1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 #include <linux/packing.h>
10
11 #define ICE_PF_RESET_WAIT_COUNT 300
12 #define ICE_MAX_NETLIST_SIZE 10
13
14 static const char * const ice_link_mode_str_low[] = {
15 [0] = "100BASE_TX",
16 [1] = "100M_SGMII",
17 [2] = "1000BASE_T",
18 [3] = "1000BASE_SX",
19 [4] = "1000BASE_LX",
20 [5] = "1000BASE_KX",
21 [6] = "1G_SGMII",
22 [7] = "2500BASE_T",
23 [8] = "2500BASE_X",
24 [9] = "2500BASE_KX",
25 [10] = "5GBASE_T",
26 [11] = "5GBASE_KR",
27 [12] = "10GBASE_T",
28 [13] = "10G_SFI_DA",
29 [14] = "10GBASE_SR",
30 [15] = "10GBASE_LR",
31 [16] = "10GBASE_KR_CR1",
32 [17] = "10G_SFI_AOC_ACC",
33 [18] = "10G_SFI_C2C",
34 [19] = "25GBASE_T",
35 [20] = "25GBASE_CR",
36 [21] = "25GBASE_CR_S",
37 [22] = "25GBASE_CR1",
38 [23] = "25GBASE_SR",
39 [24] = "25GBASE_LR",
40 [25] = "25GBASE_KR",
41 [26] = "25GBASE_KR_S",
42 [27] = "25GBASE_KR1",
43 [28] = "25G_AUI_AOC_ACC",
44 [29] = "25G_AUI_C2C",
45 [30] = "40GBASE_CR4",
46 [31] = "40GBASE_SR4",
47 [32] = "40GBASE_LR4",
48 [33] = "40GBASE_KR4",
49 [34] = "40G_XLAUI_AOC_ACC",
50 [35] = "40G_XLAUI",
51 [36] = "50GBASE_CR2",
52 [37] = "50GBASE_SR2",
53 [38] = "50GBASE_LR2",
54 [39] = "50GBASE_KR2",
55 [40] = "50G_LAUI2_AOC_ACC",
56 [41] = "50G_LAUI2",
57 [42] = "50G_AUI2_AOC_ACC",
58 [43] = "50G_AUI2",
59 [44] = "50GBASE_CP",
60 [45] = "50GBASE_SR",
61 [46] = "50GBASE_FR",
62 [47] = "50GBASE_LR",
63 [48] = "50GBASE_KR_PAM4",
64 [49] = "50G_AUI1_AOC_ACC",
65 [50] = "50G_AUI1",
66 [51] = "100GBASE_CR4",
67 [52] = "100GBASE_SR4",
68 [53] = "100GBASE_LR4",
69 [54] = "100GBASE_KR4",
70 [55] = "100G_CAUI4_AOC_ACC",
71 [56] = "100G_CAUI4",
72 [57] = "100G_AUI4_AOC_ACC",
73 [58] = "100G_AUI4",
74 [59] = "100GBASE_CR_PAM4",
75 [60] = "100GBASE_KR_PAM4",
76 [61] = "100GBASE_CP2",
77 [62] = "100GBASE_SR2",
78 [63] = "100GBASE_DR",
79 };
80
81 static const char * const ice_link_mode_str_high[] = {
82 [0] = "100GBASE_KR2_PAM4",
83 [1] = "100G_CAUI2_AOC_ACC",
84 [2] = "100G_CAUI2",
85 [3] = "100G_AUI2_AOC_ACC",
86 [4] = "100G_AUI2",
87 };
88
89 /**
90 * ice_dump_phy_type - helper function to dump phy_type
91 * @hw: pointer to the HW structure
92 * @low: 64 bit value for phy_type_low
93 * @high: 64 bit value for phy_type_high
94 * @prefix: prefix string to differentiate multiple dumps
95 */
96 static void
ice_dump_phy_type(struct ice_hw * hw,u64 low,u64 high,const char * prefix)97 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
98 {
99 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
100
101 for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
102 if (low & BIT_ULL(i))
103 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
104 prefix, i, ice_link_mode_str_low[i]);
105 }
106
107 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
108
109 for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
110 if (high & BIT_ULL(i))
111 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
112 prefix, i, ice_link_mode_str_high[i]);
113 }
114 }
115
116 /**
117 * ice_set_mac_type - Sets MAC type
118 * @hw: pointer to the HW structure
119 *
120 * This function sets the MAC type of the adapter based on the
121 * vendor ID and device ID stored in the HW structure.
122 */
ice_set_mac_type(struct ice_hw * hw)123 static int ice_set_mac_type(struct ice_hw *hw)
124 {
125 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
126 return -ENODEV;
127
128 switch (hw->device_id) {
129 case ICE_DEV_ID_E810C_BACKPLANE:
130 case ICE_DEV_ID_E810C_QSFP:
131 case ICE_DEV_ID_E810C_SFP:
132 case ICE_DEV_ID_E810_XXV_BACKPLANE:
133 case ICE_DEV_ID_E810_XXV_QSFP:
134 case ICE_DEV_ID_E810_XXV_SFP:
135 hw->mac_type = ICE_MAC_E810;
136 break;
137 case ICE_DEV_ID_E823C_10G_BASE_T:
138 case ICE_DEV_ID_E823C_BACKPLANE:
139 case ICE_DEV_ID_E823C_QSFP:
140 case ICE_DEV_ID_E823C_SFP:
141 case ICE_DEV_ID_E823C_SGMII:
142 case ICE_DEV_ID_E822C_10G_BASE_T:
143 case ICE_DEV_ID_E822C_BACKPLANE:
144 case ICE_DEV_ID_E822C_QSFP:
145 case ICE_DEV_ID_E822C_SFP:
146 case ICE_DEV_ID_E822C_SGMII:
147 case ICE_DEV_ID_E822L_10G_BASE_T:
148 case ICE_DEV_ID_E822L_BACKPLANE:
149 case ICE_DEV_ID_E822L_SFP:
150 case ICE_DEV_ID_E822L_SGMII:
151 case ICE_DEV_ID_E823L_10G_BASE_T:
152 case ICE_DEV_ID_E823L_1GBE:
153 case ICE_DEV_ID_E823L_BACKPLANE:
154 case ICE_DEV_ID_E823L_QSFP:
155 case ICE_DEV_ID_E823L_SFP:
156 hw->mac_type = ICE_MAC_GENERIC;
157 break;
158 case ICE_DEV_ID_E825C_BACKPLANE:
159 case ICE_DEV_ID_E825C_QSFP:
160 case ICE_DEV_ID_E825C_SFP:
161 case ICE_DEV_ID_E825C_SGMII:
162 hw->mac_type = ICE_MAC_GENERIC_3K_E825;
163 break;
164 case ICE_DEV_ID_E830CC_BACKPLANE:
165 case ICE_DEV_ID_E830CC_QSFP56:
166 case ICE_DEV_ID_E830CC_SFP:
167 case ICE_DEV_ID_E830CC_SFP_DD:
168 case ICE_DEV_ID_E830C_BACKPLANE:
169 case ICE_DEV_ID_E830_XXV_BACKPLANE:
170 case ICE_DEV_ID_E830C_QSFP:
171 case ICE_DEV_ID_E830_XXV_QSFP:
172 case ICE_DEV_ID_E830C_SFP:
173 case ICE_DEV_ID_E830_XXV_SFP:
174 case ICE_DEV_ID_E835CC_BACKPLANE:
175 case ICE_DEV_ID_E835CC_QSFP56:
176 case ICE_DEV_ID_E835CC_SFP:
177 case ICE_DEV_ID_E835C_BACKPLANE:
178 case ICE_DEV_ID_E835C_QSFP:
179 case ICE_DEV_ID_E835C_SFP:
180 case ICE_DEV_ID_E835_L_BACKPLANE:
181 case ICE_DEV_ID_E835_L_QSFP:
182 case ICE_DEV_ID_E835_L_SFP:
183 hw->mac_type = ICE_MAC_E830;
184 break;
185 default:
186 hw->mac_type = ICE_MAC_UNKNOWN;
187 break;
188 }
189
190 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
191 return 0;
192 }
193
194 /**
195 * ice_is_generic_mac - check if device's mac_type is generic
196 * @hw: pointer to the hardware structure
197 *
198 * Return: true if mac_type is ICE_MAC_GENERIC*, false otherwise.
199 */
ice_is_generic_mac(struct ice_hw * hw)200 bool ice_is_generic_mac(struct ice_hw *hw)
201 {
202 return (hw->mac_type == ICE_MAC_GENERIC ||
203 hw->mac_type == ICE_MAC_GENERIC_3K_E825);
204 }
205
206 /**
207 * ice_is_pf_c827 - check if pf contains c827 phy
208 * @hw: pointer to the hw struct
209 *
210 * Return: true if the device has c827 phy.
211 */
ice_is_pf_c827(struct ice_hw * hw)212 static bool ice_is_pf_c827(struct ice_hw *hw)
213 {
214 struct ice_aqc_get_link_topo cmd = {};
215 u8 node_part_number;
216 u16 node_handle;
217 int status;
218
219 if (hw->mac_type != ICE_MAC_E810)
220 return false;
221
222 if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
223 return true;
224
225 cmd.addr.topo_params.node_type_ctx =
226 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
227 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
228 cmd.addr.topo_params.index = 0;
229
230 status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
231 &node_handle);
232
233 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
234 return false;
235
236 if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
237 return true;
238
239 return false;
240 }
241
242 /**
243 * ice_clear_pf_cfg - Clear PF configuration
244 * @hw: pointer to the hardware structure
245 *
246 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
247 * configuration, flow director filters, etc.).
248 */
ice_clear_pf_cfg(struct ice_hw * hw)249 int ice_clear_pf_cfg(struct ice_hw *hw)
250 {
251 struct libie_aq_desc desc;
252
253 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
254
255 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
256 }
257
258 /**
259 * ice_aq_manage_mac_read - manage MAC address read command
260 * @hw: pointer to the HW struct
261 * @buf: a virtual buffer to hold the manage MAC read response
262 * @buf_size: Size of the virtual buffer
263 * @cd: pointer to command details structure or NULL
264 *
265 * This function is used to return per PF station MAC address (0x0107).
266 * NOTE: Upon successful completion of this command, MAC address information
267 * is returned in user specified buffer. Please interpret user specified
268 * buffer as "manage_mac_read" response.
269 * Response such as various MAC addresses are stored in HW struct (port.mac)
270 * ice_discover_dev_caps is expected to be called before this function is
271 * called.
272 */
273 static int
ice_aq_manage_mac_read(struct ice_hw * hw,void * buf,u16 buf_size,struct ice_sq_cd * cd)274 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
275 struct ice_sq_cd *cd)
276 {
277 struct ice_aqc_manage_mac_read_resp *resp;
278 struct ice_aqc_manage_mac_read *cmd;
279 struct libie_aq_desc desc;
280 int status;
281 u16 flags;
282 u8 i;
283
284 cmd = libie_aq_raw(&desc);
285
286 if (buf_size < sizeof(*resp))
287 return -EINVAL;
288
289 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
290
291 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
292 if (status)
293 return status;
294
295 resp = buf;
296 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
297
298 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
299 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
300 return -EIO;
301 }
302
303 /* A single port can report up to two (LAN and WoL) addresses */
304 for (i = 0; i < cmd->num_addr; i++)
305 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
306 ether_addr_copy(hw->port_info->mac.lan_addr,
307 resp[i].mac_addr);
308 ether_addr_copy(hw->port_info->mac.perm_addr,
309 resp[i].mac_addr);
310 break;
311 }
312
313 return 0;
314 }
315
316 /**
317 * ice_aq_get_phy_caps - returns PHY capabilities
318 * @pi: port information structure
319 * @qual_mods: report qualified modules
320 * @report_mode: report mode capabilities
321 * @pcaps: structure for PHY capabilities to be filled
322 * @cd: pointer to command details structure or NULL
323 *
324 * Returns the various PHY capabilities supported on the Port (0x0600)
325 */
326 int
ice_aq_get_phy_caps(struct ice_port_info * pi,bool qual_mods,u8 report_mode,struct ice_aqc_get_phy_caps_data * pcaps,struct ice_sq_cd * cd)327 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
328 struct ice_aqc_get_phy_caps_data *pcaps,
329 struct ice_sq_cd *cd)
330 {
331 struct ice_aqc_get_phy_caps *cmd;
332 u16 pcaps_size = sizeof(*pcaps);
333 struct libie_aq_desc desc;
334 const char *prefix;
335 struct ice_hw *hw;
336 int status;
337
338 cmd = libie_aq_raw(&desc);
339
340 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
341 return -EINVAL;
342 hw = pi->hw;
343
344 if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
345 !ice_fw_supports_report_dflt_cfg(hw))
346 return -EINVAL;
347
348 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
349
350 if (qual_mods)
351 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
352
353 cmd->param0 |= cpu_to_le16(report_mode);
354 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
355
356 ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
357
358 switch (report_mode) {
359 case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
360 prefix = "phy_caps_media";
361 break;
362 case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
363 prefix = "phy_caps_no_media";
364 break;
365 case ICE_AQC_REPORT_ACTIVE_CFG:
366 prefix = "phy_caps_active";
367 break;
368 case ICE_AQC_REPORT_DFLT_CFG:
369 prefix = "phy_caps_default";
370 break;
371 default:
372 prefix = "phy_caps_invalid";
373 }
374
375 ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
376 le64_to_cpu(pcaps->phy_type_high), prefix);
377
378 ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
379 prefix, report_mode);
380 ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
381 ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
382 pcaps->low_power_ctrl_an);
383 ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
384 pcaps->eee_cap);
385 ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
386 pcaps->eeer_value);
387 ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
388 pcaps->link_fec_options);
389 ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
390 prefix, pcaps->module_compliance_enforcement);
391 ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
392 prefix, pcaps->extended_compliance_code);
393 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
394 pcaps->module_type[0]);
395 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
396 pcaps->module_type[1]);
397 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
398 pcaps->module_type[2]);
399
400 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
401 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
402 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
403 memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
404 sizeof(pi->phy.link_info.module_type));
405 }
406
407 return status;
408 }
409
410 /**
411 * ice_aq_get_link_topo_handle - get link topology node return status
412 * @pi: port information structure
413 * @node_type: requested node type
414 * @cd: pointer to command details structure or NULL
415 *
416 * Get link topology node return status for specified node type (0x06E0)
417 *
418 * Node type cage can be used to determine if cage is present. If AQC
419 * returns error (ENOENT), then no cage present. If no cage present, then
420 * connection type is backplane or BASE-T.
421 */
422 static int
ice_aq_get_link_topo_handle(struct ice_port_info * pi,u8 node_type,struct ice_sq_cd * cd)423 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
424 struct ice_sq_cd *cd)
425 {
426 struct ice_aqc_get_link_topo *cmd;
427 struct libie_aq_desc desc;
428
429 cmd = libie_aq_raw(&desc);
430
431 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
432
433 cmd->addr.topo_params.node_type_ctx =
434 (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
435 ICE_AQC_LINK_TOPO_NODE_CTX_S);
436
437 /* set node type */
438 cmd->addr.topo_params.node_type_ctx |=
439 (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
440
441 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
442 }
443
444 /**
445 * ice_aq_get_netlist_node
446 * @hw: pointer to the hw struct
447 * @cmd: get_link_topo AQ structure
448 * @node_part_number: output node part number if node found
449 * @node_handle: output node handle parameter if node found
450 *
451 * Get netlist node handle.
452 */
453 int
ice_aq_get_netlist_node(struct ice_hw * hw,struct ice_aqc_get_link_topo * cmd,u8 * node_part_number,u16 * node_handle)454 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
455 u8 *node_part_number, u16 *node_handle)
456 {
457 struct ice_aqc_get_link_topo *resp;
458 struct libie_aq_desc desc;
459
460 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
461 resp = libie_aq_raw(&desc);
462 *resp = *cmd;
463
464 if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
465 return -EINTR;
466
467 if (node_handle)
468 *node_handle = le16_to_cpu(resp->addr.handle);
469 if (node_part_number)
470 *node_part_number = resp->node_part_num;
471
472 return 0;
473 }
474
475 /**
476 * ice_find_netlist_node
477 * @hw: pointer to the hw struct
478 * @node_type: type of netlist node to look for
479 * @ctx: context of the search
480 * @node_part_number: node part number to look for
481 * @node_handle: output parameter if node found - optional
482 *
483 * Scan the netlist for a node handle of the given node type and part number.
484 *
485 * If node_handle is non-NULL it will be modified on function exit. It is only
486 * valid if the function returns zero, and should be ignored on any non-zero
487 * return value.
488 *
489 * Return:
490 * * 0 if the node is found,
491 * * -ENOENT if no handle was found,
492 * * negative error code on failure to access the AQ.
493 */
ice_find_netlist_node(struct ice_hw * hw,u8 node_type,u8 ctx,u8 node_part_number,u16 * node_handle)494 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
495 u8 node_part_number, u16 *node_handle)
496 {
497 u8 idx;
498
499 for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
500 struct ice_aqc_get_link_topo cmd = {};
501 u8 rec_node_part_number;
502 int status;
503
504 cmd.addr.topo_params.node_type_ctx =
505 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
506 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
507 cmd.addr.topo_params.index = idx;
508
509 status = ice_aq_get_netlist_node(hw, &cmd,
510 &rec_node_part_number,
511 node_handle);
512 if (status)
513 return status;
514
515 if (rec_node_part_number == node_part_number)
516 return 0;
517 }
518
519 return -ENOENT;
520 }
521
522 /**
523 * ice_is_media_cage_present
524 * @pi: port information structure
525 *
526 * Returns true if media cage is present, else false. If no cage, then
527 * media type is backplane or BASE-T.
528 */
ice_is_media_cage_present(struct ice_port_info * pi)529 static bool ice_is_media_cage_present(struct ice_port_info *pi)
530 {
531 /* Node type cage can be used to determine if cage is present. If AQC
532 * returns error (ENOENT), then no cage present. If no cage present then
533 * connection type is backplane or BASE-T.
534 */
535 return !ice_aq_get_link_topo_handle(pi,
536 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
537 NULL);
538 }
539
540 /**
541 * ice_get_media_type - Gets media type
542 * @pi: port information structure
543 */
ice_get_media_type(struct ice_port_info * pi)544 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
545 {
546 struct ice_link_status *hw_link_info;
547
548 if (!pi)
549 return ICE_MEDIA_UNKNOWN;
550
551 hw_link_info = &pi->phy.link_info;
552 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
553 /* If more than one media type is selected, report unknown */
554 return ICE_MEDIA_UNKNOWN;
555
556 if (hw_link_info->phy_type_low) {
557 /* 1G SGMII is a special case where some DA cable PHYs
558 * may show this as an option when it really shouldn't
559 * be since SGMII is meant to be between a MAC and a PHY
560 * in a backplane. Try to detect this case and handle it
561 */
562 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
563 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
564 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
565 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
566 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
567 return ICE_MEDIA_DA;
568
569 switch (hw_link_info->phy_type_low) {
570 case ICE_PHY_TYPE_LOW_1000BASE_SX:
571 case ICE_PHY_TYPE_LOW_1000BASE_LX:
572 case ICE_PHY_TYPE_LOW_10GBASE_SR:
573 case ICE_PHY_TYPE_LOW_10GBASE_LR:
574 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
575 case ICE_PHY_TYPE_LOW_25GBASE_SR:
576 case ICE_PHY_TYPE_LOW_25GBASE_LR:
577 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
578 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
579 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
580 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
581 case ICE_PHY_TYPE_LOW_50GBASE_SR:
582 case ICE_PHY_TYPE_LOW_50GBASE_FR:
583 case ICE_PHY_TYPE_LOW_50GBASE_LR:
584 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
585 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
586 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
587 case ICE_PHY_TYPE_LOW_100GBASE_DR:
588 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
589 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
590 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
591 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
592 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
593 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
594 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
595 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
596 return ICE_MEDIA_FIBER;
597 case ICE_PHY_TYPE_LOW_100BASE_TX:
598 case ICE_PHY_TYPE_LOW_1000BASE_T:
599 case ICE_PHY_TYPE_LOW_2500BASE_T:
600 case ICE_PHY_TYPE_LOW_5GBASE_T:
601 case ICE_PHY_TYPE_LOW_10GBASE_T:
602 case ICE_PHY_TYPE_LOW_25GBASE_T:
603 return ICE_MEDIA_BASET;
604 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
605 case ICE_PHY_TYPE_LOW_25GBASE_CR:
606 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
607 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
608 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
609 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
610 case ICE_PHY_TYPE_LOW_50GBASE_CP:
611 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
612 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
613 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
614 return ICE_MEDIA_DA;
615 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
616 case ICE_PHY_TYPE_LOW_40G_XLAUI:
617 case ICE_PHY_TYPE_LOW_50G_LAUI2:
618 case ICE_PHY_TYPE_LOW_50G_AUI2:
619 case ICE_PHY_TYPE_LOW_50G_AUI1:
620 case ICE_PHY_TYPE_LOW_100G_AUI4:
621 case ICE_PHY_TYPE_LOW_100G_CAUI4:
622 if (ice_is_media_cage_present(pi))
623 return ICE_MEDIA_DA;
624 fallthrough;
625 case ICE_PHY_TYPE_LOW_1000BASE_KX:
626 case ICE_PHY_TYPE_LOW_2500BASE_KX:
627 case ICE_PHY_TYPE_LOW_2500BASE_X:
628 case ICE_PHY_TYPE_LOW_5GBASE_KR:
629 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
630 case ICE_PHY_TYPE_LOW_25GBASE_KR:
631 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
632 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
633 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
634 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
635 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
636 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
637 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
638 return ICE_MEDIA_BACKPLANE;
639 }
640 } else {
641 switch (hw_link_info->phy_type_high) {
642 case ICE_PHY_TYPE_HIGH_100G_AUI2:
643 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
644 if (ice_is_media_cage_present(pi))
645 return ICE_MEDIA_DA;
646 fallthrough;
647 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
648 return ICE_MEDIA_BACKPLANE;
649 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
650 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
651 return ICE_MEDIA_FIBER;
652 }
653 }
654 return ICE_MEDIA_UNKNOWN;
655 }
656
657 /**
658 * ice_get_link_status_datalen
659 * @hw: pointer to the HW struct
660 *
661 * Returns datalength for the Get Link Status AQ command, which is bigger for
662 * newer adapter families handled by ice driver.
663 */
ice_get_link_status_datalen(struct ice_hw * hw)664 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
665 {
666 switch (hw->mac_type) {
667 case ICE_MAC_E830:
668 return ICE_AQC_LS_DATA_SIZE_V2;
669 case ICE_MAC_E810:
670 default:
671 return ICE_AQC_LS_DATA_SIZE_V1;
672 }
673 }
674
675 /**
676 * ice_aq_get_link_info
677 * @pi: port information structure
678 * @ena_lse: enable/disable LinkStatusEvent reporting
679 * @link: pointer to link status structure - optional
680 * @cd: pointer to command details structure or NULL
681 *
682 * Get Link Status (0x607). Returns the link status of the adapter.
683 */
684 int
ice_aq_get_link_info(struct ice_port_info * pi,bool ena_lse,struct ice_link_status * link,struct ice_sq_cd * cd)685 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
686 struct ice_link_status *link, struct ice_sq_cd *cd)
687 {
688 struct ice_aqc_get_link_status_data link_data = { 0 };
689 struct ice_aqc_get_link_status *resp;
690 struct ice_link_status *li_old, *li;
691 enum ice_media_type *hw_media_type;
692 struct ice_fc_info *hw_fc_info;
693 struct libie_aq_desc desc;
694 bool tx_pause, rx_pause;
695 struct ice_hw *hw;
696 u16 cmd_flags;
697 int status;
698
699 if (!pi)
700 return -EINVAL;
701 hw = pi->hw;
702 li_old = &pi->phy.link_info_old;
703 hw_media_type = &pi->phy.media_type;
704 li = &pi->phy.link_info;
705 hw_fc_info = &pi->fc;
706
707 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
708 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
709 resp = libie_aq_raw(&desc);
710 resp->cmd_flags = cpu_to_le16(cmd_flags);
711 resp->lport_num = pi->lport;
712
713 status = ice_aq_send_cmd(hw, &desc, &link_data,
714 ice_get_link_status_datalen(hw), cd);
715 if (status)
716 return status;
717
718 /* save off old link status information */
719 *li_old = *li;
720
721 /* update current link status information */
722 li->link_speed = le16_to_cpu(link_data.link_speed);
723 li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
724 li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
725 *hw_media_type = ice_get_media_type(pi);
726 li->link_info = link_data.link_info;
727 li->link_cfg_err = link_data.link_cfg_err;
728 li->an_info = link_data.an_info;
729 li->ext_info = link_data.ext_info;
730 li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
731 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
732 li->topo_media_conflict = link_data.topo_media_conflict;
733 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
734 ICE_AQ_CFG_PACING_TYPE_M);
735
736 /* update fc info */
737 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
738 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
739 if (tx_pause && rx_pause)
740 hw_fc_info->current_mode = ICE_FC_FULL;
741 else if (tx_pause)
742 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
743 else if (rx_pause)
744 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
745 else
746 hw_fc_info->current_mode = ICE_FC_NONE;
747
748 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
749
750 ice_debug(hw, ICE_DBG_LINK, "get link info\n");
751 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
752 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
753 (unsigned long long)li->phy_type_low);
754 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
755 (unsigned long long)li->phy_type_high);
756 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
757 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
758 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
759 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
760 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
761 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
762 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
763 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
764 li->max_frame_size);
765 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
766
767 /* save link status information */
768 if (link)
769 *link = *li;
770
771 /* flag cleared so calling functions don't call AQ again */
772 pi->phy.get_link_info = false;
773
774 return 0;
775 }
776
777 /**
778 * ice_fill_tx_timer_and_fc_thresh
779 * @hw: pointer to the HW struct
780 * @cmd: pointer to MAC cfg structure
781 *
782 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
783 * descriptor
784 */
785 static void
ice_fill_tx_timer_and_fc_thresh(struct ice_hw * hw,struct ice_aqc_set_mac_cfg * cmd)786 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
787 struct ice_aqc_set_mac_cfg *cmd)
788 {
789 u32 val, fc_thres_m;
790
791 /* We read back the transmit timer and FC threshold value of
792 * LFC. Thus, we will use index =
793 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
794 *
795 * Also, because we are operating on transmit timer and FC
796 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
797 */
798 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
799 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
800
801 if (hw->mac_type == ICE_MAC_E830) {
802 /* Retrieve the transmit timer */
803 val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
804 cmd->tx_tmr_value =
805 le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
806
807 /* Retrieve the fc threshold */
808 val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
809 fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
810 } else {
811 /* Retrieve the transmit timer */
812 val = rd32(hw,
813 E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
814 cmd->tx_tmr_value =
815 le16_encode_bits(val,
816 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
817
818 /* Retrieve the fc threshold */
819 val = rd32(hw,
820 E800_REFRESH_TMR(E800_IDX_OF_LFC));
821 fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
822 }
823 cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
824 }
825
826 /**
827 * ice_aq_set_mac_cfg
828 * @hw: pointer to the HW struct
829 * @max_frame_size: Maximum Frame Size to be supported
830 * @cd: pointer to command details structure or NULL
831 *
832 * Set MAC configuration (0x0603)
833 */
834 int
ice_aq_set_mac_cfg(struct ice_hw * hw,u16 max_frame_size,struct ice_sq_cd * cd)835 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
836 {
837 struct ice_aqc_set_mac_cfg *cmd;
838 struct libie_aq_desc desc;
839
840 cmd = libie_aq_raw(&desc);
841
842 if (max_frame_size == 0)
843 return -EINVAL;
844
845 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
846
847 cmd->max_frame_size = cpu_to_le16(max_frame_size);
848
849 ice_fill_tx_timer_and_fc_thresh(hw, cmd);
850
851 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
852 }
853
854 /**
855 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
856 * @hw: pointer to the HW struct
857 */
ice_init_fltr_mgmt_struct(struct ice_hw * hw)858 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
859 {
860 struct ice_switch_info *sw;
861 int status;
862
863 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
864 sizeof(*hw->switch_info), GFP_KERNEL);
865 sw = hw->switch_info;
866
867 if (!sw)
868 return -ENOMEM;
869
870 INIT_LIST_HEAD(&sw->vsi_list_map_head);
871 sw->prof_res_bm_init = 0;
872
873 /* Initialize recipe count with default recipes read from NVM */
874 sw->recp_cnt = ICE_SW_LKUP_LAST;
875
876 status = ice_init_def_sw_recp(hw);
877 if (status) {
878 devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
879 return status;
880 }
881 return 0;
882 }
883
884 /**
885 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
886 * @hw: pointer to the HW struct
887 */
ice_cleanup_fltr_mgmt_struct(struct ice_hw * hw)888 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
889 {
890 struct ice_switch_info *sw = hw->switch_info;
891 struct ice_vsi_list_map_info *v_pos_map;
892 struct ice_vsi_list_map_info *v_tmp_map;
893 struct ice_sw_recipe *recps;
894 u8 i;
895
896 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
897 list_entry) {
898 list_del(&v_pos_map->list_entry);
899 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
900 }
901 recps = sw->recp_list;
902 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
903 recps[i].root_rid = i;
904
905 if (recps[i].adv_rule) {
906 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
907 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
908
909 mutex_destroy(&recps[i].filt_rule_lock);
910 list_for_each_entry_safe(lst_itr, tmp_entry,
911 &recps[i].filt_rules,
912 list_entry) {
913 list_del(&lst_itr->list_entry);
914 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
915 devm_kfree(ice_hw_to_dev(hw), lst_itr);
916 }
917 } else {
918 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
919
920 mutex_destroy(&recps[i].filt_rule_lock);
921 list_for_each_entry_safe(lst_itr, tmp_entry,
922 &recps[i].filt_rules,
923 list_entry) {
924 list_del(&lst_itr->list_entry);
925 devm_kfree(ice_hw_to_dev(hw), lst_itr);
926 }
927 }
928 }
929 ice_rm_all_sw_replay_rule_info(hw);
930 devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
931 devm_kfree(ice_hw_to_dev(hw), sw);
932 }
933
934 /**
935 * ice_get_itr_intrl_gran
936 * @hw: pointer to the HW struct
937 *
938 * Determines the ITR/INTRL granularities based on the maximum aggregate
939 * bandwidth according to the device's configuration during power-on.
940 */
ice_get_itr_intrl_gran(struct ice_hw * hw)941 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
942 {
943 u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
944 rd32(hw, GL_PWR_MODE_CTL));
945
946 switch (max_agg_bw) {
947 case ICE_MAX_AGG_BW_200G:
948 case ICE_MAX_AGG_BW_100G:
949 case ICE_MAX_AGG_BW_50G:
950 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
951 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
952 break;
953 case ICE_MAX_AGG_BW_25G:
954 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
955 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
956 break;
957 }
958 }
959
960 /**
961 * ice_wait_for_fw - wait for full FW readiness
962 * @hw: pointer to the hardware structure
963 * @timeout: milliseconds that can elapse before timing out
964 *
965 * Return: 0 on success, -ETIMEDOUT on timeout.
966 */
ice_wait_for_fw(struct ice_hw * hw,u32 timeout)967 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
968 {
969 int fw_loading;
970 u32 elapsed = 0;
971
972 while (elapsed <= timeout) {
973 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
974
975 /* firmware was not yet loaded, we have to wait more */
976 if (fw_loading) {
977 elapsed += 100;
978 msleep(100);
979 continue;
980 }
981 return 0;
982 }
983
984 return -ETIMEDOUT;
985 }
986
__fwlog_send_cmd(void * priv,struct libie_aq_desc * desc,void * buf,u16 size)987 static int __fwlog_send_cmd(void *priv, struct libie_aq_desc *desc, void *buf,
988 u16 size)
989 {
990 struct ice_hw *hw = priv;
991
992 return ice_aq_send_cmd(hw, desc, buf, size, NULL);
993 }
994
__fwlog_init(struct ice_hw * hw)995 static int __fwlog_init(struct ice_hw *hw)
996 {
997 struct ice_pf *pf = hw->back;
998 struct libie_fwlog_api api = {
999 .pdev = pf->pdev,
1000 .send_cmd = __fwlog_send_cmd,
1001 .priv = hw,
1002 };
1003 int err;
1004
1005 /* only support fw log commands on PF 0 */
1006 if (hw->bus.func)
1007 return -EINVAL;
1008
1009 err = ice_debugfs_pf_init(pf);
1010 if (err)
1011 return err;
1012
1013 api.debugfs_root = pf->ice_debugfs_pf;
1014
1015 return libie_fwlog_init(&hw->fwlog, &api);
1016 }
1017
1018 /**
1019 * ice_init_hw - main hardware initialization routine
1020 * @hw: pointer to the hardware structure
1021 */
ice_init_hw(struct ice_hw * hw)1022 int ice_init_hw(struct ice_hw *hw)
1023 {
1024 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1025 void *mac_buf __free(kfree) = NULL;
1026 u16 mac_buf_len;
1027 int status;
1028
1029 /* Set MAC type based on DeviceID */
1030 status = ice_set_mac_type(hw);
1031 if (status)
1032 return status;
1033
1034 hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1035
1036 status = ice_reset(hw, ICE_RESET_PFR);
1037 if (status)
1038 return status;
1039
1040 ice_get_itr_intrl_gran(hw);
1041
1042 status = ice_create_all_ctrlq(hw);
1043 if (status)
1044 goto err_unroll_cqinit;
1045
1046 status = __fwlog_init(hw);
1047 if (status)
1048 ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1049 status);
1050
1051 status = ice_clear_pf_cfg(hw);
1052 if (status)
1053 goto err_unroll_cqinit;
1054
1055 /* Set bit to enable Flow Director filters */
1056 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1057 INIT_LIST_HEAD(&hw->fdir_list_head);
1058
1059 ice_clear_pxe_mode(hw);
1060
1061 status = ice_init_nvm(hw);
1062 if (status)
1063 goto err_unroll_cqinit;
1064
1065 status = ice_get_caps(hw);
1066 if (status)
1067 goto err_unroll_cqinit;
1068
1069 if (!hw->port_info)
1070 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1071 sizeof(*hw->port_info),
1072 GFP_KERNEL);
1073 if (!hw->port_info) {
1074 status = -ENOMEM;
1075 goto err_unroll_cqinit;
1076 }
1077
1078 hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1079 /* set the back pointer to HW */
1080 hw->port_info->hw = hw;
1081
1082 /* Initialize port_info struct with switch configuration data */
1083 status = ice_get_initial_sw_cfg(hw);
1084 if (status)
1085 goto err_unroll_alloc;
1086
1087 hw->evb_veb = true;
1088
1089 /* init xarray for identifying scheduling nodes uniquely */
1090 xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1091
1092 /* Query the allocated resources for Tx scheduler */
1093 status = ice_sched_query_res_alloc(hw);
1094 if (status) {
1095 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1096 goto err_unroll_alloc;
1097 }
1098 ice_sched_get_psm_clk_freq(hw);
1099
1100 /* Initialize port_info struct with scheduler data */
1101 status = ice_sched_init_port(hw->port_info);
1102 if (status)
1103 goto err_unroll_sched;
1104
1105 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1106 if (!pcaps) {
1107 status = -ENOMEM;
1108 goto err_unroll_sched;
1109 }
1110
1111 /* Initialize port_info struct with PHY capabilities */
1112 status = ice_aq_get_phy_caps(hw->port_info, false,
1113 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1114 NULL);
1115 if (status)
1116 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1117 status);
1118
1119 /* Initialize port_info struct with link information */
1120 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1121 if (status)
1122 goto err_unroll_sched;
1123
1124 /* need a valid SW entry point to build a Tx tree */
1125 if (!hw->sw_entry_point_layer) {
1126 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1127 status = -EIO;
1128 goto err_unroll_sched;
1129 }
1130 INIT_LIST_HEAD(&hw->agg_list);
1131 /* Initialize max burst size */
1132 if (!hw->max_burst_size)
1133 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1134
1135 status = ice_init_fltr_mgmt_struct(hw);
1136 if (status)
1137 goto err_unroll_sched;
1138
1139 /* Get MAC information */
1140 /* A single port can report up to two (LAN and WoL) addresses */
1141 mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1142 GFP_KERNEL);
1143 if (!mac_buf) {
1144 status = -ENOMEM;
1145 goto err_unroll_fltr_mgmt_struct;
1146 }
1147
1148 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1149 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1150
1151 if (status)
1152 goto err_unroll_fltr_mgmt_struct;
1153 /* enable jumbo frame support at MAC level */
1154 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1155 if (status)
1156 goto err_unroll_fltr_mgmt_struct;
1157 /* Obtain counter base index which would be used by flow director */
1158 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1159 if (status)
1160 goto err_unroll_fltr_mgmt_struct;
1161 status = ice_init_hw_tbls(hw);
1162 if (status)
1163 goto err_unroll_fltr_mgmt_struct;
1164
1165 ice_init_dev_hw(hw->back);
1166
1167 mutex_init(&hw->tnl_lock);
1168 ice_init_chk_recipe_reuse_support(hw);
1169
1170 /* Some cards require longer initialization times
1171 * due to necessity of loading FW from an external source.
1172 * This can take even half a minute.
1173 */
1174 if (ice_is_pf_c827(hw)) {
1175 status = ice_wait_for_fw(hw, 30000);
1176 if (status) {
1177 dev_err(ice_hw_to_dev(hw), "ice_wait_for_fw timed out");
1178 goto err_unroll_fltr_mgmt_struct;
1179 }
1180 }
1181
1182 hw->lane_num = ice_get_phy_lane_number(hw);
1183
1184 return 0;
1185 err_unroll_fltr_mgmt_struct:
1186 ice_cleanup_fltr_mgmt_struct(hw);
1187 err_unroll_sched:
1188 ice_sched_cleanup_all(hw);
1189 err_unroll_alloc:
1190 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1191 err_unroll_cqinit:
1192 ice_destroy_all_ctrlq(hw);
1193 return status;
1194 }
1195
__fwlog_deinit(struct ice_hw * hw)1196 static void __fwlog_deinit(struct ice_hw *hw)
1197 {
1198 /* only support fw log commands on PF 0 */
1199 if (hw->bus.func)
1200 return;
1201
1202 ice_debugfs_pf_deinit(hw->back);
1203 libie_fwlog_deinit(&hw->fwlog);
1204 }
1205
1206 /**
1207 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1208 * @hw: pointer to the hardware structure
1209 *
1210 * This should be called only during nominal operation, not as a result of
1211 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1212 * applicable initializations if it fails for any reason.
1213 */
ice_deinit_hw(struct ice_hw * hw)1214 void ice_deinit_hw(struct ice_hw *hw)
1215 {
1216 ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1217 ice_cleanup_fltr_mgmt_struct(hw);
1218
1219 ice_sched_cleanup_all(hw);
1220 ice_sched_clear_agg(hw);
1221 ice_free_seg(hw);
1222 ice_free_hw_tbls(hw);
1223 mutex_destroy(&hw->tnl_lock);
1224 __fwlog_deinit(hw);
1225 ice_destroy_all_ctrlq(hw);
1226
1227 /* Clear VSI contexts if not already cleared */
1228 ice_clear_all_vsi_ctx(hw);
1229 }
1230
1231 /**
1232 * ice_check_reset - Check to see if a global reset is complete
1233 * @hw: pointer to the hardware structure
1234 */
ice_check_reset(struct ice_hw * hw)1235 int ice_check_reset(struct ice_hw *hw)
1236 {
1237 u32 cnt, reg = 0, grst_timeout, uld_mask;
1238
1239 /* Poll for Device Active state in case a recent CORER, GLOBR,
1240 * or EMPR has occurred. The grst delay value is in 100ms units.
1241 * Add 1sec for outstanding AQ commands that can take a long time.
1242 */
1243 grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1244 rd32(hw, GLGEN_RSTCTL)) + 10;
1245
1246 for (cnt = 0; cnt < grst_timeout; cnt++) {
1247 mdelay(100);
1248 reg = rd32(hw, GLGEN_RSTAT);
1249 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1250 break;
1251 }
1252
1253 if (cnt == grst_timeout) {
1254 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1255 return -EIO;
1256 }
1257
1258 #define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
1259 GLNVM_ULD_PCIER_DONE_1_M |\
1260 GLNVM_ULD_CORER_DONE_M |\
1261 GLNVM_ULD_GLOBR_DONE_M |\
1262 GLNVM_ULD_POR_DONE_M |\
1263 GLNVM_ULD_POR_DONE_1_M |\
1264 GLNVM_ULD_PCIER_DONE_2_M)
1265
1266 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1267 GLNVM_ULD_PE_DONE_M : 0);
1268
1269 /* Device is Active; check Global Reset processes are done */
1270 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1271 reg = rd32(hw, GLNVM_ULD) & uld_mask;
1272 if (reg == uld_mask) {
1273 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1274 break;
1275 }
1276 mdelay(10);
1277 }
1278
1279 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1280 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1281 reg);
1282 return -EIO;
1283 }
1284
1285 return 0;
1286 }
1287
1288 /**
1289 * ice_pf_reset - Reset the PF
1290 * @hw: pointer to the hardware structure
1291 *
1292 * If a global reset has been triggered, this function checks
1293 * for its completion and then issues the PF reset
1294 */
ice_pf_reset(struct ice_hw * hw)1295 static int ice_pf_reset(struct ice_hw *hw)
1296 {
1297 u32 cnt, reg;
1298
1299 /* If at function entry a global reset was already in progress, i.e.
1300 * state is not 'device active' or any of the reset done bits are not
1301 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1302 * global reset is done.
1303 */
1304 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1305 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1306 /* poll on global reset currently in progress until done */
1307 if (ice_check_reset(hw))
1308 return -EIO;
1309
1310 return 0;
1311 }
1312
1313 /* Reset the PF */
1314 reg = rd32(hw, PFGEN_CTRL);
1315
1316 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1317
1318 /* Wait for the PFR to complete. The wait time is the global config lock
1319 * timeout plus the PFR timeout which will account for a possible reset
1320 * that is occurring during a download package operation.
1321 */
1322 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1323 ICE_PF_RESET_WAIT_COUNT; cnt++) {
1324 reg = rd32(hw, PFGEN_CTRL);
1325 if (!(reg & PFGEN_CTRL_PFSWR_M))
1326 break;
1327
1328 mdelay(1);
1329 }
1330
1331 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1332 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1333 return -EIO;
1334 }
1335
1336 return 0;
1337 }
1338
1339 /**
1340 * ice_reset - Perform different types of reset
1341 * @hw: pointer to the hardware structure
1342 * @req: reset request
1343 *
1344 * This function triggers a reset as specified by the req parameter.
1345 *
1346 * Note:
1347 * If anything other than a PF reset is triggered, PXE mode is restored.
1348 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1349 * interface has been restored in the rebuild flow.
1350 */
ice_reset(struct ice_hw * hw,enum ice_reset_req req)1351 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1352 {
1353 u32 val = 0;
1354
1355 switch (req) {
1356 case ICE_RESET_PFR:
1357 return ice_pf_reset(hw);
1358 case ICE_RESET_CORER:
1359 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1360 val = GLGEN_RTRIG_CORER_M;
1361 break;
1362 case ICE_RESET_GLOBR:
1363 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1364 val = GLGEN_RTRIG_GLOBR_M;
1365 break;
1366 default:
1367 return -EINVAL;
1368 }
1369
1370 val |= rd32(hw, GLGEN_RTRIG);
1371 wr32(hw, GLGEN_RTRIG, val);
1372 ice_flush(hw);
1373
1374 /* wait for the FW to be ready */
1375 return ice_check_reset(hw);
1376 }
1377
1378 /**
1379 * ice_copy_rxq_ctx_to_hw - Copy packed Rx queue context to HW registers
1380 * @hw: pointer to the hardware structure
1381 * @rxq_ctx: pointer to the packed Rx queue context
1382 * @rxq_index: the index of the Rx queue
1383 */
ice_copy_rxq_ctx_to_hw(struct ice_hw * hw,const ice_rxq_ctx_buf_t * rxq_ctx,u32 rxq_index)1384 static void ice_copy_rxq_ctx_to_hw(struct ice_hw *hw,
1385 const ice_rxq_ctx_buf_t *rxq_ctx,
1386 u32 rxq_index)
1387 {
1388 /* Copy each dword separately to HW */
1389 for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1390 u32 ctx = ((const u32 *)rxq_ctx)[i];
1391
1392 wr32(hw, QRX_CONTEXT(i, rxq_index), ctx);
1393
1394 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, ctx);
1395 }
1396 }
1397
1398 /**
1399 * ice_copy_rxq_ctx_from_hw - Copy packed Rx Queue context from HW registers
1400 * @hw: pointer to the hardware structure
1401 * @rxq_ctx: pointer to the packed Rx queue context
1402 * @rxq_index: the index of the Rx queue
1403 */
ice_copy_rxq_ctx_from_hw(struct ice_hw * hw,ice_rxq_ctx_buf_t * rxq_ctx,u32 rxq_index)1404 static void ice_copy_rxq_ctx_from_hw(struct ice_hw *hw,
1405 ice_rxq_ctx_buf_t *rxq_ctx,
1406 u32 rxq_index)
1407 {
1408 u32 *ctx = (u32 *)rxq_ctx;
1409
1410 /* Copy each dword separately from HW */
1411 for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++, ctx++) {
1412 *ctx = rd32(hw, QRX_CONTEXT(i, rxq_index));
1413
1414 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, *ctx);
1415 }
1416 }
1417
1418 #define ICE_CTX_STORE(struct_name, struct_field, width, lsb) \
1419 PACKED_FIELD((lsb) + (width) - 1, (lsb), struct struct_name, struct_field)
1420
1421 /* LAN Rx Queue Context */
1422 static const struct packed_field_u8 ice_rlan_ctx_fields[] = {
1423 /* Field Width LSB */
1424 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1425 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1426 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1427 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1428 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1429 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1430 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1431 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1432 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1433 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1434 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1435 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1436 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1437 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1438 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1439 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1440 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1441 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1442 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1443 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
1444 };
1445
1446 /**
1447 * ice_pack_rxq_ctx - Pack Rx queue context into a HW buffer
1448 * @ctx: the Rx queue context to pack
1449 * @buf: the HW buffer to pack into
1450 *
1451 * Pack the Rx queue context from the CPU-friendly unpacked buffer into its
1452 * bit-packed HW layout.
1453 */
ice_pack_rxq_ctx(const struct ice_rlan_ctx * ctx,ice_rxq_ctx_buf_t * buf)1454 static void ice_pack_rxq_ctx(const struct ice_rlan_ctx *ctx,
1455 ice_rxq_ctx_buf_t *buf)
1456 {
1457 pack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1458 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1459 }
1460
1461 /**
1462 * ice_unpack_rxq_ctx - Unpack Rx queue context from a HW buffer
1463 * @buf: the HW buffer to unpack from
1464 * @ctx: the Rx queue context to unpack
1465 *
1466 * Unpack the Rx queue context from the HW buffer into the CPU-friendly
1467 * structure.
1468 */
ice_unpack_rxq_ctx(const ice_rxq_ctx_buf_t * buf,struct ice_rlan_ctx * ctx)1469 static void ice_unpack_rxq_ctx(const ice_rxq_ctx_buf_t *buf,
1470 struct ice_rlan_ctx *ctx)
1471 {
1472 unpack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1473 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1474 }
1475
1476 /**
1477 * ice_write_rxq_ctx - Write Rx Queue context to hardware
1478 * @hw: pointer to the hardware structure
1479 * @rlan_ctx: pointer to the unpacked Rx queue context
1480 * @rxq_index: the index of the Rx queue
1481 *
1482 * Pack the sparse Rx Queue context into dense hardware format and write it
1483 * into the HW register space.
1484 *
1485 * Return: 0 on success, or -EINVAL if the Rx queue index is invalid.
1486 */
ice_write_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1487 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1488 u32 rxq_index)
1489 {
1490 ice_rxq_ctx_buf_t buf = {};
1491
1492 if (rxq_index > QRX_CTRL_MAX_INDEX)
1493 return -EINVAL;
1494
1495 ice_pack_rxq_ctx(rlan_ctx, &buf);
1496 ice_copy_rxq_ctx_to_hw(hw, &buf, rxq_index);
1497
1498 return 0;
1499 }
1500
1501 /**
1502 * ice_read_rxq_ctx - Read Rx queue context from HW
1503 * @hw: pointer to the hardware structure
1504 * @rlan_ctx: pointer to the Rx queue context
1505 * @rxq_index: the index of the Rx queue
1506 *
1507 * Read the Rx queue context from the hardware registers, and unpack it into
1508 * the sparse Rx queue context structure.
1509 *
1510 * Returns: 0 on success, or -EINVAL if the Rx queue index is invalid.
1511 */
ice_read_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1512 int ice_read_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1513 u32 rxq_index)
1514 {
1515 ice_rxq_ctx_buf_t buf = {};
1516
1517 if (rxq_index > QRX_CTRL_MAX_INDEX)
1518 return -EINVAL;
1519
1520 ice_copy_rxq_ctx_from_hw(hw, &buf, rxq_index);
1521 ice_unpack_rxq_ctx(&buf, rlan_ctx);
1522
1523 return 0;
1524 }
1525
1526 /* LAN Tx Queue Context */
1527 static const struct packed_field_u8 ice_tlan_ctx_fields[] = {
1528 /* Field Width LSB */
1529 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1530 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1531 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1532 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1533 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1534 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1535 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1536 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1537 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
1538 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1539 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1540 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1541 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1542 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1543 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1544 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1545 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1546 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1547 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1548 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1549 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1550 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1551 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1552 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1553 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1554 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1555 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1556 };
1557
1558 /**
1559 * ice_pack_txq_ctx - Pack Tx queue context into Admin Queue buffer
1560 * @ctx: the Tx queue context to pack
1561 * @buf: the Admin Queue HW buffer to pack into
1562 *
1563 * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1564 * bit-packed Admin Queue layout.
1565 */
ice_pack_txq_ctx(const struct ice_tlan_ctx * ctx,ice_txq_ctx_buf_t * buf)1566 void ice_pack_txq_ctx(const struct ice_tlan_ctx *ctx, ice_txq_ctx_buf_t *buf)
1567 {
1568 pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1569 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1570 }
1571
1572 /**
1573 * ice_pack_txq_ctx_full - Pack Tx queue context into a HW buffer
1574 * @ctx: the Tx queue context to pack
1575 * @buf: the HW buffer to pack into
1576 *
1577 * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1578 * bit-packed HW layout, including the internal data portion.
1579 */
ice_pack_txq_ctx_full(const struct ice_tlan_ctx * ctx,ice_txq_ctx_buf_full_t * buf)1580 static void ice_pack_txq_ctx_full(const struct ice_tlan_ctx *ctx,
1581 ice_txq_ctx_buf_full_t *buf)
1582 {
1583 pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1584 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1585 }
1586
1587 /**
1588 * ice_unpack_txq_ctx_full - Unpack Tx queue context from a HW buffer
1589 * @buf: the HW buffer to unpack from
1590 * @ctx: the Tx queue context to unpack
1591 *
1592 * Unpack the Tx queue context from the HW buffer (including the full internal
1593 * state) into the CPU-friendly structure.
1594 */
ice_unpack_txq_ctx_full(const ice_txq_ctx_buf_full_t * buf,struct ice_tlan_ctx * ctx)1595 static void ice_unpack_txq_ctx_full(const ice_txq_ctx_buf_full_t *buf,
1596 struct ice_tlan_ctx *ctx)
1597 {
1598 unpack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1599 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1600 }
1601
1602 /**
1603 * ice_copy_txq_ctx_from_hw - Copy Tx Queue context from HW registers
1604 * @hw: pointer to the hardware structure
1605 * @txq_ctx: pointer to the packed Tx queue context, including internal state
1606 * @txq_index: the index of the Tx queue
1607 *
1608 * Copy Tx Queue context from HW register space to dense structure
1609 */
ice_copy_txq_ctx_from_hw(struct ice_hw * hw,ice_txq_ctx_buf_full_t * txq_ctx,u32 txq_index)1610 static void ice_copy_txq_ctx_from_hw(struct ice_hw *hw,
1611 ice_txq_ctx_buf_full_t *txq_ctx,
1612 u32 txq_index)
1613 {
1614 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
1615 u32 *ctx = (u32 *)txq_ctx;
1616 u32 txq_base, reg;
1617
1618 /* Get Tx queue base within card space */
1619 txq_base = rd32(hw, PFLAN_TX_QALLOC(hw->pf_id));
1620 txq_base = FIELD_GET(PFLAN_TX_QALLOC_FIRSTQ_M, txq_base);
1621
1622 reg = FIELD_PREP(GLCOMM_QTX_CNTX_CTL_CMD_M,
1623 GLCOMM_QTX_CNTX_CTL_CMD_READ) |
1624 FIELD_PREP(GLCOMM_QTX_CNTX_CTL_QUEUE_ID_M,
1625 txq_base + txq_index) |
1626 GLCOMM_QTX_CNTX_CTL_CMD_EXEC_M;
1627
1628 /* Prevent other PFs on the same adapter from accessing the Tx queue
1629 * context interface concurrently.
1630 */
1631 spin_lock(&pf->adapter->txq_ctx_lock);
1632
1633 wr32(hw, GLCOMM_QTX_CNTX_CTL, reg);
1634 ice_flush(hw);
1635
1636 /* Copy each dword separately from HW */
1637 for (int i = 0; i < ICE_TXQ_CTX_FULL_SIZE_DWORDS; i++, ctx++) {
1638 *ctx = rd32(hw, GLCOMM_QTX_CNTX_DATA(i));
1639
1640 ice_debug(hw, ICE_DBG_QCTX, "qtxdata[%d]: %08X\n", i, *ctx);
1641 }
1642
1643 spin_unlock(&pf->adapter->txq_ctx_lock);
1644 }
1645
1646 /**
1647 * ice_copy_txq_ctx_to_hw - Copy Tx Queue context into HW registers
1648 * @hw: pointer to the hardware structure
1649 * @txq_ctx: pointer to the packed Tx queue context, including internal state
1650 * @txq_index: the index of the Tx queue
1651 */
ice_copy_txq_ctx_to_hw(struct ice_hw * hw,const ice_txq_ctx_buf_full_t * txq_ctx,u32 txq_index)1652 static void ice_copy_txq_ctx_to_hw(struct ice_hw *hw,
1653 const ice_txq_ctx_buf_full_t *txq_ctx,
1654 u32 txq_index)
1655 {
1656 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
1657 u32 txq_base, reg;
1658
1659 /* Get Tx queue base within card space */
1660 txq_base = rd32(hw, PFLAN_TX_QALLOC(hw->pf_id));
1661 txq_base = FIELD_GET(PFLAN_TX_QALLOC_FIRSTQ_M, txq_base);
1662
1663 reg = FIELD_PREP(GLCOMM_QTX_CNTX_CTL_CMD_M,
1664 GLCOMM_QTX_CNTX_CTL_CMD_WRITE_NO_DYN) |
1665 FIELD_PREP(GLCOMM_QTX_CNTX_CTL_QUEUE_ID_M,
1666 txq_base + txq_index) |
1667 GLCOMM_QTX_CNTX_CTL_CMD_EXEC_M;
1668
1669 /* Prevent other PFs on the same adapter from accessing the Tx queue
1670 * context interface concurrently.
1671 */
1672 spin_lock(&pf->adapter->txq_ctx_lock);
1673
1674 /* Copy each dword separately to HW */
1675 for (int i = 0; i < ICE_TXQ_CTX_FULL_SIZE_DWORDS; i++) {
1676 u32 ctx = ((const u32 *)txq_ctx)[i];
1677
1678 wr32(hw, GLCOMM_QTX_CNTX_DATA(i), ctx);
1679
1680 ice_debug(hw, ICE_DBG_QCTX, "qtxdata[%d]: %08X\n", i, ctx);
1681 }
1682
1683 wr32(hw, GLCOMM_QTX_CNTX_CTL, reg);
1684 ice_flush(hw);
1685
1686 spin_unlock(&pf->adapter->txq_ctx_lock);
1687 }
1688
1689 /**
1690 * ice_read_txq_ctx - Read Tx queue context from HW
1691 * @hw: pointer to the hardware structure
1692 * @tlan_ctx: pointer to the Tx queue context
1693 * @txq_index: the index of the Tx queue
1694 *
1695 * Read the Tx queue context from the HW registers, then unpack it into the
1696 * ice_tlan_ctx structure for use.
1697 *
1698 * Returns: 0 on success, or -EINVAL on an invalid Tx queue index.
1699 */
ice_read_txq_ctx(struct ice_hw * hw,struct ice_tlan_ctx * tlan_ctx,u32 txq_index)1700 int ice_read_txq_ctx(struct ice_hw *hw, struct ice_tlan_ctx *tlan_ctx,
1701 u32 txq_index)
1702 {
1703 ice_txq_ctx_buf_full_t buf = {};
1704
1705 if (txq_index > QTX_COMM_HEAD_MAX_INDEX)
1706 return -EINVAL;
1707
1708 ice_copy_txq_ctx_from_hw(hw, &buf, txq_index);
1709 ice_unpack_txq_ctx_full(&buf, tlan_ctx);
1710
1711 return 0;
1712 }
1713
1714 /**
1715 * ice_write_txq_ctx - Write Tx queue context to HW
1716 * @hw: pointer to the hardware structure
1717 * @tlan_ctx: pointer to the Tx queue context
1718 * @txq_index: the index of the Tx queue
1719 *
1720 * Pack the Tx queue context into the dense HW layout, then write it into the
1721 * HW registers.
1722 *
1723 * Returns: 0 on success, or -EINVAL on an invalid Tx queue index.
1724 */
ice_write_txq_ctx(struct ice_hw * hw,struct ice_tlan_ctx * tlan_ctx,u32 txq_index)1725 int ice_write_txq_ctx(struct ice_hw *hw, struct ice_tlan_ctx *tlan_ctx,
1726 u32 txq_index)
1727 {
1728 ice_txq_ctx_buf_full_t buf = {};
1729
1730 if (txq_index > QTX_COMM_HEAD_MAX_INDEX)
1731 return -EINVAL;
1732
1733 ice_pack_txq_ctx_full(tlan_ctx, &buf);
1734 ice_copy_txq_ctx_to_hw(hw, &buf, txq_index);
1735
1736 return 0;
1737 }
1738
1739 /* Tx time Queue Context */
1740 static const struct packed_field_u8 ice_txtime_ctx_fields[] = {
1741 /* Field Width LSB */
1742 ICE_CTX_STORE(ice_txtime_ctx, base, 57, 0),
1743 ICE_CTX_STORE(ice_txtime_ctx, pf_num, 3, 57),
1744 ICE_CTX_STORE(ice_txtime_ctx, vmvf_num, 10, 60),
1745 ICE_CTX_STORE(ice_txtime_ctx, vmvf_type, 2, 70),
1746 ICE_CTX_STORE(ice_txtime_ctx, src_vsi, 10, 72),
1747 ICE_CTX_STORE(ice_txtime_ctx, cpuid, 8, 82),
1748 ICE_CTX_STORE(ice_txtime_ctx, tphrd_desc, 1, 90),
1749 ICE_CTX_STORE(ice_txtime_ctx, qlen, 13, 91),
1750 ICE_CTX_STORE(ice_txtime_ctx, timer_num, 1, 104),
1751 ICE_CTX_STORE(ice_txtime_ctx, txtime_ena_q, 1, 105),
1752 ICE_CTX_STORE(ice_txtime_ctx, drbell_mode_32, 1, 106),
1753 ICE_CTX_STORE(ice_txtime_ctx, ts_res, 4, 107),
1754 ICE_CTX_STORE(ice_txtime_ctx, ts_round_type, 2, 111),
1755 ICE_CTX_STORE(ice_txtime_ctx, ts_pacing_slot, 3, 113),
1756 ICE_CTX_STORE(ice_txtime_ctx, merging_ena, 1, 116),
1757 ICE_CTX_STORE(ice_txtime_ctx, ts_fetch_prof_id, 4, 117),
1758 ICE_CTX_STORE(ice_txtime_ctx, ts_fetch_cache_line_aln_thld, 4, 121),
1759 ICE_CTX_STORE(ice_txtime_ctx, tx_pipe_delay_mode, 1, 125),
1760 };
1761
1762 /**
1763 * ice_pack_txtime_ctx - pack Tx time queue context into a HW buffer
1764 * @ctx: the Tx time queue context to pack
1765 * @buf: the HW buffer to pack into
1766 *
1767 * Pack the Tx time queue context from the CPU-friendly unpacked buffer into
1768 * its bit-packed HW layout.
1769 */
ice_pack_txtime_ctx(const struct ice_txtime_ctx * ctx,ice_txtime_ctx_buf_t * buf)1770 void ice_pack_txtime_ctx(const struct ice_txtime_ctx *ctx,
1771 ice_txtime_ctx_buf_t *buf)
1772 {
1773 pack_fields(buf, sizeof(*buf), ctx, ice_txtime_ctx_fields,
1774 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1775 }
1776
1777 /* Sideband Queue command wrappers */
1778
1779 /**
1780 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1781 * @hw: pointer to the HW struct
1782 * @desc: descriptor describing the command
1783 * @buf: buffer to use for indirect commands (NULL for direct commands)
1784 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1785 * @cd: pointer to command details structure
1786 */
1787 static int
ice_sbq_send_cmd(struct ice_hw * hw,struct ice_sbq_cmd_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1788 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1789 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1790 {
1791 return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1792 (struct libie_aq_desc *)desc, buf, buf_size, cd);
1793 }
1794
1795 /**
1796 * ice_sbq_rw_reg - Fill Sideband Queue command
1797 * @hw: pointer to the HW struct
1798 * @in: message info to be filled in descriptor
1799 * @flags: control queue descriptor flags
1800 */
ice_sbq_rw_reg(struct ice_hw * hw,struct ice_sbq_msg_input * in,u16 flags)1801 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1802 {
1803 struct ice_sbq_cmd_desc desc = {0};
1804 struct ice_sbq_msg_req msg = {0};
1805 u16 msg_len;
1806 int status;
1807
1808 msg_len = sizeof(msg);
1809
1810 msg.dest_dev = in->dest_dev;
1811 msg.opcode = in->opcode;
1812 msg.flags = ICE_SBQ_MSG_FLAGS;
1813 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1814 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1815 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1816
1817 if (in->opcode)
1818 msg.data = cpu_to_le32(in->data);
1819 else
1820 /* data read comes back in completion, so shorten the struct by
1821 * sizeof(msg.data)
1822 */
1823 msg_len -= sizeof(msg.data);
1824
1825 desc.flags = cpu_to_le16(flags);
1826 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1827 desc.param0.cmd_len = cpu_to_le16(msg_len);
1828 status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1829 if (!status && !in->opcode)
1830 in->data = le32_to_cpu
1831 (((struct ice_sbq_msg_cmpl *)&msg)->data);
1832 return status;
1833 }
1834
1835 /* FW Admin Queue command wrappers */
1836
1837 /* Software lock/mutex that is meant to be held while the Global Config Lock
1838 * in firmware is acquired by the software to prevent most (but not all) types
1839 * of AQ commands from being sent to FW
1840 */
1841 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1842
1843 /**
1844 * ice_should_retry_sq_send_cmd
1845 * @opcode: AQ opcode
1846 *
1847 * Decide if we should retry the send command routine for the ATQ, depending
1848 * on the opcode.
1849 */
ice_should_retry_sq_send_cmd(u16 opcode)1850 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1851 {
1852 switch (opcode) {
1853 case ice_aqc_opc_get_link_topo:
1854 case ice_aqc_opc_lldp_stop:
1855 case ice_aqc_opc_lldp_start:
1856 case ice_aqc_opc_lldp_filter_ctrl:
1857 return true;
1858 }
1859
1860 return false;
1861 }
1862
1863 /**
1864 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1865 * @hw: pointer to the HW struct
1866 * @cq: pointer to the specific Control queue
1867 * @desc: prefilled descriptor describing the command
1868 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1869 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1870 * @cd: pointer to command details structure
1871 *
1872 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1873 * Queue if the EBUSY AQ error is returned.
1874 */
1875 static int
ice_sq_send_cmd_retry(struct ice_hw * hw,struct ice_ctl_q_info * cq,struct libie_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1876 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1877 struct libie_aq_desc *desc, void *buf, u16 buf_size,
1878 struct ice_sq_cd *cd)
1879 {
1880 struct libie_aq_desc desc_cpy;
1881 bool is_cmd_for_retry;
1882 u8 idx = 0;
1883 u16 opcode;
1884 int status;
1885
1886 opcode = le16_to_cpu(desc->opcode);
1887 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1888 memset(&desc_cpy, 0, sizeof(desc_cpy));
1889
1890 if (is_cmd_for_retry) {
1891 /* All retryable cmds are direct, without buf. */
1892 WARN_ON(buf);
1893
1894 memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1895 }
1896
1897 do {
1898 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1899
1900 if (!is_cmd_for_retry || !status ||
1901 hw->adminq.sq_last_status != LIBIE_AQ_RC_EBUSY)
1902 break;
1903
1904 memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1905
1906 msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1907
1908 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1909
1910 return status;
1911 }
1912
1913 /**
1914 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1915 * @hw: pointer to the HW struct
1916 * @desc: descriptor describing the command
1917 * @buf: buffer to use for indirect commands (NULL for direct commands)
1918 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1919 * @cd: pointer to command details structure
1920 *
1921 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1922 */
1923 int
ice_aq_send_cmd(struct ice_hw * hw,struct libie_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1924 ice_aq_send_cmd(struct ice_hw *hw, struct libie_aq_desc *desc, void *buf,
1925 u16 buf_size, struct ice_sq_cd *cd)
1926 {
1927 struct libie_aqc_req_res *cmd = libie_aq_raw(desc);
1928 bool lock_acquired = false;
1929 int status;
1930
1931 /* When a package download is in process (i.e. when the firmware's
1932 * Global Configuration Lock resource is held), only the Download
1933 * Package, Get Version, Get Package Info List, Upload Section,
1934 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1935 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1936 * Recipes to Profile Association, and Release Resource (with resource
1937 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1938 * must block until the package download completes and the Global Config
1939 * Lock is released. See also ice_acquire_global_cfg_lock().
1940 */
1941 switch (le16_to_cpu(desc->opcode)) {
1942 case ice_aqc_opc_download_pkg:
1943 case ice_aqc_opc_get_pkg_info_list:
1944 case ice_aqc_opc_get_ver:
1945 case ice_aqc_opc_upload_section:
1946 case ice_aqc_opc_update_pkg:
1947 case ice_aqc_opc_set_port_params:
1948 case ice_aqc_opc_get_vlan_mode_parameters:
1949 case ice_aqc_opc_set_vlan_mode_parameters:
1950 case ice_aqc_opc_set_tx_topo:
1951 case ice_aqc_opc_get_tx_topo:
1952 case ice_aqc_opc_add_recipe:
1953 case ice_aqc_opc_recipe_to_profile:
1954 case ice_aqc_opc_get_recipe:
1955 case ice_aqc_opc_get_recipe_to_profile:
1956 break;
1957 case ice_aqc_opc_release_res:
1958 if (le16_to_cpu(cmd->res_id) == LIBIE_AQC_RES_ID_GLBL_LOCK)
1959 break;
1960 fallthrough;
1961 default:
1962 mutex_lock(&ice_global_cfg_lock_sw);
1963 lock_acquired = true;
1964 break;
1965 }
1966
1967 status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1968 if (lock_acquired)
1969 mutex_unlock(&ice_global_cfg_lock_sw);
1970
1971 return status;
1972 }
1973
1974 /**
1975 * ice_aq_get_fw_ver
1976 * @hw: pointer to the HW struct
1977 * @cd: pointer to command details structure or NULL
1978 *
1979 * Get the firmware version (0x0001) from the admin queue commands
1980 */
ice_aq_get_fw_ver(struct ice_hw * hw,struct ice_sq_cd * cd)1981 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1982 {
1983 struct libie_aqc_get_ver *resp;
1984 struct libie_aq_desc desc;
1985 int status;
1986
1987 resp = &desc.params.get_ver;
1988
1989 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1990
1991 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1992
1993 if (!status) {
1994 hw->fw_branch = resp->fw_branch;
1995 hw->fw_maj_ver = resp->fw_major;
1996 hw->fw_min_ver = resp->fw_minor;
1997 hw->fw_patch = resp->fw_patch;
1998 hw->fw_build = le32_to_cpu(resp->fw_build);
1999 hw->api_branch = resp->api_branch;
2000 hw->api_maj_ver = resp->api_major;
2001 hw->api_min_ver = resp->api_minor;
2002 hw->api_patch = resp->api_patch;
2003 }
2004
2005 return status;
2006 }
2007
2008 /**
2009 * ice_aq_send_driver_ver
2010 * @hw: pointer to the HW struct
2011 * @dv: driver's major, minor version
2012 * @cd: pointer to command details structure or NULL
2013 *
2014 * Send the driver version (0x0002) to the firmware
2015 */
2016 int
ice_aq_send_driver_ver(struct ice_hw * hw,struct ice_driver_ver * dv,struct ice_sq_cd * cd)2017 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
2018 struct ice_sq_cd *cd)
2019 {
2020 struct libie_aqc_driver_ver *cmd;
2021 struct libie_aq_desc desc;
2022 u16 len;
2023
2024 cmd = &desc.params.driver_ver;
2025
2026 if (!dv)
2027 return -EINVAL;
2028
2029 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
2030
2031 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
2032 cmd->major_ver = dv->major_ver;
2033 cmd->minor_ver = dv->minor_ver;
2034 cmd->build_ver = dv->build_ver;
2035 cmd->subbuild_ver = dv->subbuild_ver;
2036
2037 len = 0;
2038 while (len < sizeof(dv->driver_string) &&
2039 isascii(dv->driver_string[len]) && dv->driver_string[len])
2040 len++;
2041
2042 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
2043 }
2044
2045 /**
2046 * ice_aq_q_shutdown
2047 * @hw: pointer to the HW struct
2048 * @unloading: is the driver unloading itself
2049 *
2050 * Tell the Firmware that we're shutting down the AdminQ and whether
2051 * or not the driver is unloading as well (0x0003).
2052 */
ice_aq_q_shutdown(struct ice_hw * hw,bool unloading)2053 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
2054 {
2055 struct ice_aqc_q_shutdown *cmd;
2056 struct libie_aq_desc desc;
2057
2058 cmd = libie_aq_raw(&desc);
2059
2060 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
2061
2062 if (unloading)
2063 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
2064
2065 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2066 }
2067
2068 /**
2069 * ice_aq_req_res
2070 * @hw: pointer to the HW struct
2071 * @res: resource ID
2072 * @access: access type
2073 * @sdp_number: resource number
2074 * @timeout: the maximum time in ms that the driver may hold the resource
2075 * @cd: pointer to command details structure or NULL
2076 *
2077 * Requests common resource using the admin queue commands (0x0008).
2078 * When attempting to acquire the Global Config Lock, the driver can
2079 * learn of three states:
2080 * 1) 0 - acquired lock, and can perform download package
2081 * 2) -EIO - did not get lock, driver should fail to load
2082 * 3) -EALREADY - did not get lock, but another driver has
2083 * successfully downloaded the package; the driver does
2084 * not have to download the package and can continue
2085 * loading
2086 *
2087 * Note that if the caller is in an acquire lock, perform action, release lock
2088 * phase of operation, it is possible that the FW may detect a timeout and issue
2089 * a CORER. In this case, the driver will receive a CORER interrupt and will
2090 * have to determine its cause. The calling thread that is handling this flow
2091 * will likely get an error propagated back to it indicating the Download
2092 * Package, Update Package or the Release Resource AQ commands timed out.
2093 */
2094 static int
ice_aq_req_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u8 sdp_number,u32 * timeout,struct ice_sq_cd * cd)2095 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2096 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
2097 struct ice_sq_cd *cd)
2098 {
2099 struct libie_aqc_req_res *cmd_resp;
2100 struct libie_aq_desc desc;
2101 int status;
2102
2103 cmd_resp = &desc.params.res_owner;
2104
2105 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
2106
2107 cmd_resp->res_id = cpu_to_le16(res);
2108 cmd_resp->access_type = cpu_to_le16(access);
2109 cmd_resp->res_number = cpu_to_le32(sdp_number);
2110 cmd_resp->timeout = cpu_to_le32(*timeout);
2111 *timeout = 0;
2112
2113 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2114
2115 /* The completion specifies the maximum time in ms that the driver
2116 * may hold the resource in the Timeout field.
2117 */
2118
2119 /* Global config lock response utilizes an additional status field.
2120 *
2121 * If the Global config lock resource is held by some other driver, the
2122 * command completes with LIBIE_AQ_RES_GLBL_IN_PROG in the status field
2123 * and the timeout field indicates the maximum time the current owner
2124 * of the resource has to free it.
2125 */
2126 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
2127 if (le16_to_cpu(cmd_resp->status) == LIBIE_AQ_RES_GLBL_SUCCESS) {
2128 *timeout = le32_to_cpu(cmd_resp->timeout);
2129 return 0;
2130 } else if (le16_to_cpu(cmd_resp->status) ==
2131 LIBIE_AQ_RES_GLBL_IN_PROG) {
2132 *timeout = le32_to_cpu(cmd_resp->timeout);
2133 return -EIO;
2134 } else if (le16_to_cpu(cmd_resp->status) ==
2135 LIBIE_AQ_RES_GLBL_DONE) {
2136 return -EALREADY;
2137 }
2138
2139 /* invalid FW response, force a timeout immediately */
2140 *timeout = 0;
2141 return -EIO;
2142 }
2143
2144 /* If the resource is held by some other driver, the command completes
2145 * with a busy return value and the timeout field indicates the maximum
2146 * time the current owner of the resource has to free it.
2147 */
2148 if (!status || hw->adminq.sq_last_status == LIBIE_AQ_RC_EBUSY)
2149 *timeout = le32_to_cpu(cmd_resp->timeout);
2150
2151 return status;
2152 }
2153
2154 /**
2155 * ice_aq_release_res
2156 * @hw: pointer to the HW struct
2157 * @res: resource ID
2158 * @sdp_number: resource number
2159 * @cd: pointer to command details structure or NULL
2160 *
2161 * release common resource using the admin queue commands (0x0009)
2162 */
2163 static int
ice_aq_release_res(struct ice_hw * hw,enum ice_aq_res_ids res,u8 sdp_number,struct ice_sq_cd * cd)2164 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
2165 struct ice_sq_cd *cd)
2166 {
2167 struct libie_aqc_req_res *cmd;
2168 struct libie_aq_desc desc;
2169
2170 cmd = &desc.params.res_owner;
2171
2172 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
2173
2174 cmd->res_id = cpu_to_le16(res);
2175 cmd->res_number = cpu_to_le32(sdp_number);
2176
2177 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2178 }
2179
2180 /**
2181 * ice_acquire_res
2182 * @hw: pointer to the HW structure
2183 * @res: resource ID
2184 * @access: access type (read or write)
2185 * @timeout: timeout in milliseconds
2186 *
2187 * This function will attempt to acquire the ownership of a resource.
2188 */
2189 int
ice_acquire_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u32 timeout)2190 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2191 enum ice_aq_res_access_type access, u32 timeout)
2192 {
2193 #define ICE_RES_POLLING_DELAY_MS 10
2194 u32 delay = ICE_RES_POLLING_DELAY_MS;
2195 u32 time_left = timeout;
2196 int status;
2197
2198 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2199
2200 /* A return code of -EALREADY means that another driver has
2201 * previously acquired the resource and performed any necessary updates;
2202 * in this case the caller does not obtain the resource and has no
2203 * further work to do.
2204 */
2205 if (status == -EALREADY)
2206 goto ice_acquire_res_exit;
2207
2208 if (status)
2209 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
2210
2211 /* If necessary, poll until the current lock owner timeouts */
2212 timeout = time_left;
2213 while (status && timeout && time_left) {
2214 mdelay(delay);
2215 timeout = (timeout > delay) ? timeout - delay : 0;
2216 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2217
2218 if (status == -EALREADY)
2219 /* lock free, but no work to do */
2220 break;
2221
2222 if (!status)
2223 /* lock acquired */
2224 break;
2225 }
2226 if (status && status != -EALREADY)
2227 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2228
2229 ice_acquire_res_exit:
2230 if (status == -EALREADY) {
2231 if (access == ICE_RES_WRITE)
2232 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2233 else
2234 ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
2235 }
2236 return status;
2237 }
2238
2239 /**
2240 * ice_release_res
2241 * @hw: pointer to the HW structure
2242 * @res: resource ID
2243 *
2244 * This function will release a resource using the proper Admin Command.
2245 */
ice_release_res(struct ice_hw * hw,enum ice_aq_res_ids res)2246 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2247 {
2248 unsigned long timeout;
2249 int status;
2250
2251 /* there are some rare cases when trying to release the resource
2252 * results in an admin queue timeout, so handle them correctly
2253 */
2254 timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
2255 do {
2256 status = ice_aq_release_res(hw, res, 0, NULL);
2257 if (status != -EIO)
2258 break;
2259 usleep_range(1000, 2000);
2260 } while (time_before(jiffies, timeout));
2261 }
2262
2263 /**
2264 * ice_aq_alloc_free_res - command to allocate/free resources
2265 * @hw: pointer to the HW struct
2266 * @buf: Indirect buffer to hold data parameters and response
2267 * @buf_size: size of buffer for indirect commands
2268 * @opc: pass in the command opcode
2269 *
2270 * Helper function to allocate/free resources using the admin queue commands
2271 */
ice_aq_alloc_free_res(struct ice_hw * hw,struct ice_aqc_alloc_free_res_elem * buf,u16 buf_size,enum ice_adminq_opc opc)2272 int ice_aq_alloc_free_res(struct ice_hw *hw,
2273 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2274 enum ice_adminq_opc opc)
2275 {
2276 struct ice_aqc_alloc_free_res_cmd *cmd;
2277 struct libie_aq_desc desc;
2278
2279 cmd = libie_aq_raw(&desc);
2280
2281 if (!buf || buf_size < flex_array_size(buf, elem, 1))
2282 return -EINVAL;
2283
2284 ice_fill_dflt_direct_cmd_desc(&desc, opc);
2285
2286 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
2287
2288 cmd->num_entries = cpu_to_le16(1);
2289
2290 return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
2291 }
2292
2293 /**
2294 * ice_alloc_hw_res - allocate resource
2295 * @hw: pointer to the HW struct
2296 * @type: type of resource
2297 * @num: number of resources to allocate
2298 * @btm: allocate from bottom
2299 * @res: pointer to array that will receive the resources
2300 */
2301 int
ice_alloc_hw_res(struct ice_hw * hw,u16 type,u16 num,bool btm,u16 * res)2302 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2303 {
2304 struct ice_aqc_alloc_free_res_elem *buf;
2305 u16 buf_len;
2306 int status;
2307
2308 buf_len = struct_size(buf, elem, num);
2309 buf = kzalloc(buf_len, GFP_KERNEL);
2310 if (!buf)
2311 return -ENOMEM;
2312
2313 /* Prepare buffer to allocate resource. */
2314 buf->num_elems = cpu_to_le16(num);
2315 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2316 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2317 if (btm)
2318 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2319
2320 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2321 if (status)
2322 goto ice_alloc_res_exit;
2323
2324 memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2325
2326 ice_alloc_res_exit:
2327 kfree(buf);
2328 return status;
2329 }
2330
2331 /**
2332 * ice_free_hw_res - free allocated HW resource
2333 * @hw: pointer to the HW struct
2334 * @type: type of resource to free
2335 * @num: number of resources
2336 * @res: pointer to array that contains the resources to free
2337 */
ice_free_hw_res(struct ice_hw * hw,u16 type,u16 num,u16 * res)2338 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2339 {
2340 struct ice_aqc_alloc_free_res_elem *buf;
2341 u16 buf_len;
2342 int status;
2343
2344 buf_len = struct_size(buf, elem, num);
2345 buf = kzalloc(buf_len, GFP_KERNEL);
2346 if (!buf)
2347 return -ENOMEM;
2348
2349 /* Prepare buffer to free resource. */
2350 buf->num_elems = cpu_to_le16(num);
2351 buf->res_type = cpu_to_le16(type);
2352 memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2353
2354 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2355 if (status)
2356 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2357
2358 kfree(buf);
2359 return status;
2360 }
2361
2362 /**
2363 * ice_get_num_per_func - determine number of resources per PF
2364 * @hw: pointer to the HW structure
2365 * @max: value to be evenly split between each PF
2366 *
2367 * Determine the number of valid functions by going through the bitmap returned
2368 * from parsing capabilities and use this to calculate the number of resources
2369 * per PF based on the max value passed in.
2370 */
ice_get_num_per_func(struct ice_hw * hw,u32 max)2371 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2372 {
2373 u8 funcs;
2374
2375 #define ICE_CAPS_VALID_FUNCS_M 0xFF
2376 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2377 ICE_CAPS_VALID_FUNCS_M);
2378
2379 if (!funcs)
2380 return 0;
2381
2382 return max / funcs;
2383 }
2384
2385 /**
2386 * ice_parse_common_caps - parse common device/function capabilities
2387 * @hw: pointer to the HW struct
2388 * @caps: pointer to common capabilities structure
2389 * @elem: the capability element to parse
2390 * @prefix: message prefix for tracing capabilities
2391 *
2392 * Given a capability element, extract relevant details into the common
2393 * capability structure.
2394 *
2395 * Returns: true if the capability matches one of the common capability ids,
2396 * false otherwise.
2397 */
2398 static bool
ice_parse_common_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps,struct libie_aqc_list_caps_elem * elem,const char * prefix)2399 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2400 struct libie_aqc_list_caps_elem *elem, const char *prefix)
2401 {
2402 u32 logical_id = le32_to_cpu(elem->logical_id);
2403 u32 phys_id = le32_to_cpu(elem->phys_id);
2404 u32 number = le32_to_cpu(elem->number);
2405 u16 cap = le16_to_cpu(elem->cap);
2406 bool found = true;
2407
2408 switch (cap) {
2409 case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
2410 caps->valid_functions = number;
2411 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2412 caps->valid_functions);
2413 break;
2414 case LIBIE_AQC_CAPS_SRIOV:
2415 caps->sr_iov_1_1 = (number == 1);
2416 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2417 caps->sr_iov_1_1);
2418 break;
2419 case LIBIE_AQC_CAPS_DCB:
2420 caps->dcb = (number == 1);
2421 caps->active_tc_bitmap = logical_id;
2422 caps->maxtc = phys_id;
2423 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2424 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2425 caps->active_tc_bitmap);
2426 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2427 break;
2428 case LIBIE_AQC_CAPS_RSS:
2429 caps->rss_table_size = number;
2430 caps->rss_table_entry_width = logical_id;
2431 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2432 caps->rss_table_size);
2433 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2434 caps->rss_table_entry_width);
2435 break;
2436 case LIBIE_AQC_CAPS_RXQS:
2437 caps->num_rxq = number;
2438 caps->rxq_first_id = phys_id;
2439 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2440 caps->num_rxq);
2441 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2442 caps->rxq_first_id);
2443 break;
2444 case LIBIE_AQC_CAPS_TXQS:
2445 caps->num_txq = number;
2446 caps->txq_first_id = phys_id;
2447 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2448 caps->num_txq);
2449 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2450 caps->txq_first_id);
2451 break;
2452 case LIBIE_AQC_CAPS_MSIX:
2453 caps->num_msix_vectors = number;
2454 caps->msix_vector_first_id = phys_id;
2455 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2456 caps->num_msix_vectors);
2457 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2458 caps->msix_vector_first_id);
2459 break;
2460 case LIBIE_AQC_CAPS_PENDING_NVM_VER:
2461 caps->nvm_update_pending_nvm = true;
2462 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2463 break;
2464 case LIBIE_AQC_CAPS_PENDING_OROM_VER:
2465 caps->nvm_update_pending_orom = true;
2466 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2467 break;
2468 case LIBIE_AQC_CAPS_PENDING_NET_VER:
2469 caps->nvm_update_pending_netlist = true;
2470 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2471 break;
2472 case LIBIE_AQC_CAPS_NVM_MGMT:
2473 caps->nvm_unified_update =
2474 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2475 true : false;
2476 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2477 caps->nvm_unified_update);
2478 break;
2479 case LIBIE_AQC_CAPS_RDMA:
2480 if (IS_ENABLED(CONFIG_INFINIBAND_IRDMA))
2481 caps->rdma = (number == 1);
2482 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2483 break;
2484 case LIBIE_AQC_CAPS_MAX_MTU:
2485 caps->max_mtu = number;
2486 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2487 prefix, caps->max_mtu);
2488 break;
2489 case LIBIE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2490 caps->pcie_reset_avoidance = (number > 0);
2491 ice_debug(hw, ICE_DBG_INIT,
2492 "%s: pcie_reset_avoidance = %d\n", prefix,
2493 caps->pcie_reset_avoidance);
2494 break;
2495 case LIBIE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2496 caps->reset_restrict_support = (number == 1);
2497 ice_debug(hw, ICE_DBG_INIT,
2498 "%s: reset_restrict_support = %d\n", prefix,
2499 caps->reset_restrict_support);
2500 break;
2501 case LIBIE_AQC_CAPS_FW_LAG_SUPPORT:
2502 caps->roce_lag = number & LIBIE_AQC_BIT_ROCEV2_LAG;
2503 ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2504 prefix, caps->roce_lag);
2505 caps->sriov_lag = number & LIBIE_AQC_BIT_SRIOV_LAG;
2506 ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2507 prefix, caps->sriov_lag);
2508 caps->sriov_aa_lag = number & LIBIE_AQC_BIT_SRIOV_AA_LAG;
2509 ice_debug(hw, ICE_DBG_INIT, "%s: sriov_aa_lag = %u\n",
2510 prefix, caps->sriov_aa_lag);
2511 break;
2512 case LIBIE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2513 caps->tx_sched_topo_comp_mode_en = (number == 1);
2514 break;
2515 default:
2516 /* Not one of the recognized common capabilities */
2517 found = false;
2518 }
2519
2520 return found;
2521 }
2522
2523 /**
2524 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2525 * @hw: pointer to the HW structure
2526 * @caps: pointer to capabilities structure to fix
2527 *
2528 * Re-calculate the capabilities that are dependent on the number of physical
2529 * ports; i.e. some features are not supported or function differently on
2530 * devices with more than 4 ports.
2531 */
2532 static void
ice_recalc_port_limited_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps)2533 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2534 {
2535 /* This assumes device capabilities are always scanned before function
2536 * capabilities during the initialization flow.
2537 */
2538 if (hw->dev_caps.num_funcs > 4) {
2539 /* Max 4 TCs per port */
2540 caps->maxtc = 4;
2541 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2542 caps->maxtc);
2543 if (caps->rdma) {
2544 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2545 caps->rdma = 0;
2546 }
2547
2548 /* print message only when processing device capabilities
2549 * during initialization.
2550 */
2551 if (caps == &hw->dev_caps.common_cap)
2552 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2553 }
2554 }
2555
2556 /**
2557 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2558 * @hw: pointer to the HW struct
2559 * @func_p: pointer to function capabilities structure
2560 * @cap: pointer to the capability element to parse
2561 *
2562 * Extract function capabilities for ICE_AQC_CAPS_VF.
2563 */
2564 static void
ice_parse_vf_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct libie_aqc_list_caps_elem * cap)2565 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2566 struct libie_aqc_list_caps_elem *cap)
2567 {
2568 u32 logical_id = le32_to_cpu(cap->logical_id);
2569 u32 number = le32_to_cpu(cap->number);
2570
2571 func_p->num_allocd_vfs = number;
2572 func_p->vf_base_id = logical_id;
2573 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2574 func_p->num_allocd_vfs);
2575 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2576 func_p->vf_base_id);
2577 }
2578
2579 /**
2580 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2581 * @hw: pointer to the HW struct
2582 * @func_p: pointer to function capabilities structure
2583 * @cap: pointer to the capability element to parse
2584 *
2585 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2586 */
2587 static void
ice_parse_vsi_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct libie_aqc_list_caps_elem * cap)2588 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2589 struct libie_aqc_list_caps_elem *cap)
2590 {
2591 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2592 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2593 le32_to_cpu(cap->number));
2594 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2595 func_p->guar_num_vsi);
2596 }
2597
2598 /**
2599 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2600 * @hw: pointer to the HW struct
2601 * @func_p: pointer to function capabilities structure
2602 * @cap: pointer to the capability element to parse
2603 *
2604 * Extract function capabilities for ICE_AQC_CAPS_1588.
2605 */
2606 static void
ice_parse_1588_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct libie_aqc_list_caps_elem * cap)2607 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2608 struct libie_aqc_list_caps_elem *cap)
2609 {
2610 struct ice_ts_func_info *info = &func_p->ts_func_info;
2611 u32 number = le32_to_cpu(cap->number);
2612
2613 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2614 func_p->common_cap.ieee_1588 = info->ena;
2615
2616 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2617 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2618 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2619 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2620
2621 if (hw->mac_type != ICE_MAC_GENERIC_3K_E825) {
2622 info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2623 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2624 } else {
2625 info->clk_freq = ICE_TSPLL_FREQ_156_250;
2626 info->clk_src = ICE_CLK_SRC_TIME_REF;
2627 }
2628
2629 if (info->clk_freq < NUM_ICE_TSPLL_FREQ) {
2630 info->time_ref = (enum ice_tspll_freq)info->clk_freq;
2631 } else {
2632 /* Unknown clock frequency, so assume a (probably incorrect)
2633 * default to avoid out-of-bounds look ups of frequency
2634 * related information.
2635 */
2636 ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2637 info->clk_freq);
2638 info->time_ref = ICE_TSPLL_FREQ_25_000;
2639 }
2640
2641 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2642 func_p->common_cap.ieee_1588);
2643 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2644 info->src_tmr_owned);
2645 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2646 info->tmr_ena);
2647 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2648 info->tmr_index_owned);
2649 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2650 info->tmr_index_assoc);
2651 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2652 info->clk_freq);
2653 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2654 info->clk_src);
2655 }
2656
2657 /**
2658 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2659 * @hw: pointer to the HW struct
2660 * @func_p: pointer to function capabilities structure
2661 *
2662 * Extract function capabilities for ICE_AQC_CAPS_FD.
2663 */
2664 static void
ice_parse_fdir_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p)2665 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2666 {
2667 u32 reg_val, gsize, bsize;
2668
2669 reg_val = rd32(hw, GLQF_FD_SIZE);
2670 switch (hw->mac_type) {
2671 case ICE_MAC_E830:
2672 gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2673 bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2674 break;
2675 case ICE_MAC_E810:
2676 default:
2677 gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2678 bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2679 }
2680 func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2681 func_p->fd_fltr_best_effort = bsize;
2682
2683 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2684 func_p->fd_fltr_guar);
2685 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2686 func_p->fd_fltr_best_effort);
2687 }
2688
2689 /**
2690 * ice_parse_func_caps - Parse function capabilities
2691 * @hw: pointer to the HW struct
2692 * @func_p: pointer to function capabilities structure
2693 * @buf: buffer containing the function capability records
2694 * @cap_count: the number of capabilities
2695 *
2696 * Helper function to parse function (0x000A) capabilities list. For
2697 * capabilities shared between device and function, this relies on
2698 * ice_parse_common_caps.
2699 *
2700 * Loop through the list of provided capabilities and extract the relevant
2701 * data into the function capabilities structured.
2702 */
2703 static void
ice_parse_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,void * buf,u32 cap_count)2704 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2705 void *buf, u32 cap_count)
2706 {
2707 struct libie_aqc_list_caps_elem *cap_resp;
2708 u32 i;
2709
2710 cap_resp = buf;
2711
2712 memset(func_p, 0, sizeof(*func_p));
2713
2714 for (i = 0; i < cap_count; i++) {
2715 u16 cap = le16_to_cpu(cap_resp[i].cap);
2716 bool found;
2717
2718 found = ice_parse_common_caps(hw, &func_p->common_cap,
2719 &cap_resp[i], "func caps");
2720
2721 switch (cap) {
2722 case LIBIE_AQC_CAPS_VF:
2723 ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2724 break;
2725 case LIBIE_AQC_CAPS_VSI:
2726 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2727 break;
2728 case LIBIE_AQC_CAPS_1588:
2729 ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2730 break;
2731 case LIBIE_AQC_CAPS_FD:
2732 ice_parse_fdir_func_caps(hw, func_p);
2733 break;
2734 default:
2735 /* Don't list common capabilities as unknown */
2736 if (!found)
2737 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2738 i, cap);
2739 break;
2740 }
2741 }
2742
2743 ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2744 }
2745
2746 /**
2747 * ice_func_id_to_logical_id - map from function id to logical pf id
2748 * @active_function_bitmap: active function bitmap
2749 * @pf_id: function number of device
2750 *
2751 * Return: logical PF ID.
2752 */
ice_func_id_to_logical_id(u32 active_function_bitmap,u8 pf_id)2753 static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2754 {
2755 u8 logical_id = 0;
2756 u8 i;
2757
2758 for (i = 0; i < pf_id; i++)
2759 if (active_function_bitmap & BIT(i))
2760 logical_id++;
2761
2762 return logical_id;
2763 }
2764
2765 /**
2766 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2767 * @hw: pointer to the HW struct
2768 * @dev_p: pointer to device capabilities structure
2769 * @cap: capability element to parse
2770 *
2771 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2772 */
2773 static void
ice_parse_valid_functions_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2774 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2775 struct libie_aqc_list_caps_elem *cap)
2776 {
2777 u32 number = le32_to_cpu(cap->number);
2778
2779 dev_p->num_funcs = hweight32(number);
2780 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2781 dev_p->num_funcs);
2782
2783 hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id);
2784 }
2785
2786 /**
2787 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2788 * @hw: pointer to the HW struct
2789 * @dev_p: pointer to device capabilities structure
2790 * @cap: capability element to parse
2791 *
2792 * Parse ICE_AQC_CAPS_VF for device capabilities.
2793 */
2794 static void
ice_parse_vf_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2795 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2796 struct libie_aqc_list_caps_elem *cap)
2797 {
2798 u32 number = le32_to_cpu(cap->number);
2799
2800 dev_p->num_vfs_exposed = number;
2801 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2802 dev_p->num_vfs_exposed);
2803 }
2804
2805 /**
2806 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2807 * @hw: pointer to the HW struct
2808 * @dev_p: pointer to device capabilities structure
2809 * @cap: capability element to parse
2810 *
2811 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2812 */
2813 static void
ice_parse_vsi_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2814 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2815 struct libie_aqc_list_caps_elem *cap)
2816 {
2817 u32 number = le32_to_cpu(cap->number);
2818
2819 dev_p->num_vsi_allocd_to_host = number;
2820 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2821 dev_p->num_vsi_allocd_to_host);
2822 }
2823
2824 /**
2825 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2826 * @hw: pointer to the HW struct
2827 * @dev_p: pointer to device capabilities structure
2828 * @cap: capability element to parse
2829 *
2830 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2831 */
2832 static void
ice_parse_1588_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2833 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2834 struct libie_aqc_list_caps_elem *cap)
2835 {
2836 struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2837 u32 logical_id = le32_to_cpu(cap->logical_id);
2838 u32 phys_id = le32_to_cpu(cap->phys_id);
2839 u32 number = le32_to_cpu(cap->number);
2840
2841 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2842 dev_p->common_cap.ieee_1588 = info->ena;
2843
2844 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2845 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2846 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2847
2848 info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2849 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2850 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2851
2852 info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2853 info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2854 info->ll_phy_tmr_update = ((number & ICE_TS_LL_PHY_TMR_UPDATE_M) != 0);
2855
2856 info->ena_ports = logical_id;
2857 info->tmr_own_map = phys_id;
2858
2859 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2860 dev_p->common_cap.ieee_1588);
2861 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2862 info->tmr0_owner);
2863 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2864 info->tmr0_owned);
2865 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2866 info->tmr0_ena);
2867 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2868 info->tmr1_owner);
2869 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2870 info->tmr1_owned);
2871 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2872 info->tmr1_ena);
2873 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2874 info->ts_ll_read);
2875 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2876 info->ts_ll_int_read);
2877 ice_debug(hw, ICE_DBG_INIT, "dev caps: ll_phy_tmr_update = %u\n",
2878 info->ll_phy_tmr_update);
2879 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2880 info->ena_ports);
2881 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2882 info->tmr_own_map);
2883 }
2884
2885 /**
2886 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2887 * @hw: pointer to the HW struct
2888 * @dev_p: pointer to device capabilities structure
2889 * @cap: capability element to parse
2890 *
2891 * Parse ICE_AQC_CAPS_FD for device capabilities.
2892 */
2893 static void
ice_parse_fdir_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2894 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2895 struct libie_aqc_list_caps_elem *cap)
2896 {
2897 u32 number = le32_to_cpu(cap->number);
2898
2899 dev_p->num_flow_director_fltr = number;
2900 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2901 dev_p->num_flow_director_fltr);
2902 }
2903
2904 /**
2905 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2906 * @hw: pointer to the HW struct
2907 * @dev_p: pointer to device capabilities structure
2908 * @cap: capability element to parse
2909 *
2910 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2911 * enabled sensors.
2912 */
2913 static void
ice_parse_sensor_reading_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2914 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2915 struct libie_aqc_list_caps_elem *cap)
2916 {
2917 dev_p->supported_sensors = le32_to_cpu(cap->number);
2918
2919 ice_debug(hw, ICE_DBG_INIT,
2920 "dev caps: supported sensors (bitmap) = 0x%x\n",
2921 dev_p->supported_sensors);
2922 }
2923
2924 /**
2925 * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2926 * @hw: pointer to the HW struct
2927 * @dev_p: pointer to device capabilities structure
2928 * @cap: capability element to parse
2929 *
2930 * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2931 */
ice_parse_nac_topo_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2932 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2933 struct ice_hw_dev_caps *dev_p,
2934 struct libie_aqc_list_caps_elem *cap)
2935 {
2936 dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2937 dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2938
2939 dev_info(ice_hw_to_dev(hw),
2940 "PF is configured in %s mode with IP instance ID %d\n",
2941 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2942 "primary" : "secondary", dev_p->nac_topo.id);
2943
2944 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2945 !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2946 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2947 !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2948 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2949 dev_p->nac_topo.id);
2950 }
2951
2952 /**
2953 * ice_parse_dev_caps - Parse device capabilities
2954 * @hw: pointer to the HW struct
2955 * @dev_p: pointer to device capabilities structure
2956 * @buf: buffer containing the device capability records
2957 * @cap_count: the number of capabilities
2958 *
2959 * Helper device to parse device (0x000B) capabilities list. For
2960 * capabilities shared between device and function, this relies on
2961 * ice_parse_common_caps.
2962 *
2963 * Loop through the list of provided capabilities and extract the relevant
2964 * data into the device capabilities structured.
2965 */
2966 static void
ice_parse_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,void * buf,u32 cap_count)2967 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2968 void *buf, u32 cap_count)
2969 {
2970 struct libie_aqc_list_caps_elem *cap_resp;
2971 u32 i;
2972
2973 cap_resp = buf;
2974
2975 memset(dev_p, 0, sizeof(*dev_p));
2976
2977 for (i = 0; i < cap_count; i++) {
2978 u16 cap = le16_to_cpu(cap_resp[i].cap);
2979 bool found;
2980
2981 found = ice_parse_common_caps(hw, &dev_p->common_cap,
2982 &cap_resp[i], "dev caps");
2983
2984 switch (cap) {
2985 case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
2986 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2987 break;
2988 case LIBIE_AQC_CAPS_VF:
2989 ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2990 break;
2991 case LIBIE_AQC_CAPS_VSI:
2992 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2993 break;
2994 case LIBIE_AQC_CAPS_1588:
2995 ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2996 break;
2997 case LIBIE_AQC_CAPS_FD:
2998 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2999 break;
3000 case LIBIE_AQC_CAPS_SENSOR_READING:
3001 ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
3002 break;
3003 case LIBIE_AQC_CAPS_NAC_TOPOLOGY:
3004 ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
3005 break;
3006 default:
3007 /* Don't list common capabilities as unknown */
3008 if (!found)
3009 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
3010 i, cap);
3011 break;
3012 }
3013 }
3014
3015 ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
3016 }
3017
3018 /**
3019 * ice_is_phy_rclk_in_netlist
3020 * @hw: pointer to the hw struct
3021 *
3022 * Check if the PHY Recovered Clock device is present in the netlist
3023 */
ice_is_phy_rclk_in_netlist(struct ice_hw * hw)3024 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
3025 {
3026 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
3027 ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
3028 ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
3029 ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
3030 ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
3031 ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
3032 return false;
3033
3034 return true;
3035 }
3036
3037 /**
3038 * ice_is_clock_mux_in_netlist
3039 * @hw: pointer to the hw struct
3040 *
3041 * Check if the Clock Multiplexer device is present in the netlist
3042 */
ice_is_clock_mux_in_netlist(struct ice_hw * hw)3043 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
3044 {
3045 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
3046 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3047 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
3048 NULL))
3049 return false;
3050
3051 return true;
3052 }
3053
3054 /**
3055 * ice_is_cgu_in_netlist - check for CGU presence
3056 * @hw: pointer to the hw struct
3057 *
3058 * Check if the Clock Generation Unit (CGU) device is present in the netlist.
3059 * Save the CGU part number in the hw structure for later use.
3060 * Return:
3061 * * true - cgu is present
3062 * * false - cgu is not present
3063 */
ice_is_cgu_in_netlist(struct ice_hw * hw)3064 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
3065 {
3066 if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
3067 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3068 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
3069 NULL)) {
3070 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
3071 return true;
3072 } else if (!ice_find_netlist_node(hw,
3073 ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
3074 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3075 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
3076 NULL)) {
3077 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
3078 return true;
3079 }
3080
3081 return false;
3082 }
3083
3084 /**
3085 * ice_is_gps_in_netlist
3086 * @hw: pointer to the hw struct
3087 *
3088 * Check if the GPS generic device is present in the netlist
3089 */
ice_is_gps_in_netlist(struct ice_hw * hw)3090 bool ice_is_gps_in_netlist(struct ice_hw *hw)
3091 {
3092 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
3093 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3094 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
3095 return false;
3096
3097 return true;
3098 }
3099
3100 /**
3101 * ice_aq_list_caps - query function/device capabilities
3102 * @hw: pointer to the HW struct
3103 * @buf: a buffer to hold the capabilities
3104 * @buf_size: size of the buffer
3105 * @cap_count: if not NULL, set to the number of capabilities reported
3106 * @opc: capabilities type to discover, device or function
3107 * @cd: pointer to command details structure or NULL
3108 *
3109 * Get the function (0x000A) or device (0x000B) capabilities description from
3110 * firmware and store it in the buffer.
3111 *
3112 * If the cap_count pointer is not NULL, then it is set to the number of
3113 * capabilities firmware will report. Note that if the buffer size is too
3114 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
3115 * cap_count will still be updated in this case. It is recommended that the
3116 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
3117 * firmware could return) to avoid this.
3118 */
3119 int
ice_aq_list_caps(struct ice_hw * hw,void * buf,u16 buf_size,u32 * cap_count,enum ice_adminq_opc opc,struct ice_sq_cd * cd)3120 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
3121 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
3122 {
3123 struct libie_aqc_list_caps *cmd;
3124 struct libie_aq_desc desc;
3125 int status;
3126
3127 cmd = &desc.params.get_cap;
3128
3129 if (opc != ice_aqc_opc_list_func_caps &&
3130 opc != ice_aqc_opc_list_dev_caps)
3131 return -EINVAL;
3132
3133 ice_fill_dflt_direct_cmd_desc(&desc, opc);
3134 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
3135
3136 if (cap_count)
3137 *cap_count = le32_to_cpu(cmd->count);
3138
3139 return status;
3140 }
3141
3142 /**
3143 * ice_discover_dev_caps - Read and extract device capabilities
3144 * @hw: pointer to the hardware structure
3145 * @dev_caps: pointer to device capabilities structure
3146 *
3147 * Read the device capabilities and extract them into the dev_caps structure
3148 * for later use.
3149 */
3150 int
ice_discover_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_caps)3151 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
3152 {
3153 u32 cap_count = 0;
3154 void *cbuf;
3155 int status;
3156
3157 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
3158 if (!cbuf)
3159 return -ENOMEM;
3160
3161 /* Although the driver doesn't know the number of capabilities the
3162 * device will return, we can simply send a 4KB buffer, the maximum
3163 * possible size that firmware can return.
3164 */
3165 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct libie_aqc_list_caps_elem);
3166
3167 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3168 ice_aqc_opc_list_dev_caps, NULL);
3169 if (!status)
3170 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
3171 kfree(cbuf);
3172
3173 return status;
3174 }
3175
3176 /**
3177 * ice_discover_func_caps - Read and extract function capabilities
3178 * @hw: pointer to the hardware structure
3179 * @func_caps: pointer to function capabilities structure
3180 *
3181 * Read the function capabilities and extract them into the func_caps structure
3182 * for later use.
3183 */
3184 static int
ice_discover_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_caps)3185 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
3186 {
3187 u32 cap_count = 0;
3188 void *cbuf;
3189 int status;
3190
3191 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
3192 if (!cbuf)
3193 return -ENOMEM;
3194
3195 /* Although the driver doesn't know the number of capabilities the
3196 * device will return, we can simply send a 4KB buffer, the maximum
3197 * possible size that firmware can return.
3198 */
3199 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct libie_aqc_list_caps_elem);
3200
3201 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3202 ice_aqc_opc_list_func_caps, NULL);
3203 if (!status)
3204 ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
3205 kfree(cbuf);
3206
3207 return status;
3208 }
3209
3210 /**
3211 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
3212 * @hw: pointer to the hardware structure
3213 */
ice_set_safe_mode_caps(struct ice_hw * hw)3214 void ice_set_safe_mode_caps(struct ice_hw *hw)
3215 {
3216 struct ice_hw_func_caps *func_caps = &hw->func_caps;
3217 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
3218 struct ice_hw_common_caps cached_caps;
3219 u32 num_funcs;
3220
3221 /* cache some func_caps values that should be restored after memset */
3222 cached_caps = func_caps->common_cap;
3223
3224 /* unset func capabilities */
3225 memset(func_caps, 0, sizeof(*func_caps));
3226
3227 #define ICE_RESTORE_FUNC_CAP(name) \
3228 func_caps->common_cap.name = cached_caps.name
3229
3230 /* restore cached values */
3231 ICE_RESTORE_FUNC_CAP(valid_functions);
3232 ICE_RESTORE_FUNC_CAP(txq_first_id);
3233 ICE_RESTORE_FUNC_CAP(rxq_first_id);
3234 ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
3235 ICE_RESTORE_FUNC_CAP(max_mtu);
3236 ICE_RESTORE_FUNC_CAP(nvm_unified_update);
3237 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
3238 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
3239 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
3240
3241 /* one Tx and one Rx queue in safe mode */
3242 func_caps->common_cap.num_rxq = 1;
3243 func_caps->common_cap.num_txq = 1;
3244
3245 /* two MSIX vectors, one for traffic and one for misc causes */
3246 func_caps->common_cap.num_msix_vectors = 2;
3247 func_caps->guar_num_vsi = 1;
3248
3249 /* cache some dev_caps values that should be restored after memset */
3250 cached_caps = dev_caps->common_cap;
3251 num_funcs = dev_caps->num_funcs;
3252
3253 /* unset dev capabilities */
3254 memset(dev_caps, 0, sizeof(*dev_caps));
3255
3256 #define ICE_RESTORE_DEV_CAP(name) \
3257 dev_caps->common_cap.name = cached_caps.name
3258
3259 /* restore cached values */
3260 ICE_RESTORE_DEV_CAP(valid_functions);
3261 ICE_RESTORE_DEV_CAP(txq_first_id);
3262 ICE_RESTORE_DEV_CAP(rxq_first_id);
3263 ICE_RESTORE_DEV_CAP(msix_vector_first_id);
3264 ICE_RESTORE_DEV_CAP(max_mtu);
3265 ICE_RESTORE_DEV_CAP(nvm_unified_update);
3266 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
3267 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
3268 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
3269 dev_caps->num_funcs = num_funcs;
3270
3271 /* one Tx and one Rx queue per function in safe mode */
3272 dev_caps->common_cap.num_rxq = num_funcs;
3273 dev_caps->common_cap.num_txq = num_funcs;
3274
3275 /* two MSIX vectors per function */
3276 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3277 }
3278
3279 /**
3280 * ice_get_caps - get info about the HW
3281 * @hw: pointer to the hardware structure
3282 */
ice_get_caps(struct ice_hw * hw)3283 int ice_get_caps(struct ice_hw *hw)
3284 {
3285 int status;
3286
3287 status = ice_discover_dev_caps(hw, &hw->dev_caps);
3288 if (status)
3289 return status;
3290
3291 return ice_discover_func_caps(hw, &hw->func_caps);
3292 }
3293
3294 /**
3295 * ice_aq_manage_mac_write - manage MAC address write command
3296 * @hw: pointer to the HW struct
3297 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3298 * @flags: flags to control write behavior
3299 * @cd: pointer to command details structure or NULL
3300 *
3301 * This function is used to write MAC address to the NVM (0x0108).
3302 */
3303 int
ice_aq_manage_mac_write(struct ice_hw * hw,const u8 * mac_addr,u8 flags,struct ice_sq_cd * cd)3304 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3305 struct ice_sq_cd *cd)
3306 {
3307 struct ice_aqc_manage_mac_write *cmd;
3308 struct libie_aq_desc desc;
3309
3310 cmd = libie_aq_raw(&desc);
3311 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3312
3313 cmd->flags = flags;
3314 ether_addr_copy(cmd->mac_addr, mac_addr);
3315
3316 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3317 }
3318
3319 /**
3320 * ice_aq_clear_pxe_mode
3321 * @hw: pointer to the HW struct
3322 *
3323 * Tell the firmware that the driver is taking over from PXE (0x0110).
3324 */
ice_aq_clear_pxe_mode(struct ice_hw * hw)3325 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3326 {
3327 struct ice_aqc_clear_pxe *cmd;
3328 struct libie_aq_desc desc;
3329
3330 cmd = libie_aq_raw(&desc);
3331 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3332 cmd->rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3333
3334 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3335 }
3336
3337 /**
3338 * ice_clear_pxe_mode - clear pxe operations mode
3339 * @hw: pointer to the HW struct
3340 *
3341 * Make sure all PXE mode settings are cleared, including things
3342 * like descriptor fetch/write-back mode.
3343 */
ice_clear_pxe_mode(struct ice_hw * hw)3344 void ice_clear_pxe_mode(struct ice_hw *hw)
3345 {
3346 if (ice_check_sq_alive(hw, &hw->adminq))
3347 ice_aq_clear_pxe_mode(hw);
3348 }
3349
3350 /**
3351 * ice_aq_set_port_params - set physical port parameters.
3352 * @pi: pointer to the port info struct
3353 * @double_vlan: if set double VLAN is enabled
3354 * @cd: pointer to command details structure or NULL
3355 *
3356 * Set Physical port parameters (0x0203)
3357 */
3358 int
ice_aq_set_port_params(struct ice_port_info * pi,bool double_vlan,struct ice_sq_cd * cd)3359 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3360 struct ice_sq_cd *cd)
3361
3362 {
3363 struct ice_aqc_set_port_params *cmd;
3364 struct ice_hw *hw = pi->hw;
3365 struct libie_aq_desc desc;
3366 u16 cmd_flags = 0;
3367
3368 cmd = libie_aq_raw(&desc);
3369
3370 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3371 if (double_vlan)
3372 cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3373 cmd->cmd_flags = cpu_to_le16(cmd_flags);
3374
3375 cmd->local_fwd_mode = pi->local_fwd_mode |
3376 ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3377
3378 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3379 }
3380
3381 /**
3382 * ice_is_100m_speed_supported
3383 * @hw: pointer to the HW struct
3384 *
3385 * returns true if 100M speeds are supported by the device,
3386 * false otherwise.
3387 */
ice_is_100m_speed_supported(struct ice_hw * hw)3388 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3389 {
3390 switch (hw->device_id) {
3391 case ICE_DEV_ID_E822C_SGMII:
3392 case ICE_DEV_ID_E822L_SGMII:
3393 case ICE_DEV_ID_E823L_1GBE:
3394 case ICE_DEV_ID_E823C_SGMII:
3395 case ICE_DEV_ID_E825C_SGMII:
3396 return true;
3397 default:
3398 return false;
3399 }
3400 }
3401
3402 /**
3403 * ice_get_link_speed_based_on_phy_type - returns link speed
3404 * @phy_type_low: lower part of phy_type
3405 * @phy_type_high: higher part of phy_type
3406 *
3407 * This helper function will convert an entry in PHY type structure
3408 * [phy_type_low, phy_type_high] to its corresponding link speed.
3409 * Note: In the structure of [phy_type_low, phy_type_high], there should
3410 * be one bit set, as this function will convert one PHY type to its
3411 * speed.
3412 *
3413 * Return:
3414 * * PHY speed for recognized PHY type
3415 * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3416 * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3417 */
ice_get_link_speed_based_on_phy_type(u64 phy_type_low,u64 phy_type_high)3418 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3419 {
3420 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3421 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3422
3423 switch (phy_type_low) {
3424 case ICE_PHY_TYPE_LOW_100BASE_TX:
3425 case ICE_PHY_TYPE_LOW_100M_SGMII:
3426 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3427 break;
3428 case ICE_PHY_TYPE_LOW_1000BASE_T:
3429 case ICE_PHY_TYPE_LOW_1000BASE_SX:
3430 case ICE_PHY_TYPE_LOW_1000BASE_LX:
3431 case ICE_PHY_TYPE_LOW_1000BASE_KX:
3432 case ICE_PHY_TYPE_LOW_1G_SGMII:
3433 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3434 break;
3435 case ICE_PHY_TYPE_LOW_2500BASE_T:
3436 case ICE_PHY_TYPE_LOW_2500BASE_X:
3437 case ICE_PHY_TYPE_LOW_2500BASE_KX:
3438 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3439 break;
3440 case ICE_PHY_TYPE_LOW_5GBASE_T:
3441 case ICE_PHY_TYPE_LOW_5GBASE_KR:
3442 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3443 break;
3444 case ICE_PHY_TYPE_LOW_10GBASE_T:
3445 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3446 case ICE_PHY_TYPE_LOW_10GBASE_SR:
3447 case ICE_PHY_TYPE_LOW_10GBASE_LR:
3448 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3449 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3450 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3451 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3452 break;
3453 case ICE_PHY_TYPE_LOW_25GBASE_T:
3454 case ICE_PHY_TYPE_LOW_25GBASE_CR:
3455 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3456 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3457 case ICE_PHY_TYPE_LOW_25GBASE_SR:
3458 case ICE_PHY_TYPE_LOW_25GBASE_LR:
3459 case ICE_PHY_TYPE_LOW_25GBASE_KR:
3460 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3461 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3462 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3463 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3464 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3465 break;
3466 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3467 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3468 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3469 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3470 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3471 case ICE_PHY_TYPE_LOW_40G_XLAUI:
3472 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3473 break;
3474 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3475 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3476 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3477 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3478 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3479 case ICE_PHY_TYPE_LOW_50G_LAUI2:
3480 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3481 case ICE_PHY_TYPE_LOW_50G_AUI2:
3482 case ICE_PHY_TYPE_LOW_50GBASE_CP:
3483 case ICE_PHY_TYPE_LOW_50GBASE_SR:
3484 case ICE_PHY_TYPE_LOW_50GBASE_FR:
3485 case ICE_PHY_TYPE_LOW_50GBASE_LR:
3486 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3487 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3488 case ICE_PHY_TYPE_LOW_50G_AUI1:
3489 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3490 break;
3491 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3492 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3493 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3494 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3495 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3496 case ICE_PHY_TYPE_LOW_100G_CAUI4:
3497 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3498 case ICE_PHY_TYPE_LOW_100G_AUI4:
3499 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3500 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3501 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3502 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3503 case ICE_PHY_TYPE_LOW_100GBASE_DR:
3504 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3505 break;
3506 default:
3507 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3508 break;
3509 }
3510
3511 switch (phy_type_high) {
3512 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3513 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3514 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3515 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3516 case ICE_PHY_TYPE_HIGH_100G_AUI2:
3517 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3518 break;
3519 case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3520 case ICE_PHY_TYPE_HIGH_200G_SR4:
3521 case ICE_PHY_TYPE_HIGH_200G_FR4:
3522 case ICE_PHY_TYPE_HIGH_200G_LR4:
3523 case ICE_PHY_TYPE_HIGH_200G_DR4:
3524 case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3525 case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3526 case ICE_PHY_TYPE_HIGH_200G_AUI4:
3527 speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3528 break;
3529 default:
3530 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3531 break;
3532 }
3533
3534 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3535 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3536 return ICE_AQ_LINK_SPEED_UNKNOWN;
3537 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3538 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3539 return ICE_AQ_LINK_SPEED_UNKNOWN;
3540 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3541 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3542 return speed_phy_type_low;
3543 else
3544 return speed_phy_type_high;
3545 }
3546
3547 /**
3548 * ice_update_phy_type
3549 * @phy_type_low: pointer to the lower part of phy_type
3550 * @phy_type_high: pointer to the higher part of phy_type
3551 * @link_speeds_bitmap: targeted link speeds bitmap
3552 *
3553 * Note: For the link_speeds_bitmap structure, you can check it at
3554 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3555 * link_speeds_bitmap include multiple speeds.
3556 *
3557 * Each entry in this [phy_type_low, phy_type_high] structure will
3558 * present a certain link speed. This helper function will turn on bits
3559 * in [phy_type_low, phy_type_high] structure based on the value of
3560 * link_speeds_bitmap input parameter.
3561 */
3562 void
ice_update_phy_type(u64 * phy_type_low,u64 * phy_type_high,u16 link_speeds_bitmap)3563 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3564 u16 link_speeds_bitmap)
3565 {
3566 u64 pt_high;
3567 u64 pt_low;
3568 int index;
3569 u16 speed;
3570
3571 /* We first check with low part of phy_type */
3572 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3573 pt_low = BIT_ULL(index);
3574 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3575
3576 if (link_speeds_bitmap & speed)
3577 *phy_type_low |= BIT_ULL(index);
3578 }
3579
3580 /* We then check with high part of phy_type */
3581 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3582 pt_high = BIT_ULL(index);
3583 speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3584
3585 if (link_speeds_bitmap & speed)
3586 *phy_type_high |= BIT_ULL(index);
3587 }
3588 }
3589
3590 /**
3591 * ice_aq_set_phy_cfg
3592 * @hw: pointer to the HW struct
3593 * @pi: port info structure of the interested logical port
3594 * @cfg: structure with PHY configuration data to be set
3595 * @cd: pointer to command details structure or NULL
3596 *
3597 * Set the various PHY configuration parameters supported on the Port.
3598 * One or more of the Set PHY config parameters may be ignored in an MFP
3599 * mode as the PF may not have the privilege to set some of the PHY Config
3600 * parameters. This status will be indicated by the command response (0x0601).
3601 */
3602 int
ice_aq_set_phy_cfg(struct ice_hw * hw,struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,struct ice_sq_cd * cd)3603 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3604 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3605 {
3606 struct ice_aqc_set_phy_cfg *cmd;
3607 struct libie_aq_desc desc;
3608 int status;
3609
3610 if (!cfg)
3611 return -EINVAL;
3612
3613 /* Ensure that only valid bits of cfg->caps can be turned on. */
3614 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3615 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3616 cfg->caps);
3617
3618 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3619 }
3620
3621 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3622 cmd = libie_aq_raw(&desc);
3623 cmd->lport_num = pi->lport;
3624 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
3625
3626 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3627 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
3628 (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3629 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
3630 (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3631 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
3632 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
3633 cfg->low_power_ctrl_an);
3634 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
3635 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
3636 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
3637 cfg->link_fec_opt);
3638
3639 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3640 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_EMODE)
3641 status = 0;
3642
3643 if (!status)
3644 pi->phy.curr_user_phy_cfg = *cfg;
3645
3646 return status;
3647 }
3648
3649 /**
3650 * ice_update_link_info - update status of the HW network link
3651 * @pi: port info structure of the interested logical port
3652 */
ice_update_link_info(struct ice_port_info * pi)3653 int ice_update_link_info(struct ice_port_info *pi)
3654 {
3655 struct ice_link_status *li;
3656 int status;
3657
3658 if (!pi)
3659 return -EINVAL;
3660
3661 li = &pi->phy.link_info;
3662
3663 status = ice_aq_get_link_info(pi, true, NULL, NULL);
3664 if (status)
3665 return status;
3666
3667 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3668 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3669
3670 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3671 if (!pcaps)
3672 return -ENOMEM;
3673
3674 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3675 pcaps, NULL);
3676 }
3677
3678 return status;
3679 }
3680
3681 /**
3682 * ice_aq_get_phy_equalization - function to read serdes equaliser
3683 * value from firmware using admin queue command.
3684 * @hw: pointer to the HW struct
3685 * @data_in: represents the serdes equalization parameter requested
3686 * @op_code: represents the serdes number and flag to represent tx or rx
3687 * @serdes_num: represents the serdes number
3688 * @output: pointer to the caller-supplied buffer to return serdes equaliser
3689 *
3690 * Return: non-zero status on error and 0 on success.
3691 */
ice_aq_get_phy_equalization(struct ice_hw * hw,u16 data_in,u16 op_code,u8 serdes_num,int * output)3692 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3693 u8 serdes_num, int *output)
3694 {
3695 struct ice_aqc_dnl_call_command *cmd;
3696 struct ice_aqc_dnl_call buf = {};
3697 struct libie_aq_desc desc;
3698 int err;
3699
3700 buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3701 buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3702 cpu_to_le16(op_code | (serdes_num & 0xF));
3703 cmd = libie_aq_raw(&desc);
3704 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3705 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_BUF |
3706 LIBIE_AQ_FLAG_RD |
3707 LIBIE_AQ_FLAG_SI);
3708 desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3709 cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3710
3711 err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3712 NULL);
3713 *output = err ? 0 : buf.sto.txrx_equa_resp.val;
3714
3715 return err;
3716 }
3717
3718 #define FEC_REG_PORT(port) { \
3719 FEC_CORR_LOW_REG_PORT##port, \
3720 FEC_CORR_HIGH_REG_PORT##port, \
3721 FEC_UNCORR_LOW_REG_PORT##port, \
3722 FEC_UNCORR_HIGH_REG_PORT##port, \
3723 }
3724
3725 static const u32 fec_reg[][ICE_FEC_MAX] = {
3726 FEC_REG_PORT(0),
3727 FEC_REG_PORT(1),
3728 FEC_REG_PORT(2),
3729 FEC_REG_PORT(3)
3730 };
3731
3732 /**
3733 * ice_aq_get_fec_stats - reads fec stats from phy
3734 * @hw: pointer to the HW struct
3735 * @pcs_quad: represents pcsquad of user input serdes
3736 * @pcs_port: represents the pcs port number part of above pcs quad
3737 * @fec_type: represents FEC stats type
3738 * @output: pointer to the caller-supplied buffer to return requested fec stats
3739 *
3740 * Return: non-zero status on error and 0 on success.
3741 */
ice_aq_get_fec_stats(struct ice_hw * hw,u16 pcs_quad,u16 pcs_port,enum ice_fec_stats_types fec_type,u32 * output)3742 int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3743 enum ice_fec_stats_types fec_type, u32 *output)
3744 {
3745 u16 flag = (LIBIE_AQ_FLAG_RD | LIBIE_AQ_FLAG_BUF | LIBIE_AQ_FLAG_SI);
3746 struct ice_sbq_msg_input msg = {};
3747 u32 receiver_id, reg_offset;
3748 int err;
3749
3750 if (pcs_port > 3)
3751 return -EINVAL;
3752
3753 reg_offset = fec_reg[pcs_port][fec_type];
3754
3755 if (pcs_quad == 0)
3756 receiver_id = FEC_RECEIVER_ID_PCS0;
3757 else if (pcs_quad == 1)
3758 receiver_id = FEC_RECEIVER_ID_PCS1;
3759 else
3760 return -EINVAL;
3761
3762 msg.msg_addr_low = lower_16_bits(reg_offset);
3763 msg.msg_addr_high = receiver_id;
3764 msg.opcode = ice_sbq_msg_rd;
3765 msg.dest_dev = ice_sbq_dev_phy_0;
3766
3767 err = ice_sbq_rw_reg(hw, &msg, flag);
3768 if (err)
3769 return err;
3770
3771 *output = msg.data;
3772 return 0;
3773 }
3774
3775 /**
3776 * ice_cache_phy_user_req
3777 * @pi: port information structure
3778 * @cache_data: PHY logging data
3779 * @cache_mode: PHY logging mode
3780 *
3781 * Log the user request on (FC, FEC, SPEED) for later use.
3782 */
3783 static void
ice_cache_phy_user_req(struct ice_port_info * pi,struct ice_phy_cache_mode_data cache_data,enum ice_phy_cache_mode cache_mode)3784 ice_cache_phy_user_req(struct ice_port_info *pi,
3785 struct ice_phy_cache_mode_data cache_data,
3786 enum ice_phy_cache_mode cache_mode)
3787 {
3788 if (!pi)
3789 return;
3790
3791 switch (cache_mode) {
3792 case ICE_FC_MODE:
3793 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3794 break;
3795 case ICE_SPEED_MODE:
3796 pi->phy.curr_user_speed_req =
3797 cache_data.data.curr_user_speed_req;
3798 break;
3799 case ICE_FEC_MODE:
3800 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3801 break;
3802 default:
3803 break;
3804 }
3805 }
3806
3807 /**
3808 * ice_caps_to_fc_mode
3809 * @caps: PHY capabilities
3810 *
3811 * Convert PHY FC capabilities to ice FC mode
3812 */
ice_caps_to_fc_mode(u8 caps)3813 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3814 {
3815 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3816 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3817 return ICE_FC_FULL;
3818
3819 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3820 return ICE_FC_TX_PAUSE;
3821
3822 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3823 return ICE_FC_RX_PAUSE;
3824
3825 return ICE_FC_NONE;
3826 }
3827
3828 /**
3829 * ice_caps_to_fec_mode
3830 * @caps: PHY capabilities
3831 * @fec_options: Link FEC options
3832 *
3833 * Convert PHY FEC capabilities to ice FEC mode
3834 */
ice_caps_to_fec_mode(u8 caps,u8 fec_options)3835 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3836 {
3837 if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3838 return ICE_FEC_AUTO;
3839
3840 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3841 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3842 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3843 ICE_AQC_PHY_FEC_25G_KR_REQ))
3844 return ICE_FEC_BASER;
3845
3846 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3847 ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3848 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3849 return ICE_FEC_RS;
3850
3851 return ICE_FEC_NONE;
3852 }
3853
3854 /**
3855 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3856 * @pi: port information structure
3857 * @cfg: PHY configuration data to set FC mode
3858 * @req_mode: FC mode to configure
3859 */
3860 int
ice_cfg_phy_fc(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fc_mode req_mode)3861 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3862 enum ice_fc_mode req_mode)
3863 {
3864 struct ice_phy_cache_mode_data cache_data;
3865 u8 pause_mask = 0x0;
3866
3867 if (!pi || !cfg)
3868 return -EINVAL;
3869
3870 switch (req_mode) {
3871 case ICE_FC_FULL:
3872 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3873 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3874 break;
3875 case ICE_FC_RX_PAUSE:
3876 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3877 break;
3878 case ICE_FC_TX_PAUSE:
3879 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3880 break;
3881 default:
3882 break;
3883 }
3884
3885 /* clear the old pause settings */
3886 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3887 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3888
3889 /* set the new capabilities */
3890 cfg->caps |= pause_mask;
3891
3892 /* Cache user FC request */
3893 cache_data.data.curr_user_fc_req = req_mode;
3894 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3895
3896 return 0;
3897 }
3898
3899 /**
3900 * ice_set_fc
3901 * @pi: port information structure
3902 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3903 * @ena_auto_link_update: enable automatic link update
3904 *
3905 * Set the requested flow control mode.
3906 */
3907 int
ice_set_fc(struct ice_port_info * pi,u8 * aq_failures,bool ena_auto_link_update)3908 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3909 {
3910 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3911 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3912 struct ice_hw *hw;
3913 int status;
3914
3915 if (!pi || !aq_failures)
3916 return -EINVAL;
3917
3918 *aq_failures = 0;
3919 hw = pi->hw;
3920
3921 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3922 if (!pcaps)
3923 return -ENOMEM;
3924
3925 /* Get the current PHY config */
3926 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3927 pcaps, NULL);
3928 if (status) {
3929 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3930 goto out;
3931 }
3932
3933 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3934
3935 /* Configure the set PHY data */
3936 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3937 if (status)
3938 goto out;
3939
3940 /* If the capabilities have changed, then set the new config */
3941 if (cfg.caps != pcaps->caps) {
3942 int retry_count, retry_max = 10;
3943
3944 /* Auto restart link so settings take effect */
3945 if (ena_auto_link_update)
3946 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3947
3948 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3949 if (status) {
3950 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3951 goto out;
3952 }
3953
3954 /* Update the link info
3955 * It sometimes takes a really long time for link to
3956 * come back from the atomic reset. Thus, we wait a
3957 * little bit.
3958 */
3959 for (retry_count = 0; retry_count < retry_max; retry_count++) {
3960 status = ice_update_link_info(pi);
3961
3962 if (!status)
3963 break;
3964
3965 mdelay(100);
3966 }
3967
3968 if (status)
3969 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3970 }
3971
3972 out:
3973 return status;
3974 }
3975
3976 /**
3977 * ice_phy_caps_equals_cfg
3978 * @phy_caps: PHY capabilities
3979 * @phy_cfg: PHY configuration
3980 *
3981 * Helper function to determine if PHY capabilities matches PHY
3982 * configuration
3983 */
3984 bool
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data * phy_caps,struct ice_aqc_set_phy_cfg_data * phy_cfg)3985 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3986 struct ice_aqc_set_phy_cfg_data *phy_cfg)
3987 {
3988 u8 caps_mask, cfg_mask;
3989
3990 if (!phy_caps || !phy_cfg)
3991 return false;
3992
3993 /* These bits are not common between capabilities and configuration.
3994 * Do not use them to determine equality.
3995 */
3996 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3997 ICE_AQC_GET_PHY_EN_MOD_QUAL);
3998 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3999
4000 if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
4001 phy_caps->phy_type_high != phy_cfg->phy_type_high ||
4002 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
4003 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
4004 phy_caps->eee_cap != phy_cfg->eee_cap ||
4005 phy_caps->eeer_value != phy_cfg->eeer_value ||
4006 phy_caps->link_fec_options != phy_cfg->link_fec_opt)
4007 return false;
4008
4009 return true;
4010 }
4011
4012 /**
4013 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
4014 * @pi: port information structure
4015 * @caps: PHY ability structure to copy date from
4016 * @cfg: PHY configuration structure to copy data to
4017 *
4018 * Helper function to copy AQC PHY get ability data to PHY set configuration
4019 * data structure
4020 */
4021 void
ice_copy_phy_caps_to_cfg(struct ice_port_info * pi,struct ice_aqc_get_phy_caps_data * caps,struct ice_aqc_set_phy_cfg_data * cfg)4022 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
4023 struct ice_aqc_get_phy_caps_data *caps,
4024 struct ice_aqc_set_phy_cfg_data *cfg)
4025 {
4026 if (!pi || !caps || !cfg)
4027 return;
4028
4029 memset(cfg, 0, sizeof(*cfg));
4030 cfg->phy_type_low = caps->phy_type_low;
4031 cfg->phy_type_high = caps->phy_type_high;
4032 cfg->caps = caps->caps;
4033 cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
4034 cfg->eee_cap = caps->eee_cap;
4035 cfg->eeer_value = caps->eeer_value;
4036 cfg->link_fec_opt = caps->link_fec_options;
4037 cfg->module_compliance_enforcement =
4038 caps->module_compliance_enforcement;
4039 }
4040
4041 /**
4042 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
4043 * @pi: port information structure
4044 * @cfg: PHY configuration data to set FEC mode
4045 * @fec: FEC mode to configure
4046 */
4047 int
ice_cfg_phy_fec(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fec_mode fec)4048 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
4049 enum ice_fec_mode fec)
4050 {
4051 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
4052 struct ice_hw *hw;
4053 int status;
4054
4055 if (!pi || !cfg)
4056 return -EINVAL;
4057
4058 hw = pi->hw;
4059
4060 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
4061 if (!pcaps)
4062 return -ENOMEM;
4063
4064 status = ice_aq_get_phy_caps(pi, false,
4065 (ice_fw_supports_report_dflt_cfg(hw) ?
4066 ICE_AQC_REPORT_DFLT_CFG :
4067 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
4068 if (status)
4069 goto out;
4070
4071 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
4072 cfg->link_fec_opt = pcaps->link_fec_options;
4073
4074 switch (fec) {
4075 case ICE_FEC_BASER:
4076 /* Clear RS bits, and AND BASE-R ability
4077 * bits and OR request bits.
4078 */
4079 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
4080 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
4081 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
4082 ICE_AQC_PHY_FEC_25G_KR_REQ;
4083 break;
4084 case ICE_FEC_RS:
4085 /* Clear BASE-R bits, and AND RS ability
4086 * bits and OR request bits.
4087 */
4088 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
4089 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
4090 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
4091 break;
4092 case ICE_FEC_NONE:
4093 /* Clear all FEC option bits. */
4094 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
4095 break;
4096 case ICE_FEC_AUTO:
4097 /* AND auto FEC bit, and all caps bits. */
4098 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
4099 cfg->link_fec_opt |= pcaps->link_fec_options;
4100 break;
4101 default:
4102 status = -EINVAL;
4103 break;
4104 }
4105
4106 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
4107 !ice_fw_supports_report_dflt_cfg(hw)) {
4108 struct ice_link_default_override_tlv tlv = { 0 };
4109
4110 status = ice_get_link_default_override(&tlv, pi);
4111 if (status)
4112 goto out;
4113
4114 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
4115 (tlv.options & ICE_LINK_OVERRIDE_EN))
4116 cfg->link_fec_opt = tlv.fec_options;
4117 }
4118
4119 out:
4120 return status;
4121 }
4122
4123 /**
4124 * ice_get_link_status - get status of the HW network link
4125 * @pi: port information structure
4126 * @link_up: pointer to bool (true/false = linkup/linkdown)
4127 *
4128 * Variable link_up is true if link is up, false if link is down.
4129 * The variable link_up is invalid if status is non zero. As a
4130 * result of this call, link status reporting becomes enabled
4131 */
ice_get_link_status(struct ice_port_info * pi,bool * link_up)4132 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
4133 {
4134 struct ice_phy_info *phy_info;
4135 int status = 0;
4136
4137 if (!pi || !link_up)
4138 return -EINVAL;
4139
4140 phy_info = &pi->phy;
4141
4142 if (phy_info->get_link_info) {
4143 status = ice_update_link_info(pi);
4144
4145 if (status)
4146 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
4147 status);
4148 }
4149
4150 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
4151
4152 return status;
4153 }
4154
4155 /**
4156 * ice_aq_set_link_restart_an
4157 * @pi: pointer to the port information structure
4158 * @ena_link: if true: enable link, if false: disable link
4159 * @cd: pointer to command details structure or NULL
4160 *
4161 * Sets up the link and restarts the Auto-Negotiation over the link.
4162 */
4163 int
ice_aq_set_link_restart_an(struct ice_port_info * pi,bool ena_link,struct ice_sq_cd * cd)4164 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
4165 struct ice_sq_cd *cd)
4166 {
4167 struct ice_aqc_restart_an *cmd;
4168 struct libie_aq_desc desc;
4169
4170 cmd = libie_aq_raw(&desc);
4171
4172 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
4173
4174 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
4175 cmd->lport_num = pi->lport;
4176 if (ena_link)
4177 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
4178 else
4179 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
4180
4181 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
4182 }
4183
4184 /**
4185 * ice_aq_set_event_mask
4186 * @hw: pointer to the HW struct
4187 * @port_num: port number of the physical function
4188 * @mask: event mask to be set
4189 * @cd: pointer to command details structure or NULL
4190 *
4191 * Set event mask (0x0613)
4192 */
4193 int
ice_aq_set_event_mask(struct ice_hw * hw,u8 port_num,u16 mask,struct ice_sq_cd * cd)4194 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
4195 struct ice_sq_cd *cd)
4196 {
4197 struct ice_aqc_set_event_mask *cmd;
4198 struct libie_aq_desc desc;
4199
4200 cmd = libie_aq_raw(&desc);
4201
4202 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
4203
4204 cmd->lport_num = port_num;
4205
4206 cmd->event_mask = cpu_to_le16(mask);
4207 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4208 }
4209
4210 /**
4211 * ice_aq_set_mac_loopback
4212 * @hw: pointer to the HW struct
4213 * @ena_lpbk: Enable or Disable loopback
4214 * @cd: pointer to command details structure or NULL
4215 *
4216 * Enable/disable loopback on a given port
4217 */
4218 int
ice_aq_set_mac_loopback(struct ice_hw * hw,bool ena_lpbk,struct ice_sq_cd * cd)4219 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
4220 {
4221 struct ice_aqc_set_mac_lb *cmd;
4222 struct libie_aq_desc desc;
4223
4224 cmd = libie_aq_raw(&desc);
4225
4226 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
4227 if (ena_lpbk)
4228 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
4229
4230 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4231 }
4232
4233 /**
4234 * ice_aq_set_port_id_led
4235 * @pi: pointer to the port information
4236 * @is_orig_mode: is this LED set to original mode (by the net-list)
4237 * @cd: pointer to command details structure or NULL
4238 *
4239 * Set LED value for the given port (0x06e9)
4240 */
4241 int
ice_aq_set_port_id_led(struct ice_port_info * pi,bool is_orig_mode,struct ice_sq_cd * cd)4242 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
4243 struct ice_sq_cd *cd)
4244 {
4245 struct ice_aqc_set_port_id_led *cmd;
4246 struct ice_hw *hw = pi->hw;
4247 struct libie_aq_desc desc;
4248
4249 cmd = libie_aq_raw(&desc);
4250
4251 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
4252
4253 if (is_orig_mode)
4254 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
4255 else
4256 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
4257
4258 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4259 }
4260
4261 /**
4262 * ice_aq_get_port_options
4263 * @hw: pointer to the HW struct
4264 * @options: buffer for the resultant port options
4265 * @option_count: input - size of the buffer in port options structures,
4266 * output - number of returned port options
4267 * @lport: logical port to call the command with (optional)
4268 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4269 * when PF owns more than 1 port it must be true
4270 * @active_option_idx: index of active port option in returned buffer
4271 * @active_option_valid: active option in returned buffer is valid
4272 * @pending_option_idx: index of pending port option in returned buffer
4273 * @pending_option_valid: pending option in returned buffer is valid
4274 *
4275 * Calls Get Port Options AQC (0x06ea) and verifies result.
4276 */
4277 int
ice_aq_get_port_options(struct ice_hw * hw,struct ice_aqc_get_port_options_elem * options,u8 * option_count,u8 lport,bool lport_valid,u8 * active_option_idx,bool * active_option_valid,u8 * pending_option_idx,bool * pending_option_valid)4278 ice_aq_get_port_options(struct ice_hw *hw,
4279 struct ice_aqc_get_port_options_elem *options,
4280 u8 *option_count, u8 lport, bool lport_valid,
4281 u8 *active_option_idx, bool *active_option_valid,
4282 u8 *pending_option_idx, bool *pending_option_valid)
4283 {
4284 struct ice_aqc_get_port_options *cmd;
4285 struct libie_aq_desc desc;
4286 int status;
4287 u8 i;
4288
4289 /* options buffer shall be able to hold max returned options */
4290 if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
4291 return -EINVAL;
4292
4293 cmd = libie_aq_raw(&desc);
4294 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
4295
4296 if (lport_valid)
4297 cmd->lport_num = lport;
4298 cmd->lport_num_valid = lport_valid;
4299
4300 status = ice_aq_send_cmd(hw, &desc, options,
4301 *option_count * sizeof(*options), NULL);
4302 if (status)
4303 return status;
4304
4305 /* verify direct FW response & set output parameters */
4306 *option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
4307 cmd->port_options_count);
4308 ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4309 *active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4310 cmd->port_options);
4311 if (*active_option_valid) {
4312 *active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4313 cmd->port_options);
4314 if (*active_option_idx > (*option_count - 1))
4315 return -EIO;
4316 ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4317 *active_option_idx);
4318 }
4319
4320 *pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4321 cmd->pending_port_option_status);
4322 if (*pending_option_valid) {
4323 *pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4324 cmd->pending_port_option_status);
4325 if (*pending_option_idx > (*option_count - 1))
4326 return -EIO;
4327 ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4328 *pending_option_idx);
4329 }
4330
4331 /* mask output options fields */
4332 for (i = 0; i < *option_count; i++) {
4333 options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4334 options[i].pmd);
4335 options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4336 options[i].max_lane_speed);
4337 ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4338 options[i].pmd, options[i].max_lane_speed);
4339 }
4340
4341 return 0;
4342 }
4343
4344 /**
4345 * ice_aq_set_port_option
4346 * @hw: pointer to the HW struct
4347 * @lport: logical port to call the command with
4348 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4349 * when PF owns more than 1 port it must be true
4350 * @new_option: new port option to be written
4351 *
4352 * Calls Set Port Options AQC (0x06eb).
4353 */
4354 int
ice_aq_set_port_option(struct ice_hw * hw,u8 lport,u8 lport_valid,u8 new_option)4355 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4356 u8 new_option)
4357 {
4358 struct ice_aqc_set_port_option *cmd;
4359 struct libie_aq_desc desc;
4360
4361 if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4362 return -EINVAL;
4363
4364 cmd = libie_aq_raw(&desc);
4365 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4366
4367 if (lport_valid)
4368 cmd->lport_num = lport;
4369
4370 cmd->lport_num_valid = lport_valid;
4371 cmd->selected_port_option = new_option;
4372
4373 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4374 }
4375
4376 /**
4377 * ice_get_phy_lane_number - Get PHY lane number for current adapter
4378 * @hw: pointer to the hw struct
4379 *
4380 * Return: PHY lane number on success, negative error code otherwise.
4381 */
ice_get_phy_lane_number(struct ice_hw * hw)4382 int ice_get_phy_lane_number(struct ice_hw *hw)
4383 {
4384 struct ice_aqc_get_port_options_elem *options;
4385 unsigned int lport = 0;
4386 unsigned int lane;
4387 int err;
4388
4389 /* E82X does not have sequential IDs, lane number is PF ID.
4390 * For E825 device, the exception is the variant with external
4391 * PHY (0x579F), in which there is also 1:1 pf_id -> lane_number
4392 * mapping.
4393 */
4394 if (hw->mac_type == ICE_MAC_GENERIC ||
4395 hw->device_id == ICE_DEV_ID_E825C_SGMII)
4396 return hw->pf_id;
4397
4398 options = kcalloc(ICE_AQC_PORT_OPT_MAX, sizeof(*options), GFP_KERNEL);
4399 if (!options)
4400 return -ENOMEM;
4401
4402 for (lane = 0; lane < ICE_MAX_PORT_PER_PCI_DEV; lane++) {
4403 u8 options_count = ICE_AQC_PORT_OPT_MAX;
4404 u8 speed, active_idx, pending_idx;
4405 bool active_valid, pending_valid;
4406
4407 err = ice_aq_get_port_options(hw, options, &options_count, lane,
4408 true, &active_idx, &active_valid,
4409 &pending_idx, &pending_valid);
4410 if (err)
4411 goto err;
4412
4413 if (!active_valid)
4414 continue;
4415
4416 speed = options[active_idx].max_lane_speed;
4417 /* If we don't get speed for this lane, it's unoccupied */
4418 if (speed > ICE_AQC_PORT_OPT_MAX_LANE_40G)
4419 continue;
4420
4421 if (hw->pf_id == lport) {
4422 if (hw->mac_type == ICE_MAC_GENERIC_3K_E825 &&
4423 ice_is_dual(hw) && !ice_is_primary(hw))
4424 lane += ICE_PORTS_PER_QUAD;
4425 kfree(options);
4426 return lane;
4427 }
4428 lport++;
4429 }
4430
4431 /* PHY lane not found */
4432 err = -ENXIO;
4433 err:
4434 kfree(options);
4435 return err;
4436 }
4437
4438 /**
4439 * ice_aq_sff_eeprom
4440 * @hw: pointer to the HW struct
4441 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4442 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4443 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4444 * @page: QSFP page
4445 * @set_page: set or ignore the page
4446 * @data: pointer to data buffer to be read/written to the I2C device.
4447 * @length: 1-16 for read, 1 for write.
4448 * @write: 0 read, 1 for write.
4449 * @cd: pointer to command details structure or NULL
4450 *
4451 * Read/Write SFF EEPROM (0x06EE)
4452 */
4453 int
ice_aq_sff_eeprom(struct ice_hw * hw,u16 lport,u8 bus_addr,u16 mem_addr,u8 page,u8 set_page,u8 * data,u8 length,bool write,struct ice_sq_cd * cd)4454 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4455 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4456 bool write, struct ice_sq_cd *cd)
4457 {
4458 struct ice_aqc_sff_eeprom *cmd;
4459 struct libie_aq_desc desc;
4460 u16 i2c_bus_addr;
4461 int status;
4462
4463 if (!data || (mem_addr & 0xff00))
4464 return -EINVAL;
4465
4466 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4467 cmd = libie_aq_raw(&desc);
4468 desc.flags = cpu_to_le16(LIBIE_AQ_FLAG_RD);
4469 cmd->lport_num = (u8)(lport & 0xff);
4470 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4471 i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4472 FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4473 if (write)
4474 i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4475 cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4476 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4477 cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4478
4479 status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4480 return status;
4481 }
4482
ice_lut_type_to_size(enum ice_lut_type type)4483 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4484 {
4485 switch (type) {
4486 case ICE_LUT_VSI:
4487 return ICE_LUT_VSI_SIZE;
4488 case ICE_LUT_GLOBAL:
4489 return ICE_LUT_GLOBAL_SIZE;
4490 case ICE_LUT_PF:
4491 return ICE_LUT_PF_SIZE;
4492 }
4493 WARN_ONCE(1, "incorrect type passed");
4494 return ICE_LUT_VSI_SIZE;
4495 }
4496
ice_lut_size_to_flag(enum ice_lut_size size)4497 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4498 {
4499 switch (size) {
4500 case ICE_LUT_VSI_SIZE:
4501 return ICE_AQC_LUT_SIZE_SMALL;
4502 case ICE_LUT_GLOBAL_SIZE:
4503 return ICE_AQC_LUT_SIZE_512;
4504 case ICE_LUT_PF_SIZE:
4505 return ICE_AQC_LUT_SIZE_2K;
4506 }
4507 WARN_ONCE(1, "incorrect size passed");
4508 return 0;
4509 }
4510
4511 /**
4512 * __ice_aq_get_set_rss_lut
4513 * @hw: pointer to the hardware structure
4514 * @params: RSS LUT parameters
4515 * @set: set true to set the table, false to get the table
4516 *
4517 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4518 */
4519 static int
__ice_aq_get_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * params,bool set)4520 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4521 struct ice_aq_get_set_rss_lut_params *params, bool set)
4522 {
4523 u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4524 enum ice_lut_type lut_type = params->lut_type;
4525 struct ice_aqc_get_set_rss_lut *desc_params;
4526 enum ice_aqc_lut_flags flags;
4527 enum ice_lut_size lut_size;
4528 struct libie_aq_desc desc;
4529 u8 *lut = params->lut;
4530
4531
4532 if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4533 return -EINVAL;
4534
4535 lut_size = ice_lut_type_to_size(lut_type);
4536 if (lut_size > params->lut_size)
4537 return -EINVAL;
4538 else if (set && lut_size != params->lut_size)
4539 return -EINVAL;
4540
4541 opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4542 ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4543 if (set)
4544 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4545
4546 desc_params = libie_aq_raw(&desc);
4547 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4548 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4549
4550 if (lut_type == ICE_LUT_GLOBAL)
4551 glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4552 params->global_lut_id);
4553
4554 flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4555 desc_params->flags = cpu_to_le16(flags);
4556
4557 return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4558 }
4559
4560 /**
4561 * ice_aq_get_rss_lut
4562 * @hw: pointer to the hardware structure
4563 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4564 *
4565 * get the RSS lookup table, PF or VSI type
4566 */
4567 int
ice_aq_get_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * get_params)4568 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4569 {
4570 return __ice_aq_get_set_rss_lut(hw, get_params, false);
4571 }
4572
4573 /**
4574 * ice_aq_set_rss_lut
4575 * @hw: pointer to the hardware structure
4576 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4577 *
4578 * set the RSS lookup table, PF or VSI type
4579 */
4580 int
ice_aq_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * set_params)4581 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4582 {
4583 return __ice_aq_get_set_rss_lut(hw, set_params, true);
4584 }
4585
4586 /**
4587 * __ice_aq_get_set_rss_key
4588 * @hw: pointer to the HW struct
4589 * @vsi_id: VSI FW index
4590 * @key: pointer to key info struct
4591 * @set: set true to set the key, false to get the key
4592 *
4593 * get (0x0B04) or set (0x0B02) the RSS key per VSI
4594 */
4595 static int
__ice_aq_get_set_rss_key(struct ice_hw * hw,u16 vsi_id,struct ice_aqc_get_set_rss_keys * key,bool set)4596 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4597 struct ice_aqc_get_set_rss_keys *key, bool set)
4598 {
4599 struct ice_aqc_get_set_rss_key *desc_params;
4600 u16 key_size = sizeof(*key);
4601 struct libie_aq_desc desc;
4602
4603 if (set) {
4604 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4605 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4606 } else {
4607 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4608 }
4609
4610 desc_params = libie_aq_raw(&desc);
4611 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4612
4613 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4614 }
4615
4616 /**
4617 * ice_aq_get_rss_key
4618 * @hw: pointer to the HW struct
4619 * @vsi_handle: software VSI handle
4620 * @key: pointer to key info struct
4621 *
4622 * get the RSS key per VSI
4623 */
4624 int
ice_aq_get_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * key)4625 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4626 struct ice_aqc_get_set_rss_keys *key)
4627 {
4628 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4629 return -EINVAL;
4630
4631 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4632 key, false);
4633 }
4634
4635 /**
4636 * ice_aq_set_rss_key
4637 * @hw: pointer to the HW struct
4638 * @vsi_handle: software VSI handle
4639 * @keys: pointer to key info struct
4640 *
4641 * set the RSS key per VSI
4642 */
4643 int
ice_aq_set_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * keys)4644 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4645 struct ice_aqc_get_set_rss_keys *keys)
4646 {
4647 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4648 return -EINVAL;
4649
4650 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4651 keys, true);
4652 }
4653
4654 /**
4655 * ice_aq_add_lan_txq
4656 * @hw: pointer to the hardware structure
4657 * @num_qgrps: Number of added queue groups
4658 * @qg_list: list of queue groups to be added
4659 * @buf_size: size of buffer for indirect command
4660 * @cd: pointer to command details structure or NULL
4661 *
4662 * Add Tx LAN queue (0x0C30)
4663 *
4664 * NOTE:
4665 * Prior to calling add Tx LAN queue:
4666 * Initialize the following as part of the Tx queue context:
4667 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4668 * Cache profile and Packet shaper profile.
4669 *
4670 * After add Tx LAN queue AQ command is completed:
4671 * Interrupts should be associated with specific queues,
4672 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4673 * flow.
4674 */
4675 static int
ice_aq_add_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * qg_list,u16 buf_size,struct ice_sq_cd * cd)4676 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4677 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4678 struct ice_sq_cd *cd)
4679 {
4680 struct ice_aqc_add_tx_qgrp *list;
4681 struct ice_aqc_add_txqs *cmd;
4682 struct libie_aq_desc desc;
4683 u16 i, sum_size = 0;
4684
4685 cmd = libie_aq_raw(&desc);
4686
4687 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4688
4689 if (!qg_list)
4690 return -EINVAL;
4691
4692 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4693 return -EINVAL;
4694
4695 for (i = 0, list = qg_list; i < num_qgrps; i++) {
4696 sum_size += struct_size(list, txqs, list->num_txqs);
4697 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4698 list->num_txqs);
4699 }
4700
4701 if (buf_size != sum_size)
4702 return -EINVAL;
4703
4704 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4705
4706 cmd->num_qgrps = num_qgrps;
4707
4708 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4709 }
4710
4711 /**
4712 * ice_aq_dis_lan_txq
4713 * @hw: pointer to the hardware structure
4714 * @num_qgrps: number of groups in the list
4715 * @qg_list: the list of groups to disable
4716 * @buf_size: the total size of the qg_list buffer in bytes
4717 * @rst_src: if called due to reset, specifies the reset source
4718 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4719 * @cd: pointer to command details structure or NULL
4720 *
4721 * Disable LAN Tx queue (0x0C31)
4722 */
4723 static int
ice_aq_dis_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_dis_txq_item * qg_list,u16 buf_size,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4724 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4725 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4726 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4727 struct ice_sq_cd *cd)
4728 {
4729 struct ice_aqc_dis_txq_item *item;
4730 struct ice_aqc_dis_txqs *cmd;
4731 struct libie_aq_desc desc;
4732 u16 vmvf_and_timeout;
4733 u16 i, sz = 0;
4734 int status;
4735
4736 cmd = libie_aq_raw(&desc);
4737 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4738
4739 /* qg_list can be NULL only in VM/VF reset flow */
4740 if (!qg_list && !rst_src)
4741 return -EINVAL;
4742
4743 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4744 return -EINVAL;
4745
4746 cmd->num_entries = num_qgrps;
4747
4748 vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4749
4750 switch (rst_src) {
4751 case ICE_VM_RESET:
4752 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4753 vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4754 break;
4755 case ICE_VF_RESET:
4756 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4757 /* In this case, FW expects vmvf_num to be absolute VF ID */
4758 vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4759 ICE_AQC_Q_DIS_VMVF_NUM_M;
4760 break;
4761 case ICE_NO_RESET:
4762 default:
4763 break;
4764 }
4765
4766 cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4767
4768 /* flush pipe on time out */
4769 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4770 /* If no queue group info, we are in a reset flow. Issue the AQ */
4771 if (!qg_list)
4772 goto do_aq;
4773
4774 /* set RD bit to indicate that command buffer is provided by the driver
4775 * and it needs to be read by the firmware
4776 */
4777 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4778
4779 for (i = 0, item = qg_list; i < num_qgrps; i++) {
4780 u16 item_size = struct_size(item, q_id, item->num_qs);
4781
4782 /* If the num of queues is even, add 2 bytes of padding */
4783 if ((item->num_qs % 2) == 0)
4784 item_size += 2;
4785
4786 sz += item_size;
4787
4788 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4789 }
4790
4791 if (buf_size != sz)
4792 return -EINVAL;
4793
4794 do_aq:
4795 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4796 if (status) {
4797 if (!qg_list)
4798 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4799 vmvf_num, hw->adminq.sq_last_status);
4800 else
4801 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4802 le16_to_cpu(qg_list[0].q_id[0]),
4803 hw->adminq.sq_last_status);
4804 }
4805 return status;
4806 }
4807
4808 /**
4809 * ice_aq_cfg_lan_txq - send AQ command 0x0C32 to FW
4810 * @hw: pointer to the hardware structure
4811 * @buf: buffer for command
4812 * @buf_size: size of buffer in bytes
4813 * @num_qs: number of queues being configured
4814 * @oldport: origination lport
4815 * @newport: destination lport
4816 * @mode: cmd_type for move to use
4817 * @cd: pointer to command details structure or NULL
4818 *
4819 * Move/Configure LAN Tx queue (0x0C32)
4820 *
4821 * Return: Zero on success, associated error code on failure.
4822 */
4823 int
ice_aq_cfg_lan_txq(struct ice_hw * hw,struct ice_aqc_cfg_txqs_buf * buf,u16 buf_size,u16 num_qs,u8 oldport,u8 newport,u8 mode,struct ice_sq_cd * cd)4824 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4825 u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4826 u8 mode, struct ice_sq_cd *cd)
4827 {
4828 struct ice_aqc_cfg_txqs *cmd;
4829 struct libie_aq_desc desc;
4830 int status;
4831
4832 cmd = libie_aq_raw(&desc);
4833 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4834 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4835
4836 if (!buf)
4837 return -EINVAL;
4838
4839 cmd->cmd_type = mode;
4840 cmd->num_qs = num_qs;
4841 cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4842 cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4843 cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_MODE_M,
4844 ICE_AQC_Q_CFG_MODE_KEEP_OWN);
4845 cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4846 cmd->blocked_cgds = 0;
4847
4848 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4849 if (status)
4850 ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4851 hw->adminq.sq_last_status);
4852 return status;
4853 }
4854
4855 /**
4856 * ice_aq_add_rdma_qsets
4857 * @hw: pointer to the hardware structure
4858 * @num_qset_grps: Number of RDMA Qset groups
4859 * @qset_list: list of Qset groups to be added
4860 * @buf_size: size of buffer for indirect command
4861 * @cd: pointer to command details structure or NULL
4862 *
4863 * Add Tx RDMA Qsets (0x0C33)
4864 */
4865 static int
ice_aq_add_rdma_qsets(struct ice_hw * hw,u8 num_qset_grps,struct ice_aqc_add_rdma_qset_data * qset_list,u16 buf_size,struct ice_sq_cd * cd)4866 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4867 struct ice_aqc_add_rdma_qset_data *qset_list,
4868 u16 buf_size, struct ice_sq_cd *cd)
4869 {
4870 struct ice_aqc_add_rdma_qset_data *list;
4871 struct ice_aqc_add_rdma_qset *cmd;
4872 struct libie_aq_desc desc;
4873 u16 i, sum_size = 0;
4874
4875 cmd = libie_aq_raw(&desc);
4876
4877 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4878
4879 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4880 return -EINVAL;
4881
4882 for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4883 u16 num_qsets = le16_to_cpu(list->num_qsets);
4884
4885 sum_size += struct_size(list, rdma_qsets, num_qsets);
4886 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4887 num_qsets);
4888 }
4889
4890 if (buf_size != sum_size)
4891 return -EINVAL;
4892
4893 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4894
4895 cmd->num_qset_grps = num_qset_grps;
4896
4897 return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4898 }
4899
4900 /**
4901 * ice_aq_set_txtimeq - set Tx time queues
4902 * @hw: pointer to the hardware structure
4903 * @txtimeq: first Tx time queue id to configure
4904 * @q_count: number of queues to configure
4905 * @txtime_qg: queue group to be set
4906 * @buf_size: size of buffer for indirect command
4907 * @cd: pointer to command details structure or NULL
4908 *
4909 * Set Tx Time queue (0x0C35)
4910 * Return: 0 on success or negative value on failure.
4911 */
4912 int
ice_aq_set_txtimeq(struct ice_hw * hw,u16 txtimeq,u8 q_count,struct ice_aqc_set_txtime_qgrp * txtime_qg,u16 buf_size,struct ice_sq_cd * cd)4913 ice_aq_set_txtimeq(struct ice_hw *hw, u16 txtimeq, u8 q_count,
4914 struct ice_aqc_set_txtime_qgrp *txtime_qg, u16 buf_size,
4915 struct ice_sq_cd *cd)
4916 {
4917 struct ice_aqc_set_txtimeqs *cmd;
4918 struct libie_aq_desc desc;
4919 u16 size;
4920
4921 if (!txtime_qg || txtimeq > ICE_TXTIME_MAX_QUEUE ||
4922 q_count < 1 || q_count > ICE_SET_TXTIME_MAX_Q_AMOUNT)
4923 return -EINVAL;
4924
4925 size = struct_size(txtime_qg, txtimeqs, q_count);
4926 if (buf_size != size)
4927 return -EINVAL;
4928
4929 cmd = libie_aq_raw(&desc);
4930
4931 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_txtimeqs);
4932
4933 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4934
4935 cmd->q_id = cpu_to_le16(txtimeq);
4936 cmd->q_amount = cpu_to_le16(q_count);
4937 return ice_aq_send_cmd(hw, &desc, txtime_qg, buf_size, cd);
4938 }
4939
4940 /* End of FW Admin Queue command wrappers */
4941
4942 /**
4943 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4944 * @hw: pointer to the HW struct
4945 * @vsi_handle: software VSI handle
4946 * @tc: TC number
4947 * @q_handle: software queue handle
4948 */
4949 struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 q_handle)4950 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4951 {
4952 struct ice_vsi_ctx *vsi;
4953 struct ice_q_ctx *q_ctx;
4954
4955 vsi = ice_get_vsi_ctx(hw, vsi_handle);
4956 if (!vsi)
4957 return NULL;
4958 if (q_handle >= vsi->num_lan_q_entries[tc])
4959 return NULL;
4960 if (!vsi->lan_q_ctx[tc])
4961 return NULL;
4962 q_ctx = vsi->lan_q_ctx[tc];
4963 return &q_ctx[q_handle];
4964 }
4965
4966 /**
4967 * ice_ena_vsi_txq
4968 * @pi: port information structure
4969 * @vsi_handle: software VSI handle
4970 * @tc: TC number
4971 * @q_handle: software queue handle
4972 * @num_qgrps: Number of added queue groups
4973 * @buf: list of queue groups to be added
4974 * @buf_size: size of buffer for indirect command
4975 * @cd: pointer to command details structure or NULL
4976 *
4977 * This function adds one LAN queue
4978 */
4979 int
ice_ena_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * buf,u16 buf_size,struct ice_sq_cd * cd)4980 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4981 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4982 struct ice_sq_cd *cd)
4983 {
4984 struct ice_aqc_txsched_elem_data node = { 0 };
4985 struct ice_sched_node *parent;
4986 struct ice_q_ctx *q_ctx;
4987 struct ice_hw *hw;
4988 int status;
4989
4990 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4991 return -EIO;
4992
4993 if (num_qgrps > 1 || buf->num_txqs > 1)
4994 return -ENOSPC;
4995
4996 hw = pi->hw;
4997
4998 if (!ice_is_vsi_valid(hw, vsi_handle))
4999 return -EINVAL;
5000
5001 mutex_lock(&pi->sched_lock);
5002
5003 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
5004 if (!q_ctx) {
5005 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
5006 q_handle);
5007 status = -EINVAL;
5008 goto ena_txq_exit;
5009 }
5010
5011 /* find a parent node */
5012 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5013 ICE_SCHED_NODE_OWNER_LAN);
5014 if (!parent) {
5015 status = -EINVAL;
5016 goto ena_txq_exit;
5017 }
5018
5019 buf->parent_teid = parent->info.node_teid;
5020 node.parent_teid = parent->info.node_teid;
5021 /* Mark that the values in the "generic" section as valid. The default
5022 * value in the "generic" section is zero. This means that :
5023 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
5024 * - 0 priority among siblings, indicated by Bit 1-3.
5025 * - WFQ, indicated by Bit 4.
5026 * - 0 Adjustment value is used in PSM credit update flow, indicated by
5027 * Bit 5-6.
5028 * - Bit 7 is reserved.
5029 * Without setting the generic section as valid in valid_sections, the
5030 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
5031 */
5032 buf->txqs[0].info.valid_sections =
5033 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5034 ICE_AQC_ELEM_VALID_EIR;
5035 buf->txqs[0].info.generic = 0;
5036 buf->txqs[0].info.cir_bw.bw_profile_idx =
5037 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5038 buf->txqs[0].info.cir_bw.bw_alloc =
5039 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5040 buf->txqs[0].info.eir_bw.bw_profile_idx =
5041 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5042 buf->txqs[0].info.eir_bw.bw_alloc =
5043 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5044
5045 /* add the LAN queue */
5046 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
5047 if (status) {
5048 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
5049 le16_to_cpu(buf->txqs[0].txq_id),
5050 hw->adminq.sq_last_status);
5051 goto ena_txq_exit;
5052 }
5053
5054 node.node_teid = buf->txqs[0].q_teid;
5055 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5056 q_ctx->q_handle = q_handle;
5057 q_ctx->q_teid = le32_to_cpu(node.node_teid);
5058
5059 /* add a leaf node into scheduler tree queue layer */
5060 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
5061 if (!status)
5062 status = ice_sched_replay_q_bw(pi, q_ctx);
5063
5064 ena_txq_exit:
5065 mutex_unlock(&pi->sched_lock);
5066 return status;
5067 }
5068
5069 /**
5070 * ice_dis_vsi_txq
5071 * @pi: port information structure
5072 * @vsi_handle: software VSI handle
5073 * @tc: TC number
5074 * @num_queues: number of queues
5075 * @q_handles: pointer to software queue handle array
5076 * @q_ids: pointer to the q_id array
5077 * @q_teids: pointer to queue node teids
5078 * @rst_src: if called due to reset, specifies the reset source
5079 * @vmvf_num: the relative VM or VF number that is undergoing the reset
5080 * @cd: pointer to command details structure or NULL
5081 *
5082 * This function removes queues and their corresponding nodes in SW DB
5083 */
5084 int
ice_dis_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 num_queues,u16 * q_handles,u16 * q_ids,u32 * q_teids,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)5085 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
5086 u16 *q_handles, u16 *q_ids, u32 *q_teids,
5087 enum ice_disq_rst_src rst_src, u16 vmvf_num,
5088 struct ice_sq_cd *cd)
5089 {
5090 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5091 u16 i, buf_size = __struct_size(qg_list);
5092 struct ice_q_ctx *q_ctx;
5093 int status = -ENOENT;
5094 struct ice_hw *hw;
5095
5096 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5097 return -EIO;
5098
5099 hw = pi->hw;
5100
5101 if (!num_queues) {
5102 /* if queue is disabled already yet the disable queue command
5103 * has to be sent to complete the VF reset, then call
5104 * ice_aq_dis_lan_txq without any queue information
5105 */
5106 if (rst_src)
5107 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
5108 vmvf_num, NULL);
5109 return -EIO;
5110 }
5111
5112 mutex_lock(&pi->sched_lock);
5113
5114 for (i = 0; i < num_queues; i++) {
5115 struct ice_sched_node *node;
5116
5117 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
5118 if (!node)
5119 continue;
5120 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
5121 if (!q_ctx) {
5122 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
5123 q_handles[i]);
5124 continue;
5125 }
5126 if (q_ctx->q_handle != q_handles[i]) {
5127 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
5128 q_ctx->q_handle, q_handles[i]);
5129 continue;
5130 }
5131 qg_list->parent_teid = node->info.parent_teid;
5132 qg_list->num_qs = 1;
5133 qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
5134 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
5135 vmvf_num, cd);
5136
5137 if (status)
5138 break;
5139 ice_free_sched_node(pi, node);
5140 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5141 q_ctx->q_teid = ICE_INVAL_TEID;
5142 }
5143 mutex_unlock(&pi->sched_lock);
5144 return status;
5145 }
5146
5147 /**
5148 * ice_cfg_vsi_qs - configure the new/existing VSI queues
5149 * @pi: port information structure
5150 * @vsi_handle: software VSI handle
5151 * @tc_bitmap: TC bitmap
5152 * @maxqs: max queues array per TC
5153 * @owner: LAN or RDMA
5154 *
5155 * This function adds/updates the VSI queues per TC.
5156 */
5157 static int
ice_cfg_vsi_qs(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * maxqs,u8 owner)5158 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5159 u16 *maxqs, u8 owner)
5160 {
5161 int status = 0;
5162 u8 i;
5163
5164 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5165 return -EIO;
5166
5167 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5168 return -EINVAL;
5169
5170 mutex_lock(&pi->sched_lock);
5171
5172 ice_for_each_traffic_class(i) {
5173 /* configuration is possible only if TC node is present */
5174 if (!ice_sched_get_tc_node(pi, i))
5175 continue;
5176
5177 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5178 ice_is_tc_ena(tc_bitmap, i));
5179 if (status)
5180 break;
5181 }
5182
5183 mutex_unlock(&pi->sched_lock);
5184 return status;
5185 }
5186
5187 /**
5188 * ice_cfg_vsi_lan - configure VSI LAN queues
5189 * @pi: port information structure
5190 * @vsi_handle: software VSI handle
5191 * @tc_bitmap: TC bitmap
5192 * @max_lanqs: max LAN queues array per TC
5193 *
5194 * This function adds/updates the VSI LAN queues per TC.
5195 */
5196 int
ice_cfg_vsi_lan(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * max_lanqs)5197 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5198 u16 *max_lanqs)
5199 {
5200 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5201 ICE_SCHED_NODE_OWNER_LAN);
5202 }
5203
5204 /**
5205 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5206 * @pi: port information structure
5207 * @vsi_handle: software VSI handle
5208 * @tc_bitmap: TC bitmap
5209 * @max_rdmaqs: max RDMA queues array per TC
5210 *
5211 * This function adds/updates the VSI RDMA queues per TC.
5212 */
5213 int
ice_cfg_vsi_rdma(struct ice_port_info * pi,u16 vsi_handle,u16 tc_bitmap,u16 * max_rdmaqs)5214 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5215 u16 *max_rdmaqs)
5216 {
5217 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5218 ICE_SCHED_NODE_OWNER_RDMA);
5219 }
5220
5221 /**
5222 * ice_ena_vsi_rdma_qset
5223 * @pi: port information structure
5224 * @vsi_handle: software VSI handle
5225 * @tc: TC number
5226 * @rdma_qset: pointer to RDMA Qset
5227 * @num_qsets: number of RDMA Qsets
5228 * @qset_teid: pointer to Qset node TEIDs
5229 *
5230 * This function adds RDMA Qset
5231 */
5232 int
ice_ena_vsi_rdma_qset(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 * rdma_qset,u16 num_qsets,u32 * qset_teid)5233 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5234 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5235 {
5236 struct ice_aqc_txsched_elem_data node = { 0 };
5237 struct ice_aqc_add_rdma_qset_data *buf;
5238 struct ice_sched_node *parent;
5239 struct ice_hw *hw;
5240 u16 i, buf_size;
5241 int ret;
5242
5243 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5244 return -EIO;
5245 hw = pi->hw;
5246
5247 if (!ice_is_vsi_valid(hw, vsi_handle))
5248 return -EINVAL;
5249
5250 buf_size = struct_size(buf, rdma_qsets, num_qsets);
5251 buf = kzalloc(buf_size, GFP_KERNEL);
5252 if (!buf)
5253 return -ENOMEM;
5254 mutex_lock(&pi->sched_lock);
5255
5256 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5257 ICE_SCHED_NODE_OWNER_RDMA);
5258 if (!parent) {
5259 ret = -EINVAL;
5260 goto rdma_error_exit;
5261 }
5262 buf->parent_teid = parent->info.node_teid;
5263 node.parent_teid = parent->info.node_teid;
5264
5265 buf->num_qsets = cpu_to_le16(num_qsets);
5266 for (i = 0; i < num_qsets; i++) {
5267 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5268 buf->rdma_qsets[i].info.valid_sections =
5269 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5270 ICE_AQC_ELEM_VALID_EIR;
5271 buf->rdma_qsets[i].info.generic = 0;
5272 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5273 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5274 buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5275 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5276 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5277 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5278 buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5279 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5280 }
5281 ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5282 if (ret) {
5283 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5284 goto rdma_error_exit;
5285 }
5286 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5287 for (i = 0; i < num_qsets; i++) {
5288 node.node_teid = buf->rdma_qsets[i].qset_teid;
5289 ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5290 &node, NULL);
5291 if (ret)
5292 break;
5293 qset_teid[i] = le32_to_cpu(node.node_teid);
5294 }
5295 rdma_error_exit:
5296 mutex_unlock(&pi->sched_lock);
5297 kfree(buf);
5298 return ret;
5299 }
5300
5301 /**
5302 * ice_dis_vsi_rdma_qset - free RDMA resources
5303 * @pi: port_info struct
5304 * @count: number of RDMA Qsets to free
5305 * @qset_teid: TEID of Qset node
5306 * @q_id: list of queue IDs being disabled
5307 */
5308 int
ice_dis_vsi_rdma_qset(struct ice_port_info * pi,u16 count,u32 * qset_teid,u16 * q_id)5309 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5310 u16 *q_id)
5311 {
5312 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5313 u16 qg_size = __struct_size(qg_list);
5314 struct ice_hw *hw;
5315 int status = 0;
5316 int i;
5317
5318 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5319 return -EIO;
5320
5321 hw = pi->hw;
5322
5323 mutex_lock(&pi->sched_lock);
5324
5325 for (i = 0; i < count; i++) {
5326 struct ice_sched_node *node;
5327
5328 node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5329 if (!node)
5330 continue;
5331
5332 qg_list->parent_teid = node->info.parent_teid;
5333 qg_list->num_qs = 1;
5334 qg_list->q_id[0] =
5335 cpu_to_le16(q_id[i] |
5336 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5337
5338 status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5339 ICE_NO_RESET, 0, NULL);
5340 if (status)
5341 break;
5342
5343 ice_free_sched_node(pi, node);
5344 }
5345
5346 mutex_unlock(&pi->sched_lock);
5347 return status;
5348 }
5349
5350 /**
5351 * ice_aq_get_cgu_input_pin_measure - get input pin signal measurements
5352 * @hw: pointer to the HW struct
5353 * @dpll_idx: index of dpll to be measured
5354 * @meas: array to be filled with results
5355 * @meas_num: max number of results array can hold
5356 *
5357 * Get CGU measurements (0x0C59) of phase and frequency offsets for input
5358 * pins on given dpll.
5359 *
5360 * Return: 0 on success or negative value on failure.
5361 */
ice_aq_get_cgu_input_pin_measure(struct ice_hw * hw,u8 dpll_idx,struct ice_cgu_input_measure * meas,u16 meas_num)5362 int ice_aq_get_cgu_input_pin_measure(struct ice_hw *hw, u8 dpll_idx,
5363 struct ice_cgu_input_measure *meas,
5364 u16 meas_num)
5365 {
5366 struct ice_aqc_get_cgu_input_measure *cmd;
5367 struct libie_aq_desc desc;
5368
5369 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_measure);
5370 cmd = libie_aq_raw(&desc);
5371 cmd->dpll_idx_opt = dpll_idx & ICE_AQC_GET_CGU_IN_MEAS_DPLL_IDX_M;
5372
5373 return ice_aq_send_cmd(hw, &desc, meas, meas_num * sizeof(*meas), NULL);
5374 }
5375
5376 /**
5377 * ice_aq_get_cgu_abilities - get cgu abilities
5378 * @hw: pointer to the HW struct
5379 * @abilities: CGU abilities
5380 *
5381 * Get CGU abilities (0x0C61)
5382 * Return: 0 on success or negative value on failure.
5383 */
5384 int
ice_aq_get_cgu_abilities(struct ice_hw * hw,struct ice_aqc_get_cgu_abilities * abilities)5385 ice_aq_get_cgu_abilities(struct ice_hw *hw,
5386 struct ice_aqc_get_cgu_abilities *abilities)
5387 {
5388 struct libie_aq_desc desc;
5389
5390 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5391 return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5392 }
5393
5394 /**
5395 * ice_aq_set_input_pin_cfg - set input pin config
5396 * @hw: pointer to the HW struct
5397 * @input_idx: Input index
5398 * @flags1: Input flags
5399 * @flags2: Input flags
5400 * @freq: Frequency in Hz
5401 * @phase_delay: Delay in ps
5402 *
5403 * Set CGU input config (0x0C62)
5404 * Return: 0 on success or negative value on failure.
5405 */
5406 int
ice_aq_set_input_pin_cfg(struct ice_hw * hw,u8 input_idx,u8 flags1,u8 flags2,u32 freq,s32 phase_delay)5407 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5408 u32 freq, s32 phase_delay)
5409 {
5410 struct ice_aqc_set_cgu_input_config *cmd;
5411 struct libie_aq_desc desc;
5412
5413 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5414 cmd = libie_aq_raw(&desc);
5415 cmd->input_idx = input_idx;
5416 cmd->flags1 = flags1;
5417 cmd->flags2 = flags2;
5418 cmd->freq = cpu_to_le32(freq);
5419 cmd->phase_delay = cpu_to_le32(phase_delay);
5420
5421 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5422 }
5423
5424 /**
5425 * ice_aq_get_input_pin_cfg - get input pin config
5426 * @hw: pointer to the HW struct
5427 * @input_idx: Input index
5428 * @status: Pin status
5429 * @type: Pin type
5430 * @flags1: Input flags
5431 * @flags2: Input flags
5432 * @freq: Frequency in Hz
5433 * @phase_delay: Delay in ps
5434 *
5435 * Get CGU input config (0x0C63)
5436 * Return: 0 on success or negative value on failure.
5437 */
5438 int
ice_aq_get_input_pin_cfg(struct ice_hw * hw,u8 input_idx,u8 * status,u8 * type,u8 * flags1,u8 * flags2,u32 * freq,s32 * phase_delay)5439 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5440 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5441 {
5442 struct ice_aqc_get_cgu_input_config *cmd;
5443 struct libie_aq_desc desc;
5444 int ret;
5445
5446 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5447 cmd = libie_aq_raw(&desc);
5448 cmd->input_idx = input_idx;
5449
5450 ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5451 if (!ret) {
5452 if (status)
5453 *status = cmd->status;
5454 if (type)
5455 *type = cmd->type;
5456 if (flags1)
5457 *flags1 = cmd->flags1;
5458 if (flags2)
5459 *flags2 = cmd->flags2;
5460 if (freq)
5461 *freq = le32_to_cpu(cmd->freq);
5462 if (phase_delay)
5463 *phase_delay = le32_to_cpu(cmd->phase_delay);
5464 }
5465
5466 return ret;
5467 }
5468
5469 /**
5470 * ice_aq_set_output_pin_cfg - set output pin config
5471 * @hw: pointer to the HW struct
5472 * @output_idx: Output index
5473 * @flags: Output flags
5474 * @src_sel: Index of DPLL block
5475 * @freq: Output frequency
5476 * @phase_delay: Output phase compensation
5477 *
5478 * Set CGU output config (0x0C64)
5479 * Return: 0 on success or negative value on failure.
5480 */
5481 int
ice_aq_set_output_pin_cfg(struct ice_hw * hw,u8 output_idx,u8 flags,u8 src_sel,u32 freq,s32 phase_delay)5482 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5483 u8 src_sel, u32 freq, s32 phase_delay)
5484 {
5485 struct ice_aqc_set_cgu_output_config *cmd;
5486 struct libie_aq_desc desc;
5487
5488 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5489 cmd = libie_aq_raw(&desc);
5490 cmd->output_idx = output_idx;
5491 cmd->flags = flags;
5492 cmd->src_sel = src_sel;
5493 cmd->freq = cpu_to_le32(freq);
5494 cmd->phase_delay = cpu_to_le32(phase_delay);
5495
5496 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5497 }
5498
5499 /**
5500 * ice_aq_get_output_pin_cfg - get output pin config
5501 * @hw: pointer to the HW struct
5502 * @output_idx: Output index
5503 * @flags: Output flags
5504 * @src_sel: Internal DPLL source
5505 * @freq: Output frequency
5506 * @src_freq: Source frequency
5507 *
5508 * Get CGU output config (0x0C65)
5509 * Return: 0 on success or negative value on failure.
5510 */
5511 int
ice_aq_get_output_pin_cfg(struct ice_hw * hw,u8 output_idx,u8 * flags,u8 * src_sel,u32 * freq,u32 * src_freq)5512 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5513 u8 *src_sel, u32 *freq, u32 *src_freq)
5514 {
5515 struct ice_aqc_get_cgu_output_config *cmd;
5516 struct libie_aq_desc desc;
5517 int ret;
5518
5519 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5520 cmd = libie_aq_raw(&desc);
5521 cmd->output_idx = output_idx;
5522
5523 ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5524 if (!ret) {
5525 if (flags)
5526 *flags = cmd->flags;
5527 if (src_sel)
5528 *src_sel = cmd->src_sel;
5529 if (freq)
5530 *freq = le32_to_cpu(cmd->freq);
5531 if (src_freq)
5532 *src_freq = le32_to_cpu(cmd->src_freq);
5533 }
5534
5535 return ret;
5536 }
5537
5538 /**
5539 * ice_aq_get_cgu_dpll_status - get dpll status
5540 * @hw: pointer to the HW struct
5541 * @dpll_num: DPLL index
5542 * @ref_state: Reference clock state
5543 * @config: current DPLL config
5544 * @dpll_state: current DPLL state
5545 * @phase_offset: Phase offset in ns
5546 * @eec_mode: EEC_mode
5547 *
5548 * Get CGU DPLL status (0x0C66)
5549 * Return: 0 on success or negative value on failure.
5550 */
5551 int
ice_aq_get_cgu_dpll_status(struct ice_hw * hw,u8 dpll_num,u8 * ref_state,u8 * dpll_state,u8 * config,s64 * phase_offset,u8 * eec_mode)5552 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5553 u8 *dpll_state, u8 *config, s64 *phase_offset,
5554 u8 *eec_mode)
5555 {
5556 struct ice_aqc_get_cgu_dpll_status *cmd;
5557 struct libie_aq_desc desc;
5558 int status;
5559
5560 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5561 cmd = libie_aq_raw(&desc);
5562 cmd->dpll_num = dpll_num;
5563
5564 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5565 if (!status) {
5566 *ref_state = cmd->ref_state;
5567 *dpll_state = cmd->dpll_state;
5568 *config = cmd->config;
5569 *phase_offset = le32_to_cpu(cmd->phase_offset_h);
5570 *phase_offset <<= 32;
5571 *phase_offset += le32_to_cpu(cmd->phase_offset_l);
5572 *phase_offset = sign_extend64(*phase_offset, 47);
5573 *eec_mode = cmd->eec_mode;
5574 }
5575
5576 return status;
5577 }
5578
5579 /**
5580 * ice_aq_set_cgu_dpll_config - set dpll config
5581 * @hw: pointer to the HW struct
5582 * @dpll_num: DPLL index
5583 * @ref_state: Reference clock state
5584 * @config: DPLL config
5585 * @eec_mode: EEC mode
5586 *
5587 * Set CGU DPLL config (0x0C67)
5588 * Return: 0 on success or negative value on failure.
5589 */
5590 int
ice_aq_set_cgu_dpll_config(struct ice_hw * hw,u8 dpll_num,u8 ref_state,u8 config,u8 eec_mode)5591 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5592 u8 config, u8 eec_mode)
5593 {
5594 struct ice_aqc_set_cgu_dpll_config *cmd;
5595 struct libie_aq_desc desc;
5596
5597 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5598 cmd = libie_aq_raw(&desc);
5599 cmd->dpll_num = dpll_num;
5600 cmd->ref_state = ref_state;
5601 cmd->config = config;
5602 cmd->eec_mode = eec_mode;
5603
5604 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5605 }
5606
5607 /**
5608 * ice_aq_set_cgu_ref_prio - set input reference priority
5609 * @hw: pointer to the HW struct
5610 * @dpll_num: DPLL index
5611 * @ref_idx: Reference pin index
5612 * @ref_priority: Reference input priority
5613 *
5614 * Set CGU reference priority (0x0C68)
5615 * Return: 0 on success or negative value on failure.
5616 */
5617 int
ice_aq_set_cgu_ref_prio(struct ice_hw * hw,u8 dpll_num,u8 ref_idx,u8 ref_priority)5618 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5619 u8 ref_priority)
5620 {
5621 struct ice_aqc_set_cgu_ref_prio *cmd;
5622 struct libie_aq_desc desc;
5623
5624 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5625 cmd = libie_aq_raw(&desc);
5626 cmd->dpll_num = dpll_num;
5627 cmd->ref_idx = ref_idx;
5628 cmd->ref_priority = ref_priority;
5629
5630 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5631 }
5632
5633 /**
5634 * ice_aq_get_cgu_ref_prio - get input reference priority
5635 * @hw: pointer to the HW struct
5636 * @dpll_num: DPLL index
5637 * @ref_idx: Reference pin index
5638 * @ref_prio: Reference input priority
5639 *
5640 * Get CGU reference priority (0x0C69)
5641 * Return: 0 on success or negative value on failure.
5642 */
5643 int
ice_aq_get_cgu_ref_prio(struct ice_hw * hw,u8 dpll_num,u8 ref_idx,u8 * ref_prio)5644 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5645 u8 *ref_prio)
5646 {
5647 struct ice_aqc_get_cgu_ref_prio *cmd;
5648 struct libie_aq_desc desc;
5649 int status;
5650
5651 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5652 cmd = libie_aq_raw(&desc);
5653 cmd->dpll_num = dpll_num;
5654 cmd->ref_idx = ref_idx;
5655
5656 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5657 if (!status)
5658 *ref_prio = cmd->ref_priority;
5659
5660 return status;
5661 }
5662
5663 /**
5664 * ice_aq_get_cgu_info - get cgu info
5665 * @hw: pointer to the HW struct
5666 * @cgu_id: CGU ID
5667 * @cgu_cfg_ver: CGU config version
5668 * @cgu_fw_ver: CGU firmware version
5669 *
5670 * Get CGU info (0x0C6A)
5671 * Return: 0 on success or negative value on failure.
5672 */
5673 int
ice_aq_get_cgu_info(struct ice_hw * hw,u32 * cgu_id,u32 * cgu_cfg_ver,u32 * cgu_fw_ver)5674 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5675 u32 *cgu_fw_ver)
5676 {
5677 struct ice_aqc_get_cgu_info *cmd;
5678 struct libie_aq_desc desc;
5679 int status;
5680
5681 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5682 cmd = libie_aq_raw(&desc);
5683
5684 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5685 if (!status) {
5686 *cgu_id = le32_to_cpu(cmd->cgu_id);
5687 *cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5688 *cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5689 }
5690
5691 return status;
5692 }
5693
5694 /**
5695 * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5696 * @hw: pointer to the HW struct
5697 * @phy_output: PHY reference clock output pin
5698 * @enable: GPIO state to be applied
5699 * @freq: PHY output frequency
5700 *
5701 * Set phy recovered clock as reference (0x0630)
5702 * Return: 0 on success or negative value on failure.
5703 */
5704 int
ice_aq_set_phy_rec_clk_out(struct ice_hw * hw,u8 phy_output,bool enable,u32 * freq)5705 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5706 u32 *freq)
5707 {
5708 struct ice_aqc_set_phy_rec_clk_out *cmd;
5709 struct libie_aq_desc desc;
5710 int status;
5711
5712 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5713 cmd = libie_aq_raw(&desc);
5714 cmd->phy_output = phy_output;
5715 cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5716 cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5717 cmd->freq = cpu_to_le32(*freq);
5718
5719 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5720 if (!status)
5721 *freq = le32_to_cpu(cmd->freq);
5722
5723 return status;
5724 }
5725
5726 /**
5727 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5728 * @hw: pointer to the HW struct
5729 * @phy_output: PHY reference clock output pin
5730 * @port_num: Port number
5731 * @flags: PHY flags
5732 * @node_handle: PHY output frequency
5733 *
5734 * Get PHY recovered clock output info (0x0631)
5735 * Return: 0 on success or negative value on failure.
5736 */
5737 int
ice_aq_get_phy_rec_clk_out(struct ice_hw * hw,u8 * phy_output,u8 * port_num,u8 * flags,u16 * node_handle)5738 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5739 u8 *flags, u16 *node_handle)
5740 {
5741 struct ice_aqc_get_phy_rec_clk_out *cmd;
5742 struct libie_aq_desc desc;
5743 int status;
5744
5745 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5746 cmd = libie_aq_raw(&desc);
5747 cmd->phy_output = *phy_output;
5748
5749 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5750 if (!status) {
5751 *phy_output = cmd->phy_output;
5752 if (port_num)
5753 *port_num = cmd->port_num;
5754 if (flags)
5755 *flags = cmd->flags;
5756 if (node_handle)
5757 *node_handle = le16_to_cpu(cmd->node_handle);
5758 }
5759
5760 return status;
5761 }
5762
5763 /**
5764 * ice_aq_get_sensor_reading
5765 * @hw: pointer to the HW struct
5766 * @data: pointer to data to be read from the sensor
5767 *
5768 * Get sensor reading (0x0632)
5769 */
ice_aq_get_sensor_reading(struct ice_hw * hw,struct ice_aqc_get_sensor_reading_resp * data)5770 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5771 struct ice_aqc_get_sensor_reading_resp *data)
5772 {
5773 struct ice_aqc_get_sensor_reading *cmd;
5774 struct libie_aq_desc desc;
5775 int status;
5776
5777 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5778 cmd = libie_aq_raw(&desc);
5779 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT 0
5780 #define ICE_INTERNAL_TEMP_SENSOR 0
5781 cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5782 cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5783
5784 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5785 if (!status)
5786 memcpy(data, &desc.params.raw,
5787 sizeof(*data));
5788
5789 return status;
5790 }
5791
5792 /**
5793 * ice_replay_pre_init - replay pre initialization
5794 * @hw: pointer to the HW struct
5795 *
5796 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5797 */
ice_replay_pre_init(struct ice_hw * hw)5798 static int ice_replay_pre_init(struct ice_hw *hw)
5799 {
5800 struct ice_switch_info *sw = hw->switch_info;
5801 u8 i;
5802
5803 /* Delete old entries from replay filter list head if there is any */
5804 ice_rm_all_sw_replay_rule_info(hw);
5805 /* In start of replay, move entries into replay_rules list, it
5806 * will allow adding rules entries back to filt_rules list,
5807 * which is operational list.
5808 */
5809 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5810 list_replace_init(&sw->recp_list[i].filt_rules,
5811 &sw->recp_list[i].filt_replay_rules);
5812 ice_sched_replay_agg_vsi_preinit(hw);
5813
5814 return 0;
5815 }
5816
5817 /**
5818 * ice_replay_vsi - replay VSI configuration
5819 * @hw: pointer to the HW struct
5820 * @vsi_handle: driver VSI handle
5821 *
5822 * Restore all VSI configuration after reset. It is required to call this
5823 * function with main VSI first.
5824 */
ice_replay_vsi(struct ice_hw * hw,u16 vsi_handle)5825 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5826 {
5827 int status;
5828
5829 if (!ice_is_vsi_valid(hw, vsi_handle))
5830 return -EINVAL;
5831
5832 /* Replay pre-initialization if there is any */
5833 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5834 status = ice_replay_pre_init(hw);
5835 if (status)
5836 return status;
5837 }
5838 /* Replay per VSI all RSS configurations */
5839 status = ice_replay_rss_cfg(hw, vsi_handle);
5840 if (status)
5841 return status;
5842 /* Replay per VSI all filters */
5843 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5844 if (!status)
5845 status = ice_replay_vsi_agg(hw, vsi_handle);
5846 return status;
5847 }
5848
5849 /**
5850 * ice_replay_post - post replay configuration cleanup
5851 * @hw: pointer to the HW struct
5852 *
5853 * Post replay cleanup.
5854 */
ice_replay_post(struct ice_hw * hw)5855 void ice_replay_post(struct ice_hw *hw)
5856 {
5857 /* Delete old entries from replay filter list head */
5858 ice_rm_all_sw_replay_rule_info(hw);
5859 ice_sched_replay_agg(hw);
5860 }
5861
5862 /**
5863 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5864 * @hw: ptr to the hardware info
5865 * @reg: offset of 64 bit HW register to read from
5866 * @prev_stat_loaded: bool to specify if previous stats are loaded
5867 * @prev_stat: ptr to previous loaded stat value
5868 * @cur_stat: ptr to current stat value
5869 */
5870 void
ice_stat_update40(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5871 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5872 u64 *prev_stat, u64 *cur_stat)
5873 {
5874 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5875
5876 /* device stats are not reset at PFR, they likely will not be zeroed
5877 * when the driver starts. Thus, save the value from the first read
5878 * without adding to the statistic value so that we report stats which
5879 * count up from zero.
5880 */
5881 if (!prev_stat_loaded) {
5882 *prev_stat = new_data;
5883 return;
5884 }
5885
5886 /* Calculate the difference between the new and old values, and then
5887 * add it to the software stat value.
5888 */
5889 if (new_data >= *prev_stat)
5890 *cur_stat += new_data - *prev_stat;
5891 else
5892 /* to manage the potential roll-over */
5893 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5894
5895 /* Update the previously stored value to prepare for next read */
5896 *prev_stat = new_data;
5897 }
5898
5899 /**
5900 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5901 * @hw: ptr to the hardware info
5902 * @reg: offset of HW register to read from
5903 * @prev_stat_loaded: bool to specify if previous stats are loaded
5904 * @prev_stat: ptr to previous loaded stat value
5905 * @cur_stat: ptr to current stat value
5906 */
5907 void
ice_stat_update32(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5908 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5909 u64 *prev_stat, u64 *cur_stat)
5910 {
5911 u32 new_data;
5912
5913 new_data = rd32(hw, reg);
5914
5915 /* device stats are not reset at PFR, they likely will not be zeroed
5916 * when the driver starts. Thus, save the value from the first read
5917 * without adding to the statistic value so that we report stats which
5918 * count up from zero.
5919 */
5920 if (!prev_stat_loaded) {
5921 *prev_stat = new_data;
5922 return;
5923 }
5924
5925 /* Calculate the difference between the new and old values, and then
5926 * add it to the software stat value.
5927 */
5928 if (new_data >= *prev_stat)
5929 *cur_stat += new_data - *prev_stat;
5930 else
5931 /* to manage the potential roll-over */
5932 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5933
5934 /* Update the previously stored value to prepare for next read */
5935 *prev_stat = new_data;
5936 }
5937
5938 /**
5939 * ice_sched_query_elem - query element information from HW
5940 * @hw: pointer to the HW struct
5941 * @node_teid: node TEID to be queried
5942 * @buf: buffer to element information
5943 *
5944 * This function queries HW element information
5945 */
5946 int
ice_sched_query_elem(struct ice_hw * hw,u32 node_teid,struct ice_aqc_txsched_elem_data * buf)5947 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5948 struct ice_aqc_txsched_elem_data *buf)
5949 {
5950 u16 buf_size, num_elem_ret = 0;
5951 int status;
5952
5953 buf_size = sizeof(*buf);
5954 memset(buf, 0, buf_size);
5955 buf->node_teid = cpu_to_le32(node_teid);
5956 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5957 NULL);
5958 if (status || num_elem_ret != 1)
5959 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5960 return status;
5961 }
5962
5963 /**
5964 * ice_aq_read_i2c
5965 * @hw: pointer to the hw struct
5966 * @topo_addr: topology address for a device to communicate with
5967 * @bus_addr: 7-bit I2C bus address
5968 * @addr: I2C memory address (I2C offset) with up to 16 bits
5969 * @params: I2C parameters: bit [7] - Repeated start,
5970 * bits [6:5] data offset size,
5971 * bit [4] - I2C address type,
5972 * bits [3:0] - data size to read (0-16 bytes)
5973 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5974 * @cd: pointer to command details structure or NULL
5975 *
5976 * Read I2C (0x06E2)
5977 */
5978 int
ice_aq_read_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,u8 * data,struct ice_sq_cd * cd)5979 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5980 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5981 struct ice_sq_cd *cd)
5982 {
5983 struct libie_aq_desc desc = { 0 };
5984 struct ice_aqc_i2c *cmd;
5985 u8 data_size;
5986 int status;
5987
5988 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5989 cmd = libie_aq_raw(&desc);
5990
5991 if (!data)
5992 return -EINVAL;
5993
5994 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5995
5996 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5997 cmd->topo_addr = topo_addr;
5998 cmd->i2c_params = params;
5999 cmd->i2c_addr = addr;
6000
6001 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6002 if (!status) {
6003 struct ice_aqc_read_i2c_resp *resp;
6004 u8 i;
6005
6006 resp = libie_aq_raw(&desc);
6007 for (i = 0; i < data_size; i++) {
6008 *data = resp->i2c_data[i];
6009 data++;
6010 }
6011 }
6012
6013 return status;
6014 }
6015
6016 /**
6017 * ice_aq_write_i2c
6018 * @hw: pointer to the hw struct
6019 * @topo_addr: topology address for a device to communicate with
6020 * @bus_addr: 7-bit I2C bus address
6021 * @addr: I2C memory address (I2C offset) with up to 16 bits
6022 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
6023 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
6024 * @cd: pointer to command details structure or NULL
6025 *
6026 * Write I2C (0x06E3)
6027 *
6028 * * Return:
6029 * * 0 - Successful write to the i2c device
6030 * * -EINVAL - Data size greater than 4 bytes
6031 * * -EIO - FW error
6032 */
6033 int
ice_aq_write_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,const u8 * data,struct ice_sq_cd * cd)6034 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
6035 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
6036 struct ice_sq_cd *cd)
6037 {
6038 struct libie_aq_desc desc = { 0 };
6039 struct ice_aqc_i2c *cmd;
6040 u8 data_size;
6041
6042 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
6043 cmd = libie_aq_raw(&desc);
6044
6045 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
6046
6047 /* data_size limited to 4 */
6048 if (data_size > 4)
6049 return -EINVAL;
6050
6051 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
6052 cmd->topo_addr = topo_addr;
6053 cmd->i2c_params = params;
6054 cmd->i2c_addr = addr;
6055
6056 memcpy(cmd->i2c_data, data, data_size);
6057
6058 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6059 }
6060
6061 /**
6062 * ice_get_pca9575_handle - find and return the PCA9575 controller
6063 * @hw: pointer to the hw struct
6064 * @pca9575_handle: GPIO controller's handle
6065 *
6066 * Find and return the GPIO controller's handle in the netlist.
6067 * When found - the value will be cached in the hw structure and following calls
6068 * will return cached value.
6069 *
6070 * Return: 0 on success, -ENXIO when there's no PCA9575 present.
6071 */
ice_get_pca9575_handle(struct ice_hw * hw,u16 * pca9575_handle)6072 int ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
6073 {
6074 struct ice_aqc_get_link_topo *cmd;
6075 struct libie_aq_desc desc;
6076 int err;
6077 u8 idx;
6078
6079 /* If handle was read previously return cached value */
6080 if (hw->io_expander_handle) {
6081 *pca9575_handle = hw->io_expander_handle;
6082 return 0;
6083 }
6084
6085 #define SW_PCA9575_SFP_TOPO_IDX 2
6086 #define SW_PCA9575_QSFP_TOPO_IDX 1
6087
6088 /* Check if the SW IO expander controlling SMA exists in the netlist. */
6089 if (hw->device_id == ICE_DEV_ID_E810C_SFP)
6090 idx = SW_PCA9575_SFP_TOPO_IDX;
6091 else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
6092 idx = SW_PCA9575_QSFP_TOPO_IDX;
6093 else
6094 return -ENXIO;
6095
6096 /* If handle was not detected read it from the netlist */
6097 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
6098 cmd = libie_aq_raw(&desc);
6099 cmd->addr.topo_params.node_type_ctx =
6100 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL;
6101 cmd->addr.topo_params.index = idx;
6102
6103 err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6104 if (err)
6105 return -ENXIO;
6106
6107 /* Verify if we found the right IO expander type */
6108 if (cmd->node_part_num != ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
6109 return -ENXIO;
6110
6111 /* If present save the handle and return it */
6112 hw->io_expander_handle =
6113 le16_to_cpu(cmd->addr.handle);
6114 *pca9575_handle = hw->io_expander_handle;
6115
6116 return 0;
6117 }
6118
6119 /**
6120 * ice_read_pca9575_reg - read the register from the PCA9575 controller
6121 * @hw: pointer to the hw struct
6122 * @offset: GPIO controller register offset
6123 * @data: pointer to data to be read from the GPIO controller
6124 *
6125 * Return: 0 on success, negative error code otherwise.
6126 */
ice_read_pca9575_reg(struct ice_hw * hw,u8 offset,u8 * data)6127 int ice_read_pca9575_reg(struct ice_hw *hw, u8 offset, u8 *data)
6128 {
6129 struct ice_aqc_link_topo_addr link_topo;
6130 __le16 addr;
6131 u16 handle;
6132 int err;
6133
6134 memset(&link_topo, 0, sizeof(link_topo));
6135
6136 err = ice_get_pca9575_handle(hw, &handle);
6137 if (err)
6138 return err;
6139
6140 link_topo.handle = cpu_to_le16(handle);
6141 link_topo.topo_params.node_type_ctx =
6142 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
6143 ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
6144
6145 addr = cpu_to_le16((u16)offset);
6146
6147 return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
6148 }
6149
6150 /**
6151 * ice_aq_set_gpio
6152 * @hw: pointer to the hw struct
6153 * @gpio_ctrl_handle: GPIO controller node handle
6154 * @pin_idx: IO Number of the GPIO that needs to be set
6155 * @value: SW provide IO value to set in the LSB
6156 * @cd: pointer to command details structure or NULL
6157 *
6158 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
6159 */
6160 int
ice_aq_set_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool value,struct ice_sq_cd * cd)6161 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
6162 struct ice_sq_cd *cd)
6163 {
6164 struct libie_aq_desc desc;
6165 struct ice_aqc_gpio *cmd;
6166
6167 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
6168 cmd = libie_aq_raw(&desc);
6169 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
6170 cmd->gpio_num = pin_idx;
6171 cmd->gpio_val = value ? 1 : 0;
6172
6173 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6174 }
6175
6176 /**
6177 * ice_aq_get_gpio
6178 * @hw: pointer to the hw struct
6179 * @gpio_ctrl_handle: GPIO controller node handle
6180 * @pin_idx: IO Number of the GPIO that needs to be set
6181 * @value: IO value read
6182 * @cd: pointer to command details structure or NULL
6183 *
6184 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
6185 * the topology
6186 */
6187 int
ice_aq_get_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool * value,struct ice_sq_cd * cd)6188 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
6189 bool *value, struct ice_sq_cd *cd)
6190 {
6191 struct libie_aq_desc desc;
6192 struct ice_aqc_gpio *cmd;
6193 int status;
6194
6195 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
6196 cmd = libie_aq_raw(&desc);
6197 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
6198 cmd->gpio_num = pin_idx;
6199
6200 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6201 if (status)
6202 return status;
6203
6204 *value = !!cmd->gpio_val;
6205 return 0;
6206 }
6207
6208 /**
6209 * ice_is_fw_api_min_ver
6210 * @hw: pointer to the hardware structure
6211 * @maj: major version
6212 * @min: minor version
6213 * @patch: patch version
6214 *
6215 * Checks if the firmware API is minimum version
6216 */
ice_is_fw_api_min_ver(struct ice_hw * hw,u8 maj,u8 min,u8 patch)6217 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
6218 {
6219 if (hw->api_maj_ver == maj) {
6220 if (hw->api_min_ver > min)
6221 return true;
6222 if (hw->api_min_ver == min && hw->api_patch >= patch)
6223 return true;
6224 } else if (hw->api_maj_ver > maj) {
6225 return true;
6226 }
6227
6228 return false;
6229 }
6230
6231 /**
6232 * ice_fw_supports_link_override
6233 * @hw: pointer to the hardware structure
6234 *
6235 * Checks if the firmware supports link override
6236 */
ice_fw_supports_link_override(struct ice_hw * hw)6237 bool ice_fw_supports_link_override(struct ice_hw *hw)
6238 {
6239 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
6240 ICE_FW_API_LINK_OVERRIDE_MIN,
6241 ICE_FW_API_LINK_OVERRIDE_PATCH);
6242 }
6243
6244 /**
6245 * ice_get_link_default_override
6246 * @ldo: pointer to the link default override struct
6247 * @pi: pointer to the port info struct
6248 *
6249 * Gets the link default override for a port
6250 */
6251 int
ice_get_link_default_override(struct ice_link_default_override_tlv * ldo,struct ice_port_info * pi)6252 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
6253 struct ice_port_info *pi)
6254 {
6255 u16 i, tlv, tlv_len, tlv_start, buf, offset;
6256 struct ice_hw *hw = pi->hw;
6257 int status;
6258
6259 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
6260 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
6261 if (status) {
6262 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
6263 return status;
6264 }
6265
6266 /* Each port has its own config; calculate for our port */
6267 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
6268 ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
6269
6270 /* link options first */
6271 status = ice_read_sr_word(hw, tlv_start, &buf);
6272 if (status) {
6273 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6274 return status;
6275 }
6276 ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
6277 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
6278 ICE_LINK_OVERRIDE_PHY_CFG_S;
6279
6280 /* link PHY config */
6281 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
6282 status = ice_read_sr_word(hw, offset, &buf);
6283 if (status) {
6284 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
6285 return status;
6286 }
6287 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
6288
6289 /* PHY types low */
6290 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
6291 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6292 status = ice_read_sr_word(hw, (offset + i), &buf);
6293 if (status) {
6294 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6295 return status;
6296 }
6297 /* shift 16 bits at a time to fill 64 bits */
6298 ldo->phy_type_low |= ((u64)buf << (i * 16));
6299 }
6300
6301 /* PHY types high */
6302 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6303 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6304 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6305 status = ice_read_sr_word(hw, (offset + i), &buf);
6306 if (status) {
6307 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6308 return status;
6309 }
6310 /* shift 16 bits at a time to fill 64 bits */
6311 ldo->phy_type_high |= ((u64)buf << (i * 16));
6312 }
6313
6314 return status;
6315 }
6316
6317 /**
6318 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6319 * @caps: get PHY capability data
6320 */
ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data * caps)6321 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6322 {
6323 if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6324 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6325 ICE_AQC_PHY_AN_EN_CLAUSE73 |
6326 ICE_AQC_PHY_AN_EN_CLAUSE37))
6327 return true;
6328
6329 return false;
6330 }
6331
6332 /**
6333 * ice_is_fw_health_report_supported - checks if firmware supports health events
6334 * @hw: pointer to the hardware structure
6335 *
6336 * Return: true if firmware supports health status reports,
6337 * false otherwise
6338 */
ice_is_fw_health_report_supported(struct ice_hw * hw)6339 bool ice_is_fw_health_report_supported(struct ice_hw *hw)
6340 {
6341 return ice_is_fw_api_min_ver(hw, ICE_FW_API_HEALTH_REPORT_MAJ,
6342 ICE_FW_API_HEALTH_REPORT_MIN,
6343 ICE_FW_API_HEALTH_REPORT_PATCH);
6344 }
6345
6346 /**
6347 * ice_aq_set_health_status_cfg - Configure FW health events
6348 * @hw: pointer to the HW struct
6349 * @event_source: type of diagnostic events to enable
6350 *
6351 * Configure the health status event types that the firmware will send to this
6352 * PF. The supported event types are: PF-specific, all PFs, and global.
6353 *
6354 * Return: 0 on success, negative error code otherwise.
6355 */
ice_aq_set_health_status_cfg(struct ice_hw * hw,u8 event_source)6356 int ice_aq_set_health_status_cfg(struct ice_hw *hw, u8 event_source)
6357 {
6358 struct ice_aqc_set_health_status_cfg *cmd;
6359 struct libie_aq_desc desc;
6360
6361 cmd = libie_aq_raw(&desc);
6362
6363 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_health_status_cfg);
6364
6365 cmd->event_source = event_source;
6366
6367 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6368 }
6369
6370 /**
6371 * ice_aq_set_lldp_mib - Set the LLDP MIB
6372 * @hw: pointer to the HW struct
6373 * @mib_type: Local, Remote or both Local and Remote MIBs
6374 * @buf: pointer to the caller-supplied buffer to store the MIB block
6375 * @buf_size: size of the buffer (in bytes)
6376 * @cd: pointer to command details structure or NULL
6377 *
6378 * Set the LLDP MIB. (0x0A08)
6379 */
6380 int
ice_aq_set_lldp_mib(struct ice_hw * hw,u8 mib_type,void * buf,u16 buf_size,struct ice_sq_cd * cd)6381 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6382 struct ice_sq_cd *cd)
6383 {
6384 struct ice_aqc_lldp_set_local_mib *cmd;
6385 struct libie_aq_desc desc;
6386
6387 cmd = libie_aq_raw(&desc);
6388
6389 if (buf_size == 0 || !buf)
6390 return -EINVAL;
6391
6392 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6393
6394 desc.flags |= cpu_to_le16((u16)LIBIE_AQ_FLAG_RD);
6395 desc.datalen = cpu_to_le16(buf_size);
6396
6397 cmd->type = mib_type;
6398 cmd->length = cpu_to_le16(buf_size);
6399
6400 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6401 }
6402
6403 /**
6404 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6405 * @hw: pointer to HW struct
6406 */
ice_fw_supports_lldp_fltr_ctrl(struct ice_hw * hw)6407 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6408 {
6409 if (hw->mac_type != ICE_MAC_E810)
6410 return false;
6411
6412 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6413 ICE_FW_API_LLDP_FLTR_MIN,
6414 ICE_FW_API_LLDP_FLTR_PATCH);
6415 }
6416
6417 /**
6418 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6419 * @hw: pointer to HW struct
6420 * @vsi: VSI to add the filter to
6421 * @add: boolean for if adding or removing a filter
6422 *
6423 * Return: 0 on success, -EOPNOTSUPP if the operation cannot be performed
6424 * with this HW or VSI, otherwise an error corresponding to
6425 * the AQ transaction result.
6426 */
ice_lldp_fltr_add_remove(struct ice_hw * hw,struct ice_vsi * vsi,bool add)6427 int ice_lldp_fltr_add_remove(struct ice_hw *hw, struct ice_vsi *vsi, bool add)
6428 {
6429 struct ice_aqc_lldp_filter_ctrl *cmd;
6430 struct libie_aq_desc desc;
6431
6432 if (vsi->type != ICE_VSI_PF || !ice_fw_supports_lldp_fltr_ctrl(hw))
6433 return -EOPNOTSUPP;
6434
6435 cmd = libie_aq_raw(&desc);
6436
6437 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6438
6439 if (add)
6440 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6441 else
6442 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6443
6444 cmd->vsi_num = cpu_to_le16(vsi->vsi_num);
6445
6446 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6447 }
6448
6449 /**
6450 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6451 * @hw: pointer to HW struct
6452 */
ice_lldp_execute_pending_mib(struct ice_hw * hw)6453 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6454 {
6455 struct libie_aq_desc desc;
6456
6457 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6458
6459 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6460 }
6461
6462 /**
6463 * ice_fw_supports_report_dflt_cfg
6464 * @hw: pointer to the hardware structure
6465 *
6466 * Checks if the firmware supports report default configuration
6467 */
ice_fw_supports_report_dflt_cfg(struct ice_hw * hw)6468 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6469 {
6470 return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6471 ICE_FW_API_REPORT_DFLT_CFG_MIN,
6472 ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6473 }
6474
6475 /* each of the indexes into the following array match the speed of a return
6476 * value from the list of AQ returned speeds like the range:
6477 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6478 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6479 * array. The array is defined as 15 elements long because the link_speed
6480 * returned by the firmware is a 16 bit * value, but is indexed
6481 * by [fls(speed) - 1]
6482 */
6483 static const u32 ice_aq_to_link_speed[] = {
6484 SPEED_10, /* BIT(0) */
6485 SPEED_100,
6486 SPEED_1000,
6487 SPEED_2500,
6488 SPEED_5000,
6489 SPEED_10000,
6490 SPEED_20000,
6491 SPEED_25000,
6492 SPEED_40000,
6493 SPEED_50000,
6494 SPEED_100000, /* BIT(10) */
6495 SPEED_200000,
6496 };
6497
6498 /**
6499 * ice_get_link_speed - get integer speed from table
6500 * @index: array index from fls(aq speed) - 1
6501 *
6502 * Returns: u32 value containing integer speed
6503 */
ice_get_link_speed(u16 index)6504 u32 ice_get_link_speed(u16 index)
6505 {
6506 if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6507 return 0;
6508
6509 return ice_aq_to_link_speed[index];
6510 }
6511
6512 /**
6513 * ice_get_dest_cgu - get destination CGU dev for given HW
6514 * @hw: pointer to the HW struct
6515 *
6516 * Get CGU client id for CGU register read/write operations.
6517 *
6518 * Return: CGU device id to use in SBQ transactions.
6519 */
ice_get_dest_cgu(struct ice_hw * hw)6520 static enum ice_sbq_dev_id ice_get_dest_cgu(struct ice_hw *hw)
6521 {
6522 /* On dual complex E825 only complex 0 has functional CGU powering all
6523 * the PHYs.
6524 * SBQ destination device cgu points to CGU on a current complex and to
6525 * access primary CGU from the secondary complex, the driver should use
6526 * cgu_peer as a destination device.
6527 */
6528 if (hw->mac_type == ICE_MAC_GENERIC_3K_E825 && ice_is_dual(hw) &&
6529 !ice_is_primary(hw))
6530 return ice_sbq_dev_cgu_peer;
6531 return ice_sbq_dev_cgu;
6532 }
6533
6534 /**
6535 * ice_read_cgu_reg - Read a CGU register
6536 * @hw: Pointer to the HW struct
6537 * @addr: Register address to read
6538 * @val: Storage for register value read
6539 *
6540 * Read the contents of a register of the Clock Generation Unit. Only
6541 * applicable to E82X devices.
6542 *
6543 * Return: 0 on success, other error codes when failed to read from CGU.
6544 */
ice_read_cgu_reg(struct ice_hw * hw,u32 addr,u32 * val)6545 int ice_read_cgu_reg(struct ice_hw *hw, u32 addr, u32 *val)
6546 {
6547 struct ice_sbq_msg_input cgu_msg = {
6548 .dest_dev = ice_get_dest_cgu(hw),
6549 .opcode = ice_sbq_msg_rd,
6550 .msg_addr_low = addr
6551 };
6552 int err;
6553
6554 err = ice_sbq_rw_reg(hw, &cgu_msg, LIBIE_AQ_FLAG_RD);
6555 if (err) {
6556 ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
6557 addr, err);
6558 return err;
6559 }
6560
6561 *val = cgu_msg.data;
6562
6563 return 0;
6564 }
6565
6566 /**
6567 * ice_write_cgu_reg - Write a CGU register
6568 * @hw: Pointer to the HW struct
6569 * @addr: Register address to write
6570 * @val: Value to write into the register
6571 *
6572 * Write the specified value to a register of the Clock Generation Unit. Only
6573 * applicable to E82X devices.
6574 *
6575 * Return: 0 on success, other error codes when failed to write to CGU.
6576 */
ice_write_cgu_reg(struct ice_hw * hw,u32 addr,u32 val)6577 int ice_write_cgu_reg(struct ice_hw *hw, u32 addr, u32 val)
6578 {
6579 struct ice_sbq_msg_input cgu_msg = {
6580 .dest_dev = ice_get_dest_cgu(hw),
6581 .opcode = ice_sbq_msg_wr,
6582 .msg_addr_low = addr,
6583 .data = val
6584 };
6585 int err;
6586
6587 err = ice_sbq_rw_reg(hw, &cgu_msg, LIBIE_AQ_FLAG_RD);
6588 if (err)
6589 ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
6590 addr, err);
6591
6592 return err;
6593 }
6594