) {
4498 device_printf(dev,
4499 "%s: Failed to set PFC mode; DCB not supported\n",
4500 __func__);
4501 return (ENODEV);
4502 }
4503 if (status) {
4504 device_printf(dev,
4505 "%s: Failed to set PFC mode; status %s, aq_err %s\n",
4506 __func__, ice_status_str(status),
4507 ice_aq_str(hw->adminq.sq_last_status));
4508 return (EIO);
4509 }
4510
4511 /* Reset settings to default when mode is changed */
4512 ice_set_default_local_mib_settings(sc);
4513 /* Cache current settings and reconfigure */
4514 local_dcbx_cfg->pfc_mode = user_pfc_mode;
4515 ice_do_dcb_reconfig(sc, false);
4516
4517 return (0);
4518 }
4519
4520 #define ICE_SYSCTL_HELP_SET_LINK_ACTIVE \
4521 "\nKeep link active after setting interface down:" \
4522 "\n\t0 - disable" \
4523 "\n\t1 - enable"
4524
4525 /**
4526 * ice_sysctl_set_link_active
4527 * @oidp: sysctl oid structure
4528 * @arg1: pointer to private data structure
4529 * @arg2: unused
4530 * @req: sysctl request pointer
4531 *
4532 * Set the link_active_on_if_down sysctl flag.
4533 */
4534 static int
ice_sysctl_set_link_active(SYSCTL_HANDLER_ARGS)4535 ice_sysctl_set_link_active(SYSCTL_HANDLER_ARGS)
4536 {
4537 struct ice_softc *sc = (struct ice_softc *)arg1;
4538 bool mode;
4539 int ret;
4540
4541 UNREFERENCED_PARAMETER(arg2);
4542
4543 mode = ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN);
4544
4545 ret = sysctl_handle_bool(oidp, &mode, 0, req);
4546 if ((ret) || (req->newptr == NULL))
4547 return (ret);
4548
4549 if (mode)
4550 ice_set_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN);
4551 else
4552 ice_clear_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN);
4553
4554 return (0);
4555 }
4556
4557 /**
4558 * ice_sysctl_debug_set_link
4559 * @oidp: sysctl oid structure
4560 * @arg1: pointer to private data structure
4561 * @arg2: unused
4562 * @req: sysctl request pointer
4563 *
4564 * Set link up/down in debug session.
4565 */
4566 static int
ice_sysctl_debug_set_link(SYSCTL_HANDLER_ARGS)4567 ice_sysctl_debug_set_link(SYSCTL_HANDLER_ARGS)
4568 {
4569 struct ice_softc *sc = (struct ice_softc *)arg1;
4570 bool mode;
4571 int ret;
4572
4573 UNREFERENCED_PARAMETER(arg2);
4574
4575 ret = sysctl_handle_bool(oidp, &mode, 0, req);
4576 if ((ret) || (req->newptr == NULL))
4577 return (ret);
4578
4579 ice_set_link(sc, mode != 0);
4580
4581 return (0);
4582 }
4583
4584 /**
4585 * ice_add_device_sysctls - add device specific dynamic sysctls
4586 * @sc: device private structure
4587 *
4588 * Add per-device dynamic sysctls which show device configuration or enable
4589 * configuring device functionality. For tunable values which can be set prior
4590 * to load, see ice_add_device_tunables.
4591 *
4592 * This function depends on the sysctl layout setup by ice_add_device_tunables,
4593 * and likely should be called near the end of the attach process.
4594 */
4595 void
ice_add_device_sysctls(struct ice_softc * sc)4596 ice_add_device_sysctls(struct ice_softc *sc)
4597 {
4598 struct sysctl_oid *hw_node;
4599 device_t dev = sc->dev;
4600
4601 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4602 struct sysctl_oid_list *ctx_list =
4603 SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
4604
4605 SYSCTL_ADD_PROC(ctx, ctx_list,
4606 OID_AUTO, "fw_version", CTLTYPE_STRING | CTLFLAG_RD,
4607 sc, 0, ice_sysctl_show_fw, "A", "Firmware version");
4608
4609 if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_HAS_PBA)) {
4610 SYSCTL_ADD_PROC(ctx, ctx_list,
4611 OID_AUTO, "pba_number", CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
4612 ice_sysctl_pba_number, "A", "Product Board Assembly Number");
4613 }
4614 if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_TEMP_SENSOR)) {
4615 SYSCTL_ADD_PROC(ctx, ctx_list,
4616 OID_AUTO, "temp", CTLTYPE_S8 | CTLFLAG_RD,
4617 sc, 0, ice_sysctl_temperature, "CU",
4618 "Device temperature in degrees Celcius (C)");
4619 }
4620
4621 SYSCTL_ADD_PROC(ctx, ctx_list,
4622 OID_AUTO, "ddp_version", CTLTYPE_STRING | CTLFLAG_RD,
4623 sc, 0, ice_sysctl_pkg_version, "A", "Active DDP package name and version");
4624
4625 SYSCTL_ADD_PROC(ctx, ctx_list,
4626 OID_AUTO, "current_speed", CTLTYPE_STRING | CTLFLAG_RD,
4627 sc, 0, ice_sysctl_current_speed, "A", "Current Port Link Speed");
4628
4629 SYSCTL_ADD_PROC(ctx, ctx_list,
4630 OID_AUTO, "requested_fec", CTLTYPE_STRING | CTLFLAG_RW,
4631 sc, 0, ice_sysctl_fec_config, "A", ICE_SYSCTL_HELP_FEC_CONFIG);
4632
4633 SYSCTL_ADD_PROC(ctx, ctx_list,
4634 OID_AUTO, "negotiated_fec", CTLTYPE_STRING | CTLFLAG_RD,
4635 sc, 0, ice_sysctl_negotiated_fec, "A", "Current Negotiated FEC mode");
4636
4637 SYSCTL_ADD_PROC(ctx, ctx_list,
4638 OID_AUTO, "fc", CTLTYPE_STRING | CTLFLAG_RW,
4639 sc, 0, ice_sysctl_fc_config, "A", ICE_SYSCTL_HELP_FC_CONFIG);
4640
4641 SYSCTL_ADD_PROC(ctx, ctx_list,
4642 OID_AUTO, "advertise_speed", CTLTYPE_U16 | CTLFLAG_RW,
4643 sc, 0, ice_sysctl_advertise_speed, "SU", ICE_SYSCTL_HELP_ADVERTISE_SPEED);
4644
4645 SYSCTL_ADD_PROC(ctx, ctx_list,
4646 OID_AUTO, "fw_lldp_agent", CTLTYPE_U8 | CTLFLAG_RWTUN,
4647 sc, 0, ice_sysctl_fw_lldp_agent, "CU", ICE_SYSCTL_HELP_FW_LLDP_AGENT);
4648
4649 SYSCTL_ADD_PROC(ctx, ctx_list,
4650 OID_AUTO, "ets_min_rate", CTLTYPE_STRING | CTLFLAG_RW,
4651 sc, 0, ice_sysctl_ets_min_rate, "A", ICE_SYSCTL_HELP_ETS_MIN_RATE);
4652
4653 SYSCTL_ADD_PROC(ctx, ctx_list,
4654 OID_AUTO, "up2tc_map", CTLTYPE_STRING | CTLFLAG_RW,
4655 sc, 0, ice_sysctl_up2tc_map, "A", ICE_SYSCTL_HELP_UP2TC_MAP);
4656
4657 SYSCTL_ADD_PROC(ctx, ctx_list,
4658 OID_AUTO, "pfc", CTLTYPE_U8 | CTLFLAG_RW,
4659 sc, 0, ice_sysctl_pfc_config, "CU", ICE_SYSCTL_HELP_PFC_CONFIG);
4660
4661 SYSCTL_ADD_PROC(ctx, ctx_list,
4662 OID_AUTO, "pfc_mode", CTLTYPE_U8 | CTLFLAG_RWTUN,
4663 sc, 0, ice_sysctl_pfc_mode, "CU", ICE_SYSCTL_HELP_PFC_MODE);
4664
4665 SYSCTL_ADD_PROC(ctx, ctx_list,
4666 OID_AUTO, "allow_no_fec_modules_in_auto",
4667 CTLTYPE_U8 | CTLFLAG_RWTUN | CTLFLAG_MPSAFE,
4668 sc, 0, ice_sysctl_allow_no_fec_mod_in_auto, "CU",
4669 "Allow \"No FEC\" mode in FEC auto-negotiation");
4670
4671 SYSCTL_ADD_PROC(ctx, ctx_list,
4672 OID_AUTO, "link_active_on_if_down", CTLTYPE_U8 | CTLFLAG_RWTUN,
4673 sc, 0, ice_sysctl_set_link_active, "CU", ICE_SYSCTL_HELP_SET_LINK_ACTIVE);
4674
4675 SYSCTL_ADD_PROC(ctx, ctx_list,
4676 OID_AUTO, "create_mirror_interface", CTLTYPE_STRING | CTLFLAG_RW,
4677 sc, 0, ice_sysctl_create_mirror_interface, "A", "");
4678
4679 SYSCTL_ADD_PROC(ctx, ctx_list,
4680 OID_AUTO, "destroy_mirror_interface", CTLTYPE_STRING | CTLFLAG_RW,
4681 sc, 0, ice_sysctl_destroy_mirror_interface, "A", "");
4682
4683 ice_add_dscp2tc_map_sysctls(sc, ctx, ctx_list);
4684
4685 /* Differentiate software and hardware statistics, by keeping hw stats
4686 * in their own node. This isn't in ice_add_device_tunables, because
4687 * we won't have any CTLFLAG_TUN sysctls under this node.
4688 */
4689 hw_node = SYSCTL_ADD_NODE(ctx, ctx_list, OID_AUTO, "hw", CTLFLAG_RD,
4690 NULL, "Port Hardware Statistics");
4691
4692 ice_add_sysctls_mac_stats(ctx, hw_node, sc);
4693
4694 /* Add the main PF VSI stats now. Other VSIs will add their own stats
4695 * during creation
4696 */
4697 ice_add_vsi_sysctls(&sc->pf_vsi);
4698
4699 /* Add sysctls related to debugging the device driver. This includes
4700 * sysctls which display additional internal driver state for use in
4701 * understanding what is happening within the driver.
4702 */
4703 ice_add_debug_sysctls(sc);
4704 }
4705
4706 /**
4707 * @enum hmc_error_type
4708 * @brief enumeration of HMC errors
4709 *
4710 * Enumeration defining the possible HMC errors that might occur.
4711 */
4712 enum hmc_error_type {
4713 HMC_ERR_PMF_INVALID = 0,
4714 HMC_ERR_VF_IDX_INVALID = 1,
4715 HMC_ERR_VF_PARENT_PF_INVALID = 2,
4716 /* 3 is reserved */
4717 HMC_ERR_INDEX_TOO_BIG = 4,
4718 HMC_ERR_ADDRESS_TOO_LARGE = 5,
4719 HMC_ERR_SEGMENT_DESC_INVALID = 6,
4720 HMC_ERR_SEGMENT_DESC_TOO_SMALL = 7,
4721 HMC_ERR_PAGE_DESC_INVALID = 8,
4722 HMC_ERR_UNSUPPORTED_REQUEST_COMPLETION = 9,
4723 /* 10 is reserved */
4724 HMC_ERR_INVALID_OBJECT_TYPE = 11,
4725 /* 12 is reserved */
4726 };
4727
4728 /**
4729 * ice_log_hmc_error - Log an HMC error message
4730 * @hw: device hw structure
4731 * @dev: the device to pass to device_printf()
4732 *
4733 * Log a message when an HMC error interrupt is triggered.
4734 */
4735 void
ice_log_hmc_error(struct ice_hw * hw,device_t dev)4736 ice_log_hmc_error(struct ice_hw *hw, device_t dev)
4737 {
4738 u32 info, data;
4739 u8 index, errtype, objtype;
4740 bool isvf;
4741
4742 info = rd32(hw, PFHMC_ERRORINFO);
4743 data = rd32(hw, PFHMC_ERRORDATA);
4744
4745 index = (u8)(info & PFHMC_ERRORINFO_PMF_INDEX_M);
4746 errtype = (u8)((info & PFHMC_ERRORINFO_HMC_ERROR_TYPE_M) >>
4747 PFHMC_ERRORINFO_HMC_ERROR_TYPE_S);
4748 objtype = (u8)((info & PFHMC_ERRORINFO_HMC_OBJECT_TYPE_M) >>
4749 PFHMC_ERRORINFO_HMC_OBJECT_TYPE_S);
4750
4751 isvf = info & PFHMC_ERRORINFO_PMF_ISVF_M;
4752
4753 device_printf(dev, "%s HMC Error detected on PMF index %d:\n",
4754 isvf ? "VF" : "PF", index);
4755
4756 device_printf(dev, "error type %d, object type %d, data 0x%08x\n",
4757 errtype, objtype, data);
4758
4759 switch (errtype) {
4760 case HMC_ERR_PMF_INVALID:
4761 device_printf(dev, "Private Memory Function is not valid\n");
4762 break;
4763 case HMC_ERR_VF_IDX_INVALID:
4764 device_printf(dev, "Invalid Private Memory Function index for PE enabled VF\n");
4765 break;
4766 case HMC_ERR_VF_PARENT_PF_INVALID:
4767 device_printf(dev, "Invalid parent PF for PE enabled VF\n");
4768 break;
4769 case HMC_ERR_INDEX_TOO_BIG:
4770 device_printf(dev, "Object index too big\n");
4771 break;
4772 case HMC_ERR_ADDRESS_TOO_LARGE:
4773 device_printf(dev, "Address extends beyond segment descriptor limit\n");
4774 break;
4775 case HMC_ERR_SEGMENT_DESC_INVALID:
4776 device_printf(dev, "Segment descriptor is invalid\n");
4777 break;
4778 case HMC_ERR_SEGMENT_DESC_TOO_SMALL:
4779 device_printf(dev, "Segment descriptor is too small\n");
4780 break;
4781 case HMC_ERR_PAGE_DESC_INVALID:
4782 device_printf(dev, "Page descriptor is invalid\n");
4783 break;
4784 case HMC_ERR_UNSUPPORTED_REQUEST_COMPLETION:
4785 device_printf(dev, "Unsupported Request completion received from PCIe\n");
4786 break;
4787 case HMC_ERR_INVALID_OBJECT_TYPE:
4788 device_printf(dev, "Invalid object type\n");
4789 break;
4790 default:
4791 device_printf(dev, "Unknown HMC error\n");
4792 }
4793
4794 /* Clear the error indication */
4795 wr32(hw, PFHMC_ERRORINFO, 0);
4796 }
4797
4798 /**
4799 * @struct ice_sysctl_info
4800 * @brief sysctl information
4801 *
4802 * Structure used to simplify the process of defining the many similar
4803 * statistics sysctls.
4804 */
4805 struct ice_sysctl_info {
4806 u64 *stat;
4807 const char *name;
4808 const char *description;
4809 };
4810
4811 /**
4812 * ice_add_sysctls_eth_stats - Add sysctls for ethernet statistics
4813 * @ctx: sysctl ctx to use
4814 * @parent: the parent node to add sysctls under
4815 * @stats: the ethernet stats structure to source values from
4816 *
4817 * Adds statistics sysctls for the ethernet statistics of the MAC or a VSI.
4818 * Will add them under the parent node specified.
4819 *
4820 * Note that tx_errors is only meaningful for VSIs and not the global MAC/PF
4821 * statistics, so it is not included here. Similarly, rx_discards has different
4822 * descriptions for VSIs and MAC/PF stats, so it is also not included here.
4823 */
4824 void
ice_add_sysctls_eth_stats(struct sysctl_ctx_list * ctx,struct sysctl_oid * parent,struct ice_eth_stats * stats)4825 ice_add_sysctls_eth_stats(struct sysctl_ctx_list *ctx,
4826 struct sysctl_oid *parent,
4827 struct ice_eth_stats *stats)
4828 {
4829 const struct ice_sysctl_info ctls[] = {
4830 /* Rx Stats */
4831 { &stats->rx_bytes, "good_octets_rcvd", "Good Octets Received" },
4832 { &stats->rx_unicast, "ucast_pkts_rcvd", "Unicast Packets Received" },
4833 { &stats->rx_multicast, "mcast_pkts_rcvd", "Multicast Packets Received" },
4834 { &stats->rx_broadcast, "bcast_pkts_rcvd", "Broadcast Packets Received" },
4835 /* Tx Stats */
4836 { &stats->tx_bytes, "good_octets_txd", "Good Octets Transmitted" },
4837 { &stats->tx_unicast, "ucast_pkts_txd", "Unicast Packets Transmitted" },
4838 { &stats->tx_multicast, "mcast_pkts_txd", "Multicast Packets Transmitted" },
4839 { &stats->tx_broadcast, "bcast_pkts_txd", "Broadcast Packets Transmitted" },
4840 /* End */
4841 { 0, 0, 0 }
4842 };
4843
4844 struct sysctl_oid_list *parent_list = SYSCTL_CHILDREN(parent);
4845
4846 const struct ice_sysctl_info *entry = ctls;
4847 while (entry->stat != 0) {
4848 SYSCTL_ADD_U64(ctx, parent_list, OID_AUTO, entry->name,
4849 CTLFLAG_RD | CTLFLAG_STATS, entry->stat, 0,
4850 entry->description);
4851 entry++;
4852 }
4853 }
4854
4855 /**
4856 * ice_sysctl_tx_cso_stat - Display Tx checksum offload statistic
4857 * @oidp: sysctl oid structure
4858 * @arg1: pointer to private data structure
4859 * @arg2: Tx CSO stat to read
4860 * @req: sysctl request pointer
4861 *
4862 * On read: Sums the per-queue Tx CSO stat and displays it.
4863 */
4864 static int
ice_sysctl_tx_cso_stat(SYSCTL_HANDLER_ARGS)4865 ice_sysctl_tx_cso_stat(SYSCTL_HANDLER_ARGS)
4866 {
4867 struct ice_vsi *vsi = (struct ice_vsi *)arg1;
4868 enum ice_tx_cso_stat type = (enum ice_tx_cso_stat)arg2;
4869 u64 stat = 0;
4870 int i;
4871
4872 if (ice_driver_is_detaching(vsi->sc))
4873 return (ESHUTDOWN);
4874
4875 /* Check that the type is valid */
4876 if (type >= ICE_CSO_STAT_TX_COUNT)
4877 return (EDOOFUS);
4878
4879 /* Sum the stat for each of the Tx queues */
4880 for (i = 0; i < vsi->num_tx_queues; i++)
4881 stat += vsi->tx_queues[i].stats.cso[type];
4882
4883 return sysctl_handle_64(oidp, NULL, stat, req);
4884 }
4885
4886 /**
4887 * ice_sysctl_rx_cso_stat - Display Rx checksum offload statistic
4888 * @oidp: sysctl oid structure
4889 * @arg1: pointer to private data structure
4890 * @arg2: Rx CSO stat to read
4891 * @req: sysctl request pointer
4892 *
4893 * On read: Sums the per-queue Rx CSO stat and displays it.
4894 */
4895 static int
ice_sysctl_rx_cso_stat(SYSCTL_HANDLER_ARGS)4896 ice_sysctl_rx_cso_stat(SYSCTL_HANDLER_ARGS)
4897 {
4898 struct ice_vsi *vsi = (struct ice_vsi *)arg1;
4899 enum ice_rx_cso_stat type = (enum ice_rx_cso_stat)arg2;
4900 u64 stat = 0;
4901 int i;
4902
4903 if (ice_driver_is_detaching(vsi->sc))
4904 return (ESHUTDOWN);
4905
4906 /* Check that the type is valid */
4907 if (type >= ICE_CSO_STAT_RX_COUNT)
4908 return (EDOOFUS);
4909
4910 /* Sum the stat for each of the Rx queues */
4911 for (i = 0; i < vsi->num_rx_queues; i++)
4912 stat += vsi->rx_queues[i].stats.cso[type];
4913
4914 return sysctl_handle_64(oidp, NULL, stat, req);
4915 }
4916
4917 /**
4918 * ice_sysctl_rx_errors_stat - Display aggregate of Rx errors
4919 * @oidp: sysctl oid structure
4920 * @arg1: pointer to private data structure
4921 * @arg2: unused
4922 * @req: sysctl request pointer
4923 *
4924 * On read: Sums current values of Rx error statistics and
4925 * displays it.
4926 */
4927 static int
ice_sysctl_rx_errors_stat(SYSCTL_HANDLER_ARGS)4928 ice_sysctl_rx_errors_stat(SYSCTL_HANDLER_ARGS)
4929 {
4930 struct ice_vsi *vsi = (struct ice_vsi *)arg1;
4931 struct ice_hw_port_stats *hs = &vsi->sc->stats.cur;
4932 u64 stat = 0;
4933 int i, type;
4934
4935 UNREFERENCED_PARAMETER(arg2);
4936
4937 if (ice_driver_is_detaching(vsi->sc))
4938 return (ESHUTDOWN);
4939
4940 stat += hs->rx_undersize;
4941 stat += hs->rx_fragments;
4942 stat += hs->rx_oversize;
4943 stat += hs->rx_jabber;
4944 stat += hs->crc_errors;
4945 stat += hs->illegal_bytes;
4946
4947 /* Checksum error stats */
4948 for (i = 0; i < vsi->num_rx_queues; i++)
4949 for (type = ICE_CSO_STAT_RX_IP4_ERR;
4950 type < ICE_CSO_STAT_RX_COUNT;
4951 type++)
4952 stat += vsi->rx_queues[i].stats.cso[type];
4953
4954 return sysctl_handle_64(oidp, NULL, stat, req);
4955 }
4956
4957 /**
4958 * @struct ice_rx_cso_stat_info
4959 * @brief sysctl information for an Rx checksum offload statistic
4960 *
4961 * Structure used to simplify the process of defining the checksum offload
4962 * statistics.
4963 */
4964 struct ice_rx_cso_stat_info {
4965 enum ice_rx_cso_stat type;
4966 const char *name;
4967 const char *description;
4968 };
4969
4970 /**
4971 * @struct ice_tx_cso_stat_info
4972 * @brief sysctl information for a Tx checksum offload statistic
4973 *
4974 * Structure used to simplify the process of defining the checksum offload
4975 * statistics.
4976 */
4977 struct ice_tx_cso_stat_info {
4978 enum ice_tx_cso_stat type;
4979 const char *name;
4980 const char *description;
4981 };
4982
4983 /**
4984 * ice_add_sysctls_sw_stats - Add sysctls for software statistics
4985 * @vsi: pointer to the VSI to add sysctls for
4986 * @ctx: sysctl ctx to use
4987 * @parent: the parent node to add sysctls under
4988 *
4989 * Add statistics sysctls for software tracked statistics of a VSI.
4990 *
4991 * Currently this only adds checksum offload statistics, but more counters may
4992 * be added in the future.
4993 */
4994 static void
ice_add_sysctls_sw_stats(struct ice_vsi * vsi,struct sysctl_ctx_list * ctx,struct sysctl_oid * parent)4995 ice_add_sysctls_sw_stats(struct ice_vsi *vsi,
4996 struct sysctl_ctx_list *ctx,
4997 struct sysctl_oid *parent)
4998 {
4999 struct sysctl_oid *cso_node;
5000 struct sysctl_oid_list *cso_list;
5001
5002 /* Tx CSO Stats */
5003 const struct ice_tx_cso_stat_info tx_ctls[] = {
5004 { ICE_CSO_STAT_TX_TCP, "tx_tcp", "Transmit TCP Packets marked for HW checksum" },
5005 { ICE_CSO_STAT_TX_UDP, "tx_udp", "Transmit UDP Packets marked for HW checksum" },
5006 { ICE_CSO_STAT_TX_SCTP, "tx_sctp", "Transmit SCTP Packets marked for HW checksum" },
5007 { ICE_CSO_STAT_TX_IP4, "tx_ip4", "Transmit IPv4 Packets marked for HW checksum" },
5008 { ICE_CSO_STAT_TX_IP6, "tx_ip6", "Transmit IPv6 Packets marked for HW checksum" },
5009 { ICE_CSO_STAT_TX_L3_ERR, "tx_l3_err", "Transmit packets that driver failed to set L3 HW CSO bits for" },
5010 { ICE_CSO_STAT_TX_L4_ERR, "tx_l4_err", "Transmit packets that driver failed to set L4 HW CSO bits for" },
5011 /* End */
5012 { ICE_CSO_STAT_TX_COUNT, 0, 0 }
5013 };
5014
5015 /* Rx CSO Stats */
5016 const struct ice_rx_cso_stat_info rx_ctls[] = {
5017 { ICE_CSO_STAT_RX_IP4_ERR, "rx_ip4_err", "Received packets with invalid IPv4 checksum indicated by HW" },
5018 { ICE_CSO_STAT_RX_IP6_ERR, "rx_ip6_err", "Received IPv6 packets with extension headers" },
5019 { ICE_CSO_STAT_RX_L3_ERR, "rx_l3_err", "Received packets with an unexpected invalid L3 checksum indicated by HW" },
5020 { ICE_CSO_STAT_RX_TCP_ERR, "rx_tcp_err", "Received packets with invalid TCP checksum indicated by HW" },
5021 { ICE_CSO_STAT_RX_UDP_ERR, "rx_udp_err", "Received packets with invalid UDP checksum indicated by HW" },
5022 { ICE_CSO_STAT_RX_SCTP_ERR, "rx_sctp_err", "Received packets with invalid SCTP checksum indicated by HW" },
5023 { ICE_CSO_STAT_RX_L4_ERR, "rx_l4_err", "Received packets with an unexpected invalid L4 checksum indicated by HW" },
5024 /* End */
5025 { ICE_CSO_STAT_RX_COUNT, 0, 0 }
5026 };
5027
5028 struct sysctl_oid_list *parent_list = SYSCTL_CHILDREN(parent);
5029
5030 /* Add a node for statistics tracked by software. */
5031 cso_node = SYSCTL_ADD_NODE(ctx, parent_list, OID_AUTO, "cso", CTLFLAG_RD,
5032 NULL, "Checksum offload Statistics");
5033 cso_list = SYSCTL_CHILDREN(cso_node);
5034
5035 const struct ice_tx_cso_stat_info *tx_entry = tx_ctls;
5036 while (tx_entry->name && tx_entry->description) {
5037 SYSCTL_ADD_PROC(ctx, cso_list, OID_AUTO, tx_entry->name,
5038 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_STATS,
5039 vsi, tx_entry->type, ice_sysctl_tx_cso_stat, "QU",
5040 tx_entry->description);
5041 tx_entry++;
5042 }
5043
5044 const struct ice_rx_cso_stat_info *rx_entry = rx_ctls;
5045 while (rx_entry->name && rx_entry->description) {
5046 SYSCTL_ADD_PROC(ctx, cso_list, OID_AUTO, rx_entry->name,
5047 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_STATS,
5048 vsi, rx_entry->type, ice_sysctl_rx_cso_stat, "QU",
5049 rx_entry->description);
5050 rx_entry++;
5051 }
5052 }
5053
5054 /**
5055 * ice_add_vsi_sysctls - Add sysctls for a VSI
5056 * @vsi: pointer to VSI structure
5057 *
5058 * Add various sysctls for a given VSI.
5059 */
5060 void
ice_add_vsi_sysctls(struct ice_vsi * vsi)5061 ice_add_vsi_sysctls(struct ice_vsi *vsi)
5062 {
5063 struct sysctl_ctx_list *ctx = &vsi->ctx;
5064 struct sysctl_oid *hw_node, *sw_node;
5065 struct sysctl_oid_list *vsi_list, *hw_list;
5066
5067 vsi_list = SYSCTL_CHILDREN(vsi->vsi_node);
5068
5069 /* Keep hw stats in their own node. */
5070 hw_node = SYSCTL_ADD_NODE(ctx, vsi_list, OID_AUTO, "hw", CTLFLAG_RD,
5071 NULL, "VSI Hardware Statistics");
5072 hw_list = SYSCTL_CHILDREN(hw_node);
5073
5074 /* Add the ethernet statistics for this VSI */
5075 ice_add_sysctls_eth_stats(ctx, hw_node, &vsi->hw_stats.cur);
5076
5077 SYSCTL_ADD_U64(ctx, hw_list, OID_AUTO, "rx_discards",
5078 CTLFLAG_RD | CTLFLAG_STATS, &vsi->hw_stats.cur.rx_discards,
5079 0, "Discarded Rx Packets (see rx_errors or rx_no_desc)");
5080
5081 SYSCTL_ADD_PROC(ctx, hw_list, OID_AUTO, "rx_errors",
5082 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_STATS,
5083 vsi, 0, ice_sysctl_rx_errors_stat, "QU",
5084 "Aggregate of all Rx errors");
5085
5086 SYSCTL_ADD_U64(ctx, hw_list, OID_AUTO, "rx_no_desc",
5087 CTLFLAG_RD | CTLFLAG_STATS, &vsi->hw_stats.cur.rx_no_desc,
5088 0, "Rx Packets Discarded Due To Lack Of Descriptors");
5089
5090 SYSCTL_ADD_U64(ctx, hw_list, OID_AUTO, "tx_errors",
5091 CTLFLAG_RD | CTLFLAG_STATS, &vsi->hw_stats.cur.tx_errors,
5092 0, "Tx Packets Discarded Due To Error");
5093
5094 /* Add a node for statistics tracked by software. */
5095 sw_node = SYSCTL_ADD_NODE(ctx, vsi_list, OID_AUTO, "sw", CTLFLAG_RD,
5096 NULL, "VSI Software Statistics");
5097
5098 ice_add_sysctls_sw_stats(vsi, ctx, sw_node);
5099 }
5100
5101 /**
5102 * ice_add_sysctls_mac_pfc_one_stat - Add sysctl node for a PFC statistic
5103 * @ctx: sysctl ctx to use
5104 * @parent_list: parent sysctl list to add sysctls under
5105 * @pfc_stat_location: address of statistic for sysctl to display
5106 * @node_name: Name for statistic node
5107 * @descr: Description used for nodes added in this function
5108 *
5109 * A helper function for ice_add_sysctls_mac_pfc_stats that adds a node
5110 * for a stat and leaves for each traffic class for that stat.
5111 */
5112 static void
ice_add_sysctls_mac_pfc_one_stat(struct sysctl_ctx_list * ctx,struct sysctl_oid_list * parent_list,u64 * pfc_stat_location,const char * node_name,const char * descr)5113 ice_add_sysctls_mac_pfc_one_stat(struct sysctl_ctx_list *ctx,
5114 struct sysctl_oid_list *parent_list,
5115 u64* pfc_stat_location,
5116 const char *node_name,
5117 const char *descr)
5118 {
5119 struct sysctl_oid_list *node_list;
5120 struct sysctl_oid *node;
5121 struct sbuf *namebuf, *descbuf;
5122
5123 node = SYSCTL_ADD_NODE(ctx, parent_list, OID_AUTO, node_name, CTLFLAG_RD,
5124 NULL, descr);
5125 node_list = SYSCTL_CHILDREN(node);
5126
5127 namebuf = sbuf_new_auto();
5128 descbuf = sbuf_new_auto();
5129 for (int i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
5130 sbuf_clear(namebuf);
5131 sbuf_clear(descbuf);
5132
5133 sbuf_printf(namebuf, "%d", i);
5134 sbuf_printf(descbuf, "%s for TC %d", descr, i);
5135
5136 sbuf_finish(namebuf);
5137 sbuf_finish(descbuf);
5138
5139 SYSCTL_ADD_U64(ctx, node_list, OID_AUTO, sbuf_data(namebuf),
5140 CTLFLAG_RD | CTLFLAG_STATS, &pfc_stat_location[i], 0,
5141 sbuf_data(descbuf));
5142 }
5143
5144 sbuf_delete(namebuf);
5145 sbuf_delete(descbuf);
5146 }
5147
5148 /**
5149 * ice_add_sysctls_mac_pfc_stats - Add sysctls for MAC PFC statistics
5150 * @ctx: the sysctl ctx to use
5151 * @parent: parent node to add the sysctls under
5152 * @stats: the hw ports stat structure to pull values from
5153 *
5154 * Add global Priority Flow Control MAC statistics sysctls. These are
5155 * structured as a node with the PFC statistic, where there are eight
5156 * nodes for each traffic class.
5157 */
5158 static void
ice_add_sysctls_mac_pfc_stats(struct sysctl_ctx_list * ctx,struct sysctl_oid * parent,struct ice_hw_port_stats * stats)5159 ice_add_sysctls_mac_pfc_stats(struct sysctl_ctx_list *ctx,
5160 struct sysctl_oid *parent,
5161 struct ice_hw_port_stats *stats)
5162 {
5163 struct sysctl_oid_list *parent_list;
5164
5165 parent_list = SYSCTL_CHILDREN(parent);
5166
5167 ice_add_sysctls_mac_pfc_one_stat(ctx, parent_list, stats->priority_xon_rx,
5168 "p_xon_recvd", "PFC XON received");
5169 ice_add_sysctls_mac_pfc_one_stat(ctx, parent_list, stats->priority_xoff_rx,
5170 "p_xoff_recvd", "PFC XOFF received");
5171 ice_add_sysctls_mac_pfc_one_stat(ctx, parent_list, stats->priority_xon_tx,
5172 "p_xon_txd", "PFC XON transmitted");
5173 ice_add_sysctls_mac_pfc_one_stat(ctx, parent_list, stats->priority_xoff_tx,
5174 "p_xoff_txd", "PFC XOFF transmitted");
5175 ice_add_sysctls_mac_pfc_one_stat(ctx, parent_list, stats->priority_xon_2_xoff,
5176 "p_xon2xoff", "PFC XON to XOFF transitions");
5177 }
5178
5179 /**
5180 * ice_add_sysctls_mac_stats - Add sysctls for global MAC statistics
5181 * @ctx: the sysctl ctx to use
5182 * @parent: parent node to add the sysctls under
5183 * @sc: device private structure
5184 *
5185 * Add global MAC statistics sysctls.
5186 */
5187 void
ice_add_sysctls_mac_stats(struct sysctl_ctx_list * ctx,struct sysctl_oid * parent,struct ice_softc * sc)5188 ice_add_sysctls_mac_stats(struct sysctl_ctx_list *ctx,
5189 struct sysctl_oid *parent,
5190 struct ice_softc *sc)
5191 {
5192 struct sysctl_oid *mac_node;
5193 struct sysctl_oid_list *parent_list, *mac_list;
5194 struct ice_hw_port_stats *stats = &sc->stats.cur;
5195
5196 parent_list = SYSCTL_CHILDREN(parent);
5197
5198 mac_node = SYSCTL_ADD_NODE(ctx, parent_list, OID_AUTO, "mac", CTLFLAG_RD,
5199 NULL, "Mac Hardware Statistics");
5200 mac_list = SYSCTL_CHILDREN(mac_node);
5201
5202 /* Add the ethernet statistics common to VSI and MAC */
5203 ice_add_sysctls_eth_stats(ctx, mac_node, &stats->eth);
5204
5205 /* Add PFC stats that add per-TC counters */
5206 ice_add_sysctls_mac_pfc_stats(ctx, mac_node, stats);
5207
5208 const struct ice_sysctl_info ctls[] = {
5209 /* Packet Reception Stats */
5210 {&stats->rx_size_64, "rx_frames_64", "64 byte frames received"},
5211 {&stats->rx_size_127, "rx_frames_65_127", "65-127 byte frames received"},
5212 {&stats->rx_size_255, "rx_frames_128_255", "128-255 byte frames received"},
5213 {&stats->rx_size_511, "rx_frames_256_511", "256-511 byte frames received"},
5214 {&stats->rx_size_1023, "rx_frames_512_1023", "512-1023 byte frames received"},
5215 {&stats->rx_size_1522, "rx_frames_1024_1522", "1024-1522 byte frames received"},
5216 {&stats->rx_size_big, "rx_frames_big", "1523-9522 byte frames received"},
5217 {&stats->rx_undersize, "rx_undersize", "Undersized packets received"},
5218 {&stats->rx_fragments, "rx_fragmented", "Fragmented packets received"},
5219 {&stats->rx_jabber, "rx_jabber", "Received Jabber"},
5220 {&stats->eth.rx_discards, "rx_discards",
5221 "Discarded Rx Packets by Port (shortage of storage space)"},
5222 /* Packet Transmission Stats */
5223 {&stats->tx_size_64, "tx_frames_64", "64 byte frames transmitted"},
5224 {&stats->tx_size_127, "tx_frames_65_127", "65-127 byte frames transmitted"},
5225 {&stats->tx_size_255, "tx_frames_128_255", "128-255 byte frames transmitted"},
5226 {&stats->tx_size_511, "tx_frames_256_511", "256-511 byte frames transmitted"},
5227 {&stats->tx_size_1023, "tx_frames_512_1023", "512-1023 byte frames transmitted"},
5228 {&stats->tx_size_1522, "tx_frames_1024_1522", "1024-1522 byte frames transmitted"},
5229 {&stats->tx_size_big, "tx_frames_big", "1523-9522 byte frames transmitted"},
5230 {&stats->tx_dropped_link_down, "tx_dropped", "Tx Dropped Due To Link Down"},
5231 /* Flow control */
5232 {&stats->link_xon_tx, "xon_txd", "Link XON transmitted"},
5233 {&stats->link_xon_rx, "xon_recvd", "Link XON received"},
5234 {&stats->link_xoff_tx, "xoff_txd", "Link XOFF transmitted"},
5235 {&stats->link_xoff_rx, "xoff_recvd", "Link XOFF received"},
5236 /* Other */
5237 {&stats->crc_errors, "crc_errors", "CRC Errors"},
5238 {&stats->illegal_bytes, "illegal_bytes", "Illegal Byte Errors"},
5239 {&stats->mac_local_faults, "local_faults", "MAC Local Faults"},
5240 {&stats->mac_remote_faults, "remote_faults", "MAC Remote Faults"},
5241 /* End */
5242 { 0, 0, 0 }
5243 };
5244
5245 const struct ice_sysctl_info *entry = ctls;
5246 while (entry->stat != 0) {
5247 SYSCTL_ADD_U64(ctx, mac_list, OID_AUTO, entry->name,
5248 CTLFLAG_RD | CTLFLAG_STATS, entry->stat, 0,
5249 entry->description);
5250 entry++;
5251 }
5252 /* Port oversize packet stats */
5253 SYSCTL_ADD_U64(ctx, mac_list, OID_AUTO, "rx_oversized",
5254 CTLFLAG_RD | CTLFLAG_STATS, &sc->soft_stats.rx_roc_error,
5255 0, "Oversized packets received");
5256
5257 }
5258
5259 /**
5260 * ice_configure_misc_interrupts - enable 'other' interrupt causes
5261 * @sc: pointer to device private softc
5262 *
5263 * Enable various "other" interrupt causes, and associate them to interrupt 0,
5264 * which is our administrative interrupt.
5265 */
5266 void
ice_configure_misc_interrupts(struct ice_softc * sc)5267 ice_configure_misc_interrupts(struct ice_softc *sc)
5268 {
5269 struct ice_hw *hw = &sc->hw;
5270 u32 val;
5271
5272 /* Read the OICR register to clear it */
5273 rd32(hw, PFINT_OICR);
5274
5275 /* Enable useful "other" interrupt causes */
5276 val = (PFINT_OICR_ECC_ERR_M |
5277 PFINT_OICR_MAL_DETECT_M |
5278 PFINT_OICR_GRST_M |
5279 PFINT_OICR_PCI_EXCEPTION_M |
5280 PFINT_OICR_VFLR_M |
5281 PFINT_OICR_HMC_ERR_M |
5282 PFINT_OICR_PE_CRITERR_M);
5283
5284 wr32(hw, PFINT_OICR_ENA, val);
5285
5286 /* Note that since we're using MSI-X index 0, and ITR index 0, we do
5287 * not explicitly program them when writing to the PFINT_*_CTL
5288 * registers. Nevertheless, these writes are associating the
5289 * interrupts with the ITR 0 vector
5290 */
5291
5292 /* Associate the OICR interrupt with ITR 0, and enable it */
5293 wr32(hw, PFINT_OICR_CTL, PFINT_OICR_CTL_CAUSE_ENA_M);
5294
5295 /* Associate the Mailbox interrupt with ITR 0, and enable it */
5296 wr32(hw, PFINT_MBX_CTL, PFINT_MBX_CTL_CAUSE_ENA_M);
5297
5298 /* Associate the SB Queue interrupt with ITR 0, and enable it */
5299 wr32(hw, PFINT_SB_CTL, PFINT_SB_CTL_CAUSE_ENA_M);
5300
5301 /* Associate the AdminQ interrupt with ITR 0, and enable it */
5302 wr32(hw, PFINT_FW_CTL, PFINT_FW_CTL_CAUSE_ENA_M);
5303 }
5304
5305 /**
5306 * ice_filter_is_mcast - Check if info is a multicast filter
5307 * @vsi: vsi structure addresses are targeted towards
5308 * @info: filter info
5309 *
5310 * @returns true if the provided info is a multicast filter, and false
5311 * otherwise.
5312 */
5313 static bool
ice_filter_is_mcast(struct ice_vsi * vsi,struct ice_fltr_info * info)5314 ice_filter_is_mcast(struct ice_vsi *vsi, struct ice_fltr_info *info)
5315 {
5316 const u8 *addr = info->l_data.mac.mac_addr;
5317
5318 /*
5319 * Check if this info matches a multicast filter added by
5320 * ice_add_mac_to_list
5321 */
5322 if ((info->flag == ICE_FLTR_TX) &&
5323 (info->src_id == ICE_SRC_ID_VSI) &&
5324 (info->lkup_type == ICE_SW_LKUP_MAC) &&
5325 (info->vsi_handle == vsi->idx) &&
5326 ETHER_IS_MULTICAST(addr) && !ETHER_IS_BROADCAST(addr))
5327 return true;
5328
5329 return false;
5330 }
5331
5332 /**
5333 * @struct ice_mcast_sync_data
5334 * @brief data used by ice_sync_one_mcast_filter function
5335 *
5336 * Structure used to store data needed for processing by the
5337 * ice_sync_one_mcast_filter. This structure contains a linked list of filters
5338 * to be added, an error indication, and a pointer to the device softc.
5339 */
5340 struct ice_mcast_sync_data {
5341 struct ice_list_head add_list;
5342 struct ice_softc *sc;
5343 int err;
5344 };
5345
5346 /**
5347 * ice_sync_one_mcast_filter - Check if we need to program the filter
5348 * @p: void pointer to algorithm data
5349 * @sdl: link level socket address
5350 * @count: unused count value
5351 *
5352 * Called by if_foreach_llmaddr to operate on each filter in the ifp filter
5353 * list. For the given address, search our internal list to see if we have
5354 * found the filter. If not, add it to our list of filters that need to be
5355 * programmed.
5356 *
5357 * @returns (1) if we've actually setup the filter to be added
5358 */
5359 static u_int
ice_sync_one_mcast_filter(void * p,struct sockaddr_dl * sdl,u_int __unused count)5360 ice_sync_one_mcast_filter(void *p, struct sockaddr_dl *sdl,
5361 u_int __unused count)
5362 {
5363 struct ice_mcast_sync_data *data = (struct ice_mcast_sync_data *)p;
5364 struct ice_softc *sc = data->sc;
5365 struct ice_hw *hw = &sc->hw;
5366 struct ice_switch_info *sw = hw->switch_info;
5367 const u8 *sdl_addr = (const u8 *)LLADDR(sdl);
5368 struct ice_fltr_mgmt_list_entry *itr;
5369 struct ice_list_head *rules;
5370 int err;
5371
5372 rules = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
5373
5374 /*
5375 * If a previous filter already indicated an error, there is no need
5376 * for us to finish processing the rest of the filters.
5377 */
5378 if (data->err)
5379 return (0);
5380
5381 /* See if this filter has already been programmed */
5382 LIST_FOR_EACH_ENTRY(itr, rules, ice_fltr_mgmt_list_entry, list_entry) {
5383 struct ice_fltr_info *info = &itr->fltr_info;
5384 const u8 *addr = info->l_data.mac.mac_addr;
5385
5386 /* Only check multicast filters */
5387 if (!ice_filter_is_mcast(&sc->pf_vsi, info))
5388 continue;
5389
5390 /*
5391 * If this filter matches, mark the internal filter as
5392 * "found", and exit.
5393 */
5394 if (bcmp(addr, sdl_addr, ETHER_ADDR_LEN) == 0) {
5395 itr->marker = ICE_FLTR_FOUND;
5396 return (1);
5397 }
5398 }
5399
5400 /*
5401 * If we failed to locate the filter in our internal list, we need to
5402 * place it into our add list.
5403 */
5404 err = ice_add_mac_to_list(&sc->pf_vsi, &data->add_list, sdl_addr,
5405 ICE_FWD_TO_VSI);
5406 if (err) {
5407 device_printf(sc->dev,
5408 "Failed to place MAC %6D onto add list, err %s\n",
5409 sdl_addr, ":", ice_err_str(err));
5410 data->err = err;
5411
5412 return (0);
5413 }
5414
5415 return (1);
5416 }
5417
5418 /**
5419 * ice_sync_multicast_filters - Synchronize OS and internal filter list
5420 * @sc: device private structure
5421 *
5422 * Called in response to SIOCDELMULTI to synchronize the operating system
5423 * multicast address list with the internal list of filters programmed to
5424 * firmware.
5425 *
5426 * Works in one phase to find added and deleted filters using a marker bit on
5427 * the internal list.
5428 *
5429 * First, a loop over the internal list clears the marker bit. Second, for
5430 * each filter in the ifp list is checked. If we find it in the internal list,
5431 * the marker bit is set. Otherwise, the filter is added to the add list.
5432 * Third, a loop over the internal list determines if any filters have not
5433 * been found. Each of these is added to the delete list. Finally, the add and
5434 * delete lists are programmed to firmware to update the filters.
5435 *
5436 * @returns zero on success or an integer error code on failure.
5437 */
5438 int
ice_sync_multicast_filters(struct ice_softc * sc)5439 ice_sync_multicast_filters(struct ice_softc *sc)
5440 {
5441 struct ice_hw *hw = &sc->hw;
5442 struct ice_switch_info *sw = hw->switch_info;
5443 struct ice_fltr_mgmt_list_entry *itr;
5444 struct ice_mcast_sync_data data = {};
5445 struct ice_list_head *rules, remove_list;
5446 int status;
5447 int err = 0;
5448
5449 INIT_LIST_HEAD(&data.add_list);
5450 INIT_LIST_HEAD(&remove_list);
5451 data.sc = sc;
5452 data.err = 0;
5453
5454 rules = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
5455
5456 /* Acquire the lock for the entire duration */
5457 ice_acquire_lock(&sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock);
5458
5459 /* (1) Reset the marker state for all filters */
5460 LIST_FOR_EACH_ENTRY(itr, rules, ice_fltr_mgmt_list_entry, list_entry)
5461 itr->marker = ICE_FLTR_NOT_FOUND;
5462
5463 /* (2) determine which filters need to be added and removed */
5464 if_foreach_llmaddr(sc->ifp, ice_sync_one_mcast_filter, (void *)&data);
5465 if (data.err) {
5466 /* ice_sync_one_mcast_filter already prints an error */
5467 err = data.err;
5468 ice_release_lock(&sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock);
5469 goto free_filter_lists;
5470 }
5471
5472 LIST_FOR_EACH_ENTRY(itr, rules, ice_fltr_mgmt_list_entry, list_entry) {
5473 struct ice_fltr_info *info = &itr->fltr_info;
5474 const u8 *addr = info->l_data.mac.mac_addr;
5475
5476 /* Only check multicast filters */
5477 if (!ice_filter_is_mcast(&sc->pf_vsi, info))
5478 continue;
5479
5480 /*
5481 * If the filter is not marked as found, then it must no
5482 * longer be in the ifp address list, so we need to remove it.
5483 */
5484 if (itr->marker == ICE_FLTR_NOT_FOUND) {
5485 err = ice_add_mac_to_list(&sc->pf_vsi, &remove_list,
5486 addr, ICE_FWD_TO_VSI);
5487 if (err) {
5488 device_printf(sc->dev,
5489 "Failed to place MAC %6D onto remove list, err %s\n",
5490 addr, ":", ice_err_str(err));
5491 ice_release_lock(&sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock);
5492 goto free_filter_lists;
5493 }
5494 }
5495 }
5496
5497 ice_release_lock(&sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock);
5498
5499 status = ice_add_mac(hw, &data.add_list);
5500 if (status) {
5501 device_printf(sc->dev,
5502 "Could not add new MAC filters, err %s aq_err %s\n",
5503 ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
5504 err = (EIO);
5505 goto free_filter_lists;
5506 }
5507
5508 status = ice_remove_mac(hw, &remove_list);
5509 if (status) {
5510 device_printf(sc->dev,
5511 "Could not remove old MAC filters, err %s aq_err %s\n",
5512 ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
5513 err = (EIO);
5514 goto free_filter_lists;
5515 }
5516
5517 free_filter_lists:
5518 ice_free_fltr_list(&data.add_list);
5519 ice_free_fltr_list(&remove_list);
5520
5521 return (err);
5522 }
5523
5524 /**
5525 * ice_add_vlan_hw_filters - Add multiple VLAN filters for a given VSI
5526 * @vsi: The VSI to add the filter for
5527 * @vid: array of VLAN ids to add
5528 * @length: length of vid array
5529 *
5530 * Programs HW filters so that the given VSI will receive the specified VLANs.
5531 */
5532 int
ice_add_vlan_hw_filters(struct ice_vsi * vsi,u16 * vid,u16 length)5533 ice_add_vlan_hw_filters(struct ice_vsi *vsi, u16 *vid, u16 length)
5534 {
5535 struct ice_hw *hw = &vsi->sc->hw;
5536 struct ice_list_head vlan_list;
5537 struct ice_fltr_list_entry *vlan_entries;
5538 int status;
5539
5540 MPASS(length > 0);
5541
5542 INIT_LIST_HEAD(&vlan_list);
5543
5544 vlan_entries = (struct ice_fltr_list_entry *)
5545 malloc(sizeof(*vlan_entries) * length, M_ICE, M_NOWAIT | M_ZERO);
5546 if (!vlan_entries)
5547 return (ICE_ERR_NO_MEMORY);
5548
5549 for (u16 i = 0; i < length; i++) {
5550 vlan_entries[i].fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
5551 vlan_entries[i].fltr_info.fltr_act = ICE_FWD_TO_VSI;
5552 vlan_entries[i].fltr_info.flag = ICE_FLTR_TX;
5553 vlan_entries[i].fltr_info.src_id = ICE_SRC_ID_VSI;
5554 vlan_entries[i].fltr_info.vsi_handle = vsi->idx;
5555 vlan_entries[i].fltr_info.l_data.vlan.vlan_id = vid[i];
5556
5557 LIST_ADD(&vlan_entries[i].list_entry, &vlan_list);
5558 }
5559
5560 status = ice_add_vlan(hw, &vlan_list);
5561 if (!status)
5562 goto done;
5563
5564 device_printf(vsi->sc->dev, "Failed to add VLAN filters:\n");
5565 for (u16 i = 0; i < length; i++) {
5566 device_printf(vsi->sc->dev,
5567 "- vlan %d, status %d\n",
5568 vlan_entries[i].fltr_info.l_data.vlan.vlan_id,
5569 vlan_entries[i].status);
5570 }
5571 done:
5572 free(vlan_entries, M_ICE);
5573 return (status);
5574 }
5575
5576 /**
5577 * ice_add_vlan_hw_filter - Add a VLAN filter for a given VSI
5578 * @vsi: The VSI to add the filter for
5579 * @vid: VLAN to add
5580 *
5581 * Programs a HW filter so that the given VSI will receive the specified VLAN.
5582 */
5583 int
ice_add_vlan_hw_filter(struct ice_vsi * vsi,u16 vid)5584 ice_add_vlan_hw_filter(struct ice_vsi *vsi, u16 vid)
5585 {
5586 return ice_add_vlan_hw_filters(vsi, &vid, 1);
5587 }
5588
5589 /**
5590 * ice_remove_vlan_hw_filters - Remove multiple VLAN filters for a given VSI
5591 * @vsi: The VSI to remove the filters from
5592 * @vid: array of VLAN ids to remove
5593 * @length: length of vid array
5594 *
5595 * Removes previously programmed HW filters for the specified VSI.
5596 */
5597 int
ice_remove_vlan_hw_filters(struct ice_vsi * vsi,u16 * vid,u16 length)5598 ice_remove_vlan_hw_filters(struct ice_vsi *vsi, u16 *vid, u16 length)
5599 {
5600 struct ice_hw *hw = &vsi->sc->hw;
5601 struct ice_list_head vlan_list;
5602 struct ice_fltr_list_entry *vlan_entries;
5603 int status;
5604
5605 MPASS(length > 0);
5606
5607 INIT_LIST_HEAD(&vlan_list);
5608
5609 vlan_entries = (struct ice_fltr_list_entry *)
5610 malloc(sizeof(*vlan_entries) * length, M_ICE, M_NOWAIT | M_ZERO);
5611 if (!vlan_entries)
5612 return (ICE_ERR_NO_MEMORY);
5613
5614 for (u16 i = 0; i < length; i++) {
5615 vlan_entries[i].fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
5616 vlan_entries[i].fltr_info.fltr_act = ICE_FWD_TO_VSI;
5617 vlan_entries[i].fltr_info.flag = ICE_FLTR_TX;
5618 vlan_entries[i].fltr_info.src_id = ICE_SRC_ID_VSI;
5619 vlan_entries[i].fltr_info.vsi_handle = vsi->idx;
5620 vlan_entries[i].fltr_info.l_data.vlan.vlan_id = vid[i];
5621
5622 LIST_ADD(&vlan_entries[i].list_entry, &vlan_list);
5623 }
5624
5625 status = ice_remove_vlan(hw, &vlan_list);
5626 if (!status)
5627 goto done;
5628
5629 device_printf(vsi->sc->dev, "Failed to remove VLAN filters:\n");
5630 for (u16 i = 0; i < length; i++) {
5631 device_printf(vsi->sc->dev,
5632 "- vlan %d, status %d\n",
5633 vlan_entries[i].fltr_info.l_data.vlan.vlan_id,
5634 vlan_entries[i].status);
5635 }
5636 done:
5637 free(vlan_entries, M_ICE);
5638 return (status);
5639 }
5640
5641 /**
5642 * ice_remove_vlan_hw_filter - Remove a VLAN filter for a given VSI
5643 * @vsi: The VSI to remove the filter from
5644 * @vid: VLAN to remove
5645 *
5646 * Removes a previously programmed HW filter for the specified VSI.
5647 */
5648 int
ice_remove_vlan_hw_filter(struct ice_vsi * vsi,u16 vid)5649 ice_remove_vlan_hw_filter(struct ice_vsi *vsi, u16 vid)
5650 {
5651 return ice_remove_vlan_hw_filters(vsi, &vid, 1);
5652 }
5653
5654 #define ICE_SYSCTL_HELP_RX_ITR \
5655 "\nControl Rx interrupt throttle rate." \
5656 "\n\t0-8160 - sets interrupt rate in usecs" \
5657 "\n\t -1 - reset the Rx itr to default"
5658
5659 /**
5660 * ice_sysctl_rx_itr - Display or change the Rx ITR for a VSI
5661 * @oidp: sysctl oid structure
5662 * @arg1: pointer to private data structure
5663 * @arg2: unused
5664 * @req: sysctl request pointer
5665 *
5666 * On read: Displays the current Rx ITR value
5667 * on write: Sets the Rx ITR value, reconfiguring device if it is up
5668 */
5669 static int
ice_sysctl_rx_itr(SYSCTL_HANDLER_ARGS)5670 ice_sysctl_rx_itr(SYSCTL_HANDLER_ARGS)
5671 {
5672 struct ice_vsi *vsi = (struct ice_vsi *)arg1;
5673 struct ice_softc *sc = vsi->sc;
5674 int increment, ret;
5675
5676 UNREFERENCED_PARAMETER(arg2);
5677
5678 if (ice_driver_is_detaching(sc))
5679 return (ESHUTDOWN);
5680
5681 ret = sysctl_handle_16(oidp, &vsi->rx_itr, 0, req);
5682 if ((ret) || (req->newptr == NULL))
5683 return (ret);
5684
5685 if (vsi->rx_itr < 0)
5686 vsi->rx_itr = ICE_DFLT_RX_ITR;
5687 if (vsi->rx_itr > ICE_ITR_MAX)
5688 vsi->rx_itr = ICE_ITR_MAX;
5689
5690 /* Assume 2usec increment if it hasn't been loaded yet */
5691 increment = sc->hw.itr_gran ? : 2;
5692
5693 /* We need to round the value to the hardware's ITR granularity */
5694 vsi->rx_itr = (vsi->rx_itr / increment ) * increment;
5695
5696 /* If the driver has finished initializing, then we need to reprogram
5697 * the ITR registers now. Otherwise, they will be programmed during
5698 * driver initialization.
5699 */
5700 if (ice_test_state(&sc->state, ICE_STATE_DRIVER_INITIALIZED))
5701 ice_configure_rx_itr(vsi);
5702
5703 return (0);
5704 }
5705
5706 #define ICE_SYSCTL_HELP_TX_ITR \
5707 "\nControl Tx interrupt throttle rate." \
5708 "\n\t0-8160 - sets interrupt rate in usecs" \
5709 "\n\t -1 - reset the Tx itr to default"
5710
5711 /**
5712 * ice_sysctl_tx_itr - Display or change the Tx ITR for a VSI
5713 * @oidp: sysctl oid structure
5714 * @arg1: pointer to private data structure
5715 * @arg2: unused
5716 * @req: sysctl request pointer
5717 *
5718 * On read: Displays the current Tx ITR value
5719 * on write: Sets the Tx ITR value, reconfiguring device if it is up
5720 */
5721 static int
ice_sysctl_tx_itr(SYSCTL_HANDLER_ARGS)5722 ice_sysctl_tx_itr(SYSCTL_HANDLER_ARGS)
5723 {
5724 struct ice_vsi *vsi = (struct ice_vsi *)arg1;
5725 struct ice_softc *sc = vsi->sc;
5726 int increment, ret;
5727
5728 UNREFERENCED_PARAMETER(arg2);
5729
5730 if (ice_driver_is_detaching(sc))
5731 return (ESHUTDOWN);
5732
5733 ret = sysctl_handle_16(oidp, &vsi->tx_itr, 0, req);
5734 if ((ret) || (req->newptr == NULL))
5735 return (ret);
5736
5737 /* Allow configuring a negative value to reset to the default */
5738 if (vsi->tx_itr < 0)
5739 vsi->tx_itr = ICE_DFLT_TX_ITR;
5740 if (vsi->tx_itr > ICE_ITR_MAX)
5741 vsi->tx_itr = ICE_ITR_MAX;
5742
5743 /* Assume 2usec increment if it hasn't been loaded yet */
5744 increment = sc->hw.itr_gran ? : 2;
5745
5746 /* We need to round the value to the hardware's ITR granularity */
5747 vsi->tx_itr = (vsi->tx_itr / increment ) * increment;
5748
5749 /* If the driver has finished initializing, then we need to reprogram
5750 * the ITR registers now. Otherwise, they will be programmed during
5751 * driver initialization.
5752 */
5753 if (ice_test_state(&sc->state, ICE_STATE_DRIVER_INITIALIZED))
5754 ice_configure_tx_itr(vsi);
5755
5756 return (0);
5757 }
5758
5759 /**
5760 * ice_add_vsi_tunables - Add tunables and nodes for a VSI
5761 * @vsi: pointer to VSI structure
5762 * @parent: parent node to add the tunables under
5763 *
5764 * Create a sysctl context for the VSI, so that sysctls for the VSI can be
5765 * dynamically removed upon VSI removal.
5766 *
5767 * Add various tunables and set up the basic node structure for the VSI. Must
5768 * be called *prior* to ice_add_vsi_sysctls. It should be called as soon as
5769 * possible after the VSI memory is initialized.
5770 *
5771 * VSI specific sysctls with CTLFLAG_TUN should be initialized here so that
5772 * their values can be read from loader.conf prior to their first use in the
5773 * driver.
5774 */
5775 void
ice_add_vsi_tunables(struct ice_vsi * vsi,struct sysctl_oid * parent)5776 ice_add_vsi_tunables(struct ice_vsi *vsi, struct sysctl_oid *parent)
5777 {
5778 struct sysctl_oid_list *vsi_list;
5779 char vsi_name[32], vsi_desc[32];
5780
5781 struct sysctl_oid_list *parent_list = SYSCTL_CHILDREN(parent);
5782
5783 /* Initialize the sysctl context for this VSI */
5784 sysctl_ctx_init(&vsi->ctx);
5785
5786 /* Add a node to collect this VSI's statistics together */
5787 snprintf(vsi_name, sizeof(vsi_name), "%u", vsi->idx);
5788 snprintf(vsi_desc, sizeof(vsi_desc), "VSI %u", vsi->idx);
5789 vsi->vsi_node = SYSCTL_ADD_NODE(&vsi->ctx, parent_list, OID_AUTO, vsi_name,
5790 CTLFLAG_RD, NULL, vsi_desc);
5791 vsi_list = SYSCTL_CHILDREN(vsi->vsi_node);
5792
5793 vsi->rx_itr = ICE_DFLT_TX_ITR;
5794 SYSCTL_ADD_PROC(&vsi->ctx, vsi_list, OID_AUTO, "rx_itr",
5795 CTLTYPE_S16 | CTLFLAG_RWTUN,
5796 vsi, 0, ice_sysctl_rx_itr, "S",
5797 ICE_SYSCTL_HELP_RX_ITR);
5798
5799 vsi->tx_itr = ICE_DFLT_TX_ITR;
5800 SYSCTL_ADD_PROC(&vsi->ctx, vsi_list, OID_AUTO, "tx_itr",
5801 CTLTYPE_S16 | CTLFLAG_RWTUN,
5802 vsi, 0, ice_sysctl_tx_itr, "S",
5803 ICE_SYSCTL_HELP_TX_ITR);
5804 }
5805
5806 /**
5807 * ice_del_vsi_sysctl_ctx - Delete the sysctl context(s) of a VSI
5808 * @vsi: the VSI to remove contexts for
5809 *
5810 * Free the context for the VSI sysctls. This includes the main context, as
5811 * well as the per-queue sysctls.
5812 */
5813 void
ice_del_vsi_sysctl_ctx(struct ice_vsi * vsi)5814 ice_del_vsi_sysctl_ctx(struct ice_vsi *vsi)
5815 {
5816 device_t dev = vsi->sc->dev;
5817 int err;
5818
5819 if (vsi->vsi_node) {
5820 err = sysctl_ctx_free(&vsi->ctx);
5821 if (err)
5822 device_printf(dev, "failed to free VSI %d sysctl context, err %s\n",
5823 vsi->idx, ice_err_str(err));
5824 vsi->vsi_node = NULL;
5825 }
5826 }
5827
5828 /**
5829 * ice_add_dscp2tc_map_sysctls - Add sysctl tree for DSCP to TC mapping
5830 * @sc: pointer to device private softc
5831 * @ctx: the sysctl ctx to use
5832 * @ctx_list: list of sysctl children for device (to add sysctl tree to)
5833 *
5834 * Add a sysctl tree for individual dscp2tc_map sysctls. Each child of this
5835 * node can map 8 DSCPs to TC values; there are 8 of these in turn for a total
5836 * of 64 DSCP to TC map values that the user can configure.
5837 */
5838 void
ice_add_dscp2tc_map_sysctls(struct ice_softc * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid_list * ctx_list)5839 ice_add_dscp2tc_map_sysctls(struct ice_softc *sc,
5840 struct sysctl_ctx_list *ctx,
5841 struct sysctl_oid_list *ctx_list)
5842 {
5843 struct sysctl_oid_list *node_list;
5844 struct sysctl_oid *node;
5845 struct sbuf *namebuf, *descbuf;
5846 int first_dscp_val, last_dscp_val;
5847
5848 node = SYSCTL_ADD_NODE(ctx, ctx_list, OID_AUTO, "dscp2tc_map", CTLFLAG_RD,
5849 NULL, "Map of DSCP values to DCB TCs");
5850 node_list = SYSCTL_CHILDREN(node);
5851
5852 namebuf = sbuf_new_auto();
5853 descbuf = sbuf_new_auto();
5854 for (int i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
5855 sbuf_clear(namebuf);
5856 sbuf_clear(descbuf);
5857
5858 first_dscp_val = i * 8;
5859 last_dscp_val = first_dscp_val + 7;
5860
5861 sbuf_printf(namebuf, "%d-%d", first_dscp_val, last_dscp_val);
5862 sbuf_printf(descbuf, "Map DSCP values %d to %d to TCs",
5863 first_dscp_val, last_dscp_val);
5864
5865 sbuf_finish(namebuf);
5866 sbuf_finish(descbuf);
5867
5868 SYSCTL_ADD_PROC(ctx, node_list,
5869 OID_AUTO, sbuf_data(namebuf), CTLTYPE_STRING | CTLFLAG_RW,
5870 sc, i, ice_sysctl_dscp2tc_map, "A", sbuf_data(descbuf));
5871 }
5872
5873 sbuf_delete(namebuf);
5874 sbuf_delete(descbuf);
5875 }
5876
5877 /**
5878 * ice_add_device_tunables - Add early tunable sysctls and sysctl nodes
5879 * @sc: device private structure
5880 *
5881 * Add per-device dynamic tunable sysctls, and setup the general sysctl trees
5882 * for re-use by ice_add_device_sysctls.
5883 *
5884 * In order for the sysctl fields to be initialized before use, this function
5885 * should be called as early as possible during attach activities.
5886 *
5887 * Any non-global sysctl marked as CTLFLAG_TUN should likely be initialized
5888 * here in this function, rather than later in ice_add_device_sysctls.
5889 *
5890 * To make things easier, this function is also expected to setup the various
5891 * sysctl nodes in addition to tunables so that other sysctls which can't be
5892 * initialized early can hook into the same nodes.
5893 */
5894 void
ice_add_device_tunables(struct ice_softc * sc)5895 ice_add_device_tunables(struct ice_softc *sc)
5896 {
5897 device_t dev = sc->dev;
5898
5899 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
5900 struct sysctl_oid_list *ctx_list =
5901 SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
5902
5903 sc->enable_health_events = ice_enable_health_events;
5904
5905 SYSCTL_ADD_BOOL(ctx, ctx_list, OID_AUTO, "enable_health_events",
5906 CTLFLAG_RDTUN, &sc->enable_health_events, 0,
5907 "Enable FW health event reporting for this PF");
5908
5909 /* Add a node to track VSI sysctls. Keep track of the node in the
5910 * softc so that we can hook other sysctls into it later. This
5911 * includes both the VSI statistics, as well as potentially dynamic
5912 * VSIs in the future.
5913 */
5914
5915 sc->vsi_sysctls = SYSCTL_ADD_NODE(ctx, ctx_list, OID_AUTO, "vsi",
5916 CTLFLAG_RD, NULL, "VSI Configuration and Statistics");
5917
5918 /* Add debug tunables */
5919 ice_add_debug_tunables(sc);
5920 }
5921
5922 /**
5923 * ice_sysctl_dump_mac_filters - Dump a list of all HW MAC Filters
5924 * @oidp: sysctl oid structure
5925 * @arg1: pointer to private data structure
5926 * @arg2: unused
5927 * @req: sysctl request pointer
5928 *
5929 * Callback for "mac_filters" sysctl to dump the programmed MAC filters.
5930 */
5931 static int
ice_sysctl_dump_mac_filters(SYSCTL_HANDLER_ARGS)5932 ice_sysctl_dump_mac_filters(SYSCTL_HANDLER_ARGS)
5933 {
5934 struct ice_softc *sc = (struct ice_softc *)arg1;
5935 struct ice_hw *hw = &sc->hw;
5936 struct ice_switch_info *sw = hw->switch_info;
5937 struct ice_fltr_mgmt_list_entry *fm_entry;
5938 struct ice_list_head *rule_head;
5939 struct ice_lock *rule_lock;
5940 struct ice_fltr_info *fi;
5941 struct sbuf *sbuf;
5942 int ret;
5943
5944 UNREFERENCED_PARAMETER(oidp);
5945 UNREFERENCED_PARAMETER(arg2);
5946
5947 if (ice_driver_is_detaching(sc))
5948 return (ESHUTDOWN);
5949
5950 /* Wire the old buffer so we can take a non-sleepable lock */
5951 ret = sysctl_wire_old_buffer(req, 0);
5952 if (ret)
5953 return (ret);
5954
5955 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5956
5957 rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
5958 rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
5959
5960 sbuf_printf(sbuf, "MAC Filter List");
5961
5962 ice_acquire_lock(rule_lock);
5963
5964 LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry, list_entry) {
5965 fi = &fm_entry->fltr_info;
5966
5967 sbuf_printf(sbuf,
5968 "\nmac = %6D, vsi_handle = %3d, fw_act_flag = %5s, lb_en = %1d, lan_en = %1d, fltr_act = %15s, fltr_rule_id = %d",
5969 fi->l_data.mac.mac_addr, ":", fi->vsi_handle,
5970 ice_fltr_flag_str(fi->flag), fi->lb_en, fi->lan_en,
5971 ice_fwd_act_str(fi->fltr_act), fi->fltr_rule_id);
5972
5973 /* if we have a vsi_list_info, print some information about that */
5974 if (fm_entry->vsi_list_info) {
5975 sbuf_printf(sbuf,
5976 ", vsi_count = %3d, vsi_list_id = %3d, ref_cnt = %3d",
5977 fm_entry->vsi_count,
5978 fm_entry->vsi_list_info->vsi_list_id,
5979 fm_entry->vsi_list_info->ref_cnt);
5980 }
5981 }
5982
5983 ice_release_lock(rule_lock);
5984
5985 sbuf_finish(sbuf);
5986 sbuf_delete(sbuf);
5987
5988 return (0);
5989 }
5990
5991 /**
5992 * ice_sysctl_dump_vlan_filters - Dump a list of all HW VLAN Filters
5993 * @oidp: sysctl oid structure
5994 * @arg1: pointer to private data structure
5995 * @arg2: unused
5996 * @req: sysctl request pointer
5997 *
5998 * Callback for "vlan_filters" sysctl to dump the programmed VLAN filters.
5999 */
6000 static int
ice_sysctl_dump_vlan_filters(SYSCTL_HANDLER_ARGS)6001 ice_sysctl_dump_vlan_filters(SYSCTL_HANDLER_ARGS)
6002 {
6003 struct ice_softc *sc = (struct ice_softc *)arg1;
6004 struct ice_hw *hw = &sc->hw;
6005 struct ice_switch_info *sw = hw->switch_info;
6006 struct ice_fltr_mgmt_list_entry *fm_entry;
6007 struct ice_list_head *rule_head;
6008 struct ice_lock *rule_lock;
6009 struct ice_fltr_info *fi;
6010 struct sbuf *sbuf;
6011 int ret;
6012
6013 UNREFERENCED_PARAMETER(oidp);
6014 UNREFERENCED_PARAMETER(arg2);
6015
6016 if (ice_driver_is_detaching(sc))
6017 return (ESHUTDOWN);
6018
6019 /* Wire the old buffer so we can take a non-sleepable lock */
6020 ret = sysctl_wire_old_buffer(req, 0);
6021 if (ret)
6022 return (ret);
6023
6024 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6025
6026 rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
6027 rule_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
6028
6029 sbuf_printf(sbuf, "VLAN Filter List");
6030
6031 ice_acquire_lock(rule_lock);
6032
6033 LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry, list_entry) {
6034 fi = &fm_entry->fltr_info;
6035
6036 sbuf_printf(sbuf,
6037 "\nvlan_id = %4d, vsi_handle = %3d, fw_act_flag = %5s, lb_en = %1d, lan_en = %1d, fltr_act = %15s, fltr_rule_id = %4d",
6038 fi->l_data.vlan.vlan_id, fi->vsi_handle,
6039 ice_fltr_flag_str(fi->flag), fi->lb_en, fi->lan_en,
6040 ice_fwd_act_str(fi->fltr_act), fi->fltr_rule_id);
6041
6042 /* if we have a vsi_list_info, print some information about that */
6043 if (fm_entry->vsi_list_info) {
6044 sbuf_printf(sbuf,
6045 ", vsi_count = %3d, vsi_list_id = %3d, ref_cnt = %3d",
6046 fm_entry->vsi_count,
6047 fm_entry->vsi_list_info->vsi_list_id,
6048 fm_entry->vsi_list_info->ref_cnt);
6049 }
6050 }
6051
6052 ice_release_lock(rule_lock);
6053
6054 sbuf_finish(sbuf);
6055 sbuf_delete(sbuf);
6056
6057 return (0);
6058 }
6059
6060 /**
6061 * ice_sysctl_dump_ethertype_filters - Dump a list of all HW Ethertype filters
6062 * @oidp: sysctl oid structure
6063 * @arg1: pointer to private data structure
6064 * @arg2: unused
6065 * @req: sysctl request pointer
6066 *
6067 * Callback for "ethertype_filters" sysctl to dump the programmed Ethertype
6068 * filters.
6069 */
6070 static int
ice_sysctl_dump_ethertype_filters(SYSCTL_HANDLER_ARGS)6071 ice_sysctl_dump_ethertype_filters(SYSCTL_HANDLER_ARGS)
6072 {
6073 struct ice_softc *sc = (struct ice_softc *)arg1;
6074 struct ice_hw *hw = &sc->hw;
6075 struct ice_switch_info *sw = hw->switch_info;
6076 struct ice_fltr_mgmt_list_entry *fm_entry;
6077 struct ice_list_head *rule_head;
6078 struct ice_lock *rule_lock;
6079 struct ice_fltr_info *fi;
6080 struct sbuf *sbuf;
6081 int ret;
6082
6083 UNREFERENCED_PARAMETER(oidp);
6084 UNREFERENCED_PARAMETER(arg2);
6085
6086 if (ice_driver_is_detaching(sc))
6087 return (ESHUTDOWN);
6088
6089 /* Wire the old buffer so we can take a non-sleepable lock */
6090 ret = sysctl_wire_old_buffer(req, 0);
6091 if (ret)
6092 return (ret);
6093
6094 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6095
6096 rule_lock = &sw->recp_list[ICE_SW_LKUP_ETHERTYPE].filt_rule_lock;
6097 rule_head = &sw->recp_list[ICE_SW_LKUP_ETHERTYPE].filt_rules;
6098
6099 sbuf_printf(sbuf, "Ethertype Filter List");
6100
6101 ice_acquire_lock(rule_lock);
6102
6103 LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry, list_entry) {
6104 fi = &fm_entry->fltr_info;
6105
6106 sbuf_printf(sbuf,
6107 "\nethertype = 0x%04x, vsi_handle = %3d, fw_act_flag = %5s, lb_en = %1d, lan_en = %1d, fltr_act = %15s, fltr_rule_id = %4d",
6108 fi->l_data.ethertype_mac.ethertype,
6109 fi->vsi_handle, ice_fltr_flag_str(fi->flag),
6110 fi->lb_en, fi->lan_en, ice_fwd_act_str(fi->fltr_act),
6111 fi->fltr_rule_id);
6112
6113 /* if we have a vsi_list_info, print some information about that */
6114 if (fm_entry->vsi_list_info) {
6115 sbuf_printf(sbuf,
6116 ", vsi_count = %3d, vsi_list_id = %3d, ref_cnt = %3d",
6117 fm_entry->vsi_count,
6118 fm_entry->vsi_list_info->vsi_list_id,
6119 fm_entry->vsi_list_info->ref_cnt);
6120 }
6121 }
6122
6123 ice_release_lock(rule_lock);
6124
6125 sbuf_finish(sbuf);
6126 sbuf_delete(sbuf);
6127
6128 return (0);
6129 }
6130
6131 /**
6132 * ice_sysctl_dump_ethertype_mac_filters - Dump a list of all HW Ethertype/MAC filters
6133 * @oidp: sysctl oid structure
6134 * @arg1: pointer to private data structure
6135 * @arg2: unused
6136 * @req: sysctl request pointer
6137 *
6138 * Callback for "ethertype_mac_filters" sysctl to dump the programmed
6139 * Ethertype/MAC filters.
6140 */
6141 static int
ice_sysctl_dump_ethertype_mac_filters(SYSCTL_HANDLER_ARGS)6142 ice_sysctl_dump_ethertype_mac_filters(SYSCTL_HANDLER_ARGS)
6143 {
6144 struct ice_softc *sc = (struct ice_softc *)arg1;
6145 struct ice_hw *hw = &sc->hw;
6146 struct ice_switch_info *sw = hw->switch_info;
6147 struct ice_fltr_mgmt_list_entry *fm_entry;
6148 struct ice_list_head *rule_head;
6149 struct ice_lock *rule_lock;
6150 struct ice_fltr_info *fi;
6151 struct sbuf *sbuf;
6152 int ret;
6153
6154 UNREFERENCED_PARAMETER(oidp);
6155 UNREFERENCED_PARAMETER(arg2);
6156
6157 if (ice_driver_is_detaching(sc))
6158 return (ESHUTDOWN);
6159
6160 /* Wire the old buffer so we can take a non-sleepable lock */
6161 ret = sysctl_wire_old_buffer(req, 0);
6162 if (ret)
6163 return (ret);
6164
6165 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6166
6167 rule_lock = &sw->recp_list[ICE_SW_LKUP_ETHERTYPE_MAC].filt_rule_lock;
6168 rule_head = &sw->recp_list[ICE_SW_LKUP_ETHERTYPE_MAC].filt_rules;
6169
6170 sbuf_printf(sbuf, "Ethertype/MAC Filter List");
6171
6172 ice_acquire_lock(rule_lock);
6173
6174 LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry, list_entry) {
6175 fi = &fm_entry->fltr_info;
6176
6177 sbuf_printf(sbuf,
6178 "\nethertype = 0x%04x, mac = %6D, vsi_handle = %3d, fw_act_flag = %5s, lb_en = %1d, lan_en = %1d, fltr_act = %15s, fltr_rule_id = %4d",
6179 fi->l_data.ethertype_mac.ethertype,
6180 fi->l_data.ethertype_mac.mac_addr, ":",
6181 fi->vsi_handle, ice_fltr_flag_str(fi->flag),
6182 fi->lb_en, fi->lan_en, ice_fwd_act_str(fi->fltr_act),
6183 fi->fltr_rule_id);
6184
6185 /* if we have a vsi_list_info, print some information about that */
6186 if (fm_entry->vsi_list_info) {
6187 sbuf_printf(sbuf,
6188 ", vsi_count = %3d, vsi_list_id = %3d, ref_cnt = %3d",
6189 fm_entry->vsi_count,
6190 fm_entry->vsi_list_info->vsi_list_id,
6191 fm_entry->vsi_list_info->ref_cnt);
6192 }
6193 }
6194
6195 ice_release_lock(rule_lock);
6196
6197 sbuf_finish(sbuf);
6198 sbuf_delete(sbuf);
6199
6200 return (0);
6201 }
6202
6203 /**
6204 * ice_sysctl_dump_state_flags - Dump device driver state flags
6205 * @oidp: sysctl oid structure
6206 * @arg1: pointer to private data structure
6207 * @arg2: unused
6208 * @req: sysctl request pointer
6209 *
6210 * Callback for "state" sysctl to display currently set driver state flags.
6211 */
6212 static int
ice_sysctl_dump_state_flags(SYSCTL_HANDLER_ARGS)6213 ice_sysctl_dump_state_flags(SYSCTL_HANDLER_ARGS)
6214 {
6215 struct ice_softc *sc = (struct ice_softc *)arg1;
6216 struct sbuf *sbuf;
6217 u32 copied_state;
6218 unsigned int i;
6219 bool at_least_one = false;
6220
6221 UNREFERENCED_PARAMETER(oidp);
6222 UNREFERENCED_PARAMETER(arg2);
6223
6224 if (ice_driver_is_detaching(sc))
6225 return (ESHUTDOWN);
6226
6227 /* Make a copy of the state to ensure we display coherent values */
6228 copied_state = atomic_load_acq_32(&sc->state);
6229
6230 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6231
6232 /* Add the string for each set state to the sbuf */
6233 for (i = 0; i < 32; i++) {
6234 if (copied_state & BIT(i)) {
6235 const char *str = ice_state_to_str((enum ice_state)i);
6236
6237 at_least_one = true;
6238
6239 if (str)
6240 sbuf_printf(sbuf, "\n%s", str);
6241 else
6242 sbuf_printf(sbuf, "\nBIT(%u)", i);
6243 }
6244 }
6245
6246 if (!at_least_one)
6247 sbuf_printf(sbuf, "Nothing set");
6248
6249 sbuf_finish(sbuf);
6250 sbuf_delete(sbuf);
6251
6252 return (0);
6253 }
6254
6255 #define ICE_SYSCTL_DEBUG_MASK_HELP \
6256 "\nSelect debug statements to print to kernel message log" \
6257 "\nFlags:" \
6258 "\n\t 0x1 - Function Tracing" \
6259 "\n\t 0x2 - Driver Initialization" \
6260 "\n\t 0x4 - Release" \
6261 "\n\t 0x8 - FW Logging" \
6262 "\n\t 0x10 - Link" \
6263 "\n\t 0x20 - PHY" \
6264 "\n\t 0x40 - Queue Context" \
6265 "\n\t 0x80 - NVM" \
6266 "\n\t 0x100 - LAN" \
6267 "\n\t 0x200 - Flow" \
6268 "\n\t 0x400 - DCB" \
6269 "\n\t 0x800 - Diagnostics" \
6270 "\n\t 0x1000 - Flow Director" \
6271 "\n\t 0x2000 - Switch" \
6272 "\n\t 0x4000 - Scheduler" \
6273 "\n\t 0x8000 - RDMA" \
6274 "\n\t 0x10000 - DDP Package" \
6275 "\n\t 0x20000 - Resources" \
6276 "\n\t 0x40000 - ACL" \
6277 "\n\t 0x80000 - PTP" \
6278 "\n\t ..." \
6279 "\n\t 0x1000000 - Admin Queue messages" \
6280 "\n\t 0x2000000 - Admin Queue descriptors" \
6281 "\n\t 0x4000000 - Admin Queue descriptor buffers" \
6282 "\n\t 0x8000000 - Admin Queue commands" \
6283 "\n\t 0x10000000 - Parser" \
6284 "\n\t ..." \
6285 "\n\t 0x80000000 - (Reserved for user)" \
6286 "\n\t" \
6287 "\nUse \"sysctl -x\" to view flags properly."
6288
6289 /**
6290 * ice_add_debug_tunables - Add tunables helpful for debugging the device driver
6291 * @sc: device private structure
6292 *
6293 * Add sysctl tunable values related to debugging the device driver. For now,
6294 * this means a tunable to set the debug mask early during driver load.
6295 *
6296 * The debug node will be marked CTLFLAG_SKIP unless INVARIANTS is defined, so
6297 * that in normal kernel builds, these will all be hidden, but on a debug
6298 * kernel they will be more easily visible.
6299 */
6300 static void
ice_add_debug_tunables(struct ice_softc * sc)6301 ice_add_debug_tunables(struct ice_softc *sc)
6302 {
6303 struct sysctl_oid_list *debug_list;
6304 device_t dev = sc->dev;
6305
6306 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
6307 struct sysctl_oid_list *ctx_list =
6308 SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
6309
6310 sc->debug_sysctls = SYSCTL_ADD_NODE(ctx, ctx_list, OID_AUTO, "debug",
6311 ICE_CTLFLAG_DEBUG | CTLFLAG_RD,
6312 NULL, "Debug Sysctls");
6313 debug_list = SYSCTL_CHILDREN(sc->debug_sysctls);
6314
6315 SYSCTL_ADD_U64(ctx, debug_list, OID_AUTO, "debug_mask",
6316 ICE_CTLFLAG_DEBUG | CTLFLAG_RWTUN,
6317 &sc->hw.debug_mask, 0,
6318 ICE_SYSCTL_DEBUG_MASK_HELP);
6319
6320 /* Load the default value from the global sysctl first */
6321 sc->enable_tx_fc_filter = ice_enable_tx_fc_filter;
6322
6323 SYSCTL_ADD_BOOL(ctx, debug_list, OID_AUTO, "enable_tx_fc_filter",
6324 ICE_CTLFLAG_DEBUG | CTLFLAG_RDTUN,
6325 &sc->enable_tx_fc_filter, 0,
6326 "Drop Ethertype 0x8808 control frames originating from software on this PF");
6327
6328 sc->tx_balance_en = ice_tx_balance_en;
6329 SYSCTL_ADD_BOOL(ctx, debug_list, OID_AUTO, "tx_balance",
6330 ICE_CTLFLAG_DEBUG | CTLFLAG_RWTUN,
6331 &sc->tx_balance_en, 0,
6332 "Enable 5-layer scheduler topology");
6333
6334 /* Load the default value from the global sysctl first */
6335 sc->enable_tx_lldp_filter = ice_enable_tx_lldp_filter;
6336
6337 SYSCTL_ADD_BOOL(ctx, debug_list, OID_AUTO, "enable_tx_lldp_filter",
6338 ICE_CTLFLAG_DEBUG | CTLFLAG_RDTUN,
6339 &sc->enable_tx_lldp_filter, 0,
6340 "Drop Ethertype 0x88cc LLDP frames originating from software on this PF");
6341
6342 ice_add_fw_logging_tunables(sc, sc->debug_sysctls);
6343 }
6344
6345 #define ICE_SYSCTL_HELP_REQUEST_RESET \
6346 "\nRequest the driver to initiate a reset." \
6347 "\n\tpfr - Initiate a PF reset" \
6348 "\n\tcorer - Initiate a CORE reset" \
6349 "\n\tglobr - Initiate a GLOBAL reset"
6350
6351 /**
6352 * @var rl_sysctl_ticks
6353 * @brief timestamp for latest reset request sysctl call
6354 *
6355 * Helps rate-limit the call to the sysctl which resets the device
6356 */
6357 int rl_sysctl_ticks = 0;
6358
6359 /**
6360 * ice_sysctl_request_reset - Request that the driver initiate a reset
6361 * @oidp: sysctl oid structure
6362 * @arg1: pointer to private data structure
6363 * @arg2: unused
6364 * @req: sysctl request pointer
6365 *
6366 * Callback for "request_reset" sysctl to request that the driver initiate
6367 * a reset. Expects to be passed one of the following strings
6368 *
6369 * "pfr" - Initiate a PF reset
6370 * "corer" - Initiate a CORE reset
6371 * "globr" - Initiate a Global reset
6372 */
6373 static int
ice_sysctl_request_reset(SYSCTL_HANDLER_ARGS)6374 ice_sysctl_request_reset(SYSCTL_HANDLER_ARGS)
6375 {
6376 struct ice_softc *sc = (struct ice_softc *)arg1;
6377 struct ice_hw *hw = &sc->hw;
6378 int status;
6379 enum ice_reset_req reset_type = ICE_RESET_INVAL;
6380 const char *reset_message;
6381 int ret;
6382
6383 /* Buffer to store the requested reset string. Must contain enough
6384 * space to store the largest expected reset string, which currently
6385 * means 6 bytes of space.
6386 */
6387 char reset[6] = "";
6388
6389 UNREFERENCED_PARAMETER(arg2);
6390
6391 ret = priv_check(curthread, PRIV_DRIVER);
6392 if (ret)
6393 return (ret);
6394
6395 if (ice_driver_is_detaching(sc))
6396 return (ESHUTDOWN);
6397
6398 /* Read in the requested reset type. */
6399 ret = sysctl_handle_string(oidp, reset, sizeof(reset), req);
6400 if ((ret) || (req->newptr == NULL))
6401 return (ret);
6402
6403 if (strcmp(reset, "pfr") == 0) {
6404 reset_message = "Requesting a PF reset";
6405 reset_type = ICE_RESET_PFR;
6406 } else if (strcmp(reset, "corer") == 0) {
6407 reset_message = "Initiating a CORE reset";
6408 reset_type = ICE_RESET_CORER;
6409 } else if (strcmp(reset, "globr") == 0) {
6410 reset_message = "Initiating a GLOBAL reset";
6411 reset_type = ICE_RESET_GLOBR;
6412 } else if (strcmp(reset, "empr") == 0) {
6413 device_printf(sc->dev, "Triggering an EMP reset via software is not currently supported\n");
6414 return (EOPNOTSUPP);
6415 }
6416
6417 if (reset_type == ICE_RESET_INVAL) {
6418 device_printf(sc->dev, "%s is not a valid reset request\n", reset);
6419 return (EINVAL);
6420 }
6421
6422 /*
6423 * Rate-limit the frequency at which this function is called.
6424 * Assuming this is called successfully once, typically,
6425 * everything should be handled within the allotted time frame.
6426 * However, in the odd setup situations, we've also put in
6427 * guards for when the reset has finished, but we're in the
6428 * process of rebuilding. And instead of queueing an intent,
6429 * simply error out and let the caller retry, if so desired.
6430 */
6431 if (TICKS_2_MSEC(ticks - rl_sysctl_ticks) < 500) {
6432 device_printf(sc->dev,
6433 "Call frequency too high. Operation aborted.\n");
6434 return (EBUSY);
6435 }
6436 rl_sysctl_ticks = ticks;
6437
6438 if (TICKS_2_MSEC(ticks - sc->rebuild_ticks) < 100) {
6439 device_printf(sc->dev, "Device rebuilding. Operation aborted.\n");
6440 return (EBUSY);
6441 }
6442
6443 if (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) {
6444 device_printf(sc->dev, "Device in reset. Operation aborted.\n");
6445 return (EBUSY);
6446 }
6447
6448 device_printf(sc->dev, "%s\n", reset_message);
6449
6450 /* Initiate the PF reset during the admin status task */
6451 if (reset_type == ICE_RESET_PFR) {
6452 ice_set_state(&sc->state, ICE_STATE_RESET_PFR_REQ);
6453 return (0);
6454 }
6455
6456 /*
6457 * Other types of resets including CORE and GLOBAL resets trigger an
6458 * interrupt on all PFs. Initiate the reset now. Preparation and
6459 * rebuild logic will be handled by the admin status task.
6460 */
6461 status = ice_reset(hw, reset_type);
6462
6463 /*
6464 * Resets can take a long time and we still don't want another call
6465 * to this function before we settle down.
6466 */
6467 rl_sysctl_ticks = ticks;
6468
6469 if (status) {
6470 device_printf(sc->dev, "failed to initiate device reset, err %s\n",
6471 ice_status_str(status));
6472 ice_set_state(&sc->state, ICE_STATE_RESET_FAILED);
6473 return (EFAULT);
6474 }
6475
6476 return (0);
6477 }
6478
6479 #define ICE_AQC_DBG_DUMP_CLUSTER_ID_INVALID (0xFFFFFF)
6480 #define ICE_SYSCTL_HELP_FW_DEBUG_DUMP_CLUSTER_SETTING \
6481 "\nSelect clusters to dump with \"dump\" sysctl" \
6482 "\nFlags:" \
6483 "\n\t 0 - All clusters (default)" \
6484 "\n\t 0x1 - Switch" \
6485 "\n\t 0x2 - ACL" \
6486 "\n\t 0x4 - Tx Scheduler" \
6487 "\n\t 0x8 - Profile Configuration" \
6488 "\n\t 0x20 - Link" \
6489 "\n\t 0x80 - DCB" \
6490 "\n\t 0x100 - L2P" \
6491 "\n\t 0x400000 - Manageability Transactions (excluding E830)" \
6492 "\n" \
6493 "\nUse \"sysctl -x\" to view flags properly."
6494
6495 /**
6496 * ice_sysctl_fw_debug_dump_cluster_setting - Set which clusters to dump
6497 * from FW when FW debug dump occurs
6498 * @oidp: sysctl oid structure
6499 * @arg1: pointer to private data structure
6500 * @arg2: unused
6501 * @req: sysctl request pointer
6502 */
6503 static int
ice_sysctl_fw_debug_dump_cluster_setting(SYSCTL_HANDLER_ARGS)6504 ice_sysctl_fw_debug_dump_cluster_setting(SYSCTL_HANDLER_ARGS)
6505 {
6506 struct ice_softc *sc = (struct ice_softc *)arg1;
6507 device_t dev = sc->dev;
6508 u32 clusters;
6509 int ret;
6510
6511 UNREFERENCED_PARAMETER(arg2);
6512
6513 ret = priv_check(curthread, PRIV_DRIVER);
6514 if (ret)
6515 return (ret);
6516
6517 if (ice_driver_is_detaching(sc))
6518 return (ESHUTDOWN);
6519
6520 clusters = sc->fw_debug_dump_cluster_mask;
6521
6522 ret = sysctl_handle_32(oidp, &clusters, 0, req);
6523 if ((ret) || (req->newptr == NULL))
6524 return (ret);
6525
6526 u32 valid_cluster_mask;
6527 if (ice_is_e830(&sc->hw))
6528 valid_cluster_mask = ICE_FW_DEBUG_DUMP_VALID_CLUSTER_MASK_E830;
6529 else
6530 valid_cluster_mask = ICE_FW_DEBUG_DUMP_VALID_CLUSTER_MASK_E810;
6531
6532 if (clusters & ~(valid_cluster_mask)) {
6533 device_printf(dev,
6534 "%s: ERROR: Incorrect settings requested\n",
6535 __func__);
6536 sc->fw_debug_dump_cluster_mask = ICE_AQC_DBG_DUMP_CLUSTER_ID_INVALID;
6537 return (EINVAL);
6538 }
6539
6540 sc->fw_debug_dump_cluster_mask = clusters;
6541
6542 return (0);
6543 }
6544
6545 #define ICE_FW_DUMP_AQ_COUNT_LIMIT (10000)
6546
6547 /**
6548 * ice_fw_debug_dump_print_cluster - Print formatted cluster data from FW
6549 * @sc: the device softc
6550 * @sbuf: initialized sbuf to print data to
6551 * @cluster_id: FW cluster ID to print data from
6552 *
6553 * Reads debug data from the specified cluster id in the FW and prints it to
6554 * the input sbuf. This function issues multiple AQ commands to the FW in
6555 * order to get all of the data in the cluster.
6556 *
6557 * @remark Only intended to be used by the sysctl handler
6558 * ice_sysctl_fw_debug_dump_do_dump
6559 */
6560 static u16
ice_fw_debug_dump_print_cluster(struct ice_softc * sc,struct sbuf * sbuf,u16 cluster_id)6561 ice_fw_debug_dump_print_cluster(struct ice_softc *sc, struct sbuf *sbuf, u16 cluster_id)
6562 {
6563 struct ice_hw *hw = &sc->hw;
6564 device_t dev = sc->dev;
6565 u16 data_buf_size = ICE_AQ_MAX_BUF_LEN;
6566 const u8 reserved_buf[8] = {};
6567 int status;
6568 int counter = 0;
6569 u8 *data_buf;
6570
6571 /* Input parameters / loop variables */
6572 u16 table_id = 0;
6573 u32 offset = 0;
6574
6575 /* Output from the Get Internal Data AQ command */
6576 u16 ret_buf_size = 0;
6577 u16 ret_next_cluster = 0;
6578 u16 ret_next_table = 0;
6579 u32 ret_next_index = 0;
6580
6581 /* Other setup */
6582 data_buf = (u8 *)malloc(data_buf_size, M_ICE, M_NOWAIT | M_ZERO);
6583 if (!data_buf)
6584 return ret_next_cluster;
6585
6586 ice_debug(hw, ICE_DBG_DIAG, "%s: dumping cluster id %d\n", __func__,
6587 cluster_id);
6588
6589 for (;;) {
6590 /* Do not trust the FW behavior to be completely correct */
6591 if (counter++ >= ICE_FW_DUMP_AQ_COUNT_LIMIT) {
6592 device_printf(dev,
6593 "%s: Exceeded counter limit for cluster %d\n",
6594 __func__, cluster_id);
6595 break;
6596 }
6597
6598 ice_debug(hw, ICE_DBG_DIAG, "---\n");
6599 ice_debug(hw, ICE_DBG_DIAG,
6600 "table_id 0x%04x offset 0x%08x buf_size %d\n",
6601 table_id, offset, data_buf_size);
6602
6603 status = ice_aq_get_internal_data(hw, cluster_id, table_id,
6604 offset, data_buf, data_buf_size, &ret_buf_size,
6605 &ret_next_cluster, &ret_next_table, &ret_next_index, NULL);
6606 if (status) {
6607 device_printf(dev,
6608 "%s: ice_aq_get_internal_data in cluster %d: err %s aq_err %s\n",
6609 __func__, cluster_id, ice_status_str(status),
6610 ice_aq_str(hw->adminq.sq_last_status));
6611 break;
6612 }
6613
6614 ice_debug(hw, ICE_DBG_DIAG,
6615 "ret_table_id 0x%04x ret_offset 0x%08x ret_buf_size %d\n",
6616 ret_next_table, ret_next_index, ret_buf_size);
6617
6618 /* Print cluster id */
6619 u32 print_cluster_id = (u32)cluster_id;
6620 sbuf_bcat(sbuf, &print_cluster_id, sizeof(print_cluster_id));
6621 /* Print table id */
6622 u32 print_table_id = (u32)table_id;
6623 sbuf_bcat(sbuf, &print_table_id, sizeof(print_table_id));
6624 /* Print table length */
6625 u32 print_table_length = (u32)ret_buf_size;
6626 sbuf_bcat(sbuf, &print_table_length, sizeof(print_table_length));
6627 /* Print current offset */
6628 u32 print_curr_offset = offset;
6629 sbuf_bcat(sbuf, &print_curr_offset, sizeof(print_curr_offset));
6630 /* Print reserved bytes */
6631 sbuf_bcat(sbuf, reserved_buf, sizeof(reserved_buf));
6632 /* Print data */
6633 sbuf_bcat(sbuf, data_buf, ret_buf_size);
6634
6635 /* Adjust loop variables */
6636 memset(data_buf, 0, data_buf_size);
6637 bool same_table_next = (table_id == ret_next_table);
6638 bool last_table_next;
6639 if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_NEXT_CLUSTER_ID))
6640 last_table_next =
6641 (ret_next_table == 0xffff);
6642 else
6643 last_table_next =
6644 (ret_next_table == 0xff || ret_next_table == 0xffff);
6645 bool last_offset_next = (ret_next_index == 0xffffffff || ret_next_index == 0);
6646
6647 if ((!same_table_next && !last_offset_next) ||
6648 (same_table_next && last_table_next)) {
6649 device_printf(dev,
6650 "%s: Unexpected conditions for same_table_next(%d) last_table_next(%d) last_offset_next(%d), ending cluster (%d)\n",
6651 __func__, same_table_next, last_table_next, last_offset_next, cluster_id);
6652 break;
6653 }
6654
6655 if (!same_table_next && !last_table_next && last_offset_next) {
6656 /* We've hit the end of the table */
6657 table_id = ret_next_table;
6658 offset = 0;
6659 }
6660 else if (!same_table_next && last_table_next && last_offset_next) {
6661 /* We've hit the end of the cluster */
6662 break;
6663 }
6664 else if (same_table_next && !last_table_next && last_offset_next) {
6665 if (cluster_id == 0x1 && table_id < 39)
6666 table_id += 1;
6667 else
6668 break;
6669 }
6670 else { /* if (same_table_next && !last_table_next && !last_offset_next) */
6671 /* More data left in the table */
6672 offset = ret_next_index;
6673 }
6674 }
6675
6676 free(data_buf, M_ICE);
6677 return ret_next_cluster;
6678 }
6679
6680 /**
6681 * ice_fw_debug_dump_print_clusters - Print data from FW clusters to sbuf
6682 * @sc: the device softc
6683 * @sbuf: initialized sbuf to print data to
6684 *
6685 * Handles dumping all of the clusters to dump to the indicated sbuf. The
6686 * clusters do dump are determined by the value in the
6687 * fw_debug_dump_cluster_mask field in the sc argument.
6688 *
6689 * @remark Only intended to be used by the sysctl handler
6690 * ice_sysctl_fw_debug_dump_do_dump
6691 */
6692 static void
ice_fw_debug_dump_print_clusters(struct ice_softc * sc,struct sbuf * sbuf)6693 ice_fw_debug_dump_print_clusters(struct ice_softc *sc, struct sbuf *sbuf)
6694 {
6695 u16 next_cluster_id, max_cluster_id, start_cluster_id;
6696 u32 cluster_mask = sc->fw_debug_dump_cluster_mask;
6697 struct ice_hw *hw = &sc->hw;
6698 int bit;
6699
6700 ice_debug(hw, ICE_DBG_DIAG, "%s: Debug Dump running...\n", __func__);
6701
6702 if (ice_is_e830(hw)) {
6703 max_cluster_id = ICE_AQC_DBG_DUMP_CLUSTER_ID_QUEUE_MNG_E830;
6704 start_cluster_id = ICE_AQC_DBG_DUMP_CLUSTER_ID_SW_E830;
6705 } else {
6706 max_cluster_id = ICE_AQC_DBG_DUMP_CLUSTER_ID_QUEUE_MNG_E810;
6707 start_cluster_id = ICE_AQC_DBG_DUMP_CLUSTER_ID_SW_E810;
6708 }
6709
6710 if (cluster_mask != 0) {
6711 for_each_set_bit(bit, &cluster_mask,
6712 sizeof(cluster_mask) * BITS_PER_BYTE) {
6713 ice_fw_debug_dump_print_cluster(sc, sbuf,
6714 bit + start_cluster_id);
6715 }
6716 } else {
6717 next_cluster_id = start_cluster_id;
6718
6719 /* We don't support QUEUE_MNG and FULL_CSR_SPACE */
6720 do {
6721 next_cluster_id =
6722 ice_fw_debug_dump_print_cluster(sc, sbuf, next_cluster_id);
6723 } while ((next_cluster_id != 0) &&
6724 (next_cluster_id < max_cluster_id));
6725 }
6726
6727 }
6728
6729 #define ICE_SYSCTL_HELP_FW_DEBUG_DUMP_DO_DUMP \
6730 "\nWrite 1 to output a FW debug dump containing the clusters specified by the" \
6731 "\n\"clusters\" sysctl." \
6732 "\n" \
6733 "\nThe \"-b\" flag must be used in order to dump this data as binary data because" \
6734 "\nthis data is opaque and not a string."
6735
6736 #define ICE_FW_DUMP_BASE_TEXT_SIZE (1024 * 1024)
6737 #define ICE_FW_DUMP_ALL_TEXT_SIZE (10 * 1024 * 1024)
6738 #define ICE_FW_DUMP_CLUST0_TEXT_SIZE (2 * 1024 * 1024)
6739 #define ICE_FW_DUMP_CLUST1_TEXT_SIZE (128 * 1024)
6740 #define ICE_FW_DUMP_CLUST2_TEXT_SIZE (2 * 1024 * 1024)
6741
6742 /**
6743 * ice_sysctl_fw_debug_dump_do_dump - Dump data from FW to sysctl output
6744 * @oidp: sysctl oid structure
6745 * @arg1: pointer to private data structure
6746 * @arg2: unused
6747 * @req: sysctl request pointer
6748 *
6749 * Sysctl handler for the debug.dump.dump sysctl. Prints out a specially-
6750 * formatted dump of some debug FW data intended to be processed by a special
6751 * Intel tool. Prints out the cluster data specified by the "clusters"
6752 * sysctl.
6753 *
6754 * @remark The actual AQ calls and printing are handled by a helper
6755 * function above.
6756 */
6757 static int
ice_sysctl_fw_debug_dump_do_dump(SYSCTL_HANDLER_ARGS)6758 ice_sysctl_fw_debug_dump_do_dump(SYSCTL_HANDLER_ARGS)
6759 {
6760 struct ice_softc *sc = (struct ice_softc *)arg1;
6761 device_t dev = sc->dev;
6762 struct sbuf *sbuf;
6763 int ret;
6764
6765 UNREFERENCED_PARAMETER(arg2);
6766
6767 ret = priv_check(curthread, PRIV_DRIVER);
6768 if (ret)
6769 return (ret);
6770
6771 if (ice_driver_is_detaching(sc))
6772 return (ESHUTDOWN);
6773
6774 /* If the user hasn't written "1" to this sysctl yet: */
6775 if (!ice_test_state(&sc->state, ICE_STATE_DO_FW_DEBUG_DUMP)) {
6776 /* Avoid output on the first set of reads to this sysctl in
6777 * order to prevent a null byte from being written to the
6778 * end result when called via sysctl(8).
6779 */
6780 if (req->oldptr == NULL && req->newptr == NULL) {
6781 ret = SYSCTL_OUT(req, 0, 0);
6782 return (ret);
6783 }
6784
6785 char input_buf[2] = "";
6786 ret = sysctl_handle_string(oidp, input_buf, sizeof(input_buf), req);
6787 if ((ret) || (req->newptr == NULL))
6788 return (ret);
6789
6790 /* If we get '1', then indicate we'll do a dump in the next
6791 * sysctl read call.
6792 */
6793 if (input_buf[0] == '1') {
6794 if (sc->fw_debug_dump_cluster_mask == ICE_AQC_DBG_DUMP_CLUSTER_ID_INVALID) {
6795 device_printf(dev,
6796 "%s: Debug Dump failed because an invalid cluster was specified.\n",
6797 __func__);
6798 return (EINVAL);
6799 }
6800
6801 ice_set_state(&sc->state, ICE_STATE_DO_FW_DEBUG_DUMP);
6802 return (0);
6803 }
6804
6805 return (EINVAL);
6806 }
6807
6808 /* --- FW debug dump state is set --- */
6809
6810
6811 /* Caller just wants the upper bound for size */
6812 if (req->oldptr == NULL && req->newptr == NULL) {
6813 size_t est_output_len = ICE_FW_DUMP_BASE_TEXT_SIZE;
6814 if (sc->fw_debug_dump_cluster_mask == 0)
6815 est_output_len += ICE_FW_DUMP_ALL_TEXT_SIZE;
6816 else {
6817 if (sc->fw_debug_dump_cluster_mask & 0x1)
6818 est_output_len += ICE_FW_DUMP_CLUST0_TEXT_SIZE;
6819 if (sc->fw_debug_dump_cluster_mask & 0x2)
6820 est_output_len += ICE_FW_DUMP_CLUST1_TEXT_SIZE;
6821 if (sc->fw_debug_dump_cluster_mask & 0x4)
6822 est_output_len += ICE_FW_DUMP_CLUST2_TEXT_SIZE;
6823 }
6824
6825 ret = SYSCTL_OUT(req, 0, est_output_len);
6826 return (ret);
6827 }
6828
6829 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6830 sbuf_clear_flags(sbuf, SBUF_INCLUDENUL);
6831
6832 ice_fw_debug_dump_print_clusters(sc, sbuf);
6833
6834 sbuf_finish(sbuf);
6835 sbuf_delete(sbuf);
6836
6837 ice_clear_state(&sc->state, ICE_STATE_DO_FW_DEBUG_DUMP);
6838 return (ret);
6839 }
6840
6841 /**
6842 * ice_add_debug_sysctls - Add sysctls helpful for debugging the device driver
6843 * @sc: device private structure
6844 *
6845 * Add sysctls related to debugging the device driver. Generally these should
6846 * simply be sysctls which dump internal driver state, to aid in understanding
6847 * what the driver is doing.
6848 */
6849 static void
ice_add_debug_sysctls(struct ice_softc * sc)6850 ice_add_debug_sysctls(struct ice_softc *sc)
6851 {
6852 struct sysctl_oid *sw_node, *dump_node;
6853 struct sysctl_oid_list *debug_list, *sw_list, *dump_list;
6854 device_t dev = sc->dev;
6855
6856 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
6857
6858 debug_list = SYSCTL_CHILDREN(sc->debug_sysctls);
6859
6860 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "request_reset",
6861 ICE_CTLFLAG_DEBUG | CTLTYPE_STRING | CTLFLAG_WR, sc, 0,
6862 ice_sysctl_request_reset, "A",
6863 ICE_SYSCTL_HELP_REQUEST_RESET);
6864
6865 SYSCTL_ADD_U32(ctx, debug_list, OID_AUTO, "pfr_count",
6866 ICE_CTLFLAG_DEBUG | CTLFLAG_RD,
6867 &sc->soft_stats.pfr_count, 0,
6868 "# of PF resets handled");
6869
6870 SYSCTL_ADD_U32(ctx, debug_list, OID_AUTO, "corer_count",
6871 ICE_CTLFLAG_DEBUG | CTLFLAG_RD,
6872 &sc->soft_stats.corer_count, 0,
6873 "# of CORE resets handled");
6874
6875 SYSCTL_ADD_U32(ctx, debug_list, OID_AUTO, "globr_count",
6876 ICE_CTLFLAG_DEBUG | CTLFLAG_RD,
6877 &sc->soft_stats.globr_count, 0,
6878 "# of Global resets handled");
6879
6880 SYSCTL_ADD_U32(ctx, debug_list, OID_AUTO, "empr_count",
6881 ICE_CTLFLAG_DEBUG | CTLFLAG_RD,
6882 &sc->soft_stats.empr_count, 0,
6883 "# of EMP resets handled");
6884
6885 SYSCTL_ADD_U32(ctx, debug_list, OID_AUTO, "tx_mdd_count",
6886 ICE_CTLFLAG_DEBUG | CTLFLAG_RD,
6887 &sc->soft_stats.tx_mdd_count, 0,
6888 "# of Tx MDD events detected");
6889
6890 SYSCTL_ADD_U32(ctx, debug_list, OID_AUTO, "rx_mdd_count",
6891 ICE_CTLFLAG_DEBUG | CTLFLAG_RD,
6892 &sc->soft_stats.rx_mdd_count, 0,
6893 "# of Rx MDD events detected");
6894
6895 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "state",
6896 ICE_CTLFLAG_DEBUG | CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6897 ice_sysctl_dump_state_flags, "A",
6898 "Driver State Flags");
6899
6900 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "set_link",
6901 ICE_CTLFLAG_DEBUG | CTLTYPE_U8 | CTLFLAG_RW, sc, 0,
6902 ice_sysctl_debug_set_link, "CU", "Set link");
6903
6904 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "phy_type_low",
6905 ICE_CTLFLAG_DEBUG | CTLTYPE_U64 | CTLFLAG_RW, sc, 0,
6906 ice_sysctl_phy_type_low, "QU",
6907 "PHY type Low from Get PHY Caps/Set PHY Cfg");
6908
6909 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "phy_type_high",
6910 ICE_CTLFLAG_DEBUG | CTLTYPE_U64 | CTLFLAG_RW, sc, 0,
6911 ice_sysctl_phy_type_high, "QU",
6912 "PHY type High from Get PHY Caps/Set PHY Cfg");
6913
6914 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "phy_sw_caps",
6915 ICE_CTLFLAG_DEBUG | CTLTYPE_STRUCT | CTLFLAG_RD, sc, 0,
6916 ice_sysctl_phy_sw_caps, "",
6917 "Get PHY Capabilities (Software configuration)");
6918
6919 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "phy_nvm_caps",
6920 ICE_CTLFLAG_DEBUG | CTLTYPE_STRUCT | CTLFLAG_RD, sc, 0,
6921 ice_sysctl_phy_nvm_caps, "",
6922 "Get PHY Capabilities (NVM configuration)");
6923
6924 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "phy_topo_caps",
6925 ICE_CTLFLAG_DEBUG | CTLTYPE_STRUCT | CTLFLAG_RD, sc, 0,
6926 ice_sysctl_phy_topo_caps, "",
6927 "Get PHY Capabilities (Topology configuration)");
6928
6929 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "phy_link_status",
6930 ICE_CTLFLAG_DEBUG | CTLTYPE_STRUCT | CTLFLAG_RD, sc, 0,
6931 ice_sysctl_phy_link_status, "",
6932 "Get PHY Link Status");
6933
6934 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "read_i2c_diag_data",
6935 ICE_CTLFLAG_DEBUG | CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6936 ice_sysctl_read_i2c_diag_data, "A",
6937 "Dump selected diagnostic data from FW");
6938
6939 SYSCTL_ADD_U32(ctx, debug_list, OID_AUTO, "fw_build",
6940 ICE_CTLFLAG_DEBUG | CTLFLAG_RD, &sc->hw.fw_build, 0,
6941 "FW Build ID");
6942
6943 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "os_ddp_version",
6944 ICE_CTLFLAG_DEBUG | CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6945 ice_sysctl_os_pkg_version, "A",
6946 "DDP package name and version found in ice_ddp");
6947
6948 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "cur_lldp_persist_status",
6949 ICE_CTLFLAG_DEBUG | CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6950 ice_sysctl_fw_cur_lldp_persist_status, "A",
6951 "Current LLDP persistent status");
6952
6953 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "dflt_lldp_persist_status",
6954 ICE_CTLFLAG_DEBUG | CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6955 ice_sysctl_fw_dflt_lldp_persist_status, "A",
6956 "Default LLDP persistent status");
6957
6958 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "negotiated_fc",
6959 ICE_CTLFLAG_DEBUG | CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6960 ice_sysctl_negotiated_fc, "A",
6961 "Current Negotiated Flow Control mode");
6962
6963 if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_PHY_STATISTICS)) {
6964 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "phy_statistics",
6965 CTLTYPE_STRING | CTLFLAG_RD,
6966 sc, 0, ice_sysctl_dump_phy_stats, "A",
6967 "Dumps PHY statistics from firmware");
6968 }
6969
6970 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "local_dcbx_cfg",
6971 CTLTYPE_STRING | CTLFLAG_RD, sc, ICE_AQ_LLDP_MIB_LOCAL,
6972 ice_sysctl_dump_dcbx_cfg, "A",
6973 "Dumps Local MIB information from firmware");
6974
6975 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "remote_dcbx_cfg",
6976 CTLTYPE_STRING | CTLFLAG_RD, sc, ICE_AQ_LLDP_MIB_REMOTE,
6977 ice_sysctl_dump_dcbx_cfg, "A",
6978 "Dumps Remote MIB information from firmware");
6979
6980 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "pf_vsi_cfg", CTLTYPE_STRING | CTLFLAG_RD,
6981 sc, 0, ice_sysctl_dump_vsi_cfg, "A",
6982 "Dumps Selected PF VSI parameters from firmware");
6983
6984 SYSCTL_ADD_PROC(ctx, debug_list, OID_AUTO, "query_port_ets", CTLTYPE_STRING | CTLFLAG_RD,
6985 sc, 0, ice_sysctl_query_port_ets, "A",
6986 "Prints selected output from Query Port ETS AQ command");
6987
6988 SYSCTL_ADD_U64(ctx, debug_list, OID_AUTO, "rx_length_errors",
6989 CTLFLAG_RD | CTLFLAG_STATS, &sc->stats.cur.rx_len_errors, 0,
6990 "Receive Length Errors (SNAP packets)");
6991
6992 sw_node = SYSCTL_ADD_NODE(ctx, debug_list, OID_AUTO, "switch",
6993 ICE_CTLFLAG_DEBUG | CTLFLAG_RD, NULL,
6994 "Switch Configuration");
6995 sw_list = SYSCTL_CHILDREN(sw_node);
6996
6997 SYSCTL_ADD_PROC(ctx, sw_list, OID_AUTO, "mac_filters",
6998 ICE_CTLFLAG_DEBUG | CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6999 ice_sysctl_dump_mac_filters, "A",
7000 "MAC Filters");
7001
7002 SYSCTL_ADD_PROC(ctx, sw_list, OID_AUTO, "vlan_filters",
7003 ICE_CTLFLAG_DEBUG | CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
7004 ice_sysctl_dump_vlan_filters, "A",
7005 "VLAN Filters");
7006
7007 SYSCTL_ADD_PROC(ctx, sw_list, OID_AUTO, "ethertype_filters",
7008 ICE_CTLFLAG_DEBUG | CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
7009 ice_sysctl_dump_ethertype_filters, "A",
7010 "Ethertype Filters");
7011
7012 SYSCTL_ADD_PROC(ctx, sw_list, OID_AUTO, "ethertype_mac_filters",
7013 ICE_CTLFLAG_DEBUG | CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
7014 ice_sysctl_dump_ethertype_mac_filters, "A",
7015 "Ethertype/MAC Filters");
7016
7017 dump_node = SYSCTL_ADD_NODE(ctx, debug_list, OID_AUTO, "dump",
7018 ICE_CTLFLAG_DEBUG | CTLFLAG_RD, NULL,
7019 "Internal FW Dump");
7020 dump_list = SYSCTL_CHILDREN(dump_node);
7021
7022 SYSCTL_ADD_PROC(ctx, dump_list, OID_AUTO, "clusters",
7023 ICE_CTLFLAG_DEBUG | CTLTYPE_U32 | CTLFLAG_RW, sc, 0,
7024 ice_sysctl_fw_debug_dump_cluster_setting, "SU",
7025 ICE_SYSCTL_HELP_FW_DEBUG_DUMP_CLUSTER_SETTING);
7026
7027 SYSCTL_ADD_PROC(ctx, dump_list, OID_AUTO, "dump",
7028 ICE_CTLFLAG_DEBUG | CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7029 ice_sysctl_fw_debug_dump_do_dump, "",
7030 ICE_SYSCTL_HELP_FW_DEBUG_DUMP_DO_DUMP);
7031 }
7032
7033 /**
7034 * ice_vsi_disable_tx - Disable (unconfigure) Tx queues for a VSI
7035 * @vsi: the VSI to disable
7036 *
7037 * Disables the Tx queues associated with this VSI. Essentially the opposite
7038 * of ice_cfg_vsi_for_tx.
7039 */
7040 int
ice_vsi_disable_tx(struct ice_vsi * vsi)7041 ice_vsi_disable_tx(struct ice_vsi *vsi)
7042 {
7043 struct ice_softc *sc = vsi->sc;
7044 struct ice_hw *hw = &sc->hw;
7045 int status;
7046 u32 *q_teids;
7047 u16 *q_ids, *q_handles;
7048 size_t q_teids_size, q_ids_size, q_handles_size;
7049 int tc, j, buf_idx, err = 0;
7050
7051 if (vsi->num_tx_queues > 255)
7052 return (ENOSYS);
7053
7054 q_teids_size = sizeof(*q_teids) * vsi->num_tx_queues;
7055 q_teids = (u32 *)malloc(q_teids_size, M_ICE, M_NOWAIT|M_ZERO);
7056 if (!q_teids)
7057 return (ENOMEM);
7058
7059 q_ids_size = sizeof(*q_ids) * vsi->num_tx_queues;
7060 q_ids = (u16 *)malloc(q_ids_size, M_ICE, M_NOWAIT|M_ZERO);
7061 if (!q_ids) {
7062 err = (ENOMEM);
7063 goto free_q_teids;
7064 }
7065
7066 q_handles_size = sizeof(*q_handles) * vsi->num_tx_queues;
7067 q_handles = (u16 *)malloc(q_handles_size, M_ICE, M_NOWAIT|M_ZERO);
7068 if (!q_handles) {
7069 err = (ENOMEM);
7070 goto free_q_ids;
7071 }
7072
7073 ice_for_each_traffic_class(tc) {
7074 struct ice_tc_info *tc_info = &vsi->tc_info[tc];
7075 u16 start_idx, end_idx;
7076
7077 /* Skip rest of disabled TCs once the first
7078 * disabled TC is found */
7079 if (!(vsi->tc_map & BIT(tc)))
7080 break;
7081
7082 /* Fill out TX queue information for this TC */
7083 start_idx = tc_info->qoffset;
7084 end_idx = start_idx + tc_info->qcount_tx;
7085 buf_idx = 0;
7086 for (j = start_idx; j < end_idx; j++) {
7087 struct ice_tx_queue *txq = &vsi->tx_queues[j];
7088
7089 q_ids[buf_idx] = vsi->tx_qmap[j];
7090 q_handles[buf_idx] = txq->q_handle;
7091 q_teids[buf_idx] = txq->q_teid;
7092 buf_idx++;
7093 }
7094
7095 status = ice_dis_vsi_txq(hw->port_info, vsi->idx, tc, buf_idx,
7096 q_handles, q_ids, q_teids, ICE_NO_RESET, 0, NULL);
7097 if (status == ICE_ERR_DOES_NOT_EXIST) {
7098 ; /* Queues have already been disabled, no need to report this as an error */
7099 } else if (status == ICE_ERR_RESET_ONGOING) {
7100 device_printf(sc->dev,
7101 "Reset in progress. LAN Tx queues already disabled\n");
7102 break;
7103 } else if (status) {
7104 device_printf(sc->dev,
7105 "Failed to disable LAN Tx queues: err %s aq_err %s\n",
7106 ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
7107 err = (ENODEV);
7108 break;
7109 }
7110
7111 /* Clear buffers */
7112 memset(q_teids, 0, q_teids_size);
7113 memset(q_ids, 0, q_ids_size);
7114 memset(q_handles, 0, q_handles_size);
7115 }
7116
7117 /* free_q_handles: */
7118 free(q_handles, M_ICE);
7119 free_q_ids:
7120 free(q_ids, M_ICE);
7121 free_q_teids:
7122 free(q_teids, M_ICE);
7123
7124 return err;
7125 }
7126
7127 /**
7128 * ice_vsi_set_rss_params - Set the RSS parameters for the VSI
7129 * @vsi: the VSI to configure
7130 *
7131 * Sets the RSS table size and lookup table type for the VSI based on its
7132 * VSI type.
7133 */
7134 static void
ice_vsi_set_rss_params(struct ice_vsi * vsi)7135 ice_vsi_set_rss_params(struct ice_vsi *vsi)
7136 {
7137 struct ice_softc *sc = vsi->sc;
7138 struct ice_hw_common_caps *cap;
7139
7140 cap = &sc->hw.func_caps.common_cap;
7141
7142 switch (vsi->type) {
7143 case ICE_VSI_PF:
7144 /* The PF VSI inherits RSS instance of the PF */
7145 vsi->rss_table_size = cap->rss_table_size;
7146 vsi->rss_lut_type = ICE_LUT_PF;
7147 break;
7148 case ICE_VSI_VF:
7149 case ICE_VSI_VMDQ2:
7150 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
7151 vsi->rss_lut_type = ICE_LUT_VSI;
7152 break;
7153 default:
7154 device_printf(sc->dev,
7155 "VSI %d: RSS not supported for VSI type %d\n",
7156 vsi->idx, vsi->type);
7157 break;
7158 }
7159 }
7160
7161 /**
7162 * ice_vsi_add_txqs_ctx - Create a sysctl context and node to store txq sysctls
7163 * @vsi: The VSI to add the context for
7164 *
7165 * Creates a sysctl context for storing txq sysctls. Additionally creates
7166 * a node rooted at the given VSI's main sysctl node. This context will be
7167 * used to store per-txq sysctls which may need to be released during the
7168 * driver's lifetime.
7169 */
7170 void
ice_vsi_add_txqs_ctx(struct ice_vsi * vsi)7171 ice_vsi_add_txqs_ctx(struct ice_vsi *vsi)
7172 {
7173 struct sysctl_oid_list *vsi_list;
7174
7175 sysctl_ctx_init(&vsi->txqs_ctx);
7176
7177 vsi_list = SYSCTL_CHILDREN(vsi->vsi_node);
7178
7179 vsi->txqs_node = SYSCTL_ADD_NODE(&vsi->txqs_ctx, vsi_list, OID_AUTO, "txqs",
7180 CTLFLAG_RD, NULL, "Tx Queues");
7181 }
7182
7183 /**
7184 * ice_vsi_add_rxqs_ctx - Create a sysctl context and node to store rxq sysctls
7185 * @vsi: The VSI to add the context for
7186 *
7187 * Creates a sysctl context for storing rxq sysctls. Additionally creates
7188 * a node rooted at the given VSI's main sysctl node. This context will be
7189 * used to store per-rxq sysctls which may need to be released during the
7190 * driver's lifetime.
7191 */
7192 void
ice_vsi_add_rxqs_ctx(struct ice_vsi * vsi)7193 ice_vsi_add_rxqs_ctx(struct ice_vsi *vsi)
7194 {
7195 struct sysctl_oid_list *vsi_list;
7196
7197 sysctl_ctx_init(&vsi->rxqs_ctx);
7198
7199 vsi_list = SYSCTL_CHILDREN(vsi->vsi_node);
7200
7201 vsi->rxqs_node = SYSCTL_ADD_NODE(&vsi->rxqs_ctx, vsi_list, OID_AUTO, "rxqs",
7202 CTLFLAG_RD, NULL, "Rx Queues");
7203 }
7204
7205 /**
7206 * ice_vsi_del_txqs_ctx - Delete the Tx queue sysctl context for this VSI
7207 * @vsi: The VSI to delete from
7208 *
7209 * Frees the txq sysctl context created for storing the per-queue Tx sysctls.
7210 * Must be called prior to freeing the Tx queue memory, in order to avoid
7211 * having sysctls point at stale memory.
7212 */
7213 void
ice_vsi_del_txqs_ctx(struct ice_vsi * vsi)7214 ice_vsi_del_txqs_ctx(struct ice_vsi *vsi)
7215 {
7216 device_t dev = vsi->sc->dev;
7217 int err;
7218
7219 if (vsi->txqs_node) {
7220 err = sysctl_ctx_free(&vsi->txqs_ctx);
7221 if (err)
7222 device_printf(dev, "failed to free VSI %d txqs_ctx, err %s\n",
7223 vsi->idx, ice_err_str(err));
7224 vsi->txqs_node = NULL;
7225 }
7226 }
7227
7228 /**
7229 * ice_vsi_del_rxqs_ctx - Delete the Rx queue sysctl context for this VSI
7230 * @vsi: The VSI to delete from
7231 *
7232 * Frees the rxq sysctl context created for storing the per-queue Rx sysctls.
7233 * Must be called prior to freeing the Rx queue memory, in order to avoid
7234 * having sysctls point at stale memory.
7235 */
7236 void
ice_vsi_del_rxqs_ctx(struct ice_vsi * vsi)7237 ice_vsi_del_rxqs_ctx(struct ice_vsi *vsi)
7238 {
7239 device_t dev = vsi->sc->dev;
7240 int err;
7241
7242 if (vsi->rxqs_node) {
7243 err = sysctl_ctx_free(&vsi->rxqs_ctx);
7244 if (err)
7245 device_printf(dev, "failed to free VSI %d rxqs_ctx, err %s\n",
7246 vsi->idx, ice_err_str(err));
7247 vsi->rxqs_node = NULL;
7248 }
7249 }
7250
7251 /**
7252 * ice_add_txq_sysctls - Add per-queue sysctls for a Tx queue
7253 * @txq: pointer to the Tx queue
7254 *
7255 * Add per-queue sysctls for a given Tx queue. Can't be called during
7256 * ice_add_vsi_sysctls, since the queue memory has not yet been setup.
7257 */
7258 void
ice_add_txq_sysctls(struct ice_tx_queue * txq)7259 ice_add_txq_sysctls(struct ice_tx_queue *txq)
7260 {
7261 struct ice_vsi *vsi = txq->vsi;
7262 struct sysctl_ctx_list *ctx = &vsi->txqs_ctx;
7263 struct sysctl_oid_list *txqs_list, *this_txq_list;
7264 struct sysctl_oid *txq_node;
7265 char txq_name[32], txq_desc[32];
7266
7267 const struct ice_sysctl_info ctls[] = {
7268 { &txq->stats.tx_packets, "tx_packets", "Queue Packets Transmitted" },
7269 { &txq->stats.tx_bytes, "tx_bytes", "Queue Bytes Transmitted" },
7270 { &txq->stats.mss_too_small, "mss_too_small", "TSO sends with an MSS less than 64" },
7271 { &txq->stats.tso, "tso", "TSO packets" },
7272 { 0, 0, 0 }
7273 };
7274
7275 const struct ice_sysctl_info *entry = ctls;
7276
7277 txqs_list = SYSCTL_CHILDREN(vsi->txqs_node);
7278
7279 snprintf(txq_name, sizeof(txq_name), "%u", txq->me);
7280 snprintf(txq_desc, sizeof(txq_desc), "Tx Queue %u", txq->me);
7281 txq_node = SYSCTL_ADD_NODE(ctx, txqs_list, OID_AUTO, txq_name,
7282 CTLFLAG_RD, NULL, txq_desc);
7283 this_txq_list = SYSCTL_CHILDREN(txq_node);
7284
7285 /* Add the Tx queue statistics */
7286 while (entry->stat != 0) {
7287 SYSCTL_ADD_U64(ctx, this_txq_list, OID_AUTO, entry->name,
7288 CTLFLAG_RD | CTLFLAG_STATS, entry->stat, 0,
7289 entry->description);
7290 entry++;
7291 }
7292
7293 SYSCTL_ADD_U8(ctx, this_txq_list, OID_AUTO, "tc",
7294 CTLFLAG_RD, &txq->tc, 0,
7295 "Traffic Class that Queue belongs to");
7296 }
7297
7298 /**
7299 * ice_add_rxq_sysctls - Add per-queue sysctls for an Rx queue
7300 * @rxq: pointer to the Rx queue
7301 *
7302 * Add per-queue sysctls for a given Rx queue. Can't be called during
7303 * ice_add_vsi_sysctls, since the queue memory has not yet been setup.
7304 */
7305 void
ice_add_rxq_sysctls(struct ice_rx_queue * rxq)7306 ice_add_rxq_sysctls(struct ice_rx_queue *rxq)
7307 {
7308 struct ice_vsi *vsi = rxq->vsi;
7309 struct sysctl_ctx_list *ctx = &vsi->rxqs_ctx;
7310 struct sysctl_oid_list *rxqs_list, *this_rxq_list;
7311 struct sysctl_oid *rxq_node;
7312 char rxq_name[32], rxq_desc[32];
7313
7314 const struct ice_sysctl_info ctls[] = {
7315 { &rxq->stats.rx_packets, "rx_packets", "Queue Packets Received" },
7316 { &rxq->stats.rx_bytes, "rx_bytes", "Queue Bytes Received" },
7317 { &rxq->stats.desc_errs, "rx_desc_errs", "Queue Rx Descriptor Errors" },
7318 { 0, 0, 0 }
7319 };
7320
7321 const struct ice_sysctl_info *entry = ctls;
7322
7323 rxqs_list = SYSCTL_CHILDREN(vsi->rxqs_node);
7324
7325 snprintf(rxq_name, sizeof(rxq_name), "%u", rxq->me);
7326 snprintf(rxq_desc, sizeof(rxq_desc), "Rx Queue %u", rxq->me);
7327 rxq_node = SYSCTL_ADD_NODE(ctx, rxqs_list, OID_AUTO, rxq_name,
7328 CTLFLAG_RD, NULL, rxq_desc);
7329 this_rxq_list = SYSCTL_CHILDREN(rxq_node);
7330
7331 /* Add the Rx queue statistics */
7332 while (entry->stat != 0) {
7333 SYSCTL_ADD_U64(ctx, this_rxq_list, OID_AUTO, entry->name,
7334 CTLFLAG_RD | CTLFLAG_STATS, entry->stat, 0,
7335 entry->description);
7336 entry++;
7337 }
7338
7339 SYSCTL_ADD_U8(ctx, this_rxq_list, OID_AUTO, "tc",
7340 CTLFLAG_RD, &rxq->tc, 0,
7341 "Traffic Class that Queue belongs to");
7342 }
7343
7344 /**
7345 * ice_get_default_rss_key - Obtain a default RSS key
7346 * @seed: storage for the RSS key data
7347 *
7348 * Copies a pre-generated RSS key into the seed memory. The seed pointer must
7349 * point to a block of memory that is at least 40 bytes in size.
7350 *
7351 * The key isn't randomly generated each time this function is called because
7352 * that makes the RSS key change every time we reconfigure RSS. This does mean
7353 * that we're hard coding a possibly 'well known' key. We might want to
7354 * investigate randomly generating this key once during the first call.
7355 */
7356 static void
ice_get_default_rss_key(u8 * seed)7357 ice_get_default_rss_key(u8 *seed)
7358 {
7359 const u8 default_seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE] = {
7360 0x39, 0xed, 0xff, 0x4d, 0x43, 0x58, 0x42, 0xc3, 0x5f, 0xb8,
7361 0xa5, 0x32, 0x95, 0x65, 0x81, 0xcd, 0x36, 0x79, 0x71, 0x97,
7362 0xde, 0xa4, 0x41, 0x40, 0x6f, 0x27, 0xe9, 0x81, 0x13, 0xa0,
7363 0x95, 0x93, 0x5b, 0x1e, 0x9d, 0x27, 0x9d, 0x24, 0x84, 0xb5,
7364 };
7365
7366 bcopy(default_seed, seed, ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
7367 }
7368
7369 /**
7370 * ice_set_rss_key - Configure a given VSI with the default RSS key
7371 * @vsi: the VSI to configure
7372 *
7373 * Program the hardware RSS key. We use rss_getkey to grab the kernel RSS key.
7374 * If the kernel RSS interface is not available, this will fall back to our
7375 * pre-generated hash seed from ice_get_default_rss_key().
7376 */
7377 static int
ice_set_rss_key(struct ice_vsi * vsi)7378 ice_set_rss_key(struct ice_vsi *vsi)
7379 {
7380 struct ice_aqc_get_set_rss_keys keydata = { .standard_rss_key = {0} };
7381 struct ice_softc *sc = vsi->sc;
7382 struct ice_hw *hw = &sc->hw;
7383 int status;
7384
7385 /*
7386 * If the RSS kernel interface is disabled, this will return the
7387 * default RSS key above.
7388 */
7389 rss_getkey(keydata.standard_rss_key);
7390
7391 status = ice_aq_set_rss_key(hw, vsi->idx, &keydata);
7392 if (status) {
7393 device_printf(sc->dev,
7394 "ice_aq_set_rss_key status %s, error %s\n",
7395 ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
7396 return (EIO);
7397 }
7398
7399 return (0);
7400 }
7401
7402 /**
7403 * ice_set_rss_flow_flds - Program the RSS hash flows after package init
7404 * @vsi: the VSI to configure
7405 *
7406 * If the package file is initialized, the default RSS flows are reset. We
7407 * need to reprogram the expected hash configuration. We'll use
7408 * rss_gethashconfig() to determine which flows to enable. If RSS kernel
7409 * support is not enabled, this macro will fall back to suitable defaults.
7410 */
7411 static void
ice_set_rss_flow_flds(struct ice_vsi * vsi)7412 ice_set_rss_flow_flds(struct ice_vsi *vsi)
7413 {
7414 struct ice_softc *sc = vsi->sc;
7415 struct ice_hw *hw = &sc->hw;
7416 struct ice_rss_hash_cfg rss_cfg = { 0, 0, ICE_RSS_ANY_HEADERS, false };
7417 device_t dev = sc->dev;
7418 int status;
7419 u_int rss_hash_config;
7420
7421 rss_hash_config = rss_gethashconfig();
7422
7423 if (rss_hash_config & RSS_HASHTYPE_RSS_IPV4) {
7424 rss_cfg.addl_hdrs = ICE_FLOW_SEG_HDR_IPV4;
7425 rss_cfg.hash_flds = ICE_FLOW_HASH_IPV4;
7426 status = ice_add_rss_cfg(hw, vsi->idx, &rss_cfg);
7427 if (status)
7428 device_printf(dev,
7429 "ice_add_rss_cfg on VSI %d failed for ipv4 flow, err %s aq_err %s\n",
7430 vsi->idx, ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
7431 }
7432 if (rss_hash_config & RSS_HASHTYPE_RSS_TCP_IPV4) {
7433 rss_cfg.addl_hdrs = ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_TCP;
7434 rss_cfg.hash_flds = ICE_HASH_TCP_IPV4;
7435 status = ice_add_rss_cfg(hw, vsi->idx, &rss_cfg);
7436 if (status)
7437 device_printf(dev,
7438 "ice_add_rss_cfg on VSI %d failed for tcp4 flow, err %s aq_err %s\n",
7439 vsi->idx, ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
7440 }
7441 if (rss_hash_config & RSS_HASHTYPE_RSS_UDP_IPV4) {
7442 rss_cfg.addl_hdrs = ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_UDP;
7443 rss_cfg.hash_flds = ICE_HASH_UDP_IPV4;
7444 status = ice_add_rss_cfg(hw, vsi->idx, &rss_cfg);
7445 if (status)
7446 device_printf(dev,
7447 "ice_add_rss_cfg on VSI %d failed for udp4 flow, err %s aq_err %s\n",
7448 vsi->idx, ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
7449 }
7450 if (rss_hash_config & (RSS_HASHTYPE_RSS_IPV6 | RSS_HASHTYPE_RSS_IPV6_EX)) {
7451 rss_cfg.addl_hdrs = ICE_FLOW_SEG_HDR_IPV6;
7452 rss_cfg.hash_flds = ICE_FLOW_HASH_IPV6;
7453 status = ice_add_rss_cfg(hw, vsi->idx, &rss_cfg);
7454 if (status)
7455 device_printf(dev,
7456 "ice_add_rss_cfg on VSI %d failed for ipv6 flow, err %s aq_err %s\n",
7457 vsi->idx, ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
7458 }
7459 if (rss_hash_config & RSS_HASHTYPE_RSS_TCP_IPV6) {
7460 rss_cfg.addl_hdrs = ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_TCP;
7461 rss_cfg.hash_flds = ICE_HASH_TCP_IPV6;
7462 status = ice_add_rss_cfg(hw, vsi->idx, &rss_cfg);
7463 if (status)
7464 device_printf(dev,
7465 "ice_add_rss_cfg on VSI %d failed for tcp6 flow, err %s aq_err %s\n",
7466 vsi->idx, ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
7467 }
7468 if (rss_hash_config & RSS_HASHTYPE_RSS_UDP_IPV6) {
7469 rss_cfg.addl_hdrs = ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_UDP;
7470 rss_cfg.hash_flds = ICE_HASH_UDP_IPV6;
7471 status = ice_add_rss_cfg(hw, vsi->idx, &rss_cfg);
7472 if (status)
7473 device_printf(dev,
7474 "ice_add_rss_cfg on VSI %d failed for udp6 flow, err %s aq_err %s\n",
7475 vsi->idx, ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
7476 }
7477
7478 /* Warn about RSS hash types which are not supported */
7479 /* coverity[dead_error_condition] */
7480 if (rss_hash_config & ~ICE_DEFAULT_RSS_HASH_CONFIG) {
7481 device_printf(dev,
7482 "ice_add_rss_cfg on VSI %d could not configure every requested hash type\n",
7483 vsi->idx);
7484 }
7485 }
7486
7487 /**
7488 * ice_set_rss_lut - Program the RSS lookup table for a VSI
7489 * @vsi: the VSI to configure
7490 *
7491 * Programs the RSS lookup table for a given VSI. We use
7492 * rss_get_indirection_to_bucket which will use the indirection table provided
7493 * by the kernel RSS interface when available. If the kernel RSS interface is
7494 * not available, we will fall back to a simple round-robin fashion queue
7495 * assignment.
7496 */
7497 static int
ice_set_rss_lut(struct ice_vsi * vsi)7498 ice_set_rss_lut(struct ice_vsi *vsi)
7499 {
7500 struct ice_softc *sc = vsi->sc;
7501 struct ice_hw *hw = &sc->hw;
7502 device_t dev = sc->dev;
7503 struct ice_aq_get_set_rss_lut_params lut_params;
7504 int status;
7505 int i, err = 0;
7506 u8 *lut;
7507
7508 lut = (u8 *)malloc(vsi->rss_table_size, M_ICE, M_NOWAIT|M_ZERO);
7509 if (!lut) {
7510 device_printf(dev, "Failed to allocate RSS lut memory\n");
7511 return (ENOMEM);
7512 }
7513
7514 /* Populate the LUT with max no. of queues. If the RSS kernel
7515 * interface is disabled, this will assign the lookup table in
7516 * a simple round robin fashion
7517 */
7518 for (i = 0; i < vsi->rss_table_size; i++) {
7519 /* XXX: this needs to be changed if num_rx_queues ever counts
7520 * more than just the RSS queues */
7521 lut[i] = rss_get_indirection_to_bucket(i) % vsi->num_rx_queues;
7522 }
7523
7524 lut_params.vsi_handle = vsi->idx;
7525 lut_params.lut_size = vsi->rss_table_size;
7526 lut_params.lut_type = vsi->rss_lut_type;
7527 lut_params.lut = lut;
7528 lut_params.global_lut_id = 0;
7529 status = ice_aq_set_rss_lut(hw, &lut_params);
7530 if (status) {
7531 device_printf(dev,
7532 "Cannot set RSS lut, err %s aq_err %s\n",
7533 ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
7534 err = (EIO);
7535 }
7536
7537 free(lut, M_ICE);
7538 return err;
7539 }
7540
7541 /**
7542 * ice_config_rss - Configure RSS for a VSI
7543 * @vsi: the VSI to configure
7544 *
7545 * If FEATURE_RSS is enabled, configures the RSS lookup table and hash key for
7546 * a given VSI.
7547 */
7548 int
ice_config_rss(struct ice_vsi * vsi)7549 ice_config_rss(struct ice_vsi *vsi)
7550 {
7551 int err;
7552
7553 /* Nothing to do, if RSS is not enabled */
7554 if (!ice_is_bit_set(vsi->sc->feat_en, ICE_FEATURE_RSS))
7555 return 0;
7556
7557 err = ice_set_rss_key(vsi);
7558 if (err)
7559 return err;
7560
7561 ice_set_rss_flow_flds(vsi);
7562
7563 return ice_set_rss_lut(vsi);
7564 }
7565
7566 /**
7567 * ice_log_pkg_init - Log a message about status of DDP initialization
7568 * @sc: the device softc pointer
7569 * @pkg_status: the status result of ice_copy_and_init_pkg
7570 *
7571 * Called by ice_load_pkg after an attempt to download the DDP package
7572 * contents to the device to log an appropriate message for the system
7573 * administrator about download status.
7574 *
7575 * @post ice_is_init_pkg_successful function is used to determine
7576 * whether the download was successful and DDP package is compatible
7577 * with this driver. Otherwise driver will transition to Safe Mode.
7578 */
7579 void
ice_log_pkg_init(struct ice_softc * sc,enum ice_ddp_state pkg_status)7580 ice_log_pkg_init(struct ice_softc *sc, enum ice_ddp_state pkg_status)
7581 {
7582 struct ice_hw *hw = &sc->hw;
7583 device_t dev = sc->dev;
7584 struct sbuf *active_pkg, *os_pkg;
7585
7586 active_pkg = sbuf_new_auto();
7587 ice_active_pkg_version_str(hw, active_pkg);
7588 sbuf_finish(active_pkg);
7589
7590 os_pkg = sbuf_new_auto();
7591 ice_os_pkg_version_str(hw, os_pkg);
7592 sbuf_finish(os_pkg);
7593
7594 switch (pkg_status) {
7595 case ICE_DDP_PKG_SUCCESS:
7596 device_printf(dev,
7597 "The DDP package was successfully loaded: %s.\n",
7598 sbuf_data(active_pkg));
7599 break;
7600 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
7601 case ICE_DDP_PKG_ALREADY_LOADED:
7602 device_printf(dev,
7603 "DDP package already present on device: %s.\n",
7604 sbuf_data(active_pkg));
7605 break;
7606 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
7607 device_printf(dev,
7608 "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package %s. The ice_ddp module has package: %s.\n",
7609 sbuf_data(active_pkg),
7610 sbuf_data(os_pkg));
7611 break;
7612 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
7613 device_printf(dev,
7614 "The device has a DDP package that is higher than the driver supports. The device has package %s. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
7615 sbuf_data(active_pkg),
7616 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
7617 break;
7618 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
7619 device_printf(dev,
7620 "The device has a DDP package that is lower than the driver supports. The device has package %s. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
7621 sbuf_data(active_pkg),
7622 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
7623 break;
7624 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
7625 /*
7626 * This assumes that the active_pkg_ver will not be
7627 * initialized if the ice_ddp package version is not
7628 * supported.
7629 */
7630 if (pkg_ver_empty(&hw->active_pkg_ver, hw->active_pkg_name)) {
7631 /* The ice_ddp version is not supported */
7632 if (pkg_ver_compatible(&hw->pkg_ver) > 0) {
7633 device_printf(dev,
7634 "The DDP package in the ice_ddp module is higher than the driver supports. The ice_ddp module has package %s. The driver requires version %d.%d.x.x. Please use an updated driver. Entering Safe Mode.\n",
7635 sbuf_data(os_pkg),
7636 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
7637 } else if (pkg_ver_compatible(&hw->pkg_ver) < 0) {
7638 device_printf(dev,
7639 "The DDP package in the ice_ddp module is lower than the driver supports. The ice_ddp module has package %s. The driver requires version %d.%d.x.x. Please use an updated ice_ddp module. Entering Safe Mode.\n",
7640 sbuf_data(os_pkg),
7641 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
7642 } else {
7643 device_printf(dev,
7644 "An unknown error occurred when loading the DDP package. The ice_ddp module has package %s. The device has package %s. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
7645 sbuf_data(os_pkg),
7646 sbuf_data(active_pkg),
7647 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
7648 }
7649 } else {
7650 if (pkg_ver_compatible(&hw->active_pkg_ver) > 0) {
7651 device_printf(dev,
7652 "The device has a DDP package that is higher than the driver supports. The device has package %s. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
7653 sbuf_data(active_pkg),
7654 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
7655 } else if (pkg_ver_compatible(&hw->active_pkg_ver) < 0) {
7656 device_printf(dev,
7657 "The device has a DDP package that is lower than the driver supports. The device has package %s. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
7658 sbuf_data(active_pkg),
7659 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
7660 } else {
7661 device_printf(dev,
7662 "An unknown error occurred when loading the DDP package. The ice_ddp module has package %s. The device has package %s. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
7663 sbuf_data(os_pkg),
7664 sbuf_data(active_pkg),
7665 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
7666 }
7667 }
7668 break;
7669 case ICE_DDP_PKG_INVALID_FILE:
7670 device_printf(dev,
7671 "The DDP package in the ice_ddp module is invalid. Entering Safe Mode\n");
7672 break;
7673 case ICE_DDP_PKG_FW_MISMATCH:
7674 device_printf(dev,
7675 "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
7676 break;
7677 case ICE_DDP_PKG_NO_SEC_MANIFEST:
7678 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
7679 device_printf(dev,
7680 "The DDP package in the ice_ddp module cannot be loaded because its signature is not valid. Please use a valid ice_ddp module. Entering Safe Mode.\n");
7681 break;
7682 case ICE_DDP_PKG_SECURE_VERSION_NBR_TOO_LOW:
7683 device_printf(dev,
7684 "The DDP package in the ice_ddp module could not be loaded because its security revision is too low. Please use an updated ice_ddp module. Entering Safe Mode.\n");
7685 break;
7686 case ICE_DDP_PKG_MANIFEST_INVALID:
7687 case ICE_DDP_PKG_BUFFER_INVALID:
7688 device_printf(dev,
7689 "An error occurred on the device while loading the DDP package. Entering Safe Mode.\n");
7690 break;
7691 default:
7692 device_printf(dev,
7693 "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
7694 break;
7695 }
7696
7697 sbuf_delete(active_pkg);
7698 sbuf_delete(os_pkg);
7699 }
7700
7701 /**
7702 * ice_load_pkg_file - Load the DDP package file using firmware_get
7703 * @sc: device private softc
7704 *
7705 * Use firmware_get to load the DDP package memory and then request that
7706 * firmware download the package contents and program the relevant hardware
7707 * bits.
7708 *
7709 * This function makes a copy of the DDP package memory which is tracked in
7710 * the ice_hw structure. The copy will be managed and released by
7711 * ice_deinit_hw(). This allows the firmware reference to be immediately
7712 * released using firmware_put.
7713 */
7714 int
ice_load_pkg_file(struct ice_softc * sc)7715 ice_load_pkg_file(struct ice_softc *sc)
7716 {
7717 struct ice_hw *hw = &sc->hw;
7718 device_t dev = sc->dev;
7719 enum ice_ddp_state state;
7720 const struct firmware *pkg;
7721 int status = 0;
7722 u8 cached_layer_count;
7723 u8 *buf_copy;
7724
7725 pkg = firmware_get("ice_ddp");
7726 if (!pkg) {
7727 device_printf(dev,
7728 "The DDP package module (ice_ddp) failed to load or could not be found. Entering Safe Mode.\n");
7729 if (cold)
7730 device_printf(dev,
7731 "The DDP package module cannot be automatically loaded while booting. You may want to specify ice_ddp_load=\"YES\" in your loader.conf\n");
7732 status = ICE_ERR_CFG;
7733 goto err_load_pkg;
7734 }
7735
7736 /* Check for topology change */
7737 if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_TX_BALANCE)) {
7738 cached_layer_count = hw->num_tx_sched_layers;
7739 buf_copy = (u8 *)malloc(pkg->datasize, M_ICE, M_NOWAIT);
7740 if (buf_copy == NULL)
7741 return ICE_ERR_NO_MEMORY;
7742 memcpy(buf_copy, pkg->data, pkg->datasize);
7743 status = ice_cfg_tx_topo(&sc->hw, buf_copy, pkg->datasize);
7744 free(buf_copy, M_ICE);
7745 /* Success indicates a change was made */
7746 if (!status) {
7747 /* 9 -> 5 */
7748 if (cached_layer_count == 9)
7749 device_printf(dev,
7750 "Transmit balancing feature enabled\n");
7751 else
7752 device_printf(dev,
7753 "Transmit balancing feature disabled\n");
7754 ice_set_bit(ICE_FEATURE_TX_BALANCE, sc->feat_en);
7755 return (status);
7756 } else if (status == ICE_ERR_CFG) {
7757 /* Status is ICE_ERR_CFG when DDP does not support transmit balancing */
7758 device_printf(dev,
7759 "DDP package does not support transmit balancing feature - please update to the latest DDP package and try again\n");
7760 } else if (status == ICE_ERR_ALREADY_EXISTS) {
7761 /* Requested config already loaded */
7762 } else if (status == ICE_ERR_AQ_ERROR) {
7763 device_printf(dev,
7764 "Error configuring transmit balancing: %s\n",
7765 ice_status_str(status));
7766 }
7767 }
7768
7769 /* Copy and download the pkg contents */
7770 state = ice_copy_and_init_pkg(hw, (const u8 *)pkg->data, pkg->datasize);
7771
7772 /* Release the firmware reference */
7773 firmware_put(pkg, FIRMWARE_UNLOAD);
7774
7775 /* Check the active DDP package version and log a message */
7776 ice_log_pkg_init(sc, state);
7777
7778 /* Place the driver into safe mode */
7779 if (ice_is_init_pkg_successful(state))
7780 return (ICE_ERR_ALREADY_EXISTS);
7781
7782 err_load_pkg:
7783 ice_zero_bitmap(sc->feat_cap, ICE_FEATURE_COUNT);
7784 ice_zero_bitmap(sc->feat_en, ICE_FEATURE_COUNT);
7785 ice_set_bit(ICE_FEATURE_SAFE_MODE, sc->feat_cap);
7786 ice_set_bit(ICE_FEATURE_SAFE_MODE, sc->feat_en);
7787
7788 return (status);
7789 }
7790
7791 /**
7792 * ice_get_ifnet_counter - Retrieve counter value for a given ifnet counter
7793 * @vsi: the vsi to retrieve the value for
7794 * @counter: the counter type to retrieve
7795 *
7796 * Returns the value for a given ifnet counter. To do so, we calculate the
7797 * value based on the matching hardware statistics.
7798 */
7799 uint64_t
ice_get_ifnet_counter(struct ice_vsi * vsi,ift_counter counter)7800 ice_get_ifnet_counter(struct ice_vsi *vsi, ift_counter counter)
7801 {
7802 struct ice_hw_port_stats *hs = &vsi->sc->stats.cur;
7803 struct ice_eth_stats *es = &vsi->hw_stats.cur;
7804
7805 /* For some statistics, especially those related to error flows, we do
7806 * not have per-VSI counters. In this case, we just report the global
7807 * counters.
7808 */
7809
7810 switch (counter) {
7811 case IFCOUNTER_IPACKETS:
7812 return (es->rx_unicast + es->rx_multicast + es->rx_broadcast);
7813 case IFCOUNTER_IERRORS:
7814 return (hs->crc_errors + hs->illegal_bytes +
7815 hs->mac_local_faults + hs->mac_remote_faults +
7816 hs->rx_undersize + hs->rx_oversize + hs->rx_fragments +
7817 hs->rx_jabber);
7818 case IFCOUNTER_OPACKETS:
7819 return (es->tx_unicast + es->tx_multicast + es->tx_broadcast);
7820 case IFCOUNTER_OERRORS:
7821 return (if_get_counter_default(vsi->sc->ifp, counter) +
7822 es->tx_errors);
7823 case IFCOUNTER_COLLISIONS:
7824 return (0);
7825 case IFCOUNTER_IBYTES:
7826 return (es->rx_bytes);
7827 case IFCOUNTER_OBYTES:
7828 return (es->tx_bytes);
7829 case IFCOUNTER_IMCASTS:
7830 return (es->rx_multicast);
7831 case IFCOUNTER_OMCASTS:
7832 return (es->tx_multicast);
7833 case IFCOUNTER_IQDROPS:
7834 return (es->rx_discards);
7835 case IFCOUNTER_OQDROPS:
7836 return (if_get_counter_default(vsi->sc->ifp, counter) +
7837 hs->tx_dropped_link_down);
7838 case IFCOUNTER_NOPROTO:
7839 return (es->rx_unknown_protocol);
7840 default:
7841 return if_get_counter_default(vsi->sc->ifp, counter);
7842 }
7843 }
7844
7845 /**
7846 * ice_save_pci_info - Save PCI configuration fields in HW struct
7847 * @hw: the ice_hw struct to save the PCI information in
7848 * @dev: the device to get the PCI information from
7849 *
7850 * This should only be called once, early in the device attach
7851 * process.
7852 */
7853 void
ice_save_pci_info(struct ice_hw * hw,device_t dev)7854 ice_save_pci_info(struct ice_hw *hw, device_t dev)
7855 {
7856 hw->vendor_id = pci_get_vendor(dev);
7857 hw->device_id = pci_get_device(dev);
7858 hw->subsystem_vendor_id = pci_get_subvendor(dev);
7859 hw->subsystem_device_id = pci_get_subdevice(dev);
7860 hw->revision_id = pci_get_revid(dev);
7861 hw->bus.device = pci_get_slot(dev);
7862 hw->bus.func = pci_get_function(dev);
7863 }
7864
7865 /**
7866 * ice_replay_all_vsi_cfg - Replace configuration for all VSIs after reset
7867 * @sc: the device softc
7868 *
7869 * Replace the configuration for each VSI, and then cleanup replay
7870 * information. Called after a hardware reset in order to reconfigure the
7871 * active VSIs.
7872 */
7873 int
ice_replay_all_vsi_cfg(struct ice_softc * sc)7874 ice_replay_all_vsi_cfg(struct ice_softc *sc)
7875 {
7876 struct ice_hw *hw = &sc->hw;
7877 int status;
7878 int i;
7879
7880 for (i = 0 ; i < sc->num_available_vsi; i++) {
7881 struct ice_vsi *vsi = sc->all_vsi[i];
7882
7883 if (!vsi)
7884 continue;
7885
7886 status = ice_replay_vsi(hw, vsi->idx);
7887 if (status) {
7888 device_printf(sc->dev, "Failed to replay VSI %d, err %s aq_err %s\n",
7889 vsi->idx, ice_status_str(status),
7890 ice_aq_str(hw->adminq.sq_last_status));
7891 return (EIO);
7892 }
7893 }
7894
7895 /* Cleanup replay filters after successful reconfiguration */
7896 ice_replay_post(hw);
7897 return (0);
7898 }
7899
7900 /**
7901 * ice_clean_vsi_rss_cfg - Cleanup RSS configuration for a given VSI
7902 * @vsi: pointer to the VSI structure
7903 *
7904 * Cleanup the advanced RSS configuration for a given VSI. This is necessary
7905 * during driver removal to ensure that all RSS resources are properly
7906 * released.
7907 *
7908 * @remark this function doesn't report an error as it is expected to be
7909 * called during driver reset and unload, and there isn't much the driver can
7910 * do if freeing RSS resources fails.
7911 */
7912 static void
ice_clean_vsi_rss_cfg(struct ice_vsi * vsi)7913 ice_clean_vsi_rss_cfg(struct ice_vsi *vsi)
7914 {
7915 struct ice_softc *sc = vsi->sc;
7916 struct ice_hw *hw = &sc->hw;
7917 device_t dev = sc->dev;
7918 int status;
7919
7920 status = ice_rem_vsi_rss_cfg(hw, vsi->idx);
7921 if (status)
7922 device_printf(dev,
7923 "Failed to remove RSS configuration for VSI %d, err %s\n",
7924 vsi->idx, ice_status_str(status));
7925
7926 /* Remove this VSI from the RSS list */
7927 ice_rem_vsi_rss_list(hw, vsi->idx);
7928 }
7929
7930 /**
7931 * ice_clean_all_vsi_rss_cfg - Cleanup RSS configuration for all VSIs
7932 * @sc: the device softc pointer
7933 *
7934 * Cleanup the advanced RSS configuration for all VSIs on a given PF
7935 * interface.
7936 *
7937 * @remark This should be called while preparing for a reset, to cleanup stale
7938 * RSS configuration for all VSIs.
7939 */
7940 void
ice_clean_all_vsi_rss_cfg(struct ice_softc * sc)7941 ice_clean_all_vsi_rss_cfg(struct ice_softc *sc)
7942 {
7943 int i;
7944
7945 /* No need to cleanup if RSS is not enabled */
7946 if (!ice_is_bit_set(sc->feat_en, ICE_FEATURE_RSS))
7947 return;
7948
7949 for (i = 0; i < sc->num_available_vsi; i++) {
7950 struct ice_vsi *vsi = sc->all_vsi[i];
7951
7952 if (vsi)
7953 ice_clean_vsi_rss_cfg(vsi);
7954 }
7955 }
7956
7957 /**
7958 * ice_requested_fec_mode - Return the requested FEC mode as a string
7959 * @pi: The port info structure
7960 *
7961 * Return a string representing the requested FEC mode.
7962 */
7963 static const char *
ice_requested_fec_mode(struct ice_port_info * pi)7964 ice_requested_fec_mode(struct ice_port_info *pi)
7965 {
7966 struct ice_aqc_get_phy_caps_data pcaps = { 0 };
7967 int status;
7968
7969 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
7970 &pcaps, NULL);
7971 if (status)
7972 /* Just report unknown if we can't get capabilities */
7973 return "Unknown";
7974
7975 /* Check if RS-FEC has been requested first */
7976 if (pcaps.link_fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
7977 ICE_AQC_PHY_FEC_25G_RS_544_REQ))
7978 return ice_fec_str(ICE_FEC_RS);
7979
7980 /* If RS FEC has not been requested, then check BASE-R */
7981 if (pcaps.link_fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
7982 ICE_AQC_PHY_FEC_25G_KR_REQ))
7983 return ice_fec_str(ICE_FEC_BASER);
7984
7985 return ice_fec_str(ICE_FEC_NONE);
7986 }
7987
7988 /**
7989 * ice_negotiated_fec_mode - Return the negotiated FEC mode as a string
7990 * @pi: The port info structure
7991 *
7992 * Return a string representing the current FEC mode.
7993 */
7994 static const char *
ice_negotiated_fec_mode(struct ice_port_info * pi)7995 ice_negotiated_fec_mode(struct ice_port_info *pi)
7996 {
7997 /* First, check if RS has been requested first */
7998 if (pi->phy.link_info.fec_info & (ICE_AQ_LINK_25G_RS_528_FEC_EN |
7999 ICE_AQ_LINK_25G_RS_544_FEC_EN))
8000 return ice_fec_str(ICE_FEC_RS);
8001
8002 /* If RS FEC has not been requested, then check BASE-R */
8003 if (pi->phy.link_info.fec_info & ICE_AQ_LINK_25G_KR_FEC_EN)
8004 return ice_fec_str(ICE_FEC_BASER);
8005
8006 return ice_fec_str(ICE_FEC_NONE);
8007 }
8008
8009 /**
8010 * ice_autoneg_mode - Return string indicating of autoneg completed
8011 * @pi: The port info structure
8012 *
8013 * Return "True" if autonegotiation is completed, "False" otherwise.
8014 */
8015 static const char *
ice_autoneg_mode(struct ice_port_info * pi)8016 ice_autoneg_mode(struct ice_port_info *pi)
8017 {
8018 if (pi->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
8019 return "True";
8020 else
8021 return "False";
8022 }
8023
8024 /**
8025 * ice_flowcontrol_mode - Return string indicating the Flow Control mode
8026 * @pi: The port info structure
8027 *
8028 * Returns the current Flow Control mode as a string.
8029 */
8030 static const char *
ice_flowcontrol_mode(struct ice_port_info * pi)8031 ice_flowcontrol_mode(struct ice_port_info *pi)
8032 {
8033 return ice_fc_str(pi->fc.current_mode);
8034 }
8035
8036 /**
8037 * ice_link_up_msg - Log a link up message with associated info
8038 * @sc: the device private softc
8039 *
8040 * Log a link up message with LOG_NOTICE message level. Include information
8041 * about the duplex, FEC mode, autonegotiation and flow control.
8042 */
8043 void
ice_link_up_msg(struct ice_softc * sc)8044 ice_link_up_msg(struct ice_softc *sc)
8045 {
8046 struct ice_hw *hw = &sc->hw;
8047 struct ifnet *ifp = sc->ifp;
8048 const char *speed, *req_fec, *neg_fec, *autoneg, *flowcontrol;
8049
8050 speed = ice_aq_speed_to_str(hw->port_info);
8051 req_fec = ice_requested_fec_mode(hw->port_info);
8052 neg_fec = ice_negotiated_fec_mode(hw->port_info);
8053 autoneg = ice_autoneg_mode(hw->port_info);
8054 flowcontrol = ice_flowcontrol_mode(hw->port_info);
8055
8056 log(LOG_NOTICE, "%s: Link is up, %s Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n",
8057 if_name(ifp), speed, req_fec, neg_fec, autoneg, flowcontrol);
8058 }
8059
8060 /**
8061 * ice_update_laa_mac - Update MAC address if Locally Administered
8062 * @sc: the device softc
8063 *
8064 * Update the device MAC address when a Locally Administered Address is
8065 * assigned.
8066 *
8067 * This function does *not* update the MAC filter list itself. Instead, it
8068 * should be called after ice_rm_pf_default_mac_filters, so that the previous
8069 * address filter will be removed, and before ice_cfg_pf_default_mac_filters,
8070 * so that the new address filter will be assigned.
8071 */
8072 int
ice_update_laa_mac(struct ice_softc * sc)8073 ice_update_laa_mac(struct ice_softc *sc)
8074 {
8075 const u8 *lladdr = (const u8 *)if_getlladdr(sc->ifp);
8076 struct ice_hw *hw = &sc->hw;
8077 int status;
8078
8079 /* If the address is the same, then there is nothing to update */
8080 if (!memcmp(lladdr, hw->port_info->mac.lan_addr, ETHER_ADDR_LEN))
8081 return (0);
8082
8083 /* Reject Multicast addresses */
8084 if (ETHER_IS_MULTICAST(lladdr))
8085 return (EINVAL);
8086
8087 status = ice_aq_manage_mac_write(hw, lladdr, ICE_AQC_MAN_MAC_UPDATE_LAA_WOL, NULL);
8088 if (status) {
8089 device_printf(sc->dev, "Failed to write mac %6D to firmware, err %s aq_err %s\n",
8090 lladdr, ":", ice_status_str(status),
8091 ice_aq_str(hw->adminq.sq_last_status));
8092 return (EFAULT);
8093 }
8094
8095 /* Copy the address into place of the LAN address. */
8096 bcopy(lladdr, hw->port_info->mac.lan_addr, ETHER_ADDR_LEN);
8097
8098 return (0);
8099 }
8100
8101 /**
8102 * ice_get_and_print_bus_info - Save (PCI) bus info and print messages
8103 * @sc: device softc
8104 *
8105 * This will potentially print out a warning message if bus bandwidth
8106 * is insufficient for full-speed operation. This will not print out anything
8107 * for E82x devices since those are in SoCs, do not report valid PCIe info,
8108 * and cannot be moved to a different slot.
8109 *
8110 * This should only be called once, during the attach process, after
8111 * hw->port_info has been filled out with port link topology information
8112 * (from the Get PHY Capabilities Admin Queue command).
8113 */
8114 void
ice_get_and_print_bus_info(struct ice_softc * sc)8115 ice_get_and_print_bus_info(struct ice_softc *sc)
8116 {
8117 struct ice_hw *hw = &sc->hw;
8118 device_t dev = sc->dev;
8119 u16 pci_link_status;
8120 int offset;
8121
8122 if (!ice_is_e810(hw) && !ice_is_e830(hw))
8123 return;
8124
8125 pci_find_cap(dev, PCIY_EXPRESS, &offset);
8126 pci_link_status = pci_read_config(dev, offset + PCIER_LINK_STA, 2);
8127
8128 /* Fill out hw struct with PCIE link status info */
8129 ice_set_pci_link_status_data(hw, pci_link_status);
8130
8131 /* Use info to print out bandwidth messages */
8132 ice_print_bus_link_data(dev, hw);
8133
8134 if (ice_pcie_bandwidth_check(sc)) {
8135 device_printf(dev,
8136 "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n");
8137 device_printf(dev,
8138 "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n");
8139 }
8140 }
8141
8142 /**
8143 * ice_pcie_bus_speed_to_rate - Convert driver bus speed enum value to
8144 * a 64-bit baudrate.
8145 * @speed: enum value to convert
8146 *
8147 * This only goes up to PCIE Gen 5.
8148 */
8149 static uint64_t
ice_pcie_bus_speed_to_rate(enum ice_pcie_bus_speed speed)8150 ice_pcie_bus_speed_to_rate(enum ice_pcie_bus_speed speed)
8151 {
8152 /* If the PCI-E speed is Gen1 or Gen2, then report
8153 * only 80% of bus speed to account for encoding overhead.
8154 */
8155 switch (speed) {
8156 case ice_pcie_speed_2_5GT:
8157 return IF_Gbps(2);
8158 case ice_pcie_speed_5_0GT:
8159 return IF_Gbps(4);
8160 case ice_pcie_speed_8_0GT:
8161 return IF_Gbps(8);
8162 case ice_pcie_speed_16_0GT:
8163 return IF_Gbps(16);
8164 case ice_pcie_speed_32_0GT:
8165 return IF_Gbps(32);
8166 case ice_pcie_speed_unknown:
8167 default:
8168 return 0;
8169 }
8170 }
8171
8172 /**
8173 * ice_pcie_lnk_width_to_int - Convert driver pci-e width enum value to
8174 * a 32-bit number.
8175 * @width: enum value to convert
8176 */
8177 static int
ice_pcie_lnk_width_to_int(enum ice_pcie_link_width width)8178 ice_pcie_lnk_width_to_int(enum ice_pcie_link_width width)
8179 {
8180 switch (width) {
8181 case ice_pcie_lnk_x1:
8182 return (1);
8183 case ice_pcie_lnk_x2:
8184 return (2);
8185 case ice_pcie_lnk_x4:
8186 return (4);
8187 case ice_pcie_lnk_x8:
8188 return (8);
8189 case ice_pcie_lnk_x12:
8190 return (12);
8191 case ice_pcie_lnk_x16:
8192 return (16);
8193 case ice_pcie_lnk_x32:
8194 return (32);
8195 case ice_pcie_lnk_width_resrv:
8196 case ice_pcie_lnk_width_unknown:
8197 default:
8198 return (0);
8199 }
8200 }
8201
8202 /**
8203 * ice_pcie_bandwidth_check - Check if PCI-E bandwidth is sufficient for
8204 * full-speed device operation.
8205 * @sc: adapter softc
8206 *
8207 * Returns 0 if sufficient; 1 if not.
8208 */
8209 static uint8_t
ice_pcie_bandwidth_check(struct ice_softc * sc)8210 ice_pcie_bandwidth_check(struct ice_softc *sc)
8211 {
8212 struct ice_hw *hw = &sc->hw;
8213 int num_ports, pcie_width;
8214 u64 pcie_speed, port_speed;
8215
8216 MPASS(hw->port_info);
8217
8218 num_ports = bitcount32(hw->func_caps.common_cap.valid_functions);
8219 port_speed = ice_phy_types_to_max_rate(hw->port_info);
8220 pcie_speed = ice_pcie_bus_speed_to_rate(hw->bus.speed);
8221 pcie_width = ice_pcie_lnk_width_to_int(hw->bus.width);
8222
8223 /*
8224 * If 2x100 on E810 or 2x200 on E830, clamp ports to 1 -- 2nd port is
8225 * intended for failover.
8226 */
8227 if ((port_speed >= IF_Gbps(100)) &&
8228 ((port_speed == IF_Gbps(100) && ice_is_e810(hw)) ||
8229 (port_speed == IF_Gbps(200) && ice_is_e830(hw))))
8230 num_ports = 1;
8231
8232 return !!((num_ports * port_speed) > pcie_speed * pcie_width);
8233 }
8234
8235 /**
8236 * ice_print_bus_link_data - Print PCI-E bandwidth information
8237 * @dev: device to print string for
8238 * @hw: hw struct with PCI-e link information
8239 */
8240 static void
ice_print_bus_link_data(device_t dev,struct ice_hw * hw)8241 ice_print_bus_link_data(device_t dev, struct ice_hw *hw)
8242 {
8243 device_printf(dev, "PCI Express Bus: Speed %s Width %s\n",
8244 ((hw->bus.speed == ice_pcie_speed_32_0GT) ? "32.0GT/s" :
8245 (hw->bus.speed == ice_pcie_speed_16_0GT) ? "16.0GT/s" :
8246 (hw->bus.speed == ice_pcie_speed_8_0GT) ? "8.0GT/s" :
8247 (hw->bus.speed == ice_pcie_speed_5_0GT) ? "5.0GT/s" :
8248 (hw->bus.speed == ice_pcie_speed_2_5GT) ? "2.5GT/s" : "Unknown"),
8249 (hw->bus.width == ice_pcie_lnk_x32) ? "x32" :
8250 (hw->bus.width == ice_pcie_lnk_x16) ? "x16" :
8251 (hw->bus.width == ice_pcie_lnk_x12) ? "x12" :
8252 (hw->bus.width == ice_pcie_lnk_x8) ? "x8" :
8253 (hw->bus.width == ice_pcie_lnk_x4) ? "x4" :
8254 (hw->bus.width == ice_pcie_lnk_x2) ? "x2" :
8255 (hw->bus.width == ice_pcie_lnk_x1) ? "x1" : "Unknown");
8256 }
8257
8258 /**
8259 * ice_set_pci_link_status_data - store PCI bus info
8260 * @hw: pointer to hardware structure
8261 * @link_status: the link status word from PCI config space
8262 *
8263 * Stores the PCI bus info (speed, width, type) within the ice_hw structure
8264 **/
8265 static void
ice_set_pci_link_status_data(struct ice_hw * hw,u16 link_status)8266 ice_set_pci_link_status_data(struct ice_hw *hw, u16 link_status)
8267 {
8268 u16 reg;
8269
8270 hw->bus.type = ice_bus_pci_express;
8271
8272 reg = (link_status & PCIEM_LINK_STA_WIDTH) >> 4;
8273
8274 switch (reg) {
8275 case ice_pcie_lnk_x1:
8276 case ice_pcie_lnk_x2:
8277 case ice_pcie_lnk_x4:
8278 case ice_pcie_lnk_x8:
8279 case ice_pcie_lnk_x12:
8280 case ice_pcie_lnk_x16:
8281 case ice_pcie_lnk_x32:
8282 hw->bus.width = (enum ice_pcie_link_width)reg;
8283 break;
8284 default:
8285 hw->bus.width = ice_pcie_lnk_width_unknown;
8286 break;
8287 }
8288
8289 reg = (link_status & PCIEM_LINK_STA_SPEED) + 0x13;
8290
8291 switch (reg) {
8292 case ice_pcie_speed_2_5GT:
8293 case ice_pcie_speed_5_0GT:
8294 case ice_pcie_speed_8_0GT:
8295 case ice_pcie_speed_16_0GT:
8296 case ice_pcie_speed_32_0GT:
8297 hw->bus.speed = (enum ice_pcie_bus_speed)reg;
8298 break;
8299 default:
8300 hw->bus.speed = ice_pcie_speed_unknown;
8301 break;
8302 }
8303 }
8304
8305 /**
8306 * ice_init_link_events - Initialize Link Status Events mask
8307 * @sc: the device softc
8308 *
8309 * Initialize the Link Status Events mask to disable notification of link
8310 * events we don't care about in software. Also request that link status
8311 * events be enabled.
8312 */
8313 int
ice_init_link_events(struct ice_softc * sc)8314 ice_init_link_events(struct ice_softc *sc)
8315 {
8316 struct ice_hw *hw = &sc->hw;
8317 int status;
8318 u16 wanted_events;
8319
8320 /* Set the bits for the events that we want to be notified by */
8321 wanted_events = (ICE_AQ_LINK_EVENT_UPDOWN |
8322 ICE_AQ_LINK_EVENT_MEDIA_NA |
8323 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL);
8324
8325 /* request that every event except the wanted events be masked */
8326 status = ice_aq_set_event_mask(hw, hw->port_info->lport, ~wanted_events, NULL);
8327 if (status) {
8328 device_printf(sc->dev,
8329 "Failed to set link status event mask, err %s aq_err %s\n",
8330 ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
8331 return (EIO);
8332 }
8333
8334 /* Request link info with the LSE bit set to enable link status events */
8335 status = ice_aq_get_link_info(hw->port_info, true, NULL, NULL);
8336 if (status) {
8337 device_printf(sc->dev,
8338 "Failed to enable link status events, err %s aq_err %s\n",
8339 ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
8340 return (EIO);
8341 }
8342
8343 return (0);
8344 }
8345
8346 #ifndef GL_MDET_TX_TCLAN
8347 /* Temporarily use this redefinition until the definition is fixed */
8348 #define GL_MDET_TX_TCLAN E800_GL_MDET_TX_TCLAN
8349 #define PF_MDET_TX_TCLAN E800_PF_MDET_TX_TCLAN
8350 #endif /* !defined(GL_MDET_TX_TCLAN) */
8351 /**
8352 * ice_handle_mdd_event - Handle possibly malicious events
8353 * @sc: the device softc
8354 *
8355 * Called by the admin task if an MDD detection interrupt is triggered.
8356 * Identifies possibly malicious events coming from VFs. Also triggers for
8357 * similar incorrect behavior from the PF as well.
8358 */
8359 void
ice_handle_mdd_event(struct ice_softc * sc)8360 ice_handle_mdd_event(struct ice_softc *sc)
8361 {
8362 struct ice_hw *hw = &sc->hw;
8363 bool mdd_detected = false, request_reinit = false;
8364 device_t dev = sc->dev;
8365 u32 reg;
8366
8367 if (!ice_testandclear_state(&sc->state, ICE_STATE_MDD_PENDING))
8368 return;
8369
8370 reg = rd32(hw, GL_MDET_TX_TCLAN);
8371 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
8372 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> GL_MDET_TX_TCLAN_PF_NUM_S;
8373 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> GL_MDET_TX_TCLAN_VF_NUM_S;
8374 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> GL_MDET_TX_TCLAN_MAL_TYPE_S;
8375 u16 queue = (reg & GL_MDET_TX_TCLAN_QNUM_M) >> GL_MDET_TX_TCLAN_QNUM_S;
8376
8377 device_printf(dev, "Malicious Driver Detection Tx Descriptor check event '%s' on Tx queue %u PF# %u VF# %u\n",
8378 ice_mdd_tx_tclan_str(event), queue, pf_num, vf_num);
8379
8380 /* Only clear this event if it matches this PF, that way other
8381 * PFs can read the event and determine VF and queue number.
8382 */
8383 if (pf_num == hw->pf_id)
8384 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
8385
8386 mdd_detected = true;
8387 }
8388
8389 /* Determine what triggered the MDD event */
8390 reg = rd32(hw, GL_MDET_TX_PQM);
8391 if (reg & GL_MDET_TX_PQM_VALID_M) {
8392 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> GL_MDET_TX_PQM_PF_NUM_S;
8393 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> GL_MDET_TX_PQM_VF_NUM_S;
8394 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> GL_MDET_TX_PQM_MAL_TYPE_S;
8395 u16 queue = (reg & GL_MDET_TX_PQM_QNUM_M) >> GL_MDET_TX_PQM_QNUM_S;
8396
8397 device_printf(dev, "Malicious Driver Detection Tx Quanta check event '%s' on Tx queue %u PF# %u VF# %u\n",
8398 ice_mdd_tx_pqm_str(event), queue, pf_num, vf_num);
8399
8400 /* Only clear this event if it matches this PF, that way other
8401 * PFs can read the event and determine VF and queue number.
8402 */
8403 if (pf_num == hw->pf_id)
8404 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
8405
8406 mdd_detected = true;
8407 }
8408
8409 reg = rd32(hw, GL_MDET_RX);
8410 if (reg & GL_MDET_RX_VALID_M) {
8411 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> GL_MDET_RX_PF_NUM_S;
8412 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> GL_MDET_RX_VF_NUM_S;
8413 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> GL_MDET_RX_MAL_TYPE_S;
8414 u16 queue = (reg & GL_MDET_RX_QNUM_M) >> GL_MDET_RX_QNUM_S;
8415
8416 device_printf(dev, "Malicious Driver Detection Rx event '%s' on Rx queue %u PF# %u VF# %u\n",
8417 ice_mdd_rx_str(event), queue, pf_num, vf_num);
8418
8419 /* Only clear this event if it matches this PF, that way other
8420 * PFs can read the event and determine VF and queue number.
8421 */
8422 if (pf_num == hw->pf_id)
8423 wr32(hw, GL_MDET_RX, 0xffffffff);
8424
8425 mdd_detected = true;
8426 }
8427
8428 /* Now, confirm that this event actually affects this PF, by checking
8429 * the PF registers.
8430 */
8431 if (mdd_detected) {
8432 reg = rd32(hw, PF_MDET_TX_TCLAN);
8433 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
8434 wr32(hw, PF_MDET_TX_TCLAN, 0xffff);
8435 sc->soft_stats.tx_mdd_count++;
8436 request_reinit = true;
8437 }
8438
8439 reg = rd32(hw, PF_MDET_TX_PQM);
8440 if (reg & PF_MDET_TX_PQM_VALID_M) {
8441 wr32(hw, PF_MDET_TX_PQM, 0xffff);
8442 sc->soft_stats.tx_mdd_count++;
8443 request_reinit = true;
8444 }
8445
8446 reg = rd32(hw, PF_MDET_RX);
8447 if (reg & PF_MDET_RX_VALID_M) {
8448 wr32(hw, PF_MDET_RX, 0xffff);
8449 sc->soft_stats.rx_mdd_count++;
8450 request_reinit = true;
8451 }
8452 }
8453
8454 /* TODO: Implement logic to detect and handle events caused by VFs. */
8455
8456 /* request that the upper stack re-initialize the Tx/Rx queues */
8457 if (request_reinit)
8458 ice_request_stack_reinit(sc);
8459
8460 ice_flush(hw);
8461 }
8462
8463 /**
8464 * ice_start_dcbx_agent - Start DCBX agent in FW via AQ command
8465 * @sc: the device softc
8466 *
8467 * @pre device is DCB capable and the FW LLDP agent has started
8468 *
8469 * Checks DCBX status and starts the DCBX agent if it is not in
8470 * a valid state via an AQ command.
8471 */
8472 static void
ice_start_dcbx_agent(struct ice_softc * sc)8473 ice_start_dcbx_agent(struct ice_softc *sc)
8474 {
8475 struct ice_hw *hw = &sc->hw;
8476 device_t dev = sc->dev;
8477 bool dcbx_agent_status;
8478 int status;
8479
8480 hw->port_info->qos_cfg.dcbx_status = ice_get_dcbx_status(hw);
8481
8482 if (hw->port_info->qos_cfg.dcbx_status != ICE_DCBX_STATUS_DONE &&
8483 hw->port_info->qos_cfg.dcbx_status != ICE_DCBX_STATUS_IN_PROGRESS) {
8484 /*
8485 * Start DCBX agent, but not LLDP. The return value isn't
8486 * checked here because a more detailed dcbx agent status is
8487 * retrieved and checked in ice_init_dcb() and elsewhere.
8488 */
8489 status = ice_aq_start_stop_dcbx(hw, true, &dcbx_agent_status, NULL);
8490 if (status && hw->adminq.sq_last_status != ICE_AQ_RC_EPERM)
8491 device_printf(dev,
8492 "start_stop_dcbx failed, err %s aq_err %s\n",
8493 ice_status_str(status),
8494 ice_aq_str(hw->adminq.sq_last_status));
8495 }
8496 }
8497
8498 /**
8499 * ice_init_dcb_setup - Initialize DCB settings for HW
8500 * @sc: the device softc
8501 *
8502 * This needs to be called after the fw_lldp_agent sysctl is added, since that
8503 * can update the device's LLDP agent status if a tunable value is set.
8504 *
8505 * Get and store the initial state of DCB settings on driver load. Print out
8506 * informational messages as well.
8507 */
8508 void
ice_init_dcb_setup(struct ice_softc * sc)8509 ice_init_dcb_setup(struct ice_softc *sc)
8510 {
8511 struct ice_dcbx_cfg *local_dcbx_cfg;
8512 struct ice_hw *hw = &sc->hw;
8513 device_t dev = sc->dev;
8514 int status;
8515 u8 pfcmode_ret;
8516
8517 /* Don't do anything if DCB isn't supported */
8518 if (!ice_is_bit_set(sc->feat_cap, ICE_FEATURE_DCB)) {
8519 device_printf(dev, "%s: No DCB support\n", __func__);
8520 return;
8521 }
8522
8523 /* Starts DCBX agent if it needs starting */
8524 ice_start_dcbx_agent(sc);
8525
8526 /* This sets hw->port_info->qos_cfg.is_sw_lldp */
8527 status = ice_init_dcb(hw, true);
8528
8529 /* If there is an error, then FW LLDP is not in a usable state */
8530 if (status != 0 && status != ICE_ERR_NOT_READY) {
8531 /* Don't print an error message if the return code from the AQ
8532 * cmd performed in ice_init_dcb() is EPERM; that means the
8533 * FW LLDP engine is disabled, and that is a valid state.
8534 */
8535 if (!(status == ICE_ERR_AQ_ERROR &&
8536 hw->adminq.sq_last_status == ICE_AQ_RC_EPERM)) {
8537 device_printf(dev, "DCB init failed, err %s aq_err %s\n",
8538 ice_status_str(status),
8539 ice_aq_str(hw->adminq.sq_last_status));
8540 }
8541 hw->port_info->qos_cfg.dcbx_status = ICE_DCBX_STATUS_NOT_STARTED;
8542 }
8543
8544 switch (hw->port_info->qos_cfg.dcbx_status) {
8545 case ICE_DCBX_STATUS_DIS:
8546 ice_debug(hw, ICE_DBG_DCB, "DCBX disabled\n");
8547 break;
8548 case ICE_DCBX_STATUS_NOT_STARTED:
8549 ice_debug(hw, ICE_DBG_DCB, "DCBX not started\n");
8550 break;
8551 case ICE_DCBX_STATUS_MULTIPLE_PEERS:
8552 ice_debug(hw, ICE_DBG_DCB, "DCBX detected multiple peers\n");
8553 break;
8554 default:
8555 break;
8556 }
8557
8558 /* LLDP disabled in FW */
8559 if (hw->port_info->qos_cfg.is_sw_lldp) {
8560 ice_add_rx_lldp_filter(sc);
8561 device_printf(dev, "Firmware LLDP agent disabled\n");
8562 }
8563
8564 /* Query and cache PFC mode */
8565 status = ice_aq_query_pfc_mode(hw, &pfcmode_ret, NULL);
8566 if (status) {
8567 device_printf(dev, "PFC mode query failed, err %s aq_err %s\n",
8568 ice_status_str(status),
8569 ice_aq_str(hw->adminq.sq_last_status));
8570 }
8571 local_dcbx_cfg = &hw->port_info->qos_cfg.local_dcbx_cfg;
8572 switch (pfcmode_ret) {
8573 case ICE_AQC_PFC_VLAN_BASED_PFC:
8574 local_dcbx_cfg->pfc_mode = ICE_QOS_MODE_VLAN;
8575 break;
8576 case ICE_AQC_PFC_DSCP_BASED_PFC:
8577 local_dcbx_cfg->pfc_mode = ICE_QOS_MODE_DSCP;
8578 break;
8579 default:
8580 /* DCB is disabled, but we shouldn't get here */
8581 break;
8582 }
8583
8584 /* Set default SW MIB for init */
8585 ice_set_default_local_mib_settings(sc);
8586
8587 ice_set_bit(ICE_FEATURE_DCB, sc->feat_en);
8588 }
8589
8590 /**
8591 * ice_dcb_get_tc_map - Scans config to get bitmap of enabled TCs
8592 * @dcbcfg: DCB configuration to examine
8593 *
8594 * Scans a TC mapping table inside dcbcfg to find traffic classes
8595 * enabled and @returns a bitmask of enabled TCs
8596 */
8597 u8
ice_dcb_get_tc_map(const struct ice_dcbx_cfg * dcbcfg)8598 ice_dcb_get_tc_map(const struct ice_dcbx_cfg *dcbcfg)
8599 {
8600 u8 tc_map = 0;
8601 int i = 0;
8602
8603 switch (dcbcfg->pfc_mode) {
8604 case ICE_QOS_MODE_VLAN:
8605 /* XXX: "i" is actually "User Priority" here, not
8606 * Traffic Class, but the max for both is 8, so it works
8607 * out here.
8608 */
8609 for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++)
8610 tc_map |= BIT(dcbcfg->etscfg.prio_table[i]);
8611 break;
8612 case ICE_QOS_MODE_DSCP:
8613 for (i = 0; i < ICE_DSCP_NUM_VAL; i++)
8614 tc_map |= BIT(dcbcfg->dscp_map[i]);
8615 break;
8616 default:
8617 /* Invalid Mode */
8618 tc_map = ICE_DFLT_TRAFFIC_CLASS;
8619 break;
8620 }
8621
8622 return (tc_map);
8623 }
8624
8625 /**
8626 * ice_dcb_get_num_tc - Get the number of TCs from DCBX config
8627 * @dcbcfg: config to retrieve number of TCs from
8628 *
8629 * @return number of contiguous TCs found in dcbcfg's ETS Configuration
8630 * Priority Assignment Table, a value from 1 to 8. If there are
8631 * non-contiguous TCs used (e.g. assigning 1 and 3 without using 2),
8632 * then returns 0.
8633 */
8634 static u8
ice_dcb_get_num_tc(struct ice_dcbx_cfg * dcbcfg)8635 ice_dcb_get_num_tc(struct ice_dcbx_cfg *dcbcfg)
8636 {
8637 u8 tc_map;
8638
8639 tc_map = ice_dcb_get_tc_map(dcbcfg);
8640
8641 return (ice_dcb_tc_contig(tc_map));
8642 }
8643
8644 /**
8645 * ice_debug_print_mib_change_event - helper function to log LLDP MIB change events
8646 * @sc: the device private softc
8647 * @event: event received on a control queue
8648 *
8649 * Prints out the type and contents of an LLDP MIB change event in a DCB debug message.
8650 */
8651 static void
ice_debug_print_mib_change_event(struct ice_softc * sc,struct ice_rq_event_info * event)8652 ice_debug_print_mib_change_event(struct ice_softc *sc, struct ice_rq_event_info *event)
8653 {
8654 struct ice_aqc_lldp_get_mib *params =
8655 (struct ice_aqc_lldp_get_mib *)&event->desc.params.lldp_get_mib;
8656 u8 mib_type, bridge_type, tx_status;
8657
8658 static const char* mib_type_strings[] = {
8659 "Local MIB",
8660 "Remote MIB",
8661 "Reserved",
8662 "Reserved"
8663 };
8664 static const char* bridge_type_strings[] = {
8665 "Nearest Bridge",
8666 "Non-TPMR Bridge",
8667 "Reserved",
8668 "Reserved"
8669 };
8670 static const char* tx_status_strings[] = {
8671 "Port's TX active",
8672 "Port's TX suspended and drained",
8673 "Reserved",
8674 "Port's TX suspended and drained; blocked TC pipe flushed"
8675 };
8676
8677 mib_type = (params->type & ICE_AQ_LLDP_MIB_TYPE_M) >>
8678 ICE_AQ_LLDP_MIB_TYPE_S;
8679 bridge_type = (params->type & ICE_AQ_LLDP_BRID_TYPE_M) >>
8680 ICE_AQ_LLDP_BRID_TYPE_S;
8681 tx_status = (params->type & ICE_AQ_LLDP_TX_M) >>
8682 ICE_AQ_LLDP_TX_S;
8683
8684 ice_debug(&sc->hw, ICE_DBG_DCB, "LLDP MIB Change Event (%s, %s, %s)\n",
8685 mib_type_strings[mib_type], bridge_type_strings[bridge_type],
8686 tx_status_strings[tx_status]);
8687
8688 /* Nothing else to report */
8689 if (!event->msg_buf)
8690 return;
8691
8692 ice_debug(&sc->hw, ICE_DBG_DCB, "- %s contents:\n", mib_type_strings[mib_type]);
8693 ice_debug_array(&sc->hw, ICE_DBG_DCB, 16, 1, event->msg_buf,
8694 event->msg_len);
8695 }
8696
8697 /**
8698 * ice_dcb_needs_reconfig - Returns true if driver needs to reconfigure
8699 * @sc: the device private softc
8700 * @old_cfg: Old DCBX configuration to compare against
8701 * @new_cfg: New DCBX configuration to check
8702 *
8703 * @return true if something changed in new_cfg that requires the driver
8704 * to do some reconfiguration.
8705 */
8706 static bool
ice_dcb_needs_reconfig(struct ice_softc * sc,struct ice_dcbx_cfg * old_cfg,struct ice_dcbx_cfg * new_cfg)8707 ice_dcb_needs_reconfig(struct ice_softc *sc, struct ice_dcbx_cfg *old_cfg,
8708 struct ice_dcbx_cfg *new_cfg)
8709 {
8710 struct ice_hw *hw = &sc->hw;
8711 bool needs_reconfig = false;
8712
8713 /* No change detected in DCBX config */
8714 if (!memcmp(old_cfg, new_cfg, sizeof(*old_cfg))) {
8715 ice_debug(hw, ICE_DBG_DCB,
8716 "No change detected in local DCBX configuration\n");
8717 return (false);
8718 }
8719
8720 /* Check if ETS config has changed */
8721 if (memcmp(&new_cfg->etscfg, &old_cfg->etscfg,
8722 sizeof(new_cfg->etscfg))) {
8723 /* If Priority Table has changed, then driver reconfig is needed */
8724 if (memcmp(&new_cfg->etscfg.prio_table,
8725 &old_cfg->etscfg.prio_table,
8726 sizeof(new_cfg->etscfg.prio_table))) {
8727 ice_debug(hw, ICE_DBG_DCB, "ETS UP2TC changed\n");
8728 needs_reconfig = true;
8729 }
8730
8731 /* These are just informational */
8732 if (memcmp(&new_cfg->etscfg.tcbwtable,
8733 &old_cfg->etscfg.tcbwtable,
8734 sizeof(new_cfg->etscfg.tcbwtable))) {
8735 ice_debug(hw, ICE_DBG_DCB, "ETS TCBW table changed\n");
8736 needs_reconfig = true;
8737 }
8738
8739 if (memcmp(&new_cfg->etscfg.tsatable,
8740 &old_cfg->etscfg.tsatable,
8741 sizeof(new_cfg->etscfg.tsatable))) {
8742 ice_debug(hw, ICE_DBG_DCB, "ETS TSA table changed\n");
8743 needs_reconfig = true;
8744 }
8745 }
8746
8747 /* Check if PFC config has changed */
8748 if (memcmp(&new_cfg->pfc, &old_cfg->pfc, sizeof(new_cfg->pfc))) {
8749 ice_debug(hw, ICE_DBG_DCB, "PFC config changed\n");
8750 needs_reconfig = true;
8751 }
8752
8753 /* Check if APP table has changed */
8754 if (memcmp(&new_cfg->app, &old_cfg->app, sizeof(new_cfg->app)))
8755 ice_debug(hw, ICE_DBG_DCB, "APP Table changed\n");
8756
8757 ice_debug(hw, ICE_DBG_DCB, "%s result: %d\n", __func__, needs_reconfig);
8758
8759 return (needs_reconfig);
8760 }
8761
8762 /**
8763 * ice_stop_pf_vsi - Stop queues for PF LAN VSI
8764 * @sc: the device private softc
8765 *
8766 * Flushes interrupts and stops the queues associated with the PF LAN VSI.
8767 */
8768 static void
ice_stop_pf_vsi(struct ice_softc * sc)8769 ice_stop_pf_vsi(struct ice_softc *sc)
8770 {
8771 /* Dissociate the Tx and Rx queues from the interrupts */
8772 ice_flush_txq_interrupts(&sc->pf_vsi);
8773 ice_flush_rxq_interrupts(&sc->pf_vsi);
8774
8775 if (!ice_testandclear_state(&sc->state, ICE_STATE_DRIVER_INITIALIZED))
8776 return;
8777
8778 /* Disable the Tx and Rx queues */
8779 ice_vsi_disable_tx(&sc->pf_vsi);
8780 ice_control_all_rx_queues(&sc->pf_vsi, false);
8781 }
8782
8783 /**
8784 * ice_vsi_setup_q_map - Setup a VSI queue map
8785 * @vsi: the VSI being configured
8786 * @ctxt: VSI context structure
8787 */
8788 static void
ice_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)8789 ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
8790 {
8791 u16 qcounts[ICE_MAX_TRAFFIC_CLASS] = {};
8792 u16 offset = 0, qmap = 0, pow = 0;
8793 u16 num_q_per_tc, qcount_rx, rem_queues;
8794 int i, j, k;
8795
8796 if (vsi->num_tcs == 0) {
8797 /* at least TC0 should be enabled by default */
8798 vsi->num_tcs = 1;
8799 vsi->tc_map = 0x1;
8800 }
8801
8802 qcount_rx = vsi->num_rx_queues;
8803 num_q_per_tc = min(qcount_rx / vsi->num_tcs, ICE_MAX_RXQS_PER_TC);
8804
8805 if (!num_q_per_tc)
8806 num_q_per_tc = 1;
8807
8808 /* Set initial values for # of queues to use for each active TC */
8809 ice_for_each_traffic_class(i)
8810 if (i < vsi->num_tcs)
8811 qcounts[i] = num_q_per_tc;
8812
8813 /* If any queues are unassigned, add them to TC 0 */
8814 rem_queues = qcount_rx % vsi->num_tcs;
8815 if (rem_queues > 0)
8816 qcounts[0] += rem_queues;
8817
8818 /* TC mapping is a function of the number of Rx queues assigned to the
8819 * VSI for each traffic class and the offset of these queues.
8820 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
8821 * queues allocated to TC0. No:of queues is a power-of-2.
8822 *
8823 * If TC is not enabled, the queue offset is set to 0, and allocate one
8824 * queue, this way, traffic for the given TC will be sent to the default
8825 * queue.
8826 *
8827 * Setup number and offset of Rx queues for all TCs for the VSI
8828 */
8829 ice_for_each_traffic_class(i) {
8830 if (!(vsi->tc_map & BIT(i))) {
8831 /* TC is not enabled */
8832 vsi->tc_info[i].qoffset = 0;
8833 vsi->tc_info[i].qcount_rx = 1;
8834 vsi->tc_info[i].qcount_tx = 1;
8835
8836 ctxt->info.tc_mapping[i] = 0;
8837 continue;
8838 }
8839
8840 /* TC is enabled */
8841 vsi->tc_info[i].qoffset = offset;
8842 vsi->tc_info[i].qcount_rx = qcounts[i];
8843 vsi->tc_info[i].qcount_tx = qcounts[i];
8844
8845 /* find the (rounded up) log-2 of queue count for current TC */
8846 pow = fls(qcounts[i] - 1);
8847
8848 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
8849 ICE_AQ_VSI_TC_Q_OFFSET_M) |
8850 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
8851 ICE_AQ_VSI_TC_Q_NUM_M);
8852 ctxt->info.tc_mapping[i] = CPU_TO_LE16(qmap);
8853
8854 /* Store traffic class and handle data in queue structures */
8855 for (j = offset, k = 0; j < offset + qcounts[i]; j++, k++) {
8856 vsi->tx_queues[j].q_handle = k;
8857 vsi->tx_queues[j].tc = i;
8858
8859 vsi->rx_queues[j].tc = i;
8860 }
8861
8862 offset += qcounts[i];
8863 }
8864
8865 /* Rx queue mapping */
8866 ctxt->info.mapping_flags |= CPU_TO_LE16(ICE_AQ_VSI_Q_MAP_CONTIG);
8867 ctxt->info.q_mapping[0] = CPU_TO_LE16(vsi->rx_qmap[0]);
8868 ctxt->info.q_mapping[1] = CPU_TO_LE16(vsi->num_rx_queues);
8869 }
8870
8871 /**
8872 * ice_pf_vsi_cfg_tc - Configure PF VSI for a given TC map
8873 * @sc: the device private softc
8874 * @tc_map: traffic class bitmap
8875 *
8876 * @pre VSI queues are stopped
8877 *
8878 * @return 0 if configuration is successful
8879 * @return EIO if Update VSI AQ cmd fails
8880 * @return ENODEV if updating Tx Scheduler fails
8881 */
8882 static int
ice_pf_vsi_cfg_tc(struct ice_softc * sc,u8 tc_map)8883 ice_pf_vsi_cfg_tc(struct ice_softc *sc, u8 tc_map)
8884 {
8885 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
8886 struct ice_vsi *vsi = &sc->pf_vsi;
8887 struct ice_hw *hw = &sc->hw;
8888 struct ice_vsi_ctx ctx = { 0 };
8889 device_t dev = sc->dev;
8890 int status;
8891 u8 num_tcs = 0;
8892 int i = 0;
8893
8894 /* Count the number of enabled Traffic Classes */
8895 ice_for_each_traffic_class(i)
8896 if (tc_map & BIT(i))
8897 num_tcs++;
8898
8899 vsi->tc_map = tc_map;
8900 vsi->num_tcs = num_tcs;
8901
8902 /* Set default parameters for context */
8903 ctx.vf_num = 0;
8904 ctx.info = vsi->info;
8905
8906 /* Setup queue map */
8907 ice_vsi_setup_q_map(vsi, &ctx);
8908
8909 /* Update VSI configuration in firmware (RX queues) */
8910 ctx.info.valid_sections = CPU_TO_LE16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
8911 status = ice_update_vsi(hw, vsi->idx, &ctx, NULL);
8912 if (status) {
8913 device_printf(dev,
8914 "%s: Update VSI AQ call failed, err %s aq_err %s\n",
8915 __func__, ice_status_str(status),
8916 ice_aq_str(hw->adminq.sq_last_status));
8917 return (EIO);
8918 }
8919 vsi->info = ctx.info;
8920
8921 /* Use values derived in ice_vsi_setup_q_map() */
8922 for (i = 0; i < num_tcs; i++)
8923 max_txqs[i] = vsi->tc_info[i].qcount_tx;
8924
8925 if (hw->debug_mask & ICE_DBG_DCB) {
8926 device_printf(dev, "%s: max_txqs:", __func__);
8927 ice_for_each_traffic_class(i)
8928 printf(" %d", max_txqs[i]);
8929 printf("\n");
8930 }
8931
8932 /* Update LAN Tx queue info in firmware */
8933 status = ice_cfg_vsi_lan(hw->port_info, vsi->idx, vsi->tc_map,
8934 max_txqs);
8935 if (status) {
8936 device_printf(dev,
8937 "%s: Failed VSI lan queue config, err %s aq_err %s\n",
8938 __func__, ice_status_str(status),
8939 ice_aq_str(hw->adminq.sq_last_status));
8940 return (ENODEV);
8941 }
8942
8943 vsi->info.valid_sections = 0;
8944
8945 return (0);
8946 }
8947
8948 /**
8949 * ice_dcb_tc_contig - Count TCs if they're contiguous
8950 * @tc_map: pointer to priority table
8951 *
8952 * @return The number of traffic classes in
8953 * an 8-bit TC bitmap, or if there is a gap, then returns 0.
8954 */
8955 static u8
ice_dcb_tc_contig(u8 tc_map)8956 ice_dcb_tc_contig(u8 tc_map)
8957 {
8958 bool tc_unused = false;
8959 u8 ret = 0;
8960
8961 /* Scan bitmask for contiguous TCs starting with TC0 */
8962 for (int i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
8963 if (tc_map & BIT(i)) {
8964 if (!tc_unused) {
8965 ret++;
8966 } else {
8967 /* Non-contiguous TCs detected */
8968 return (0);
8969 }
8970 } else
8971 tc_unused = true;
8972 }
8973
8974 return (ret);
8975 }
8976
8977 /**
8978 * ice_dcb_recfg - Reconfigure VSI with new DCB settings
8979 * @sc: the device private softc
8980 *
8981 * @pre All VSIs have been disabled/stopped
8982 *
8983 * Reconfigures VSI settings based on local_dcbx_cfg.
8984 */
8985 static void
ice_dcb_recfg(struct ice_softc * sc)8986 ice_dcb_recfg(struct ice_softc *sc)
8987 {
8988 struct ice_dcbx_cfg *dcbcfg =
8989 &sc->hw.port_info->qos_cfg.local_dcbx_cfg;
8990 device_t dev = sc->dev;
8991 u8 tc_map = 0;
8992 int ret;
8993
8994 tc_map = ice_dcb_get_tc_map(dcbcfg);
8995
8996 /* If non-contiguous TCs are used, then configure
8997 * the default TC instead. There's no support for
8998 * non-contiguous TCs being used.
8999 */
9000 if (ice_dcb_tc_contig(tc_map) == 0) {
9001 tc_map = ICE_DFLT_TRAFFIC_CLASS;
9002 ice_set_default_local_lldp_mib(sc);
9003 }
9004
9005 /* Reconfigure VSI queues to add/remove traffic classes */
9006 ret = ice_pf_vsi_cfg_tc(sc, tc_map);
9007 if (ret)
9008 device_printf(dev,
9009 "Failed to configure TCs for PF VSI, err %s\n",
9010 ice_err_str(ret));
9011
9012 }
9013
9014 /**
9015 * ice_set_default_local_mib_settings - Set Local LLDP MIB to default settings
9016 * @sc: device softc structure
9017 *
9018 * Overwrites the driver's SW local LLDP MIB with default settings. This
9019 * ensures the driver has a valid MIB when it next uses the Set Local LLDP MIB
9020 * admin queue command.
9021 */
9022 static void
ice_set_default_local_mib_settings(struct ice_softc * sc)9023 ice_set_default_local_mib_settings(struct ice_softc *sc)
9024 {
9025 struct ice_dcbx_cfg *dcbcfg;
9026 struct ice_hw *hw = &sc->hw;
9027 struct ice_port_info *pi;
9028 u8 maxtcs, maxtcs_ets, old_pfc_mode;
9029
9030 pi = hw->port_info;
9031
9032 dcbcfg = &pi->qos_cfg.local_dcbx_cfg;
9033
9034 maxtcs = hw->func_caps.common_cap.maxtc;
9035 /* This value is only 3 bits; 8 TCs maps to 0 */
9036 maxtcs_ets = maxtcs & ICE_IEEE_ETS_MAXTC_M;
9037
9038 /* VLAN vs DSCP mode needs to be preserved */
9039 old_pfc_mode = dcbcfg->pfc_mode;
9040
9041 /**
9042 * Setup the default settings used by the driver for the Set Local
9043 * LLDP MIB Admin Queue command (0x0A08). (1TC w/ 100% BW, ETS, no
9044 * PFC, TSA=2).
9045 */
9046 memset(dcbcfg, 0, sizeof(*dcbcfg));
9047
9048 dcbcfg->etscfg.willing = 1;
9049 dcbcfg->etscfg.tcbwtable[0] = 100;
9050 dcbcfg->etscfg.maxtcs = maxtcs_ets;
9051 dcbcfg->etscfg.tsatable[0] = 2;
9052
9053 dcbcfg->etsrec = dcbcfg->etscfg;
9054 dcbcfg->etsrec.willing = 0;
9055
9056 dcbcfg->pfc.willing = 1;
9057 dcbcfg->pfc.pfccap = maxtcs;
9058
9059 dcbcfg->pfc_mode = old_pfc_mode;
9060 }
9061
9062 /**
9063 * ice_do_dcb_reconfig - notify RDMA and reconfigure PF LAN VSI
9064 * @sc: the device private softc
9065 * @pending_mib: FW has a pending MIB change to execute
9066 *
9067 * @pre Determined that the DCB configuration requires a change
9068 *
9069 * Reconfigures the PF LAN VSI based on updated DCB configuration
9070 * found in the hw struct's/port_info's/ local dcbx configuration.
9071 */
9072 void
ice_do_dcb_reconfig(struct ice_softc * sc,bool pending_mib)9073 ice_do_dcb_reconfig(struct ice_softc *sc, bool pending_mib)
9074 {
9075 struct ice_aqc_port_ets_elem port_ets = { 0 };
9076 struct ice_dcbx_cfg *local_dcbx_cfg;
9077 struct ice_hw *hw = &sc->hw;
9078 struct ice_port_info *pi;
9079 device_t dev = sc->dev;
9080 int status;
9081
9082 pi = sc->hw.port_info;
9083 local_dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
9084
9085 ice_rdma_notify_dcb_qos_change(sc);
9086 /* If there's a pending MIB, tell the FW to execute the MIB change
9087 * now.
9088 */
9089 if (pending_mib) {
9090 status = ice_lldp_execute_pending_mib(hw);
9091 if ((status == ICE_ERR_AQ_ERROR) &&
9092 (hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)) {
9093 device_printf(dev,
9094 "Execute Pending LLDP MIB AQ call failed, no pending MIB\n");
9095 } else if (status) {
9096 device_printf(dev,
9097 "Execute Pending LLDP MIB AQ call failed, err %s aq_err %s\n",
9098 ice_status_str(status),
9099 ice_aq_str(hw->adminq.sq_last_status));
9100 /* This won't break traffic, but QoS will not work as expected */
9101 }
9102 }
9103
9104 /* Set state when there's more than one TC */
9105 if (ice_dcb_get_num_tc(local_dcbx_cfg) > 1) {
9106 device_printf(dev, "Multiple traffic classes enabled\n");
9107 ice_set_state(&sc->state, ICE_STATE_MULTIPLE_TCS);
9108 } else {
9109 device_printf(dev, "Multiple traffic classes disabled\n");
9110 ice_clear_state(&sc->state, ICE_STATE_MULTIPLE_TCS);
9111 }
9112
9113 /* Disable PF VSI since it's going to be reconfigured */
9114 ice_stop_pf_vsi(sc);
9115
9116 /* Query ETS configuration and update SW Tx scheduler info */
9117 status = ice_query_port_ets(pi, &port_ets, sizeof(port_ets), NULL);
9118 if (status) {
9119 device_printf(dev,
9120 "Query Port ETS AQ call failed, err %s aq_err %s\n",
9121 ice_status_str(status),
9122 ice_aq_str(hw->adminq.sq_last_status));
9123 /* This won't break traffic, but QoS will not work as expected */
9124 }
9125
9126 /* Change PF VSI configuration */
9127 ice_dcb_recfg(sc);
9128
9129 /* Send new configuration to RDMA client driver */
9130 ice_rdma_dcb_qos_update(sc, pi);
9131
9132 ice_request_stack_reinit(sc);
9133 }
9134
9135 /**
9136 * ice_handle_mib_change_event - helper function to handle LLDP MIB change events
9137 * @sc: the device private softc
9138 * @event: event received on a control queue
9139 *
9140 * Checks the updated MIB it receives and possibly reconfigures the PF LAN
9141 * VSI depending on what has changed. This will also print out some debug
9142 * information about the MIB event if ICE_DBG_DCB is enabled in the debug_mask.
9143 */
9144 static void
ice_handle_mib_change_event(struct ice_softc * sc,struct ice_rq_event_info * event)9145 ice_handle_mib_change_event(struct ice_softc *sc, struct ice_rq_event_info *event)
9146 {
9147 struct ice_aqc_lldp_get_mib *params =
9148 (struct ice_aqc_lldp_get_mib *)&event->desc.params.lldp_get_mib;
9149 struct ice_dcbx_cfg tmp_dcbx_cfg, *local_dcbx_cfg;
9150 struct ice_port_info *pi;
9151 device_t dev = sc->dev;
9152 struct ice_hw *hw = &sc->hw;
9153 bool needs_reconfig, mib_is_pending;
9154 int status;
9155 u8 mib_type, bridge_type;
9156
9157 ASSERT_CFG_LOCKED(sc);
9158
9159 ice_debug_print_mib_change_event(sc, event);
9160
9161 pi = sc->hw.port_info;
9162
9163 mib_type = (params->type & ICE_AQ_LLDP_MIB_TYPE_M) >>
9164 ICE_AQ_LLDP_MIB_TYPE_S;
9165 bridge_type = (params->type & ICE_AQ_LLDP_BRID_TYPE_M) >>
9166 ICE_AQ_LLDP_BRID_TYPE_S;
9167 mib_is_pending = (params->state & ICE_AQ_LLDP_MIB_CHANGE_STATE_M) >>
9168 ICE_AQ_LLDP_MIB_CHANGE_STATE_S;
9169
9170 /* Ignore if event is not for Nearest Bridge */
9171 if (bridge_type != ICE_AQ_LLDP_BRID_TYPE_NEAREST_BRID)
9172 return;
9173
9174 /* Check MIB Type and return if event for Remote MIB update */
9175 if (mib_type == ICE_AQ_LLDP_MIB_REMOTE) {
9176 /* Update the cached remote MIB and return */
9177 status = ice_aq_get_dcb_cfg(pi->hw, ICE_AQ_LLDP_MIB_REMOTE,
9178 ICE_AQ_LLDP_BRID_TYPE_NEAREST_BRID,
9179 &pi->qos_cfg.remote_dcbx_cfg);
9180 if (status)
9181 device_printf(dev,
9182 "%s: Failed to get Remote DCB config; status %s, aq_err %s\n",
9183 __func__, ice_status_str(status),
9184 ice_aq_str(hw->adminq.sq_last_status));
9185 /* Not fatal if this fails */
9186 return;
9187 }
9188
9189 /* Save line length by aliasing the local dcbx cfg */
9190 local_dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
9191 /* Save off the old configuration and clear current config */
9192 tmp_dcbx_cfg = *local_dcbx_cfg;
9193 memset(local_dcbx_cfg, 0, sizeof(*local_dcbx_cfg));
9194
9195 /* Update the current local_dcbx_cfg with new data */
9196 if (mib_is_pending) {
9197 ice_get_dcb_cfg_from_mib_change(pi, event);
9198 } else {
9199 /* Get updated DCBX data from firmware */
9200 status = ice_get_dcb_cfg(pi);
9201 if (status) {
9202 device_printf(dev,
9203 "%s: Failed to get Local DCB config; status %s, aq_err %s\n",
9204 __func__, ice_status_str(status),
9205 ice_aq_str(hw->adminq.sq_last_status));
9206 return;
9207 }
9208 }
9209
9210 /* Check to see if DCB needs reconfiguring */
9211 needs_reconfig = ice_dcb_needs_reconfig(sc, &tmp_dcbx_cfg,
9212 local_dcbx_cfg);
9213
9214 if (!needs_reconfig && !mib_is_pending)
9215 return;
9216
9217 /* Reconfigure -- this will also notify FW that configuration is done,
9218 * if the FW MIB change is only pending instead of executed.
9219 */
9220 ice_do_dcb_reconfig(sc, mib_is_pending);
9221 }
9222
9223 /**
9224 * ice_send_version - Send driver version to firmware
9225 * @sc: the device private softc
9226 *
9227 * Send the driver version to the firmware. This must be called as early as
9228 * possible after ice_init_hw().
9229 */
9230 int
ice_send_version(struct ice_softc * sc)9231 ice_send_version(struct ice_softc *sc)
9232 {
9233 struct ice_driver_ver driver_version = {0};
9234 struct ice_hw *hw = &sc->hw;
9235 device_t dev = sc->dev;
9236 int status;
9237
9238 driver_version.major_ver = ice_major_version;
9239 driver_version.minor_ver = ice_minor_version;
9240 driver_version.build_ver = ice_patch_version;
9241 driver_version.subbuild_ver = ice_rc_version;
9242
9243 strlcpy((char *)driver_version.driver_string, ice_driver_version,
9244 sizeof(driver_version.driver_string));
9245
9246 status = ice_aq_send_driver_ver(hw, &driver_version, NULL);
9247 if (status) {
9248 device_printf(dev, "Unable to send driver version to firmware, err %s aq_err %s\n",
9249 ice_status_str(status), ice_aq_str(hw->adminq.sq_last_status));
9250 return (EIO);
9251 }
9252
9253 return (0);
9254 }
9255
9256 /**
9257 * ice_handle_lan_overflow_event - helper function to log LAN overflow events
9258 * @sc: device softc
9259 * @event: event received on a control queue
9260 *
9261 * Prints out a message when a LAN overflow event is detected on a receive
9262 * queue.
9263 */
9264 static void
ice_handle_lan_overflow_event(struct ice_softc * sc,struct ice_rq_event_info * event)9265 ice_handle_lan_overflow_event(struct ice_softc *sc, struct ice_rq_event_info *event)
9266 {
9267 struct ice_aqc_event_lan_overflow *params =
9268 (struct ice_aqc_event_lan_overflow *)&event->desc.params.lan_overflow;
9269 struct ice_hw *hw = &sc->hw;
9270
9271 ice_debug(hw, ICE_DBG_DCB, "LAN overflow event detected, prtdcb_ruptq=0x%08x, qtx_ctl=0x%08x\n",
9272 LE32_TO_CPU(params->prtdcb_ruptq),
9273 LE32_TO_CPU(params->qtx_ctl));
9274 }
9275
9276 /**
9277 * ice_add_ethertype_to_list - Add an Ethertype filter to a filter list
9278 * @vsi: the VSI to target packets to
9279 * @list: the list to add the filter to
9280 * @ethertype: the Ethertype to filter on
9281 * @direction: The direction of the filter (Tx or Rx)
9282 * @action: the action to take
9283 *
9284 * Add an Ethertype filter to a filter list. Used to forward a series of
9285 * filters to the firmware for configuring the switch.
9286 *
9287 * Returns 0 on success, and an error code on failure.
9288 */
9289 static int
ice_add_ethertype_to_list(struct ice_vsi * vsi,struct ice_list_head * list,u16 ethertype,u16 direction,enum ice_sw_fwd_act_type action)9290 ice_add_ethertype_to_list(struct ice_vsi *vsi, struct ice_list_head *list,
9291 u16 ethertype, u16 direction,
9292 enum ice_sw_fwd_act_type action)
9293 {
9294 struct ice_fltr_list_entry *entry;
9295
9296 MPASS((direction == ICE_FLTR_TX) || (direction == ICE_FLTR_RX));
9297
9298 entry = (__typeof(entry))malloc(sizeof(*entry), M_ICE, M_NOWAIT|M_ZERO);
9299 if (!entry)
9300 return (ENOMEM);
9301
9302 entry->fltr_info.flag = direction;
9303 entry->fltr_info.src_id = ICE_SRC_ID_VSI;
9304 entry->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
9305 entry->fltr_info.fltr_act = action;
9306 entry->fltr_info.vsi_handle = vsi->idx;
9307 entry->fltr_info.l_data.ethertype_mac.ethertype = ethertype;
9308
9309 LIST_ADD(&entry->list_entry, list);
9310
9311 return 0;
9312 }
9313
9314 #define ETHERTYPE_PAUSE_FRAMES 0x8808
9315 #define ETHERTYPE_LLDP_FRAMES 0x88cc
9316
9317 /**
9318 * ice_cfg_pf_ethertype_filters - Configure switch to drop ethertypes
9319 * @sc: the device private softc
9320 *
9321 * Configure the switch to drop PAUSE frames and LLDP frames transmitted from
9322 * the host. This prevents malicious VFs from sending these frames and being
9323 * able to control or configure the network.
9324 */
9325 int
ice_cfg_pf_ethertype_filters(struct ice_softc * sc)9326 ice_cfg_pf_ethertype_filters(struct ice_softc *sc)
9327 {
9328 struct ice_list_head ethertype_list;
9329 struct ice_vsi *vsi = &sc->pf_vsi;
9330 struct ice_hw *hw = &sc->hw;
9331 device_t dev = sc->dev;
9332 int status;
9333 int err = 0;
9334
9335 INIT_LIST_HEAD(ðertype_list);
9336
9337 /*
9338 * Note that the switch filters will ignore the VSI index for the drop
9339 * action, so we only need to program drop filters once for the main
9340 * VSI.
9341 */
9342
9343 /* Configure switch to drop all Tx pause frames coming from any VSI. */
9344 if (sc->enable_tx_fc_filter) {
9345 err = ice_add_ethertype_to_list(vsi, ðertype_list,
9346 ETHERTYPE_PAUSE_FRAMES,
9347 ICE_FLTR_TX, ICE_DROP_PACKET);
9348 if (err)
9349 goto free_ethertype_list;
9350 }
9351
9352 /* Configure switch to drop LLDP frames coming from any VSI */
9353 if (sc->enable_tx_lldp_filter) {
9354 err = ice_add_ethertype_to_list(vsi, ðertype_list,
9355 ETHERTYPE_LLDP_FRAMES,
9356 ICE_FLTR_TX, ICE_DROP_PACKET);
9357 if (err)
9358 goto free_ethertype_list;
9359 }
9360
9361 status = ice_add_eth_mac(hw, ðertype_list);
9362 if (status) {
9363 device_printf(dev,
9364 "Failed to add Tx Ethertype filters, err %s aq_err %s\n",
9365 ice_status_str(status),
9366 ice_aq_str(hw->adminq.sq_last_status));
9367 err = (EIO);
9368 }
9369
9370 free_ethertype_list:
9371 ice_free_fltr_list(ðertype_list);
9372 return err;
9373 }
9374
9375 /**
9376 * ice_add_rx_lldp_filter - add ethertype filter for Rx LLDP frames
9377 * @sc: the device private structure
9378 *
9379 * Add a switch ethertype filter which forwards the LLDP frames to the main PF
9380 * VSI. Called when the fw_lldp_agent is disabled, to allow the LLDP frames to
9381 * be forwarded to the stack.
9382 */
9383 void
ice_add_rx_lldp_filter(struct ice_softc * sc)9384 ice_add_rx_lldp_filter(struct ice_softc *sc)
9385 {
9386 struct ice_list_head ethertype_list;
9387 struct ice_vsi *vsi = &sc->pf_vsi;
9388 struct ice_hw *hw = &sc->hw;
9389 device_t dev = sc->dev;
9390 int status;
9391 int err;
9392 u16 vsi_num;
9393
9394 /*
9395 * If FW is new enough, use a direct AQ command to perform the filter
9396 * addition.
9397 */
9398 if (ice_fw_supports_lldp_fltr_ctrl(hw)) {
9399 vsi_num = ice_get_hw_vsi_num(hw, vsi->idx);
9400 status = ice_lldp_fltr_add_remove(hw, vsi_num, true);
9401 if (status) {
9402 device_printf(dev,
9403 "Failed to add Rx LLDP filter, err %s aq_err %s\n",
9404 ice_status_str(status),
9405 ice_aq_str(hw->adminq.sq_last_status));
9406 } else
9407 ice_set_state(&sc->state,
9408 ICE_STATE_LLDP_RX_FLTR_FROM_DRIVER);
9409 return;
9410 }
9411
9412 INIT_LIST_HEAD(ðertype_list);
9413
9414 /* Forward Rx LLDP frames to the stack */
9415 err = ice_add_ethertype_to_list(vsi, ðertype_list,
9416 ETHERTYPE_LLDP_FRAMES,
9417 ICE_FLTR_RX, ICE_FWD_TO_VSI);
9418 if (err) {
9419 device_printf(dev,
9420 "Failed to add Rx LLDP filter, err %s\n",
9421 ice_err_str(err));
9422 goto free_ethertype_list;
9423 }
9424
9425 status = ice_add_eth_mac(hw, ðertype_list);
9426 if (status && status != ICE_ERR_ALREADY_EXISTS) {
9427 device_printf(dev,
9428 "Failed to add Rx LLDP filter, err %s aq_err %s\n",
9429 ice_status_str(status),
9430 ice_aq_str(hw->adminq.sq_last_status));
9431 } else {
9432 /*
9433 * If status == ICE_ERR_ALREADY_EXISTS, we won't treat an
9434 * already existing filter as an error case.
9435 */
9436 ice_set_state(&sc->state, ICE_STATE_LLDP_RX_FLTR_FROM_DRIVER);
9437 }
9438
9439 free_ethertype_list:
9440 ice_free_fltr_list(ðertype_list);
9441 }
9442
9443 /**
9444 * ice_del_rx_lldp_filter - Remove ethertype filter for Rx LLDP frames
9445 * @sc: the device private structure
9446 *
9447 * Remove the switch filter forwarding LLDP frames to the main PF VSI, called
9448 * when the firmware LLDP agent is enabled, to stop routing LLDP frames to the
9449 * stack.
9450 */
9451 static void
ice_del_rx_lldp_filter(struct ice_softc * sc)9452 ice_del_rx_lldp_filter(struct ice_softc *sc)
9453 {
9454 struct ice_list_head ethertype_list;
9455 struct ice_vsi *vsi = &sc->pf_vsi;
9456 struct ice_hw *hw = &sc->hw;
9457 device_t dev = sc->dev;
9458 int status;
9459 int err;
9460 u16 vsi_num;
9461
9462 /*
9463 * Only in the scenario where the driver added the filter during
9464 * this session (while the driver was loaded) would we be able to
9465 * delete this filter.
9466 */
9467 if (!ice_test_state(&sc->state, ICE_STATE_LLDP_RX_FLTR_FROM_DRIVER))
9468 return;
9469
9470 /*
9471 * If FW is new enough, use a direct AQ command to perform the filter
9472 * removal.
9473 */
9474 if (ice_fw_supports_lldp_fltr_ctrl(hw)) {
9475 vsi_num = ice_get_hw_vsi_num(hw, vsi->idx);
9476 status = ice_lldp_fltr_add_remove(hw, vsi_num, false);
9477 if (status) {
9478 device_printf(dev,
9479 "Failed to remove Rx LLDP filter, err %s aq_err %s\n",
9480 ice_status_str(status),
9481 ice_aq_str(hw->adminq.sq_last_status));
9482 }
9483 return;
9484 }
9485
9486 INIT_LIST_HEAD(ðertype_list);
9487
9488 /* Remove filter forwarding Rx LLDP frames to the stack */
9489 err = ice_add_ethertype_to_list(vsi, ðertype_list,
9490 ETHERTYPE_LLDP_FRAMES,
9491 ICE_FLTR_RX, ICE_FWD_TO_VSI);
9492 if (err) {
9493 device_printf(dev,
9494 "Failed to remove Rx LLDP filter, err %s\n",
9495 ice_err_str(err));
9496 goto free_ethertype_list;
9497 }
9498
9499 status = ice_remove_eth_mac(hw, ðertype_list);
9500 if (status == ICE_ERR_DOES_NOT_EXIST) {
9501 ; /* Don't complain if we try to remove a filter that doesn't exist */
9502 } else if (status) {
9503 device_printf(dev,
9504 "Failed to remove Rx LLDP filter, err %s aq_err %s\n",
9505 ice_status_str(status),
9506 ice_aq_str(hw->adminq.sq_last_status));
9507 }
9508
9509 free_ethertype_list:
9510 ice_free_fltr_list(ðertype_list);
9511 }
9512
9513 /**
9514 * ice_init_link_configuration -- Setup link in different ways depending
9515 * on whether media is available or not.
9516 * @sc: device private structure
9517 *
9518 * Called at the end of the attach process to either set default link
9519 * parameters if there is media available, or force HW link down and
9520 * set a state bit if there is no media.
9521 */
9522 void
ice_init_link_configuration(struct ice_softc * sc)9523 ice_init_link_configuration(struct ice_softc *sc)
9524 {
9525 struct ice_port_info *pi = sc->hw.port_info;
9526 struct ice_hw *hw = &sc->hw;
9527 device_t dev = sc->dev;
9528 int status, retry_count = 0;
9529
9530 retry:
9531 pi->phy.get_link_info = true;
9532 status = ice_get_link_status(pi, &sc->link_up);
9533
9534 if (status) {
9535 if (hw->adminq.sq_last_status == ICE_AQ_RC_EAGAIN) {
9536 retry_count++;
9537 ice_debug(hw, ICE_DBG_LINK,
9538 "%s: ice_get_link_status failed with EAGAIN, attempt %d\n",
9539 __func__, retry_count);
9540 if (retry_count < ICE_LINK_AQ_MAX_RETRIES) {
9541 ice_msec_pause(ICE_LINK_RETRY_DELAY);
9542 goto retry;
9543 }
9544 } else {
9545 device_printf(dev,
9546 "%s: ice_get_link_status failed; status %s, aq_err %s\n",
9547 __func__, ice_status_str(status),
9548 ice_aq_str(hw->adminq.sq_last_status));
9549 }
9550 return;
9551 }
9552
9553 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9554 ice_clear_state(&sc->state, ICE_STATE_NO_MEDIA);
9555 /* Apply default link settings */
9556 if (!ice_test_state(&sc->state, ICE_STATE_LINK_ACTIVE_ON_DOWN)) {
9557 ice_set_link(sc, false);
9558 ice_set_state(&sc->state, ICE_STATE_LINK_STATUS_REPORTED);
9559 } else
9560 ice_apply_saved_phy_cfg(sc, ICE_APPLY_LS_FEC_FC);
9561 } else {
9562 /* Set link down, and poll for media available in timer. This prevents the
9563 * driver from receiving spurious link-related events.
9564 */
9565 ice_set_state(&sc->state, ICE_STATE_NO_MEDIA);
9566 status = ice_aq_set_link_restart_an(pi, false, NULL);
9567 if (status && hw->adminq.sq_last_status != ICE_AQ_RC_EMODE)
9568 device_printf(dev,
9569 "%s: ice_aq_set_link_restart_an: status %s, aq_err %s\n",
9570 __func__, ice_status_str(status),
9571 ice_aq_str(hw->adminq.sq_last_status));
9572 }
9573 }
9574
9575 /**
9576 * ice_apply_saved_phy_req_to_cfg -- Write saved user PHY settings to cfg data
9577 * @sc: device private structure
9578 * @cfg: new PHY config data to be modified
9579 *
9580 * Applies user settings for advertised speeds to the PHY type fields in the
9581 * supplied PHY config struct. It uses the data from pcaps to check if the
9582 * saved settings are invalid and uses the pcaps data instead if they are
9583 * invalid.
9584 */
9585 static int
ice_apply_saved_phy_req_to_cfg(struct ice_softc * sc,struct ice_aqc_set_phy_cfg_data * cfg)9586 ice_apply_saved_phy_req_to_cfg(struct ice_softc *sc,
9587 struct ice_aqc_set_phy_cfg_data *cfg)
9588 {
9589 struct ice_phy_data phy_data = { 0 };
9590 struct ice_port_info *pi = sc->hw.port_info;
9591 u64 phy_low = 0, phy_high = 0;
9592 u16 link_speeds;
9593 int ret;
9594
9595 link_speeds = pi->phy.curr_user_speed_req;
9596
9597 if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_LINK_MGMT_VER_2)) {
9598 memset(&phy_data, 0, sizeof(phy_data));
9599 phy_data.report_mode = ICE_AQC_REPORT_DFLT_CFG;
9600 phy_data.user_speeds_orig = link_speeds;
9601 ret = ice_intersect_phy_types_and_speeds(sc, &phy_data);
9602 if (ret != 0) {
9603 /* Error message already printed within function */
9604 return (ret);
9605 }
9606 phy_low = phy_data.phy_low_intr;
9607 phy_high = phy_data.phy_high_intr;
9608
9609 if (link_speeds == 0 || phy_data.user_speeds_intr)
9610 goto finalize_link_speed;
9611 if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_LENIENT_LINK_MODE)) {
9612 memset(&phy_data, 0, sizeof(phy_data));
9613 phy_data.report_mode = ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA;
9614 phy_data.user_speeds_orig = link_speeds;
9615 ret = ice_intersect_phy_types_and_speeds(sc, &phy_data);
9616 if (ret != 0) {
9617 /* Error message already printed within function */
9618 return (ret);
9619 }
9620 phy_low = phy_data.phy_low_intr;
9621 phy_high = phy_data.phy_high_intr;
9622
9623 if (!phy_data.user_speeds_intr) {
9624 phy_low = phy_data.phy_low_orig;
9625 phy_high = phy_data.phy_high_orig;
9626 }
9627 goto finalize_link_speed;
9628 }
9629 /* If we're here, then it means the benefits of Version 2
9630 * link management aren't utilized. We fall through to
9631 * handling Strict Link Mode the same as Version 1 link
9632 * management.
9633 */
9634 }
9635
9636 memset(&phy_data, 0, sizeof(phy_data));
9637 if ((link_speeds == 0) &&
9638 (sc->ldo_tlv.phy_type_low || sc->ldo_tlv.phy_type_high))
9639 phy_data.report_mode = ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA;
9640 else
9641 phy_data.report_mode = ICE_AQC_REPORT_TOPO_CAP_MEDIA;
9642 phy_data.user_speeds_orig = link_speeds;
9643 ret = ice_intersect_phy_types_and_speeds(sc, &phy_data);
9644 if (ret != 0) {
9645 /* Error message already printed within function */
9646 return (ret);
9647 }
9648 phy_low = phy_data.phy_low_intr;
9649 phy_high = phy_data.phy_high_intr;
9650
9651 if (!ice_is_bit_set(sc->feat_en, ICE_FEATURE_LENIENT_LINK_MODE)) {
9652 if (phy_low == 0 && phy_high == 0) {
9653 device_printf(sc->dev,
9654 "The selected speed is not supported by the current media. Please select a link speed that is supported by the current media.\n");
9655 return (EINVAL);
9656 }
9657 } else {
9658 if (link_speeds == 0) {
9659 if (sc->ldo_tlv.phy_type_low & phy_low ||
9660 sc->ldo_tlv.phy_type_high & phy_high) {
9661 phy_low &= sc->ldo_tlv.phy_type_low;
9662 phy_high &= sc->ldo_tlv.phy_type_high;
9663 }
9664 } else if (phy_low == 0 && phy_high == 0) {
9665 memset(&phy_data, 0, sizeof(phy_data));
9666 phy_data.report_mode = ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA;
9667 phy_data.user_speeds_orig = link_speeds;
9668 ret = ice_intersect_phy_types_and_speeds(sc, &phy_data);
9669 if (ret != 0) {
9670 /* Error message already printed within function */
9671 return (ret);
9672 }
9673 phy_low = phy_data.phy_low_intr;
9674 phy_high = phy_data.phy_high_intr;
9675
9676 if (!phy_data.user_speeds_intr) {
9677 phy_low = phy_data.phy_low_orig;
9678 phy_high = phy_data.phy_high_orig;
9679 }
9680 }
9681 }
9682
9683 finalize_link_speed:
9684
9685 /* Cache new user settings for speeds */
9686 pi->phy.curr_user_speed_req = phy_data.user_speeds_intr;
9687 cfg->phy_type_low = htole64(phy_low);
9688 cfg->phy_type_high = htole64(phy_high);
9689
9690 return (ret);
9691 }
9692
9693 /**
9694 * ice_apply_saved_fec_req_to_cfg -- Write saved user FEC mode to cfg data
9695 * @sc: device private structure
9696 * @cfg: new PHY config data to be modified
9697 *
9698 * Applies user setting for FEC mode to PHY config struct. It uses the data
9699 * from pcaps to check if the saved settings are invalid and uses the pcaps
9700 * data instead if they are invalid.
9701 */
9702 static int
ice_apply_saved_fec_req_to_cfg(struct ice_softc * sc,struct ice_aqc_set_phy_cfg_data * cfg)9703 ice_apply_saved_fec_req_to_cfg(struct ice_softc *sc,
9704 struct ice_aqc_set_phy_cfg_data *cfg)
9705 {
9706 struct ice_port_info *pi = sc->hw.port_info;
9707 int status;
9708
9709 cfg->caps &= ~ICE_AQC_PHY_EN_AUTO_FEC;
9710 status = ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
9711 if (status)
9712 return (EIO);
9713
9714 return (0);
9715 }
9716
9717 /**
9718 * ice_apply_saved_fc_req_to_cfg -- Write saved user flow control mode to cfg data
9719 * @pi: port info struct
9720 * @cfg: new PHY config data to be modified
9721 *
9722 * Applies user setting for flow control mode to PHY config struct. There are
9723 * no invalid flow control mode settings; if there are, then this function
9724 * treats them like "ICE_FC_NONE".
9725 */
9726 static void
ice_apply_saved_fc_req_to_cfg(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg)9727 ice_apply_saved_fc_req_to_cfg(struct ice_port_info *pi,
9728 struct ice_aqc_set_phy_cfg_data *cfg)
9729 {
9730 cfg->caps &= ~(ICE_AQ_PHY_ENA_TX_PAUSE_ABILITY |
9731 ICE_AQ_PHY_ENA_RX_PAUSE_ABILITY);
9732
9733 switch (pi->phy.curr_user_fc_req) {
9734 case ICE_FC_FULL:
9735 cfg->caps |= ICE_AQ_PHY_ENA_TX_PAUSE_ABILITY |
9736 ICE_AQ_PHY_ENA_RX_PAUSE_ABILITY;
9737 break;
9738 case ICE_FC_RX_PAUSE:
9739 cfg->caps |= ICE_AQ_PHY_ENA_RX_PAUSE_ABILITY;
9740 break;
9741 case ICE_FC_TX_PAUSE:
9742 cfg->caps |= ICE_AQ_PHY_ENA_TX_PAUSE_ABILITY;
9743 break;
9744 default:
9745 /* ICE_FC_NONE */
9746 break;
9747 }
9748 }
9749
9750 /**
9751 * ice_apply_saved_phy_cfg -- Re-apply user PHY config settings
9752 * @sc: device private structure
9753 * @settings: which settings to apply
9754 *
9755 * Applies user settings for advertised speeds, FEC mode, and flow
9756 * control mode to a PHY config struct; it uses the data from pcaps
9757 * to check if the saved settings are invalid and uses the pcaps
9758 * data instead if they are invalid.
9759 *
9760 * For things like sysctls where only one setting needs to be
9761 * updated, the bitmap allows the caller to specify which setting
9762 * to update.
9763 */
9764 int
ice_apply_saved_phy_cfg(struct ice_softc * sc,u8 settings)9765 ice_apply_saved_phy_cfg(struct ice_softc *sc, u8 settings)
9766 {
9767 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
9768 struct ice_port_info *pi = sc->hw.port_info;
9769 struct ice_aqc_get_phy_caps_data pcaps = { 0 };
9770 struct ice_hw *hw = &sc->hw;
9771 device_t dev = sc->dev;
9772 u64 phy_low, phy_high;
9773 int status;
9774 enum ice_fec_mode dflt_fec_mode;
9775 u16 dflt_user_speed;
9776
9777 if (!settings || settings > ICE_APPLY_LS_FEC_FC) {
9778 ice_debug(hw, ICE_DBG_LINK, "Settings out-of-bounds: %u\n",
9779 settings);
9780 }
9781
9782 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
9783 &pcaps, NULL);
9784 if (status) {
9785 device_printf(dev,
9786 "%s: ice_aq_get_phy_caps (ACTIVE) failed; status %s, aq_err %s\n",
9787 __func__, ice_status_str(status),
9788 ice_aq_str(hw->adminq.sq_last_status));
9789 return (EIO);
9790 }
9791
9792 phy_low = le64toh(pcaps.phy_type_low);
9793 phy_high = le64toh(pcaps.phy_type_high);
9794
9795 /* Save off initial config parameters */
9796 dflt_user_speed = ice_aq_phy_types_to_link_speeds(phy_low, phy_high);
9797 dflt_fec_mode = ice_caps_to_fec_mode(pcaps.caps, pcaps.link_fec_options);
9798
9799 /* Setup new PHY config */
9800 ice_copy_phy_caps_to_cfg(pi, &pcaps, &cfg);
9801
9802 /* On error, restore active configuration values */
9803 if ((settings & ICE_APPLY_LS) &&
9804 ice_apply_saved_phy_req_to_cfg(sc, &cfg)) {
9805 pi->phy.curr_user_speed_req = dflt_user_speed;
9806 cfg.phy_type_low = pcaps.phy_type_low;
9807 cfg.phy_type_high = pcaps.phy_type_high;
9808 }
9809 if ((settings & ICE_APPLY_FEC) &&
9810 ice_apply_saved_fec_req_to_cfg(sc, &cfg)) {
9811 pi->phy.curr_user_fec_req = dflt_fec_mode;
9812 }
9813 if (settings & ICE_APPLY_FC) {
9814 /* No real error indicators for this process,
9815 * so we'll just have to assume it works. */
9816 ice_apply_saved_fc_req_to_cfg(pi, &cfg);
9817 }
9818
9819 /* Enable link and re-negotiate it */
9820 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
9821
9822 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
9823 if (status) {
9824 /* Don't indicate failure if there's no media in the port.
9825 * The settings have been saved and will apply when media
9826 * is inserted.
9827 */
9828 if ((status == ICE_ERR_AQ_ERROR) &&
9829 (hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)) {
9830 device_printf(dev,
9831 "%s: Setting will be applied when media is inserted\n",
9832 __func__);
9833 return (0);
9834 } else {
9835 device_printf(dev,
9836 "%s: ice_aq_set_phy_cfg failed; status %s, aq_err %s\n",
9837 __func__, ice_status_str(status),
9838 ice_aq_str(hw->adminq.sq_last_status));
9839 return (EIO);
9840 }
9841 }
9842
9843 return (0);
9844 }
9845
9846 /**
9847 * ice_print_ldo_tlv - Print out LDO TLV information
9848 * @sc: device private structure
9849 * @tlv: LDO TLV information from the adapter NVM
9850 *
9851 * Dump out the information in tlv to the kernel message buffer; intended for
9852 * debugging purposes.
9853 */
9854 static void
ice_print_ldo_tlv(struct ice_softc * sc,struct ice_link_default_override_tlv * tlv)9855 ice_print_ldo_tlv(struct ice_softc *sc, struct ice_link_default_override_tlv *tlv)
9856 {
9857 device_t dev = sc->dev;
9858
9859 device_printf(dev, "TLV: -options 0x%02x\n", tlv->options);
9860 device_printf(dev, " -phy_config 0x%02x\n", tlv->phy_config);
9861 device_printf(dev, " -fec_options 0x%02x\n", tlv->fec_options);
9862 device_printf(dev, " -phy_high 0x%016llx\n",
9863 (unsigned long long)tlv->phy_type_high);
9864 device_printf(dev, " -phy_low 0x%016llx\n",
9865 (unsigned long long)tlv->phy_type_low);
9866 }
9867
9868 /**
9869 * ice_set_link_management_mode -- Strict or lenient link management
9870 * @sc: device private structure
9871 *
9872 * Some NVMs give the adapter the option to advertise a superset of link
9873 * configurations. This checks to see if that option is enabled.
9874 * Further, the NVM could also provide a specific set of configurations
9875 * to try; these are cached in the driver's private structure if they
9876 * are available.
9877 */
9878 void
ice_set_link_management_mode(struct ice_softc * sc)9879 ice_set_link_management_mode(struct ice_softc *sc)
9880 {
9881 struct ice_port_info *pi = sc->hw.port_info;
9882 device_t dev = sc->dev;
9883 struct ice_link_default_override_tlv tlv = { 0 };
9884 int status;
9885
9886 /* Port must be in strict mode if FW version is below a certain
9887 * version. (i.e. Don't set lenient mode features)
9888 */
9889 if (!(ice_fw_supports_link_override(&sc->hw)))
9890 return;
9891
9892 status = ice_get_link_default_override(&tlv, pi);
9893 if (status) {
9894 device_printf(dev,
9895 "%s: ice_get_link_default_override failed; status %s, aq_err %s\n",
9896 __func__, ice_status_str(status),
9897 ice_aq_str(sc->hw.adminq.sq_last_status));
9898 return;
9899 }
9900
9901 if (sc->hw.debug_mask & ICE_DBG_LINK)
9902 ice_print_ldo_tlv(sc, &tlv);
9903
9904 /* Set lenient link mode */
9905 if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_LENIENT_LINK_MODE) &&
9906 (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE)))
9907 ice_set_bit(ICE_FEATURE_LENIENT_LINK_MODE, sc->feat_en);
9908
9909 /* FW supports reporting a default configuration */
9910 if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_LINK_MGMT_VER_2) &&
9911 ice_fw_supports_report_dflt_cfg(&sc->hw)) {
9912 ice_set_bit(ICE_FEATURE_LINK_MGMT_VER_2, sc->feat_en);
9913 /* Knowing we're at a high enough firmware revision to
9914 * support this link management configuration, we don't
9915 * need to check/support earlier versions.
9916 */
9917 return;
9918 }
9919
9920 /* Default overrides only work if in lenient link mode */
9921 if (ice_is_bit_set(sc->feat_cap, ICE_FEATURE_LINK_MGMT_VER_1) &&
9922 ice_is_bit_set(sc->feat_en, ICE_FEATURE_LENIENT_LINK_MODE) &&
9923 (tlv.options & ICE_LINK_OVERRIDE_EN))
9924 ice_set_bit(ICE_FEATURE_LINK_MGMT_VER_1, sc->feat_en);
9925
9926 /* Cache the LDO TLV structure in the driver, since it
9927 * won't change during the driver's lifetime.
9928 */
9929 sc->ldo_tlv = tlv;
9930 }
9931
9932 /**
9933 * ice_set_link -- Set up/down link on phy
9934 * @sc: device private structure
9935 * @enabled: link status to set up
9936 *
9937 * This should be called when change of link status is needed.
9938 */
9939 void
ice_set_link(struct ice_softc * sc,bool enabled)9940 ice_set_link(struct ice_softc *sc, bool enabled)
9941 {
9942 struct ice_hw *hw = &sc->hw;
9943 device_t dev = sc->dev;
9944 int status;
9945
9946 if (ice_driver_is_detaching(sc))
9947 return;
9948
9949 if (ice_test_state(&sc->state, ICE_STATE_NO_MEDIA))
9950 return;
9951
9952 if (enabled)
9953 ice_apply_saved_phy_cfg(sc, ICE_APPLY_LS_FEC_FC);
9954 else {
9955 status = ice_aq_set_link_restart_an(hw->port_info, false, NULL);
9956 if (status) {
9957 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
9958 device_printf(dev,
9959 "%s: Link control not enabled in current device mode\n",
9960 __func__);
9961 else
9962 device_printf(dev,
9963 "%s: ice_aq_set_link_restart_an: status %s, aq_err %s\n",
9964 __func__, ice_status_str(status),
9965 ice_aq_str(hw->adminq.sq_last_status));
9966 } else
9967 sc->link_up = false;
9968 }
9969 }
9970
9971 /**
9972 * ice_init_saved_phy_cfg -- Set cached user PHY cfg settings with NVM defaults
9973 * @sc: device private structure
9974 *
9975 * This should be called before the tunables for these link settings
9976 * (e.g. advertise_speed) are added -- so that these defaults don't overwrite
9977 * the cached values that the sysctl handlers will write.
9978 *
9979 * This also needs to be called before ice_init_link_configuration, to ensure
9980 * that there are sane values that can be written if there is media available
9981 * in the port.
9982 */
9983 void
ice_init_saved_phy_cfg(struct ice_softc * sc)9984 ice_init_saved_phy_cfg(struct ice_softc *sc)
9985 {
9986 struct ice_port_info *pi = sc->hw.port_info;
9987 struct ice_aqc_get_phy_caps_data pcaps = { 0 };
9988 struct ice_hw *hw = &sc->hw;
9989 device_t dev = sc->dev;
9990 int status;
9991 u64 phy_low, phy_high;
9992 u8 report_mode = ICE_AQC_REPORT_TOPO_CAP_MEDIA;
9993
9994 if (ice_is_bit_set(sc->feat_en, ICE_FEATURE_LINK_MGMT_VER_2))
9995 report_mode = ICE_AQC_REPORT_DFLT_CFG;
9996 status = ice_aq_get_phy_caps(pi, false, report_mode, &pcaps, NULL);
9997 if (status) {
9998 device_printf(dev,
9999 "%s: ice_aq_get_phy_caps (%s) failed; status %s, aq_err %s\n",
10000 __func__,
10001 report_mode == ICE_AQC_REPORT_DFLT_CFG ? "DFLT" : "w/MEDIA",
10002 ice_status_str(status),
10003 ice_aq_str(hw->adminq.sq_last_status));
10004 return;
10005 }
10006
10007 phy_low = le64toh(pcaps.phy_type_low);
10008 phy_high = le64toh(pcaps.phy_type_high);
10009
10010 /* Save off initial config parameters */
10011 pi->phy.curr_user_speed_req =
10012 ice_aq_phy_types_to_link_speeds(phy_low, phy_high);
10013 pi->phy.curr_user_fec_req = ice_caps_to_fec_mode(pcaps.caps,
10014 pcaps.link_fec_options);
10015 pi->phy.curr_user_fc_req = ice_caps_to_fc_mode(pcaps.caps);
10016 }
10017
10018 /**
10019 * ice_module_init - Driver callback to handle module load
10020 *
10021 * Callback for handling module load events. This function should initialize
10022 * any data structures that are used for the life of the device driver.
10023 */
10024 static int
ice_module_init(void)10025 ice_module_init(void)
10026 {
10027 ice_rdma_init();
10028 return (0);
10029 }
10030
10031 /**
10032 * ice_module_exit - Driver callback to handle module exit
10033 *
10034 * Callback for handling module unload events. This function should release
10035 * any resources initialized during ice_module_init.
10036 *
10037 * If this function returns non-zero, the module will not be unloaded. It
10038 * should only return such a value if the module cannot be unloaded at all,
10039 * such as due to outstanding memory references that cannot be revoked.
10040 */
10041 static int
ice_module_exit(void)10042 ice_module_exit(void)
10043 {
10044 ice_rdma_exit();
10045 return (0);
10046 }
10047
10048 /**
10049 * ice_module_event_handler - Callback for module events
10050 * @mod: unused module_t parameter
10051 * @what: the event requested
10052 * @arg: unused event argument
10053 *
10054 * Callback used to handle module events from the stack. Used to allow the
10055 * driver to define custom behavior that should happen at module load and
10056 * unload.
10057 */
10058 int
ice_module_event_handler(module_t __unused mod,int what,void __unused * arg)10059 ice_module_event_handler(module_t __unused mod, int what, void __unused *arg)
10060 {
10061 switch (what) {
10062 case MOD_LOAD:
10063 return ice_module_init();
10064 case MOD_UNLOAD:
10065 return ice_module_exit();
10066 default:
10067 /* TODO: do we need to handle MOD_QUIESCE and MOD_SHUTDOWN? */
10068 return (EOPNOTSUPP);
10069 }
10070 }
10071
10072 /**
10073 * ice_handle_nvm_access_ioctl - Handle an NVM access ioctl request
10074 * @sc: the device private softc
10075 * @ifd: ifdrv ioctl request pointer
10076 */
10077 int
ice_handle_nvm_access_ioctl(struct ice_softc * sc,struct ifdrv * ifd)10078 ice_handle_nvm_access_ioctl(struct ice_softc *sc, struct ifdrv *ifd)
10079 {
10080 union ice_nvm_access_data *data;
10081 struct ice_nvm_access_cmd *cmd;
10082 size_t ifd_len = ifd->ifd_len, malloc_len;
10083 struct ice_hw *hw = &sc->hw;
10084 device_t dev = sc->dev;
10085 int status;
10086 u8 *nvm_buffer;
10087 int err;
10088
10089 /*
10090 * ifioctl forwards SIOCxDRVSPEC to iflib without performing
10091 * a privilege check. In turn, iflib forwards the ioctl to the driver
10092 * without performing a privilege check. Perform one here to ensure
10093 * that non-privileged threads cannot access this interface.
10094 */
10095 err = priv_check(curthread, PRIV_DRIVER);
10096 if (err)
10097 return (err);
10098
10099 if (ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) {
10100 device_printf(dev, "%s: Driver must rebuild data structures after a reset. Operation aborted.\n",
10101 __func__);
10102 return (EBUSY);
10103 }
10104
10105 if (ifd_len < sizeof(struct ice_nvm_access_cmd)) {
10106 device_printf(dev, "%s: ifdrv length is too small. Got %zu, but expected %zu\n",
10107 __func__, ifd_len, sizeof(struct ice_nvm_access_cmd));
10108 return (EINVAL);
10109 }
10110
10111 if (ifd->ifd_data == NULL) {
10112 device_printf(dev, "%s: ifd data buffer not present.\n",
10113 __func__);
10114 return (EINVAL);
10115 }
10116
10117 /*
10118 * If everything works correctly, ice_handle_nvm_access should not
10119 * modify data past the size of the ioctl length. However, it could
10120 * lead to memory corruption if it did. Make sure to allocate at least
10121 * enough space for the command and data regardless. This
10122 * ensures that any access to the data union will not access invalid
10123 * memory.
10124 */
10125 malloc_len = max(ifd_len, sizeof(*data) + sizeof(*cmd));
10126
10127 nvm_buffer = (u8 *)malloc(malloc_len, M_ICE, M_ZERO | M_WAITOK);
10128 if (!nvm_buffer)
10129 return (ENOMEM);
10130
10131 /* Copy the NVM access command and data in from user space */
10132 /* coverity[tainted_data_argument] */
10133 err = copyin(ifd->ifd_data, nvm_buffer, ifd_len);
10134 if (err) {
10135 device_printf(dev, "%s: Copying request from user space failed, err %s\n",
10136 __func__, ice_err_str(err));
10137 goto cleanup_free_nvm_buffer;
10138 }
10139
10140 /*
10141 * The NVM command structure is immediately followed by data which
10142 * varies in size based on the command.
10143 */
10144 cmd = (struct ice_nvm_access_cmd *)nvm_buffer;
10145 data = (union ice_nvm_access_data *)(nvm_buffer + sizeof(struct ice_nvm_access_cmd));
10146
10147 /* Handle the NVM access request */
10148 status = ice_handle_nvm_access(hw, cmd, data);
10149 if (status)
10150 ice_debug(hw, ICE_DBG_NVM,
10151 "NVM access request failed, err %s\n",
10152 ice_status_str(status));
10153
10154 /* Copy the possibly modified contents of the handled request out */
10155 err = copyout(nvm_buffer, ifd->ifd_data, ifd_len);
10156 if (err) {
10157 device_printf(dev, "%s: Copying response back to user space failed, err %s\n",
10158 __func__, ice_err_str(err));
10159 goto cleanup_free_nvm_buffer;
10160 }
10161
10162 /* Convert private status to an error code for proper ioctl response */
10163 switch (status) {
10164 case 0:
10165 err = (0);
10166 break;
10167 case ICE_ERR_NO_MEMORY:
10168 err = (ENOMEM);
10169 break;
10170 case ICE_ERR_OUT_OF_RANGE:
10171 err = (ENOTTY);
10172 break;
10173 case ICE_ERR_PARAM:
10174 default:
10175 err = (EINVAL);
10176 break;
10177 }
10178
10179 cleanup_free_nvm_buffer:
10180 free(nvm_buffer, M_ICE);
10181 return err;
10182 }
10183
10184 /**
10185 * ice_read_sff_eeprom - Read data from SFF eeprom
10186 * @sc: device softc
10187 * @dev_addr: I2C device address (typically 0xA0 or 0xA2)
10188 * @offset: offset into the eeprom
10189 * @data: pointer to data buffer to store read data in
10190 * @length: length to read; max length is 16
10191 *
10192 * Read from the SFF eeprom in the module for this PF's port. For more details
10193 * on the contents of an SFF eeprom, refer to SFF-8724 (SFP), SFF-8636 (QSFP),
10194 * and SFF-8024 (both).
10195 */
10196 int
ice_read_sff_eeprom(struct ice_softc * sc,u16 dev_addr,u16 offset,u8 * data,u16 length)10197 ice_read_sff_eeprom(struct ice_softc *sc, u16 dev_addr, u16 offset, u8* data, u16 length)
10198 {
10199 struct ice_hw *hw = &sc->hw;
10200 int ret = 0, retries = 0;
10201 int status;
10202
10203 if (length > 16)
10204 return (EINVAL);
10205
10206 if (ice_test_state(&sc->state, ICE_STATE_RECOVERY_MODE))
10207 return (ENOSYS);
10208
10209 if (ice_test_state(&sc->state, ICE_STATE_NO_MEDIA))
10210 return (ENXIO);
10211
10212 do {
10213 status = ice_aq_sff_eeprom(hw, 0, dev_addr,
10214 offset, 0, 0, data, length,
10215 false, NULL);
10216 if (!status) {
10217 ret = 0;
10218 break;
10219 }
10220 if (status == ICE_ERR_AQ_ERROR &&
10221 hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY) {
10222 ret = EBUSY;
10223 continue;
10224 }
10225 if (status == ICE_ERR_AQ_ERROR &&
10226 hw->adminq.sq_last_status == ICE_AQ_RC_EACCES) {
10227 /* FW says I2C access isn't supported */
10228 ret = EACCES;
10229 break;
10230 }
10231 if (status == ICE_ERR_AQ_ERROR &&
10232 hw->adminq.sq_last_status == ICE_AQ_RC_EPERM) {
10233 device_printf(sc->dev,
10234 "%s: Module pointer location specified in command does not permit the required operation.\n",
10235 __func__);
10236 ret = EPERM;
10237 break;
10238 } else {
10239 device_printf(sc->dev,
10240 "%s: Error reading I2C data: err %s aq_err %s\n",
10241 __func__, ice_status_str(status),
10242 ice_aq_str(hw->adminq.sq_last_status));
10243 ret = EIO;
10244 break;
10245 }
10246 } while (retries++ < ICE_I2C_MAX_RETRIES);
10247
10248 if (ret == EBUSY)
10249 device_printf(sc->dev,
10250 "%s: Error reading I2C data after %d retries\n",
10251 __func__, ICE_I2C_MAX_RETRIES);
10252
10253 return (ret);
10254 }
10255
10256 /**
10257 * ice_handle_i2c_req - Driver independent I2C request handler
10258 * @sc: device softc
10259 * @req: The I2C parameters to use
10260 *
10261 * Read from the port's I2C eeprom using the parameters from the ioctl.
10262 */
10263 int
ice_handle_i2c_req(struct ice_softc * sc,struct ifi2creq * req)10264 ice_handle_i2c_req(struct ice_softc *sc, struct ifi2creq *req)
10265 {
10266 return ice_read_sff_eeprom(sc, req->dev_addr, req->offset, req->data, req->len);
10267 }
10268
10269 /**
10270 * ice_sysctl_read_i2c_diag_data - Read some module diagnostic data via i2c
10271 * @oidp: sysctl oid structure
10272 * @arg1: pointer to private data structure
10273 * @arg2: unused
10274 * @req: sysctl request pointer
10275 *
10276 * Read 8 bytes of diagnostic data from the SFF eeprom in the (Q)SFP module
10277 * inserted into the port.
10278 *
10279 * | SFP A2 | QSFP Lower Page
10280 * ------------|---------|----------------
10281 * Temperature | 96-97 | 22-23
10282 * Vcc | 98-99 | 26-27
10283 * TX power | 102-103 | 34-35..40-41
10284 * RX power | 104-105 | 50-51..56-57
10285 */
10286 static int
ice_sysctl_read_i2c_diag_data(SYSCTL_HANDLER_ARGS)10287 ice_sysctl_read_i2c_diag_data(SYSCTL_HANDLER_ARGS)
10288 {
10289 struct ice_softc *sc = (struct ice_softc *)arg1;
10290 device_t dev = sc->dev;
10291 struct sbuf *sbuf;
10292 int ret;
10293 u8 data[16];
10294
10295 UNREFERENCED_PARAMETER(arg2);
10296 UNREFERENCED_PARAMETER(oidp);
10297
10298 if (ice_driver_is_detaching(sc))
10299 return (ESHUTDOWN);
10300
10301 if (req->oldptr == NULL) {
10302 ret = SYSCTL_OUT(req, 0, 128);
10303 return (ret);
10304 }
10305
10306 ret = ice_read_sff_eeprom(sc, 0xA0, 0, data, 1);
10307 if (ret)
10308 return (ret);
10309
10310 /* 0x3 for SFP; 0xD/0x11 for QSFP+/QSFP28 */
10311 if (data[0] == 0x3) {
10312 /*
10313 * Check for:
10314 * - Internally calibrated data
10315 * - Diagnostic monitoring is implemented
10316 */
10317 ice_read_sff_eeprom(sc, 0xA0, 92, data, 1);
10318 if (!(data[0] & 0x60)) {
10319 device_printf(dev, "Module doesn't support diagnostics: 0xA0[92] = %02X\n", data[0]);
10320 return (ENODEV);
10321 }
10322
10323 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
10324
10325 ice_read_sff_eeprom(sc, 0xA2, 96, data, 4);
10326 for (int i = 0; i < 4; i++)
10327 sbuf_printf(sbuf, "%02X ", data[i]);
10328
10329 ice_read_sff_eeprom(sc, 0xA2, 102, data, 4);
10330 for (int i = 0; i < 4; i++)
10331 sbuf_printf(sbuf, "%02X ", data[i]);
10332 } else if (data[0] == 0xD || data[0] == 0x11) {
10333 /*
10334 * QSFP+ modules are always internally calibrated, and must indicate
10335 * what types of diagnostic monitoring are implemented
10336 */
10337 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
10338
10339 ice_read_sff_eeprom(sc, 0xA0, 22, data, 2);
10340 for (int i = 0; i < 2; i++)
10341 sbuf_printf(sbuf, "%02X ", data[i]);
10342
10343 ice_read_sff_eeprom(sc, 0xA0, 26, data, 2);
10344 for (int i = 0; i < 2; i++)
10345 sbuf_printf(sbuf, "%02X ", data[i]);
10346
10347 ice_read_sff_eeprom(sc, 0xA0, 34, data, 2);
10348 for (int i = 0; i < 2; i++)
10349 sbuf_printf(sbuf, "%02X ", data[i]);
10350
10351 ice_read_sff_eeprom(sc, 0xA0, 50, data, 2);
10352 for (int i = 0; i < 2; i++)
10353 sbuf_printf(sbuf, "%02X ", data[i]);
10354 } else {
10355 device_printf(dev, "Module is not SFP/SFP+/SFP28/QSFP+ (%02X)\n", data[0]);
10356 return (ENODEV);
10357 }
10358
10359 sbuf_finish(sbuf);
10360 sbuf_delete(sbuf);
10361
10362 return (0);
10363 }
10364
10365 /**
10366 * ice_alloc_intr_tracking - Setup interrupt tracking structures
10367 * @sc: device softc structure
10368 *
10369 * Sets up the resource manager for keeping track of interrupt allocations,
10370 * and initializes the tracking maps for the PF's interrupt allocations.
10371 *
10372 * Unlike the scheme for queues, this is done in one step since both the
10373 * manager and the maps both have the same lifetime.
10374 *
10375 * @returns 0 on success, or an error code on failure.
10376 */
10377 int
ice_alloc_intr_tracking(struct ice_softc * sc)10378 ice_alloc_intr_tracking(struct ice_softc *sc)
10379 {
10380 struct ice_hw *hw = &sc->hw;
10381 device_t dev = sc->dev;
10382 int err;
10383
10384 if (hw->func_caps.common_cap.num_msix_vectors > ICE_MAX_MSIX_VECTORS) {
10385 device_printf(dev, "%s: Invalid num_msix_vectors value (%u) received from FW.\n",
10386 __func__,
10387 hw->func_caps.common_cap.num_msix_vectors);
10388 return (EINVAL);
10389 }
10390
10391 /* Initialize the interrupt allocation manager */
10392 err = ice_resmgr_init_contig_only(&sc->dev_imgr,
10393 hw->func_caps.common_cap.num_msix_vectors);
10394 if (err) {
10395 device_printf(dev, "Unable to initialize PF interrupt manager: %s\n",
10396 ice_err_str(err));
10397 return (err);
10398 }
10399
10400 /* Allocate PF interrupt mapping storage */
10401 if (!(sc->pf_imap =
10402 (u16 *)malloc(sizeof(u16) * hw->func_caps.common_cap.num_msix_vectors,
10403 M_ICE, M_NOWAIT))) {
10404 device_printf(dev, "Unable to allocate PF imap memory\n");
10405 err = ENOMEM;
10406 goto free_imgr;
10407 }
10408 if (!(sc->rdma_imap =
10409 (u16 *)malloc(sizeof(u16) * hw->func_caps.common_cap.num_msix_vectors,
10410 M_ICE, M_NOWAIT))) {
10411 device_printf(dev, "Unable to allocate RDMA imap memory\n");
10412 err = ENOMEM;
10413 free(sc->pf_imap, M_ICE);
10414 goto free_imgr;
10415 }
10416 for (u32 i = 0; i < hw->func_caps.common_cap.num_msix_vectors; i++) {
10417 sc->pf_imap[i] = ICE_INVALID_RES_IDX;
10418 sc->rdma_imap[i] = ICE_INVALID_RES_IDX;
10419 }
10420
10421 return (0);
10422
10423 free_imgr:
10424 ice_resmgr_destroy(&sc->dev_imgr);
10425 return (err);
10426 }
10427
10428 /**
10429 * ice_free_intr_tracking - Free PF interrupt tracking structures
10430 * @sc: device softc structure
10431 *
10432 * Frees the interrupt resource allocation manager and the PF's owned maps.
10433 *
10434 * VF maps are released when the owning VF's are destroyed, which should always
10435 * happen before this function is called.
10436 */
10437 void
ice_free_intr_tracking(struct ice_softc * sc)10438 ice_free_intr_tracking(struct ice_softc *sc)
10439 {
10440 if (sc->pf_imap) {
10441 ice_resmgr_release_map(&sc->dev_imgr, sc->pf_imap,
10442 sc->lan_vectors);
10443 free(sc->pf_imap, M_ICE);
10444 sc->pf_imap = NULL;
10445 }
10446 if (sc->rdma_imap) {
10447 ice_resmgr_release_map(&sc->dev_imgr, sc->rdma_imap,
10448 sc->lan_vectors);
10449 free(sc->rdma_imap, M_ICE);
10450 sc->rdma_imap = NULL;
10451 }
10452
10453 ice_resmgr_destroy(&sc->dev_imgr);
10454
10455 ice_resmgr_destroy(&sc->os_imgr);
10456 }
10457
10458 /**
10459 * ice_apply_supported_speed_filter - Mask off unsupported speeds
10460 * @report_speeds: bit-field for the desired link speeds
10461 * @mod_type: type of module/sgmii connection we have
10462 *
10463 * Given a bitmap of the desired lenient mode link speeds,
10464 * this function will mask off the speeds that are not currently
10465 * supported by the device.
10466 */
10467 static u16
ice_apply_supported_speed_filter(u16 report_speeds,u8 mod_type)10468 ice_apply_supported_speed_filter(u16 report_speeds, u8 mod_type)
10469 {
10470 u16 speed_mask;
10471 enum { IS_SGMII, IS_SFP, IS_QSFP } module;
10472
10473 /*
10474 * The SFF specification says 0 is unknown, so we'll
10475 * treat it like we're connected through SGMII for now.
10476 * This may need revisiting if a new type is supported
10477 * in the future.
10478 */
10479 switch (mod_type) {
10480 case 0:
10481 module = IS_SGMII;
10482 break;
10483 case 3:
10484 module = IS_SFP;
10485 break;
10486 default:
10487 module = IS_QSFP;
10488 break;
10489 }
10490
10491 /* We won't offer anything lower than 100M for any part,
10492 * but we'll need to mask off other speeds based on the
10493 * device and module type.
10494 */
10495 speed_mask = ~((u16)ICE_AQ_LINK_SPEED_100MB - 1);
10496 if ((report_speeds & ICE_AQ_LINK_SPEED_10GB) && (module == IS_SFP))
10497 speed_mask = ~((u16)ICE_AQ_LINK_SPEED_1000MB - 1);
10498 if (report_speeds & ICE_AQ_LINK_SPEED_25GB)
10499 speed_mask = ~((u16)ICE_AQ_LINK_SPEED_1000MB - 1);
10500 if (report_speeds & ICE_AQ_LINK_SPEED_50GB) {
10501 speed_mask = ~((u16)ICE_AQ_LINK_SPEED_1000MB - 1);
10502 if (module == IS_QSFP)
10503 speed_mask = ~((u16)ICE_AQ_LINK_SPEED_10GB - 1);
10504 }
10505 if ((report_speeds & ICE_AQ_LINK_SPEED_100GB) ||
10506 (report_speeds & ICE_AQ_LINK_SPEED_200GB))
10507 speed_mask = ~((u16)ICE_AQ_LINK_SPEED_25GB - 1);
10508 return (report_speeds & speed_mask);
10509 }
10510
10511 /**
10512 * ice_init_health_events - Enable FW health event reporting
10513 * @sc: device softc
10514 *
10515 * Will try to enable firmware health event reporting, but shouldn't
10516 * cause any grief (to the caller) if this fails.
10517 */
10518 void
ice_init_health_events(struct ice_softc * sc)10519 ice_init_health_events(struct ice_softc *sc)
10520 {
10521 int status;
10522 u8 health_mask;
10523
10524 if ((!ice_is_bit_set(sc->feat_cap, ICE_FEATURE_HEALTH_STATUS)) ||
10525 (!sc->enable_health_events))
10526 return;
10527
10528 health_mask = ICE_AQC_HEALTH_STATUS_SET_PF_SPECIFIC_MASK |
10529 ICE_AQC_HEALTH_STATUS_SET_GLOBAL_MASK;
10530
10531 status = ice_aq_set_health_status_config(&sc->hw, health_mask, NULL);
10532 if (status)
10533 device_printf(sc->dev,
10534 "Failed to enable firmware health events, err %s aq_err %s\n",
10535 ice_status_str(status),
10536 ice_aq_str(sc->hw.adminq.sq_last_status));
10537 else
10538 ice_set_bit(ICE_FEATURE_HEALTH_STATUS, sc->feat_en);
10539 }
10540
10541 /**
10542 * ice_print_health_status_string - Print message for given FW health event
10543 * @dev: the PCIe device
10544 * @elem: health status element containing status code
10545 *
10546 * A rather large list of possible health status codes and their associated
10547 * messages.
10548 */
10549 static void
ice_print_health_status_string(device_t dev,struct ice_aqc_health_status_elem * elem)10550 ice_print_health_status_string(device_t dev,
10551 struct ice_aqc_health_status_elem *elem)
10552 {
10553 u16 status_code = le16toh(elem->health_status_code);
10554
10555 switch (status_code) {
10556 case ICE_AQC_HEALTH_STATUS_INFO_RECOVERY:
10557 device_printf(dev, "The device is in firmware recovery mode.\n");
10558 device_printf(dev, "Possible Solution: Update to the latest NVM image.\n");
10559 break;
10560 case ICE_AQC_HEALTH_STATUS_ERR_FLASH_ACCESS:
10561 device_printf(dev, "The flash chip cannot be accessed.\n");
10562 device_printf(dev, "Possible Solution: If issue persists, call customer support.\n");
10563 break;
10564 case ICE_AQC_HEALTH_STATUS_ERR_NVM_AUTH:
10565 device_printf(dev, "NVM authentication failed.\n");
10566 device_printf(dev, "Possible Solution: Update to the latest NVM image.\n");
10567 break;
10568 case ICE_AQC_HEALTH_STATUS_ERR_OROM_AUTH:
10569 device_printf(dev, "Option ROM authentication failed.\n");
10570 device_printf(dev, "Possible Solution: Update to the latest NVM image.\n");
10571 break;
10572 case ICE_AQC_HEALTH_STATUS_ERR_DDP_AUTH:
10573 device_printf(dev, "DDP package failed.\n");
10574 device_printf(dev, "Possible Solution: Update to latest base driver and DDP package.\n");
10575 break;
10576 case ICE_AQC_HEALTH_STATUS_ERR_NVM_COMPAT:
10577 device_printf(dev, "NVM image is incompatible.\n");
10578 device_printf(dev, "Possible Solution: Update to the latest NVM image.\n");
10579 break;
10580 case ICE_AQC_HEALTH_STATUS_ERR_OROM_COMPAT:
10581 device_printf(dev, "Option ROM is incompatible.\n");
10582 device_printf(dev, "Possible Solution: Update to the latest NVM image.\n");
10583 break;
10584 case ICE_AQC_HEALTH_STATUS_ERR_DCB_MIB:
10585 device_printf(dev, "Supplied MIB file is invalid. DCB reverted to default configuration.\n");
10586 device_printf(dev, "Possible Solution: Disable FW-LLDP and check DCBx system configuration.\n");
10587 break;
10588 case ICE_AQC_HEALTH_STATUS_ERR_UNKNOWN_MOD_STRICT:
10589 device_printf(dev, "An unsupported module was detected.\n");
10590 device_printf(dev, "Possible Solution 1: Check your cable connection.\n");
10591 device_printf(dev, "Possible Solution 2: Change or replace the module or cable.\n");
10592 break;
10593 case ICE_AQC_HEALTH_STATUS_ERR_MOD_TYPE:
10594 device_printf(dev, "Module type is not supported.\n");
10595 device_printf(dev, "Possible Solution: Change or replace the module or cable.\n");
10596 break;
10597 case ICE_AQC_HEALTH_STATUS_ERR_MOD_QUAL:
10598 device_printf(dev, "Module is not qualified.\n");
10599 device_printf(dev, "Possible Solution 1: Check your cable connection.\n");
10600 device_printf(dev, "Possible Solution 2: Change or replace the module or cable.\n");
10601 device_printf(dev, "Possible Solution 3: Manually set speed and duplex.\n");
10602 break;
10603 case ICE_AQC_HEALTH_STATUS_ERR_MOD_COMM:
10604 device_printf(dev, "Device cannot communicate with the module.\n");
10605 device_printf(dev, "Possible Solution 1: Check your cable connection.\n");
10606 device_printf(dev, "Possible Solution 2: Change or replace the module or cable.\n");
10607 device_printf(dev, "Possible Solution 3: Manually set speed and duplex.\n");
10608 break;
10609 case ICE_AQC_HEALTH_STATUS_ERR_MOD_CONFLICT:
10610 device_printf(dev, "Unresolved module conflict.\n");
10611 device_printf(dev, "Possible Solution 1: Manually set speed/duplex or use Intel(R) Ethernet Port Configuration Tool to change the port option.\n");
10612 device_printf(dev, "Possible Solution 2: If the problem persists, use a cable/module that is found in the supported modules and cables list for this device.\n");
10613 break;
10614 case ICE_AQC_HEALTH_STATUS_ERR_MOD_NOT_PRESENT:
10615 device_printf(dev, "Module is not present.\n");
10616 device_printf(dev, "Possible Solution 1: Check that the module is inserted correctly.\n");
10617 device_printf(dev, "Possible Solution 2: If the problem persists, use a cable/module that is found in the supported modules and cables list for this device.\n");
10618 break;
10619 case ICE_AQC_HEALTH_STATUS_INFO_MOD_UNDERUTILIZED:
10620 device_printf(dev, "Underutilized module.\n");
10621 device_printf(dev, "Possible Solution 1: Change or replace the module or cable.\n");
10622 device_printf(dev, "Possible Solution 2: Use Intel(R) Ethernet Port Configuration Tool to change the port option.\n");
10623 break;
10624 case ICE_AQC_HEALTH_STATUS_ERR_UNKNOWN_MOD_LENIENT:
10625 device_printf(dev, "An unsupported module was detected.\n");
10626 device_printf(dev, "Possible Solution 1: Check your cable connection.\n");
10627 device_printf(dev, "Possible Solution 2: Change or replace the module or cable.\n");
10628 device_printf(dev, "Possible Solution 3: Manually set speed and duplex.\n");
10629 break;
10630 case ICE_AQC_HEALTH_STATUS_ERR_INVALID_LINK_CFG:
10631 device_printf(dev, "Invalid link configuration.\n");
10632 break;
10633 case ICE_AQC_HEALTH_STATUS_ERR_PORT_ACCESS:
10634 device_printf(dev, "Port hardware access error.\n");
10635 device_printf(dev, "Possible Solution: Update to the latest NVM image.\n");
10636 break;
10637 case ICE_AQC_HEALTH_STATUS_ERR_PORT_UNREACHABLE:
10638 device_printf(dev, "A port is unreachable.\n");
10639 device_printf(dev, "Possible Solution 1: Use Intel(R) Ethernet Port Configuration Tool to change the port option.\n");
10640 device_printf(dev, "Possible Solution 2: Update to the latest NVM image.\n");
10641 break;
10642 case ICE_AQC_HEALTH_STATUS_INFO_PORT_SPEED_MOD_LIMITED:
10643 device_printf(dev, "Port speed is limited due to module.\n");
10644 device_printf(dev, "Possible Solution: Change the module or use Intel(R) Ethernet Port Configuration Tool to configure the port option to match the current module speed.\n");
10645 break;
10646 case ICE_AQC_HEALTH_STATUS_ERR_PARALLEL_FAULT:
10647 device_printf(dev, "All configured link modes were attempted but failed to establish link.\n");
10648 device_printf(dev, "The device will restart the process to establish link.\n");
10649 device_printf(dev, "Possible Solution: Check link partner connection and configuration.\n");
10650 break;
10651 case ICE_AQC_HEALTH_STATUS_INFO_PORT_SPEED_PHY_LIMITED:
10652 device_printf(dev, "Port speed is limited by PHY capabilities.\n");
10653 device_printf(dev, "Possible Solution 1: Change the module to align to port option.\n");
10654 device_printf(dev, "Possible Solution 2: Use Intel(R) Ethernet Port Configuration Tool to change the port option.\n");
10655 break;
10656 case ICE_AQC_HEALTH_STATUS_ERR_NETLIST_TOPO:
10657 device_printf(dev, "LOM topology netlist is corrupted.\n");
10658 device_printf(dev, "Possible Solution: Update to the latest NVM image.\n");
10659 break;
10660 case ICE_AQC_HEALTH_STATUS_ERR_NETLIST:
10661 device_printf(dev, "Unrecoverable netlist error.\n");
10662 device_printf(dev, "Possible Solution: Update to the latest NVM image.\n");
10663 break;
10664 case ICE_AQC_HEALTH_STATUS_ERR_TOPO_CONFLICT:
10665 device_printf(dev, "Port topology conflict.\n");
10666 device_printf(dev, "Possible Solution 1: Use Intel(R) Ethernet Port Configuration Tool to change the port option.\n");
10667 device_printf(dev, "Possible Solution 2: Update to the latest NVM image.\n");
10668 break;
10669 case ICE_AQC_HEALTH_STATUS_ERR_LINK_HW_ACCESS:
10670 device_printf(dev, "Unrecoverable hardware access error.\n");
10671 device_printf(dev, "Possible Solution: Update to the latest NVM image.\n");
10672 break;
10673 case ICE_AQC_HEALTH_STATUS_ERR_LINK_RUNTIME:
10674 device_printf(dev, "Unrecoverable runtime error.\n");
10675 device_printf(dev, "Possible Solution: Update to the latest NVM image.\n");
10676 break;
10677 case ICE_AQC_HEALTH_STATUS_ERR_DNL_INIT:
10678 device_printf(dev, "Link management engine failed to initialize.\n");
10679 device_printf(dev, "Possible Solution: Update to the latest NVM image.\n");
10680 break;
10681 default:
10682 break;
10683 }
10684 }
10685
10686 /**
10687 * ice_handle_health_status_event - helper function to output health status
10688 * @sc: device softc structure
10689 * @event: event received on a control queue
10690 *
10691 * Prints out the appropriate string based on the given Health Status Event
10692 * code.
10693 */
10694 static void
ice_handle_health_status_event(struct ice_softc * sc,struct ice_rq_event_info * event)10695 ice_handle_health_status_event(struct ice_softc *sc,
10696 struct ice_rq_event_info *event)
10697 {
10698 struct ice_aqc_health_status_elem *health_info;
10699 u16 status_count;
10700 int i;
10701
10702 if (!ice_is_bit_set(sc->feat_en, ICE_FEATURE_HEALTH_STATUS))
10703 return;
10704
10705 health_info = (struct ice_aqc_health_status_elem *)event->msg_buf;
10706 status_count = le16toh(event->desc.params.get_health_status.health_status_count);
10707
10708 if (status_count > (event->buf_len / sizeof(*health_info))) {
10709 device_printf(sc->dev, "Received a health status event with invalid event count\n");
10710 return;
10711 }
10712
10713 for (i = 0; i < status_count; i++) {
10714 ice_print_health_status_string(sc->dev, health_info);
10715 health_info++;
10716 }
10717 }
10718
10719 /**
10720 * ice_set_default_local_lldp_mib - Possibly apply local LLDP MIB to FW
10721 * @sc: device softc structure
10722 *
10723 * This function needs to be called after link up; it makes sure the FW has
10724 * certain PFC/DCB settings. In certain configurations this will re-apply a
10725 * default local LLDP MIB configuration; this is intended to workaround a FW
10726 * behavior where these settings seem to be cleared on link up.
10727 */
10728 void
ice_set_default_local_lldp_mib(struct ice_softc * sc)10729 ice_set_default_local_lldp_mib(struct ice_softc *sc)
10730 {
10731 struct ice_hw *hw = &sc->hw;
10732 struct ice_port_info *pi;
10733 device_t dev = sc->dev;
10734 int status;
10735
10736 /* Set Local MIB can disrupt flow control settings for
10737 * non-DCB-supported devices.
10738 */
10739 if (!ice_is_bit_set(sc->feat_en, ICE_FEATURE_DCB))
10740 return;
10741
10742 pi = hw->port_info;
10743
10744 /* Don't overwrite a custom SW configuration */
10745 if (!pi->qos_cfg.is_sw_lldp &&
10746 !ice_test_state(&sc->state, ICE_STATE_MULTIPLE_TCS))
10747 ice_set_default_local_mib_settings(sc);
10748
10749 status = ice_set_dcb_cfg(pi);
10750
10751 if (status)
10752 device_printf(dev,
10753 "Error setting Local LLDP MIB: %s aq_err %s\n",
10754 ice_status_str(status),
10755 ice_aq_str(hw->adminq.sq_last_status));
10756 }
10757
10758 /**
10759 * ice_sbuf_print_ets_cfg - Helper function to print ETS cfg
10760 * @sbuf: string buffer to print to
10761 * @name: prefix string to use
10762 * @ets: structure to pull values from
10763 *
10764 * A helper function for ice_sysctl_dump_dcbx_cfg(), this
10765 * formats the ETS rec and cfg TLVs into text.
10766 */
10767 static void
ice_sbuf_print_ets_cfg(struct sbuf * sbuf,const char * name,struct ice_dcb_ets_cfg * ets)10768 ice_sbuf_print_ets_cfg(struct sbuf *sbuf, const char *name, struct ice_dcb_ets_cfg *ets)
10769 {
10770 sbuf_printf(sbuf, "%s.willing: %u\n", name, ets->willing);
10771 sbuf_printf(sbuf, "%s.cbs: %u\n", name, ets->cbs);
10772 sbuf_printf(sbuf, "%s.maxtcs: %u\n", name, ets->maxtcs);
10773
10774 sbuf_printf(sbuf, "%s.prio_table:", name);
10775 for (int i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++)
10776 sbuf_printf(sbuf, " %d", ets->prio_table[i]);
10777 sbuf_printf(sbuf, "\n");
10778
10779 sbuf_printf(sbuf, "%s.tcbwtable:", name);
10780 for (int i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++)
10781 sbuf_printf(sbuf, " %d", ets->tcbwtable[i]);
10782 sbuf_printf(sbuf, "\n");
10783
10784 sbuf_printf(sbuf, "%s.tsatable:", name);
10785 for (int i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++)
10786 sbuf_printf(sbuf, " %d", ets->tsatable[i]);
10787 sbuf_printf(sbuf, "\n");
10788 }
10789
10790 /**
10791 * ice_sysctl_dump_dcbx_cfg - Print out DCBX/DCB config info
10792 * @oidp: sysctl oid structure
10793 * @arg1: pointer to private data structure
10794 * @arg2: AQ define for either Local or Remote MIB
10795 * @req: sysctl request pointer
10796 *
10797 * Prints out DCB/DCBX configuration, including the contents
10798 * of either the local or remote MIB, depending on the value
10799 * used in arg2.
10800 */
10801 static int
ice_sysctl_dump_dcbx_cfg(SYSCTL_HANDLER_ARGS)10802 ice_sysctl_dump_dcbx_cfg(SYSCTL_HANDLER_ARGS)
10803 {
10804 struct ice_softc *sc = (struct ice_softc *)arg1;
10805 struct ice_aqc_get_cee_dcb_cfg_resp cee_cfg = {};
10806 struct ice_dcbx_cfg dcb_buf = {};
10807 struct ice_dcbx_cfg *dcbcfg;
10808 struct ice_hw *hw = &sc->hw;
10809 device_t dev = sc->dev;
10810 struct sbuf *sbuf;
10811 int status;
10812 u8 maxtcs, dcbx_status, is_sw_lldp;
10813
10814 UNREFERENCED_PARAMETER(oidp);
10815
10816 if (ice_driver_is_detaching(sc))
10817 return (ESHUTDOWN);
10818
10819 is_sw_lldp = hw->port_info->qos_cfg.is_sw_lldp;
10820
10821 /* The driver doesn't receive a Remote MIB via SW */
10822 if (is_sw_lldp && arg2 == ICE_AQ_LLDP_MIB_REMOTE)
10823 return (ENOENT);
10824
10825 dcbcfg = &hw->port_info->qos_cfg.local_dcbx_cfg;
10826 if (!is_sw_lldp) {
10827 /* Collect information from the FW in FW LLDP mode */
10828 dcbcfg = &dcb_buf;
10829 status = ice_aq_get_dcb_cfg(hw, (u8)arg2,
10830 ICE_AQ_LLDP_BRID_TYPE_NEAREST_BRID, dcbcfg);
10831 if (status && arg2 == ICE_AQ_LLDP_MIB_REMOTE &&
10832 hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT) {
10833 device_printf(dev,
10834 "Unable to query Remote MIB; port has not received one yet\n");
10835 return (ENOENT);
10836 }
10837 if (status) {
10838 device_printf(dev, "Unable to query LLDP MIB, err %s aq_err %s\n",
10839 ice_status_str(status),
10840 ice_aq_str(hw->adminq.sq_last_status));
10841 return (EIO);
10842 }
10843 }
10844
10845 status = ice_aq_get_cee_dcb_cfg(hw, &cee_cfg, NULL);
10846 if (!status)
10847 dcbcfg->dcbx_mode = ICE_DCBX_MODE_CEE;
10848 else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT)
10849 dcbcfg->dcbx_mode = ICE_DCBX_MODE_IEEE;
10850 else
10851 device_printf(dev, "Get CEE DCB Cfg AQ cmd err %s aq_err %s\n",
10852 ice_status_str(status),
10853 ice_aq_str(hw->adminq.sq_last_status));
10854
10855 maxtcs = hw->func_caps.common_cap.maxtc;
10856 dcbx_status = ice_get_dcbx_status(hw);
10857
10858 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
10859
10860 /* Do the actual printing */
10861 sbuf_printf(sbuf, "\n");
10862 sbuf_printf(sbuf, "SW LLDP mode: %d\n", is_sw_lldp);
10863 sbuf_printf(sbuf, "Function caps maxtcs: %d\n", maxtcs);
10864 sbuf_printf(sbuf, "dcbx_status: %d\n", dcbx_status);
10865
10866 sbuf_printf(sbuf, "numapps: %u\n", dcbcfg->numapps);
10867 sbuf_printf(sbuf, "CEE TLV status: %u\n", dcbcfg->tlv_status);
10868 sbuf_printf(sbuf, "pfc_mode: %s\n", (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP) ?
10869 "DSCP" : "VLAN");
10870 sbuf_printf(sbuf, "dcbx_mode: %s\n",
10871 (dcbcfg->dcbx_mode == ICE_DCBX_MODE_IEEE) ? "IEEE" :
10872 (dcbcfg->dcbx_mode == ICE_DCBX_MODE_CEE) ? "CEE" :
10873 "Unknown");
10874
10875 ice_sbuf_print_ets_cfg(sbuf, "etscfg", &dcbcfg->etscfg);
10876 ice_sbuf_print_ets_cfg(sbuf, "etsrec", &dcbcfg->etsrec);
10877
10878 sbuf_printf(sbuf, "pfc.willing: %u\n", dcbcfg->pfc.willing);
10879 sbuf_printf(sbuf, "pfc.mbc: %u\n", dcbcfg->pfc.mbc);
10880 sbuf_printf(sbuf, "pfc.pfccap: 0x%0x\n", dcbcfg->pfc.pfccap);
10881 sbuf_printf(sbuf, "pfc.pfcena: 0x%0x\n", dcbcfg->pfc.pfcena);
10882
10883 if (arg2 == ICE_AQ_LLDP_MIB_LOCAL) {
10884 sbuf_printf(sbuf, "dscp_map:\n");
10885 for (int i = 0; i < 8; i++) {
10886 for (int j = 0; j < 8; j++)
10887 sbuf_printf(sbuf, " %d",
10888 dcbcfg->dscp_map[i * 8 + j]);
10889 sbuf_printf(sbuf, "\n");
10890 }
10891
10892 sbuf_printf(sbuf, "\nLocal registers:\n");
10893 sbuf_printf(sbuf, "PRTDCB_GENC.NUMTC: %d\n",
10894 (rd32(hw, PRTDCB_GENC) & PRTDCB_GENC_NUMTC_M)
10895 >> PRTDCB_GENC_NUMTC_S);
10896 sbuf_printf(sbuf, "PRTDCB_TUP2TC: 0x%0x\n",
10897 (rd32(hw, PRTDCB_TUP2TC)));
10898 sbuf_printf(sbuf, "PRTDCB_RUP2TC: 0x%0x\n",
10899 (rd32(hw, PRTDCB_RUP2TC)));
10900 sbuf_printf(sbuf, "GLDCB_TC2PFC: 0x%0x\n",
10901 (rd32(hw, GLDCB_TC2PFC)));
10902 }
10903
10904 /* Finish */
10905 sbuf_finish(sbuf);
10906 sbuf_delete(sbuf);
10907
10908 return (0);
10909 }
10910
10911 /**
10912 * ice_sysctl_dump_vsi_cfg - print PF LAN VSI configuration
10913 * @oidp: sysctl oid structure
10914 * @arg1: pointer to private data structure
10915 * @arg2: unused
10916 * @req: sysctl request pointer
10917 *
10918 * XXX: This could be extended to apply to arbitrary PF-owned VSIs,
10919 * but for simplicity, this only works on the PF's LAN VSI.
10920 */
10921 static int
ice_sysctl_dump_vsi_cfg(SYSCTL_HANDLER_ARGS)10922 ice_sysctl_dump_vsi_cfg(SYSCTL_HANDLER_ARGS)
10923 {
10924 struct ice_softc *sc = (struct ice_softc *)arg1;
10925 struct ice_vsi_ctx ctx = { 0 };
10926 struct ice_hw *hw = &sc->hw;
10927 device_t dev = sc->dev;
10928 struct sbuf *sbuf;
10929 int status;
10930
10931 UNREFERENCED_PARAMETER(oidp);
10932 UNREFERENCED_PARAMETER(arg2);
10933
10934 if (ice_driver_is_detaching(sc))
10935 return (ESHUTDOWN);
10936
10937 /* Get HW absolute index of a VSI */
10938 ctx.vsi_num = ice_get_hw_vsi_num(hw, sc->pf_vsi.idx);
10939
10940 status = ice_aq_get_vsi_params(hw, &ctx, NULL);
10941 if (status) {
10942 device_printf(dev,
10943 "Get VSI AQ call failed, err %s aq_err %s\n",
10944 ice_status_str(status),
10945 ice_aq_str(hw->adminq.sq_last_status));
10946 return (EIO);
10947 }
10948
10949 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
10950
10951 /* Do the actual printing */
10952 sbuf_printf(sbuf, "\n");
10953
10954 sbuf_printf(sbuf, "VSI NUM: %d\n", ctx.vsi_num);
10955 sbuf_printf(sbuf, "VF NUM: %d\n", ctx.vf_num);
10956 sbuf_printf(sbuf, "VSIs allocated: %d\n", ctx.vsis_allocd);
10957 sbuf_printf(sbuf, "VSIs unallocated: %d\n", ctx.vsis_unallocated);
10958
10959 sbuf_printf(sbuf, "Rx Queue Map method: %d\n",
10960 LE16_TO_CPU(ctx.info.mapping_flags));
10961 /* The PF VSI is always contiguous, so there's no if-statement here */
10962 sbuf_printf(sbuf, "Rx Queue base: %d\n",
10963 LE16_TO_CPU(ctx.info.q_mapping[0]));
10964 sbuf_printf(sbuf, "Rx Queue count: %d\n",
10965 LE16_TO_CPU(ctx.info.q_mapping[1]));
10966
10967 sbuf_printf(sbuf, "TC qbases :");
10968 for (int i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
10969 sbuf_printf(sbuf, " %4d",
10970 ctx.info.tc_mapping[i] & ICE_AQ_VSI_TC_Q_OFFSET_M);
10971 }
10972 sbuf_printf(sbuf, "\n");
10973
10974 sbuf_printf(sbuf, "TC qcounts :");
10975 for (int i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
10976 sbuf_printf(sbuf, " %4d",
10977 1 << (ctx.info.tc_mapping[i] >> ICE_AQ_VSI_TC_Q_NUM_S));
10978 }
10979
10980 /* Finish */
10981 sbuf_finish(sbuf);
10982 sbuf_delete(sbuf);
10983
10984 return (0);
10985 }
10986
10987 /**
10988 * ice_get_tx_rx_equalizations -- read serdes tx rx equalization params
10989 * @hw: pointer to the HW struct
10990 * @serdes_num: represents the serdes number
10991 * @ptr: structure to read all serdes parameter for given serdes
10992 *
10993 * returns all serdes equalization parameter supported per serdes number
10994 */
10995 static int
ice_get_tx_rx_equalizations(struct ice_hw * hw,u8 serdes_num,struct ice_serdes_equalization * ptr)10996 ice_get_tx_rx_equalizations(struct ice_hw *hw, u8 serdes_num,
10997 struct ice_serdes_equalization *ptr)
10998 {
10999 int err = 0;
11000
11001 if (!ptr)
11002 return (EOPNOTSUPP);
11003
11004 #define ICE_GET_PHY_EQUALIZATION(equ, dir, value) \
11005 ice_aq_get_phy_equalization(hw, equ, dir, serdes_num, &(ptr->value))
11006
11007 err = ICE_GET_PHY_EQUALIZATION(ICE_AQC_RX_EQU_PRE1,
11008 ICE_AQC_OP_CODE_RX_EQU, rx_equalization_pre1);
11009 if (err)
11010 return err;
11011
11012 err = ICE_GET_PHY_EQUALIZATION(ICE_AQC_RX_EQU_PRE2,
11013 ICE_AQC_OP_CODE_RX_EQU, rx_equalization_pre2);
11014 if (err)
11015 return err;
11016
11017 err = ICE_GET_PHY_EQUALIZATION(ICE_AQC_RX_EQU_POST1,
11018 ICE_AQC_OP_CODE_RX_EQU, rx_equalization_post1);
11019 if (err)
11020 return err;
11021
11022 err = ICE_GET_PHY_EQUALIZATION(ICE_AQC_RX_EQU_BFLF,
11023 ICE_AQC_OP_CODE_RX_EQU, rx_equalization_bflf);
11024 if (err)
11025 return err;
11026
11027 err = ICE_GET_PHY_EQUALIZATION(ICE_AQC_RX_EQU_BFHF,
11028 ICE_AQC_OP_CODE_RX_EQU, rx_equalization_bfhf);
11029 if (err)
11030 return err;
11031
11032 err = ICE_GET_PHY_EQUALIZATION(ICE_AQC_RX_EQU_DRATE,
11033 ICE_AQC_OP_CODE_RX_EQU, rx_equalization_drate);
11034 if (err)
11035 return err;
11036
11037 err = ICE_GET_PHY_EQUALIZATION(ICE_AQC_TX_EQU_PRE1,
11038 ICE_AQC_OP_CODE_TX_EQU, tx_equalization_pre1);
11039 if (err)
11040 return err;
11041
11042 err = ICE_GET_PHY_EQUALIZATION(ICE_AQC_TX_EQU_PRE2,
11043 ICE_AQC_OP_CODE_TX_EQU, tx_equalization_pre2);
11044 if (err)
11045 return err;
11046
11047 err = ICE_GET_PHY_EQUALIZATION(ICE_AQC_TX_EQU_PRE3,
11048 ICE_AQC_OP_CODE_TX_EQU, tx_equalization_pre3);
11049 if (err)
11050 return err;
11051
11052 err = ICE_GET_PHY_EQUALIZATION(ICE_AQC_TX_EQU_ATTEN,
11053 ICE_AQC_OP_CODE_TX_EQU, tx_equalization_atten);
11054 if (err)
11055 return err;
11056
11057 err = ICE_GET_PHY_EQUALIZATION(ICE_AQC_TX_EQU_POST1,
11058 ICE_AQC_OP_CODE_TX_EQU, tx_equalization_post1);
11059 if (err)
11060 return err;
11061
11062 return (0);
11063 }
11064
11065 /**
11066 * ice_fec_counter_read - reads FEC stats from PHY
11067 * @hw: pointer to the HW struct
11068 * @receiver_id: pcsquad at registerlevel
11069 * @reg_offset: register for the current request
11070 * @output: pointer to the caller-supplied buffer to return requested fec stats
11071 *
11072 * Returns fec stats from phy
11073 */
11074 static int
ice_fec_counter_read(struct ice_hw * hw,u32 receiver_id,u32 reg_offset,u16 * output)11075 ice_fec_counter_read(struct ice_hw *hw, u32 receiver_id, u32 reg_offset,
11076 u16 *output)
11077 {
11078 u16 flag = (ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF | ICE_AQ_FLAG_SI);
11079 struct ice_sbq_msg_input msg = {};
11080 int err = 0;
11081
11082 memset(&msg, 0, sizeof(msg));
11083 msg.msg_addr_low = ICE_LO_WORD(reg_offset);
11084 msg.msg_addr_high = ICE_LO_DWORD(receiver_id);
11085 msg.opcode = ice_sbq_msg_rd;
11086 msg.dest_dev = rmn_0;
11087
11088 err = ice_sbq_rw_reg(hw, &msg, flag);
11089 if (err) {
11090 return err;
11091 }
11092 *output = ICE_LO_WORD(msg.data);
11093 return (0);
11094 }
11095
11096 /**
11097 * ice_get_port_fec_stats - returns fec correctable, uncorrectable stats per pcsquad, pcsport
11098 * @hw: pointer to the HW struct
11099 * @pcs_quad: pcsquad for input port
11100 * @pcs_port: pcsport for input port
11101 * @fec_stats: buffer to hold fec statistics for given port
11102 *
11103 * Returns fec stats
11104 */
11105 static int
ice_get_port_fec_stats(struct ice_hw * hw,u16 pcs_quad,u16 pcs_port,struct ice_fec_stats_to_sysctl * fec_stats)11106 ice_get_port_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
11107 struct ice_fec_stats_to_sysctl *fec_stats)
11108 {
11109 u32 uncorr_low_reg = 0, uncorr_high_reg = 0;
11110 u16 uncorr_low_val = 0, uncorr_high_val = 0;
11111 u32 corr_low_reg = 0, corr_high_reg = 0;
11112 u16 corr_low_val = 0, corr_high_val = 0;
11113 u32 receiver_id = 0;
11114 int err;
11115
11116 switch (pcs_port) {
11117 case 0:
11118 corr_low_reg = ICE_RS_FEC_CORR_LOW_REG_PORT0;
11119 corr_high_reg = ICE_RS_FEC_CORR_HIGH_REG_PORT0;
11120 uncorr_low_reg = ICE_RS_FEC_UNCORR_LOW_REG_PORT0;
11121 uncorr_high_reg = ICE_RS_FEC_UNCORR_HIGH_REG_PORT0;
11122 break;
11123 case 1:
11124 corr_low_reg = ICE_RS_FEC_CORR_LOW_REG_PORT1;
11125 corr_high_reg = ICE_RS_FEC_CORR_HIGH_REG_PORT1;
11126 uncorr_low_reg = ICE_RS_FEC_UNCORR_LOW_REG_PORT1;
11127 uncorr_high_reg = ICE_RS_FEC_UNCORR_HIGH_REG_PORT1;
11128 break;
11129 case 2:
11130 corr_low_reg = ICE_RS_FEC_CORR_LOW_REG_PORT2;
11131 corr_high_reg = ICE_RS_FEC_CORR_HIGH_REG_PORT2;
11132 uncorr_low_reg = ICE_RS_FEC_UNCORR_LOW_REG_PORT2;
11133 uncorr_high_reg = ICE_RS_FEC_UNCORR_HIGH_REG_PORT2;
11134 break;
11135 case 3:
11136 corr_low_reg = ICE_RS_FEC_CORR_LOW_REG_PORT3;
11137 corr_high_reg = ICE_RS_FEC_CORR_HIGH_REG_PORT3;
11138 uncorr_low_reg = ICE_RS_FEC_UNCORR_LOW_REG_PORT3;
11139 uncorr_high_reg = ICE_RS_FEC_UNCORR_HIGH_REG_PORT3;
11140 break;
11141 default:
11142 return (EINVAL);
11143 }
11144 if (pcs_quad == 0)
11145 receiver_id = ICE_RS_FEC_RECEIVER_ID_PCS0; /* MTIP PCS Quad 0 -FEC */
11146 else if (pcs_quad == 1)
11147 receiver_id = ICE_RS_FEC_RECEIVER_ID_PCS1; /* MTIP PCS Quad 1 -FEC */
11148 else
11149 return (EINVAL);
11150
11151 err = ice_fec_counter_read(hw, receiver_id, corr_low_reg,
11152 &corr_low_val);
11153 if (err)
11154 return err;
11155
11156 err = ice_fec_counter_read(hw, receiver_id, corr_high_reg,
11157 &corr_high_val);
11158 if (err)
11159 return err;
11160
11161 err = ice_fec_counter_read(hw, receiver_id, uncorr_low_reg,
11162 &uncorr_low_val);
11163 if (err)
11164 return err;
11165
11166 err = ice_fec_counter_read(hw, receiver_id, uncorr_high_reg,
11167 &uncorr_high_val);
11168 if (err)
11169 return err;
11170
11171 fec_stats->fec_corr_cnt_low = corr_low_val;
11172 fec_stats->fec_corr_cnt_high = corr_high_val;
11173 fec_stats->fec_uncorr_cnt_low = uncorr_low_val;
11174 fec_stats->fec_uncorr_cnt_high = uncorr_high_val;
11175
11176 return (0);
11177 }
11178
11179 /**
11180 * ice_is_serdes_muxed - returns whether serdes is muxed in hardware
11181 * @hw: pointer to the HW struct
11182 *
11183 * Returns True : when serdes is muxed
11184 * False: when serdes is not muxed
11185 */
11186 static bool
ice_is_serdes_muxed(struct ice_hw * hw)11187 ice_is_serdes_muxed(struct ice_hw *hw)
11188 {
11189 return (rd32(hw, 0xB81E0) & 0x4);
11190 }
11191
11192 /**
11193 * ice_get_maxspeed - Get the max speed for given lport
11194 * @hw: pointer to the HW struct
11195 * @lport: logical port for which max speed is requested
11196 * @max_speed: return max speed for input lport
11197 */
11198 static int
ice_get_maxspeed(struct ice_hw * hw,u8 lport,u8 * max_speed)11199 ice_get_maxspeed(struct ice_hw *hw, u8 lport, u8 *max_speed)
11200 {
11201 struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX] = {};
11202 u8 option_count = ICE_AQC_PORT_OPT_MAX;
11203 bool active_valid, pending_valid;
11204 u8 active_idx, pending_idx;
11205 int status;
11206
11207 status = ice_aq_get_port_options(hw, options, &option_count,
11208 lport, true, &active_idx, &active_valid,
11209 &pending_idx, &pending_valid);
11210
11211 if (status || active_idx >= ICE_AQC_PORT_OPT_MAX) {
11212 ice_debug(hw, ICE_DBG_PHY, "Port split read err: %d\n", status);
11213 return (EIO);
11214 }
11215
11216 if (active_valid) {
11217 ice_debug(hw, ICE_DBG_PHY, "Active idx: %d\n", active_idx);
11218 } else {
11219 ice_debug(hw, ICE_DBG_PHY, "No valid Active option\n");
11220 return (EINVAL);
11221 }
11222 *max_speed = options[active_idx].max_lane_speed;
11223
11224 return (0);
11225 }
11226
11227 /**
11228 * ice_update_port_topology - update port topology
11229 * @lport: logical port for which physical info requested
11230 * @port_topology: buffer to hold port topology
11231 * @is_muxed: serdes is muxed in hardware
11232 */
11233 static int
ice_update_port_topology(u8 lport,struct ice_port_topology * port_topology,bool is_muxed)11234 ice_update_port_topology(u8 lport, struct ice_port_topology *port_topology,
11235 bool is_muxed)
11236 {
11237 switch (lport) {
11238 case 0:
11239 port_topology->pcs_quad_select = 0;
11240 port_topology->pcs_port = 0;
11241 port_topology->primary_serdes_lane = 0;
11242 break;
11243 case 1:
11244 port_topology->pcs_quad_select = 1;
11245 port_topology->pcs_port = 0;
11246 if (is_muxed == true)
11247 port_topology->primary_serdes_lane = 2;
11248 else
11249 port_topology->primary_serdes_lane = 4;
11250 break;
11251 case 2:
11252 port_topology->pcs_quad_select = 0;
11253 port_topology->pcs_port = 1;
11254 port_topology->primary_serdes_lane = 1;
11255 break;
11256 case 3:
11257 port_topology->pcs_quad_select = 1;
11258 port_topology->pcs_port = 1;
11259 if (is_muxed == true)
11260 port_topology->primary_serdes_lane = 3;
11261 else
11262 port_topology->primary_serdes_lane = 5;
11263 break;
11264 case 4:
11265 port_topology->pcs_quad_select = 0;
11266 port_topology->pcs_port = 2;
11267 port_topology->primary_serdes_lane = 2;
11268 break;
11269 case 5:
11270 port_topology->pcs_quad_select = 1;
11271 port_topology->pcs_port = 2;
11272 port_topology->primary_serdes_lane = 6;
11273 break;
11274 case 6:
11275 port_topology->pcs_quad_select = 0;
11276 port_topology->pcs_port = 3;
11277 port_topology->primary_serdes_lane = 3;
11278 break;
11279 case 7:
11280 port_topology->pcs_quad_select = 1;
11281 port_topology->pcs_port = 3;
11282 port_topology->primary_serdes_lane = 7;
11283 break;
11284 default:
11285 return (EINVAL);
11286 }
11287 return 0;
11288 }
11289
11290 /**
11291 * ice_get_port_topology - returns physical topology
11292 * @hw: pointer to the HW struct
11293 * @lport: logical port for which physical info requested
11294 * @port_topology: buffer to hold port topology
11295 *
11296 * Returns the physical component associated with the Port like pcsquad, pcsport, serdesnumber
11297 */
11298 static int
ice_get_port_topology(struct ice_hw * hw,u8 lport,struct ice_port_topology * port_topology)11299 ice_get_port_topology(struct ice_hw *hw, u8 lport,
11300 struct ice_port_topology *port_topology)
11301 {
11302 struct ice_aqc_get_link_topo cmd;
11303 bool is_muxed = false;
11304 u8 cage_type = 0;
11305 u16 node_handle;
11306 u8 ctx = 0;
11307 int err;
11308
11309 if (!hw || !port_topology)
11310 return (EINVAL);
11311
11312 if (hw->device_id >= ICE_DEV_ID_E810_XXV_BACKPLANE) {
11313 port_topology->serdes_lane_count = 1;
11314 if (lport == 0) {
11315 port_topology->pcs_quad_select = 0;
11316 port_topology->pcs_port = 0;
11317 port_topology->primary_serdes_lane = 0;
11318 } else if (lport == 1) {
11319 port_topology->pcs_quad_select = 1;
11320 port_topology->pcs_port = 0;
11321 port_topology->primary_serdes_lane = 1;
11322 } else {
11323 return (EINVAL);
11324 }
11325 return (0);
11326 }
11327
11328 memset(&cmd, 0, sizeof(cmd));
11329 ctx = ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE << ICE_AQC_LINK_TOPO_NODE_TYPE_S;
11330 ctx |= ICE_AQC_LINK_TOPO_NODE_CTX_PORT << ICE_AQC_LINK_TOPO_NODE_CTX_S;
11331 cmd.addr.topo_params.node_type_ctx = ctx;
11332 cmd.addr.topo_params.index = 0;
11333 cmd.addr.topo_params.lport_num = 0;
11334 cmd.addr.topo_params.lport_num_valid = 0;
11335
11336 err = ice_aq_get_netlist_node(hw, &cmd, &cage_type, &node_handle);
11337 if (err)
11338 return (EINVAL);
11339
11340 is_muxed = ice_is_serdes_muxed(hw);
11341
11342 err = ice_update_port_topology(lport, port_topology, is_muxed);
11343 if (err)
11344 return err;
11345
11346 if (cage_type == 0x11 || /* SFP */
11347 cage_type == 0x12) { /* SFP28 */
11348 port_topology->serdes_lane_count = 1;
11349 } else if (cage_type == 0x13 || /* QSFP */
11350 cage_type == 0x14) { /* QSFP28 */
11351 u8 max_speed = 0;
11352
11353 err = ice_get_maxspeed(hw, port_topology->primary_serdes_lane,
11354 &max_speed);
11355 if (err)
11356 return err;
11357
11358 if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_M)
11359 device_printf(ice_hw_to_dev(hw),
11360 "%s: WARNING: reported max_lane_speed is N/A\n",
11361 __func__);
11362
11363 if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_100G)
11364 port_topology->serdes_lane_count = 4;
11365 else if (max_speed == ICE_AQC_PORT_OPT_MAX_LANE_50G)
11366 port_topology->serdes_lane_count = 2;
11367 else
11368 port_topology->serdes_lane_count = 1;
11369 } else
11370 return (EINVAL);
11371
11372 ice_debug(hw, ICE_DBG_PHY, "%s: Port Topology (lport %d):\n",
11373 __func__, lport);
11374 ice_debug(hw, ICE_DBG_PHY, "serdes lane count %d\n",
11375 port_topology->serdes_lane_count);
11376 ice_debug(hw, ICE_DBG_PHY, "pcs quad select %d\n",
11377 port_topology->pcs_quad_select);
11378 ice_debug(hw, ICE_DBG_PHY, "pcs port %d\n",
11379 port_topology->pcs_port);
11380 ice_debug(hw, ICE_DBG_PHY, "primary serdes lane %d\n",
11381 port_topology->primary_serdes_lane);
11382
11383 return (0);
11384 }
11385
11386 /**
11387 * ice_sysctl_dump_phy_stats - print PHY stats
11388 * @oidp: sysctl oid structure
11389 * @arg1: pointer to private data structure
11390 * @arg2: unused
11391 * @req: sysctl request pointer
11392 */
11393 static int
ice_sysctl_dump_phy_stats(SYSCTL_HANDLER_ARGS)11394 ice_sysctl_dump_phy_stats(SYSCTL_HANDLER_ARGS)
11395 {
11396 struct ice_regdump_to_sysctl ice_prv_regs_buf = {};
11397 struct ice_softc *sc = (struct ice_softc *)arg1;
11398 struct ice_port_topology port_topology;
11399 struct ice_hw *hw = &sc->hw;
11400 struct ice_port_info *pi;
11401 device_t dev = sc->dev;
11402 u8 serdes_num = 0;
11403 unsigned int i;
11404 int err = 0;
11405 struct sbuf *sbuf;
11406
11407 pi = hw->port_info;
11408
11409 if (!pi) {
11410 device_printf(dev, "Port info structure is null\n");
11411 return (EINVAL);
11412 }
11413
11414 UNREFERENCED_PARAMETER(oidp);
11415 UNREFERENCED_PARAMETER(arg2);
11416 UNREFERENCED_PARAMETER(req);
11417
11418 if (ice_driver_is_detaching(sc))
11419 return (ESHUTDOWN);
11420
11421 if (ice_get_port_topology(hw, pi->lport, &port_topology) != 0) {
11422 device_printf(dev,
11423 "Extended register dump failed for Lport %d\n",
11424 pi->lport);
11425 return (EIO);
11426 }
11427
11428 if (port_topology.serdes_lane_count > ICE_MAX_SERDES_LANE_COUNT) {
11429 device_printf(dev,
11430 "Extended register dump failed: Lport %d Serdes count %d\n",
11431 pi->lport,
11432 port_topology.serdes_lane_count);
11433 return (EINVAL);
11434 }
11435
11436 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
11437 /* Get serdes equalization parameter for available serdes */
11438 for (i = 0; i < port_topology.serdes_lane_count; i++) {
11439 serdes_num = port_topology.primary_serdes_lane + i;
11440 err = ice_get_tx_rx_equalizations(hw, serdes_num,
11441 &(ice_prv_regs_buf.equalization[i]));
11442 if (err) {
11443 device_printf(dev,
11444 "Serdes equalization get failed Lport %d Serdes %d Err %d\n",
11445 pi->lport,serdes_num, err);
11446 sbuf_finish(sbuf);
11447 sbuf_delete(sbuf);
11448 return (EIO);
11449 }
11450 sbuf_printf(sbuf, "\nSerdes lane: %d\n", i);
11451 sbuf_printf(sbuf, "RX PRE1 = %d\n",
11452 ice_prv_regs_buf.equalization[i].rx_equalization_pre1);
11453 sbuf_printf(sbuf, "RX PRE2 = %d\n",
11454 (s16)ice_prv_regs_buf.equalization[i].rx_equalization_pre2);
11455 sbuf_printf(sbuf, "RX POST1 = %d\n",
11456 ice_prv_regs_buf.equalization[i].rx_equalization_post1);
11457 sbuf_printf(sbuf, "RX BFLF = %d\n",
11458 ice_prv_regs_buf.equalization[i].rx_equalization_bflf);
11459 sbuf_printf(sbuf, "RX BFHF = %d\n",
11460 ice_prv_regs_buf.equalization[i].rx_equalization_bfhf);
11461 sbuf_printf(sbuf, "RX DRATE = %d\n",
11462 (s16)ice_prv_regs_buf.equalization[i].rx_equalization_drate);
11463 sbuf_printf(sbuf, "TX PRE1 = %d\n",
11464 ice_prv_regs_buf.equalization[i].tx_equalization_pre1);
11465 sbuf_printf(sbuf, "TX PRE2 = %d\n",
11466 ice_prv_regs_buf.equalization[i].tx_equalization_pre2);
11467 sbuf_printf(sbuf, "TX PRE3 = %d\n",
11468 ice_prv_regs_buf.equalization[i].tx_equalization_pre3);
11469 sbuf_printf(sbuf, "TX POST1 = %d\n",
11470 ice_prv_regs_buf.equalization[i].tx_equalization_post1);
11471 sbuf_printf(sbuf, "TX ATTEN = %d\n",
11472 ice_prv_regs_buf.equalization[i].tx_equalization_atten);
11473 }
11474
11475 /* Get fec correctable , uncorrectable counter */
11476 err = ice_get_port_fec_stats(hw, port_topology.pcs_quad_select,
11477 port_topology.pcs_port,
11478 &(ice_prv_regs_buf.stats));
11479 if (err) {
11480 device_printf(dev, "failed to get FEC stats Lport %d Err %d\n",
11481 pi->lport, err);
11482 sbuf_finish(sbuf);
11483 sbuf_delete(sbuf);
11484 return (EIO);
11485 }
11486
11487 sbuf_printf(sbuf, "\nRS FEC Corrected codeword count = %d\n",
11488 ((u32)ice_prv_regs_buf.stats.fec_corr_cnt_high << 16) |
11489 ice_prv_regs_buf.stats.fec_corr_cnt_low);
11490 sbuf_printf(sbuf, "RS FEC Uncorrected codeword count = %d\n",
11491 ((u32)ice_prv_regs_buf.stats.fec_uncorr_cnt_high << 16) |
11492 ice_prv_regs_buf.stats.fec_uncorr_cnt_low);
11493
11494 /* Finish */
11495 sbuf_finish(sbuf);
11496 sbuf_delete(sbuf);
11497
11498 return (0);
11499 }
11500
11501 /**
11502 * ice_ets_str_to_tbl - Parse string into ETS table
11503 * @str: input string to parse
11504 * @table: output eight values used for ETS values
11505 * @limit: max valid value to accept for ETS values
11506 *
11507 * Parses a string and converts the eight values within
11508 * into a table that can be used in setting ETS settings
11509 * in a MIB.
11510 *
11511 * @return 0 on success, EINVAL if a parsed value is
11512 * not between 0 and limit.
11513 */
11514 static int
ice_ets_str_to_tbl(const char * str,u8 * table,u8 limit)11515 ice_ets_str_to_tbl(const char *str, u8 *table, u8 limit)
11516 {
11517 const char *str_start = str;
11518 char *str_end;
11519 long token;
11520
11521 for (int i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
11522 token = strtol(str_start, &str_end, 0);
11523 if (token < 0 || token > limit)
11524 return (EINVAL);
11525
11526 table[i] = (u8)token;
11527 str_start = (str_end + 1);
11528 }
11529
11530 return (0);
11531 }
11532
11533 /**
11534 * ice_check_ets_bw - Check if ETS bw vals are valid
11535 * @table: eight values used for ETS bandwidth
11536 *
11537 * @return true if the sum of all 8 values in table
11538 * equals 100.
11539 */
11540 static bool
ice_check_ets_bw(u8 * table)11541 ice_check_ets_bw(u8 *table)
11542 {
11543 int sum = 0;
11544 for (int i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++)
11545 sum += (int)table[i];
11546
11547 return (sum == 100);
11548 }
11549
11550 /**
11551 * ice_cfg_pba_num - Determine if PBA Number is retrievable
11552 * @sc: the device private softc structure
11553 *
11554 * Sets the feature flag for the existence of a PBA number
11555 * based on the success of the read command. This does not
11556 * cache the result.
11557 */
11558 void
ice_cfg_pba_num(struct ice_softc * sc)11559 ice_cfg_pba_num(struct ice_softc *sc)
11560 {
11561 u8 pba_string[32] = "";
11562
11563 if ((ice_is_bit_set(sc->feat_cap, ICE_FEATURE_HAS_PBA)) &&
11564 (ice_read_pba_string(&sc->hw, pba_string, sizeof(pba_string)) == 0))
11565 ice_set_bit(ICE_FEATURE_HAS_PBA, sc->feat_en);
11566 }
11567
11568 /**
11569 * ice_sysctl_query_port_ets - print Port ETS Config from AQ
11570 * @oidp: sysctl oid structure
11571 * @arg1: pointer to private data structure
11572 * @arg2: unused
11573 * @req: sysctl request pointer
11574 */
11575 static int
ice_sysctl_query_port_ets(SYSCTL_HANDLER_ARGS)11576 ice_sysctl_query_port_ets(SYSCTL_HANDLER_ARGS)
11577 {
11578 struct ice_softc *sc = (struct ice_softc *)arg1;
11579 struct ice_aqc_port_ets_elem port_ets = { 0 };
11580 struct ice_hw *hw = &sc->hw;
11581 struct ice_port_info *pi;
11582 device_t dev = sc->dev;
11583 struct sbuf *sbuf;
11584 int status;
11585 int i = 0;
11586
11587 UNREFERENCED_PARAMETER(oidp);
11588 UNREFERENCED_PARAMETER(arg2);
11589
11590 if (ice_driver_is_detaching(sc))
11591 return (ESHUTDOWN);
11592
11593 pi = hw->port_info;
11594
11595 status = ice_aq_query_port_ets(pi, &port_ets, sizeof(port_ets), NULL);
11596 if (status) {
11597 device_printf(dev,
11598 "Query Port ETS AQ call failed, err %s aq_err %s\n",
11599 ice_status_str(status),
11600 ice_aq_str(hw->adminq.sq_last_status));
11601 return (EIO);
11602 }
11603
11604 sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
11605
11606 /* Do the actual printing */
11607 sbuf_printf(sbuf, "\n");
11608
11609 sbuf_printf(sbuf, "Valid TC map: 0x%x\n", port_ets.tc_valid_bits);
11610
11611 sbuf_printf(sbuf, "TC BW %%:");
11612 ice_for_each_traffic_class(i) {
11613 sbuf_printf(sbuf, " %3d", port_ets.tc_bw_share[i]);
11614 }
11615 sbuf_printf(sbuf, "\n");
11616
11617 sbuf_printf(sbuf, "EIR profile ID: %d\n", port_ets.port_eir_prof_id);
11618 sbuf_printf(sbuf, "CIR profile ID: %d\n", port_ets.port_cir_prof_id);
11619 sbuf_printf(sbuf, "TC Node prio: 0x%x\n", port_ets.tc_node_prio);
11620
11621 sbuf_printf(sbuf, "TC Node TEIDs:\n");
11622 ice_for_each_traffic_class(i) {
11623 sbuf_printf(sbuf, "%d: %d\n", i, port_ets.tc_node_teid[i]);
11624 }
11625
11626 /* Finish */
11627 sbuf_finish(sbuf);
11628 sbuf_delete(sbuf);
11629
11630 return (0);
11631 }
11632
11633 /**
11634 * ice_sysctl_dscp2tc_map - Map DSCP to hardware TCs
11635 * @oidp: sysctl oid structure
11636 * @arg1: pointer to private data structure
11637 * @arg2: which eight DSCP to UP mappings to configure (0 - 7)
11638 * @req: sysctl request pointer
11639 *
11640 * Gets or sets the current DSCP to UP table cached by the driver. Since there
11641 * are 64 possible DSCP values to configure, this sysctl only configures
11642 * chunks of 8 in that space at a time.
11643 *
11644 * This sysctl is only relevant in DSCP mode, and will only function in SW DCB
11645 * mode.
11646 */
11647 static int
ice_sysctl_dscp2tc_map(SYSCTL_HANDLER_ARGS)11648 ice_sysctl_dscp2tc_map(SYSCTL_HANDLER_ARGS)
11649 {
11650 struct ice_softc *sc = (struct ice_softc *)arg1;
11651 struct ice_dcbx_cfg *local_dcbx_cfg;
11652 struct ice_port_info *pi;
11653 struct ice_hw *hw = &sc->hw;
11654 device_t dev = sc->dev;
11655 int status;
11656 struct sbuf *sbuf;
11657 int ret;
11658
11659 /* Store input rates from user */
11660 char dscp_user_buf[128] = "";
11661 u8 new_dscp_table_seg[ICE_MAX_TRAFFIC_CLASS] = {};
11662
11663 if (ice_driver_is_detaching(sc))
11664 return (ESHUTDOWN);
11665
11666 if (req->oldptr == NULL && req->newptr == NULL) {
11667 ret = SYSCTL_OUT(req, 0, 128);
11668 return (ret);
11669 }
11670
11671 pi = hw->port_info;
11672 local_dcbx_cfg = &pi->qos_cfg.local_dcbx_cfg;
11673
11674 sbuf = sbuf_new(NULL, dscp_user_buf, 128, SBUF_FIXEDLEN | SBUF_INCLUDENUL);
11675
11676 /* Format DSCP-to-UP data for output */
11677 for (int i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
11678 sbuf_printf(sbuf, "%d", local_dcbx_cfg->dscp_map[arg2 * 8 + i]);
11679 if (i != ICE_MAX_TRAFFIC_CLASS - 1)
11680 sbuf_printf(sbuf, ",");
11681 }
11682
11683 sbuf_finish(sbuf);
11684 sbuf_delete(sbuf);
11685
11686 /* Read in the new DSCP mapping values */
11687 ret = sysctl_handle_string(oidp, dscp_user_buf, sizeof(dscp_user_buf), req);
11688 if ((ret) || (req->newptr == NULL))
11689 return (ret);
11690
11691 /* Don't allow setting changes in FW DCB mode */
11692 if (!hw->port_info->qos_cfg.is_sw_lldp) {
11693 device_printf(dev, "%s: DSCP mapping is not allowed in FW DCBX mode\n",
11694 __func__);
11695 return (EINVAL);
11696 }
11697
11698 /* Convert 8 values in a string to a table; this is similar to what
11699 * needs to be done for ETS settings, so this function can be re-used
11700 * for that purpose.
11701 */
11702 ret = ice_ets_str_to_tbl(dscp_user_buf, new_dscp_table_seg,
11703 ICE_MAX_TRAFFIC_CLASS - 1);
11704 if (ret) {
11705 device_printf(dev, "%s: Could not parse input DSCP2TC table: %s\n",
11706 __func__, dscp_user_buf);
11707 return (ret);
11708 }
11709
11710 memcpy(&local_dcbx_cfg->dscp_map[arg2 * 8], new_dscp_table_seg,
11711 sizeof(new_dscp_table_seg));
11712
11713 local_dcbx_cfg->app_mode = ICE_DCBX_APPS_NON_WILLING;
11714
11715 status = ice_set_dcb_cfg(pi);
11716 if (status) {
11717 device_printf(dev,
11718 "%s: Failed to set DCB config; status %s, aq_err %s\n",
11719 __func__, ice_status_str(status),
11720 ice_aq_str(hw->adminq.sq_last_status));
11721 return (EIO);
11722 }
11723
11724 ice_do_dcb_reconfig(sc, false);
11725
11726 return (0);
11727 }
11728
11729 /**
11730 * ice_handle_debug_dump_ioctl - Handle a debug dump ioctl request
11731 * @sc: the device private softc
11732 * @ifd: ifdrv ioctl request pointer
11733 */
11734 int
ice_handle_debug_dump_ioctl(struct ice_softc * sc,struct ifdrv * ifd)11735 ice_handle_debug_dump_ioctl(struct ice_softc *sc, struct ifdrv *ifd)
11736 {
11737 size_t ifd_len = ifd->ifd_len;
11738 struct ice_hw *hw = &sc->hw;
11739 device_t dev = sc->dev;
11740 struct ice_debug_dump_cmd *ddc;
11741 int status;
11742 int err = 0;
11743
11744 /* Returned arguments from the Admin Queue */
11745 u16 ret_buf_size = 0;
11746 u16 ret_next_cluster = 0;
11747 u16 ret_next_table = 0;
11748 u32 ret_next_index = 0;
11749
11750 /*
11751 * ifioctl forwards SIOCxDRVSPEC to iflib without performing
11752 * a privilege check. In turn, iflib forwards the ioctl to the driver
11753 * without performing a privilege check. Perform one here to ensure
11754 * that non-privileged threads cannot access this interface.
11755 */
11756 err = priv_check(curthread, PRIV_DRIVER);
11757 if (err)
11758 return (err);
11759
11760 if (ice_test_state(&sc->state, ICE_STATE_PREPARED_FOR_RESET)) {
11761 device_printf(dev,
11762 "%s: Driver must rebuild data structures after a reset. Operation aborted.\n",
11763 __func__);
11764 return (EBUSY);
11765 }
11766
11767 if (ifd_len < sizeof(*ddc)) {
11768 device_printf(dev,
11769 "%s: ifdrv length is too small. Got %zu, but expected %zu\n",
11770 __func__, ifd_len, sizeof(*ddc));
11771 return (EINVAL);
11772 }
11773
11774 if (ifd->ifd_data == NULL) {
11775 device_printf(dev, "%s: ifd data buffer not present.\n",
11776 __func__);
11777 return (EINVAL);
11778 }
11779
11780 ddc = (struct ice_debug_dump_cmd *)malloc(ifd_len, M_ICE, M_ZERO | M_NOWAIT);
11781 if (!ddc)
11782 return (ENOMEM);
11783
11784 /* Copy the NVM access command and data in from user space */
11785 /* coverity[tainted_data_argument] */
11786 err = copyin(ifd->ifd_data, ddc, ifd_len);
11787 if (err) {
11788 device_printf(dev, "%s: Copying request from user space failed, err %s\n",
11789 __func__, ice_err_str(err));
11790 goto out;
11791 }
11792
11793 /* The data_size arg must be at least 1 for the AQ cmd to work */
11794 if (ddc->data_size == 0) {
11795 device_printf(dev,
11796 "%s: data_size must be greater than 0\n", __func__);
11797 err = EINVAL;
11798 goto out;
11799 }
11800 /* ...and it can't be too long */
11801 if (ddc->data_size > (ifd_len - sizeof(*ddc))) {
11802 device_printf(dev,
11803 "%s: data_size (%d) is larger than ifd_len space (%zu)?\n", __func__,
11804 ddc->data_size, ifd_len - sizeof(*ddc));
11805 err = EINVAL;
11806 goto out;
11807 }
11808
11809 /* Make sure any possible data buffer space is zeroed */
11810 memset(ddc->data, 0, ifd_len - sizeof(*ddc));
11811
11812 status = ice_aq_get_internal_data(hw, ddc->cluster_id, ddc->table_id, ddc->offset,
11813 (u8 *)ddc->data, ddc->data_size, &ret_buf_size,
11814 &ret_next_cluster, &ret_next_table, &ret_next_index, NULL);
11815 ice_debug(hw, ICE_DBG_DIAG, "%s: ret_buf_size %d, ret_next_table %d, ret_next_index %d\n",
11816 __func__, ret_buf_size, ret_next_table, ret_next_index);
11817 if (status) {
11818 device_printf(dev,
11819 "%s: Get Internal Data AQ command failed, err %s aq_err %s\n",
11820 __func__,
11821 ice_status_str(status),
11822 ice_aq_str(hw->adminq.sq_last_status));
11823 goto aq_error;
11824 }
11825
11826 ddc->table_id = ret_next_table;
11827 ddc->offset = ret_next_index;
11828 ddc->data_size = ret_buf_size;
11829 ddc->cluster_id = ret_next_cluster;
11830
11831 /* Copy the possibly modified contents of the handled request out */
11832 err = copyout(ddc, ifd->ifd_data, ifd->ifd_len);
11833 if (err) {
11834 device_printf(dev, "%s: Copying response back to user space failed, err %s\n",
11835 __func__, ice_err_str(err));
11836 goto out;
11837 }
11838
11839 aq_error:
11840 /* Convert private status to an error code for proper ioctl response */
11841 switch (status) {
11842 case 0:
11843 err = (0);
11844 break;
11845 case ICE_ERR_NO_MEMORY:
11846 err = (ENOMEM);
11847 break;
11848 case ICE_ERR_OUT_OF_RANGE:
11849 err = (ENOTTY);
11850 break;
11851 case ICE_ERR_AQ_ERROR:
11852 err = (EIO);
11853 break;
11854 case ICE_ERR_PARAM:
11855 default:
11856 err = (EINVAL);
11857 break;
11858 }
11859
11860 out:
11861 free(ddc, M_ICE);
11862 return (err);
11863 }
11864
11865 /**
11866 * ice_sysctl_allow_no_fec_mod_in_auto - Change Auto FEC behavior
11867 * @oidp: sysctl oid structure
11868 * @arg1: pointer to private data structure
11869 * @arg2: unused
11870 * @req: sysctl request pointer
11871 *
11872 * Allows user to let "No FEC" mode to be used in "Auto"
11873 * FEC mode during FEC negotiation. This is only supported
11874 * on newer firmware versions.
11875 */
11876 static int
ice_sysctl_allow_no_fec_mod_in_auto(SYSCTL_HANDLER_ARGS)11877 ice_sysctl_allow_no_fec_mod_in_auto(SYSCTL_HANDLER_ARGS)
11878 {
11879 struct ice_softc *sc = (struct ice_softc *)arg1;
11880 struct ice_hw *hw = &sc->hw;
11881 device_t dev = sc->dev;
11882 u8 user_flag;
11883 int ret;
11884
11885 UNREFERENCED_PARAMETER(arg2);
11886
11887 ret = priv_check(curthread, PRIV_DRIVER);
11888 if (ret)
11889 return (ret);
11890
11891 if (ice_driver_is_detaching(sc))
11892 return (ESHUTDOWN);
11893
11894 user_flag = (u8)sc->allow_no_fec_mod_in_auto;
11895
11896 ret = sysctl_handle_bool(oidp, &user_flag, 0, req);
11897 if ((ret) || (req->newptr == NULL))
11898 return (ret);
11899
11900 if (!ice_fw_supports_fec_dis_auto(hw)) {
11901 log(LOG_INFO,
11902 "%s: Enabling or disabling of auto configuration of modules that don't support FEC is unsupported by the current firmware\n",
11903 device_get_nameunit(dev));
11904 return (ENODEV);
11905 }
11906
11907 if (user_flag == (bool)sc->allow_no_fec_mod_in_auto)
11908 return (0);
11909
11910 sc->allow_no_fec_mod_in_auto = (u8)user_flag;
11911
11912 if (sc->allow_no_fec_mod_in_auto)
11913 log(LOG_INFO, "%s: Enabled auto configuration of No FEC modules\n",
11914 device_get_nameunit(dev));
11915 else
11916 log(LOG_INFO,
11917 "%s: Auto configuration of No FEC modules reset to NVM defaults\n",
11918 device_get_nameunit(dev));
11919
11920 return (0);
11921 }
11922
11923 /**
11924 * ice_sysctl_temperature - Retrieve NIC temp via AQ command
11925 * @oidp: sysctl oid structure
11926 * @arg1: pointer to private data structure
11927 * @arg2: unused
11928 * @req: sysctl request pointer
11929 *
11930 * If ICE_DBG_DIAG is set in the debug.debug_mask sysctl, then this will print
11931 * temperature threshold information in the kernel message log, too.
11932 */
11933 static int
ice_sysctl_temperature(SYSCTL_HANDLER_ARGS)11934 ice_sysctl_temperature(SYSCTL_HANDLER_ARGS)
11935 {
11936 struct ice_aqc_get_sensor_reading_resp resp;
11937 struct ice_softc *sc = (struct ice_softc *)arg1;
11938 struct ice_hw *hw = &sc->hw;
11939 device_t dev = sc->dev;
11940 int status;
11941
11942 UNREFERENCED_PARAMETER(oidp);
11943 UNREFERENCED_PARAMETER(arg2);
11944
11945 if (ice_driver_is_detaching(sc))
11946 return (ESHUTDOWN);
11947
11948 status = ice_aq_get_sensor_reading(hw, ICE_AQC_INT_TEMP_SENSOR,
11949 ICE_AQC_INT_TEMP_FORMAT, &resp, NULL);
11950 if (status) {
11951 device_printf(dev,
11952 "Get Sensor Reading AQ call failed, err %s aq_err %s\n",
11953 ice_status_str(status),
11954 ice_aq_str(hw->adminq.sq_last_status));
11955 return (EIO);
11956 }
11957
11958 ice_debug(hw, ICE_DBG_DIAG, "%s: Warning Temp Threshold: %d\n", __func__,
11959 resp.data.s0f0.temp_warning_threshold);
11960 ice_debug(hw, ICE_DBG_DIAG, "%s: Critical Temp Threshold: %d\n", __func__,
11961 resp.data.s0f0.temp_critical_threshold);
11962 ice_debug(hw, ICE_DBG_DIAG, "%s: Fatal Temp Threshold: %d\n", __func__,
11963 resp.data.s0f0.temp_fatal_threshold);
11964
11965 return sysctl_handle_8(oidp, &resp.data.s0f0.temp, 0, req);
11966 }
11967
11968 /**
11969 * ice_sysctl_create_mirror_interface - Create a new ifnet that monitors
11970 * traffic from the main PF VSI
11971 */
11972 static int
ice_sysctl_create_mirror_interface(SYSCTL_HANDLER_ARGS)11973 ice_sysctl_create_mirror_interface(SYSCTL_HANDLER_ARGS)
11974 {
11975 struct ice_softc *sc = (struct ice_softc *)arg1;
11976 device_t dev = sc->dev;
11977 int ret;
11978
11979 UNREFERENCED_PARAMETER(arg2);
11980
11981 ret = priv_check(curthread, PRIV_DRIVER);
11982 if (ret)
11983 return (ret);
11984
11985 if (ice_driver_is_detaching(sc))
11986 return (ESHUTDOWN);
11987
11988 /* If the user hasn't written "1" to this sysctl yet: */
11989 if (!ice_test_state(&sc->state, ICE_STATE_DO_CREATE_MIRR_INTFC)) {
11990 /* Avoid output on the first set of reads to this sysctl in
11991 * order to prevent a null byte from being written to the
11992 * end result when called via sysctl(8).
11993 */
11994 if (req->oldptr == NULL && req->newptr == NULL) {
11995 ret = SYSCTL_OUT(req, 0, 0);
11996 return (ret);
11997 }
11998
11999 char input_buf[2] = "";
12000 ret = sysctl_handle_string(oidp, input_buf, sizeof(input_buf), req);
12001 if ((ret) || (req->newptr == NULL))
12002 return (ret);
12003
12004 /* If we get '1', then indicate we'll create the interface in
12005 * the next sysctl read call.
12006 */
12007 if (input_buf[0] == '1') {
12008 if (sc->mirr_if) {
12009 device_printf(dev,
12010 "Mirror interface %s already exists!\n",
12011 if_name(sc->mirr_if->ifp));
12012 return (EEXIST);
12013 }
12014 ice_set_state(&sc->state, ICE_STATE_DO_CREATE_MIRR_INTFC);
12015 return (0);
12016 }
12017
12018 return (EINVAL);
12019 }
12020
12021 /* --- "Do Create Mirror Interface" is set --- */
12022
12023 /* Caller just wants the upper bound for size */
12024 if (req->oldptr == NULL && req->newptr == NULL) {
12025 ret = SYSCTL_OUT(req, 0, 128);
12026 return (ret);
12027 }
12028
12029 device_printf(dev, "Creating new mirroring interface...\n");
12030
12031 ret = ice_create_mirror_interface(sc);
12032 if (ret)
12033 return (ret);
12034
12035 ice_clear_state(&sc->state, ICE_STATE_DO_CREATE_MIRR_INTFC);
12036
12037 ret = sysctl_handle_string(oidp, __DECONST(char *, "Interface attached"), 0, req);
12038 return (ret);
12039 }
12040
12041 /**
12042 * ice_sysctl_destroy_mirror_interface - Destroy network interface that monitors
12043 * traffic from the main PF VSI
12044 */
12045 static int
ice_sysctl_destroy_mirror_interface(SYSCTL_HANDLER_ARGS)12046 ice_sysctl_destroy_mirror_interface(SYSCTL_HANDLER_ARGS)
12047 {
12048 struct ice_softc *sc = (struct ice_softc *)arg1;
12049 device_t dev = sc->dev;
12050 int ret;
12051
12052 UNREFERENCED_PARAMETER(arg2);
12053
12054 ret = priv_check(curthread, PRIV_DRIVER);
12055 if (ret)
12056 return (ret);
12057
12058 if (ice_driver_is_detaching(sc))
12059 return (ESHUTDOWN);
12060
12061 /* If the user hasn't written "1" to this sysctl yet: */
12062 if (!ice_test_state(&sc->state, ICE_STATE_DO_DESTROY_MIRR_INTFC)) {
12063 /* Avoid output on the first set of reads to this sysctl in
12064 * order to prevent a null byte from being written to the
12065 * end result when called via sysctl(8).
12066 */
12067 if (req->oldptr == NULL && req->newptr == NULL) {
12068 ret = SYSCTL_OUT(req, 0, 0);
12069 return (ret);
12070 }
12071
12072 char input_buf[2] = "";
12073 ret = sysctl_handle_string(oidp, input_buf, sizeof(input_buf), req);
12074 if ((ret) || (req->newptr == NULL))
12075 return (ret);
12076
12077 /* If we get '1', then indicate we'll create the interface in
12078 * the next sysctl read call.
12079 */
12080 if (input_buf[0] == '1') {
12081 if (!sc->mirr_if) {
12082 device_printf(dev,
12083 "No mirror interface exists!\n");
12084 return (EINVAL);
12085 }
12086 ice_set_state(&sc->state, ICE_STATE_DO_DESTROY_MIRR_INTFC);
12087 return (0);
12088 }
12089
12090 return (EINVAL);
12091 }
12092
12093 /* --- "Do Destroy Mirror Interface" is set --- */
12094
12095 /* Caller just wants the upper bound for size */
12096 if (req->oldptr == NULL && req->newptr == NULL) {
12097 ret = SYSCTL_OUT(req, 0, 128);
12098 return (ret);
12099 }
12100
12101 device_printf(dev, "Destroying mirroring interface...\n");
12102
12103 ice_destroy_mirror_interface(sc);
12104
12105 ice_clear_state(&sc->state, ICE_STATE_DO_DESTROY_MIRR_INTFC);
12106
12107 ret = sysctl_handle_string(oidp, __DECONST(char *, "Interface destroyed"), 0, req);
12108 return (ret);
12109 }
12110