1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice_common.h"
5
6 #define ICE_CQ_INIT_REGS(qinfo, prefix) \
7 do { \
8 (qinfo)->sq.head = prefix##_ATQH; \
9 (qinfo)->sq.tail = prefix##_ATQT; \
10 (qinfo)->sq.len = prefix##_ATQLEN; \
11 (qinfo)->sq.bah = prefix##_ATQBAH; \
12 (qinfo)->sq.bal = prefix##_ATQBAL; \
13 (qinfo)->sq.len_mask = prefix##_ATQLEN_ATQLEN_M; \
14 (qinfo)->sq.len_ena_mask = prefix##_ATQLEN_ATQENABLE_M; \
15 (qinfo)->sq.len_crit_mask = prefix##_ATQLEN_ATQCRIT_M; \
16 (qinfo)->sq.head_mask = prefix##_ATQH_ATQH_M; \
17 (qinfo)->rq.head = prefix##_ARQH; \
18 (qinfo)->rq.tail = prefix##_ARQT; \
19 (qinfo)->rq.len = prefix##_ARQLEN; \
20 (qinfo)->rq.bah = prefix##_ARQBAH; \
21 (qinfo)->rq.bal = prefix##_ARQBAL; \
22 (qinfo)->rq.len_mask = prefix##_ARQLEN_ARQLEN_M; \
23 (qinfo)->rq.len_ena_mask = prefix##_ARQLEN_ARQENABLE_M; \
24 (qinfo)->rq.len_crit_mask = prefix##_ARQLEN_ARQCRIT_M; \
25 (qinfo)->rq.head_mask = prefix##_ARQH_ARQH_M; \
26 } while (0)
27
28 /**
29 * ice_adminq_init_regs - Initialize AdminQ registers
30 * @hw: pointer to the hardware structure
31 *
32 * This assumes the alloc_sq and alloc_rq functions have already been called
33 */
ice_adminq_init_regs(struct ice_hw * hw)34 static void ice_adminq_init_regs(struct ice_hw *hw)
35 {
36 struct ice_ctl_q_info *cq = &hw->adminq;
37
38 ICE_CQ_INIT_REGS(cq, PF_FW);
39 }
40
41 /**
42 * ice_mailbox_init_regs - Initialize Mailbox registers
43 * @hw: pointer to the hardware structure
44 *
45 * This assumes the alloc_sq and alloc_rq functions have already been called
46 */
ice_mailbox_init_regs(struct ice_hw * hw)47 static void ice_mailbox_init_regs(struct ice_hw *hw)
48 {
49 struct ice_ctl_q_info *cq = &hw->mailboxq;
50
51 ICE_CQ_INIT_REGS(cq, PF_MBX);
52 }
53
54 /**
55 * ice_sb_init_regs - Initialize Sideband registers
56 * @hw: pointer to the hardware structure
57 *
58 * This assumes the alloc_sq and alloc_rq functions have already been called
59 */
ice_sb_init_regs(struct ice_hw * hw)60 static void ice_sb_init_regs(struct ice_hw *hw)
61 {
62 struct ice_ctl_q_info *cq = &hw->sbq;
63
64 ICE_CQ_INIT_REGS(cq, PF_SB);
65 }
66
67 /**
68 * ice_check_sq_alive
69 * @hw: pointer to the HW struct
70 * @cq: pointer to the specific Control queue
71 *
72 * Returns true if Queue is enabled else false.
73 */
ice_check_sq_alive(struct ice_hw * hw,struct ice_ctl_q_info * cq)74 bool ice_check_sq_alive(struct ice_hw *hw, struct ice_ctl_q_info *cq)
75 {
76 /* check both queue-length and queue-enable fields */
77 if (cq->sq.len && cq->sq.len_mask && cq->sq.len_ena_mask)
78 return (rd32(hw, cq->sq.len) & (cq->sq.len_mask |
79 cq->sq.len_ena_mask)) ==
80 (cq->num_sq_entries | cq->sq.len_ena_mask);
81
82 return false;
83 }
84
85 /**
86 * ice_alloc_ctrlq_sq_ring - Allocate Control Transmit Queue (ATQ) rings
87 * @hw: pointer to the hardware structure
88 * @cq: pointer to the specific Control queue
89 */
90 static int
ice_alloc_ctrlq_sq_ring(struct ice_hw * hw,struct ice_ctl_q_info * cq)91 ice_alloc_ctrlq_sq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq)
92 {
93 size_t size = cq->num_sq_entries * sizeof(struct ice_aq_desc);
94
95 cq->sq.desc_buf.va = dmam_alloc_coherent(ice_hw_to_dev(hw), size,
96 &cq->sq.desc_buf.pa,
97 GFP_KERNEL | __GFP_ZERO);
98 if (!cq->sq.desc_buf.va)
99 return -ENOMEM;
100 cq->sq.desc_buf.size = size;
101
102 return 0;
103 }
104
105 /**
106 * ice_alloc_ctrlq_rq_ring - Allocate Control Receive Queue (ARQ) rings
107 * @hw: pointer to the hardware structure
108 * @cq: pointer to the specific Control queue
109 */
110 static int
ice_alloc_ctrlq_rq_ring(struct ice_hw * hw,struct ice_ctl_q_info * cq)111 ice_alloc_ctrlq_rq_ring(struct ice_hw *hw, struct ice_ctl_q_info *cq)
112 {
113 size_t size = cq->num_rq_entries * sizeof(struct ice_aq_desc);
114
115 cq->rq.desc_buf.va = dmam_alloc_coherent(ice_hw_to_dev(hw), size,
116 &cq->rq.desc_buf.pa,
117 GFP_KERNEL | __GFP_ZERO);
118 if (!cq->rq.desc_buf.va)
119 return -ENOMEM;
120 cq->rq.desc_buf.size = size;
121 return 0;
122 }
123
124 /**
125 * ice_free_cq_ring - Free control queue ring
126 * @hw: pointer to the hardware structure
127 * @ring: pointer to the specific control queue ring
128 *
129 * This assumes the posted buffers have already been cleaned
130 * and de-allocated
131 */
ice_free_cq_ring(struct ice_hw * hw,struct ice_ctl_q_ring * ring)132 static void ice_free_cq_ring(struct ice_hw *hw, struct ice_ctl_q_ring *ring)
133 {
134 dmam_free_coherent(ice_hw_to_dev(hw), ring->desc_buf.size,
135 ring->desc_buf.va, ring->desc_buf.pa);
136 ring->desc_buf.va = NULL;
137 ring->desc_buf.pa = 0;
138 ring->desc_buf.size = 0;
139 }
140
141 /**
142 * ice_alloc_rq_bufs - Allocate pre-posted buffers for the ARQ
143 * @hw: pointer to the hardware structure
144 * @cq: pointer to the specific Control queue
145 */
146 static int
ice_alloc_rq_bufs(struct ice_hw * hw,struct ice_ctl_q_info * cq)147 ice_alloc_rq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
148 {
149 int i;
150
151 /* We'll be allocating the buffer info memory first, then we can
152 * allocate the mapped buffers for the event processing
153 */
154 cq->rq.dma_head = devm_kcalloc(ice_hw_to_dev(hw), cq->num_rq_entries,
155 sizeof(cq->rq.desc_buf), GFP_KERNEL);
156 if (!cq->rq.dma_head)
157 return -ENOMEM;
158 cq->rq.r.rq_bi = (struct ice_dma_mem *)cq->rq.dma_head;
159
160 /* allocate the mapped buffers */
161 for (i = 0; i < cq->num_rq_entries; i++) {
162 struct ice_aq_desc *desc;
163 struct ice_dma_mem *bi;
164
165 bi = &cq->rq.r.rq_bi[i];
166 bi->va = dmam_alloc_coherent(ice_hw_to_dev(hw),
167 cq->rq_buf_size, &bi->pa,
168 GFP_KERNEL | __GFP_ZERO);
169 if (!bi->va)
170 goto unwind_alloc_rq_bufs;
171 bi->size = cq->rq_buf_size;
172
173 /* now configure the descriptors for use */
174 desc = ICE_CTL_Q_DESC(cq->rq, i);
175
176 desc->flags = cpu_to_le16(ICE_AQ_FLAG_BUF);
177 if (cq->rq_buf_size > ICE_AQ_LG_BUF)
178 desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB);
179 desc->opcode = 0;
180 /* This is in accordance with control queue design, there is no
181 * register for buffer size configuration
182 */
183 desc->datalen = cpu_to_le16(bi->size);
184 desc->retval = 0;
185 desc->cookie_high = 0;
186 desc->cookie_low = 0;
187 desc->params.generic.addr_high =
188 cpu_to_le32(upper_32_bits(bi->pa));
189 desc->params.generic.addr_low =
190 cpu_to_le32(lower_32_bits(bi->pa));
191 desc->params.generic.param0 = 0;
192 desc->params.generic.param1 = 0;
193 }
194 return 0;
195
196 unwind_alloc_rq_bufs:
197 /* don't try to free the one that failed... */
198 i--;
199 for (; i >= 0; i--) {
200 dmam_free_coherent(ice_hw_to_dev(hw), cq->rq.r.rq_bi[i].size,
201 cq->rq.r.rq_bi[i].va, cq->rq.r.rq_bi[i].pa);
202 cq->rq.r.rq_bi[i].va = NULL;
203 cq->rq.r.rq_bi[i].pa = 0;
204 cq->rq.r.rq_bi[i].size = 0;
205 }
206 cq->rq.r.rq_bi = NULL;
207 devm_kfree(ice_hw_to_dev(hw), cq->rq.dma_head);
208 cq->rq.dma_head = NULL;
209
210 return -ENOMEM;
211 }
212
213 /**
214 * ice_alloc_sq_bufs - Allocate empty buffer structs for the ATQ
215 * @hw: pointer to the hardware structure
216 * @cq: pointer to the specific Control queue
217 */
218 static int
ice_alloc_sq_bufs(struct ice_hw * hw,struct ice_ctl_q_info * cq)219 ice_alloc_sq_bufs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
220 {
221 int i;
222
223 /* No mapped memory needed yet, just the buffer info structures */
224 cq->sq.dma_head = devm_kcalloc(ice_hw_to_dev(hw), cq->num_sq_entries,
225 sizeof(cq->sq.desc_buf), GFP_KERNEL);
226 if (!cq->sq.dma_head)
227 return -ENOMEM;
228 cq->sq.r.sq_bi = (struct ice_dma_mem *)cq->sq.dma_head;
229
230 /* allocate the mapped buffers */
231 for (i = 0; i < cq->num_sq_entries; i++) {
232 struct ice_dma_mem *bi;
233
234 bi = &cq->sq.r.sq_bi[i];
235 bi->va = dmam_alloc_coherent(ice_hw_to_dev(hw),
236 cq->sq_buf_size, &bi->pa,
237 GFP_KERNEL | __GFP_ZERO);
238 if (!bi->va)
239 goto unwind_alloc_sq_bufs;
240 bi->size = cq->sq_buf_size;
241 }
242 return 0;
243
244 unwind_alloc_sq_bufs:
245 /* don't try to free the one that failed... */
246 i--;
247 for (; i >= 0; i--) {
248 dmam_free_coherent(ice_hw_to_dev(hw), cq->sq.r.sq_bi[i].size,
249 cq->sq.r.sq_bi[i].va, cq->sq.r.sq_bi[i].pa);
250 cq->sq.r.sq_bi[i].va = NULL;
251 cq->sq.r.sq_bi[i].pa = 0;
252 cq->sq.r.sq_bi[i].size = 0;
253 }
254 cq->sq.r.sq_bi = NULL;
255 devm_kfree(ice_hw_to_dev(hw), cq->sq.dma_head);
256 cq->sq.dma_head = NULL;
257
258 return -ENOMEM;
259 }
260
261 static int
ice_cfg_cq_regs(struct ice_hw * hw,struct ice_ctl_q_ring * ring,u16 num_entries)262 ice_cfg_cq_regs(struct ice_hw *hw, struct ice_ctl_q_ring *ring, u16 num_entries)
263 {
264 /* Clear Head and Tail */
265 wr32(hw, ring->head, 0);
266 wr32(hw, ring->tail, 0);
267
268 /* set starting point */
269 wr32(hw, ring->len, (num_entries | ring->len_ena_mask));
270 wr32(hw, ring->bal, lower_32_bits(ring->desc_buf.pa));
271 wr32(hw, ring->bah, upper_32_bits(ring->desc_buf.pa));
272
273 /* Check one register to verify that config was applied */
274 if (rd32(hw, ring->bal) != lower_32_bits(ring->desc_buf.pa))
275 return -EIO;
276
277 return 0;
278 }
279
280 /**
281 * ice_cfg_sq_regs - configure Control ATQ registers
282 * @hw: pointer to the hardware structure
283 * @cq: pointer to the specific Control queue
284 *
285 * Configure base address and length registers for the transmit queue
286 */
ice_cfg_sq_regs(struct ice_hw * hw,struct ice_ctl_q_info * cq)287 static int ice_cfg_sq_regs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
288 {
289 return ice_cfg_cq_regs(hw, &cq->sq, cq->num_sq_entries);
290 }
291
292 /**
293 * ice_cfg_rq_regs - configure Control ARQ register
294 * @hw: pointer to the hardware structure
295 * @cq: pointer to the specific Control queue
296 *
297 * Configure base address and length registers for the receive (event queue)
298 */
ice_cfg_rq_regs(struct ice_hw * hw,struct ice_ctl_q_info * cq)299 static int ice_cfg_rq_regs(struct ice_hw *hw, struct ice_ctl_q_info *cq)
300 {
301 int status;
302
303 status = ice_cfg_cq_regs(hw, &cq->rq, cq->num_rq_entries);
304 if (status)
305 return status;
306
307 /* Update tail in the HW to post pre-allocated buffers */
308 wr32(hw, cq->rq.tail, (u32)(cq->num_rq_entries - 1));
309
310 return 0;
311 }
312
313 #define ICE_FREE_CQ_BUFS(hw, qi, ring) \
314 do { \
315 /* free descriptors */ \
316 if ((qi)->ring.r.ring##_bi) { \
317 int i; \
318 \
319 for (i = 0; i < (qi)->num_##ring##_entries; i++) \
320 if ((qi)->ring.r.ring##_bi[i].pa) { \
321 dmam_free_coherent(ice_hw_to_dev(hw), \
322 (qi)->ring.r.ring##_bi[i].size, \
323 (qi)->ring.r.ring##_bi[i].va, \
324 (qi)->ring.r.ring##_bi[i].pa); \
325 (qi)->ring.r.ring##_bi[i].va = NULL;\
326 (qi)->ring.r.ring##_bi[i].pa = 0;\
327 (qi)->ring.r.ring##_bi[i].size = 0;\
328 } \
329 } \
330 /* free DMA head */ \
331 devm_kfree(ice_hw_to_dev(hw), (qi)->ring.dma_head); \
332 } while (0)
333
334 /**
335 * ice_init_sq - main initialization routine for Control ATQ
336 * @hw: pointer to the hardware structure
337 * @cq: pointer to the specific Control queue
338 *
339 * This is the main initialization routine for the Control Send Queue
340 * Prior to calling this function, the driver *MUST* set the following fields
341 * in the cq->structure:
342 * - cq->num_sq_entries
343 * - cq->sq_buf_size
344 *
345 * Do *NOT* hold the lock when calling this as the memory allocation routines
346 * called are not going to be atomic context safe
347 */
ice_init_sq(struct ice_hw * hw,struct ice_ctl_q_info * cq)348 static int ice_init_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
349 {
350 int ret_code;
351
352 if (cq->sq.count > 0) {
353 /* queue already initialized */
354 ret_code = -EBUSY;
355 goto init_ctrlq_exit;
356 }
357
358 /* verify input for valid configuration */
359 if (!cq->num_sq_entries || !cq->sq_buf_size) {
360 ret_code = -EIO;
361 goto init_ctrlq_exit;
362 }
363
364 cq->sq.next_to_use = 0;
365 cq->sq.next_to_clean = 0;
366
367 /* allocate the ring memory */
368 ret_code = ice_alloc_ctrlq_sq_ring(hw, cq);
369 if (ret_code)
370 goto init_ctrlq_exit;
371
372 /* allocate buffers in the rings */
373 ret_code = ice_alloc_sq_bufs(hw, cq);
374 if (ret_code)
375 goto init_ctrlq_free_rings;
376
377 /* initialize base registers */
378 ret_code = ice_cfg_sq_regs(hw, cq);
379 if (ret_code)
380 goto init_ctrlq_free_rings;
381
382 /* success! */
383 cq->sq.count = cq->num_sq_entries;
384 goto init_ctrlq_exit;
385
386 init_ctrlq_free_rings:
387 ICE_FREE_CQ_BUFS(hw, cq, sq);
388 ice_free_cq_ring(hw, &cq->sq);
389
390 init_ctrlq_exit:
391 return ret_code;
392 }
393
394 /**
395 * ice_init_rq - initialize receive side of a control queue
396 * @hw: pointer to the hardware structure
397 * @cq: pointer to the specific Control queue
398 *
399 * The main initialization routine for Receive side of a control queue.
400 * Prior to calling this function, the driver *MUST* set the following fields
401 * in the cq->structure:
402 * - cq->num_rq_entries
403 * - cq->rq_buf_size
404 *
405 * Do *NOT* hold the lock when calling this as the memory allocation routines
406 * called are not going to be atomic context safe
407 */
ice_init_rq(struct ice_hw * hw,struct ice_ctl_q_info * cq)408 static int ice_init_rq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
409 {
410 int ret_code;
411
412 if (cq->rq.count > 0) {
413 /* queue already initialized */
414 ret_code = -EBUSY;
415 goto init_ctrlq_exit;
416 }
417
418 /* verify input for valid configuration */
419 if (!cq->num_rq_entries || !cq->rq_buf_size) {
420 ret_code = -EIO;
421 goto init_ctrlq_exit;
422 }
423
424 cq->rq.next_to_use = 0;
425 cq->rq.next_to_clean = 0;
426
427 /* allocate the ring memory */
428 ret_code = ice_alloc_ctrlq_rq_ring(hw, cq);
429 if (ret_code)
430 goto init_ctrlq_exit;
431
432 /* allocate buffers in the rings */
433 ret_code = ice_alloc_rq_bufs(hw, cq);
434 if (ret_code)
435 goto init_ctrlq_free_rings;
436
437 /* initialize base registers */
438 ret_code = ice_cfg_rq_regs(hw, cq);
439 if (ret_code)
440 goto init_ctrlq_free_rings;
441
442 /* success! */
443 cq->rq.count = cq->num_rq_entries;
444 goto init_ctrlq_exit;
445
446 init_ctrlq_free_rings:
447 ICE_FREE_CQ_BUFS(hw, cq, rq);
448 ice_free_cq_ring(hw, &cq->rq);
449
450 init_ctrlq_exit:
451 return ret_code;
452 }
453
454 /**
455 * ice_shutdown_sq - shutdown the transmit side of a control queue
456 * @hw: pointer to the hardware structure
457 * @cq: pointer to the specific Control queue
458 *
459 * The main shutdown routine for the Control Transmit Queue
460 */
ice_shutdown_sq(struct ice_hw * hw,struct ice_ctl_q_info * cq)461 static int ice_shutdown_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
462 {
463 int ret_code = 0;
464
465 mutex_lock(&cq->sq_lock);
466
467 if (!cq->sq.count) {
468 ret_code = -EBUSY;
469 goto shutdown_sq_out;
470 }
471
472 /* Stop processing of the control queue */
473 wr32(hw, cq->sq.head, 0);
474 wr32(hw, cq->sq.tail, 0);
475 wr32(hw, cq->sq.len, 0);
476 wr32(hw, cq->sq.bal, 0);
477 wr32(hw, cq->sq.bah, 0);
478
479 cq->sq.count = 0; /* to indicate uninitialized queue */
480
481 /* free ring buffers and the ring itself */
482 ICE_FREE_CQ_BUFS(hw, cq, sq);
483 ice_free_cq_ring(hw, &cq->sq);
484
485 shutdown_sq_out:
486 mutex_unlock(&cq->sq_lock);
487 return ret_code;
488 }
489
490 /**
491 * ice_aq_ver_check - Check the reported AQ API version
492 * @hw: pointer to the hardware structure
493 *
494 * Checks if the driver should load on a given AQ API version.
495 *
496 * Return: 'true' iff the driver should attempt to load. 'false' otherwise.
497 */
ice_aq_ver_check(struct ice_hw * hw)498 static bool ice_aq_ver_check(struct ice_hw *hw)
499 {
500 u8 exp_fw_api_ver_major = EXP_FW_API_VER_MAJOR_BY_MAC(hw);
501 u8 exp_fw_api_ver_minor = EXP_FW_API_VER_MINOR_BY_MAC(hw);
502
503 if (hw->api_maj_ver > exp_fw_api_ver_major) {
504 /* Major API version is newer than expected, don't load */
505 dev_warn(ice_hw_to_dev(hw),
506 "The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n");
507 return false;
508 } else if (hw->api_maj_ver == exp_fw_api_ver_major) {
509 if (hw->api_min_ver > (exp_fw_api_ver_minor + 2))
510 dev_info(ice_hw_to_dev(hw),
511 "The driver for the device detected a newer version (%u.%u) of the NVM image than expected (%u.%u). Please install the most recent version of the network driver.\n",
512 hw->api_maj_ver, hw->api_min_ver,
513 exp_fw_api_ver_major, exp_fw_api_ver_minor);
514 else if ((hw->api_min_ver + 2) < exp_fw_api_ver_minor)
515 dev_info(ice_hw_to_dev(hw),
516 "The driver for the device detected an older version (%u.%u) of the NVM image than expected (%u.%u). Please update the NVM image.\n",
517 hw->api_maj_ver, hw->api_min_ver,
518 exp_fw_api_ver_major, exp_fw_api_ver_minor);
519 } else {
520 /* Major API version is older than expected, log a warning */
521 dev_info(ice_hw_to_dev(hw),
522 "The driver for the device detected an older version (%u.%u) of the NVM image than expected (%u.%u). Please update the NVM image.\n",
523 hw->api_maj_ver, hw->api_min_ver,
524 exp_fw_api_ver_major, exp_fw_api_ver_minor);
525 }
526 return true;
527 }
528
529 /**
530 * ice_shutdown_rq - shutdown Control ARQ
531 * @hw: pointer to the hardware structure
532 * @cq: pointer to the specific Control queue
533 *
534 * The main shutdown routine for the Control Receive Queue
535 */
ice_shutdown_rq(struct ice_hw * hw,struct ice_ctl_q_info * cq)536 static int ice_shutdown_rq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
537 {
538 int ret_code = 0;
539
540 mutex_lock(&cq->rq_lock);
541
542 if (!cq->rq.count) {
543 ret_code = -EBUSY;
544 goto shutdown_rq_out;
545 }
546
547 /* Stop Control Queue processing */
548 wr32(hw, cq->rq.head, 0);
549 wr32(hw, cq->rq.tail, 0);
550 wr32(hw, cq->rq.len, 0);
551 wr32(hw, cq->rq.bal, 0);
552 wr32(hw, cq->rq.bah, 0);
553
554 /* set rq.count to 0 to indicate uninitialized queue */
555 cq->rq.count = 0;
556
557 /* free ring buffers and the ring itself */
558 ICE_FREE_CQ_BUFS(hw, cq, rq);
559 ice_free_cq_ring(hw, &cq->rq);
560
561 shutdown_rq_out:
562 mutex_unlock(&cq->rq_lock);
563 return ret_code;
564 }
565
566 /**
567 * ice_init_check_adminq - Check version for Admin Queue to know if its alive
568 * @hw: pointer to the hardware structure
569 */
ice_init_check_adminq(struct ice_hw * hw)570 static int ice_init_check_adminq(struct ice_hw *hw)
571 {
572 struct ice_ctl_q_info *cq = &hw->adminq;
573 int status;
574
575 status = ice_aq_get_fw_ver(hw, NULL);
576 if (status)
577 goto init_ctrlq_free_rq;
578
579 if (!ice_aq_ver_check(hw)) {
580 status = -EIO;
581 goto init_ctrlq_free_rq;
582 }
583
584 return 0;
585
586 init_ctrlq_free_rq:
587 ice_shutdown_rq(hw, cq);
588 ice_shutdown_sq(hw, cq);
589 return status;
590 }
591
592 /**
593 * ice_init_ctrlq - main initialization routine for any control Queue
594 * @hw: pointer to the hardware structure
595 * @q_type: specific Control queue type
596 *
597 * Prior to calling this function, the driver *MUST* set the following fields
598 * in the cq->structure:
599 * - cq->num_sq_entries
600 * - cq->num_rq_entries
601 * - cq->rq_buf_size
602 * - cq->sq_buf_size
603 *
604 * NOTE: this function does not initialize the controlq locks
605 */
ice_init_ctrlq(struct ice_hw * hw,enum ice_ctl_q q_type)606 static int ice_init_ctrlq(struct ice_hw *hw, enum ice_ctl_q q_type)
607 {
608 struct ice_ctl_q_info *cq;
609 int ret_code;
610
611 switch (q_type) {
612 case ICE_CTL_Q_ADMIN:
613 ice_adminq_init_regs(hw);
614 cq = &hw->adminq;
615 break;
616 case ICE_CTL_Q_SB:
617 ice_sb_init_regs(hw);
618 cq = &hw->sbq;
619 break;
620 case ICE_CTL_Q_MAILBOX:
621 ice_mailbox_init_regs(hw);
622 cq = &hw->mailboxq;
623 break;
624 default:
625 return -EINVAL;
626 }
627 cq->qtype = q_type;
628
629 /* verify input for valid configuration */
630 if (!cq->num_rq_entries || !cq->num_sq_entries ||
631 !cq->rq_buf_size || !cq->sq_buf_size) {
632 return -EIO;
633 }
634
635 /* allocate the ATQ */
636 ret_code = ice_init_sq(hw, cq);
637 if (ret_code)
638 return ret_code;
639
640 /* allocate the ARQ */
641 ret_code = ice_init_rq(hw, cq);
642 if (ret_code)
643 goto init_ctrlq_free_sq;
644
645 /* success! */
646 return 0;
647
648 init_ctrlq_free_sq:
649 ice_shutdown_sq(hw, cq);
650 return ret_code;
651 }
652
653 /**
654 * ice_is_sbq_supported - is the sideband queue supported
655 * @hw: pointer to the hardware structure
656 *
657 * Returns true if the sideband control queue interface is
658 * supported for the device, false otherwise
659 */
ice_is_sbq_supported(struct ice_hw * hw)660 bool ice_is_sbq_supported(struct ice_hw *hw)
661 {
662 /* The device sideband queue is only supported on devices with the
663 * generic MAC type.
664 */
665 return ice_is_generic_mac(hw);
666 }
667
668 /**
669 * ice_get_sbq - returns the right control queue to use for sideband
670 * @hw: pointer to the hardware structure
671 */
ice_get_sbq(struct ice_hw * hw)672 struct ice_ctl_q_info *ice_get_sbq(struct ice_hw *hw)
673 {
674 if (ice_is_sbq_supported(hw))
675 return &hw->sbq;
676 return &hw->adminq;
677 }
678
679 /**
680 * ice_shutdown_ctrlq - shutdown routine for any control queue
681 * @hw: pointer to the hardware structure
682 * @q_type: specific Control queue type
683 * @unloading: is the driver unloading itself
684 *
685 * NOTE: this function does not destroy the control queue locks.
686 */
ice_shutdown_ctrlq(struct ice_hw * hw,enum ice_ctl_q q_type,bool unloading)687 static void ice_shutdown_ctrlq(struct ice_hw *hw, enum ice_ctl_q q_type,
688 bool unloading)
689 {
690 struct ice_ctl_q_info *cq;
691
692 switch (q_type) {
693 case ICE_CTL_Q_ADMIN:
694 cq = &hw->adminq;
695 if (ice_check_sq_alive(hw, cq))
696 ice_aq_q_shutdown(hw, unloading);
697 break;
698 case ICE_CTL_Q_SB:
699 cq = &hw->sbq;
700 break;
701 case ICE_CTL_Q_MAILBOX:
702 cq = &hw->mailboxq;
703 break;
704 default:
705 return;
706 }
707
708 ice_shutdown_sq(hw, cq);
709 ice_shutdown_rq(hw, cq);
710 }
711
712 /**
713 * ice_shutdown_all_ctrlq - shutdown routine for all control queues
714 * @hw: pointer to the hardware structure
715 * @unloading: is the driver unloading itself
716 *
717 * NOTE: this function does not destroy the control queue locks. The driver
718 * may call this at runtime to shutdown and later restart control queues, such
719 * as in response to a reset event.
720 */
ice_shutdown_all_ctrlq(struct ice_hw * hw,bool unloading)721 void ice_shutdown_all_ctrlq(struct ice_hw *hw, bool unloading)
722 {
723 /* Shutdown FW admin queue */
724 ice_shutdown_ctrlq(hw, ICE_CTL_Q_ADMIN, unloading);
725 /* Shutdown PHY Sideband */
726 if (ice_is_sbq_supported(hw))
727 ice_shutdown_ctrlq(hw, ICE_CTL_Q_SB, unloading);
728 /* Shutdown PF-VF Mailbox */
729 ice_shutdown_ctrlq(hw, ICE_CTL_Q_MAILBOX, unloading);
730 }
731
732 /**
733 * ice_init_all_ctrlq - main initialization routine for all control queues
734 * @hw: pointer to the hardware structure
735 *
736 * Prior to calling this function, the driver MUST* set the following fields
737 * in the cq->structure for all control queues:
738 * - cq->num_sq_entries
739 * - cq->num_rq_entries
740 * - cq->rq_buf_size
741 * - cq->sq_buf_size
742 *
743 * NOTE: this function does not initialize the controlq locks.
744 */
ice_init_all_ctrlq(struct ice_hw * hw)745 int ice_init_all_ctrlq(struct ice_hw *hw)
746 {
747 u32 retry = 0;
748 int status;
749
750 /* Init FW admin queue */
751 do {
752 status = ice_init_ctrlq(hw, ICE_CTL_Q_ADMIN);
753 if (status)
754 return status;
755
756 status = ice_init_check_adminq(hw);
757 if (status != -EIO)
758 break;
759
760 ice_debug(hw, ICE_DBG_AQ_MSG, "Retry Admin Queue init due to FW critical error\n");
761 ice_shutdown_ctrlq(hw, ICE_CTL_Q_ADMIN, true);
762 msleep(ICE_CTL_Q_ADMIN_INIT_MSEC);
763 } while (retry++ < ICE_CTL_Q_ADMIN_INIT_TIMEOUT);
764
765 if (status)
766 return status;
767 /* sideband control queue (SBQ) interface is not supported on some
768 * devices. Initialize if supported, else fallback to the admin queue
769 * interface
770 */
771 if (ice_is_sbq_supported(hw)) {
772 status = ice_init_ctrlq(hw, ICE_CTL_Q_SB);
773 if (status)
774 return status;
775 }
776 /* Init Mailbox queue */
777 return ice_init_ctrlq(hw, ICE_CTL_Q_MAILBOX);
778 }
779
780 /**
781 * ice_init_ctrlq_locks - Initialize locks for a control queue
782 * @cq: pointer to the control queue
783 *
784 * Initializes the send and receive queue locks for a given control queue.
785 */
ice_init_ctrlq_locks(struct ice_ctl_q_info * cq)786 static void ice_init_ctrlq_locks(struct ice_ctl_q_info *cq)
787 {
788 mutex_init(&cq->sq_lock);
789 mutex_init(&cq->rq_lock);
790 }
791
792 /**
793 * ice_create_all_ctrlq - main initialization routine for all control queues
794 * @hw: pointer to the hardware structure
795 *
796 * Prior to calling this function, the driver *MUST* set the following fields
797 * in the cq->structure for all control queues:
798 * - cq->num_sq_entries
799 * - cq->num_rq_entries
800 * - cq->rq_buf_size
801 * - cq->sq_buf_size
802 *
803 * This function creates all the control queue locks and then calls
804 * ice_init_all_ctrlq. It should be called once during driver load. If the
805 * driver needs to re-initialize control queues at run time it should call
806 * ice_init_all_ctrlq instead.
807 */
ice_create_all_ctrlq(struct ice_hw * hw)808 int ice_create_all_ctrlq(struct ice_hw *hw)
809 {
810 ice_init_ctrlq_locks(&hw->adminq);
811 if (ice_is_sbq_supported(hw))
812 ice_init_ctrlq_locks(&hw->sbq);
813 ice_init_ctrlq_locks(&hw->mailboxq);
814
815 return ice_init_all_ctrlq(hw);
816 }
817
818 /**
819 * ice_destroy_ctrlq_locks - Destroy locks for a control queue
820 * @cq: pointer to the control queue
821 *
822 * Destroys the send and receive queue locks for a given control queue.
823 */
ice_destroy_ctrlq_locks(struct ice_ctl_q_info * cq)824 static void ice_destroy_ctrlq_locks(struct ice_ctl_q_info *cq)
825 {
826 mutex_destroy(&cq->sq_lock);
827 mutex_destroy(&cq->rq_lock);
828 }
829
830 /**
831 * ice_destroy_all_ctrlq - exit routine for all control queues
832 * @hw: pointer to the hardware structure
833 *
834 * This function shuts down all the control queues and then destroys the
835 * control queue locks. It should be called once during driver unload. The
836 * driver should call ice_shutdown_all_ctrlq if it needs to shut down and
837 * reinitialize control queues, such as in response to a reset event.
838 */
ice_destroy_all_ctrlq(struct ice_hw * hw)839 void ice_destroy_all_ctrlq(struct ice_hw *hw)
840 {
841 /* shut down all the control queues first */
842 ice_shutdown_all_ctrlq(hw, true);
843
844 ice_destroy_ctrlq_locks(&hw->adminq);
845 if (ice_is_sbq_supported(hw))
846 ice_destroy_ctrlq_locks(&hw->sbq);
847 ice_destroy_ctrlq_locks(&hw->mailboxq);
848 }
849
850 /**
851 * ice_clean_sq - cleans send side of a control queue
852 * @hw: pointer to the hardware structure
853 * @cq: pointer to the specific Control queue
854 *
855 * returns the number of free desc
856 */
ice_clean_sq(struct ice_hw * hw,struct ice_ctl_q_info * cq)857 static u16 ice_clean_sq(struct ice_hw *hw, struct ice_ctl_q_info *cq)
858 {
859 struct ice_ctl_q_ring *sq = &cq->sq;
860 u16 ntc = sq->next_to_clean;
861 struct ice_aq_desc *desc;
862
863 desc = ICE_CTL_Q_DESC(*sq, ntc);
864
865 while (rd32(hw, cq->sq.head) != ntc) {
866 ice_debug(hw, ICE_DBG_AQ_MSG, "ntc %d head %d.\n", ntc, rd32(hw, cq->sq.head));
867 memset(desc, 0, sizeof(*desc));
868 ntc++;
869 if (ntc == sq->count)
870 ntc = 0;
871 desc = ICE_CTL_Q_DESC(*sq, ntc);
872 }
873
874 sq->next_to_clean = ntc;
875
876 return ICE_CTL_Q_DESC_UNUSED(sq);
877 }
878
879 /**
880 * ice_ctl_q_str - Convert control queue type to string
881 * @qtype: the control queue type
882 *
883 * Return: A string name for the given control queue type.
884 */
ice_ctl_q_str(enum ice_ctl_q qtype)885 static const char *ice_ctl_q_str(enum ice_ctl_q qtype)
886 {
887 switch (qtype) {
888 case ICE_CTL_Q_UNKNOWN:
889 return "Unknown CQ";
890 case ICE_CTL_Q_ADMIN:
891 return "AQ";
892 case ICE_CTL_Q_MAILBOX:
893 return "MBXQ";
894 case ICE_CTL_Q_SB:
895 return "SBQ";
896 default:
897 return "Unrecognized CQ";
898 }
899 }
900
901 /**
902 * ice_debug_cq
903 * @hw: pointer to the hardware structure
904 * @cq: pointer to the specific Control queue
905 * @desc: pointer to control queue descriptor
906 * @buf: pointer to command buffer
907 * @buf_len: max length of buf
908 * @response: true if this is the writeback response
909 *
910 * Dumps debug log about control command with descriptor contents.
911 */
ice_debug_cq(struct ice_hw * hw,struct ice_ctl_q_info * cq,void * desc,void * buf,u16 buf_len,bool response)912 static void ice_debug_cq(struct ice_hw *hw, struct ice_ctl_q_info *cq,
913 void *desc, void *buf, u16 buf_len, bool response)
914 {
915 struct ice_aq_desc *cq_desc = desc;
916 u16 datalen, flags;
917
918 if (!IS_ENABLED(CONFIG_DYNAMIC_DEBUG) &&
919 !((ICE_DBG_AQ_DESC | ICE_DBG_AQ_DESC_BUF) & hw->debug_mask))
920 return;
921
922 if (!desc)
923 return;
924
925 datalen = le16_to_cpu(cq_desc->datalen);
926 flags = le16_to_cpu(cq_desc->flags);
927
928 ice_debug(hw, ICE_DBG_AQ_DESC, "%s %s: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n\tcookie (h,l) 0x%08X 0x%08X\n\tparam (0,1) 0x%08X 0x%08X\n\taddr (h,l) 0x%08X 0x%08X\n",
929 ice_ctl_q_str(cq->qtype), response ? "Response" : "Command",
930 le16_to_cpu(cq_desc->opcode), flags, datalen,
931 le16_to_cpu(cq_desc->retval),
932 le32_to_cpu(cq_desc->cookie_high),
933 le32_to_cpu(cq_desc->cookie_low),
934 le32_to_cpu(cq_desc->params.generic.param0),
935 le32_to_cpu(cq_desc->params.generic.param1),
936 le32_to_cpu(cq_desc->params.generic.addr_high),
937 le32_to_cpu(cq_desc->params.generic.addr_low));
938 /* Dump buffer iff 1) one exists and 2) is either a response indicated
939 * by the DD and/or CMP flag set or a command with the RD flag set.
940 */
941 if (buf && cq_desc->datalen &&
942 (flags & (ICE_AQ_FLAG_DD | ICE_AQ_FLAG_CMP | ICE_AQ_FLAG_RD))) {
943 char prefix[] = KBUILD_MODNAME " 0x12341234 0x12341234 ";
944
945 sprintf(prefix, KBUILD_MODNAME " 0x%08X 0x%08X ",
946 le32_to_cpu(cq_desc->params.generic.addr_high),
947 le32_to_cpu(cq_desc->params.generic.addr_low));
948 ice_debug_array_w_prefix(hw, ICE_DBG_AQ_DESC_BUF, prefix,
949 buf,
950 min_t(u16, buf_len, datalen));
951 }
952 }
953
954 /**
955 * ice_sq_done - poll until the last send on a control queue has completed
956 * @hw: pointer to the HW struct
957 * @cq: pointer to the specific Control queue
958 *
959 * Use read_poll_timeout to poll the control queue head, checking until it
960 * matches next_to_use. According to the control queue designers, this has
961 * better timing reliability than the DD bit.
962 *
963 * Return: true if all the descriptors on the send side of a control queue
964 * are finished processing, false otherwise.
965 */
ice_sq_done(struct ice_hw * hw,struct ice_ctl_q_info * cq)966 static bool ice_sq_done(struct ice_hw *hw, struct ice_ctl_q_info *cq)
967 {
968 u32 head;
969
970 /* Wait a short time before the initial check, to allow hardware time
971 * for completion.
972 */
973 udelay(5);
974
975 return !rd32_poll_timeout(hw, cq->sq.head,
976 head, head == cq->sq.next_to_use,
977 20, ICE_CTL_Q_SQ_CMD_TIMEOUT);
978 }
979
980 /**
981 * ice_sq_send_cmd - send command to a control queue
982 * @hw: pointer to the HW struct
983 * @cq: pointer to the specific Control queue
984 * @desc: prefilled descriptor describing the command
985 * @buf: buffer to use for indirect commands (or NULL for direct commands)
986 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
987 * @cd: pointer to command details structure
988 *
989 * Main command for the transmit side of a control queue. It puts the command
990 * on the queue, bumps the tail, waits for processing of the command, captures
991 * command status and results, etc.
992 */
993 int
ice_sq_send_cmd(struct ice_hw * hw,struct ice_ctl_q_info * cq,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)994 ice_sq_send_cmd(struct ice_hw *hw, struct ice_ctl_q_info *cq,
995 struct ice_aq_desc *desc, void *buf, u16 buf_size,
996 struct ice_sq_cd *cd)
997 {
998 struct ice_dma_mem *dma_buf = NULL;
999 struct ice_aq_desc *desc_on_ring;
1000 bool cmd_completed = false;
1001 int status = 0;
1002 u16 retval = 0;
1003 u32 val = 0;
1004
1005 /* if reset is in progress return a soft error */
1006 if (hw->reset_ongoing)
1007 return -EBUSY;
1008 mutex_lock(&cq->sq_lock);
1009
1010 cq->sq_last_status = ICE_AQ_RC_OK;
1011
1012 if (!cq->sq.count) {
1013 ice_debug(hw, ICE_DBG_AQ_MSG, "Control Send queue not initialized.\n");
1014 status = -EIO;
1015 goto sq_send_command_error;
1016 }
1017
1018 if ((buf && !buf_size) || (!buf && buf_size)) {
1019 status = -EINVAL;
1020 goto sq_send_command_error;
1021 }
1022
1023 if (buf) {
1024 if (buf_size > cq->sq_buf_size) {
1025 ice_debug(hw, ICE_DBG_AQ_MSG, "Invalid buffer size for Control Send queue: %d.\n",
1026 buf_size);
1027 status = -EINVAL;
1028 goto sq_send_command_error;
1029 }
1030
1031 desc->flags |= cpu_to_le16(ICE_AQ_FLAG_BUF);
1032 if (buf_size > ICE_AQ_LG_BUF)
1033 desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB);
1034 }
1035
1036 val = rd32(hw, cq->sq.head);
1037 if (val >= cq->num_sq_entries) {
1038 ice_debug(hw, ICE_DBG_AQ_MSG, "head overrun at %d in the Control Send Queue ring\n",
1039 val);
1040 status = -EIO;
1041 goto sq_send_command_error;
1042 }
1043
1044 /* Call clean and check queue available function to reclaim the
1045 * descriptors that were processed by FW/MBX; the function returns the
1046 * number of desc available. The clean function called here could be
1047 * called in a separate thread in case of asynchronous completions.
1048 */
1049 if (ice_clean_sq(hw, cq) == 0) {
1050 ice_debug(hw, ICE_DBG_AQ_MSG, "Error: Control Send Queue is full.\n");
1051 status = -ENOSPC;
1052 goto sq_send_command_error;
1053 }
1054
1055 /* initialize the temp desc pointer with the right desc */
1056 desc_on_ring = ICE_CTL_Q_DESC(cq->sq, cq->sq.next_to_use);
1057
1058 /* if the desc is available copy the temp desc to the right place */
1059 memcpy(desc_on_ring, desc, sizeof(*desc_on_ring));
1060
1061 /* if buf is not NULL assume indirect command */
1062 if (buf) {
1063 dma_buf = &cq->sq.r.sq_bi[cq->sq.next_to_use];
1064 /* copy the user buf into the respective DMA buf */
1065 memcpy(dma_buf->va, buf, buf_size);
1066 desc_on_ring->datalen = cpu_to_le16(buf_size);
1067
1068 /* Update the address values in the desc with the pa value
1069 * for respective buffer
1070 */
1071 desc_on_ring->params.generic.addr_high =
1072 cpu_to_le32(upper_32_bits(dma_buf->pa));
1073 desc_on_ring->params.generic.addr_low =
1074 cpu_to_le32(lower_32_bits(dma_buf->pa));
1075 }
1076
1077 /* Debug desc and buffer */
1078 ice_debug(hw, ICE_DBG_AQ_DESC, "ATQ: Control Send queue desc and buffer:\n");
1079
1080 ice_debug_cq(hw, cq, (void *)desc_on_ring, buf, buf_size, false);
1081
1082 (cq->sq.next_to_use)++;
1083 if (cq->sq.next_to_use == cq->sq.count)
1084 cq->sq.next_to_use = 0;
1085 wr32(hw, cq->sq.tail, cq->sq.next_to_use);
1086 ice_flush(hw);
1087
1088 /* Wait for the command to complete. If it finishes within the
1089 * timeout, copy the descriptor back to temp.
1090 */
1091 if (ice_sq_done(hw, cq)) {
1092 memcpy(desc, desc_on_ring, sizeof(*desc));
1093 if (buf) {
1094 /* get returned length to copy */
1095 u16 copy_size = le16_to_cpu(desc->datalen);
1096
1097 if (copy_size > buf_size) {
1098 ice_debug(hw, ICE_DBG_AQ_MSG, "Return len %d > than buf len %d\n",
1099 copy_size, buf_size);
1100 status = -EIO;
1101 } else {
1102 memcpy(buf, dma_buf->va, copy_size);
1103 }
1104 }
1105 retval = le16_to_cpu(desc->retval);
1106 if (retval) {
1107 ice_debug(hw, ICE_DBG_AQ_MSG, "Control Send Queue command 0x%04X completed with error 0x%X\n",
1108 le16_to_cpu(desc->opcode),
1109 retval);
1110
1111 /* strip off FW internal code */
1112 retval &= 0xff;
1113 }
1114 cmd_completed = true;
1115 if (!status && retval != ICE_AQ_RC_OK)
1116 status = -EIO;
1117 cq->sq_last_status = (enum ice_aq_err)retval;
1118 }
1119
1120 ice_debug(hw, ICE_DBG_AQ_MSG, "ATQ: desc and buffer writeback:\n");
1121
1122 ice_debug_cq(hw, cq, (void *)desc, buf, buf_size, true);
1123
1124 /* save writeback AQ if requested */
1125 if (cd && cd->wb_desc)
1126 memcpy(cd->wb_desc, desc_on_ring, sizeof(*cd->wb_desc));
1127
1128 /* update the error if time out occurred */
1129 if (!cmd_completed) {
1130 if (rd32(hw, cq->rq.len) & cq->rq.len_crit_mask ||
1131 rd32(hw, cq->sq.len) & cq->sq.len_crit_mask) {
1132 ice_debug(hw, ICE_DBG_AQ_MSG, "Critical FW error.\n");
1133 status = -EIO;
1134 } else {
1135 ice_debug(hw, ICE_DBG_AQ_MSG, "Control Send Queue Writeback timeout.\n");
1136 status = -EIO;
1137 }
1138 }
1139
1140 sq_send_command_error:
1141 mutex_unlock(&cq->sq_lock);
1142 return status;
1143 }
1144
1145 /**
1146 * ice_fill_dflt_direct_cmd_desc - AQ descriptor helper function
1147 * @desc: pointer to the temp descriptor (non DMA mem)
1148 * @opcode: the opcode can be used to decide which flags to turn off or on
1149 *
1150 * Fill the desc with default values
1151 */
ice_fill_dflt_direct_cmd_desc(struct ice_aq_desc * desc,u16 opcode)1152 void ice_fill_dflt_direct_cmd_desc(struct ice_aq_desc *desc, u16 opcode)
1153 {
1154 /* zero out the desc */
1155 memset(desc, 0, sizeof(*desc));
1156 desc->opcode = cpu_to_le16(opcode);
1157 desc->flags = cpu_to_le16(ICE_AQ_FLAG_SI);
1158 }
1159
1160 /**
1161 * ice_clean_rq_elem
1162 * @hw: pointer to the HW struct
1163 * @cq: pointer to the specific Control queue
1164 * @e: event info from the receive descriptor, includes any buffers
1165 * @pending: number of events that could be left to process
1166 *
1167 * Clean one element from the receive side of a control queue. On return 'e'
1168 * contains contents of the message, and 'pending' contains the number of
1169 * events left to process.
1170 */
1171 int
ice_clean_rq_elem(struct ice_hw * hw,struct ice_ctl_q_info * cq,struct ice_rq_event_info * e,u16 * pending)1172 ice_clean_rq_elem(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1173 struct ice_rq_event_info *e, u16 *pending)
1174 {
1175 u16 ntc = cq->rq.next_to_clean;
1176 enum ice_aq_err rq_last_status;
1177 struct ice_aq_desc *desc;
1178 struct ice_dma_mem *bi;
1179 int ret_code = 0;
1180 u16 desc_idx;
1181 u16 datalen;
1182 u16 flags;
1183 u16 ntu;
1184
1185 /* pre-clean the event info */
1186 memset(&e->desc, 0, sizeof(e->desc));
1187
1188 /* take the lock before we start messing with the ring */
1189 mutex_lock(&cq->rq_lock);
1190
1191 if (!cq->rq.count) {
1192 ice_debug(hw, ICE_DBG_AQ_MSG, "Control Receive queue not initialized.\n");
1193 ret_code = -EIO;
1194 goto clean_rq_elem_err;
1195 }
1196
1197 /* set next_to_use to head */
1198 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1199
1200 if (ntu == ntc) {
1201 /* nothing to do - shouldn't need to update ring's values */
1202 ret_code = -EALREADY;
1203 goto clean_rq_elem_out;
1204 }
1205
1206 /* now clean the next descriptor */
1207 desc = ICE_CTL_Q_DESC(cq->rq, ntc);
1208 desc_idx = ntc;
1209
1210 rq_last_status = (enum ice_aq_err)le16_to_cpu(desc->retval);
1211 flags = le16_to_cpu(desc->flags);
1212 if (flags & ICE_AQ_FLAG_ERR) {
1213 ret_code = -EIO;
1214 ice_debug(hw, ICE_DBG_AQ_MSG, "Control Receive Queue Event 0x%04X received with error 0x%X\n",
1215 le16_to_cpu(desc->opcode), rq_last_status);
1216 }
1217 memcpy(&e->desc, desc, sizeof(e->desc));
1218 datalen = le16_to_cpu(desc->datalen);
1219 e->msg_len = min_t(u16, datalen, e->buf_len);
1220 if (e->msg_buf && e->msg_len)
1221 memcpy(e->msg_buf, cq->rq.r.rq_bi[desc_idx].va, e->msg_len);
1222
1223 ice_debug(hw, ICE_DBG_AQ_DESC, "ARQ: desc and buffer:\n");
1224
1225 ice_debug_cq(hw, cq, (void *)desc, e->msg_buf, cq->rq_buf_size, true);
1226
1227 /* Restore the original datalen and buffer address in the desc,
1228 * FW updates datalen to indicate the event message size
1229 */
1230 bi = &cq->rq.r.rq_bi[ntc];
1231 memset(desc, 0, sizeof(*desc));
1232
1233 desc->flags = cpu_to_le16(ICE_AQ_FLAG_BUF);
1234 if (cq->rq_buf_size > ICE_AQ_LG_BUF)
1235 desc->flags |= cpu_to_le16(ICE_AQ_FLAG_LB);
1236 desc->datalen = cpu_to_le16(bi->size);
1237 desc->params.generic.addr_high = cpu_to_le32(upper_32_bits(bi->pa));
1238 desc->params.generic.addr_low = cpu_to_le32(lower_32_bits(bi->pa));
1239
1240 /* set tail = the last cleaned desc index. */
1241 wr32(hw, cq->rq.tail, ntc);
1242 /* ntc is updated to tail + 1 */
1243 ntc++;
1244 if (ntc == cq->num_rq_entries)
1245 ntc = 0;
1246 cq->rq.next_to_clean = ntc;
1247 cq->rq.next_to_use = ntu;
1248
1249 clean_rq_elem_out:
1250 /* Set pending if needed, unlock and return */
1251 if (pending) {
1252 /* re-read HW head to calculate actual pending messages */
1253 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1254 *pending = (u16)((ntc > ntu ? cq->rq.count : 0) + (ntu - ntc));
1255 }
1256 clean_rq_elem_err:
1257 mutex_unlock(&cq->rq_lock);
1258
1259 return ret_code;
1260 }
1261