1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 #include "ice_ptp_hw.h"
9 #include <linux/packing.h>
10
11 #define ICE_PF_RESET_WAIT_COUNT 300
12 #define ICE_MAX_NETLIST_SIZE 10
13
14 static const char * const ice_link_mode_str_low[] = {
15 [0] = "100BASE_TX",
16 [1] = "100M_SGMII",
17 [2] = "1000BASE_T",
18 [3] = "1000BASE_SX",
19 [4] = "1000BASE_LX",
20 [5] = "1000BASE_KX",
21 [6] = "1G_SGMII",
22 [7] = "2500BASE_T",
23 [8] = "2500BASE_X",
24 [9] = "2500BASE_KX",
25 [10] = "5GBASE_T",
26 [11] = "5GBASE_KR",
27 [12] = "10GBASE_T",
28 [13] = "10G_SFI_DA",
29 [14] = "10GBASE_SR",
30 [15] = "10GBASE_LR",
31 [16] = "10GBASE_KR_CR1",
32 [17] = "10G_SFI_AOC_ACC",
33 [18] = "10G_SFI_C2C",
34 [19] = "25GBASE_T",
35 [20] = "25GBASE_CR",
36 [21] = "25GBASE_CR_S",
37 [22] = "25GBASE_CR1",
38 [23] = "25GBASE_SR",
39 [24] = "25GBASE_LR",
40 [25] = "25GBASE_KR",
41 [26] = "25GBASE_KR_S",
42 [27] = "25GBASE_KR1",
43 [28] = "25G_AUI_AOC_ACC",
44 [29] = "25G_AUI_C2C",
45 [30] = "40GBASE_CR4",
46 [31] = "40GBASE_SR4",
47 [32] = "40GBASE_LR4",
48 [33] = "40GBASE_KR4",
49 [34] = "40G_XLAUI_AOC_ACC",
50 [35] = "40G_XLAUI",
51 [36] = "50GBASE_CR2",
52 [37] = "50GBASE_SR2",
53 [38] = "50GBASE_LR2",
54 [39] = "50GBASE_KR2",
55 [40] = "50G_LAUI2_AOC_ACC",
56 [41] = "50G_LAUI2",
57 [42] = "50G_AUI2_AOC_ACC",
58 [43] = "50G_AUI2",
59 [44] = "50GBASE_CP",
60 [45] = "50GBASE_SR",
61 [46] = "50GBASE_FR",
62 [47] = "50GBASE_LR",
63 [48] = "50GBASE_KR_PAM4",
64 [49] = "50G_AUI1_AOC_ACC",
65 [50] = "50G_AUI1",
66 [51] = "100GBASE_CR4",
67 [52] = "100GBASE_SR4",
68 [53] = "100GBASE_LR4",
69 [54] = "100GBASE_KR4",
70 [55] = "100G_CAUI4_AOC_ACC",
71 [56] = "100G_CAUI4",
72 [57] = "100G_AUI4_AOC_ACC",
73 [58] = "100G_AUI4",
74 [59] = "100GBASE_CR_PAM4",
75 [60] = "100GBASE_KR_PAM4",
76 [61] = "100GBASE_CP2",
77 [62] = "100GBASE_SR2",
78 [63] = "100GBASE_DR",
79 };
80
81 static const char * const ice_link_mode_str_high[] = {
82 [0] = "100GBASE_KR2_PAM4",
83 [1] = "100G_CAUI2_AOC_ACC",
84 [2] = "100G_CAUI2",
85 [3] = "100G_AUI2_AOC_ACC",
86 [4] = "100G_AUI2",
87 };
88
89 /**
90 * ice_dump_phy_type - helper function to dump phy_type
91 * @hw: pointer to the HW structure
92 * @low: 64 bit value for phy_type_low
93 * @high: 64 bit value for phy_type_high
94 * @prefix: prefix string to differentiate multiple dumps
95 */
96 static void
ice_dump_phy_type(struct ice_hw * hw,u64 low,u64 high,const char * prefix)97 ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
98 {
99 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
100
101 for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
102 if (low & BIT_ULL(i))
103 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
104 prefix, i, ice_link_mode_str_low[i]);
105 }
106
107 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
108
109 for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
110 if (high & BIT_ULL(i))
111 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
112 prefix, i, ice_link_mode_str_high[i]);
113 }
114 }
115
116 /**
117 * ice_set_mac_type - Sets MAC type
118 * @hw: pointer to the HW structure
119 *
120 * This function sets the MAC type of the adapter based on the
121 * vendor ID and device ID stored in the HW structure.
122 */
ice_set_mac_type(struct ice_hw * hw)123 static int ice_set_mac_type(struct ice_hw *hw)
124 {
125 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
126 return -ENODEV;
127
128 switch (hw->device_id) {
129 case ICE_DEV_ID_E810C_BACKPLANE:
130 case ICE_DEV_ID_E810C_QSFP:
131 case ICE_DEV_ID_E810C_SFP:
132 case ICE_DEV_ID_E810_XXV_BACKPLANE:
133 case ICE_DEV_ID_E810_XXV_QSFP:
134 case ICE_DEV_ID_E810_XXV_SFP:
135 hw->mac_type = ICE_MAC_E810;
136 break;
137 case ICE_DEV_ID_E823C_10G_BASE_T:
138 case ICE_DEV_ID_E823C_BACKPLANE:
139 case ICE_DEV_ID_E823C_QSFP:
140 case ICE_DEV_ID_E823C_SFP:
141 case ICE_DEV_ID_E823C_SGMII:
142 case ICE_DEV_ID_E822C_10G_BASE_T:
143 case ICE_DEV_ID_E822C_BACKPLANE:
144 case ICE_DEV_ID_E822C_QSFP:
145 case ICE_DEV_ID_E822C_SFP:
146 case ICE_DEV_ID_E822C_SGMII:
147 case ICE_DEV_ID_E822L_10G_BASE_T:
148 case ICE_DEV_ID_E822L_BACKPLANE:
149 case ICE_DEV_ID_E822L_SFP:
150 case ICE_DEV_ID_E822L_SGMII:
151 case ICE_DEV_ID_E823L_10G_BASE_T:
152 case ICE_DEV_ID_E823L_1GBE:
153 case ICE_DEV_ID_E823L_BACKPLANE:
154 case ICE_DEV_ID_E823L_QSFP:
155 case ICE_DEV_ID_E823L_SFP:
156 hw->mac_type = ICE_MAC_GENERIC;
157 break;
158 case ICE_DEV_ID_E825C_BACKPLANE:
159 case ICE_DEV_ID_E825C_QSFP:
160 case ICE_DEV_ID_E825C_SFP:
161 case ICE_DEV_ID_E825C_SGMII:
162 hw->mac_type = ICE_MAC_GENERIC_3K_E825;
163 break;
164 case ICE_DEV_ID_E830CC_BACKPLANE:
165 case ICE_DEV_ID_E830CC_QSFP56:
166 case ICE_DEV_ID_E830CC_SFP:
167 case ICE_DEV_ID_E830CC_SFP_DD:
168 case ICE_DEV_ID_E830C_BACKPLANE:
169 case ICE_DEV_ID_E830_XXV_BACKPLANE:
170 case ICE_DEV_ID_E830C_QSFP:
171 case ICE_DEV_ID_E830_XXV_QSFP:
172 case ICE_DEV_ID_E830C_SFP:
173 case ICE_DEV_ID_E830_XXV_SFP:
174 case ICE_DEV_ID_E835CC_BACKPLANE:
175 case ICE_DEV_ID_E835CC_QSFP56:
176 case ICE_DEV_ID_E835CC_SFP:
177 case ICE_DEV_ID_E835C_BACKPLANE:
178 case ICE_DEV_ID_E835C_QSFP:
179 case ICE_DEV_ID_E835C_SFP:
180 case ICE_DEV_ID_E835_L_BACKPLANE:
181 case ICE_DEV_ID_E835_L_QSFP:
182 case ICE_DEV_ID_E835_L_SFP:
183 hw->mac_type = ICE_MAC_E830;
184 break;
185 default:
186 hw->mac_type = ICE_MAC_UNKNOWN;
187 break;
188 }
189
190 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
191 return 0;
192 }
193
194 /**
195 * ice_is_generic_mac - check if device's mac_type is generic
196 * @hw: pointer to the hardware structure
197 *
198 * Return: true if mac_type is ICE_MAC_GENERIC*, false otherwise.
199 */
ice_is_generic_mac(struct ice_hw * hw)200 bool ice_is_generic_mac(struct ice_hw *hw)
201 {
202 return (hw->mac_type == ICE_MAC_GENERIC ||
203 hw->mac_type == ICE_MAC_GENERIC_3K_E825);
204 }
205
206 /**
207 * ice_is_pf_c827 - check if pf contains c827 phy
208 * @hw: pointer to the hw struct
209 *
210 * Return: true if the device has c827 phy.
211 */
ice_is_pf_c827(struct ice_hw * hw)212 static bool ice_is_pf_c827(struct ice_hw *hw)
213 {
214 struct ice_aqc_get_link_topo cmd = {};
215 u8 node_part_number;
216 u16 node_handle;
217 int status;
218
219 if (hw->mac_type != ICE_MAC_E810)
220 return false;
221
222 if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
223 return true;
224
225 cmd.addr.topo_params.node_type_ctx =
226 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
227 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
228 cmd.addr.topo_params.index = 0;
229
230 status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
231 &node_handle);
232
233 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
234 return false;
235
236 if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
237 return true;
238
239 return false;
240 }
241
242 /**
243 * ice_clear_pf_cfg - Clear PF configuration
244 * @hw: pointer to the hardware structure
245 *
246 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
247 * configuration, flow director filters, etc.).
248 */
ice_clear_pf_cfg(struct ice_hw * hw)249 int ice_clear_pf_cfg(struct ice_hw *hw)
250 {
251 struct libie_aq_desc desc;
252
253 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
254
255 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
256 }
257
258 /**
259 * ice_aq_manage_mac_read - manage MAC address read command
260 * @hw: pointer to the HW struct
261 * @buf: a virtual buffer to hold the manage MAC read response
262 * @buf_size: Size of the virtual buffer
263 * @cd: pointer to command details structure or NULL
264 *
265 * This function is used to return per PF station MAC address (0x0107).
266 * NOTE: Upon successful completion of this command, MAC address information
267 * is returned in user specified buffer. Please interpret user specified
268 * buffer as "manage_mac_read" response.
269 * Response such as various MAC addresses are stored in HW struct (port.mac)
270 * ice_discover_dev_caps is expected to be called before this function is
271 * called.
272 */
273 static int
ice_aq_manage_mac_read(struct ice_hw * hw,void * buf,u16 buf_size,struct ice_sq_cd * cd)274 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
275 struct ice_sq_cd *cd)
276 {
277 struct ice_aqc_manage_mac_read_resp *resp;
278 struct ice_aqc_manage_mac_read *cmd;
279 struct libie_aq_desc desc;
280 int status;
281 u16 flags;
282 u8 i;
283
284 cmd = libie_aq_raw(&desc);
285
286 if (buf_size < sizeof(*resp))
287 return -EINVAL;
288
289 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
290
291 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
292 if (status)
293 return status;
294
295 resp = buf;
296 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
297
298 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
299 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
300 return -EIO;
301 }
302
303 /* A single port can report up to two (LAN and WoL) addresses */
304 for (i = 0; i < cmd->num_addr; i++)
305 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
306 ether_addr_copy(hw->port_info->mac.lan_addr,
307 resp[i].mac_addr);
308 ether_addr_copy(hw->port_info->mac.perm_addr,
309 resp[i].mac_addr);
310 break;
311 }
312
313 return 0;
314 }
315
316 /**
317 * ice_aq_get_phy_caps - returns PHY capabilities
318 * @pi: port information structure
319 * @qual_mods: report qualified modules
320 * @report_mode: report mode capabilities
321 * @pcaps: structure for PHY capabilities to be filled
322 * @cd: pointer to command details structure or NULL
323 *
324 * Returns the various PHY capabilities supported on the Port (0x0600)
325 */
326 int
ice_aq_get_phy_caps(struct ice_port_info * pi,bool qual_mods,u8 report_mode,struct ice_aqc_get_phy_caps_data * pcaps,struct ice_sq_cd * cd)327 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
328 struct ice_aqc_get_phy_caps_data *pcaps,
329 struct ice_sq_cd *cd)
330 {
331 struct ice_aqc_get_phy_caps *cmd;
332 u16 pcaps_size = sizeof(*pcaps);
333 struct libie_aq_desc desc;
334 const char *prefix;
335 struct ice_hw *hw;
336 int status;
337
338 cmd = libie_aq_raw(&desc);
339
340 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
341 return -EINVAL;
342 hw = pi->hw;
343
344 if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
345 !ice_fw_supports_report_dflt_cfg(hw))
346 return -EINVAL;
347
348 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
349
350 if (qual_mods)
351 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
352
353 cmd->param0 |= cpu_to_le16(report_mode);
354 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
355
356 ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
357
358 switch (report_mode) {
359 case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
360 prefix = "phy_caps_media";
361 break;
362 case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
363 prefix = "phy_caps_no_media";
364 break;
365 case ICE_AQC_REPORT_ACTIVE_CFG:
366 prefix = "phy_caps_active";
367 break;
368 case ICE_AQC_REPORT_DFLT_CFG:
369 prefix = "phy_caps_default";
370 break;
371 default:
372 prefix = "phy_caps_invalid";
373 }
374
375 ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
376 le64_to_cpu(pcaps->phy_type_high), prefix);
377
378 ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
379 prefix, report_mode);
380 ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
381 ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
382 pcaps->low_power_ctrl_an);
383 ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
384 pcaps->eee_cap);
385 ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
386 pcaps->eeer_value);
387 ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
388 pcaps->link_fec_options);
389 ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
390 prefix, pcaps->module_compliance_enforcement);
391 ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
392 prefix, pcaps->extended_compliance_code);
393 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
394 pcaps->module_type[0]);
395 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
396 pcaps->module_type[1]);
397 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
398 pcaps->module_type[2]);
399
400 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
401 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
402 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
403 memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
404 sizeof(pi->phy.link_info.module_type));
405 }
406
407 return status;
408 }
409
410 /**
411 * ice_aq_get_link_topo_handle - get link topology node return status
412 * @pi: port information structure
413 * @node_type: requested node type
414 * @cd: pointer to command details structure or NULL
415 *
416 * Get link topology node return status for specified node type (0x06E0)
417 *
418 * Node type cage can be used to determine if cage is present. If AQC
419 * returns error (ENOENT), then no cage present. If no cage present, then
420 * connection type is backplane or BASE-T.
421 */
422 static int
ice_aq_get_link_topo_handle(struct ice_port_info * pi,u8 node_type,struct ice_sq_cd * cd)423 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
424 struct ice_sq_cd *cd)
425 {
426 struct ice_aqc_get_link_topo *cmd;
427 struct libie_aq_desc desc;
428
429 cmd = libie_aq_raw(&desc);
430
431 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
432
433 cmd->addr.topo_params.node_type_ctx =
434 (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
435 ICE_AQC_LINK_TOPO_NODE_CTX_S);
436
437 /* set node type */
438 cmd->addr.topo_params.node_type_ctx |=
439 (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
440
441 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
442 }
443
444 /**
445 * ice_aq_get_netlist_node
446 * @hw: pointer to the hw struct
447 * @cmd: get_link_topo AQ structure
448 * @node_part_number: output node part number if node found
449 * @node_handle: output node handle parameter if node found
450 *
451 * Get netlist node handle.
452 */
453 int
ice_aq_get_netlist_node(struct ice_hw * hw,struct ice_aqc_get_link_topo * cmd,u8 * node_part_number,u16 * node_handle)454 ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
455 u8 *node_part_number, u16 *node_handle)
456 {
457 struct ice_aqc_get_link_topo *resp;
458 struct libie_aq_desc desc;
459
460 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
461 resp = libie_aq_raw(&desc);
462 *resp = *cmd;
463
464 if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
465 return -EINTR;
466
467 if (node_handle)
468 *node_handle = le16_to_cpu(resp->addr.handle);
469 if (node_part_number)
470 *node_part_number = resp->node_part_num;
471
472 return 0;
473 }
474
475 /**
476 * ice_find_netlist_node
477 * @hw: pointer to the hw struct
478 * @node_type: type of netlist node to look for
479 * @ctx: context of the search
480 * @node_part_number: node part number to look for
481 * @node_handle: output parameter if node found - optional
482 *
483 * Scan the netlist for a node handle of the given node type and part number.
484 *
485 * If node_handle is non-NULL it will be modified on function exit. It is only
486 * valid if the function returns zero, and should be ignored on any non-zero
487 * return value.
488 *
489 * Return:
490 * * 0 if the node is found,
491 * * -ENOENT if no handle was found,
492 * * negative error code on failure to access the AQ.
493 */
ice_find_netlist_node(struct ice_hw * hw,u8 node_type,u8 ctx,u8 node_part_number,u16 * node_handle)494 static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
495 u8 node_part_number, u16 *node_handle)
496 {
497 u8 idx;
498
499 for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
500 struct ice_aqc_get_link_topo cmd = {};
501 u8 rec_node_part_number;
502 int status;
503
504 cmd.addr.topo_params.node_type_ctx =
505 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
506 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
507 cmd.addr.topo_params.index = idx;
508
509 status = ice_aq_get_netlist_node(hw, &cmd,
510 &rec_node_part_number,
511 node_handle);
512 if (status)
513 return status;
514
515 if (rec_node_part_number == node_part_number)
516 return 0;
517 }
518
519 return -ENOENT;
520 }
521
522 /**
523 * ice_is_media_cage_present
524 * @pi: port information structure
525 *
526 * Returns true if media cage is present, else false. If no cage, then
527 * media type is backplane or BASE-T.
528 */
ice_is_media_cage_present(struct ice_port_info * pi)529 static bool ice_is_media_cage_present(struct ice_port_info *pi)
530 {
531 /* Node type cage can be used to determine if cage is present. If AQC
532 * returns error (ENOENT), then no cage present. If no cage present then
533 * connection type is backplane or BASE-T.
534 */
535 return !ice_aq_get_link_topo_handle(pi,
536 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
537 NULL);
538 }
539
540 /**
541 * ice_get_media_type - Gets media type
542 * @pi: port information structure
543 */
ice_get_media_type(struct ice_port_info * pi)544 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
545 {
546 struct ice_link_status *hw_link_info;
547
548 if (!pi)
549 return ICE_MEDIA_UNKNOWN;
550
551 hw_link_info = &pi->phy.link_info;
552 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
553 /* If more than one media type is selected, report unknown */
554 return ICE_MEDIA_UNKNOWN;
555
556 if (hw_link_info->phy_type_low) {
557 /* 1G SGMII is a special case where some DA cable PHYs
558 * may show this as an option when it really shouldn't
559 * be since SGMII is meant to be between a MAC and a PHY
560 * in a backplane. Try to detect this case and handle it
561 */
562 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
563 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
564 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
565 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
566 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
567 return ICE_MEDIA_DA;
568
569 switch (hw_link_info->phy_type_low) {
570 case ICE_PHY_TYPE_LOW_1000BASE_SX:
571 case ICE_PHY_TYPE_LOW_1000BASE_LX:
572 case ICE_PHY_TYPE_LOW_10GBASE_SR:
573 case ICE_PHY_TYPE_LOW_10GBASE_LR:
574 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
575 case ICE_PHY_TYPE_LOW_25GBASE_SR:
576 case ICE_PHY_TYPE_LOW_25GBASE_LR:
577 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
578 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
579 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
580 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
581 case ICE_PHY_TYPE_LOW_50GBASE_SR:
582 case ICE_PHY_TYPE_LOW_50GBASE_FR:
583 case ICE_PHY_TYPE_LOW_50GBASE_LR:
584 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
585 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
586 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
587 case ICE_PHY_TYPE_LOW_100GBASE_DR:
588 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
589 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
590 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
591 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
592 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
593 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
594 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
595 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
596 return ICE_MEDIA_FIBER;
597 case ICE_PHY_TYPE_LOW_100BASE_TX:
598 case ICE_PHY_TYPE_LOW_1000BASE_T:
599 case ICE_PHY_TYPE_LOW_2500BASE_T:
600 case ICE_PHY_TYPE_LOW_5GBASE_T:
601 case ICE_PHY_TYPE_LOW_10GBASE_T:
602 case ICE_PHY_TYPE_LOW_25GBASE_T:
603 return ICE_MEDIA_BASET;
604 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
605 case ICE_PHY_TYPE_LOW_25GBASE_CR:
606 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
607 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
608 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
609 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
610 case ICE_PHY_TYPE_LOW_50GBASE_CP:
611 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
612 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
613 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
614 return ICE_MEDIA_DA;
615 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
616 case ICE_PHY_TYPE_LOW_40G_XLAUI:
617 case ICE_PHY_TYPE_LOW_50G_LAUI2:
618 case ICE_PHY_TYPE_LOW_50G_AUI2:
619 case ICE_PHY_TYPE_LOW_50G_AUI1:
620 case ICE_PHY_TYPE_LOW_100G_AUI4:
621 case ICE_PHY_TYPE_LOW_100G_CAUI4:
622 if (ice_is_media_cage_present(pi))
623 return ICE_MEDIA_DA;
624 fallthrough;
625 case ICE_PHY_TYPE_LOW_1000BASE_KX:
626 case ICE_PHY_TYPE_LOW_2500BASE_KX:
627 case ICE_PHY_TYPE_LOW_2500BASE_X:
628 case ICE_PHY_TYPE_LOW_5GBASE_KR:
629 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
630 case ICE_PHY_TYPE_LOW_25GBASE_KR:
631 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
632 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
633 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
634 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
635 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
636 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
637 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
638 return ICE_MEDIA_BACKPLANE;
639 }
640 } else {
641 switch (hw_link_info->phy_type_high) {
642 case ICE_PHY_TYPE_HIGH_100G_AUI2:
643 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
644 if (ice_is_media_cage_present(pi))
645 return ICE_MEDIA_DA;
646 fallthrough;
647 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
648 return ICE_MEDIA_BACKPLANE;
649 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
650 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
651 return ICE_MEDIA_FIBER;
652 }
653 }
654 return ICE_MEDIA_UNKNOWN;
655 }
656
657 /**
658 * ice_get_link_status_datalen
659 * @hw: pointer to the HW struct
660 *
661 * Returns datalength for the Get Link Status AQ command, which is bigger for
662 * newer adapter families handled by ice driver.
663 */
ice_get_link_status_datalen(struct ice_hw * hw)664 static u16 ice_get_link_status_datalen(struct ice_hw *hw)
665 {
666 switch (hw->mac_type) {
667 case ICE_MAC_E830:
668 return ICE_AQC_LS_DATA_SIZE_V2;
669 case ICE_MAC_E810:
670 default:
671 return ICE_AQC_LS_DATA_SIZE_V1;
672 }
673 }
674
675 /**
676 * ice_aq_get_link_info
677 * @pi: port information structure
678 * @ena_lse: enable/disable LinkStatusEvent reporting
679 * @link: pointer to link status structure - optional
680 * @cd: pointer to command details structure or NULL
681 *
682 * Get Link Status (0x607). Returns the link status of the adapter.
683 */
684 int
ice_aq_get_link_info(struct ice_port_info * pi,bool ena_lse,struct ice_link_status * link,struct ice_sq_cd * cd)685 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
686 struct ice_link_status *link, struct ice_sq_cd *cd)
687 {
688 struct ice_aqc_get_link_status_data link_data = { 0 };
689 struct ice_aqc_get_link_status *resp;
690 struct ice_link_status *li_old, *li;
691 enum ice_media_type *hw_media_type;
692 struct ice_fc_info *hw_fc_info;
693 struct libie_aq_desc desc;
694 bool tx_pause, rx_pause;
695 struct ice_hw *hw;
696 u16 cmd_flags;
697 int status;
698
699 if (!pi)
700 return -EINVAL;
701 hw = pi->hw;
702 li_old = &pi->phy.link_info_old;
703 hw_media_type = &pi->phy.media_type;
704 li = &pi->phy.link_info;
705 hw_fc_info = &pi->fc;
706
707 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
708 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
709 resp = libie_aq_raw(&desc);
710 resp->cmd_flags = cpu_to_le16(cmd_flags);
711 resp->lport_num = pi->lport;
712
713 status = ice_aq_send_cmd(hw, &desc, &link_data,
714 ice_get_link_status_datalen(hw), cd);
715 if (status)
716 return status;
717
718 /* save off old link status information */
719 *li_old = *li;
720
721 /* update current link status information */
722 li->link_speed = le16_to_cpu(link_data.link_speed);
723 li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
724 li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
725 *hw_media_type = ice_get_media_type(pi);
726 li->link_info = link_data.link_info;
727 li->link_cfg_err = link_data.link_cfg_err;
728 li->an_info = link_data.an_info;
729 li->ext_info = link_data.ext_info;
730 li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
731 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
732 li->topo_media_conflict = link_data.topo_media_conflict;
733 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
734 ICE_AQ_CFG_PACING_TYPE_M);
735
736 /* update fc info */
737 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
738 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
739 if (tx_pause && rx_pause)
740 hw_fc_info->current_mode = ICE_FC_FULL;
741 else if (tx_pause)
742 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
743 else if (rx_pause)
744 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
745 else
746 hw_fc_info->current_mode = ICE_FC_NONE;
747
748 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
749
750 ice_debug(hw, ICE_DBG_LINK, "get link info\n");
751 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
752 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
753 (unsigned long long)li->phy_type_low);
754 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
755 (unsigned long long)li->phy_type_high);
756 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
757 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
758 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
759 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
760 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
761 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
762 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
763 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
764 li->max_frame_size);
765 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
766
767 /* save link status information */
768 if (link)
769 *link = *li;
770
771 /* flag cleared so calling functions don't call AQ again */
772 pi->phy.get_link_info = false;
773
774 return 0;
775 }
776
777 /**
778 * ice_fill_tx_timer_and_fc_thresh
779 * @hw: pointer to the HW struct
780 * @cmd: pointer to MAC cfg structure
781 *
782 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
783 * descriptor
784 */
785 static void
ice_fill_tx_timer_and_fc_thresh(struct ice_hw * hw,struct ice_aqc_set_mac_cfg * cmd)786 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
787 struct ice_aqc_set_mac_cfg *cmd)
788 {
789 u32 val, fc_thres_m;
790
791 /* We read back the transmit timer and FC threshold value of
792 * LFC. Thus, we will use index =
793 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
794 *
795 * Also, because we are operating on transmit timer and FC
796 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
797 */
798 #define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
799 #define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
800
801 if (hw->mac_type == ICE_MAC_E830) {
802 /* Retrieve the transmit timer */
803 val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
804 cmd->tx_tmr_value =
805 le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
806
807 /* Retrieve the fc threshold */
808 val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
809 fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
810 } else {
811 /* Retrieve the transmit timer */
812 val = rd32(hw,
813 E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
814 cmd->tx_tmr_value =
815 le16_encode_bits(val,
816 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
817
818 /* Retrieve the fc threshold */
819 val = rd32(hw,
820 E800_REFRESH_TMR(E800_IDX_OF_LFC));
821 fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
822 }
823 cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
824 }
825
826 /**
827 * ice_aq_set_mac_cfg
828 * @hw: pointer to the HW struct
829 * @max_frame_size: Maximum Frame Size to be supported
830 * @cd: pointer to command details structure or NULL
831 *
832 * Set MAC configuration (0x0603)
833 */
834 int
ice_aq_set_mac_cfg(struct ice_hw * hw,u16 max_frame_size,struct ice_sq_cd * cd)835 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
836 {
837 struct ice_aqc_set_mac_cfg *cmd;
838 struct libie_aq_desc desc;
839
840 cmd = libie_aq_raw(&desc);
841
842 if (max_frame_size == 0)
843 return -EINVAL;
844
845 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
846
847 cmd->max_frame_size = cpu_to_le16(max_frame_size);
848
849 ice_fill_tx_timer_and_fc_thresh(hw, cmd);
850
851 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
852 }
853
854 /**
855 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
856 * @hw: pointer to the HW struct
857 */
ice_init_fltr_mgmt_struct(struct ice_hw * hw)858 static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
859 {
860 struct ice_switch_info *sw;
861 int status;
862
863 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
864 sizeof(*hw->switch_info), GFP_KERNEL);
865 sw = hw->switch_info;
866
867 if (!sw)
868 return -ENOMEM;
869
870 INIT_LIST_HEAD(&sw->vsi_list_map_head);
871 sw->prof_res_bm_init = 0;
872
873 /* Initialize recipe count with default recipes read from NVM */
874 sw->recp_cnt = ICE_SW_LKUP_LAST;
875
876 status = ice_init_def_sw_recp(hw);
877 if (status) {
878 devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
879 return status;
880 }
881 return 0;
882 }
883
884 /**
885 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
886 * @hw: pointer to the HW struct
887 */
ice_cleanup_fltr_mgmt_struct(struct ice_hw * hw)888 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
889 {
890 struct ice_switch_info *sw = hw->switch_info;
891 struct ice_vsi_list_map_info *v_pos_map;
892 struct ice_vsi_list_map_info *v_tmp_map;
893 struct ice_sw_recipe *recps;
894 u8 i;
895
896 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
897 list_entry) {
898 list_del(&v_pos_map->list_entry);
899 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
900 }
901 recps = sw->recp_list;
902 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
903 recps[i].root_rid = i;
904
905 if (recps[i].adv_rule) {
906 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
907 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
908
909 mutex_destroy(&recps[i].filt_rule_lock);
910 list_for_each_entry_safe(lst_itr, tmp_entry,
911 &recps[i].filt_rules,
912 list_entry) {
913 list_del(&lst_itr->list_entry);
914 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
915 devm_kfree(ice_hw_to_dev(hw), lst_itr);
916 }
917 } else {
918 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
919
920 mutex_destroy(&recps[i].filt_rule_lock);
921 list_for_each_entry_safe(lst_itr, tmp_entry,
922 &recps[i].filt_rules,
923 list_entry) {
924 list_del(&lst_itr->list_entry);
925 devm_kfree(ice_hw_to_dev(hw), lst_itr);
926 }
927 }
928 }
929 ice_rm_all_sw_replay_rule_info(hw);
930 devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
931 devm_kfree(ice_hw_to_dev(hw), sw);
932 }
933
934 /**
935 * ice_get_itr_intrl_gran
936 * @hw: pointer to the HW struct
937 *
938 * Determines the ITR/INTRL granularities based on the maximum aggregate
939 * bandwidth according to the device's configuration during power-on.
940 */
ice_get_itr_intrl_gran(struct ice_hw * hw)941 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
942 {
943 u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
944 rd32(hw, GL_PWR_MODE_CTL));
945
946 switch (max_agg_bw) {
947 case ICE_MAX_AGG_BW_200G:
948 case ICE_MAX_AGG_BW_100G:
949 case ICE_MAX_AGG_BW_50G:
950 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
951 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
952 break;
953 case ICE_MAX_AGG_BW_25G:
954 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
955 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
956 break;
957 }
958 }
959
960 /**
961 * ice_wait_for_fw - wait for full FW readiness
962 * @hw: pointer to the hardware structure
963 * @timeout: milliseconds that can elapse before timing out
964 *
965 * Return: 0 on success, -ETIMEDOUT on timeout.
966 */
ice_wait_for_fw(struct ice_hw * hw,u32 timeout)967 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
968 {
969 int fw_loading;
970 u32 elapsed = 0;
971
972 while (elapsed <= timeout) {
973 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
974
975 /* firmware was not yet loaded, we have to wait more */
976 if (fw_loading) {
977 elapsed += 100;
978 msleep(100);
979 continue;
980 }
981 return 0;
982 }
983
984 return -ETIMEDOUT;
985 }
986
987 /**
988 * ice_init_hw - main hardware initialization routine
989 * @hw: pointer to the hardware structure
990 */
ice_init_hw(struct ice_hw * hw)991 int ice_init_hw(struct ice_hw *hw)
992 {
993 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
994 void *mac_buf __free(kfree) = NULL;
995 u16 mac_buf_len;
996 int status;
997
998 /* Set MAC type based on DeviceID */
999 status = ice_set_mac_type(hw);
1000 if (status)
1001 return status;
1002
1003 hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1004
1005 status = ice_reset(hw, ICE_RESET_PFR);
1006 if (status)
1007 return status;
1008
1009 ice_get_itr_intrl_gran(hw);
1010
1011 status = ice_create_all_ctrlq(hw);
1012 if (status)
1013 goto err_unroll_cqinit;
1014
1015 status = ice_fwlog_init(hw);
1016 if (status)
1017 ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1018 status);
1019
1020 status = ice_clear_pf_cfg(hw);
1021 if (status)
1022 goto err_unroll_cqinit;
1023
1024 /* Set bit to enable Flow Director filters */
1025 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1026 INIT_LIST_HEAD(&hw->fdir_list_head);
1027
1028 ice_clear_pxe_mode(hw);
1029
1030 status = ice_init_nvm(hw);
1031 if (status)
1032 goto err_unroll_cqinit;
1033
1034 status = ice_get_caps(hw);
1035 if (status)
1036 goto err_unroll_cqinit;
1037
1038 if (!hw->port_info)
1039 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1040 sizeof(*hw->port_info),
1041 GFP_KERNEL);
1042 if (!hw->port_info) {
1043 status = -ENOMEM;
1044 goto err_unroll_cqinit;
1045 }
1046
1047 hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1048 /* set the back pointer to HW */
1049 hw->port_info->hw = hw;
1050
1051 /* Initialize port_info struct with switch configuration data */
1052 status = ice_get_initial_sw_cfg(hw);
1053 if (status)
1054 goto err_unroll_alloc;
1055
1056 hw->evb_veb = true;
1057
1058 /* init xarray for identifying scheduling nodes uniquely */
1059 xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1060
1061 /* Query the allocated resources for Tx scheduler */
1062 status = ice_sched_query_res_alloc(hw);
1063 if (status) {
1064 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1065 goto err_unroll_alloc;
1066 }
1067 ice_sched_get_psm_clk_freq(hw);
1068
1069 /* Initialize port_info struct with scheduler data */
1070 status = ice_sched_init_port(hw->port_info);
1071 if (status)
1072 goto err_unroll_sched;
1073
1074 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1075 if (!pcaps) {
1076 status = -ENOMEM;
1077 goto err_unroll_sched;
1078 }
1079
1080 /* Initialize port_info struct with PHY capabilities */
1081 status = ice_aq_get_phy_caps(hw->port_info, false,
1082 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1083 NULL);
1084 if (status)
1085 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1086 status);
1087
1088 /* Initialize port_info struct with link information */
1089 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1090 if (status)
1091 goto err_unroll_sched;
1092
1093 /* need a valid SW entry point to build a Tx tree */
1094 if (!hw->sw_entry_point_layer) {
1095 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1096 status = -EIO;
1097 goto err_unroll_sched;
1098 }
1099 INIT_LIST_HEAD(&hw->agg_list);
1100 /* Initialize max burst size */
1101 if (!hw->max_burst_size)
1102 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1103
1104 status = ice_init_fltr_mgmt_struct(hw);
1105 if (status)
1106 goto err_unroll_sched;
1107
1108 /* Get MAC information */
1109 /* A single port can report up to two (LAN and WoL) addresses */
1110 mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1111 GFP_KERNEL);
1112 if (!mac_buf) {
1113 status = -ENOMEM;
1114 goto err_unroll_fltr_mgmt_struct;
1115 }
1116
1117 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1118 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1119
1120 if (status)
1121 goto err_unroll_fltr_mgmt_struct;
1122 /* enable jumbo frame support at MAC level */
1123 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1124 if (status)
1125 goto err_unroll_fltr_mgmt_struct;
1126 /* Obtain counter base index which would be used by flow director */
1127 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1128 if (status)
1129 goto err_unroll_fltr_mgmt_struct;
1130 status = ice_init_hw_tbls(hw);
1131 if (status)
1132 goto err_unroll_fltr_mgmt_struct;
1133 mutex_init(&hw->tnl_lock);
1134 ice_init_chk_recipe_reuse_support(hw);
1135
1136 /* Some cards require longer initialization times
1137 * due to necessity of loading FW from an external source.
1138 * This can take even half a minute.
1139 */
1140 if (ice_is_pf_c827(hw)) {
1141 status = ice_wait_for_fw(hw, 30000);
1142 if (status) {
1143 dev_err(ice_hw_to_dev(hw), "ice_wait_for_fw timed out");
1144 goto err_unroll_fltr_mgmt_struct;
1145 }
1146 }
1147
1148 hw->lane_num = ice_get_phy_lane_number(hw);
1149
1150 return 0;
1151 err_unroll_fltr_mgmt_struct:
1152 ice_cleanup_fltr_mgmt_struct(hw);
1153 err_unroll_sched:
1154 ice_sched_cleanup_all(hw);
1155 err_unroll_alloc:
1156 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1157 err_unroll_cqinit:
1158 ice_destroy_all_ctrlq(hw);
1159 return status;
1160 }
1161
1162 /**
1163 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1164 * @hw: pointer to the hardware structure
1165 *
1166 * This should be called only during nominal operation, not as a result of
1167 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1168 * applicable initializations if it fails for any reason.
1169 */
ice_deinit_hw(struct ice_hw * hw)1170 void ice_deinit_hw(struct ice_hw *hw)
1171 {
1172 ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1173 ice_cleanup_fltr_mgmt_struct(hw);
1174
1175 ice_sched_cleanup_all(hw);
1176 ice_sched_clear_agg(hw);
1177 ice_free_seg(hw);
1178 ice_free_hw_tbls(hw);
1179 mutex_destroy(&hw->tnl_lock);
1180
1181 ice_fwlog_deinit(hw);
1182 ice_destroy_all_ctrlq(hw);
1183
1184 /* Clear VSI contexts if not already cleared */
1185 ice_clear_all_vsi_ctx(hw);
1186 }
1187
1188 /**
1189 * ice_check_reset - Check to see if a global reset is complete
1190 * @hw: pointer to the hardware structure
1191 */
ice_check_reset(struct ice_hw * hw)1192 int ice_check_reset(struct ice_hw *hw)
1193 {
1194 u32 cnt, reg = 0, grst_timeout, uld_mask;
1195
1196 /* Poll for Device Active state in case a recent CORER, GLOBR,
1197 * or EMPR has occurred. The grst delay value is in 100ms units.
1198 * Add 1sec for outstanding AQ commands that can take a long time.
1199 */
1200 grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1201 rd32(hw, GLGEN_RSTCTL)) + 10;
1202
1203 for (cnt = 0; cnt < grst_timeout; cnt++) {
1204 mdelay(100);
1205 reg = rd32(hw, GLGEN_RSTAT);
1206 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1207 break;
1208 }
1209
1210 if (cnt == grst_timeout) {
1211 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1212 return -EIO;
1213 }
1214
1215 #define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
1216 GLNVM_ULD_PCIER_DONE_1_M |\
1217 GLNVM_ULD_CORER_DONE_M |\
1218 GLNVM_ULD_GLOBR_DONE_M |\
1219 GLNVM_ULD_POR_DONE_M |\
1220 GLNVM_ULD_POR_DONE_1_M |\
1221 GLNVM_ULD_PCIER_DONE_2_M)
1222
1223 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1224 GLNVM_ULD_PE_DONE_M : 0);
1225
1226 /* Device is Active; check Global Reset processes are done */
1227 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1228 reg = rd32(hw, GLNVM_ULD) & uld_mask;
1229 if (reg == uld_mask) {
1230 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1231 break;
1232 }
1233 mdelay(10);
1234 }
1235
1236 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1237 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1238 reg);
1239 return -EIO;
1240 }
1241
1242 return 0;
1243 }
1244
1245 /**
1246 * ice_pf_reset - Reset the PF
1247 * @hw: pointer to the hardware structure
1248 *
1249 * If a global reset has been triggered, this function checks
1250 * for its completion and then issues the PF reset
1251 */
ice_pf_reset(struct ice_hw * hw)1252 static int ice_pf_reset(struct ice_hw *hw)
1253 {
1254 u32 cnt, reg;
1255
1256 /* If at function entry a global reset was already in progress, i.e.
1257 * state is not 'device active' or any of the reset done bits are not
1258 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1259 * global reset is done.
1260 */
1261 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1262 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1263 /* poll on global reset currently in progress until done */
1264 if (ice_check_reset(hw))
1265 return -EIO;
1266
1267 return 0;
1268 }
1269
1270 /* Reset the PF */
1271 reg = rd32(hw, PFGEN_CTRL);
1272
1273 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1274
1275 /* Wait for the PFR to complete. The wait time is the global config lock
1276 * timeout plus the PFR timeout which will account for a possible reset
1277 * that is occurring during a download package operation.
1278 */
1279 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1280 ICE_PF_RESET_WAIT_COUNT; cnt++) {
1281 reg = rd32(hw, PFGEN_CTRL);
1282 if (!(reg & PFGEN_CTRL_PFSWR_M))
1283 break;
1284
1285 mdelay(1);
1286 }
1287
1288 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1289 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1290 return -EIO;
1291 }
1292
1293 return 0;
1294 }
1295
1296 /**
1297 * ice_reset - Perform different types of reset
1298 * @hw: pointer to the hardware structure
1299 * @req: reset request
1300 *
1301 * This function triggers a reset as specified by the req parameter.
1302 *
1303 * Note:
1304 * If anything other than a PF reset is triggered, PXE mode is restored.
1305 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1306 * interface has been restored in the rebuild flow.
1307 */
ice_reset(struct ice_hw * hw,enum ice_reset_req req)1308 int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1309 {
1310 u32 val = 0;
1311
1312 switch (req) {
1313 case ICE_RESET_PFR:
1314 return ice_pf_reset(hw);
1315 case ICE_RESET_CORER:
1316 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1317 val = GLGEN_RTRIG_CORER_M;
1318 break;
1319 case ICE_RESET_GLOBR:
1320 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1321 val = GLGEN_RTRIG_GLOBR_M;
1322 break;
1323 default:
1324 return -EINVAL;
1325 }
1326
1327 val |= rd32(hw, GLGEN_RTRIG);
1328 wr32(hw, GLGEN_RTRIG, val);
1329 ice_flush(hw);
1330
1331 /* wait for the FW to be ready */
1332 return ice_check_reset(hw);
1333 }
1334
1335 /**
1336 * ice_copy_rxq_ctx_to_hw - Copy packed Rx queue context to HW registers
1337 * @hw: pointer to the hardware structure
1338 * @rxq_ctx: pointer to the packed Rx queue context
1339 * @rxq_index: the index of the Rx queue
1340 */
ice_copy_rxq_ctx_to_hw(struct ice_hw * hw,const ice_rxq_ctx_buf_t * rxq_ctx,u32 rxq_index)1341 static void ice_copy_rxq_ctx_to_hw(struct ice_hw *hw,
1342 const ice_rxq_ctx_buf_t *rxq_ctx,
1343 u32 rxq_index)
1344 {
1345 /* Copy each dword separately to HW */
1346 for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1347 u32 ctx = ((const u32 *)rxq_ctx)[i];
1348
1349 wr32(hw, QRX_CONTEXT(i, rxq_index), ctx);
1350
1351 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, ctx);
1352 }
1353 }
1354
1355 /**
1356 * ice_copy_rxq_ctx_from_hw - Copy packed Rx Queue context from HW registers
1357 * @hw: pointer to the hardware structure
1358 * @rxq_ctx: pointer to the packed Rx queue context
1359 * @rxq_index: the index of the Rx queue
1360 */
ice_copy_rxq_ctx_from_hw(struct ice_hw * hw,ice_rxq_ctx_buf_t * rxq_ctx,u32 rxq_index)1361 static void ice_copy_rxq_ctx_from_hw(struct ice_hw *hw,
1362 ice_rxq_ctx_buf_t *rxq_ctx,
1363 u32 rxq_index)
1364 {
1365 u32 *ctx = (u32 *)rxq_ctx;
1366
1367 /* Copy each dword separately from HW */
1368 for (int i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++, ctx++) {
1369 *ctx = rd32(hw, QRX_CONTEXT(i, rxq_index));
1370
1371 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, *ctx);
1372 }
1373 }
1374
1375 #define ICE_CTX_STORE(struct_name, struct_field, width, lsb) \
1376 PACKED_FIELD((lsb) + (width) - 1, (lsb), struct struct_name, struct_field)
1377
1378 /* LAN Rx Queue Context */
1379 static const struct packed_field_u8 ice_rlan_ctx_fields[] = {
1380 /* Field Width LSB */
1381 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1382 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1383 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1384 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1385 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1386 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1387 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1388 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1389 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1390 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1391 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1392 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1393 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1394 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1395 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1396 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1397 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1398 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1399 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1400 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
1401 };
1402
1403 /**
1404 * ice_pack_rxq_ctx - Pack Rx queue context into a HW buffer
1405 * @ctx: the Rx queue context to pack
1406 * @buf: the HW buffer to pack into
1407 *
1408 * Pack the Rx queue context from the CPU-friendly unpacked buffer into its
1409 * bit-packed HW layout.
1410 */
ice_pack_rxq_ctx(const struct ice_rlan_ctx * ctx,ice_rxq_ctx_buf_t * buf)1411 static void ice_pack_rxq_ctx(const struct ice_rlan_ctx *ctx,
1412 ice_rxq_ctx_buf_t *buf)
1413 {
1414 pack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1415 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1416 }
1417
1418 /**
1419 * ice_unpack_rxq_ctx - Unpack Rx queue context from a HW buffer
1420 * @buf: the HW buffer to unpack from
1421 * @ctx: the Rx queue context to unpack
1422 *
1423 * Unpack the Rx queue context from the HW buffer into the CPU-friendly
1424 * structure.
1425 */
ice_unpack_rxq_ctx(const ice_rxq_ctx_buf_t * buf,struct ice_rlan_ctx * ctx)1426 static void ice_unpack_rxq_ctx(const ice_rxq_ctx_buf_t *buf,
1427 struct ice_rlan_ctx *ctx)
1428 {
1429 unpack_fields(buf, sizeof(*buf), ctx, ice_rlan_ctx_fields,
1430 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1431 }
1432
1433 /**
1434 * ice_write_rxq_ctx - Write Rx Queue context to hardware
1435 * @hw: pointer to the hardware structure
1436 * @rlan_ctx: pointer to the unpacked Rx queue context
1437 * @rxq_index: the index of the Rx queue
1438 *
1439 * Pack the sparse Rx Queue context into dense hardware format and write it
1440 * into the HW register space.
1441 *
1442 * Return: 0 on success, or -EINVAL if the Rx queue index is invalid.
1443 */
ice_write_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1444 int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1445 u32 rxq_index)
1446 {
1447 ice_rxq_ctx_buf_t buf = {};
1448
1449 if (rxq_index > QRX_CTRL_MAX_INDEX)
1450 return -EINVAL;
1451
1452 ice_pack_rxq_ctx(rlan_ctx, &buf);
1453 ice_copy_rxq_ctx_to_hw(hw, &buf, rxq_index);
1454
1455 return 0;
1456 }
1457
1458 /**
1459 * ice_read_rxq_ctx - Read Rx queue context from HW
1460 * @hw: pointer to the hardware structure
1461 * @rlan_ctx: pointer to the Rx queue context
1462 * @rxq_index: the index of the Rx queue
1463 *
1464 * Read the Rx queue context from the hardware registers, and unpack it into
1465 * the sparse Rx queue context structure.
1466 *
1467 * Returns: 0 on success, or -EINVAL if the Rx queue index is invalid.
1468 */
ice_read_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1469 int ice_read_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1470 u32 rxq_index)
1471 {
1472 ice_rxq_ctx_buf_t buf = {};
1473
1474 if (rxq_index > QRX_CTRL_MAX_INDEX)
1475 return -EINVAL;
1476
1477 ice_copy_rxq_ctx_from_hw(hw, &buf, rxq_index);
1478 ice_unpack_rxq_ctx(&buf, rlan_ctx);
1479
1480 return 0;
1481 }
1482
1483 /* LAN Tx Queue Context */
1484 static const struct packed_field_u8 ice_tlan_ctx_fields[] = {
1485 /* Field Width LSB */
1486 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1487 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1488 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1489 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1490 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1491 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1492 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1493 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1494 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
1495 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1496 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1497 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1498 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1499 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1500 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1501 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1502 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1503 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1504 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1505 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1506 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1507 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1508 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1509 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1510 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1511 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1512 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1513 };
1514
1515 /**
1516 * ice_pack_txq_ctx - Pack Tx queue context into Admin Queue buffer
1517 * @ctx: the Tx queue context to pack
1518 * @buf: the Admin Queue HW buffer to pack into
1519 *
1520 * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1521 * bit-packed Admin Queue layout.
1522 */
ice_pack_txq_ctx(const struct ice_tlan_ctx * ctx,ice_txq_ctx_buf_t * buf)1523 void ice_pack_txq_ctx(const struct ice_tlan_ctx *ctx, ice_txq_ctx_buf_t *buf)
1524 {
1525 pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1526 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1527 }
1528
1529 /**
1530 * ice_pack_txq_ctx_full - Pack Tx queue context into a HW buffer
1531 * @ctx: the Tx queue context to pack
1532 * @buf: the HW buffer to pack into
1533 *
1534 * Pack the Tx queue context from the CPU-friendly unpacked buffer into its
1535 * bit-packed HW layout, including the internal data portion.
1536 */
ice_pack_txq_ctx_full(const struct ice_tlan_ctx * ctx,ice_txq_ctx_buf_full_t * buf)1537 static void ice_pack_txq_ctx_full(const struct ice_tlan_ctx *ctx,
1538 ice_txq_ctx_buf_full_t *buf)
1539 {
1540 pack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1541 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1542 }
1543
1544 /**
1545 * ice_unpack_txq_ctx_full - Unpack Tx queue context from a HW buffer
1546 * @buf: the HW buffer to unpack from
1547 * @ctx: the Tx queue context to unpack
1548 *
1549 * Unpack the Tx queue context from the HW buffer (including the full internal
1550 * state) into the CPU-friendly structure.
1551 */
ice_unpack_txq_ctx_full(const ice_txq_ctx_buf_full_t * buf,struct ice_tlan_ctx * ctx)1552 static void ice_unpack_txq_ctx_full(const ice_txq_ctx_buf_full_t *buf,
1553 struct ice_tlan_ctx *ctx)
1554 {
1555 unpack_fields(buf, sizeof(*buf), ctx, ice_tlan_ctx_fields,
1556 QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST);
1557 }
1558
1559 /**
1560 * ice_copy_txq_ctx_from_hw - Copy Tx Queue context from HW registers
1561 * @hw: pointer to the hardware structure
1562 * @txq_ctx: pointer to the packed Tx queue context, including internal state
1563 * @txq_index: the index of the Tx queue
1564 *
1565 * Copy Tx Queue context from HW register space to dense structure
1566 */
ice_copy_txq_ctx_from_hw(struct ice_hw * hw,ice_txq_ctx_buf_full_t * txq_ctx,u32 txq_index)1567 static void ice_copy_txq_ctx_from_hw(struct ice_hw *hw,
1568 ice_txq_ctx_buf_full_t *txq_ctx,
1569 u32 txq_index)
1570 {
1571 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
1572 u32 *ctx = (u32 *)txq_ctx;
1573 u32 txq_base, reg;
1574
1575 /* Get Tx queue base within card space */
1576 txq_base = rd32(hw, PFLAN_TX_QALLOC(hw->pf_id));
1577 txq_base = FIELD_GET(PFLAN_TX_QALLOC_FIRSTQ_M, txq_base);
1578
1579 reg = FIELD_PREP(GLCOMM_QTX_CNTX_CTL_CMD_M,
1580 GLCOMM_QTX_CNTX_CTL_CMD_READ) |
1581 FIELD_PREP(GLCOMM_QTX_CNTX_CTL_QUEUE_ID_M,
1582 txq_base + txq_index) |
1583 GLCOMM_QTX_CNTX_CTL_CMD_EXEC_M;
1584
1585 /* Prevent other PFs on the same adapter from accessing the Tx queue
1586 * context interface concurrently.
1587 */
1588 spin_lock(&pf->adapter->txq_ctx_lock);
1589
1590 wr32(hw, GLCOMM_QTX_CNTX_CTL, reg);
1591 ice_flush(hw);
1592
1593 /* Copy each dword separately from HW */
1594 for (int i = 0; i < ICE_TXQ_CTX_FULL_SIZE_DWORDS; i++, ctx++) {
1595 *ctx = rd32(hw, GLCOMM_QTX_CNTX_DATA(i));
1596
1597 ice_debug(hw, ICE_DBG_QCTX, "qtxdata[%d]: %08X\n", i, *ctx);
1598 }
1599
1600 spin_unlock(&pf->adapter->txq_ctx_lock);
1601 }
1602
1603 /**
1604 * ice_copy_txq_ctx_to_hw - Copy Tx Queue context into HW registers
1605 * @hw: pointer to the hardware structure
1606 * @txq_ctx: pointer to the packed Tx queue context, including internal state
1607 * @txq_index: the index of the Tx queue
1608 */
ice_copy_txq_ctx_to_hw(struct ice_hw * hw,const ice_txq_ctx_buf_full_t * txq_ctx,u32 txq_index)1609 static void ice_copy_txq_ctx_to_hw(struct ice_hw *hw,
1610 const ice_txq_ctx_buf_full_t *txq_ctx,
1611 u32 txq_index)
1612 {
1613 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
1614 u32 txq_base, reg;
1615
1616 /* Get Tx queue base within card space */
1617 txq_base = rd32(hw, PFLAN_TX_QALLOC(hw->pf_id));
1618 txq_base = FIELD_GET(PFLAN_TX_QALLOC_FIRSTQ_M, txq_base);
1619
1620 reg = FIELD_PREP(GLCOMM_QTX_CNTX_CTL_CMD_M,
1621 GLCOMM_QTX_CNTX_CTL_CMD_WRITE_NO_DYN) |
1622 FIELD_PREP(GLCOMM_QTX_CNTX_CTL_QUEUE_ID_M,
1623 txq_base + txq_index) |
1624 GLCOMM_QTX_CNTX_CTL_CMD_EXEC_M;
1625
1626 /* Prevent other PFs on the same adapter from accessing the Tx queue
1627 * context interface concurrently.
1628 */
1629 spin_lock(&pf->adapter->txq_ctx_lock);
1630
1631 /* Copy each dword separately to HW */
1632 for (int i = 0; i < ICE_TXQ_CTX_FULL_SIZE_DWORDS; i++) {
1633 u32 ctx = ((const u32 *)txq_ctx)[i];
1634
1635 wr32(hw, GLCOMM_QTX_CNTX_DATA(i), ctx);
1636
1637 ice_debug(hw, ICE_DBG_QCTX, "qtxdata[%d]: %08X\n", i, ctx);
1638 }
1639
1640 wr32(hw, GLCOMM_QTX_CNTX_CTL, reg);
1641 ice_flush(hw);
1642
1643 spin_unlock(&pf->adapter->txq_ctx_lock);
1644 }
1645
1646 /**
1647 * ice_read_txq_ctx - Read Tx queue context from HW
1648 * @hw: pointer to the hardware structure
1649 * @tlan_ctx: pointer to the Tx queue context
1650 * @txq_index: the index of the Tx queue
1651 *
1652 * Read the Tx queue context from the HW registers, then unpack it into the
1653 * ice_tlan_ctx structure for use.
1654 *
1655 * Returns: 0 on success, or -EINVAL on an invalid Tx queue index.
1656 */
ice_read_txq_ctx(struct ice_hw * hw,struct ice_tlan_ctx * tlan_ctx,u32 txq_index)1657 int ice_read_txq_ctx(struct ice_hw *hw, struct ice_tlan_ctx *tlan_ctx,
1658 u32 txq_index)
1659 {
1660 ice_txq_ctx_buf_full_t buf = {};
1661
1662 if (txq_index > QTX_COMM_HEAD_MAX_INDEX)
1663 return -EINVAL;
1664
1665 ice_copy_txq_ctx_from_hw(hw, &buf, txq_index);
1666 ice_unpack_txq_ctx_full(&buf, tlan_ctx);
1667
1668 return 0;
1669 }
1670
1671 /**
1672 * ice_write_txq_ctx - Write Tx queue context to HW
1673 * @hw: pointer to the hardware structure
1674 * @tlan_ctx: pointer to the Tx queue context
1675 * @txq_index: the index of the Tx queue
1676 *
1677 * Pack the Tx queue context into the dense HW layout, then write it into the
1678 * HW registers.
1679 *
1680 * Returns: 0 on success, or -EINVAL on an invalid Tx queue index.
1681 */
ice_write_txq_ctx(struct ice_hw * hw,struct ice_tlan_ctx * tlan_ctx,u32 txq_index)1682 int ice_write_txq_ctx(struct ice_hw *hw, struct ice_tlan_ctx *tlan_ctx,
1683 u32 txq_index)
1684 {
1685 ice_txq_ctx_buf_full_t buf = {};
1686
1687 if (txq_index > QTX_COMM_HEAD_MAX_INDEX)
1688 return -EINVAL;
1689
1690 ice_pack_txq_ctx_full(tlan_ctx, &buf);
1691 ice_copy_txq_ctx_to_hw(hw, &buf, txq_index);
1692
1693 return 0;
1694 }
1695
1696 /* Sideband Queue command wrappers */
1697
1698 /**
1699 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1700 * @hw: pointer to the HW struct
1701 * @desc: descriptor describing the command
1702 * @buf: buffer to use for indirect commands (NULL for direct commands)
1703 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1704 * @cd: pointer to command details structure
1705 */
1706 static int
ice_sbq_send_cmd(struct ice_hw * hw,struct ice_sbq_cmd_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1707 ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1708 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1709 {
1710 return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1711 (struct libie_aq_desc *)desc, buf, buf_size, cd);
1712 }
1713
1714 /**
1715 * ice_sbq_rw_reg - Fill Sideband Queue command
1716 * @hw: pointer to the HW struct
1717 * @in: message info to be filled in descriptor
1718 * @flags: control queue descriptor flags
1719 */
ice_sbq_rw_reg(struct ice_hw * hw,struct ice_sbq_msg_input * in,u16 flags)1720 int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1721 {
1722 struct ice_sbq_cmd_desc desc = {0};
1723 struct ice_sbq_msg_req msg = {0};
1724 u16 msg_len;
1725 int status;
1726
1727 msg_len = sizeof(msg);
1728
1729 msg.dest_dev = in->dest_dev;
1730 msg.opcode = in->opcode;
1731 msg.flags = ICE_SBQ_MSG_FLAGS;
1732 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1733 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1734 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1735
1736 if (in->opcode)
1737 msg.data = cpu_to_le32(in->data);
1738 else
1739 /* data read comes back in completion, so shorten the struct by
1740 * sizeof(msg.data)
1741 */
1742 msg_len -= sizeof(msg.data);
1743
1744 desc.flags = cpu_to_le16(flags);
1745 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1746 desc.param0.cmd_len = cpu_to_le16(msg_len);
1747 status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1748 if (!status && !in->opcode)
1749 in->data = le32_to_cpu
1750 (((struct ice_sbq_msg_cmpl *)&msg)->data);
1751 return status;
1752 }
1753
1754 /* FW Admin Queue command wrappers */
1755
1756 /* Software lock/mutex that is meant to be held while the Global Config Lock
1757 * in firmware is acquired by the software to prevent most (but not all) types
1758 * of AQ commands from being sent to FW
1759 */
1760 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1761
1762 /**
1763 * ice_should_retry_sq_send_cmd
1764 * @opcode: AQ opcode
1765 *
1766 * Decide if we should retry the send command routine for the ATQ, depending
1767 * on the opcode.
1768 */
ice_should_retry_sq_send_cmd(u16 opcode)1769 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1770 {
1771 switch (opcode) {
1772 case ice_aqc_opc_get_link_topo:
1773 case ice_aqc_opc_lldp_stop:
1774 case ice_aqc_opc_lldp_start:
1775 case ice_aqc_opc_lldp_filter_ctrl:
1776 return true;
1777 }
1778
1779 return false;
1780 }
1781
1782 /**
1783 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1784 * @hw: pointer to the HW struct
1785 * @cq: pointer to the specific Control queue
1786 * @desc: prefilled descriptor describing the command
1787 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1788 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1789 * @cd: pointer to command details structure
1790 *
1791 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1792 * Queue if the EBUSY AQ error is returned.
1793 */
1794 static int
ice_sq_send_cmd_retry(struct ice_hw * hw,struct ice_ctl_q_info * cq,struct libie_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1795 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1796 struct libie_aq_desc *desc, void *buf, u16 buf_size,
1797 struct ice_sq_cd *cd)
1798 {
1799 struct libie_aq_desc desc_cpy;
1800 bool is_cmd_for_retry;
1801 u8 idx = 0;
1802 u16 opcode;
1803 int status;
1804
1805 opcode = le16_to_cpu(desc->opcode);
1806 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1807 memset(&desc_cpy, 0, sizeof(desc_cpy));
1808
1809 if (is_cmd_for_retry) {
1810 /* All retryable cmds are direct, without buf. */
1811 WARN_ON(buf);
1812
1813 memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1814 }
1815
1816 do {
1817 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1818
1819 if (!is_cmd_for_retry || !status ||
1820 hw->adminq.sq_last_status != LIBIE_AQ_RC_EBUSY)
1821 break;
1822
1823 memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1824
1825 msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1826
1827 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1828
1829 return status;
1830 }
1831
1832 /**
1833 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1834 * @hw: pointer to the HW struct
1835 * @desc: descriptor describing the command
1836 * @buf: buffer to use for indirect commands (NULL for direct commands)
1837 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1838 * @cd: pointer to command details structure
1839 *
1840 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1841 */
1842 int
ice_aq_send_cmd(struct ice_hw * hw,struct libie_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1843 ice_aq_send_cmd(struct ice_hw *hw, struct libie_aq_desc *desc, void *buf,
1844 u16 buf_size, struct ice_sq_cd *cd)
1845 {
1846 struct libie_aqc_req_res *cmd = libie_aq_raw(desc);
1847 bool lock_acquired = false;
1848 int status;
1849
1850 /* When a package download is in process (i.e. when the firmware's
1851 * Global Configuration Lock resource is held), only the Download
1852 * Package, Get Version, Get Package Info List, Upload Section,
1853 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1854 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1855 * Recipes to Profile Association, and Release Resource (with resource
1856 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1857 * must block until the package download completes and the Global Config
1858 * Lock is released. See also ice_acquire_global_cfg_lock().
1859 */
1860 switch (le16_to_cpu(desc->opcode)) {
1861 case ice_aqc_opc_download_pkg:
1862 case ice_aqc_opc_get_pkg_info_list:
1863 case ice_aqc_opc_get_ver:
1864 case ice_aqc_opc_upload_section:
1865 case ice_aqc_opc_update_pkg:
1866 case ice_aqc_opc_set_port_params:
1867 case ice_aqc_opc_get_vlan_mode_parameters:
1868 case ice_aqc_opc_set_vlan_mode_parameters:
1869 case ice_aqc_opc_set_tx_topo:
1870 case ice_aqc_opc_get_tx_topo:
1871 case ice_aqc_opc_add_recipe:
1872 case ice_aqc_opc_recipe_to_profile:
1873 case ice_aqc_opc_get_recipe:
1874 case ice_aqc_opc_get_recipe_to_profile:
1875 break;
1876 case ice_aqc_opc_release_res:
1877 if (le16_to_cpu(cmd->res_id) == LIBIE_AQC_RES_ID_GLBL_LOCK)
1878 break;
1879 fallthrough;
1880 default:
1881 mutex_lock(&ice_global_cfg_lock_sw);
1882 lock_acquired = true;
1883 break;
1884 }
1885
1886 status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1887 if (lock_acquired)
1888 mutex_unlock(&ice_global_cfg_lock_sw);
1889
1890 return status;
1891 }
1892
1893 /**
1894 * ice_aq_get_fw_ver
1895 * @hw: pointer to the HW struct
1896 * @cd: pointer to command details structure or NULL
1897 *
1898 * Get the firmware version (0x0001) from the admin queue commands
1899 */
ice_aq_get_fw_ver(struct ice_hw * hw,struct ice_sq_cd * cd)1900 int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1901 {
1902 struct libie_aqc_get_ver *resp;
1903 struct libie_aq_desc desc;
1904 int status;
1905
1906 resp = &desc.params.get_ver;
1907
1908 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1909
1910 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1911
1912 if (!status) {
1913 hw->fw_branch = resp->fw_branch;
1914 hw->fw_maj_ver = resp->fw_major;
1915 hw->fw_min_ver = resp->fw_minor;
1916 hw->fw_patch = resp->fw_patch;
1917 hw->fw_build = le32_to_cpu(resp->fw_build);
1918 hw->api_branch = resp->api_branch;
1919 hw->api_maj_ver = resp->api_major;
1920 hw->api_min_ver = resp->api_minor;
1921 hw->api_patch = resp->api_patch;
1922 }
1923
1924 return status;
1925 }
1926
1927 /**
1928 * ice_aq_send_driver_ver
1929 * @hw: pointer to the HW struct
1930 * @dv: driver's major, minor version
1931 * @cd: pointer to command details structure or NULL
1932 *
1933 * Send the driver version (0x0002) to the firmware
1934 */
1935 int
ice_aq_send_driver_ver(struct ice_hw * hw,struct ice_driver_ver * dv,struct ice_sq_cd * cd)1936 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1937 struct ice_sq_cd *cd)
1938 {
1939 struct libie_aqc_driver_ver *cmd;
1940 struct libie_aq_desc desc;
1941 u16 len;
1942
1943 cmd = &desc.params.driver_ver;
1944
1945 if (!dv)
1946 return -EINVAL;
1947
1948 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1949
1950 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
1951 cmd->major_ver = dv->major_ver;
1952 cmd->minor_ver = dv->minor_ver;
1953 cmd->build_ver = dv->build_ver;
1954 cmd->subbuild_ver = dv->subbuild_ver;
1955
1956 len = 0;
1957 while (len < sizeof(dv->driver_string) &&
1958 isascii(dv->driver_string[len]) && dv->driver_string[len])
1959 len++;
1960
1961 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1962 }
1963
1964 /**
1965 * ice_aq_q_shutdown
1966 * @hw: pointer to the HW struct
1967 * @unloading: is the driver unloading itself
1968 *
1969 * Tell the Firmware that we're shutting down the AdminQ and whether
1970 * or not the driver is unloading as well (0x0003).
1971 */
ice_aq_q_shutdown(struct ice_hw * hw,bool unloading)1972 int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1973 {
1974 struct ice_aqc_q_shutdown *cmd;
1975 struct libie_aq_desc desc;
1976
1977 cmd = libie_aq_raw(&desc);
1978
1979 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1980
1981 if (unloading)
1982 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1983
1984 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1985 }
1986
1987 /**
1988 * ice_aq_req_res
1989 * @hw: pointer to the HW struct
1990 * @res: resource ID
1991 * @access: access type
1992 * @sdp_number: resource number
1993 * @timeout: the maximum time in ms that the driver may hold the resource
1994 * @cd: pointer to command details structure or NULL
1995 *
1996 * Requests common resource using the admin queue commands (0x0008).
1997 * When attempting to acquire the Global Config Lock, the driver can
1998 * learn of three states:
1999 * 1) 0 - acquired lock, and can perform download package
2000 * 2) -EIO - did not get lock, driver should fail to load
2001 * 3) -EALREADY - did not get lock, but another driver has
2002 * successfully downloaded the package; the driver does
2003 * not have to download the package and can continue
2004 * loading
2005 *
2006 * Note that if the caller is in an acquire lock, perform action, release lock
2007 * phase of operation, it is possible that the FW may detect a timeout and issue
2008 * a CORER. In this case, the driver will receive a CORER interrupt and will
2009 * have to determine its cause. The calling thread that is handling this flow
2010 * will likely get an error propagated back to it indicating the Download
2011 * Package, Update Package or the Release Resource AQ commands timed out.
2012 */
2013 static int
ice_aq_req_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u8 sdp_number,u32 * timeout,struct ice_sq_cd * cd)2014 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2015 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
2016 struct ice_sq_cd *cd)
2017 {
2018 struct libie_aqc_req_res *cmd_resp;
2019 struct libie_aq_desc desc;
2020 int status;
2021
2022 cmd_resp = &desc.params.res_owner;
2023
2024 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
2025
2026 cmd_resp->res_id = cpu_to_le16(res);
2027 cmd_resp->access_type = cpu_to_le16(access);
2028 cmd_resp->res_number = cpu_to_le32(sdp_number);
2029 cmd_resp->timeout = cpu_to_le32(*timeout);
2030 *timeout = 0;
2031
2032 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2033
2034 /* The completion specifies the maximum time in ms that the driver
2035 * may hold the resource in the Timeout field.
2036 */
2037
2038 /* Global config lock response utilizes an additional status field.
2039 *
2040 * If the Global config lock resource is held by some other driver, the
2041 * command completes with LIBIE_AQ_RES_GLBL_IN_PROG in the status field
2042 * and the timeout field indicates the maximum time the current owner
2043 * of the resource has to free it.
2044 */
2045 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
2046 if (le16_to_cpu(cmd_resp->status) == LIBIE_AQ_RES_GLBL_SUCCESS) {
2047 *timeout = le32_to_cpu(cmd_resp->timeout);
2048 return 0;
2049 } else if (le16_to_cpu(cmd_resp->status) ==
2050 LIBIE_AQ_RES_GLBL_IN_PROG) {
2051 *timeout = le32_to_cpu(cmd_resp->timeout);
2052 return -EIO;
2053 } else if (le16_to_cpu(cmd_resp->status) ==
2054 LIBIE_AQ_RES_GLBL_DONE) {
2055 return -EALREADY;
2056 }
2057
2058 /* invalid FW response, force a timeout immediately */
2059 *timeout = 0;
2060 return -EIO;
2061 }
2062
2063 /* If the resource is held by some other driver, the command completes
2064 * with a busy return value and the timeout field indicates the maximum
2065 * time the current owner of the resource has to free it.
2066 */
2067 if (!status || hw->adminq.sq_last_status == LIBIE_AQ_RC_EBUSY)
2068 *timeout = le32_to_cpu(cmd_resp->timeout);
2069
2070 return status;
2071 }
2072
2073 /**
2074 * ice_aq_release_res
2075 * @hw: pointer to the HW struct
2076 * @res: resource ID
2077 * @sdp_number: resource number
2078 * @cd: pointer to command details structure or NULL
2079 *
2080 * release common resource using the admin queue commands (0x0009)
2081 */
2082 static int
ice_aq_release_res(struct ice_hw * hw,enum ice_aq_res_ids res,u8 sdp_number,struct ice_sq_cd * cd)2083 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
2084 struct ice_sq_cd *cd)
2085 {
2086 struct libie_aqc_req_res *cmd;
2087 struct libie_aq_desc desc;
2088
2089 cmd = &desc.params.res_owner;
2090
2091 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
2092
2093 cmd->res_id = cpu_to_le16(res);
2094 cmd->res_number = cpu_to_le32(sdp_number);
2095
2096 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2097 }
2098
2099 /**
2100 * ice_acquire_res
2101 * @hw: pointer to the HW structure
2102 * @res: resource ID
2103 * @access: access type (read or write)
2104 * @timeout: timeout in milliseconds
2105 *
2106 * This function will attempt to acquire the ownership of a resource.
2107 */
2108 int
ice_acquire_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u32 timeout)2109 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
2110 enum ice_aq_res_access_type access, u32 timeout)
2111 {
2112 #define ICE_RES_POLLING_DELAY_MS 10
2113 u32 delay = ICE_RES_POLLING_DELAY_MS;
2114 u32 time_left = timeout;
2115 int status;
2116
2117 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2118
2119 /* A return code of -EALREADY means that another driver has
2120 * previously acquired the resource and performed any necessary updates;
2121 * in this case the caller does not obtain the resource and has no
2122 * further work to do.
2123 */
2124 if (status == -EALREADY)
2125 goto ice_acquire_res_exit;
2126
2127 if (status)
2128 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
2129
2130 /* If necessary, poll until the current lock owner timeouts */
2131 timeout = time_left;
2132 while (status && timeout && time_left) {
2133 mdelay(delay);
2134 timeout = (timeout > delay) ? timeout - delay : 0;
2135 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
2136
2137 if (status == -EALREADY)
2138 /* lock free, but no work to do */
2139 break;
2140
2141 if (!status)
2142 /* lock acquired */
2143 break;
2144 }
2145 if (status && status != -EALREADY)
2146 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
2147
2148 ice_acquire_res_exit:
2149 if (status == -EALREADY) {
2150 if (access == ICE_RES_WRITE)
2151 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
2152 else
2153 ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
2154 }
2155 return status;
2156 }
2157
2158 /**
2159 * ice_release_res
2160 * @hw: pointer to the HW structure
2161 * @res: resource ID
2162 *
2163 * This function will release a resource using the proper Admin Command.
2164 */
ice_release_res(struct ice_hw * hw,enum ice_aq_res_ids res)2165 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
2166 {
2167 unsigned long timeout;
2168 int status;
2169
2170 /* there are some rare cases when trying to release the resource
2171 * results in an admin queue timeout, so handle them correctly
2172 */
2173 timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
2174 do {
2175 status = ice_aq_release_res(hw, res, 0, NULL);
2176 if (status != -EIO)
2177 break;
2178 usleep_range(1000, 2000);
2179 } while (time_before(jiffies, timeout));
2180 }
2181
2182 /**
2183 * ice_aq_alloc_free_res - command to allocate/free resources
2184 * @hw: pointer to the HW struct
2185 * @buf: Indirect buffer to hold data parameters and response
2186 * @buf_size: size of buffer for indirect commands
2187 * @opc: pass in the command opcode
2188 *
2189 * Helper function to allocate/free resources using the admin queue commands
2190 */
ice_aq_alloc_free_res(struct ice_hw * hw,struct ice_aqc_alloc_free_res_elem * buf,u16 buf_size,enum ice_adminq_opc opc)2191 int ice_aq_alloc_free_res(struct ice_hw *hw,
2192 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
2193 enum ice_adminq_opc opc)
2194 {
2195 struct ice_aqc_alloc_free_res_cmd *cmd;
2196 struct libie_aq_desc desc;
2197
2198 cmd = libie_aq_raw(&desc);
2199
2200 if (!buf || buf_size < flex_array_size(buf, elem, 1))
2201 return -EINVAL;
2202
2203 ice_fill_dflt_direct_cmd_desc(&desc, opc);
2204
2205 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
2206
2207 cmd->num_entries = cpu_to_le16(1);
2208
2209 return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
2210 }
2211
2212 /**
2213 * ice_alloc_hw_res - allocate resource
2214 * @hw: pointer to the HW struct
2215 * @type: type of resource
2216 * @num: number of resources to allocate
2217 * @btm: allocate from bottom
2218 * @res: pointer to array that will receive the resources
2219 */
2220 int
ice_alloc_hw_res(struct ice_hw * hw,u16 type,u16 num,bool btm,u16 * res)2221 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2222 {
2223 struct ice_aqc_alloc_free_res_elem *buf;
2224 u16 buf_len;
2225 int status;
2226
2227 buf_len = struct_size(buf, elem, num);
2228 buf = kzalloc(buf_len, GFP_KERNEL);
2229 if (!buf)
2230 return -ENOMEM;
2231
2232 /* Prepare buffer to allocate resource. */
2233 buf->num_elems = cpu_to_le16(num);
2234 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2235 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2236 if (btm)
2237 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2238
2239 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2240 if (status)
2241 goto ice_alloc_res_exit;
2242
2243 memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2244
2245 ice_alloc_res_exit:
2246 kfree(buf);
2247 return status;
2248 }
2249
2250 /**
2251 * ice_free_hw_res - free allocated HW resource
2252 * @hw: pointer to the HW struct
2253 * @type: type of resource to free
2254 * @num: number of resources
2255 * @res: pointer to array that contains the resources to free
2256 */
ice_free_hw_res(struct ice_hw * hw,u16 type,u16 num,u16 * res)2257 int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2258 {
2259 struct ice_aqc_alloc_free_res_elem *buf;
2260 u16 buf_len;
2261 int status;
2262
2263 buf_len = struct_size(buf, elem, num);
2264 buf = kzalloc(buf_len, GFP_KERNEL);
2265 if (!buf)
2266 return -ENOMEM;
2267
2268 /* Prepare buffer to free resource. */
2269 buf->num_elems = cpu_to_le16(num);
2270 buf->res_type = cpu_to_le16(type);
2271 memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2272
2273 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2274 if (status)
2275 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2276
2277 kfree(buf);
2278 return status;
2279 }
2280
2281 /**
2282 * ice_get_num_per_func - determine number of resources per PF
2283 * @hw: pointer to the HW structure
2284 * @max: value to be evenly split between each PF
2285 *
2286 * Determine the number of valid functions by going through the bitmap returned
2287 * from parsing capabilities and use this to calculate the number of resources
2288 * per PF based on the max value passed in.
2289 */
ice_get_num_per_func(struct ice_hw * hw,u32 max)2290 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2291 {
2292 u8 funcs;
2293
2294 #define ICE_CAPS_VALID_FUNCS_M 0xFF
2295 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2296 ICE_CAPS_VALID_FUNCS_M);
2297
2298 if (!funcs)
2299 return 0;
2300
2301 return max / funcs;
2302 }
2303
2304 /**
2305 * ice_parse_common_caps - parse common device/function capabilities
2306 * @hw: pointer to the HW struct
2307 * @caps: pointer to common capabilities structure
2308 * @elem: the capability element to parse
2309 * @prefix: message prefix for tracing capabilities
2310 *
2311 * Given a capability element, extract relevant details into the common
2312 * capability structure.
2313 *
2314 * Returns: true if the capability matches one of the common capability ids,
2315 * false otherwise.
2316 */
2317 static bool
ice_parse_common_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps,struct libie_aqc_list_caps_elem * elem,const char * prefix)2318 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2319 struct libie_aqc_list_caps_elem *elem, const char *prefix)
2320 {
2321 u32 logical_id = le32_to_cpu(elem->logical_id);
2322 u32 phys_id = le32_to_cpu(elem->phys_id);
2323 u32 number = le32_to_cpu(elem->number);
2324 u16 cap = le16_to_cpu(elem->cap);
2325 bool found = true;
2326
2327 switch (cap) {
2328 case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
2329 caps->valid_functions = number;
2330 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2331 caps->valid_functions);
2332 break;
2333 case LIBIE_AQC_CAPS_SRIOV:
2334 caps->sr_iov_1_1 = (number == 1);
2335 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2336 caps->sr_iov_1_1);
2337 break;
2338 case LIBIE_AQC_CAPS_DCB:
2339 caps->dcb = (number == 1);
2340 caps->active_tc_bitmap = logical_id;
2341 caps->maxtc = phys_id;
2342 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2343 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2344 caps->active_tc_bitmap);
2345 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2346 break;
2347 case LIBIE_AQC_CAPS_RSS:
2348 caps->rss_table_size = number;
2349 caps->rss_table_entry_width = logical_id;
2350 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2351 caps->rss_table_size);
2352 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2353 caps->rss_table_entry_width);
2354 break;
2355 case LIBIE_AQC_CAPS_RXQS:
2356 caps->num_rxq = number;
2357 caps->rxq_first_id = phys_id;
2358 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2359 caps->num_rxq);
2360 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2361 caps->rxq_first_id);
2362 break;
2363 case LIBIE_AQC_CAPS_TXQS:
2364 caps->num_txq = number;
2365 caps->txq_first_id = phys_id;
2366 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2367 caps->num_txq);
2368 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2369 caps->txq_first_id);
2370 break;
2371 case LIBIE_AQC_CAPS_MSIX:
2372 caps->num_msix_vectors = number;
2373 caps->msix_vector_first_id = phys_id;
2374 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2375 caps->num_msix_vectors);
2376 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2377 caps->msix_vector_first_id);
2378 break;
2379 case LIBIE_AQC_CAPS_PENDING_NVM_VER:
2380 caps->nvm_update_pending_nvm = true;
2381 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2382 break;
2383 case LIBIE_AQC_CAPS_PENDING_OROM_VER:
2384 caps->nvm_update_pending_orom = true;
2385 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2386 break;
2387 case LIBIE_AQC_CAPS_PENDING_NET_VER:
2388 caps->nvm_update_pending_netlist = true;
2389 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2390 break;
2391 case LIBIE_AQC_CAPS_NVM_MGMT:
2392 caps->nvm_unified_update =
2393 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2394 true : false;
2395 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2396 caps->nvm_unified_update);
2397 break;
2398 case LIBIE_AQC_CAPS_RDMA:
2399 if (IS_ENABLED(CONFIG_INFINIBAND_IRDMA))
2400 caps->rdma = (number == 1);
2401 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2402 break;
2403 case LIBIE_AQC_CAPS_MAX_MTU:
2404 caps->max_mtu = number;
2405 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2406 prefix, caps->max_mtu);
2407 break;
2408 case LIBIE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2409 caps->pcie_reset_avoidance = (number > 0);
2410 ice_debug(hw, ICE_DBG_INIT,
2411 "%s: pcie_reset_avoidance = %d\n", prefix,
2412 caps->pcie_reset_avoidance);
2413 break;
2414 case LIBIE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2415 caps->reset_restrict_support = (number == 1);
2416 ice_debug(hw, ICE_DBG_INIT,
2417 "%s: reset_restrict_support = %d\n", prefix,
2418 caps->reset_restrict_support);
2419 break;
2420 case LIBIE_AQC_CAPS_FW_LAG_SUPPORT:
2421 caps->roce_lag = !!(number & LIBIE_AQC_BIT_ROCEV2_LAG);
2422 ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2423 prefix, caps->roce_lag);
2424 caps->sriov_lag = !!(number & LIBIE_AQC_BIT_SRIOV_LAG);
2425 ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2426 prefix, caps->sriov_lag);
2427 break;
2428 case LIBIE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2429 caps->tx_sched_topo_comp_mode_en = (number == 1);
2430 break;
2431 default:
2432 /* Not one of the recognized common capabilities */
2433 found = false;
2434 }
2435
2436 return found;
2437 }
2438
2439 /**
2440 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2441 * @hw: pointer to the HW structure
2442 * @caps: pointer to capabilities structure to fix
2443 *
2444 * Re-calculate the capabilities that are dependent on the number of physical
2445 * ports; i.e. some features are not supported or function differently on
2446 * devices with more than 4 ports.
2447 */
2448 static void
ice_recalc_port_limited_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps)2449 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2450 {
2451 /* This assumes device capabilities are always scanned before function
2452 * capabilities during the initialization flow.
2453 */
2454 if (hw->dev_caps.num_funcs > 4) {
2455 /* Max 4 TCs per port */
2456 caps->maxtc = 4;
2457 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2458 caps->maxtc);
2459 if (caps->rdma) {
2460 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2461 caps->rdma = 0;
2462 }
2463
2464 /* print message only when processing device capabilities
2465 * during initialization.
2466 */
2467 if (caps == &hw->dev_caps.common_cap)
2468 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2469 }
2470 }
2471
2472 /**
2473 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2474 * @hw: pointer to the HW struct
2475 * @func_p: pointer to function capabilities structure
2476 * @cap: pointer to the capability element to parse
2477 *
2478 * Extract function capabilities for ICE_AQC_CAPS_VF.
2479 */
2480 static void
ice_parse_vf_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct libie_aqc_list_caps_elem * cap)2481 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2482 struct libie_aqc_list_caps_elem *cap)
2483 {
2484 u32 logical_id = le32_to_cpu(cap->logical_id);
2485 u32 number = le32_to_cpu(cap->number);
2486
2487 func_p->num_allocd_vfs = number;
2488 func_p->vf_base_id = logical_id;
2489 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2490 func_p->num_allocd_vfs);
2491 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2492 func_p->vf_base_id);
2493 }
2494
2495 /**
2496 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2497 * @hw: pointer to the HW struct
2498 * @func_p: pointer to function capabilities structure
2499 * @cap: pointer to the capability element to parse
2500 *
2501 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2502 */
2503 static void
ice_parse_vsi_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct libie_aqc_list_caps_elem * cap)2504 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2505 struct libie_aqc_list_caps_elem *cap)
2506 {
2507 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2508 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2509 le32_to_cpu(cap->number));
2510 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2511 func_p->guar_num_vsi);
2512 }
2513
2514 /**
2515 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2516 * @hw: pointer to the HW struct
2517 * @func_p: pointer to function capabilities structure
2518 * @cap: pointer to the capability element to parse
2519 *
2520 * Extract function capabilities for ICE_AQC_CAPS_1588.
2521 */
2522 static void
ice_parse_1588_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct libie_aqc_list_caps_elem * cap)2523 ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2524 struct libie_aqc_list_caps_elem *cap)
2525 {
2526 struct ice_ts_func_info *info = &func_p->ts_func_info;
2527 u32 number = le32_to_cpu(cap->number);
2528
2529 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2530 func_p->common_cap.ieee_1588 = info->ena;
2531
2532 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2533 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2534 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2535 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2536
2537 if (hw->mac_type != ICE_MAC_GENERIC_3K_E825) {
2538 info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2539 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2540 } else {
2541 info->clk_freq = ICE_TSPLL_FREQ_156_250;
2542 info->clk_src = ICE_CLK_SRC_TIME_REF;
2543 }
2544
2545 if (info->clk_freq < NUM_ICE_TSPLL_FREQ) {
2546 info->time_ref = (enum ice_tspll_freq)info->clk_freq;
2547 } else {
2548 /* Unknown clock frequency, so assume a (probably incorrect)
2549 * default to avoid out-of-bounds look ups of frequency
2550 * related information.
2551 */
2552 ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2553 info->clk_freq);
2554 info->time_ref = ICE_TSPLL_FREQ_25_000;
2555 }
2556
2557 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2558 func_p->common_cap.ieee_1588);
2559 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2560 info->src_tmr_owned);
2561 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2562 info->tmr_ena);
2563 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2564 info->tmr_index_owned);
2565 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2566 info->tmr_index_assoc);
2567 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2568 info->clk_freq);
2569 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2570 info->clk_src);
2571 }
2572
2573 /**
2574 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2575 * @hw: pointer to the HW struct
2576 * @func_p: pointer to function capabilities structure
2577 *
2578 * Extract function capabilities for ICE_AQC_CAPS_FD.
2579 */
2580 static void
ice_parse_fdir_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p)2581 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2582 {
2583 u32 reg_val, gsize, bsize;
2584
2585 reg_val = rd32(hw, GLQF_FD_SIZE);
2586 switch (hw->mac_type) {
2587 case ICE_MAC_E830:
2588 gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2589 bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2590 break;
2591 case ICE_MAC_E810:
2592 default:
2593 gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2594 bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2595 }
2596 func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2597 func_p->fd_fltr_best_effort = bsize;
2598
2599 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2600 func_p->fd_fltr_guar);
2601 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2602 func_p->fd_fltr_best_effort);
2603 }
2604
2605 /**
2606 * ice_parse_func_caps - Parse function capabilities
2607 * @hw: pointer to the HW struct
2608 * @func_p: pointer to function capabilities structure
2609 * @buf: buffer containing the function capability records
2610 * @cap_count: the number of capabilities
2611 *
2612 * Helper function to parse function (0x000A) capabilities list. For
2613 * capabilities shared between device and function, this relies on
2614 * ice_parse_common_caps.
2615 *
2616 * Loop through the list of provided capabilities and extract the relevant
2617 * data into the function capabilities structured.
2618 */
2619 static void
ice_parse_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,void * buf,u32 cap_count)2620 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2621 void *buf, u32 cap_count)
2622 {
2623 struct libie_aqc_list_caps_elem *cap_resp;
2624 u32 i;
2625
2626 cap_resp = buf;
2627
2628 memset(func_p, 0, sizeof(*func_p));
2629
2630 for (i = 0; i < cap_count; i++) {
2631 u16 cap = le16_to_cpu(cap_resp[i].cap);
2632 bool found;
2633
2634 found = ice_parse_common_caps(hw, &func_p->common_cap,
2635 &cap_resp[i], "func caps");
2636
2637 switch (cap) {
2638 case LIBIE_AQC_CAPS_VF:
2639 ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2640 break;
2641 case LIBIE_AQC_CAPS_VSI:
2642 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2643 break;
2644 case LIBIE_AQC_CAPS_1588:
2645 ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2646 break;
2647 case LIBIE_AQC_CAPS_FD:
2648 ice_parse_fdir_func_caps(hw, func_p);
2649 break;
2650 default:
2651 /* Don't list common capabilities as unknown */
2652 if (!found)
2653 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2654 i, cap);
2655 break;
2656 }
2657 }
2658
2659 ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2660 }
2661
2662 /**
2663 * ice_func_id_to_logical_id - map from function id to logical pf id
2664 * @active_function_bitmap: active function bitmap
2665 * @pf_id: function number of device
2666 *
2667 * Return: logical PF ID.
2668 */
ice_func_id_to_logical_id(u32 active_function_bitmap,u8 pf_id)2669 static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2670 {
2671 u8 logical_id = 0;
2672 u8 i;
2673
2674 for (i = 0; i < pf_id; i++)
2675 if (active_function_bitmap & BIT(i))
2676 logical_id++;
2677
2678 return logical_id;
2679 }
2680
2681 /**
2682 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2683 * @hw: pointer to the HW struct
2684 * @dev_p: pointer to device capabilities structure
2685 * @cap: capability element to parse
2686 *
2687 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2688 */
2689 static void
ice_parse_valid_functions_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2690 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2691 struct libie_aqc_list_caps_elem *cap)
2692 {
2693 u32 number = le32_to_cpu(cap->number);
2694
2695 dev_p->num_funcs = hweight32(number);
2696 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2697 dev_p->num_funcs);
2698
2699 hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id);
2700 }
2701
2702 /**
2703 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2704 * @hw: pointer to the HW struct
2705 * @dev_p: pointer to device capabilities structure
2706 * @cap: capability element to parse
2707 *
2708 * Parse ICE_AQC_CAPS_VF for device capabilities.
2709 */
2710 static void
ice_parse_vf_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2711 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2712 struct libie_aqc_list_caps_elem *cap)
2713 {
2714 u32 number = le32_to_cpu(cap->number);
2715
2716 dev_p->num_vfs_exposed = number;
2717 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2718 dev_p->num_vfs_exposed);
2719 }
2720
2721 /**
2722 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2723 * @hw: pointer to the HW struct
2724 * @dev_p: pointer to device capabilities structure
2725 * @cap: capability element to parse
2726 *
2727 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2728 */
2729 static void
ice_parse_vsi_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2730 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2731 struct libie_aqc_list_caps_elem *cap)
2732 {
2733 u32 number = le32_to_cpu(cap->number);
2734
2735 dev_p->num_vsi_allocd_to_host = number;
2736 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2737 dev_p->num_vsi_allocd_to_host);
2738 }
2739
2740 /**
2741 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2742 * @hw: pointer to the HW struct
2743 * @dev_p: pointer to device capabilities structure
2744 * @cap: capability element to parse
2745 *
2746 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2747 */
2748 static void
ice_parse_1588_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2749 ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2750 struct libie_aqc_list_caps_elem *cap)
2751 {
2752 struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2753 u32 logical_id = le32_to_cpu(cap->logical_id);
2754 u32 phys_id = le32_to_cpu(cap->phys_id);
2755 u32 number = le32_to_cpu(cap->number);
2756
2757 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2758 dev_p->common_cap.ieee_1588 = info->ena;
2759
2760 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2761 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2762 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2763
2764 info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2765 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2766 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2767
2768 info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2769 info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2770 info->ll_phy_tmr_update = ((number & ICE_TS_LL_PHY_TMR_UPDATE_M) != 0);
2771
2772 info->ena_ports = logical_id;
2773 info->tmr_own_map = phys_id;
2774
2775 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2776 dev_p->common_cap.ieee_1588);
2777 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2778 info->tmr0_owner);
2779 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2780 info->tmr0_owned);
2781 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2782 info->tmr0_ena);
2783 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2784 info->tmr1_owner);
2785 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2786 info->tmr1_owned);
2787 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2788 info->tmr1_ena);
2789 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2790 info->ts_ll_read);
2791 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2792 info->ts_ll_int_read);
2793 ice_debug(hw, ICE_DBG_INIT, "dev caps: ll_phy_tmr_update = %u\n",
2794 info->ll_phy_tmr_update);
2795 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2796 info->ena_ports);
2797 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2798 info->tmr_own_map);
2799 }
2800
2801 /**
2802 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2803 * @hw: pointer to the HW struct
2804 * @dev_p: pointer to device capabilities structure
2805 * @cap: capability element to parse
2806 *
2807 * Parse ICE_AQC_CAPS_FD for device capabilities.
2808 */
2809 static void
ice_parse_fdir_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2810 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2811 struct libie_aqc_list_caps_elem *cap)
2812 {
2813 u32 number = le32_to_cpu(cap->number);
2814
2815 dev_p->num_flow_director_fltr = number;
2816 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2817 dev_p->num_flow_director_fltr);
2818 }
2819
2820 /**
2821 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2822 * @hw: pointer to the HW struct
2823 * @dev_p: pointer to device capabilities structure
2824 * @cap: capability element to parse
2825 *
2826 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2827 * enabled sensors.
2828 */
2829 static void
ice_parse_sensor_reading_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2830 ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2831 struct libie_aqc_list_caps_elem *cap)
2832 {
2833 dev_p->supported_sensors = le32_to_cpu(cap->number);
2834
2835 ice_debug(hw, ICE_DBG_INIT,
2836 "dev caps: supported sensors (bitmap) = 0x%x\n",
2837 dev_p->supported_sensors);
2838 }
2839
2840 /**
2841 * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2842 * @hw: pointer to the HW struct
2843 * @dev_p: pointer to device capabilities structure
2844 * @cap: capability element to parse
2845 *
2846 * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2847 */
ice_parse_nac_topo_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct libie_aqc_list_caps_elem * cap)2848 static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2849 struct ice_hw_dev_caps *dev_p,
2850 struct libie_aqc_list_caps_elem *cap)
2851 {
2852 dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2853 dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2854
2855 dev_info(ice_hw_to_dev(hw),
2856 "PF is configured in %s mode with IP instance ID %d\n",
2857 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2858 "primary" : "secondary", dev_p->nac_topo.id);
2859
2860 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2861 !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2862 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2863 !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2864 ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2865 dev_p->nac_topo.id);
2866 }
2867
2868 /**
2869 * ice_parse_dev_caps - Parse device capabilities
2870 * @hw: pointer to the HW struct
2871 * @dev_p: pointer to device capabilities structure
2872 * @buf: buffer containing the device capability records
2873 * @cap_count: the number of capabilities
2874 *
2875 * Helper device to parse device (0x000B) capabilities list. For
2876 * capabilities shared between device and function, this relies on
2877 * ice_parse_common_caps.
2878 *
2879 * Loop through the list of provided capabilities and extract the relevant
2880 * data into the device capabilities structured.
2881 */
2882 static void
ice_parse_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,void * buf,u32 cap_count)2883 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2884 void *buf, u32 cap_count)
2885 {
2886 struct libie_aqc_list_caps_elem *cap_resp;
2887 u32 i;
2888
2889 cap_resp = buf;
2890
2891 memset(dev_p, 0, sizeof(*dev_p));
2892
2893 for (i = 0; i < cap_count; i++) {
2894 u16 cap = le16_to_cpu(cap_resp[i].cap);
2895 bool found;
2896
2897 found = ice_parse_common_caps(hw, &dev_p->common_cap,
2898 &cap_resp[i], "dev caps");
2899
2900 switch (cap) {
2901 case LIBIE_AQC_CAPS_VALID_FUNCTIONS:
2902 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2903 break;
2904 case LIBIE_AQC_CAPS_VF:
2905 ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2906 break;
2907 case LIBIE_AQC_CAPS_VSI:
2908 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2909 break;
2910 case LIBIE_AQC_CAPS_1588:
2911 ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2912 break;
2913 case LIBIE_AQC_CAPS_FD:
2914 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2915 break;
2916 case LIBIE_AQC_CAPS_SENSOR_READING:
2917 ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2918 break;
2919 case LIBIE_AQC_CAPS_NAC_TOPOLOGY:
2920 ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2921 break;
2922 default:
2923 /* Don't list common capabilities as unknown */
2924 if (!found)
2925 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2926 i, cap);
2927 break;
2928 }
2929 }
2930
2931 ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2932 }
2933
2934 /**
2935 * ice_is_phy_rclk_in_netlist
2936 * @hw: pointer to the hw struct
2937 *
2938 * Check if the PHY Recovered Clock device is present in the netlist
2939 */
ice_is_phy_rclk_in_netlist(struct ice_hw * hw)2940 bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2941 {
2942 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2943 ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2944 ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2945 ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2946 ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2947 ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2948 return false;
2949
2950 return true;
2951 }
2952
2953 /**
2954 * ice_is_clock_mux_in_netlist
2955 * @hw: pointer to the hw struct
2956 *
2957 * Check if the Clock Multiplexer device is present in the netlist
2958 */
ice_is_clock_mux_in_netlist(struct ice_hw * hw)2959 bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2960 {
2961 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2962 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2963 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2964 NULL))
2965 return false;
2966
2967 return true;
2968 }
2969
2970 /**
2971 * ice_is_cgu_in_netlist - check for CGU presence
2972 * @hw: pointer to the hw struct
2973 *
2974 * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2975 * Save the CGU part number in the hw structure for later use.
2976 * Return:
2977 * * true - cgu is present
2978 * * false - cgu is not present
2979 */
ice_is_cgu_in_netlist(struct ice_hw * hw)2980 bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2981 {
2982 if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2983 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2984 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2985 NULL)) {
2986 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2987 return true;
2988 } else if (!ice_find_netlist_node(hw,
2989 ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2990 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2991 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2992 NULL)) {
2993 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2994 return true;
2995 }
2996
2997 return false;
2998 }
2999
3000 /**
3001 * ice_is_gps_in_netlist
3002 * @hw: pointer to the hw struct
3003 *
3004 * Check if the GPS generic device is present in the netlist
3005 */
ice_is_gps_in_netlist(struct ice_hw * hw)3006 bool ice_is_gps_in_netlist(struct ice_hw *hw)
3007 {
3008 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
3009 ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
3010 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
3011 return false;
3012
3013 return true;
3014 }
3015
3016 /**
3017 * ice_aq_list_caps - query function/device capabilities
3018 * @hw: pointer to the HW struct
3019 * @buf: a buffer to hold the capabilities
3020 * @buf_size: size of the buffer
3021 * @cap_count: if not NULL, set to the number of capabilities reported
3022 * @opc: capabilities type to discover, device or function
3023 * @cd: pointer to command details structure or NULL
3024 *
3025 * Get the function (0x000A) or device (0x000B) capabilities description from
3026 * firmware and store it in the buffer.
3027 *
3028 * If the cap_count pointer is not NULL, then it is set to the number of
3029 * capabilities firmware will report. Note that if the buffer size is too
3030 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
3031 * cap_count will still be updated in this case. It is recommended that the
3032 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
3033 * firmware could return) to avoid this.
3034 */
3035 int
ice_aq_list_caps(struct ice_hw * hw,void * buf,u16 buf_size,u32 * cap_count,enum ice_adminq_opc opc,struct ice_sq_cd * cd)3036 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
3037 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
3038 {
3039 struct libie_aqc_list_caps *cmd;
3040 struct libie_aq_desc desc;
3041 int status;
3042
3043 cmd = &desc.params.get_cap;
3044
3045 if (opc != ice_aqc_opc_list_func_caps &&
3046 opc != ice_aqc_opc_list_dev_caps)
3047 return -EINVAL;
3048
3049 ice_fill_dflt_direct_cmd_desc(&desc, opc);
3050 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
3051
3052 if (cap_count)
3053 *cap_count = le32_to_cpu(cmd->count);
3054
3055 return status;
3056 }
3057
3058 /**
3059 * ice_discover_dev_caps - Read and extract device capabilities
3060 * @hw: pointer to the hardware structure
3061 * @dev_caps: pointer to device capabilities structure
3062 *
3063 * Read the device capabilities and extract them into the dev_caps structure
3064 * for later use.
3065 */
3066 int
ice_discover_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_caps)3067 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
3068 {
3069 u32 cap_count = 0;
3070 void *cbuf;
3071 int status;
3072
3073 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
3074 if (!cbuf)
3075 return -ENOMEM;
3076
3077 /* Although the driver doesn't know the number of capabilities the
3078 * device will return, we can simply send a 4KB buffer, the maximum
3079 * possible size that firmware can return.
3080 */
3081 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct libie_aqc_list_caps_elem);
3082
3083 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3084 ice_aqc_opc_list_dev_caps, NULL);
3085 if (!status)
3086 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
3087 kfree(cbuf);
3088
3089 return status;
3090 }
3091
3092 /**
3093 * ice_discover_func_caps - Read and extract function capabilities
3094 * @hw: pointer to the hardware structure
3095 * @func_caps: pointer to function capabilities structure
3096 *
3097 * Read the function capabilities and extract them into the func_caps structure
3098 * for later use.
3099 */
3100 static int
ice_discover_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_caps)3101 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
3102 {
3103 u32 cap_count = 0;
3104 void *cbuf;
3105 int status;
3106
3107 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
3108 if (!cbuf)
3109 return -ENOMEM;
3110
3111 /* Although the driver doesn't know the number of capabilities the
3112 * device will return, we can simply send a 4KB buffer, the maximum
3113 * possible size that firmware can return.
3114 */
3115 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct libie_aqc_list_caps_elem);
3116
3117 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
3118 ice_aqc_opc_list_func_caps, NULL);
3119 if (!status)
3120 ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
3121 kfree(cbuf);
3122
3123 return status;
3124 }
3125
3126 /**
3127 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
3128 * @hw: pointer to the hardware structure
3129 */
ice_set_safe_mode_caps(struct ice_hw * hw)3130 void ice_set_safe_mode_caps(struct ice_hw *hw)
3131 {
3132 struct ice_hw_func_caps *func_caps = &hw->func_caps;
3133 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
3134 struct ice_hw_common_caps cached_caps;
3135 u32 num_funcs;
3136
3137 /* cache some func_caps values that should be restored after memset */
3138 cached_caps = func_caps->common_cap;
3139
3140 /* unset func capabilities */
3141 memset(func_caps, 0, sizeof(*func_caps));
3142
3143 #define ICE_RESTORE_FUNC_CAP(name) \
3144 func_caps->common_cap.name = cached_caps.name
3145
3146 /* restore cached values */
3147 ICE_RESTORE_FUNC_CAP(valid_functions);
3148 ICE_RESTORE_FUNC_CAP(txq_first_id);
3149 ICE_RESTORE_FUNC_CAP(rxq_first_id);
3150 ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
3151 ICE_RESTORE_FUNC_CAP(max_mtu);
3152 ICE_RESTORE_FUNC_CAP(nvm_unified_update);
3153 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
3154 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
3155 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
3156
3157 /* one Tx and one Rx queue in safe mode */
3158 func_caps->common_cap.num_rxq = 1;
3159 func_caps->common_cap.num_txq = 1;
3160
3161 /* two MSIX vectors, one for traffic and one for misc causes */
3162 func_caps->common_cap.num_msix_vectors = 2;
3163 func_caps->guar_num_vsi = 1;
3164
3165 /* cache some dev_caps values that should be restored after memset */
3166 cached_caps = dev_caps->common_cap;
3167 num_funcs = dev_caps->num_funcs;
3168
3169 /* unset dev capabilities */
3170 memset(dev_caps, 0, sizeof(*dev_caps));
3171
3172 #define ICE_RESTORE_DEV_CAP(name) \
3173 dev_caps->common_cap.name = cached_caps.name
3174
3175 /* restore cached values */
3176 ICE_RESTORE_DEV_CAP(valid_functions);
3177 ICE_RESTORE_DEV_CAP(txq_first_id);
3178 ICE_RESTORE_DEV_CAP(rxq_first_id);
3179 ICE_RESTORE_DEV_CAP(msix_vector_first_id);
3180 ICE_RESTORE_DEV_CAP(max_mtu);
3181 ICE_RESTORE_DEV_CAP(nvm_unified_update);
3182 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
3183 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
3184 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
3185 dev_caps->num_funcs = num_funcs;
3186
3187 /* one Tx and one Rx queue per function in safe mode */
3188 dev_caps->common_cap.num_rxq = num_funcs;
3189 dev_caps->common_cap.num_txq = num_funcs;
3190
3191 /* two MSIX vectors per function */
3192 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3193 }
3194
3195 /**
3196 * ice_get_caps - get info about the HW
3197 * @hw: pointer to the hardware structure
3198 */
ice_get_caps(struct ice_hw * hw)3199 int ice_get_caps(struct ice_hw *hw)
3200 {
3201 int status;
3202
3203 status = ice_discover_dev_caps(hw, &hw->dev_caps);
3204 if (status)
3205 return status;
3206
3207 return ice_discover_func_caps(hw, &hw->func_caps);
3208 }
3209
3210 /**
3211 * ice_aq_manage_mac_write - manage MAC address write command
3212 * @hw: pointer to the HW struct
3213 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3214 * @flags: flags to control write behavior
3215 * @cd: pointer to command details structure or NULL
3216 *
3217 * This function is used to write MAC address to the NVM (0x0108).
3218 */
3219 int
ice_aq_manage_mac_write(struct ice_hw * hw,const u8 * mac_addr,u8 flags,struct ice_sq_cd * cd)3220 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3221 struct ice_sq_cd *cd)
3222 {
3223 struct ice_aqc_manage_mac_write *cmd;
3224 struct libie_aq_desc desc;
3225
3226 cmd = libie_aq_raw(&desc);
3227 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3228
3229 cmd->flags = flags;
3230 ether_addr_copy(cmd->mac_addr, mac_addr);
3231
3232 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3233 }
3234
3235 /**
3236 * ice_aq_clear_pxe_mode
3237 * @hw: pointer to the HW struct
3238 *
3239 * Tell the firmware that the driver is taking over from PXE (0x0110).
3240 */
ice_aq_clear_pxe_mode(struct ice_hw * hw)3241 static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3242 {
3243 struct ice_aqc_clear_pxe *cmd;
3244 struct libie_aq_desc desc;
3245
3246 cmd = libie_aq_raw(&desc);
3247 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3248 cmd->rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3249
3250 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3251 }
3252
3253 /**
3254 * ice_clear_pxe_mode - clear pxe operations mode
3255 * @hw: pointer to the HW struct
3256 *
3257 * Make sure all PXE mode settings are cleared, including things
3258 * like descriptor fetch/write-back mode.
3259 */
ice_clear_pxe_mode(struct ice_hw * hw)3260 void ice_clear_pxe_mode(struct ice_hw *hw)
3261 {
3262 if (ice_check_sq_alive(hw, &hw->adminq))
3263 ice_aq_clear_pxe_mode(hw);
3264 }
3265
3266 /**
3267 * ice_aq_set_port_params - set physical port parameters.
3268 * @pi: pointer to the port info struct
3269 * @double_vlan: if set double VLAN is enabled
3270 * @cd: pointer to command details structure or NULL
3271 *
3272 * Set Physical port parameters (0x0203)
3273 */
3274 int
ice_aq_set_port_params(struct ice_port_info * pi,bool double_vlan,struct ice_sq_cd * cd)3275 ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3276 struct ice_sq_cd *cd)
3277
3278 {
3279 struct ice_aqc_set_port_params *cmd;
3280 struct ice_hw *hw = pi->hw;
3281 struct libie_aq_desc desc;
3282 u16 cmd_flags = 0;
3283
3284 cmd = libie_aq_raw(&desc);
3285
3286 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3287 if (double_vlan)
3288 cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3289 cmd->cmd_flags = cpu_to_le16(cmd_flags);
3290
3291 cmd->local_fwd_mode = pi->local_fwd_mode |
3292 ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3293
3294 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3295 }
3296
3297 /**
3298 * ice_is_100m_speed_supported
3299 * @hw: pointer to the HW struct
3300 *
3301 * returns true if 100M speeds are supported by the device,
3302 * false otherwise.
3303 */
ice_is_100m_speed_supported(struct ice_hw * hw)3304 bool ice_is_100m_speed_supported(struct ice_hw *hw)
3305 {
3306 switch (hw->device_id) {
3307 case ICE_DEV_ID_E822C_SGMII:
3308 case ICE_DEV_ID_E822L_SGMII:
3309 case ICE_DEV_ID_E823L_1GBE:
3310 case ICE_DEV_ID_E823C_SGMII:
3311 return true;
3312 default:
3313 return false;
3314 }
3315 }
3316
3317 /**
3318 * ice_get_link_speed_based_on_phy_type - returns link speed
3319 * @phy_type_low: lower part of phy_type
3320 * @phy_type_high: higher part of phy_type
3321 *
3322 * This helper function will convert an entry in PHY type structure
3323 * [phy_type_low, phy_type_high] to its corresponding link speed.
3324 * Note: In the structure of [phy_type_low, phy_type_high], there should
3325 * be one bit set, as this function will convert one PHY type to its
3326 * speed.
3327 *
3328 * Return:
3329 * * PHY speed for recognized PHY type
3330 * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3331 * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3332 */
ice_get_link_speed_based_on_phy_type(u64 phy_type_low,u64 phy_type_high)3333 u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3334 {
3335 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3336 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3337
3338 switch (phy_type_low) {
3339 case ICE_PHY_TYPE_LOW_100BASE_TX:
3340 case ICE_PHY_TYPE_LOW_100M_SGMII:
3341 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3342 break;
3343 case ICE_PHY_TYPE_LOW_1000BASE_T:
3344 case ICE_PHY_TYPE_LOW_1000BASE_SX:
3345 case ICE_PHY_TYPE_LOW_1000BASE_LX:
3346 case ICE_PHY_TYPE_LOW_1000BASE_KX:
3347 case ICE_PHY_TYPE_LOW_1G_SGMII:
3348 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3349 break;
3350 case ICE_PHY_TYPE_LOW_2500BASE_T:
3351 case ICE_PHY_TYPE_LOW_2500BASE_X:
3352 case ICE_PHY_TYPE_LOW_2500BASE_KX:
3353 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3354 break;
3355 case ICE_PHY_TYPE_LOW_5GBASE_T:
3356 case ICE_PHY_TYPE_LOW_5GBASE_KR:
3357 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3358 break;
3359 case ICE_PHY_TYPE_LOW_10GBASE_T:
3360 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3361 case ICE_PHY_TYPE_LOW_10GBASE_SR:
3362 case ICE_PHY_TYPE_LOW_10GBASE_LR:
3363 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3364 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3365 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3366 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3367 break;
3368 case ICE_PHY_TYPE_LOW_25GBASE_T:
3369 case ICE_PHY_TYPE_LOW_25GBASE_CR:
3370 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3371 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3372 case ICE_PHY_TYPE_LOW_25GBASE_SR:
3373 case ICE_PHY_TYPE_LOW_25GBASE_LR:
3374 case ICE_PHY_TYPE_LOW_25GBASE_KR:
3375 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3376 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3377 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3378 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3379 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3380 break;
3381 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3382 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3383 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3384 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3385 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3386 case ICE_PHY_TYPE_LOW_40G_XLAUI:
3387 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3388 break;
3389 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3390 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3391 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3392 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3393 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3394 case ICE_PHY_TYPE_LOW_50G_LAUI2:
3395 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3396 case ICE_PHY_TYPE_LOW_50G_AUI2:
3397 case ICE_PHY_TYPE_LOW_50GBASE_CP:
3398 case ICE_PHY_TYPE_LOW_50GBASE_SR:
3399 case ICE_PHY_TYPE_LOW_50GBASE_FR:
3400 case ICE_PHY_TYPE_LOW_50GBASE_LR:
3401 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3402 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3403 case ICE_PHY_TYPE_LOW_50G_AUI1:
3404 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3405 break;
3406 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3407 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3408 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3409 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3410 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3411 case ICE_PHY_TYPE_LOW_100G_CAUI4:
3412 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3413 case ICE_PHY_TYPE_LOW_100G_AUI4:
3414 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3415 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3416 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3417 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3418 case ICE_PHY_TYPE_LOW_100GBASE_DR:
3419 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3420 break;
3421 default:
3422 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3423 break;
3424 }
3425
3426 switch (phy_type_high) {
3427 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3428 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3429 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3430 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3431 case ICE_PHY_TYPE_HIGH_100G_AUI2:
3432 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3433 break;
3434 case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3435 case ICE_PHY_TYPE_HIGH_200G_SR4:
3436 case ICE_PHY_TYPE_HIGH_200G_FR4:
3437 case ICE_PHY_TYPE_HIGH_200G_LR4:
3438 case ICE_PHY_TYPE_HIGH_200G_DR4:
3439 case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3440 case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3441 case ICE_PHY_TYPE_HIGH_200G_AUI4:
3442 speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3443 break;
3444 default:
3445 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3446 break;
3447 }
3448
3449 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3450 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3451 return ICE_AQ_LINK_SPEED_UNKNOWN;
3452 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3453 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3454 return ICE_AQ_LINK_SPEED_UNKNOWN;
3455 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3456 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3457 return speed_phy_type_low;
3458 else
3459 return speed_phy_type_high;
3460 }
3461
3462 /**
3463 * ice_update_phy_type
3464 * @phy_type_low: pointer to the lower part of phy_type
3465 * @phy_type_high: pointer to the higher part of phy_type
3466 * @link_speeds_bitmap: targeted link speeds bitmap
3467 *
3468 * Note: For the link_speeds_bitmap structure, you can check it at
3469 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3470 * link_speeds_bitmap include multiple speeds.
3471 *
3472 * Each entry in this [phy_type_low, phy_type_high] structure will
3473 * present a certain link speed. This helper function will turn on bits
3474 * in [phy_type_low, phy_type_high] structure based on the value of
3475 * link_speeds_bitmap input parameter.
3476 */
3477 void
ice_update_phy_type(u64 * phy_type_low,u64 * phy_type_high,u16 link_speeds_bitmap)3478 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3479 u16 link_speeds_bitmap)
3480 {
3481 u64 pt_high;
3482 u64 pt_low;
3483 int index;
3484 u16 speed;
3485
3486 /* We first check with low part of phy_type */
3487 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3488 pt_low = BIT_ULL(index);
3489 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3490
3491 if (link_speeds_bitmap & speed)
3492 *phy_type_low |= BIT_ULL(index);
3493 }
3494
3495 /* We then check with high part of phy_type */
3496 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3497 pt_high = BIT_ULL(index);
3498 speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3499
3500 if (link_speeds_bitmap & speed)
3501 *phy_type_high |= BIT_ULL(index);
3502 }
3503 }
3504
3505 /**
3506 * ice_aq_set_phy_cfg
3507 * @hw: pointer to the HW struct
3508 * @pi: port info structure of the interested logical port
3509 * @cfg: structure with PHY configuration data to be set
3510 * @cd: pointer to command details structure or NULL
3511 *
3512 * Set the various PHY configuration parameters supported on the Port.
3513 * One or more of the Set PHY config parameters may be ignored in an MFP
3514 * mode as the PF may not have the privilege to set some of the PHY Config
3515 * parameters. This status will be indicated by the command response (0x0601).
3516 */
3517 int
ice_aq_set_phy_cfg(struct ice_hw * hw,struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,struct ice_sq_cd * cd)3518 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3519 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3520 {
3521 struct ice_aqc_set_phy_cfg *cmd;
3522 struct libie_aq_desc desc;
3523 int status;
3524
3525 if (!cfg)
3526 return -EINVAL;
3527
3528 /* Ensure that only valid bits of cfg->caps can be turned on. */
3529 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3530 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3531 cfg->caps);
3532
3533 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3534 }
3535
3536 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3537 cmd = libie_aq_raw(&desc);
3538 cmd->lport_num = pi->lport;
3539 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
3540
3541 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3542 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
3543 (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3544 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
3545 (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3546 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
3547 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
3548 cfg->low_power_ctrl_an);
3549 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
3550 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
3551 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
3552 cfg->link_fec_opt);
3553
3554 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3555 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_EMODE)
3556 status = 0;
3557
3558 if (!status)
3559 pi->phy.curr_user_phy_cfg = *cfg;
3560
3561 return status;
3562 }
3563
3564 /**
3565 * ice_update_link_info - update status of the HW network link
3566 * @pi: port info structure of the interested logical port
3567 */
ice_update_link_info(struct ice_port_info * pi)3568 int ice_update_link_info(struct ice_port_info *pi)
3569 {
3570 struct ice_link_status *li;
3571 int status;
3572
3573 if (!pi)
3574 return -EINVAL;
3575
3576 li = &pi->phy.link_info;
3577
3578 status = ice_aq_get_link_info(pi, true, NULL, NULL);
3579 if (status)
3580 return status;
3581
3582 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3583 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3584
3585 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3586 if (!pcaps)
3587 return -ENOMEM;
3588
3589 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3590 pcaps, NULL);
3591 }
3592
3593 return status;
3594 }
3595
3596 /**
3597 * ice_aq_get_phy_equalization - function to read serdes equaliser
3598 * value from firmware using admin queue command.
3599 * @hw: pointer to the HW struct
3600 * @data_in: represents the serdes equalization parameter requested
3601 * @op_code: represents the serdes number and flag to represent tx or rx
3602 * @serdes_num: represents the serdes number
3603 * @output: pointer to the caller-supplied buffer to return serdes equaliser
3604 *
3605 * Return: non-zero status on error and 0 on success.
3606 */
ice_aq_get_phy_equalization(struct ice_hw * hw,u16 data_in,u16 op_code,u8 serdes_num,int * output)3607 int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3608 u8 serdes_num, int *output)
3609 {
3610 struct ice_aqc_dnl_call_command *cmd;
3611 struct ice_aqc_dnl_call buf = {};
3612 struct libie_aq_desc desc;
3613 int err;
3614
3615 buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3616 buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3617 cpu_to_le16(op_code | (serdes_num & 0xF));
3618 cmd = libie_aq_raw(&desc);
3619 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3620 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_BUF |
3621 LIBIE_AQ_FLAG_RD |
3622 LIBIE_AQ_FLAG_SI);
3623 desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3624 cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3625
3626 err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3627 NULL);
3628 *output = err ? 0 : buf.sto.txrx_equa_resp.val;
3629
3630 return err;
3631 }
3632
3633 #define FEC_REG_PORT(port) { \
3634 FEC_CORR_LOW_REG_PORT##port, \
3635 FEC_CORR_HIGH_REG_PORT##port, \
3636 FEC_UNCORR_LOW_REG_PORT##port, \
3637 FEC_UNCORR_HIGH_REG_PORT##port, \
3638 }
3639
3640 static const u32 fec_reg[][ICE_FEC_MAX] = {
3641 FEC_REG_PORT(0),
3642 FEC_REG_PORT(1),
3643 FEC_REG_PORT(2),
3644 FEC_REG_PORT(3)
3645 };
3646
3647 /**
3648 * ice_aq_get_fec_stats - reads fec stats from phy
3649 * @hw: pointer to the HW struct
3650 * @pcs_quad: represents pcsquad of user input serdes
3651 * @pcs_port: represents the pcs port number part of above pcs quad
3652 * @fec_type: represents FEC stats type
3653 * @output: pointer to the caller-supplied buffer to return requested fec stats
3654 *
3655 * Return: non-zero status on error and 0 on success.
3656 */
ice_aq_get_fec_stats(struct ice_hw * hw,u16 pcs_quad,u16 pcs_port,enum ice_fec_stats_types fec_type,u32 * output)3657 int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3658 enum ice_fec_stats_types fec_type, u32 *output)
3659 {
3660 u16 flag = (LIBIE_AQ_FLAG_RD | LIBIE_AQ_FLAG_BUF | LIBIE_AQ_FLAG_SI);
3661 struct ice_sbq_msg_input msg = {};
3662 u32 receiver_id, reg_offset;
3663 int err;
3664
3665 if (pcs_port > 3)
3666 return -EINVAL;
3667
3668 reg_offset = fec_reg[pcs_port][fec_type];
3669
3670 if (pcs_quad == 0)
3671 receiver_id = FEC_RECEIVER_ID_PCS0;
3672 else if (pcs_quad == 1)
3673 receiver_id = FEC_RECEIVER_ID_PCS1;
3674 else
3675 return -EINVAL;
3676
3677 msg.msg_addr_low = lower_16_bits(reg_offset);
3678 msg.msg_addr_high = receiver_id;
3679 msg.opcode = ice_sbq_msg_rd;
3680 msg.dest_dev = ice_sbq_dev_phy_0;
3681
3682 err = ice_sbq_rw_reg(hw, &msg, flag);
3683 if (err)
3684 return err;
3685
3686 *output = msg.data;
3687 return 0;
3688 }
3689
3690 /**
3691 * ice_cache_phy_user_req
3692 * @pi: port information structure
3693 * @cache_data: PHY logging data
3694 * @cache_mode: PHY logging mode
3695 *
3696 * Log the user request on (FC, FEC, SPEED) for later use.
3697 */
3698 static void
ice_cache_phy_user_req(struct ice_port_info * pi,struct ice_phy_cache_mode_data cache_data,enum ice_phy_cache_mode cache_mode)3699 ice_cache_phy_user_req(struct ice_port_info *pi,
3700 struct ice_phy_cache_mode_data cache_data,
3701 enum ice_phy_cache_mode cache_mode)
3702 {
3703 if (!pi)
3704 return;
3705
3706 switch (cache_mode) {
3707 case ICE_FC_MODE:
3708 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3709 break;
3710 case ICE_SPEED_MODE:
3711 pi->phy.curr_user_speed_req =
3712 cache_data.data.curr_user_speed_req;
3713 break;
3714 case ICE_FEC_MODE:
3715 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3716 break;
3717 default:
3718 break;
3719 }
3720 }
3721
3722 /**
3723 * ice_caps_to_fc_mode
3724 * @caps: PHY capabilities
3725 *
3726 * Convert PHY FC capabilities to ice FC mode
3727 */
ice_caps_to_fc_mode(u8 caps)3728 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3729 {
3730 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3731 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3732 return ICE_FC_FULL;
3733
3734 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3735 return ICE_FC_TX_PAUSE;
3736
3737 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3738 return ICE_FC_RX_PAUSE;
3739
3740 return ICE_FC_NONE;
3741 }
3742
3743 /**
3744 * ice_caps_to_fec_mode
3745 * @caps: PHY capabilities
3746 * @fec_options: Link FEC options
3747 *
3748 * Convert PHY FEC capabilities to ice FEC mode
3749 */
ice_caps_to_fec_mode(u8 caps,u8 fec_options)3750 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3751 {
3752 if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3753 return ICE_FEC_AUTO;
3754
3755 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3756 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3757 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3758 ICE_AQC_PHY_FEC_25G_KR_REQ))
3759 return ICE_FEC_BASER;
3760
3761 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3762 ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3763 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3764 return ICE_FEC_RS;
3765
3766 return ICE_FEC_NONE;
3767 }
3768
3769 /**
3770 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3771 * @pi: port information structure
3772 * @cfg: PHY configuration data to set FC mode
3773 * @req_mode: FC mode to configure
3774 */
3775 int
ice_cfg_phy_fc(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fc_mode req_mode)3776 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3777 enum ice_fc_mode req_mode)
3778 {
3779 struct ice_phy_cache_mode_data cache_data;
3780 u8 pause_mask = 0x0;
3781
3782 if (!pi || !cfg)
3783 return -EINVAL;
3784
3785 switch (req_mode) {
3786 case ICE_FC_FULL:
3787 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3788 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3789 break;
3790 case ICE_FC_RX_PAUSE:
3791 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3792 break;
3793 case ICE_FC_TX_PAUSE:
3794 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3795 break;
3796 default:
3797 break;
3798 }
3799
3800 /* clear the old pause settings */
3801 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3802 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3803
3804 /* set the new capabilities */
3805 cfg->caps |= pause_mask;
3806
3807 /* Cache user FC request */
3808 cache_data.data.curr_user_fc_req = req_mode;
3809 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3810
3811 return 0;
3812 }
3813
3814 /**
3815 * ice_set_fc
3816 * @pi: port information structure
3817 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3818 * @ena_auto_link_update: enable automatic link update
3819 *
3820 * Set the requested flow control mode.
3821 */
3822 int
ice_set_fc(struct ice_port_info * pi,u8 * aq_failures,bool ena_auto_link_update)3823 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3824 {
3825 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3826 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3827 struct ice_hw *hw;
3828 int status;
3829
3830 if (!pi || !aq_failures)
3831 return -EINVAL;
3832
3833 *aq_failures = 0;
3834 hw = pi->hw;
3835
3836 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3837 if (!pcaps)
3838 return -ENOMEM;
3839
3840 /* Get the current PHY config */
3841 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3842 pcaps, NULL);
3843 if (status) {
3844 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3845 goto out;
3846 }
3847
3848 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3849
3850 /* Configure the set PHY data */
3851 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3852 if (status)
3853 goto out;
3854
3855 /* If the capabilities have changed, then set the new config */
3856 if (cfg.caps != pcaps->caps) {
3857 int retry_count, retry_max = 10;
3858
3859 /* Auto restart link so settings take effect */
3860 if (ena_auto_link_update)
3861 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3862
3863 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3864 if (status) {
3865 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3866 goto out;
3867 }
3868
3869 /* Update the link info
3870 * It sometimes takes a really long time for link to
3871 * come back from the atomic reset. Thus, we wait a
3872 * little bit.
3873 */
3874 for (retry_count = 0; retry_count < retry_max; retry_count++) {
3875 status = ice_update_link_info(pi);
3876
3877 if (!status)
3878 break;
3879
3880 mdelay(100);
3881 }
3882
3883 if (status)
3884 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3885 }
3886
3887 out:
3888 return status;
3889 }
3890
3891 /**
3892 * ice_phy_caps_equals_cfg
3893 * @phy_caps: PHY capabilities
3894 * @phy_cfg: PHY configuration
3895 *
3896 * Helper function to determine if PHY capabilities matches PHY
3897 * configuration
3898 */
3899 bool
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data * phy_caps,struct ice_aqc_set_phy_cfg_data * phy_cfg)3900 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3901 struct ice_aqc_set_phy_cfg_data *phy_cfg)
3902 {
3903 u8 caps_mask, cfg_mask;
3904
3905 if (!phy_caps || !phy_cfg)
3906 return false;
3907
3908 /* These bits are not common between capabilities and configuration.
3909 * Do not use them to determine equality.
3910 */
3911 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3912 ICE_AQC_GET_PHY_EN_MOD_QUAL);
3913 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3914
3915 if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3916 phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3917 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3918 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3919 phy_caps->eee_cap != phy_cfg->eee_cap ||
3920 phy_caps->eeer_value != phy_cfg->eeer_value ||
3921 phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3922 return false;
3923
3924 return true;
3925 }
3926
3927 /**
3928 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3929 * @pi: port information structure
3930 * @caps: PHY ability structure to copy date from
3931 * @cfg: PHY configuration structure to copy data to
3932 *
3933 * Helper function to copy AQC PHY get ability data to PHY set configuration
3934 * data structure
3935 */
3936 void
ice_copy_phy_caps_to_cfg(struct ice_port_info * pi,struct ice_aqc_get_phy_caps_data * caps,struct ice_aqc_set_phy_cfg_data * cfg)3937 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3938 struct ice_aqc_get_phy_caps_data *caps,
3939 struct ice_aqc_set_phy_cfg_data *cfg)
3940 {
3941 if (!pi || !caps || !cfg)
3942 return;
3943
3944 memset(cfg, 0, sizeof(*cfg));
3945 cfg->phy_type_low = caps->phy_type_low;
3946 cfg->phy_type_high = caps->phy_type_high;
3947 cfg->caps = caps->caps;
3948 cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3949 cfg->eee_cap = caps->eee_cap;
3950 cfg->eeer_value = caps->eeer_value;
3951 cfg->link_fec_opt = caps->link_fec_options;
3952 cfg->module_compliance_enforcement =
3953 caps->module_compliance_enforcement;
3954 }
3955
3956 /**
3957 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3958 * @pi: port information structure
3959 * @cfg: PHY configuration data to set FEC mode
3960 * @fec: FEC mode to configure
3961 */
3962 int
ice_cfg_phy_fec(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fec_mode fec)3963 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3964 enum ice_fec_mode fec)
3965 {
3966 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3967 struct ice_hw *hw;
3968 int status;
3969
3970 if (!pi || !cfg)
3971 return -EINVAL;
3972
3973 hw = pi->hw;
3974
3975 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3976 if (!pcaps)
3977 return -ENOMEM;
3978
3979 status = ice_aq_get_phy_caps(pi, false,
3980 (ice_fw_supports_report_dflt_cfg(hw) ?
3981 ICE_AQC_REPORT_DFLT_CFG :
3982 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3983 if (status)
3984 goto out;
3985
3986 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3987 cfg->link_fec_opt = pcaps->link_fec_options;
3988
3989 switch (fec) {
3990 case ICE_FEC_BASER:
3991 /* Clear RS bits, and AND BASE-R ability
3992 * bits and OR request bits.
3993 */
3994 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3995 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3996 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3997 ICE_AQC_PHY_FEC_25G_KR_REQ;
3998 break;
3999 case ICE_FEC_RS:
4000 /* Clear BASE-R bits, and AND RS ability
4001 * bits and OR request bits.
4002 */
4003 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
4004 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
4005 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
4006 break;
4007 case ICE_FEC_NONE:
4008 /* Clear all FEC option bits. */
4009 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
4010 break;
4011 case ICE_FEC_AUTO:
4012 /* AND auto FEC bit, and all caps bits. */
4013 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
4014 cfg->link_fec_opt |= pcaps->link_fec_options;
4015 break;
4016 default:
4017 status = -EINVAL;
4018 break;
4019 }
4020
4021 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
4022 !ice_fw_supports_report_dflt_cfg(hw)) {
4023 struct ice_link_default_override_tlv tlv = { 0 };
4024
4025 status = ice_get_link_default_override(&tlv, pi);
4026 if (status)
4027 goto out;
4028
4029 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
4030 (tlv.options & ICE_LINK_OVERRIDE_EN))
4031 cfg->link_fec_opt = tlv.fec_options;
4032 }
4033
4034 out:
4035 return status;
4036 }
4037
4038 /**
4039 * ice_get_link_status - get status of the HW network link
4040 * @pi: port information structure
4041 * @link_up: pointer to bool (true/false = linkup/linkdown)
4042 *
4043 * Variable link_up is true if link is up, false if link is down.
4044 * The variable link_up is invalid if status is non zero. As a
4045 * result of this call, link status reporting becomes enabled
4046 */
ice_get_link_status(struct ice_port_info * pi,bool * link_up)4047 int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
4048 {
4049 struct ice_phy_info *phy_info;
4050 int status = 0;
4051
4052 if (!pi || !link_up)
4053 return -EINVAL;
4054
4055 phy_info = &pi->phy;
4056
4057 if (phy_info->get_link_info) {
4058 status = ice_update_link_info(pi);
4059
4060 if (status)
4061 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
4062 status);
4063 }
4064
4065 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
4066
4067 return status;
4068 }
4069
4070 /**
4071 * ice_aq_set_link_restart_an
4072 * @pi: pointer to the port information structure
4073 * @ena_link: if true: enable link, if false: disable link
4074 * @cd: pointer to command details structure or NULL
4075 *
4076 * Sets up the link and restarts the Auto-Negotiation over the link.
4077 */
4078 int
ice_aq_set_link_restart_an(struct ice_port_info * pi,bool ena_link,struct ice_sq_cd * cd)4079 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
4080 struct ice_sq_cd *cd)
4081 {
4082 struct ice_aqc_restart_an *cmd;
4083 struct libie_aq_desc desc;
4084
4085 cmd = libie_aq_raw(&desc);
4086
4087 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
4088
4089 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
4090 cmd->lport_num = pi->lport;
4091 if (ena_link)
4092 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
4093 else
4094 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
4095
4096 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
4097 }
4098
4099 /**
4100 * ice_aq_set_event_mask
4101 * @hw: pointer to the HW struct
4102 * @port_num: port number of the physical function
4103 * @mask: event mask to be set
4104 * @cd: pointer to command details structure or NULL
4105 *
4106 * Set event mask (0x0613)
4107 */
4108 int
ice_aq_set_event_mask(struct ice_hw * hw,u8 port_num,u16 mask,struct ice_sq_cd * cd)4109 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
4110 struct ice_sq_cd *cd)
4111 {
4112 struct ice_aqc_set_event_mask *cmd;
4113 struct libie_aq_desc desc;
4114
4115 cmd = libie_aq_raw(&desc);
4116
4117 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
4118
4119 cmd->lport_num = port_num;
4120
4121 cmd->event_mask = cpu_to_le16(mask);
4122 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4123 }
4124
4125 /**
4126 * ice_aq_set_mac_loopback
4127 * @hw: pointer to the HW struct
4128 * @ena_lpbk: Enable or Disable loopback
4129 * @cd: pointer to command details structure or NULL
4130 *
4131 * Enable/disable loopback on a given port
4132 */
4133 int
ice_aq_set_mac_loopback(struct ice_hw * hw,bool ena_lpbk,struct ice_sq_cd * cd)4134 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
4135 {
4136 struct ice_aqc_set_mac_lb *cmd;
4137 struct libie_aq_desc desc;
4138
4139 cmd = libie_aq_raw(&desc);
4140
4141 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
4142 if (ena_lpbk)
4143 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
4144
4145 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4146 }
4147
4148 /**
4149 * ice_aq_set_port_id_led
4150 * @pi: pointer to the port information
4151 * @is_orig_mode: is this LED set to original mode (by the net-list)
4152 * @cd: pointer to command details structure or NULL
4153 *
4154 * Set LED value for the given port (0x06e9)
4155 */
4156 int
ice_aq_set_port_id_led(struct ice_port_info * pi,bool is_orig_mode,struct ice_sq_cd * cd)4157 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
4158 struct ice_sq_cd *cd)
4159 {
4160 struct ice_aqc_set_port_id_led *cmd;
4161 struct ice_hw *hw = pi->hw;
4162 struct libie_aq_desc desc;
4163
4164 cmd = libie_aq_raw(&desc);
4165
4166 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
4167
4168 if (is_orig_mode)
4169 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
4170 else
4171 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
4172
4173 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4174 }
4175
4176 /**
4177 * ice_aq_get_port_options
4178 * @hw: pointer to the HW struct
4179 * @options: buffer for the resultant port options
4180 * @option_count: input - size of the buffer in port options structures,
4181 * output - number of returned port options
4182 * @lport: logical port to call the command with (optional)
4183 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4184 * when PF owns more than 1 port it must be true
4185 * @active_option_idx: index of active port option in returned buffer
4186 * @active_option_valid: active option in returned buffer is valid
4187 * @pending_option_idx: index of pending port option in returned buffer
4188 * @pending_option_valid: pending option in returned buffer is valid
4189 *
4190 * Calls Get Port Options AQC (0x06ea) and verifies result.
4191 */
4192 int
ice_aq_get_port_options(struct ice_hw * hw,struct ice_aqc_get_port_options_elem * options,u8 * option_count,u8 lport,bool lport_valid,u8 * active_option_idx,bool * active_option_valid,u8 * pending_option_idx,bool * pending_option_valid)4193 ice_aq_get_port_options(struct ice_hw *hw,
4194 struct ice_aqc_get_port_options_elem *options,
4195 u8 *option_count, u8 lport, bool lport_valid,
4196 u8 *active_option_idx, bool *active_option_valid,
4197 u8 *pending_option_idx, bool *pending_option_valid)
4198 {
4199 struct ice_aqc_get_port_options *cmd;
4200 struct libie_aq_desc desc;
4201 int status;
4202 u8 i;
4203
4204 /* options buffer shall be able to hold max returned options */
4205 if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
4206 return -EINVAL;
4207
4208 cmd = libie_aq_raw(&desc);
4209 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
4210
4211 if (lport_valid)
4212 cmd->lport_num = lport;
4213 cmd->lport_num_valid = lport_valid;
4214
4215 status = ice_aq_send_cmd(hw, &desc, options,
4216 *option_count * sizeof(*options), NULL);
4217 if (status)
4218 return status;
4219
4220 /* verify direct FW response & set output parameters */
4221 *option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
4222 cmd->port_options_count);
4223 ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4224 *active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4225 cmd->port_options);
4226 if (*active_option_valid) {
4227 *active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4228 cmd->port_options);
4229 if (*active_option_idx > (*option_count - 1))
4230 return -EIO;
4231 ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4232 *active_option_idx);
4233 }
4234
4235 *pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4236 cmd->pending_port_option_status);
4237 if (*pending_option_valid) {
4238 *pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4239 cmd->pending_port_option_status);
4240 if (*pending_option_idx > (*option_count - 1))
4241 return -EIO;
4242 ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4243 *pending_option_idx);
4244 }
4245
4246 /* mask output options fields */
4247 for (i = 0; i < *option_count; i++) {
4248 options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4249 options[i].pmd);
4250 options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4251 options[i].max_lane_speed);
4252 ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4253 options[i].pmd, options[i].max_lane_speed);
4254 }
4255
4256 return 0;
4257 }
4258
4259 /**
4260 * ice_aq_set_port_option
4261 * @hw: pointer to the HW struct
4262 * @lport: logical port to call the command with
4263 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4264 * when PF owns more than 1 port it must be true
4265 * @new_option: new port option to be written
4266 *
4267 * Calls Set Port Options AQC (0x06eb).
4268 */
4269 int
ice_aq_set_port_option(struct ice_hw * hw,u8 lport,u8 lport_valid,u8 new_option)4270 ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4271 u8 new_option)
4272 {
4273 struct ice_aqc_set_port_option *cmd;
4274 struct libie_aq_desc desc;
4275
4276 if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4277 return -EINVAL;
4278
4279 cmd = libie_aq_raw(&desc);
4280 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4281
4282 if (lport_valid)
4283 cmd->lport_num = lport;
4284
4285 cmd->lport_num_valid = lport_valid;
4286 cmd->selected_port_option = new_option;
4287
4288 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4289 }
4290
4291 /**
4292 * ice_get_phy_lane_number - Get PHY lane number for current adapter
4293 * @hw: pointer to the hw struct
4294 *
4295 * Return: PHY lane number on success, negative error code otherwise.
4296 */
ice_get_phy_lane_number(struct ice_hw * hw)4297 int ice_get_phy_lane_number(struct ice_hw *hw)
4298 {
4299 struct ice_aqc_get_port_options_elem *options;
4300 unsigned int lport = 0;
4301 unsigned int lane;
4302 int err;
4303
4304 options = kcalloc(ICE_AQC_PORT_OPT_MAX, sizeof(*options), GFP_KERNEL);
4305 if (!options)
4306 return -ENOMEM;
4307
4308 for (lane = 0; lane < ICE_MAX_PORT_PER_PCI_DEV; lane++) {
4309 u8 options_count = ICE_AQC_PORT_OPT_MAX;
4310 u8 speed, active_idx, pending_idx;
4311 bool active_valid, pending_valid;
4312
4313 err = ice_aq_get_port_options(hw, options, &options_count, lane,
4314 true, &active_idx, &active_valid,
4315 &pending_idx, &pending_valid);
4316 if (err)
4317 goto err;
4318
4319 if (!active_valid)
4320 continue;
4321
4322 speed = options[active_idx].max_lane_speed;
4323 /* If we don't get speed for this lane, it's unoccupied */
4324 if (speed > ICE_AQC_PORT_OPT_MAX_LANE_40G)
4325 continue;
4326
4327 if (hw->pf_id == lport) {
4328 if (hw->mac_type == ICE_MAC_GENERIC_3K_E825 &&
4329 ice_is_dual(hw) && !ice_is_primary(hw))
4330 lane += ICE_PORTS_PER_QUAD;
4331 kfree(options);
4332 return lane;
4333 }
4334 lport++;
4335 }
4336
4337 /* PHY lane not found */
4338 err = -ENXIO;
4339 err:
4340 kfree(options);
4341 return err;
4342 }
4343
4344 /**
4345 * ice_aq_sff_eeprom
4346 * @hw: pointer to the HW struct
4347 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4348 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4349 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4350 * @page: QSFP page
4351 * @set_page: set or ignore the page
4352 * @data: pointer to data buffer to be read/written to the I2C device.
4353 * @length: 1-16 for read, 1 for write.
4354 * @write: 0 read, 1 for write.
4355 * @cd: pointer to command details structure or NULL
4356 *
4357 * Read/Write SFF EEPROM (0x06EE)
4358 */
4359 int
ice_aq_sff_eeprom(struct ice_hw * hw,u16 lport,u8 bus_addr,u16 mem_addr,u8 page,u8 set_page,u8 * data,u8 length,bool write,struct ice_sq_cd * cd)4360 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4361 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4362 bool write, struct ice_sq_cd *cd)
4363 {
4364 struct ice_aqc_sff_eeprom *cmd;
4365 struct libie_aq_desc desc;
4366 u16 i2c_bus_addr;
4367 int status;
4368
4369 if (!data || (mem_addr & 0xff00))
4370 return -EINVAL;
4371
4372 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4373 cmd = libie_aq_raw(&desc);
4374 desc.flags = cpu_to_le16(LIBIE_AQ_FLAG_RD);
4375 cmd->lport_num = (u8)(lport & 0xff);
4376 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4377 i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4378 FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4379 if (write)
4380 i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4381 cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4382 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4383 cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4384
4385 status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4386 return status;
4387 }
4388
ice_lut_type_to_size(enum ice_lut_type type)4389 static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4390 {
4391 switch (type) {
4392 case ICE_LUT_VSI:
4393 return ICE_LUT_VSI_SIZE;
4394 case ICE_LUT_GLOBAL:
4395 return ICE_LUT_GLOBAL_SIZE;
4396 case ICE_LUT_PF:
4397 return ICE_LUT_PF_SIZE;
4398 }
4399 WARN_ONCE(1, "incorrect type passed");
4400 return ICE_LUT_VSI_SIZE;
4401 }
4402
ice_lut_size_to_flag(enum ice_lut_size size)4403 static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4404 {
4405 switch (size) {
4406 case ICE_LUT_VSI_SIZE:
4407 return ICE_AQC_LUT_SIZE_SMALL;
4408 case ICE_LUT_GLOBAL_SIZE:
4409 return ICE_AQC_LUT_SIZE_512;
4410 case ICE_LUT_PF_SIZE:
4411 return ICE_AQC_LUT_SIZE_2K;
4412 }
4413 WARN_ONCE(1, "incorrect size passed");
4414 return 0;
4415 }
4416
4417 /**
4418 * __ice_aq_get_set_rss_lut
4419 * @hw: pointer to the hardware structure
4420 * @params: RSS LUT parameters
4421 * @set: set true to set the table, false to get the table
4422 *
4423 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4424 */
4425 static int
__ice_aq_get_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * params,bool set)4426 __ice_aq_get_set_rss_lut(struct ice_hw *hw,
4427 struct ice_aq_get_set_rss_lut_params *params, bool set)
4428 {
4429 u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4430 enum ice_lut_type lut_type = params->lut_type;
4431 struct ice_aqc_get_set_rss_lut *desc_params;
4432 enum ice_aqc_lut_flags flags;
4433 enum ice_lut_size lut_size;
4434 struct libie_aq_desc desc;
4435 u8 *lut = params->lut;
4436
4437
4438 if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4439 return -EINVAL;
4440
4441 lut_size = ice_lut_type_to_size(lut_type);
4442 if (lut_size > params->lut_size)
4443 return -EINVAL;
4444 else if (set && lut_size != params->lut_size)
4445 return -EINVAL;
4446
4447 opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4448 ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4449 if (set)
4450 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4451
4452 desc_params = libie_aq_raw(&desc);
4453 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4454 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4455
4456 if (lut_type == ICE_LUT_GLOBAL)
4457 glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4458 params->global_lut_id);
4459
4460 flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4461 desc_params->flags = cpu_to_le16(flags);
4462
4463 return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4464 }
4465
4466 /**
4467 * ice_aq_get_rss_lut
4468 * @hw: pointer to the hardware structure
4469 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4470 *
4471 * get the RSS lookup table, PF or VSI type
4472 */
4473 int
ice_aq_get_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * get_params)4474 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4475 {
4476 return __ice_aq_get_set_rss_lut(hw, get_params, false);
4477 }
4478
4479 /**
4480 * ice_aq_set_rss_lut
4481 * @hw: pointer to the hardware structure
4482 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4483 *
4484 * set the RSS lookup table, PF or VSI type
4485 */
4486 int
ice_aq_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * set_params)4487 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4488 {
4489 return __ice_aq_get_set_rss_lut(hw, set_params, true);
4490 }
4491
4492 /**
4493 * __ice_aq_get_set_rss_key
4494 * @hw: pointer to the HW struct
4495 * @vsi_id: VSI FW index
4496 * @key: pointer to key info struct
4497 * @set: set true to set the key, false to get the key
4498 *
4499 * get (0x0B04) or set (0x0B02) the RSS key per VSI
4500 */
4501 static int
__ice_aq_get_set_rss_key(struct ice_hw * hw,u16 vsi_id,struct ice_aqc_get_set_rss_keys * key,bool set)4502 __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4503 struct ice_aqc_get_set_rss_keys *key, bool set)
4504 {
4505 struct ice_aqc_get_set_rss_key *desc_params;
4506 u16 key_size = sizeof(*key);
4507 struct libie_aq_desc desc;
4508
4509 if (set) {
4510 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4511 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4512 } else {
4513 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4514 }
4515
4516 desc_params = libie_aq_raw(&desc);
4517 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4518
4519 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4520 }
4521
4522 /**
4523 * ice_aq_get_rss_key
4524 * @hw: pointer to the HW struct
4525 * @vsi_handle: software VSI handle
4526 * @key: pointer to key info struct
4527 *
4528 * get the RSS key per VSI
4529 */
4530 int
ice_aq_get_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * key)4531 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4532 struct ice_aqc_get_set_rss_keys *key)
4533 {
4534 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4535 return -EINVAL;
4536
4537 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4538 key, false);
4539 }
4540
4541 /**
4542 * ice_aq_set_rss_key
4543 * @hw: pointer to the HW struct
4544 * @vsi_handle: software VSI handle
4545 * @keys: pointer to key info struct
4546 *
4547 * set the RSS key per VSI
4548 */
4549 int
ice_aq_set_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * keys)4550 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4551 struct ice_aqc_get_set_rss_keys *keys)
4552 {
4553 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4554 return -EINVAL;
4555
4556 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4557 keys, true);
4558 }
4559
4560 /**
4561 * ice_aq_add_lan_txq
4562 * @hw: pointer to the hardware structure
4563 * @num_qgrps: Number of added queue groups
4564 * @qg_list: list of queue groups to be added
4565 * @buf_size: size of buffer for indirect command
4566 * @cd: pointer to command details structure or NULL
4567 *
4568 * Add Tx LAN queue (0x0C30)
4569 *
4570 * NOTE:
4571 * Prior to calling add Tx LAN queue:
4572 * Initialize the following as part of the Tx queue context:
4573 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4574 * Cache profile and Packet shaper profile.
4575 *
4576 * After add Tx LAN queue AQ command is completed:
4577 * Interrupts should be associated with specific queues,
4578 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4579 * flow.
4580 */
4581 static int
ice_aq_add_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * qg_list,u16 buf_size,struct ice_sq_cd * cd)4582 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4583 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4584 struct ice_sq_cd *cd)
4585 {
4586 struct ice_aqc_add_tx_qgrp *list;
4587 struct ice_aqc_add_txqs *cmd;
4588 struct libie_aq_desc desc;
4589 u16 i, sum_size = 0;
4590
4591 cmd = libie_aq_raw(&desc);
4592
4593 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4594
4595 if (!qg_list)
4596 return -EINVAL;
4597
4598 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4599 return -EINVAL;
4600
4601 for (i = 0, list = qg_list; i < num_qgrps; i++) {
4602 sum_size += struct_size(list, txqs, list->num_txqs);
4603 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4604 list->num_txqs);
4605 }
4606
4607 if (buf_size != sum_size)
4608 return -EINVAL;
4609
4610 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4611
4612 cmd->num_qgrps = num_qgrps;
4613
4614 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4615 }
4616
4617 /**
4618 * ice_aq_dis_lan_txq
4619 * @hw: pointer to the hardware structure
4620 * @num_qgrps: number of groups in the list
4621 * @qg_list: the list of groups to disable
4622 * @buf_size: the total size of the qg_list buffer in bytes
4623 * @rst_src: if called due to reset, specifies the reset source
4624 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4625 * @cd: pointer to command details structure or NULL
4626 *
4627 * Disable LAN Tx queue (0x0C31)
4628 */
4629 static int
ice_aq_dis_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_dis_txq_item * qg_list,u16 buf_size,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4630 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4631 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4632 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4633 struct ice_sq_cd *cd)
4634 {
4635 struct ice_aqc_dis_txq_item *item;
4636 struct ice_aqc_dis_txqs *cmd;
4637 struct libie_aq_desc desc;
4638 u16 vmvf_and_timeout;
4639 u16 i, sz = 0;
4640 int status;
4641
4642 cmd = libie_aq_raw(&desc);
4643 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4644
4645 /* qg_list can be NULL only in VM/VF reset flow */
4646 if (!qg_list && !rst_src)
4647 return -EINVAL;
4648
4649 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4650 return -EINVAL;
4651
4652 cmd->num_entries = num_qgrps;
4653
4654 vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4655
4656 switch (rst_src) {
4657 case ICE_VM_RESET:
4658 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4659 vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4660 break;
4661 case ICE_VF_RESET:
4662 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4663 /* In this case, FW expects vmvf_num to be absolute VF ID */
4664 vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4665 ICE_AQC_Q_DIS_VMVF_NUM_M;
4666 break;
4667 case ICE_NO_RESET:
4668 default:
4669 break;
4670 }
4671
4672 cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4673
4674 /* flush pipe on time out */
4675 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4676 /* If no queue group info, we are in a reset flow. Issue the AQ */
4677 if (!qg_list)
4678 goto do_aq;
4679
4680 /* set RD bit to indicate that command buffer is provided by the driver
4681 * and it needs to be read by the firmware
4682 */
4683 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4684
4685 for (i = 0, item = qg_list; i < num_qgrps; i++) {
4686 u16 item_size = struct_size(item, q_id, item->num_qs);
4687
4688 /* If the num of queues is even, add 2 bytes of padding */
4689 if ((item->num_qs % 2) == 0)
4690 item_size += 2;
4691
4692 sz += item_size;
4693
4694 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4695 }
4696
4697 if (buf_size != sz)
4698 return -EINVAL;
4699
4700 do_aq:
4701 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4702 if (status) {
4703 if (!qg_list)
4704 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4705 vmvf_num, hw->adminq.sq_last_status);
4706 else
4707 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4708 le16_to_cpu(qg_list[0].q_id[0]),
4709 hw->adminq.sq_last_status);
4710 }
4711 return status;
4712 }
4713
4714 /**
4715 * ice_aq_cfg_lan_txq
4716 * @hw: pointer to the hardware structure
4717 * @buf: buffer for command
4718 * @buf_size: size of buffer in bytes
4719 * @num_qs: number of queues being configured
4720 * @oldport: origination lport
4721 * @newport: destination lport
4722 * @cd: pointer to command details structure or NULL
4723 *
4724 * Move/Configure LAN Tx queue (0x0C32)
4725 *
4726 * There is a better AQ command to use for moving nodes, so only coding
4727 * this one for configuring the node.
4728 */
4729 int
ice_aq_cfg_lan_txq(struct ice_hw * hw,struct ice_aqc_cfg_txqs_buf * buf,u16 buf_size,u16 num_qs,u8 oldport,u8 newport,struct ice_sq_cd * cd)4730 ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4731 u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4732 struct ice_sq_cd *cd)
4733 {
4734 struct ice_aqc_cfg_txqs *cmd;
4735 struct libie_aq_desc desc;
4736 int status;
4737
4738 cmd = libie_aq_raw(&desc);
4739 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4740 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4741
4742 if (!buf)
4743 return -EINVAL;
4744
4745 cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4746 cmd->num_qs = num_qs;
4747 cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4748 cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4749 cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4750 cmd->blocked_cgds = 0;
4751
4752 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4753 if (status)
4754 ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4755 hw->adminq.sq_last_status);
4756 return status;
4757 }
4758
4759 /**
4760 * ice_aq_add_rdma_qsets
4761 * @hw: pointer to the hardware structure
4762 * @num_qset_grps: Number of RDMA Qset groups
4763 * @qset_list: list of Qset groups to be added
4764 * @buf_size: size of buffer for indirect command
4765 * @cd: pointer to command details structure or NULL
4766 *
4767 * Add Tx RDMA Qsets (0x0C33)
4768 */
4769 static int
ice_aq_add_rdma_qsets(struct ice_hw * hw,u8 num_qset_grps,struct ice_aqc_add_rdma_qset_data * qset_list,u16 buf_size,struct ice_sq_cd * cd)4770 ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4771 struct ice_aqc_add_rdma_qset_data *qset_list,
4772 u16 buf_size, struct ice_sq_cd *cd)
4773 {
4774 struct ice_aqc_add_rdma_qset_data *list;
4775 struct ice_aqc_add_rdma_qset *cmd;
4776 struct libie_aq_desc desc;
4777 u16 i, sum_size = 0;
4778
4779 cmd = libie_aq_raw(&desc);
4780
4781 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4782
4783 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4784 return -EINVAL;
4785
4786 for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4787 u16 num_qsets = le16_to_cpu(list->num_qsets);
4788
4789 sum_size += struct_size(list, rdma_qsets, num_qsets);
4790 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4791 num_qsets);
4792 }
4793
4794 if (buf_size != sum_size)
4795 return -EINVAL;
4796
4797 desc.flags |= cpu_to_le16(LIBIE_AQ_FLAG_RD);
4798
4799 cmd->num_qset_grps = num_qset_grps;
4800
4801 return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4802 }
4803
4804 /* End of FW Admin Queue command wrappers */
4805
4806 /**
4807 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4808 * @hw: pointer to the HW struct
4809 * @vsi_handle: software VSI handle
4810 * @tc: TC number
4811 * @q_handle: software queue handle
4812 */
4813 struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 q_handle)4814 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4815 {
4816 struct ice_vsi_ctx *vsi;
4817 struct ice_q_ctx *q_ctx;
4818
4819 vsi = ice_get_vsi_ctx(hw, vsi_handle);
4820 if (!vsi)
4821 return NULL;
4822 if (q_handle >= vsi->num_lan_q_entries[tc])
4823 return NULL;
4824 if (!vsi->lan_q_ctx[tc])
4825 return NULL;
4826 q_ctx = vsi->lan_q_ctx[tc];
4827 return &q_ctx[q_handle];
4828 }
4829
4830 /**
4831 * ice_ena_vsi_txq
4832 * @pi: port information structure
4833 * @vsi_handle: software VSI handle
4834 * @tc: TC number
4835 * @q_handle: software queue handle
4836 * @num_qgrps: Number of added queue groups
4837 * @buf: list of queue groups to be added
4838 * @buf_size: size of buffer for indirect command
4839 * @cd: pointer to command details structure or NULL
4840 *
4841 * This function adds one LAN queue
4842 */
4843 int
ice_ena_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * buf,u16 buf_size,struct ice_sq_cd * cd)4844 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4845 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4846 struct ice_sq_cd *cd)
4847 {
4848 struct ice_aqc_txsched_elem_data node = { 0 };
4849 struct ice_sched_node *parent;
4850 struct ice_q_ctx *q_ctx;
4851 struct ice_hw *hw;
4852 int status;
4853
4854 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4855 return -EIO;
4856
4857 if (num_qgrps > 1 || buf->num_txqs > 1)
4858 return -ENOSPC;
4859
4860 hw = pi->hw;
4861
4862 if (!ice_is_vsi_valid(hw, vsi_handle))
4863 return -EINVAL;
4864
4865 mutex_lock(&pi->sched_lock);
4866
4867 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4868 if (!q_ctx) {
4869 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4870 q_handle);
4871 status = -EINVAL;
4872 goto ena_txq_exit;
4873 }
4874
4875 /* find a parent node */
4876 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4877 ICE_SCHED_NODE_OWNER_LAN);
4878 if (!parent) {
4879 status = -EINVAL;
4880 goto ena_txq_exit;
4881 }
4882
4883 buf->parent_teid = parent->info.node_teid;
4884 node.parent_teid = parent->info.node_teid;
4885 /* Mark that the values in the "generic" section as valid. The default
4886 * value in the "generic" section is zero. This means that :
4887 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4888 * - 0 priority among siblings, indicated by Bit 1-3.
4889 * - WFQ, indicated by Bit 4.
4890 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4891 * Bit 5-6.
4892 * - Bit 7 is reserved.
4893 * Without setting the generic section as valid in valid_sections, the
4894 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4895 */
4896 buf->txqs[0].info.valid_sections =
4897 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4898 ICE_AQC_ELEM_VALID_EIR;
4899 buf->txqs[0].info.generic = 0;
4900 buf->txqs[0].info.cir_bw.bw_profile_idx =
4901 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4902 buf->txqs[0].info.cir_bw.bw_alloc =
4903 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4904 buf->txqs[0].info.eir_bw.bw_profile_idx =
4905 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4906 buf->txqs[0].info.eir_bw.bw_alloc =
4907 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4908
4909 /* add the LAN queue */
4910 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4911 if (status) {
4912 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4913 le16_to_cpu(buf->txqs[0].txq_id),
4914 hw->adminq.sq_last_status);
4915 goto ena_txq_exit;
4916 }
4917
4918 node.node_teid = buf->txqs[0].q_teid;
4919 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4920 q_ctx->q_handle = q_handle;
4921 q_ctx->q_teid = le32_to_cpu(node.node_teid);
4922
4923 /* add a leaf node into scheduler tree queue layer */
4924 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4925 if (!status)
4926 status = ice_sched_replay_q_bw(pi, q_ctx);
4927
4928 ena_txq_exit:
4929 mutex_unlock(&pi->sched_lock);
4930 return status;
4931 }
4932
4933 /**
4934 * ice_dis_vsi_txq
4935 * @pi: port information structure
4936 * @vsi_handle: software VSI handle
4937 * @tc: TC number
4938 * @num_queues: number of queues
4939 * @q_handles: pointer to software queue handle array
4940 * @q_ids: pointer to the q_id array
4941 * @q_teids: pointer to queue node teids
4942 * @rst_src: if called due to reset, specifies the reset source
4943 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4944 * @cd: pointer to command details structure or NULL
4945 *
4946 * This function removes queues and their corresponding nodes in SW DB
4947 */
4948 int
ice_dis_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 num_queues,u16 * q_handles,u16 * q_ids,u32 * q_teids,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4949 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4950 u16 *q_handles, u16 *q_ids, u32 *q_teids,
4951 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4952 struct ice_sq_cd *cd)
4953 {
4954 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4955 u16 i, buf_size = __struct_size(qg_list);
4956 struct ice_q_ctx *q_ctx;
4957 int status = -ENOENT;
4958 struct ice_hw *hw;
4959
4960 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4961 return -EIO;
4962
4963 hw = pi->hw;
4964
4965 if (!num_queues) {
4966 /* if queue is disabled already yet the disable queue command
4967 * has to be sent to complete the VF reset, then call
4968 * ice_aq_dis_lan_txq without any queue information
4969 */
4970 if (rst_src)
4971 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4972 vmvf_num, NULL);
4973 return -EIO;
4974 }
4975
4976 mutex_lock(&pi->sched_lock);
4977
4978 for (i = 0; i < num_queues; i++) {
4979 struct ice_sched_node *node;
4980
4981 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4982 if (!node)
4983 continue;
4984 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4985 if (!q_ctx) {
4986 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4987 q_handles[i]);
4988 continue;
4989 }
4990 if (q_ctx->q_handle != q_handles[i]) {
4991 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4992 q_ctx->q_handle, q_handles[i]);
4993 continue;
4994 }
4995 qg_list->parent_teid = node->info.parent_teid;
4996 qg_list->num_qs = 1;
4997 qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4998 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4999 vmvf_num, cd);
5000
5001 if (status)
5002 break;
5003 ice_free_sched_node(pi, node);
5004 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5005 q_ctx->q_teid = ICE_INVAL_TEID;
5006 }
5007 mutex_unlock(&pi->sched_lock);
5008 return status;
5009 }
5010
5011 /**
5012 * ice_cfg_vsi_qs - configure the new/existing VSI queues
5013 * @pi: port information structure
5014 * @vsi_handle: software VSI handle
5015 * @tc_bitmap: TC bitmap
5016 * @maxqs: max queues array per TC
5017 * @owner: LAN or RDMA
5018 *
5019 * This function adds/updates the VSI queues per TC.
5020 */
5021 static int
ice_cfg_vsi_qs(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * maxqs,u8 owner)5022 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5023 u16 *maxqs, u8 owner)
5024 {
5025 int status = 0;
5026 u8 i;
5027
5028 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5029 return -EIO;
5030
5031 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5032 return -EINVAL;
5033
5034 mutex_lock(&pi->sched_lock);
5035
5036 ice_for_each_traffic_class(i) {
5037 /* configuration is possible only if TC node is present */
5038 if (!ice_sched_get_tc_node(pi, i))
5039 continue;
5040
5041 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5042 ice_is_tc_ena(tc_bitmap, i));
5043 if (status)
5044 break;
5045 }
5046
5047 mutex_unlock(&pi->sched_lock);
5048 return status;
5049 }
5050
5051 /**
5052 * ice_cfg_vsi_lan - configure VSI LAN queues
5053 * @pi: port information structure
5054 * @vsi_handle: software VSI handle
5055 * @tc_bitmap: TC bitmap
5056 * @max_lanqs: max LAN queues array per TC
5057 *
5058 * This function adds/updates the VSI LAN queues per TC.
5059 */
5060 int
ice_cfg_vsi_lan(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * max_lanqs)5061 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5062 u16 *max_lanqs)
5063 {
5064 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5065 ICE_SCHED_NODE_OWNER_LAN);
5066 }
5067
5068 /**
5069 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5070 * @pi: port information structure
5071 * @vsi_handle: software VSI handle
5072 * @tc_bitmap: TC bitmap
5073 * @max_rdmaqs: max RDMA queues array per TC
5074 *
5075 * This function adds/updates the VSI RDMA queues per TC.
5076 */
5077 int
ice_cfg_vsi_rdma(struct ice_port_info * pi,u16 vsi_handle,u16 tc_bitmap,u16 * max_rdmaqs)5078 ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5079 u16 *max_rdmaqs)
5080 {
5081 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5082 ICE_SCHED_NODE_OWNER_RDMA);
5083 }
5084
5085 /**
5086 * ice_ena_vsi_rdma_qset
5087 * @pi: port information structure
5088 * @vsi_handle: software VSI handle
5089 * @tc: TC number
5090 * @rdma_qset: pointer to RDMA Qset
5091 * @num_qsets: number of RDMA Qsets
5092 * @qset_teid: pointer to Qset node TEIDs
5093 *
5094 * This function adds RDMA Qset
5095 */
5096 int
ice_ena_vsi_rdma_qset(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 * rdma_qset,u16 num_qsets,u32 * qset_teid)5097 ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5098 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5099 {
5100 struct ice_aqc_txsched_elem_data node = { 0 };
5101 struct ice_aqc_add_rdma_qset_data *buf;
5102 struct ice_sched_node *parent;
5103 struct ice_hw *hw;
5104 u16 i, buf_size;
5105 int ret;
5106
5107 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5108 return -EIO;
5109 hw = pi->hw;
5110
5111 if (!ice_is_vsi_valid(hw, vsi_handle))
5112 return -EINVAL;
5113
5114 buf_size = struct_size(buf, rdma_qsets, num_qsets);
5115 buf = kzalloc(buf_size, GFP_KERNEL);
5116 if (!buf)
5117 return -ENOMEM;
5118 mutex_lock(&pi->sched_lock);
5119
5120 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5121 ICE_SCHED_NODE_OWNER_RDMA);
5122 if (!parent) {
5123 ret = -EINVAL;
5124 goto rdma_error_exit;
5125 }
5126 buf->parent_teid = parent->info.node_teid;
5127 node.parent_teid = parent->info.node_teid;
5128
5129 buf->num_qsets = cpu_to_le16(num_qsets);
5130 for (i = 0; i < num_qsets; i++) {
5131 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5132 buf->rdma_qsets[i].info.valid_sections =
5133 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5134 ICE_AQC_ELEM_VALID_EIR;
5135 buf->rdma_qsets[i].info.generic = 0;
5136 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5137 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5138 buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5139 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5140 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5141 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5142 buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5143 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5144 }
5145 ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5146 if (ret) {
5147 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5148 goto rdma_error_exit;
5149 }
5150 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5151 for (i = 0; i < num_qsets; i++) {
5152 node.node_teid = buf->rdma_qsets[i].qset_teid;
5153 ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5154 &node, NULL);
5155 if (ret)
5156 break;
5157 qset_teid[i] = le32_to_cpu(node.node_teid);
5158 }
5159 rdma_error_exit:
5160 mutex_unlock(&pi->sched_lock);
5161 kfree(buf);
5162 return ret;
5163 }
5164
5165 /**
5166 * ice_dis_vsi_rdma_qset - free RDMA resources
5167 * @pi: port_info struct
5168 * @count: number of RDMA Qsets to free
5169 * @qset_teid: TEID of Qset node
5170 * @q_id: list of queue IDs being disabled
5171 */
5172 int
ice_dis_vsi_rdma_qset(struct ice_port_info * pi,u16 count,u32 * qset_teid,u16 * q_id)5173 ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5174 u16 *q_id)
5175 {
5176 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5177 u16 qg_size = __struct_size(qg_list);
5178 struct ice_hw *hw;
5179 int status = 0;
5180 int i;
5181
5182 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5183 return -EIO;
5184
5185 hw = pi->hw;
5186
5187 mutex_lock(&pi->sched_lock);
5188
5189 for (i = 0; i < count; i++) {
5190 struct ice_sched_node *node;
5191
5192 node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5193 if (!node)
5194 continue;
5195
5196 qg_list->parent_teid = node->info.parent_teid;
5197 qg_list->num_qs = 1;
5198 qg_list->q_id[0] =
5199 cpu_to_le16(q_id[i] |
5200 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5201
5202 status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5203 ICE_NO_RESET, 0, NULL);
5204 if (status)
5205 break;
5206
5207 ice_free_sched_node(pi, node);
5208 }
5209
5210 mutex_unlock(&pi->sched_lock);
5211 return status;
5212 }
5213
5214 /**
5215 * ice_aq_get_cgu_input_pin_measure - get input pin signal measurements
5216 * @hw: pointer to the HW struct
5217 * @dpll_idx: index of dpll to be measured
5218 * @meas: array to be filled with results
5219 * @meas_num: max number of results array can hold
5220 *
5221 * Get CGU measurements (0x0C59) of phase and frequency offsets for input
5222 * pins on given dpll.
5223 *
5224 * Return: 0 on success or negative value on failure.
5225 */
ice_aq_get_cgu_input_pin_measure(struct ice_hw * hw,u8 dpll_idx,struct ice_cgu_input_measure * meas,u16 meas_num)5226 int ice_aq_get_cgu_input_pin_measure(struct ice_hw *hw, u8 dpll_idx,
5227 struct ice_cgu_input_measure *meas,
5228 u16 meas_num)
5229 {
5230 struct ice_aqc_get_cgu_input_measure *cmd;
5231 struct libie_aq_desc desc;
5232
5233 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_measure);
5234 cmd = libie_aq_raw(&desc);
5235 cmd->dpll_idx_opt = dpll_idx & ICE_AQC_GET_CGU_IN_MEAS_DPLL_IDX_M;
5236
5237 return ice_aq_send_cmd(hw, &desc, meas, meas_num * sizeof(*meas), NULL);
5238 }
5239
5240 /**
5241 * ice_aq_get_cgu_abilities - get cgu abilities
5242 * @hw: pointer to the HW struct
5243 * @abilities: CGU abilities
5244 *
5245 * Get CGU abilities (0x0C61)
5246 * Return: 0 on success or negative value on failure.
5247 */
5248 int
ice_aq_get_cgu_abilities(struct ice_hw * hw,struct ice_aqc_get_cgu_abilities * abilities)5249 ice_aq_get_cgu_abilities(struct ice_hw *hw,
5250 struct ice_aqc_get_cgu_abilities *abilities)
5251 {
5252 struct libie_aq_desc desc;
5253
5254 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5255 return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5256 }
5257
5258 /**
5259 * ice_aq_set_input_pin_cfg - set input pin config
5260 * @hw: pointer to the HW struct
5261 * @input_idx: Input index
5262 * @flags1: Input flags
5263 * @flags2: Input flags
5264 * @freq: Frequency in Hz
5265 * @phase_delay: Delay in ps
5266 *
5267 * Set CGU input config (0x0C62)
5268 * Return: 0 on success or negative value on failure.
5269 */
5270 int
ice_aq_set_input_pin_cfg(struct ice_hw * hw,u8 input_idx,u8 flags1,u8 flags2,u32 freq,s32 phase_delay)5271 ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5272 u32 freq, s32 phase_delay)
5273 {
5274 struct ice_aqc_set_cgu_input_config *cmd;
5275 struct libie_aq_desc desc;
5276
5277 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5278 cmd = libie_aq_raw(&desc);
5279 cmd->input_idx = input_idx;
5280 cmd->flags1 = flags1;
5281 cmd->flags2 = flags2;
5282 cmd->freq = cpu_to_le32(freq);
5283 cmd->phase_delay = cpu_to_le32(phase_delay);
5284
5285 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5286 }
5287
5288 /**
5289 * ice_aq_get_input_pin_cfg - get input pin config
5290 * @hw: pointer to the HW struct
5291 * @input_idx: Input index
5292 * @status: Pin status
5293 * @type: Pin type
5294 * @flags1: Input flags
5295 * @flags2: Input flags
5296 * @freq: Frequency in Hz
5297 * @phase_delay: Delay in ps
5298 *
5299 * Get CGU input config (0x0C63)
5300 * Return: 0 on success or negative value on failure.
5301 */
5302 int
ice_aq_get_input_pin_cfg(struct ice_hw * hw,u8 input_idx,u8 * status,u8 * type,u8 * flags1,u8 * flags2,u32 * freq,s32 * phase_delay)5303 ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5304 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5305 {
5306 struct ice_aqc_get_cgu_input_config *cmd;
5307 struct libie_aq_desc desc;
5308 int ret;
5309
5310 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5311 cmd = libie_aq_raw(&desc);
5312 cmd->input_idx = input_idx;
5313
5314 ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5315 if (!ret) {
5316 if (status)
5317 *status = cmd->status;
5318 if (type)
5319 *type = cmd->type;
5320 if (flags1)
5321 *flags1 = cmd->flags1;
5322 if (flags2)
5323 *flags2 = cmd->flags2;
5324 if (freq)
5325 *freq = le32_to_cpu(cmd->freq);
5326 if (phase_delay)
5327 *phase_delay = le32_to_cpu(cmd->phase_delay);
5328 }
5329
5330 return ret;
5331 }
5332
5333 /**
5334 * ice_aq_set_output_pin_cfg - set output pin config
5335 * @hw: pointer to the HW struct
5336 * @output_idx: Output index
5337 * @flags: Output flags
5338 * @src_sel: Index of DPLL block
5339 * @freq: Output frequency
5340 * @phase_delay: Output phase compensation
5341 *
5342 * Set CGU output config (0x0C64)
5343 * Return: 0 on success or negative value on failure.
5344 */
5345 int
ice_aq_set_output_pin_cfg(struct ice_hw * hw,u8 output_idx,u8 flags,u8 src_sel,u32 freq,s32 phase_delay)5346 ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5347 u8 src_sel, u32 freq, s32 phase_delay)
5348 {
5349 struct ice_aqc_set_cgu_output_config *cmd;
5350 struct libie_aq_desc desc;
5351
5352 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5353 cmd = libie_aq_raw(&desc);
5354 cmd->output_idx = output_idx;
5355 cmd->flags = flags;
5356 cmd->src_sel = src_sel;
5357 cmd->freq = cpu_to_le32(freq);
5358 cmd->phase_delay = cpu_to_le32(phase_delay);
5359
5360 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5361 }
5362
5363 /**
5364 * ice_aq_get_output_pin_cfg - get output pin config
5365 * @hw: pointer to the HW struct
5366 * @output_idx: Output index
5367 * @flags: Output flags
5368 * @src_sel: Internal DPLL source
5369 * @freq: Output frequency
5370 * @src_freq: Source frequency
5371 *
5372 * Get CGU output config (0x0C65)
5373 * Return: 0 on success or negative value on failure.
5374 */
5375 int
ice_aq_get_output_pin_cfg(struct ice_hw * hw,u8 output_idx,u8 * flags,u8 * src_sel,u32 * freq,u32 * src_freq)5376 ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5377 u8 *src_sel, u32 *freq, u32 *src_freq)
5378 {
5379 struct ice_aqc_get_cgu_output_config *cmd;
5380 struct libie_aq_desc desc;
5381 int ret;
5382
5383 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5384 cmd = libie_aq_raw(&desc);
5385 cmd->output_idx = output_idx;
5386
5387 ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5388 if (!ret) {
5389 if (flags)
5390 *flags = cmd->flags;
5391 if (src_sel)
5392 *src_sel = cmd->src_sel;
5393 if (freq)
5394 *freq = le32_to_cpu(cmd->freq);
5395 if (src_freq)
5396 *src_freq = le32_to_cpu(cmd->src_freq);
5397 }
5398
5399 return ret;
5400 }
5401
5402 /**
5403 * ice_aq_get_cgu_dpll_status - get dpll status
5404 * @hw: pointer to the HW struct
5405 * @dpll_num: DPLL index
5406 * @ref_state: Reference clock state
5407 * @config: current DPLL config
5408 * @dpll_state: current DPLL state
5409 * @phase_offset: Phase offset in ns
5410 * @eec_mode: EEC_mode
5411 *
5412 * Get CGU DPLL status (0x0C66)
5413 * Return: 0 on success or negative value on failure.
5414 */
5415 int
ice_aq_get_cgu_dpll_status(struct ice_hw * hw,u8 dpll_num,u8 * ref_state,u8 * dpll_state,u8 * config,s64 * phase_offset,u8 * eec_mode)5416 ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5417 u8 *dpll_state, u8 *config, s64 *phase_offset,
5418 u8 *eec_mode)
5419 {
5420 struct ice_aqc_get_cgu_dpll_status *cmd;
5421 struct libie_aq_desc desc;
5422 int status;
5423
5424 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5425 cmd = libie_aq_raw(&desc);
5426 cmd->dpll_num = dpll_num;
5427
5428 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5429 if (!status) {
5430 *ref_state = cmd->ref_state;
5431 *dpll_state = cmd->dpll_state;
5432 *config = cmd->config;
5433 *phase_offset = le32_to_cpu(cmd->phase_offset_h);
5434 *phase_offset <<= 32;
5435 *phase_offset += le32_to_cpu(cmd->phase_offset_l);
5436 *phase_offset = sign_extend64(*phase_offset, 47);
5437 *eec_mode = cmd->eec_mode;
5438 }
5439
5440 return status;
5441 }
5442
5443 /**
5444 * ice_aq_set_cgu_dpll_config - set dpll config
5445 * @hw: pointer to the HW struct
5446 * @dpll_num: DPLL index
5447 * @ref_state: Reference clock state
5448 * @config: DPLL config
5449 * @eec_mode: EEC mode
5450 *
5451 * Set CGU DPLL config (0x0C67)
5452 * Return: 0 on success or negative value on failure.
5453 */
5454 int
ice_aq_set_cgu_dpll_config(struct ice_hw * hw,u8 dpll_num,u8 ref_state,u8 config,u8 eec_mode)5455 ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5456 u8 config, u8 eec_mode)
5457 {
5458 struct ice_aqc_set_cgu_dpll_config *cmd;
5459 struct libie_aq_desc desc;
5460
5461 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5462 cmd = libie_aq_raw(&desc);
5463 cmd->dpll_num = dpll_num;
5464 cmd->ref_state = ref_state;
5465 cmd->config = config;
5466 cmd->eec_mode = eec_mode;
5467
5468 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5469 }
5470
5471 /**
5472 * ice_aq_set_cgu_ref_prio - set input reference priority
5473 * @hw: pointer to the HW struct
5474 * @dpll_num: DPLL index
5475 * @ref_idx: Reference pin index
5476 * @ref_priority: Reference input priority
5477 *
5478 * Set CGU reference priority (0x0C68)
5479 * Return: 0 on success or negative value on failure.
5480 */
5481 int
ice_aq_set_cgu_ref_prio(struct ice_hw * hw,u8 dpll_num,u8 ref_idx,u8 ref_priority)5482 ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5483 u8 ref_priority)
5484 {
5485 struct ice_aqc_set_cgu_ref_prio *cmd;
5486 struct libie_aq_desc desc;
5487
5488 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5489 cmd = libie_aq_raw(&desc);
5490 cmd->dpll_num = dpll_num;
5491 cmd->ref_idx = ref_idx;
5492 cmd->ref_priority = ref_priority;
5493
5494 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5495 }
5496
5497 /**
5498 * ice_aq_get_cgu_ref_prio - get input reference priority
5499 * @hw: pointer to the HW struct
5500 * @dpll_num: DPLL index
5501 * @ref_idx: Reference pin index
5502 * @ref_prio: Reference input priority
5503 *
5504 * Get CGU reference priority (0x0C69)
5505 * Return: 0 on success or negative value on failure.
5506 */
5507 int
ice_aq_get_cgu_ref_prio(struct ice_hw * hw,u8 dpll_num,u8 ref_idx,u8 * ref_prio)5508 ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5509 u8 *ref_prio)
5510 {
5511 struct ice_aqc_get_cgu_ref_prio *cmd;
5512 struct libie_aq_desc desc;
5513 int status;
5514
5515 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5516 cmd = libie_aq_raw(&desc);
5517 cmd->dpll_num = dpll_num;
5518 cmd->ref_idx = ref_idx;
5519
5520 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5521 if (!status)
5522 *ref_prio = cmd->ref_priority;
5523
5524 return status;
5525 }
5526
5527 /**
5528 * ice_aq_get_cgu_info - get cgu info
5529 * @hw: pointer to the HW struct
5530 * @cgu_id: CGU ID
5531 * @cgu_cfg_ver: CGU config version
5532 * @cgu_fw_ver: CGU firmware version
5533 *
5534 * Get CGU info (0x0C6A)
5535 * Return: 0 on success or negative value on failure.
5536 */
5537 int
ice_aq_get_cgu_info(struct ice_hw * hw,u32 * cgu_id,u32 * cgu_cfg_ver,u32 * cgu_fw_ver)5538 ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5539 u32 *cgu_fw_ver)
5540 {
5541 struct ice_aqc_get_cgu_info *cmd;
5542 struct libie_aq_desc desc;
5543 int status;
5544
5545 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5546 cmd = libie_aq_raw(&desc);
5547
5548 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5549 if (!status) {
5550 *cgu_id = le32_to_cpu(cmd->cgu_id);
5551 *cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5552 *cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5553 }
5554
5555 return status;
5556 }
5557
5558 /**
5559 * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5560 * @hw: pointer to the HW struct
5561 * @phy_output: PHY reference clock output pin
5562 * @enable: GPIO state to be applied
5563 * @freq: PHY output frequency
5564 *
5565 * Set phy recovered clock as reference (0x0630)
5566 * Return: 0 on success or negative value on failure.
5567 */
5568 int
ice_aq_set_phy_rec_clk_out(struct ice_hw * hw,u8 phy_output,bool enable,u32 * freq)5569 ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5570 u32 *freq)
5571 {
5572 struct ice_aqc_set_phy_rec_clk_out *cmd;
5573 struct libie_aq_desc desc;
5574 int status;
5575
5576 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5577 cmd = libie_aq_raw(&desc);
5578 cmd->phy_output = phy_output;
5579 cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5580 cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5581 cmd->freq = cpu_to_le32(*freq);
5582
5583 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5584 if (!status)
5585 *freq = le32_to_cpu(cmd->freq);
5586
5587 return status;
5588 }
5589
5590 /**
5591 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5592 * @hw: pointer to the HW struct
5593 * @phy_output: PHY reference clock output pin
5594 * @port_num: Port number
5595 * @flags: PHY flags
5596 * @node_handle: PHY output frequency
5597 *
5598 * Get PHY recovered clock output info (0x0631)
5599 * Return: 0 on success or negative value on failure.
5600 */
5601 int
ice_aq_get_phy_rec_clk_out(struct ice_hw * hw,u8 * phy_output,u8 * port_num,u8 * flags,u16 * node_handle)5602 ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5603 u8 *flags, u16 *node_handle)
5604 {
5605 struct ice_aqc_get_phy_rec_clk_out *cmd;
5606 struct libie_aq_desc desc;
5607 int status;
5608
5609 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5610 cmd = libie_aq_raw(&desc);
5611 cmd->phy_output = *phy_output;
5612
5613 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5614 if (!status) {
5615 *phy_output = cmd->phy_output;
5616 if (port_num)
5617 *port_num = cmd->port_num;
5618 if (flags)
5619 *flags = cmd->flags;
5620 if (node_handle)
5621 *node_handle = le16_to_cpu(cmd->node_handle);
5622 }
5623
5624 return status;
5625 }
5626
5627 /**
5628 * ice_aq_get_sensor_reading
5629 * @hw: pointer to the HW struct
5630 * @data: pointer to data to be read from the sensor
5631 *
5632 * Get sensor reading (0x0632)
5633 */
ice_aq_get_sensor_reading(struct ice_hw * hw,struct ice_aqc_get_sensor_reading_resp * data)5634 int ice_aq_get_sensor_reading(struct ice_hw *hw,
5635 struct ice_aqc_get_sensor_reading_resp *data)
5636 {
5637 struct ice_aqc_get_sensor_reading *cmd;
5638 struct libie_aq_desc desc;
5639 int status;
5640
5641 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5642 cmd = libie_aq_raw(&desc);
5643 #define ICE_INTERNAL_TEMP_SENSOR_FORMAT 0
5644 #define ICE_INTERNAL_TEMP_SENSOR 0
5645 cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5646 cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5647
5648 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5649 if (!status)
5650 memcpy(data, &desc.params.raw,
5651 sizeof(*data));
5652
5653 return status;
5654 }
5655
5656 /**
5657 * ice_replay_pre_init - replay pre initialization
5658 * @hw: pointer to the HW struct
5659 *
5660 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5661 */
ice_replay_pre_init(struct ice_hw * hw)5662 static int ice_replay_pre_init(struct ice_hw *hw)
5663 {
5664 struct ice_switch_info *sw = hw->switch_info;
5665 u8 i;
5666
5667 /* Delete old entries from replay filter list head if there is any */
5668 ice_rm_all_sw_replay_rule_info(hw);
5669 /* In start of replay, move entries into replay_rules list, it
5670 * will allow adding rules entries back to filt_rules list,
5671 * which is operational list.
5672 */
5673 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5674 list_replace_init(&sw->recp_list[i].filt_rules,
5675 &sw->recp_list[i].filt_replay_rules);
5676 ice_sched_replay_agg_vsi_preinit(hw);
5677
5678 return 0;
5679 }
5680
5681 /**
5682 * ice_replay_vsi - replay VSI configuration
5683 * @hw: pointer to the HW struct
5684 * @vsi_handle: driver VSI handle
5685 *
5686 * Restore all VSI configuration after reset. It is required to call this
5687 * function with main VSI first.
5688 */
ice_replay_vsi(struct ice_hw * hw,u16 vsi_handle)5689 int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5690 {
5691 int status;
5692
5693 if (!ice_is_vsi_valid(hw, vsi_handle))
5694 return -EINVAL;
5695
5696 /* Replay pre-initialization if there is any */
5697 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5698 status = ice_replay_pre_init(hw);
5699 if (status)
5700 return status;
5701 }
5702 /* Replay per VSI all RSS configurations */
5703 status = ice_replay_rss_cfg(hw, vsi_handle);
5704 if (status)
5705 return status;
5706 /* Replay per VSI all filters */
5707 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5708 if (!status)
5709 status = ice_replay_vsi_agg(hw, vsi_handle);
5710 return status;
5711 }
5712
5713 /**
5714 * ice_replay_post - post replay configuration cleanup
5715 * @hw: pointer to the HW struct
5716 *
5717 * Post replay cleanup.
5718 */
ice_replay_post(struct ice_hw * hw)5719 void ice_replay_post(struct ice_hw *hw)
5720 {
5721 /* Delete old entries from replay filter list head */
5722 ice_rm_all_sw_replay_rule_info(hw);
5723 ice_sched_replay_agg(hw);
5724 }
5725
5726 /**
5727 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5728 * @hw: ptr to the hardware info
5729 * @reg: offset of 64 bit HW register to read from
5730 * @prev_stat_loaded: bool to specify if previous stats are loaded
5731 * @prev_stat: ptr to previous loaded stat value
5732 * @cur_stat: ptr to current stat value
5733 */
5734 void
ice_stat_update40(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5735 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5736 u64 *prev_stat, u64 *cur_stat)
5737 {
5738 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5739
5740 /* device stats are not reset at PFR, they likely will not be zeroed
5741 * when the driver starts. Thus, save the value from the first read
5742 * without adding to the statistic value so that we report stats which
5743 * count up from zero.
5744 */
5745 if (!prev_stat_loaded) {
5746 *prev_stat = new_data;
5747 return;
5748 }
5749
5750 /* Calculate the difference between the new and old values, and then
5751 * add it to the software stat value.
5752 */
5753 if (new_data >= *prev_stat)
5754 *cur_stat += new_data - *prev_stat;
5755 else
5756 /* to manage the potential roll-over */
5757 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5758
5759 /* Update the previously stored value to prepare for next read */
5760 *prev_stat = new_data;
5761 }
5762
5763 /**
5764 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5765 * @hw: ptr to the hardware info
5766 * @reg: offset of HW register to read from
5767 * @prev_stat_loaded: bool to specify if previous stats are loaded
5768 * @prev_stat: ptr to previous loaded stat value
5769 * @cur_stat: ptr to current stat value
5770 */
5771 void
ice_stat_update32(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)5772 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5773 u64 *prev_stat, u64 *cur_stat)
5774 {
5775 u32 new_data;
5776
5777 new_data = rd32(hw, reg);
5778
5779 /* device stats are not reset at PFR, they likely will not be zeroed
5780 * when the driver starts. Thus, save the value from the first read
5781 * without adding to the statistic value so that we report stats which
5782 * count up from zero.
5783 */
5784 if (!prev_stat_loaded) {
5785 *prev_stat = new_data;
5786 return;
5787 }
5788
5789 /* Calculate the difference between the new and old values, and then
5790 * add it to the software stat value.
5791 */
5792 if (new_data >= *prev_stat)
5793 *cur_stat += new_data - *prev_stat;
5794 else
5795 /* to manage the potential roll-over */
5796 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5797
5798 /* Update the previously stored value to prepare for next read */
5799 *prev_stat = new_data;
5800 }
5801
5802 /**
5803 * ice_sched_query_elem - query element information from HW
5804 * @hw: pointer to the HW struct
5805 * @node_teid: node TEID to be queried
5806 * @buf: buffer to element information
5807 *
5808 * This function queries HW element information
5809 */
5810 int
ice_sched_query_elem(struct ice_hw * hw,u32 node_teid,struct ice_aqc_txsched_elem_data * buf)5811 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5812 struct ice_aqc_txsched_elem_data *buf)
5813 {
5814 u16 buf_size, num_elem_ret = 0;
5815 int status;
5816
5817 buf_size = sizeof(*buf);
5818 memset(buf, 0, buf_size);
5819 buf->node_teid = cpu_to_le32(node_teid);
5820 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5821 NULL);
5822 if (status || num_elem_ret != 1)
5823 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5824 return status;
5825 }
5826
5827 /**
5828 * ice_aq_read_i2c
5829 * @hw: pointer to the hw struct
5830 * @topo_addr: topology address for a device to communicate with
5831 * @bus_addr: 7-bit I2C bus address
5832 * @addr: I2C memory address (I2C offset) with up to 16 bits
5833 * @params: I2C parameters: bit [7] - Repeated start,
5834 * bits [6:5] data offset size,
5835 * bit [4] - I2C address type,
5836 * bits [3:0] - data size to read (0-16 bytes)
5837 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5838 * @cd: pointer to command details structure or NULL
5839 *
5840 * Read I2C (0x06E2)
5841 */
5842 int
ice_aq_read_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,u8 * data,struct ice_sq_cd * cd)5843 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5844 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5845 struct ice_sq_cd *cd)
5846 {
5847 struct libie_aq_desc desc = { 0 };
5848 struct ice_aqc_i2c *cmd;
5849 u8 data_size;
5850 int status;
5851
5852 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5853 cmd = libie_aq_raw(&desc);
5854
5855 if (!data)
5856 return -EINVAL;
5857
5858 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5859
5860 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5861 cmd->topo_addr = topo_addr;
5862 cmd->i2c_params = params;
5863 cmd->i2c_addr = addr;
5864
5865 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5866 if (!status) {
5867 struct ice_aqc_read_i2c_resp *resp;
5868 u8 i;
5869
5870 resp = libie_aq_raw(&desc);
5871 for (i = 0; i < data_size; i++) {
5872 *data = resp->i2c_data[i];
5873 data++;
5874 }
5875 }
5876
5877 return status;
5878 }
5879
5880 /**
5881 * ice_aq_write_i2c
5882 * @hw: pointer to the hw struct
5883 * @topo_addr: topology address for a device to communicate with
5884 * @bus_addr: 7-bit I2C bus address
5885 * @addr: I2C memory address (I2C offset) with up to 16 bits
5886 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5887 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5888 * @cd: pointer to command details structure or NULL
5889 *
5890 * Write I2C (0x06E3)
5891 *
5892 * * Return:
5893 * * 0 - Successful write to the i2c device
5894 * * -EINVAL - Data size greater than 4 bytes
5895 * * -EIO - FW error
5896 */
5897 int
ice_aq_write_i2c(struct ice_hw * hw,struct ice_aqc_link_topo_addr topo_addr,u16 bus_addr,__le16 addr,u8 params,const u8 * data,struct ice_sq_cd * cd)5898 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5899 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5900 struct ice_sq_cd *cd)
5901 {
5902 struct libie_aq_desc desc = { 0 };
5903 struct ice_aqc_i2c *cmd;
5904 u8 data_size;
5905
5906 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5907 cmd = libie_aq_raw(&desc);
5908
5909 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5910
5911 /* data_size limited to 4 */
5912 if (data_size > 4)
5913 return -EINVAL;
5914
5915 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5916 cmd->topo_addr = topo_addr;
5917 cmd->i2c_params = params;
5918 cmd->i2c_addr = addr;
5919
5920 memcpy(cmd->i2c_data, data, data_size);
5921
5922 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5923 }
5924
5925 /**
5926 * ice_get_pca9575_handle - find and return the PCA9575 controller
5927 * @hw: pointer to the hw struct
5928 * @pca9575_handle: GPIO controller's handle
5929 *
5930 * Find and return the GPIO controller's handle in the netlist.
5931 * When found - the value will be cached in the hw structure and following calls
5932 * will return cached value.
5933 *
5934 * Return: 0 on success, -ENXIO when there's no PCA9575 present.
5935 */
ice_get_pca9575_handle(struct ice_hw * hw,u16 * pca9575_handle)5936 int ice_get_pca9575_handle(struct ice_hw *hw, u16 *pca9575_handle)
5937 {
5938 struct ice_aqc_get_link_topo *cmd;
5939 struct libie_aq_desc desc;
5940 int err;
5941 u8 idx;
5942
5943 /* If handle was read previously return cached value */
5944 if (hw->io_expander_handle) {
5945 *pca9575_handle = hw->io_expander_handle;
5946 return 0;
5947 }
5948
5949 #define SW_PCA9575_SFP_TOPO_IDX 2
5950 #define SW_PCA9575_QSFP_TOPO_IDX 1
5951
5952 /* Check if the SW IO expander controlling SMA exists in the netlist. */
5953 if (hw->device_id == ICE_DEV_ID_E810C_SFP)
5954 idx = SW_PCA9575_SFP_TOPO_IDX;
5955 else if (hw->device_id == ICE_DEV_ID_E810C_QSFP)
5956 idx = SW_PCA9575_QSFP_TOPO_IDX;
5957 else
5958 return -ENXIO;
5959
5960 /* If handle was not detected read it from the netlist */
5961 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
5962 cmd = libie_aq_raw(&desc);
5963 cmd->addr.topo_params.node_type_ctx =
5964 ICE_AQC_LINK_TOPO_NODE_TYPE_GPIO_CTRL;
5965 cmd->addr.topo_params.index = idx;
5966
5967 err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5968 if (err)
5969 return -ENXIO;
5970
5971 /* Verify if we found the right IO expander type */
5972 if (cmd->node_part_num != ICE_AQC_GET_LINK_TOPO_NODE_NR_PCA9575)
5973 return -ENXIO;
5974
5975 /* If present save the handle and return it */
5976 hw->io_expander_handle =
5977 le16_to_cpu(cmd->addr.handle);
5978 *pca9575_handle = hw->io_expander_handle;
5979
5980 return 0;
5981 }
5982
5983 /**
5984 * ice_read_pca9575_reg - read the register from the PCA9575 controller
5985 * @hw: pointer to the hw struct
5986 * @offset: GPIO controller register offset
5987 * @data: pointer to data to be read from the GPIO controller
5988 *
5989 * Return: 0 on success, negative error code otherwise.
5990 */
ice_read_pca9575_reg(struct ice_hw * hw,u8 offset,u8 * data)5991 int ice_read_pca9575_reg(struct ice_hw *hw, u8 offset, u8 *data)
5992 {
5993 struct ice_aqc_link_topo_addr link_topo;
5994 __le16 addr;
5995 u16 handle;
5996 int err;
5997
5998 memset(&link_topo, 0, sizeof(link_topo));
5999
6000 err = ice_get_pca9575_handle(hw, &handle);
6001 if (err)
6002 return err;
6003
6004 link_topo.handle = cpu_to_le16(handle);
6005 link_topo.topo_params.node_type_ctx =
6006 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M,
6007 ICE_AQC_LINK_TOPO_NODE_CTX_PROVIDED);
6008
6009 addr = cpu_to_le16((u16)offset);
6010
6011 return ice_aq_read_i2c(hw, link_topo, 0, addr, 1, data, NULL);
6012 }
6013
6014 /**
6015 * ice_aq_set_gpio
6016 * @hw: pointer to the hw struct
6017 * @gpio_ctrl_handle: GPIO controller node handle
6018 * @pin_idx: IO Number of the GPIO that needs to be set
6019 * @value: SW provide IO value to set in the LSB
6020 * @cd: pointer to command details structure or NULL
6021 *
6022 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
6023 */
6024 int
ice_aq_set_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool value,struct ice_sq_cd * cd)6025 ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
6026 struct ice_sq_cd *cd)
6027 {
6028 struct libie_aq_desc desc;
6029 struct ice_aqc_gpio *cmd;
6030
6031 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
6032 cmd = libie_aq_raw(&desc);
6033 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
6034 cmd->gpio_num = pin_idx;
6035 cmd->gpio_val = value ? 1 : 0;
6036
6037 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6038 }
6039
6040 /**
6041 * ice_aq_get_gpio
6042 * @hw: pointer to the hw struct
6043 * @gpio_ctrl_handle: GPIO controller node handle
6044 * @pin_idx: IO Number of the GPIO that needs to be set
6045 * @value: IO value read
6046 * @cd: pointer to command details structure or NULL
6047 *
6048 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
6049 * the topology
6050 */
6051 int
ice_aq_get_gpio(struct ice_hw * hw,u16 gpio_ctrl_handle,u8 pin_idx,bool * value,struct ice_sq_cd * cd)6052 ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
6053 bool *value, struct ice_sq_cd *cd)
6054 {
6055 struct libie_aq_desc desc;
6056 struct ice_aqc_gpio *cmd;
6057 int status;
6058
6059 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
6060 cmd = libie_aq_raw(&desc);
6061 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
6062 cmd->gpio_num = pin_idx;
6063
6064 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
6065 if (status)
6066 return status;
6067
6068 *value = !!cmd->gpio_val;
6069 return 0;
6070 }
6071
6072 /**
6073 * ice_is_fw_api_min_ver
6074 * @hw: pointer to the hardware structure
6075 * @maj: major version
6076 * @min: minor version
6077 * @patch: patch version
6078 *
6079 * Checks if the firmware API is minimum version
6080 */
ice_is_fw_api_min_ver(struct ice_hw * hw,u8 maj,u8 min,u8 patch)6081 static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
6082 {
6083 if (hw->api_maj_ver == maj) {
6084 if (hw->api_min_ver > min)
6085 return true;
6086 if (hw->api_min_ver == min && hw->api_patch >= patch)
6087 return true;
6088 } else if (hw->api_maj_ver > maj) {
6089 return true;
6090 }
6091
6092 return false;
6093 }
6094
6095 /**
6096 * ice_fw_supports_link_override
6097 * @hw: pointer to the hardware structure
6098 *
6099 * Checks if the firmware supports link override
6100 */
ice_fw_supports_link_override(struct ice_hw * hw)6101 bool ice_fw_supports_link_override(struct ice_hw *hw)
6102 {
6103 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
6104 ICE_FW_API_LINK_OVERRIDE_MIN,
6105 ICE_FW_API_LINK_OVERRIDE_PATCH);
6106 }
6107
6108 /**
6109 * ice_get_link_default_override
6110 * @ldo: pointer to the link default override struct
6111 * @pi: pointer to the port info struct
6112 *
6113 * Gets the link default override for a port
6114 */
6115 int
ice_get_link_default_override(struct ice_link_default_override_tlv * ldo,struct ice_port_info * pi)6116 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
6117 struct ice_port_info *pi)
6118 {
6119 u16 i, tlv, tlv_len, tlv_start, buf, offset;
6120 struct ice_hw *hw = pi->hw;
6121 int status;
6122
6123 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
6124 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
6125 if (status) {
6126 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
6127 return status;
6128 }
6129
6130 /* Each port has its own config; calculate for our port */
6131 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
6132 ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
6133
6134 /* link options first */
6135 status = ice_read_sr_word(hw, tlv_start, &buf);
6136 if (status) {
6137 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6138 return status;
6139 }
6140 ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
6141 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
6142 ICE_LINK_OVERRIDE_PHY_CFG_S;
6143
6144 /* link PHY config */
6145 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
6146 status = ice_read_sr_word(hw, offset, &buf);
6147 if (status) {
6148 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
6149 return status;
6150 }
6151 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
6152
6153 /* PHY types low */
6154 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
6155 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6156 status = ice_read_sr_word(hw, (offset + i), &buf);
6157 if (status) {
6158 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6159 return status;
6160 }
6161 /* shift 16 bits at a time to fill 64 bits */
6162 ldo->phy_type_low |= ((u64)buf << (i * 16));
6163 }
6164
6165 /* PHY types high */
6166 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6167 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6168 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6169 status = ice_read_sr_word(hw, (offset + i), &buf);
6170 if (status) {
6171 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6172 return status;
6173 }
6174 /* shift 16 bits at a time to fill 64 bits */
6175 ldo->phy_type_high |= ((u64)buf << (i * 16));
6176 }
6177
6178 return status;
6179 }
6180
6181 /**
6182 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6183 * @caps: get PHY capability data
6184 */
ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data * caps)6185 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6186 {
6187 if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6188 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6189 ICE_AQC_PHY_AN_EN_CLAUSE73 |
6190 ICE_AQC_PHY_AN_EN_CLAUSE37))
6191 return true;
6192
6193 return false;
6194 }
6195
6196 /**
6197 * ice_is_fw_health_report_supported - checks if firmware supports health events
6198 * @hw: pointer to the hardware structure
6199 *
6200 * Return: true if firmware supports health status reports,
6201 * false otherwise
6202 */
ice_is_fw_health_report_supported(struct ice_hw * hw)6203 bool ice_is_fw_health_report_supported(struct ice_hw *hw)
6204 {
6205 return ice_is_fw_api_min_ver(hw, ICE_FW_API_HEALTH_REPORT_MAJ,
6206 ICE_FW_API_HEALTH_REPORT_MIN,
6207 ICE_FW_API_HEALTH_REPORT_PATCH);
6208 }
6209
6210 /**
6211 * ice_aq_set_health_status_cfg - Configure FW health events
6212 * @hw: pointer to the HW struct
6213 * @event_source: type of diagnostic events to enable
6214 *
6215 * Configure the health status event types that the firmware will send to this
6216 * PF. The supported event types are: PF-specific, all PFs, and global.
6217 *
6218 * Return: 0 on success, negative error code otherwise.
6219 */
ice_aq_set_health_status_cfg(struct ice_hw * hw,u8 event_source)6220 int ice_aq_set_health_status_cfg(struct ice_hw *hw, u8 event_source)
6221 {
6222 struct ice_aqc_set_health_status_cfg *cmd;
6223 struct libie_aq_desc desc;
6224
6225 cmd = libie_aq_raw(&desc);
6226
6227 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_health_status_cfg);
6228
6229 cmd->event_source = event_source;
6230
6231 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6232 }
6233
6234 /**
6235 * ice_aq_set_lldp_mib - Set the LLDP MIB
6236 * @hw: pointer to the HW struct
6237 * @mib_type: Local, Remote or both Local and Remote MIBs
6238 * @buf: pointer to the caller-supplied buffer to store the MIB block
6239 * @buf_size: size of the buffer (in bytes)
6240 * @cd: pointer to command details structure or NULL
6241 *
6242 * Set the LLDP MIB. (0x0A08)
6243 */
6244 int
ice_aq_set_lldp_mib(struct ice_hw * hw,u8 mib_type,void * buf,u16 buf_size,struct ice_sq_cd * cd)6245 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6246 struct ice_sq_cd *cd)
6247 {
6248 struct ice_aqc_lldp_set_local_mib *cmd;
6249 struct libie_aq_desc desc;
6250
6251 cmd = libie_aq_raw(&desc);
6252
6253 if (buf_size == 0 || !buf)
6254 return -EINVAL;
6255
6256 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6257
6258 desc.flags |= cpu_to_le16((u16)LIBIE_AQ_FLAG_RD);
6259 desc.datalen = cpu_to_le16(buf_size);
6260
6261 cmd->type = mib_type;
6262 cmd->length = cpu_to_le16(buf_size);
6263
6264 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6265 }
6266
6267 /**
6268 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6269 * @hw: pointer to HW struct
6270 */
ice_fw_supports_lldp_fltr_ctrl(struct ice_hw * hw)6271 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6272 {
6273 if (hw->mac_type != ICE_MAC_E810)
6274 return false;
6275
6276 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6277 ICE_FW_API_LLDP_FLTR_MIN,
6278 ICE_FW_API_LLDP_FLTR_PATCH);
6279 }
6280
6281 /**
6282 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6283 * @hw: pointer to HW struct
6284 * @vsi: VSI to add the filter to
6285 * @add: boolean for if adding or removing a filter
6286 *
6287 * Return: 0 on success, -EOPNOTSUPP if the operation cannot be performed
6288 * with this HW or VSI, otherwise an error corresponding to
6289 * the AQ transaction result.
6290 */
ice_lldp_fltr_add_remove(struct ice_hw * hw,struct ice_vsi * vsi,bool add)6291 int ice_lldp_fltr_add_remove(struct ice_hw *hw, struct ice_vsi *vsi, bool add)
6292 {
6293 struct ice_aqc_lldp_filter_ctrl *cmd;
6294 struct libie_aq_desc desc;
6295
6296 if (vsi->type != ICE_VSI_PF || !ice_fw_supports_lldp_fltr_ctrl(hw))
6297 return -EOPNOTSUPP;
6298
6299 cmd = libie_aq_raw(&desc);
6300
6301 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6302
6303 if (add)
6304 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6305 else
6306 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6307
6308 cmd->vsi_num = cpu_to_le16(vsi->vsi_num);
6309
6310 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6311 }
6312
6313 /**
6314 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6315 * @hw: pointer to HW struct
6316 */
ice_lldp_execute_pending_mib(struct ice_hw * hw)6317 int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6318 {
6319 struct libie_aq_desc desc;
6320
6321 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6322
6323 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6324 }
6325
6326 /**
6327 * ice_fw_supports_report_dflt_cfg
6328 * @hw: pointer to the hardware structure
6329 *
6330 * Checks if the firmware supports report default configuration
6331 */
ice_fw_supports_report_dflt_cfg(struct ice_hw * hw)6332 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6333 {
6334 return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6335 ICE_FW_API_REPORT_DFLT_CFG_MIN,
6336 ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6337 }
6338
6339 /* each of the indexes into the following array match the speed of a return
6340 * value from the list of AQ returned speeds like the range:
6341 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6342 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6343 * array. The array is defined as 15 elements long because the link_speed
6344 * returned by the firmware is a 16 bit * value, but is indexed
6345 * by [fls(speed) - 1]
6346 */
6347 static const u32 ice_aq_to_link_speed[] = {
6348 SPEED_10, /* BIT(0) */
6349 SPEED_100,
6350 SPEED_1000,
6351 SPEED_2500,
6352 SPEED_5000,
6353 SPEED_10000,
6354 SPEED_20000,
6355 SPEED_25000,
6356 SPEED_40000,
6357 SPEED_50000,
6358 SPEED_100000, /* BIT(10) */
6359 SPEED_200000,
6360 };
6361
6362 /**
6363 * ice_get_link_speed - get integer speed from table
6364 * @index: array index from fls(aq speed) - 1
6365 *
6366 * Returns: u32 value containing integer speed
6367 */
ice_get_link_speed(u16 index)6368 u32 ice_get_link_speed(u16 index)
6369 {
6370 if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6371 return 0;
6372
6373 return ice_aq_to_link_speed[index];
6374 }
6375
6376 /**
6377 * ice_read_cgu_reg - Read a CGU register
6378 * @hw: Pointer to the HW struct
6379 * @addr: Register address to read
6380 * @val: Storage for register value read
6381 *
6382 * Read the contents of a register of the Clock Generation Unit. Only
6383 * applicable to E82X devices.
6384 *
6385 * Return: 0 on success, other error codes when failed to read from CGU.
6386 */
ice_read_cgu_reg(struct ice_hw * hw,u32 addr,u32 * val)6387 int ice_read_cgu_reg(struct ice_hw *hw, u32 addr, u32 *val)
6388 {
6389 struct ice_sbq_msg_input cgu_msg = {
6390 .opcode = ice_sbq_msg_rd,
6391 .dest_dev = ice_sbq_dev_cgu,
6392 .msg_addr_low = addr
6393 };
6394 int err;
6395
6396 err = ice_sbq_rw_reg(hw, &cgu_msg, LIBIE_AQ_FLAG_RD);
6397 if (err) {
6398 ice_debug(hw, ICE_DBG_PTP, "Failed to read CGU register 0x%04x, err %d\n",
6399 addr, err);
6400 return err;
6401 }
6402
6403 *val = cgu_msg.data;
6404
6405 return 0;
6406 }
6407
6408 /**
6409 * ice_write_cgu_reg - Write a CGU register
6410 * @hw: Pointer to the HW struct
6411 * @addr: Register address to write
6412 * @val: Value to write into the register
6413 *
6414 * Write the specified value to a register of the Clock Generation Unit. Only
6415 * applicable to E82X devices.
6416 *
6417 * Return: 0 on success, other error codes when failed to write to CGU.
6418 */
ice_write_cgu_reg(struct ice_hw * hw,u32 addr,u32 val)6419 int ice_write_cgu_reg(struct ice_hw *hw, u32 addr, u32 val)
6420 {
6421 struct ice_sbq_msg_input cgu_msg = {
6422 .opcode = ice_sbq_msg_wr,
6423 .dest_dev = ice_sbq_dev_cgu,
6424 .msg_addr_low = addr,
6425 .data = val
6426 };
6427 int err;
6428
6429 err = ice_sbq_rw_reg(hw, &cgu_msg, LIBIE_AQ_FLAG_RD);
6430 if (err)
6431 ice_debug(hw, ICE_DBG_PTP, "Failed to write CGU register 0x%04x, err %d\n",
6432 addr, err);
6433
6434 return err;
6435 }
6436