xref: /linux/drivers/net/ethernet/intel/ice/ice_sched.c (revision 2c7e4a2663a1ab5a740c59c31991579b6b865a26)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include <net/devlink.h>
5 #include "ice_sched.h"
6 
7 /**
8  * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
9  * @pi: port information structure
10  * @info: Scheduler element information from firmware
11  *
12  * This function inserts the root node of the scheduling tree topology
13  * to the SW DB.
14  */
15 static int
ice_sched_add_root_node(struct ice_port_info * pi,struct ice_aqc_txsched_elem_data * info)16 ice_sched_add_root_node(struct ice_port_info *pi,
17 			struct ice_aqc_txsched_elem_data *info)
18 {
19 	struct ice_sched_node *root;
20 	struct ice_hw *hw;
21 
22 	if (!pi)
23 		return -EINVAL;
24 
25 	hw = pi->hw;
26 
27 	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
28 	if (!root)
29 		return -ENOMEM;
30 
31 	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
32 				      sizeof(*root->children), GFP_KERNEL);
33 	if (!root->children) {
34 		devm_kfree(ice_hw_to_dev(hw), root);
35 		return -ENOMEM;
36 	}
37 
38 	memcpy(&root->info, info, sizeof(*info));
39 	pi->root = root;
40 	return 0;
41 }
42 
43 /**
44  * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
45  * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
46  * @teid: node TEID to search
47  *
48  * This function searches for a node matching the TEID in the scheduling tree
49  * from the SW DB. The search is recursive and is restricted by the number of
50  * layers it has searched through; stopping at the max supported layer.
51  *
52  * This function needs to be called when holding the port_info->sched_lock
53  */
54 struct ice_sched_node *
ice_sched_find_node_by_teid(struct ice_sched_node * start_node,u32 teid)55 ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
56 {
57 	u16 i;
58 
59 	/* The TEID is same as that of the start_node */
60 	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
61 		return start_node;
62 
63 	/* The node has no children or is at the max layer */
64 	if (!start_node->num_children ||
65 	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
66 	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
67 		return NULL;
68 
69 	/* Check if TEID matches to any of the children nodes */
70 	for (i = 0; i < start_node->num_children; i++)
71 		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
72 			return start_node->children[i];
73 
74 	/* Search within each child's sub-tree */
75 	for (i = 0; i < start_node->num_children; i++) {
76 		struct ice_sched_node *tmp;
77 
78 		tmp = ice_sched_find_node_by_teid(start_node->children[i],
79 						  teid);
80 		if (tmp)
81 			return tmp;
82 	}
83 
84 	return NULL;
85 }
86 
87 /**
88  * ice_sched_find_next_vsi_node - find the next node for a given VSI
89  * @vsi_node: VSI support node to start search with
90  *
91  * Return: Next VSI support node, or NULL.
92  *
93  * The function returns a pointer to the next node from the VSI layer
94  * assigned to the given VSI, or NULL if there is no such a node.
95  */
96 static struct ice_sched_node *
ice_sched_find_next_vsi_node(struct ice_sched_node * vsi_node)97 ice_sched_find_next_vsi_node(struct ice_sched_node *vsi_node)
98 {
99 	unsigned int vsi_handle = vsi_node->vsi_handle;
100 
101 	while ((vsi_node = vsi_node->sibling) != NULL)
102 		if (vsi_node->vsi_handle == vsi_handle)
103 			break;
104 
105 	return vsi_node;
106 }
107 
108 /**
109  * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
110  * @hw: pointer to the HW struct
111  * @cmd_opc: cmd opcode
112  * @elems_req: number of elements to request
113  * @buf: pointer to buffer
114  * @buf_size: buffer size in bytes
115  * @elems_resp: returns total number of elements response
116  * @cd: pointer to command details structure or NULL
117  *
118  * This function sends a scheduling elements cmd (cmd_opc)
119  */
120 static int
ice_aqc_send_sched_elem_cmd(struct ice_hw * hw,enum ice_adminq_opc cmd_opc,u16 elems_req,void * buf,u16 buf_size,u16 * elems_resp,struct ice_sq_cd * cd)121 ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
122 			    u16 elems_req, void *buf, u16 buf_size,
123 			    u16 *elems_resp, struct ice_sq_cd *cd)
124 {
125 	struct ice_aqc_sched_elem_cmd *cmd;
126 	struct ice_aq_desc desc;
127 	int status;
128 
129 	cmd = &desc.params.sched_elem_cmd;
130 	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
131 	cmd->num_elem_req = cpu_to_le16(elems_req);
132 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
133 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
134 	if (!status && elems_resp)
135 		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
136 
137 	return status;
138 }
139 
140 /**
141  * ice_aq_query_sched_elems - query scheduler elements
142  * @hw: pointer to the HW struct
143  * @elems_req: number of elements to query
144  * @buf: pointer to buffer
145  * @buf_size: buffer size in bytes
146  * @elems_ret: returns total number of elements returned
147  * @cd: pointer to command details structure or NULL
148  *
149  * Query scheduling elements (0x0404)
150  */
151 int
ice_aq_query_sched_elems(struct ice_hw * hw,u16 elems_req,struct ice_aqc_txsched_elem_data * buf,u16 buf_size,u16 * elems_ret,struct ice_sq_cd * cd)152 ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
153 			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
154 			 u16 *elems_ret, struct ice_sq_cd *cd)
155 {
156 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
157 					   elems_req, (void *)buf, buf_size,
158 					   elems_ret, cd);
159 }
160 
161 /**
162  * ice_sched_add_node - Insert the Tx scheduler node in SW DB
163  * @pi: port information structure
164  * @layer: Scheduler layer of the node
165  * @info: Scheduler element information from firmware
166  * @prealloc_node: preallocated ice_sched_node struct for SW DB
167  *
168  * This function inserts a scheduler node to the SW DB.
169  */
170 int
ice_sched_add_node(struct ice_port_info * pi,u8 layer,struct ice_aqc_txsched_elem_data * info,struct ice_sched_node * prealloc_node)171 ice_sched_add_node(struct ice_port_info *pi, u8 layer,
172 		   struct ice_aqc_txsched_elem_data *info,
173 		   struct ice_sched_node *prealloc_node)
174 {
175 	struct ice_aqc_txsched_elem_data elem;
176 	struct ice_sched_node *parent;
177 	struct ice_sched_node *node;
178 	struct ice_hw *hw;
179 	int status;
180 
181 	if (!pi)
182 		return -EINVAL;
183 
184 	hw = pi->hw;
185 
186 	/* A valid parent node should be there */
187 	parent = ice_sched_find_node_by_teid(pi->root,
188 					     le32_to_cpu(info->parent_teid));
189 	if (!parent) {
190 		ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
191 			  le32_to_cpu(info->parent_teid));
192 		return -EINVAL;
193 	}
194 
195 	/* query the current node information from FW before adding it
196 	 * to the SW DB
197 	 */
198 	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
199 	if (status)
200 		return status;
201 
202 	if (prealloc_node)
203 		node = prealloc_node;
204 	else
205 		node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
206 	if (!node)
207 		return -ENOMEM;
208 	if (hw->max_children[layer]) {
209 		node->children = devm_kcalloc(ice_hw_to_dev(hw),
210 					      hw->max_children[layer],
211 					      sizeof(*node->children), GFP_KERNEL);
212 		if (!node->children) {
213 			devm_kfree(ice_hw_to_dev(hw), node);
214 			return -ENOMEM;
215 		}
216 	}
217 
218 	node->in_use = true;
219 	node->parent = parent;
220 	node->tx_sched_layer = layer;
221 	parent->children[parent->num_children++] = node;
222 	node->info = elem;
223 	return 0;
224 }
225 
226 /**
227  * ice_aq_delete_sched_elems - delete scheduler elements
228  * @hw: pointer to the HW struct
229  * @grps_req: number of groups to delete
230  * @buf: pointer to buffer
231  * @buf_size: buffer size in bytes
232  * @grps_del: returns total number of elements deleted
233  * @cd: pointer to command details structure or NULL
234  *
235  * Delete scheduling elements (0x040F)
236  */
237 static int
ice_aq_delete_sched_elems(struct ice_hw * hw,u16 grps_req,struct ice_aqc_delete_elem * buf,u16 buf_size,u16 * grps_del,struct ice_sq_cd * cd)238 ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
239 			  struct ice_aqc_delete_elem *buf, u16 buf_size,
240 			  u16 *grps_del, struct ice_sq_cd *cd)
241 {
242 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
243 					   grps_req, (void *)buf, buf_size,
244 					   grps_del, cd);
245 }
246 
247 /**
248  * ice_sched_remove_elems - remove nodes from HW
249  * @hw: pointer to the HW struct
250  * @parent: pointer to the parent node
251  * @node_teid: node teid to be deleted
252  *
253  * This function remove nodes from HW
254  */
255 static int
ice_sched_remove_elems(struct ice_hw * hw,struct ice_sched_node * parent,u32 node_teid)256 ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
257 		       u32 node_teid)
258 {
259 	DEFINE_RAW_FLEX(struct ice_aqc_delete_elem, buf, teid, 1);
260 	u16 buf_size = __struct_size(buf);
261 	u16 num_groups_removed = 0;
262 	int status;
263 
264 	buf->hdr.parent_teid = parent->info.node_teid;
265 	buf->hdr.num_elems = cpu_to_le16(1);
266 	buf->teid[0] = cpu_to_le32(node_teid);
267 
268 	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
269 					   &num_groups_removed, NULL);
270 	if (status || num_groups_removed != 1)
271 		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
272 			  hw->adminq.sq_last_status);
273 
274 	return status;
275 }
276 
277 /**
278  * ice_sched_get_first_node - get the first node of the given layer
279  * @pi: port information structure
280  * @parent: pointer the base node of the subtree
281  * @layer: layer number
282  *
283  * This function retrieves the first node of the given layer from the subtree
284  */
285 static struct ice_sched_node *
ice_sched_get_first_node(struct ice_port_info * pi,struct ice_sched_node * parent,u8 layer)286 ice_sched_get_first_node(struct ice_port_info *pi,
287 			 struct ice_sched_node *parent, u8 layer)
288 {
289 	return pi->sib_head[parent->tc_num][layer];
290 }
291 
292 /**
293  * ice_sched_get_tc_node - get pointer to TC node
294  * @pi: port information structure
295  * @tc: TC number
296  *
297  * This function returns the TC node pointer
298  */
ice_sched_get_tc_node(struct ice_port_info * pi,u8 tc)299 struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
300 {
301 	u8 i;
302 
303 	if (!pi || !pi->root)
304 		return NULL;
305 	for (i = 0; i < pi->root->num_children; i++)
306 		if (pi->root->children[i]->tc_num == tc)
307 			return pi->root->children[i];
308 	return NULL;
309 }
310 
311 /**
312  * ice_free_sched_node - Free a Tx scheduler node from SW DB
313  * @pi: port information structure
314  * @node: pointer to the ice_sched_node struct
315  *
316  * This function frees up a node from SW DB as well as from HW
317  *
318  * This function needs to be called with the port_info->sched_lock held
319  */
ice_free_sched_node(struct ice_port_info * pi,struct ice_sched_node * node)320 void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
321 {
322 	struct ice_sched_node *parent;
323 	struct ice_hw *hw = pi->hw;
324 	u8 i, j;
325 
326 	/* Free the children before freeing up the parent node
327 	 * The parent array is updated below and that shifts the nodes
328 	 * in the array. So always pick the first child if num children > 0
329 	 */
330 	while (node->num_children)
331 		ice_free_sched_node(pi, node->children[0]);
332 
333 	/* Leaf, TC and root nodes can't be deleted by SW */
334 	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
335 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
336 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
337 	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
338 		u32 teid = le32_to_cpu(node->info.node_teid);
339 
340 		ice_sched_remove_elems(hw, node->parent, teid);
341 	}
342 	parent = node->parent;
343 	/* root has no parent */
344 	if (parent) {
345 		struct ice_sched_node *p;
346 
347 		/* update the parent */
348 		for (i = 0; i < parent->num_children; i++)
349 			if (parent->children[i] == node) {
350 				for (j = i + 1; j < parent->num_children; j++)
351 					parent->children[j - 1] =
352 						parent->children[j];
353 				parent->num_children--;
354 				break;
355 			}
356 
357 		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
358 		while (p) {
359 			if (p->sibling == node) {
360 				p->sibling = node->sibling;
361 				break;
362 			}
363 			p = p->sibling;
364 		}
365 
366 		/* update the sibling head if head is getting removed */
367 		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
368 			pi->sib_head[node->tc_num][node->tx_sched_layer] =
369 				node->sibling;
370 	}
371 
372 	devm_kfree(ice_hw_to_dev(hw), node->children);
373 	kfree(node->name);
374 	xa_erase(&pi->sched_node_ids, node->id);
375 	devm_kfree(ice_hw_to_dev(hw), node);
376 }
377 
378 /**
379  * ice_aq_get_dflt_topo - gets default scheduler topology
380  * @hw: pointer to the HW struct
381  * @lport: logical port number
382  * @buf: pointer to buffer
383  * @buf_size: buffer size in bytes
384  * @num_branches: returns total number of queue to port branches
385  * @cd: pointer to command details structure or NULL
386  *
387  * Get default scheduler topology (0x400)
388  */
389 static int
ice_aq_get_dflt_topo(struct ice_hw * hw,u8 lport,struct ice_aqc_get_topo_elem * buf,u16 buf_size,u8 * num_branches,struct ice_sq_cd * cd)390 ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
391 		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
392 		     u8 *num_branches, struct ice_sq_cd *cd)
393 {
394 	struct ice_aqc_get_topo *cmd;
395 	struct ice_aq_desc desc;
396 	int status;
397 
398 	cmd = &desc.params.get_topo;
399 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
400 	cmd->port_num = lport;
401 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
402 	if (!status && num_branches)
403 		*num_branches = cmd->num_branches;
404 
405 	return status;
406 }
407 
408 /**
409  * ice_aq_add_sched_elems - adds scheduling element
410  * @hw: pointer to the HW struct
411  * @grps_req: the number of groups that are requested to be added
412  * @buf: pointer to buffer
413  * @buf_size: buffer size in bytes
414  * @grps_added: returns total number of groups added
415  * @cd: pointer to command details structure or NULL
416  *
417  * Add scheduling elements (0x0401)
418  */
419 static int
ice_aq_add_sched_elems(struct ice_hw * hw,u16 grps_req,struct ice_aqc_add_elem * buf,u16 buf_size,u16 * grps_added,struct ice_sq_cd * cd)420 ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
421 		       struct ice_aqc_add_elem *buf, u16 buf_size,
422 		       u16 *grps_added, struct ice_sq_cd *cd)
423 {
424 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
425 					   grps_req, (void *)buf, buf_size,
426 					   grps_added, cd);
427 }
428 
429 /**
430  * ice_aq_cfg_sched_elems - configures scheduler elements
431  * @hw: pointer to the HW struct
432  * @elems_req: number of elements to configure
433  * @buf: pointer to buffer
434  * @buf_size: buffer size in bytes
435  * @elems_cfgd: returns total number of elements configured
436  * @cd: pointer to command details structure or NULL
437  *
438  * Configure scheduling elements (0x0403)
439  */
440 static int
ice_aq_cfg_sched_elems(struct ice_hw * hw,u16 elems_req,struct ice_aqc_txsched_elem_data * buf,u16 buf_size,u16 * elems_cfgd,struct ice_sq_cd * cd)441 ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
442 		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
443 		       u16 *elems_cfgd, struct ice_sq_cd *cd)
444 {
445 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
446 					   elems_req, (void *)buf, buf_size,
447 					   elems_cfgd, cd);
448 }
449 
450 /**
451  * ice_aq_move_sched_elems - move scheduler element (just 1 group)
452  * @hw: pointer to the HW struct
453  * @buf: pointer to buffer
454  * @buf_size: buffer size in bytes
455  * @grps_movd: returns total number of groups moved
456  *
457  * Move scheduling elements (0x0408)
458  */
459 int
ice_aq_move_sched_elems(struct ice_hw * hw,struct ice_aqc_move_elem * buf,u16 buf_size,u16 * grps_movd)460 ice_aq_move_sched_elems(struct ice_hw *hw, struct ice_aqc_move_elem *buf,
461 			u16 buf_size, u16 *grps_movd)
462 {
463 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
464 					   1, buf, buf_size, grps_movd, NULL);
465 }
466 
467 /**
468  * ice_aq_suspend_sched_elems - suspend scheduler elements
469  * @hw: pointer to the HW struct
470  * @elems_req: number of elements to suspend
471  * @buf: pointer to buffer
472  * @buf_size: buffer size in bytes
473  * @elems_ret: returns total number of elements suspended
474  * @cd: pointer to command details structure or NULL
475  *
476  * Suspend scheduling elements (0x0409)
477  */
478 static int
ice_aq_suspend_sched_elems(struct ice_hw * hw,u16 elems_req,__le32 * buf,u16 buf_size,u16 * elems_ret,struct ice_sq_cd * cd)479 ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
480 			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
481 {
482 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
483 					   elems_req, (void *)buf, buf_size,
484 					   elems_ret, cd);
485 }
486 
487 /**
488  * ice_aq_resume_sched_elems - resume scheduler elements
489  * @hw: pointer to the HW struct
490  * @elems_req: number of elements to resume
491  * @buf: pointer to buffer
492  * @buf_size: buffer size in bytes
493  * @elems_ret: returns total number of elements resumed
494  * @cd: pointer to command details structure or NULL
495  *
496  * resume scheduling elements (0x040A)
497  */
498 static int
ice_aq_resume_sched_elems(struct ice_hw * hw,u16 elems_req,__le32 * buf,u16 buf_size,u16 * elems_ret,struct ice_sq_cd * cd)499 ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
500 			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
501 {
502 	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
503 					   elems_req, (void *)buf, buf_size,
504 					   elems_ret, cd);
505 }
506 
507 /**
508  * ice_aq_query_sched_res - query scheduler resource
509  * @hw: pointer to the HW struct
510  * @buf_size: buffer size in bytes
511  * @buf: pointer to buffer
512  * @cd: pointer to command details structure or NULL
513  *
514  * Query scheduler resource allocation (0x0412)
515  */
516 static int
ice_aq_query_sched_res(struct ice_hw * hw,u16 buf_size,struct ice_aqc_query_txsched_res_resp * buf,struct ice_sq_cd * cd)517 ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
518 		       struct ice_aqc_query_txsched_res_resp *buf,
519 		       struct ice_sq_cd *cd)
520 {
521 	struct ice_aq_desc desc;
522 
523 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
524 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
525 }
526 
527 /**
528  * ice_sched_suspend_resume_elems - suspend or resume HW nodes
529  * @hw: pointer to the HW struct
530  * @num_nodes: number of nodes
531  * @node_teids: array of node teids to be suspended or resumed
532  * @suspend: true means suspend / false means resume
533  *
534  * This function suspends or resumes HW nodes
535  */
536 int
ice_sched_suspend_resume_elems(struct ice_hw * hw,u8 num_nodes,u32 * node_teids,bool suspend)537 ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
538 			       bool suspend)
539 {
540 	u16 i, buf_size, num_elem_ret = 0;
541 	__le32 *buf;
542 	int status;
543 
544 	buf_size = sizeof(*buf) * num_nodes;
545 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
546 	if (!buf)
547 		return -ENOMEM;
548 
549 	for (i = 0; i < num_nodes; i++)
550 		buf[i] = cpu_to_le32(node_teids[i]);
551 
552 	if (suspend)
553 		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
554 						    buf_size, &num_elem_ret,
555 						    NULL);
556 	else
557 		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
558 						   buf_size, &num_elem_ret,
559 						   NULL);
560 	if (status || num_elem_ret != num_nodes)
561 		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
562 
563 	devm_kfree(ice_hw_to_dev(hw), buf);
564 	return status;
565 }
566 
567 /**
568  * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
569  * @hw: pointer to the HW struct
570  * @vsi_handle: VSI handle
571  * @tc: TC number
572  * @new_numqs: number of queues
573  */
574 static int
ice_alloc_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 new_numqs)575 ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
576 {
577 	struct ice_vsi_ctx *vsi_ctx;
578 	struct ice_q_ctx *q_ctx;
579 	u16 idx;
580 
581 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
582 	if (!vsi_ctx)
583 		return -EINVAL;
584 	/* allocate LAN queue contexts */
585 	if (!vsi_ctx->lan_q_ctx[tc]) {
586 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
587 				     sizeof(*q_ctx), GFP_KERNEL);
588 		if (!q_ctx)
589 			return -ENOMEM;
590 
591 		for (idx = 0; idx < new_numqs; idx++) {
592 			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
593 			q_ctx[idx].q_teid = ICE_INVAL_TEID;
594 		}
595 
596 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
597 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
598 		return 0;
599 	}
600 	/* num queues are increased, update the queue contexts */
601 	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
602 		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
603 
604 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
605 				     sizeof(*q_ctx), GFP_KERNEL);
606 		if (!q_ctx)
607 			return -ENOMEM;
608 
609 		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
610 		       prev_num * sizeof(*q_ctx));
611 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
612 
613 		for (idx = prev_num; idx < new_numqs; idx++) {
614 			q_ctx[idx].q_handle = ICE_INVAL_Q_HANDLE;
615 			q_ctx[idx].q_teid = ICE_INVAL_TEID;
616 		}
617 
618 		vsi_ctx->lan_q_ctx[tc] = q_ctx;
619 		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
620 	}
621 	return 0;
622 }
623 
624 /**
625  * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
626  * @hw: pointer to the HW struct
627  * @vsi_handle: VSI handle
628  * @tc: TC number
629  * @new_numqs: number of queues
630  */
631 static int
ice_alloc_rdma_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 new_numqs)632 ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
633 {
634 	struct ice_vsi_ctx *vsi_ctx;
635 	struct ice_q_ctx *q_ctx;
636 
637 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
638 	if (!vsi_ctx)
639 		return -EINVAL;
640 	/* allocate RDMA queue contexts */
641 	if (!vsi_ctx->rdma_q_ctx[tc]) {
642 		vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
643 						       new_numqs,
644 						       sizeof(*q_ctx),
645 						       GFP_KERNEL);
646 		if (!vsi_ctx->rdma_q_ctx[tc])
647 			return -ENOMEM;
648 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
649 		return 0;
650 	}
651 	/* num queues are increased, update the queue contexts */
652 	if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
653 		u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
654 
655 		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
656 				     sizeof(*q_ctx), GFP_KERNEL);
657 		if (!q_ctx)
658 			return -ENOMEM;
659 		memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
660 		       prev_num * sizeof(*q_ctx));
661 		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
662 		vsi_ctx->rdma_q_ctx[tc] = q_ctx;
663 		vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
664 	}
665 	return 0;
666 }
667 
668 /**
669  * ice_aq_rl_profile - performs a rate limiting task
670  * @hw: pointer to the HW struct
671  * @opcode: opcode for add, query, or remove profile(s)
672  * @num_profiles: the number of profiles
673  * @buf: pointer to buffer
674  * @buf_size: buffer size in bytes
675  * @num_processed: number of processed add or remove profile(s) to return
676  * @cd: pointer to command details structure
677  *
678  * RL profile function to add, query, or remove profile(s)
679  */
680 static int
ice_aq_rl_profile(struct ice_hw * hw,enum ice_adminq_opc opcode,u16 num_profiles,struct ice_aqc_rl_profile_elem * buf,u16 buf_size,u16 * num_processed,struct ice_sq_cd * cd)681 ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
682 		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
683 		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
684 {
685 	struct ice_aqc_rl_profile *cmd;
686 	struct ice_aq_desc desc;
687 	int status;
688 
689 	cmd = &desc.params.rl_profile;
690 
691 	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
692 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
693 	cmd->num_profiles = cpu_to_le16(num_profiles);
694 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
695 	if (!status && num_processed)
696 		*num_processed = le16_to_cpu(cmd->num_processed);
697 	return status;
698 }
699 
700 /**
701  * ice_aq_add_rl_profile - adds rate limiting profile(s)
702  * @hw: pointer to the HW struct
703  * @num_profiles: the number of profile(s) to be add
704  * @buf: pointer to buffer
705  * @buf_size: buffer size in bytes
706  * @num_profiles_added: total number of profiles added to return
707  * @cd: pointer to command details structure
708  *
709  * Add RL profile (0x0410)
710  */
711 static int
ice_aq_add_rl_profile(struct ice_hw * hw,u16 num_profiles,struct ice_aqc_rl_profile_elem * buf,u16 buf_size,u16 * num_profiles_added,struct ice_sq_cd * cd)712 ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
713 		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
714 		      u16 *num_profiles_added, struct ice_sq_cd *cd)
715 {
716 	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
717 				 buf, buf_size, num_profiles_added, cd);
718 }
719 
720 /**
721  * ice_aq_remove_rl_profile - removes RL profile(s)
722  * @hw: pointer to the HW struct
723  * @num_profiles: the number of profile(s) to remove
724  * @buf: pointer to buffer
725  * @buf_size: buffer size in bytes
726  * @num_profiles_removed: total number of profiles removed to return
727  * @cd: pointer to command details structure or NULL
728  *
729  * Remove RL profile (0x0415)
730  */
731 static int
ice_aq_remove_rl_profile(struct ice_hw * hw,u16 num_profiles,struct ice_aqc_rl_profile_elem * buf,u16 buf_size,u16 * num_profiles_removed,struct ice_sq_cd * cd)732 ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
733 			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
734 			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
735 {
736 	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
737 				 num_profiles, buf, buf_size,
738 				 num_profiles_removed, cd);
739 }
740 
741 /**
742  * ice_sched_del_rl_profile - remove RL profile
743  * @hw: pointer to the HW struct
744  * @rl_info: rate limit profile information
745  *
746  * If the profile ID is not referenced anymore, it removes profile ID with
747  * its associated parameters from HW DB,and locally. The caller needs to
748  * hold scheduler lock.
749  */
750 static int
ice_sched_del_rl_profile(struct ice_hw * hw,struct ice_aqc_rl_profile_info * rl_info)751 ice_sched_del_rl_profile(struct ice_hw *hw,
752 			 struct ice_aqc_rl_profile_info *rl_info)
753 {
754 	struct ice_aqc_rl_profile_elem *buf;
755 	u16 num_profiles_removed;
756 	u16 num_profiles = 1;
757 	int status;
758 
759 	if (rl_info->prof_id_ref != 0)
760 		return -EBUSY;
761 
762 	/* Safe to remove profile ID */
763 	buf = &rl_info->profile;
764 	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
765 					  &num_profiles_removed, NULL);
766 	if (status || num_profiles_removed != num_profiles)
767 		return -EIO;
768 
769 	/* Delete stale entry now */
770 	list_del(&rl_info->list_entry);
771 	devm_kfree(ice_hw_to_dev(hw), rl_info);
772 	return status;
773 }
774 
775 /**
776  * ice_sched_clear_rl_prof - clears RL prof entries
777  * @pi: port information structure
778  *
779  * This function removes all RL profile from HW as well as from SW DB.
780  */
ice_sched_clear_rl_prof(struct ice_port_info * pi)781 static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
782 {
783 	u16 ln;
784 
785 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
786 		struct ice_aqc_rl_profile_info *rl_prof_elem;
787 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
788 
789 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
790 					 &pi->rl_prof_list[ln], list_entry) {
791 			struct ice_hw *hw = pi->hw;
792 			int status;
793 
794 			rl_prof_elem->prof_id_ref = 0;
795 			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
796 			if (status) {
797 				ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
798 				/* On error, free mem required */
799 				list_del(&rl_prof_elem->list_entry);
800 				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
801 			}
802 		}
803 	}
804 }
805 
806 /**
807  * ice_sched_clear_agg - clears the aggregator related information
808  * @hw: pointer to the hardware structure
809  *
810  * This function removes aggregator list and free up aggregator related memory
811  * previously allocated.
812  */
ice_sched_clear_agg(struct ice_hw * hw)813 void ice_sched_clear_agg(struct ice_hw *hw)
814 {
815 	struct ice_sched_agg_info *agg_info;
816 	struct ice_sched_agg_info *atmp;
817 
818 	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
819 		struct ice_sched_agg_vsi_info *agg_vsi_info;
820 		struct ice_sched_agg_vsi_info *vtmp;
821 
822 		list_for_each_entry_safe(agg_vsi_info, vtmp,
823 					 &agg_info->agg_vsi_list, list_entry) {
824 			list_del(&agg_vsi_info->list_entry);
825 			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
826 		}
827 		list_del(&agg_info->list_entry);
828 		devm_kfree(ice_hw_to_dev(hw), agg_info);
829 	}
830 }
831 
832 /**
833  * ice_sched_clear_tx_topo - clears the scheduler tree nodes
834  * @pi: port information structure
835  *
836  * This function removes all the nodes from HW as well as from SW DB.
837  */
ice_sched_clear_tx_topo(struct ice_port_info * pi)838 static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
839 {
840 	if (!pi)
841 		return;
842 	/* remove RL profiles related lists */
843 	ice_sched_clear_rl_prof(pi);
844 	if (pi->root) {
845 		ice_free_sched_node(pi, pi->root);
846 		pi->root = NULL;
847 	}
848 }
849 
850 /**
851  * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
852  * @pi: port information structure
853  *
854  * Cleanup scheduling elements from SW DB
855  */
ice_sched_clear_port(struct ice_port_info * pi)856 void ice_sched_clear_port(struct ice_port_info *pi)
857 {
858 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
859 		return;
860 
861 	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
862 	mutex_lock(&pi->sched_lock);
863 	ice_sched_clear_tx_topo(pi);
864 	mutex_unlock(&pi->sched_lock);
865 	mutex_destroy(&pi->sched_lock);
866 }
867 
868 /**
869  * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
870  * @hw: pointer to the HW struct
871  *
872  * Cleanup scheduling elements from SW DB for all the ports
873  */
ice_sched_cleanup_all(struct ice_hw * hw)874 void ice_sched_cleanup_all(struct ice_hw *hw)
875 {
876 	if (!hw)
877 		return;
878 
879 	devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
880 	hw->layer_info = NULL;
881 
882 	ice_sched_clear_port(hw->port_info);
883 
884 	hw->num_tx_sched_layers = 0;
885 	hw->num_tx_sched_phys_layers = 0;
886 	hw->flattened_layers = 0;
887 	hw->max_cgds = 0;
888 }
889 
890 /**
891  * ice_sched_add_elems - add nodes to HW and SW DB
892  * @pi: port information structure
893  * @tc_node: pointer to the branch node
894  * @parent: pointer to the parent node
895  * @layer: layer number to add nodes
896  * @num_nodes: number of nodes
897  * @num_nodes_added: pointer to num nodes added
898  * @first_node_teid: if new nodes are added then return the TEID of first node
899  * @prealloc_nodes: preallocated nodes struct for software DB
900  *
901  * This function add nodes to HW as well as to SW DB for a given layer
902  */
903 int
ice_sched_add_elems(struct ice_port_info * pi,struct ice_sched_node * tc_node,struct ice_sched_node * parent,u8 layer,u16 num_nodes,u16 * num_nodes_added,u32 * first_node_teid,struct ice_sched_node ** prealloc_nodes)904 ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
905 		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
906 		    u16 *num_nodes_added, u32 *first_node_teid,
907 		    struct ice_sched_node **prealloc_nodes)
908 {
909 	struct ice_sched_node *prev, *new_node;
910 	struct ice_aqc_add_elem *buf;
911 	u16 i, num_groups_added = 0;
912 	struct ice_hw *hw = pi->hw;
913 	size_t buf_size;
914 	int status = 0;
915 	u32 teid;
916 
917 	buf_size = struct_size(buf, generic, num_nodes);
918 	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
919 	if (!buf)
920 		return -ENOMEM;
921 
922 	buf->hdr.parent_teid = parent->info.node_teid;
923 	buf->hdr.num_elems = cpu_to_le16(num_nodes);
924 	for (i = 0; i < num_nodes; i++) {
925 		buf->generic[i].parent_teid = parent->info.node_teid;
926 		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
927 		buf->generic[i].data.valid_sections =
928 			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
929 			ICE_AQC_ELEM_VALID_EIR;
930 		buf->generic[i].data.generic = 0;
931 		buf->generic[i].data.cir_bw.bw_profile_idx =
932 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
933 		buf->generic[i].data.cir_bw.bw_alloc =
934 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
935 		buf->generic[i].data.eir_bw.bw_profile_idx =
936 			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
937 		buf->generic[i].data.eir_bw.bw_alloc =
938 			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
939 	}
940 
941 	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
942 					&num_groups_added, NULL);
943 	if (status || num_groups_added != 1) {
944 		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
945 			  hw->adminq.sq_last_status);
946 		devm_kfree(ice_hw_to_dev(hw), buf);
947 		return -EIO;
948 	}
949 
950 	*num_nodes_added = num_nodes;
951 	/* add nodes to the SW DB */
952 	for (i = 0; i < num_nodes; i++) {
953 		if (prealloc_nodes)
954 			status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
955 		else
956 			status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
957 
958 		if (status) {
959 			ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
960 				  status);
961 			break;
962 		}
963 
964 		teid = le32_to_cpu(buf->generic[i].node_teid);
965 		new_node = ice_sched_find_node_by_teid(parent, teid);
966 		if (!new_node) {
967 			ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
968 			break;
969 		}
970 
971 		new_node->sibling = NULL;
972 		new_node->tc_num = tc_node->tc_num;
973 		new_node->tx_weight = ICE_SCHED_DFLT_BW_WT;
974 		new_node->tx_share = ICE_SCHED_DFLT_BW;
975 		new_node->tx_max = ICE_SCHED_DFLT_BW;
976 		new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL);
977 		if (!new_node->name)
978 			return -ENOMEM;
979 
980 		status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX),
981 				  GFP_KERNEL);
982 		if (status) {
983 			ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n",
984 				  status);
985 			break;
986 		}
987 
988 		snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id);
989 
990 		/* add it to previous node sibling pointer */
991 		/* Note: siblings are not linked across branches */
992 		prev = ice_sched_get_first_node(pi, tc_node, layer);
993 		if (prev && prev != new_node) {
994 			while (prev->sibling)
995 				prev = prev->sibling;
996 			prev->sibling = new_node;
997 		}
998 
999 		/* initialize the sibling head */
1000 		if (!pi->sib_head[tc_node->tc_num][layer])
1001 			pi->sib_head[tc_node->tc_num][layer] = new_node;
1002 
1003 		if (i == 0)
1004 			*first_node_teid = teid;
1005 	}
1006 
1007 	devm_kfree(ice_hw_to_dev(hw), buf);
1008 	return status;
1009 }
1010 
1011 /**
1012  * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
1013  * @pi: port information structure
1014  * @tc_node: pointer to TC node
1015  * @parent: pointer to parent node
1016  * @layer: layer number to add nodes
1017  * @num_nodes: number of nodes to be added
1018  * @first_node_teid: pointer to the first node TEID
1019  * @num_nodes_added: pointer to number of nodes added
1020  *
1021  * Add nodes into specific HW layer.
1022  */
1023 static int
ice_sched_add_nodes_to_hw_layer(struct ice_port_info * pi,struct ice_sched_node * tc_node,struct ice_sched_node * parent,u8 layer,u16 num_nodes,u32 * first_node_teid,u16 * num_nodes_added)1024 ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1025 				struct ice_sched_node *tc_node,
1026 				struct ice_sched_node *parent, u8 layer,
1027 				u16 num_nodes, u32 *first_node_teid,
1028 				u16 *num_nodes_added)
1029 {
1030 	u16 max_child_nodes;
1031 
1032 	*num_nodes_added = 0;
1033 
1034 	if (!num_nodes)
1035 		return 0;
1036 
1037 	if (!parent || layer < pi->hw->sw_entry_point_layer)
1038 		return -EINVAL;
1039 
1040 	/* max children per node per layer */
1041 	max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1042 
1043 	/* current number of children + required nodes exceed max children */
1044 	if ((parent->num_children + num_nodes) > max_child_nodes) {
1045 		/* Fail if the parent is a TC node */
1046 		if (parent == tc_node)
1047 			return -EIO;
1048 		return -ENOSPC;
1049 	}
1050 
1051 	return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1052 				   num_nodes_added, first_node_teid, NULL);
1053 }
1054 
1055 /**
1056  * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1057  * @pi: port information structure
1058  * @tc_node: pointer to TC node
1059  * @parent: pointer to parent node
1060  * @layer: layer number to add nodes
1061  * @num_nodes: number of nodes to be added
1062  * @first_node_teid: pointer to the first node TEID
1063  * @num_nodes_added: pointer to number of nodes added
1064  *
1065  * This function add nodes to a given layer.
1066  */
1067 int
ice_sched_add_nodes_to_layer(struct ice_port_info * pi,struct ice_sched_node * tc_node,struct ice_sched_node * parent,u8 layer,u16 num_nodes,u32 * first_node_teid,u16 * num_nodes_added)1068 ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1069 			     struct ice_sched_node *tc_node,
1070 			     struct ice_sched_node *parent, u8 layer,
1071 			     u16 num_nodes, u32 *first_node_teid,
1072 			     u16 *num_nodes_added)
1073 {
1074 	u32 *first_teid_ptr = first_node_teid;
1075 	u16 new_num_nodes = num_nodes;
1076 	int status = 0;
1077 
1078 	*num_nodes_added = 0;
1079 	while (*num_nodes_added < num_nodes) {
1080 		u16 max_child_nodes, num_added = 0;
1081 		u32 temp;
1082 
1083 		status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1084 							 layer,	new_num_nodes,
1085 							 first_teid_ptr,
1086 							 &num_added);
1087 		if (!status)
1088 			*num_nodes_added += num_added;
1089 		/* added more nodes than requested ? */
1090 		if (*num_nodes_added > num_nodes) {
1091 			ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1092 				  *num_nodes_added);
1093 			status = -EIO;
1094 			break;
1095 		}
1096 		/* break if all the nodes are added successfully */
1097 		if (!status && (*num_nodes_added == num_nodes))
1098 			break;
1099 		/* break if the error is not max limit */
1100 		if (status && status != -ENOSPC)
1101 			break;
1102 		/* Exceeded the max children */
1103 		max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1104 		/* utilize all the spaces if the parent is not full */
1105 		if (parent->num_children < max_child_nodes) {
1106 			new_num_nodes = max_child_nodes - parent->num_children;
1107 		} else {
1108 			/* This parent is full,
1109 			 * try the next available sibling.
1110 			 */
1111 			parent = ice_sched_find_next_vsi_node(parent);
1112 			/* Don't modify the first node TEID memory if the
1113 			 * first node was added already in the above call.
1114 			 * Instead send some temp memory for all other
1115 			 * recursive calls.
1116 			 */
1117 			if (num_added)
1118 				first_teid_ptr = &temp;
1119 
1120 			new_num_nodes = num_nodes - *num_nodes_added;
1121 		}
1122 	}
1123 	return status;
1124 }
1125 
1126 /**
1127  * ice_sched_get_qgrp_layer - get the current queue group layer number
1128  * @hw: pointer to the HW struct
1129  *
1130  * This function returns the current queue group layer number
1131  */
ice_sched_get_qgrp_layer(struct ice_hw * hw)1132 static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1133 {
1134 	/* It's always total layers - 1, the array is 0 relative so -2 */
1135 	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1136 }
1137 
1138 /**
1139  * ice_sched_get_vsi_layer - get the current VSI layer number
1140  * @hw: pointer to the HW struct
1141  *
1142  * This function returns the current VSI layer number
1143  */
ice_sched_get_vsi_layer(struct ice_hw * hw)1144 u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1145 {
1146 	/* Num Layers       VSI layer
1147 	 *     9               6
1148 	 *     7               4
1149 	 *     5 or less       sw_entry_point_layer
1150 	 */
1151 	/* calculate the VSI layer based on number of layers. */
1152 	if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
1153 		return hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1154 	else if (hw->num_tx_sched_layers == ICE_SCHED_5_LAYERS)
1155 		/* qgroup and VSI layers are same */
1156 		return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1157 	return hw->sw_entry_point_layer;
1158 }
1159 
1160 /**
1161  * ice_sched_get_agg_layer - get the current aggregator layer number
1162  * @hw: pointer to the HW struct
1163  *
1164  * This function returns the current aggregator layer number
1165  */
ice_sched_get_agg_layer(struct ice_hw * hw)1166 u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1167 {
1168 	/* Num Layers       aggregator layer
1169 	 *     9               4
1170 	 *     7 or less       sw_entry_point_layer
1171 	 */
1172 	/* calculate the aggregator layer based on number of layers. */
1173 	if (hw->num_tx_sched_layers == ICE_SCHED_9_LAYERS)
1174 		return hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1175 	else
1176 		return hw->sw_entry_point_layer;
1177 }
1178 
1179 /**
1180  * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1181  * @pi: port information structure
1182  *
1183  * This function removes the leaf node that was created by the FW
1184  * during initialization
1185  */
ice_rm_dflt_leaf_node(struct ice_port_info * pi)1186 static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1187 {
1188 	struct ice_sched_node *node;
1189 
1190 	node = pi->root;
1191 	while (node) {
1192 		if (!node->num_children)
1193 			break;
1194 		node = node->children[0];
1195 	}
1196 	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1197 		u32 teid = le32_to_cpu(node->info.node_teid);
1198 		int status;
1199 
1200 		/* remove the default leaf node */
1201 		status = ice_sched_remove_elems(pi->hw, node->parent, teid);
1202 		if (!status)
1203 			ice_free_sched_node(pi, node);
1204 	}
1205 }
1206 
1207 /**
1208  * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1209  * @pi: port information structure
1210  *
1211  * This function frees all the nodes except root and TC that were created by
1212  * the FW during initialization
1213  */
ice_sched_rm_dflt_nodes(struct ice_port_info * pi)1214 static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1215 {
1216 	struct ice_sched_node *node;
1217 
1218 	ice_rm_dflt_leaf_node(pi);
1219 
1220 	/* remove the default nodes except TC and root nodes */
1221 	node = pi->root;
1222 	while (node) {
1223 		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1224 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1225 		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1226 			ice_free_sched_node(pi, node);
1227 			break;
1228 		}
1229 
1230 		if (!node->num_children)
1231 			break;
1232 		node = node->children[0];
1233 	}
1234 }
1235 
1236 /**
1237  * ice_sched_init_port - Initialize scheduler by querying information from FW
1238  * @pi: port info structure for the tree to cleanup
1239  *
1240  * This function is the initial call to find the total number of Tx scheduler
1241  * resources, default topology created by firmware and storing the information
1242  * in SW DB.
1243  */
ice_sched_init_port(struct ice_port_info * pi)1244 int ice_sched_init_port(struct ice_port_info *pi)
1245 {
1246 	struct ice_aqc_get_topo_elem *buf;
1247 	struct ice_hw *hw;
1248 	u8 num_branches;
1249 	u16 num_elems;
1250 	int status;
1251 	u8 i, j;
1252 
1253 	if (!pi)
1254 		return -EINVAL;
1255 	hw = pi->hw;
1256 
1257 	/* Query the Default Topology from FW */
1258 	buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1259 	if (!buf)
1260 		return -ENOMEM;
1261 
1262 	/* Query default scheduling tree topology */
1263 	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1264 				      &num_branches, NULL);
1265 	if (status)
1266 		goto err_init_port;
1267 
1268 	/* num_branches should be between 1-8 */
1269 	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1270 		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1271 			  num_branches);
1272 		status = -EINVAL;
1273 		goto err_init_port;
1274 	}
1275 
1276 	/* get the number of elements on the default/first branch */
1277 	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1278 
1279 	/* num_elems should always be between 1-9 */
1280 	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1281 		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1282 			  num_elems);
1283 		status = -EINVAL;
1284 		goto err_init_port;
1285 	}
1286 
1287 	/* If the last node is a leaf node then the index of the queue group
1288 	 * layer is two less than the number of elements.
1289 	 */
1290 	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1291 	    ICE_AQC_ELEM_TYPE_LEAF)
1292 		pi->last_node_teid =
1293 			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1294 	else
1295 		pi->last_node_teid =
1296 			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1297 
1298 	/* Insert the Tx Sched root node */
1299 	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1300 	if (status)
1301 		goto err_init_port;
1302 
1303 	/* Parse the default tree and cache the information */
1304 	for (i = 0; i < num_branches; i++) {
1305 		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1306 
1307 		/* Skip root element as already inserted */
1308 		for (j = 1; j < num_elems; j++) {
1309 			/* update the sw entry point */
1310 			if (buf[0].generic[j].data.elem_type ==
1311 			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1312 				hw->sw_entry_point_layer = j;
1313 
1314 			status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1315 			if (status)
1316 				goto err_init_port;
1317 		}
1318 	}
1319 
1320 	/* Remove the default nodes. */
1321 	if (pi->root)
1322 		ice_sched_rm_dflt_nodes(pi);
1323 
1324 	/* initialize the port for handling the scheduler tree */
1325 	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1326 	mutex_init(&pi->sched_lock);
1327 	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1328 		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1329 
1330 err_init_port:
1331 	if (status && pi->root) {
1332 		ice_free_sched_node(pi, pi->root);
1333 		pi->root = NULL;
1334 	}
1335 
1336 	kfree(buf);
1337 	return status;
1338 }
1339 
1340 /**
1341  * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1342  * @hw: pointer to the HW struct
1343  *
1344  * query FW for allocated scheduler resources and store in HW struct
1345  */
ice_sched_query_res_alloc(struct ice_hw * hw)1346 int ice_sched_query_res_alloc(struct ice_hw *hw)
1347 {
1348 	struct ice_aqc_query_txsched_res_resp *buf;
1349 	__le16 max_sibl;
1350 	int status = 0;
1351 	u16 i;
1352 
1353 	if (hw->layer_info)
1354 		return status;
1355 
1356 	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1357 	if (!buf)
1358 		return -ENOMEM;
1359 
1360 	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1361 	if (status)
1362 		goto sched_query_out;
1363 
1364 	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1365 	hw->num_tx_sched_phys_layers =
1366 		le16_to_cpu(buf->sched_props.phys_levels);
1367 	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1368 	hw->max_cgds = buf->sched_props.max_pf_cgds;
1369 
1370 	/* max sibling group size of current layer refers to the max children
1371 	 * of the below layer node.
1372 	 * layer 1 node max children will be layer 2 max sibling group size
1373 	 * layer 2 node max children will be layer 3 max sibling group size
1374 	 * and so on. This array will be populated from root (index 0) to
1375 	 * qgroup layer 7. Leaf node has no children.
1376 	 */
1377 	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1378 		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1379 		hw->max_children[i] = le16_to_cpu(max_sibl);
1380 	}
1381 
1382 	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1383 				      (hw->num_tx_sched_layers *
1384 				       sizeof(*hw->layer_info)),
1385 				      GFP_KERNEL);
1386 	if (!hw->layer_info) {
1387 		status = -ENOMEM;
1388 		goto sched_query_out;
1389 	}
1390 
1391 sched_query_out:
1392 	devm_kfree(ice_hw_to_dev(hw), buf);
1393 	return status;
1394 }
1395 
1396 /**
1397  * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1398  * @hw: pointer to the HW struct
1399  *
1400  * Determine the PSM clock frequency and store in HW struct
1401  */
ice_sched_get_psm_clk_freq(struct ice_hw * hw)1402 void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1403 {
1404 	u32 val, clk_src;
1405 
1406 	val = rd32(hw, GLGEN_CLKSTAT_SRC);
1407 	clk_src = FIELD_GET(GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M, val);
1408 
1409 #define PSM_CLK_SRC_367_MHZ 0x0
1410 #define PSM_CLK_SRC_416_MHZ 0x1
1411 #define PSM_CLK_SRC_446_MHZ 0x2
1412 #define PSM_CLK_SRC_390_MHZ 0x3
1413 
1414 	switch (clk_src) {
1415 	case PSM_CLK_SRC_367_MHZ:
1416 		hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1417 		break;
1418 	case PSM_CLK_SRC_416_MHZ:
1419 		hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1420 		break;
1421 	case PSM_CLK_SRC_446_MHZ:
1422 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1423 		break;
1424 	case PSM_CLK_SRC_390_MHZ:
1425 		hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1426 		break;
1427 	default:
1428 		ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1429 			  clk_src);
1430 		/* fall back to a safe default */
1431 		hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1432 	}
1433 }
1434 
1435 /**
1436  * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1437  * @hw: pointer to the HW struct
1438  * @base: pointer to the base node
1439  * @node: pointer to the node to search
1440  *
1441  * This function checks whether a given node is part of the base node
1442  * subtree or not
1443  */
1444 static bool
ice_sched_find_node_in_subtree(struct ice_hw * hw,struct ice_sched_node * base,struct ice_sched_node * node)1445 ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1446 			       struct ice_sched_node *node)
1447 {
1448 	u8 i;
1449 
1450 	for (i = 0; i < base->num_children; i++) {
1451 		struct ice_sched_node *child = base->children[i];
1452 
1453 		if (node == child)
1454 			return true;
1455 
1456 		if (child->tx_sched_layer > node->tx_sched_layer)
1457 			return false;
1458 
1459 		/* this recursion is intentional, and wouldn't
1460 		 * go more than 8 calls
1461 		 */
1462 		if (ice_sched_find_node_in_subtree(hw, child, node))
1463 			return true;
1464 	}
1465 	return false;
1466 }
1467 
1468 /**
1469  * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1470  * @pi: port information structure
1471  * @vsi_node: software VSI handle
1472  * @qgrp_node: first queue group node identified for scanning
1473  * @owner: LAN or RDMA
1474  *
1475  * This function retrieves a free LAN or RDMA queue group node by scanning
1476  * qgrp_node and its siblings for the queue group with the fewest number
1477  * of queues currently assigned.
1478  */
1479 static struct ice_sched_node *
ice_sched_get_free_qgrp(struct ice_port_info * pi,struct ice_sched_node * vsi_node,struct ice_sched_node * qgrp_node,u8 owner)1480 ice_sched_get_free_qgrp(struct ice_port_info *pi,
1481 			struct ice_sched_node *vsi_node,
1482 			struct ice_sched_node *qgrp_node, u8 owner)
1483 {
1484 	struct ice_sched_node *min_qgrp;
1485 	u8 min_children;
1486 
1487 	if (!qgrp_node)
1488 		return qgrp_node;
1489 	min_children = qgrp_node->num_children;
1490 	if (!min_children)
1491 		return qgrp_node;
1492 	min_qgrp = qgrp_node;
1493 	/* scan all queue groups until find a node which has less than the
1494 	 * minimum number of children. This way all queue group nodes get
1495 	 * equal number of shares and active. The bandwidth will be equally
1496 	 * distributed across all queues.
1497 	 */
1498 	while (qgrp_node) {
1499 		/* make sure the qgroup node is part of the VSI subtree */
1500 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1501 			if (qgrp_node->num_children < min_children &&
1502 			    qgrp_node->owner == owner) {
1503 				/* replace the new min queue group node */
1504 				min_qgrp = qgrp_node;
1505 				min_children = min_qgrp->num_children;
1506 				/* break if it has no children, */
1507 				if (!min_children)
1508 					break;
1509 			}
1510 		qgrp_node = qgrp_node->sibling;
1511 	}
1512 	return min_qgrp;
1513 }
1514 
1515 /**
1516  * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1517  * @pi: port information structure
1518  * @vsi_handle: software VSI handle
1519  * @tc: branch number
1520  * @owner: LAN or RDMA
1521  *
1522  * This function retrieves a free LAN or RDMA queue group node
1523  */
1524 struct ice_sched_node *
ice_sched_get_free_qparent(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 owner)1525 ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1526 			   u8 owner)
1527 {
1528 	struct ice_sched_node *vsi_node, *qgrp_node;
1529 	struct ice_vsi_ctx *vsi_ctx;
1530 	u8 qgrp_layer, vsi_layer;
1531 	u16 max_children;
1532 
1533 	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1534 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1535 	max_children = pi->hw->max_children[qgrp_layer];
1536 
1537 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1538 	if (!vsi_ctx)
1539 		return NULL;
1540 	vsi_node = vsi_ctx->sched.vsi_node[tc];
1541 	/* validate invalid VSI ID */
1542 	if (!vsi_node)
1543 		return NULL;
1544 
1545 	/* If the queue group and VSI layer are same then queues
1546 	 * are all attached directly to VSI
1547 	 */
1548 	if (qgrp_layer == vsi_layer)
1549 		return vsi_node;
1550 
1551 	/* get the first queue group node from VSI sub-tree */
1552 	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1553 	while (qgrp_node) {
1554 		struct ice_sched_node *next_vsi_node;
1555 
1556 		/* make sure the qgroup node is part of the VSI subtree */
1557 		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1558 			if (qgrp_node->num_children < max_children &&
1559 			    qgrp_node->owner == owner)
1560 				break;
1561 		qgrp_node = qgrp_node->sibling;
1562 		if (qgrp_node)
1563 			continue;
1564 
1565 		next_vsi_node = ice_sched_find_next_vsi_node(vsi_node);
1566 		if (!next_vsi_node)
1567 			break;
1568 
1569 		vsi_node = next_vsi_node;
1570 		qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1571 	}
1572 
1573 	/* Select the best queue group */
1574 	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1575 }
1576 
1577 /**
1578  * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1579  * @pi: pointer to the port information structure
1580  * @tc_node: pointer to the TC node
1581  * @vsi_handle: software VSI handle
1582  *
1583  * This function retrieves a VSI node for a given VSI ID from a given
1584  * TC branch
1585  */
1586 static struct ice_sched_node *
ice_sched_get_vsi_node(struct ice_port_info * pi,struct ice_sched_node * tc_node,u16 vsi_handle)1587 ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1588 		       u16 vsi_handle)
1589 {
1590 	struct ice_sched_node *node;
1591 	u8 vsi_layer;
1592 
1593 	vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1594 	node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1595 
1596 	/* Check whether it already exists */
1597 	while (node) {
1598 		if (node->vsi_handle == vsi_handle)
1599 			return node;
1600 		node = node->sibling;
1601 	}
1602 
1603 	return node;
1604 }
1605 
1606 /**
1607  * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1608  * @pi: pointer to the port information structure
1609  * @tc_node: pointer to the TC node
1610  * @agg_id: aggregator ID
1611  *
1612  * This function retrieves an aggregator node for a given aggregator ID from
1613  * a given TC branch
1614  */
1615 struct ice_sched_node *
ice_sched_get_agg_node(struct ice_port_info * pi,struct ice_sched_node * tc_node,u32 agg_id)1616 ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1617 		       u32 agg_id)
1618 {
1619 	struct ice_sched_node *node;
1620 	struct ice_hw *hw = pi->hw;
1621 	u8 agg_layer;
1622 
1623 	if (!hw)
1624 		return NULL;
1625 	agg_layer = ice_sched_get_agg_layer(hw);
1626 	node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1627 
1628 	/* Check whether it already exists */
1629 	while (node) {
1630 		if (node->agg_id == agg_id)
1631 			return node;
1632 		node = node->sibling;
1633 	}
1634 
1635 	return node;
1636 }
1637 
1638 /**
1639  * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1640  * @hw: pointer to the HW struct
1641  * @num_new_qs: number of new queues that will be added to the tree
1642  * @num_nodes: num nodes array
1643  *
1644  * This function calculates the number of VSI child nodes based on the
1645  * number of queues.
1646  */
1647 static void
ice_sched_calc_vsi_child_nodes(struct ice_hw * hw,u16 num_new_qs,u16 * num_nodes)1648 ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_new_qs, u16 *num_nodes)
1649 {
1650 	u16 num = num_new_qs;
1651 	u8 i, qgl, vsil;
1652 
1653 	qgl = ice_sched_get_qgrp_layer(hw);
1654 	vsil = ice_sched_get_vsi_layer(hw);
1655 
1656 	/* calculate num nodes from queue group to VSI layer */
1657 	for (i = qgl; i > vsil; i--) {
1658 		/* round to the next integer if there is a remainder */
1659 		num = DIV_ROUND_UP(num, hw->max_children[i]);
1660 
1661 		/* need at least one node */
1662 		num_nodes[i] = num ? num : 1;
1663 	}
1664 }
1665 
1666 /**
1667  * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1668  * @pi: port information structure
1669  * @vsi_handle: software VSI handle
1670  * @tc_node: pointer to the TC node
1671  * @num_nodes: pointer to the num nodes that needs to be added per layer
1672  * @owner: node owner (LAN or RDMA)
1673  *
1674  * This function adds the VSI child nodes to tree. It gets called for
1675  * LAN and RDMA separately.
1676  */
1677 static int
ice_sched_add_vsi_child_nodes(struct ice_port_info * pi,u16 vsi_handle,struct ice_sched_node * tc_node,u16 * num_nodes,u8 owner)1678 ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1679 			      struct ice_sched_node *tc_node, u16 *num_nodes,
1680 			      u8 owner)
1681 {
1682 	struct ice_sched_node *parent, *node;
1683 	struct ice_hw *hw = pi->hw;
1684 	u32 first_node_teid;
1685 	u16 num_added = 0;
1686 	u8 i, qgl, vsil;
1687 
1688 	qgl = ice_sched_get_qgrp_layer(hw);
1689 	vsil = ice_sched_get_vsi_layer(hw);
1690 	parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1691 	for (i = vsil + 1; i <= qgl; i++) {
1692 		int status;
1693 
1694 		if (!parent)
1695 			return -EIO;
1696 
1697 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1698 						      num_nodes[i],
1699 						      &first_node_teid,
1700 						      &num_added);
1701 		if (status || num_nodes[i] != num_added)
1702 			return -EIO;
1703 
1704 		/* The newly added node can be a new parent for the next
1705 		 * layer nodes
1706 		 */
1707 		if (num_added) {
1708 			parent = ice_sched_find_node_by_teid(tc_node,
1709 							     first_node_teid);
1710 			node = parent;
1711 			while (node) {
1712 				node->owner = owner;
1713 				node = node->sibling;
1714 			}
1715 		} else {
1716 			parent = parent->children[0];
1717 		}
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 /**
1724  * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1725  * @pi: pointer to the port info structure
1726  * @tc_node: pointer to TC node
1727  * @num_nodes: pointer to num nodes array
1728  *
1729  * This function calculates the number of supported nodes needed to add this
1730  * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1731  * layers
1732  */
1733 static void
ice_sched_calc_vsi_support_nodes(struct ice_port_info * pi,struct ice_sched_node * tc_node,u16 * num_nodes)1734 ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1735 				 struct ice_sched_node *tc_node, u16 *num_nodes)
1736 {
1737 	struct ice_sched_node *node;
1738 	u8 vsil;
1739 	int i;
1740 
1741 	vsil = ice_sched_get_vsi_layer(pi->hw);
1742 	for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1743 		/* Add intermediate nodes if TC has no children and
1744 		 * need at least one node for VSI
1745 		 */
1746 		if (!tc_node->num_children || i == vsil) {
1747 			num_nodes[i]++;
1748 		} else {
1749 			/* If intermediate nodes are reached max children
1750 			 * then add a new one.
1751 			 */
1752 			node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1753 			/* scan all the siblings */
1754 			while (node) {
1755 				if (node->num_children < pi->hw->max_children[i])
1756 					break;
1757 				node = node->sibling;
1758 			}
1759 
1760 			/* tree has one intermediate node to add this new VSI.
1761 			 * So no need to calculate supported nodes for below
1762 			 * layers.
1763 			 */
1764 			if (node)
1765 				break;
1766 			/* all the nodes are full, allocate a new one */
1767 			num_nodes[i]++;
1768 		}
1769 }
1770 
1771 /**
1772  * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1773  * @pi: port information structure
1774  * @vsi_handle: software VSI handle
1775  * @tc_node: pointer to TC node
1776  * @num_nodes: pointer to num nodes array
1777  *
1778  * This function adds the VSI supported nodes into Tx tree including the
1779  * VSI, its parent and intermediate nodes in below layers
1780  */
1781 static int
ice_sched_add_vsi_support_nodes(struct ice_port_info * pi,u16 vsi_handle,struct ice_sched_node * tc_node,u16 * num_nodes)1782 ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1783 				struct ice_sched_node *tc_node, u16 *num_nodes)
1784 {
1785 	struct ice_sched_node *parent = tc_node;
1786 	u32 first_node_teid;
1787 	u16 num_added = 0;
1788 	u8 i, vsil;
1789 
1790 	if (!pi)
1791 		return -EINVAL;
1792 
1793 	vsil = ice_sched_get_vsi_layer(pi->hw);
1794 	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1795 		int status;
1796 
1797 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1798 						      i, num_nodes[i],
1799 						      &first_node_teid,
1800 						      &num_added);
1801 		if (status || num_nodes[i] != num_added)
1802 			return -EIO;
1803 
1804 		/* The newly added node can be a new parent for the next
1805 		 * layer nodes
1806 		 */
1807 		if (num_added)
1808 			parent = ice_sched_find_node_by_teid(tc_node,
1809 							     first_node_teid);
1810 		else
1811 			parent = parent->children[0];
1812 
1813 		if (!parent)
1814 			return -EIO;
1815 
1816 		/* Do not modify the VSI handle for already existing VSI nodes,
1817 		 * (if no new VSI node was added to the tree).
1818 		 * Assign the VSI handle only to newly added VSI nodes.
1819 		 */
1820 		if (i == vsil && num_added)
1821 			parent->vsi_handle = vsi_handle;
1822 	}
1823 
1824 	return 0;
1825 }
1826 
1827 /**
1828  * ice_sched_add_vsi_to_topo - add a new VSI into tree
1829  * @pi: port information structure
1830  * @vsi_handle: software VSI handle
1831  * @tc: TC number
1832  *
1833  * This function adds a new VSI into scheduler tree
1834  */
1835 static int
ice_sched_add_vsi_to_topo(struct ice_port_info * pi,u16 vsi_handle,u8 tc)1836 ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1837 {
1838 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1839 	struct ice_sched_node *tc_node;
1840 
1841 	tc_node = ice_sched_get_tc_node(pi, tc);
1842 	if (!tc_node)
1843 		return -EINVAL;
1844 
1845 	/* calculate number of supported nodes needed for this VSI */
1846 	ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1847 
1848 	/* add VSI supported nodes to TC subtree */
1849 	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1850 					       num_nodes);
1851 }
1852 
1853 /**
1854  * ice_sched_recalc_vsi_support_nodes - recalculate VSI support nodes count
1855  * @hw: pointer to the HW struct
1856  * @vsi_node: pointer to the leftmost VSI node that needs to be extended
1857  * @new_numqs: new number of queues that has to be handled by the VSI
1858  * @new_num_nodes: pointer to nodes count table to modify the VSI layer entry
1859  *
1860  * This function recalculates the number of supported nodes that need to
1861  * be added after adding more Tx queues for a given VSI.
1862  * The number of new VSI support nodes that shall be added will be saved
1863  * to the @new_num_nodes table for the VSI layer.
1864  */
1865 static void
ice_sched_recalc_vsi_support_nodes(struct ice_hw * hw,struct ice_sched_node * vsi_node,unsigned int new_numqs,u16 * new_num_nodes)1866 ice_sched_recalc_vsi_support_nodes(struct ice_hw *hw,
1867 				   struct ice_sched_node *vsi_node,
1868 				   unsigned int new_numqs, u16 *new_num_nodes)
1869 {
1870 	u32 vsi_nodes_cnt = 1;
1871 	u32 max_queue_cnt = 1;
1872 	u32 qgl, vsil;
1873 
1874 	qgl = ice_sched_get_qgrp_layer(hw);
1875 	vsil = ice_sched_get_vsi_layer(hw);
1876 
1877 	for (u32 i = vsil; i <= qgl; i++)
1878 		max_queue_cnt *= hw->max_children[i];
1879 
1880 	while ((vsi_node = ice_sched_find_next_vsi_node(vsi_node)) != NULL)
1881 		vsi_nodes_cnt++;
1882 
1883 	if (new_numqs > (max_queue_cnt * vsi_nodes_cnt))
1884 		new_num_nodes[vsil] = DIV_ROUND_UP(new_numqs, max_queue_cnt) -
1885 				      vsi_nodes_cnt;
1886 }
1887 
1888 /**
1889  * ice_sched_update_vsi_child_nodes - update VSI child nodes
1890  * @pi: port information structure
1891  * @vsi_handle: software VSI handle
1892  * @tc: TC number
1893  * @new_numqs: new number of max queues
1894  * @owner: owner of this subtree
1895  *
1896  * This function updates the VSI child nodes based on the number of queues
1897  */
1898 static int
ice_sched_update_vsi_child_nodes(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 new_numqs,u8 owner)1899 ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1900 				 u8 tc, u16 new_numqs, u8 owner)
1901 {
1902 	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1903 	struct ice_sched_node *vsi_node;
1904 	struct ice_sched_node *tc_node;
1905 	struct ice_vsi_ctx *vsi_ctx;
1906 	struct ice_hw *hw = pi->hw;
1907 	u16 prev_numqs;
1908 	int status = 0;
1909 
1910 	tc_node = ice_sched_get_tc_node(pi, tc);
1911 	if (!tc_node)
1912 		return -EIO;
1913 
1914 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1915 	if (!vsi_node)
1916 		return -EIO;
1917 
1918 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1919 	if (!vsi_ctx)
1920 		return -EINVAL;
1921 
1922 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1923 		prev_numqs = vsi_ctx->sched.max_lanq[tc];
1924 	else
1925 		prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1926 	/* num queues are not changed or less than the previous number */
1927 	if (new_numqs <= prev_numqs)
1928 		return status;
1929 	if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1930 		status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1931 		if (status)
1932 			return status;
1933 	} else {
1934 		status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1935 		if (status)
1936 			return status;
1937 	}
1938 
1939 	ice_sched_recalc_vsi_support_nodes(hw, vsi_node,
1940 					   new_numqs, new_num_nodes);
1941 	ice_sched_calc_vsi_child_nodes(hw, new_numqs - prev_numqs,
1942 				       new_num_nodes);
1943 
1944 	/* Never decrease the number of queues in the tree. Update the tree
1945 	 * only if number of queues > previous number of queues. This may
1946 	 * leave some extra nodes in the tree if number of queues < previous
1947 	 * number but that wouldn't harm anything. Removing those extra nodes
1948 	 * may complicate the code if those nodes are part of SRL or
1949 	 * individually rate limited.
1950 	 * Also, add the required VSI support nodes if the existing ones cannot
1951 	 * handle the requested new number of queues.
1952 	 */
1953 	status = ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1954 						 new_num_nodes);
1955 	if (status)
1956 		return status;
1957 
1958 	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1959 					       new_num_nodes, owner);
1960 	if (status)
1961 		return status;
1962 	if (owner == ICE_SCHED_NODE_OWNER_LAN)
1963 		vsi_ctx->sched.max_lanq[tc] = new_numqs;
1964 	else
1965 		vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1966 
1967 	return 0;
1968 }
1969 
1970 /**
1971  * ice_sched_cfg_vsi - configure the new/existing VSI
1972  * @pi: port information structure
1973  * @vsi_handle: software VSI handle
1974  * @tc: TC number
1975  * @maxqs: max number of queues
1976  * @owner: LAN or RDMA
1977  * @enable: TC enabled or disabled
1978  *
1979  * This function adds/updates VSI nodes based on the number of queues. If TC is
1980  * enabled and VSI is in suspended state then resume the VSI back. If TC is
1981  * disabled then suspend the VSI if it is not already.
1982  */
1983 int
ice_sched_cfg_vsi(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 maxqs,u8 owner,bool enable)1984 ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1985 		  u8 owner, bool enable)
1986 {
1987 	struct ice_sched_node *vsi_node, *tc_node;
1988 	struct ice_vsi_ctx *vsi_ctx;
1989 	struct ice_hw *hw = pi->hw;
1990 	int status = 0;
1991 
1992 	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1993 	tc_node = ice_sched_get_tc_node(pi, tc);
1994 	if (!tc_node)
1995 		return -EINVAL;
1996 	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1997 	if (!vsi_ctx)
1998 		return -EINVAL;
1999 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2000 
2001 	/* suspend the VSI if TC is not enabled */
2002 	if (!enable) {
2003 		if (vsi_node && vsi_node->in_use) {
2004 			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
2005 
2006 			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
2007 								true);
2008 			if (!status)
2009 				vsi_node->in_use = false;
2010 		}
2011 		return status;
2012 	}
2013 
2014 	/* TC is enabled, if it is a new VSI then add it to the tree */
2015 	if (!vsi_node) {
2016 		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
2017 		if (status)
2018 			return status;
2019 
2020 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2021 		if (!vsi_node)
2022 			return -EIO;
2023 
2024 		vsi_ctx->sched.vsi_node[tc] = vsi_node;
2025 		vsi_node->in_use = true;
2026 		/* invalidate the max queues whenever VSI gets added first time
2027 		 * into the scheduler tree (boot or after reset). We need to
2028 		 * recreate the child nodes all the time in these cases.
2029 		 */
2030 		vsi_ctx->sched.max_lanq[tc] = 0;
2031 		vsi_ctx->sched.max_rdmaq[tc] = 0;
2032 	}
2033 
2034 	/* update the VSI child nodes */
2035 	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
2036 						  owner);
2037 	if (status)
2038 		return status;
2039 
2040 	/* TC is enabled, resume the VSI if it is in the suspend state */
2041 	if (!vsi_node->in_use) {
2042 		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
2043 
2044 		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
2045 		if (!status)
2046 			vsi_node->in_use = true;
2047 	}
2048 
2049 	return status;
2050 }
2051 
2052 /**
2053  * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
2054  * @pi: port information structure
2055  * @vsi_handle: software VSI handle
2056  *
2057  * This function removes single aggregator VSI info entry from
2058  * aggregator list.
2059  */
ice_sched_rm_agg_vsi_info(struct ice_port_info * pi,u16 vsi_handle)2060 static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
2061 {
2062 	struct ice_sched_agg_info *agg_info;
2063 	struct ice_sched_agg_info *atmp;
2064 
2065 	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
2066 				 list_entry) {
2067 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2068 		struct ice_sched_agg_vsi_info *vtmp;
2069 
2070 		list_for_each_entry_safe(agg_vsi_info, vtmp,
2071 					 &agg_info->agg_vsi_list, list_entry)
2072 			if (agg_vsi_info->vsi_handle == vsi_handle) {
2073 				list_del(&agg_vsi_info->list_entry);
2074 				devm_kfree(ice_hw_to_dev(pi->hw),
2075 					   agg_vsi_info);
2076 				return;
2077 			}
2078 	}
2079 }
2080 
2081 /**
2082  * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2083  * @node: pointer to the sub-tree node
2084  *
2085  * This function checks for a leaf node presence in a given sub-tree node.
2086  */
ice_sched_is_leaf_node_present(struct ice_sched_node * node)2087 static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2088 {
2089 	u8 i;
2090 
2091 	for (i = 0; i < node->num_children; i++)
2092 		if (ice_sched_is_leaf_node_present(node->children[i]))
2093 			return true;
2094 	/* check for a leaf node */
2095 	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2096 }
2097 
2098 /**
2099  * ice_sched_rm_vsi_subtree - remove all nodes assigned to a given VSI
2100  * @pi: port information structure
2101  * @vsi_node: pointer to the leftmost node of the VSI to be removed
2102  * @owner: LAN or RDMA
2103  * @tc: TC number
2104  *
2105  * Return: Zero in case of success, or -EBUSY if the VSI has leaf nodes in TC.
2106  *
2107  * This function removes all the VSI support nodes associated with a given VSI
2108  * and its LAN or RDMA children nodes from the scheduler tree.
2109  */
2110 static int
ice_sched_rm_vsi_subtree(struct ice_port_info * pi,struct ice_sched_node * vsi_node,u8 owner,u8 tc)2111 ice_sched_rm_vsi_subtree(struct ice_port_info *pi,
2112 			 struct ice_sched_node *vsi_node, u8 owner, u8 tc)
2113 {
2114 	u16 vsi_handle = vsi_node->vsi_handle;
2115 	bool all_vsi_nodes_removed = true;
2116 	int j = 0;
2117 
2118 	while (vsi_node) {
2119 		struct ice_sched_node *next_vsi_node;
2120 
2121 		if (ice_sched_is_leaf_node_present(vsi_node)) {
2122 			ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", tc);
2123 			return -EBUSY;
2124 		}
2125 		while (j < vsi_node->num_children) {
2126 			if (vsi_node->children[j]->owner == owner)
2127 				ice_free_sched_node(pi, vsi_node->children[j]);
2128 			else
2129 				j++;
2130 		}
2131 
2132 		next_vsi_node = ice_sched_find_next_vsi_node(vsi_node);
2133 
2134 		/* remove the VSI if it has no children */
2135 		if (!vsi_node->num_children)
2136 			ice_free_sched_node(pi, vsi_node);
2137 		else
2138 			all_vsi_nodes_removed = false;
2139 
2140 		vsi_node = next_vsi_node;
2141 	}
2142 
2143 	/* clean up aggregator related VSI info if any */
2144 	if (all_vsi_nodes_removed)
2145 		ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2146 
2147 	return 0;
2148 }
2149 
2150 /**
2151  * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2152  * @pi: port information structure
2153  * @vsi_handle: software VSI handle
2154  * @owner: LAN or RDMA
2155  *
2156  * This function removes the VSI and its LAN or RDMA children nodes from the
2157  * scheduler tree.
2158  */
2159 static int
ice_sched_rm_vsi_cfg(struct ice_port_info * pi,u16 vsi_handle,u8 owner)2160 ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2161 {
2162 	struct ice_vsi_ctx *vsi_ctx;
2163 	int status = -EINVAL;
2164 	u8 i;
2165 
2166 	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2167 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2168 		return status;
2169 	mutex_lock(&pi->sched_lock);
2170 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2171 	if (!vsi_ctx)
2172 		goto exit_sched_rm_vsi_cfg;
2173 
2174 	ice_for_each_traffic_class(i) {
2175 		struct ice_sched_node *vsi_node, *tc_node;
2176 
2177 		tc_node = ice_sched_get_tc_node(pi, i);
2178 		if (!tc_node)
2179 			continue;
2180 
2181 		vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2182 		if (!vsi_node)
2183 			continue;
2184 
2185 		status = ice_sched_rm_vsi_subtree(pi, vsi_node, owner, i);
2186 		if (status)
2187 			goto exit_sched_rm_vsi_cfg;
2188 
2189 		vsi_ctx->sched.vsi_node[i] = NULL;
2190 
2191 		if (owner == ICE_SCHED_NODE_OWNER_LAN)
2192 			vsi_ctx->sched.max_lanq[i] = 0;
2193 		else
2194 			vsi_ctx->sched.max_rdmaq[i] = 0;
2195 	}
2196 	status = 0;
2197 
2198 exit_sched_rm_vsi_cfg:
2199 	mutex_unlock(&pi->sched_lock);
2200 	return status;
2201 }
2202 
2203 /**
2204  * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2205  * @pi: port information structure
2206  * @vsi_handle: software VSI handle
2207  *
2208  * This function clears the VSI and its LAN children nodes from scheduler tree
2209  * for all TCs.
2210  */
ice_rm_vsi_lan_cfg(struct ice_port_info * pi,u16 vsi_handle)2211 int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2212 {
2213 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2214 }
2215 
2216 /**
2217  * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2218  * @pi: port information structure
2219  * @vsi_handle: software VSI handle
2220  *
2221  * This function clears the VSI and its RDMA children nodes from scheduler tree
2222  * for all TCs.
2223  */
ice_rm_vsi_rdma_cfg(struct ice_port_info * pi,u16 vsi_handle)2224 int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2225 {
2226 	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2227 }
2228 
2229 /**
2230  * ice_get_agg_info - get the aggregator ID
2231  * @hw: pointer to the hardware structure
2232  * @agg_id: aggregator ID
2233  *
2234  * This function validates aggregator ID. The function returns info if
2235  * aggregator ID is present in list otherwise it returns null.
2236  */
2237 static struct ice_sched_agg_info *
ice_get_agg_info(struct ice_hw * hw,u32 agg_id)2238 ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2239 {
2240 	struct ice_sched_agg_info *agg_info;
2241 
2242 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2243 		if (agg_info->agg_id == agg_id)
2244 			return agg_info;
2245 
2246 	return NULL;
2247 }
2248 
2249 /**
2250  * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2251  * @hw: pointer to the HW struct
2252  * @node: pointer to a child node
2253  * @num_nodes: num nodes count array
2254  *
2255  * This function walks through the aggregator subtree to find a free parent
2256  * node
2257  */
2258 struct ice_sched_node *
ice_sched_get_free_vsi_parent(struct ice_hw * hw,struct ice_sched_node * node,u16 * num_nodes)2259 ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2260 			      u16 *num_nodes)
2261 {
2262 	u8 l = node->tx_sched_layer;
2263 	u8 vsil, i;
2264 
2265 	vsil = ice_sched_get_vsi_layer(hw);
2266 
2267 	/* Is it VSI parent layer ? */
2268 	if (l == vsil - 1)
2269 		return (node->num_children < hw->max_children[l]) ? node : NULL;
2270 
2271 	/* We have intermediate nodes. Let's walk through the subtree. If the
2272 	 * intermediate node has space to add a new node then clear the count
2273 	 */
2274 	if (node->num_children < hw->max_children[l])
2275 		num_nodes[l] = 0;
2276 	/* The below recursive call is intentional and wouldn't go more than
2277 	 * 2 or 3 iterations.
2278 	 */
2279 
2280 	for (i = 0; i < node->num_children; i++) {
2281 		struct ice_sched_node *parent;
2282 
2283 		parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2284 						       num_nodes);
2285 		if (parent)
2286 			return parent;
2287 	}
2288 
2289 	return NULL;
2290 }
2291 
2292 /**
2293  * ice_sched_update_parent - update the new parent in SW DB
2294  * @new_parent: pointer to a new parent node
2295  * @node: pointer to a child node
2296  *
2297  * This function removes the child from the old parent and adds it to a new
2298  * parent
2299  */
2300 void
ice_sched_update_parent(struct ice_sched_node * new_parent,struct ice_sched_node * node)2301 ice_sched_update_parent(struct ice_sched_node *new_parent,
2302 			struct ice_sched_node *node)
2303 {
2304 	struct ice_sched_node *old_parent;
2305 	u8 i, j;
2306 
2307 	old_parent = node->parent;
2308 
2309 	/* update the old parent children */
2310 	for (i = 0; i < old_parent->num_children; i++)
2311 		if (old_parent->children[i] == node) {
2312 			for (j = i + 1; j < old_parent->num_children; j++)
2313 				old_parent->children[j - 1] =
2314 					old_parent->children[j];
2315 			old_parent->num_children--;
2316 			break;
2317 		}
2318 
2319 	/* now move the node to a new parent */
2320 	new_parent->children[new_parent->num_children++] = node;
2321 	node->parent = new_parent;
2322 	node->info.parent_teid = new_parent->info.node_teid;
2323 }
2324 
2325 /**
2326  * ice_sched_move_nodes - move child nodes to a given parent
2327  * @pi: port information structure
2328  * @parent: pointer to parent node
2329  * @num_items: number of child nodes to be moved
2330  * @list: pointer to child node teids
2331  *
2332  * This function move the child nodes to a given parent.
2333  */
2334 int
ice_sched_move_nodes(struct ice_port_info * pi,struct ice_sched_node * parent,u16 num_items,u32 * list)2335 ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2336 		     u16 num_items, u32 *list)
2337 {
2338 	DEFINE_RAW_FLEX(struct ice_aqc_move_elem, buf, teid, 1);
2339 	u16 buf_len = __struct_size(buf);
2340 	struct ice_sched_node *node;
2341 	u16 i, grps_movd = 0;
2342 	struct ice_hw *hw;
2343 	int status = 0;
2344 
2345 	hw = pi->hw;
2346 
2347 	if (!parent || !num_items)
2348 		return -EINVAL;
2349 
2350 	/* Does parent have enough space */
2351 	if (parent->num_children + num_items >
2352 	    hw->max_children[parent->tx_sched_layer])
2353 		return -ENOSPC;
2354 
2355 	for (i = 0; i < num_items; i++) {
2356 		node = ice_sched_find_node_by_teid(pi->root, list[i]);
2357 		if (!node) {
2358 			status = -EINVAL;
2359 			break;
2360 		}
2361 
2362 		buf->hdr.src_parent_teid = node->info.parent_teid;
2363 		buf->hdr.dest_parent_teid = parent->info.node_teid;
2364 		buf->teid[0] = node->info.node_teid;
2365 		buf->hdr.num_elems = cpu_to_le16(1);
2366 		status = ice_aq_move_sched_elems(hw, buf, buf_len, &grps_movd);
2367 		if (status && grps_movd != 1) {
2368 			status = -EIO;
2369 			break;
2370 		}
2371 
2372 		/* update the SW DB */
2373 		ice_sched_update_parent(parent, node);
2374 	}
2375 
2376 	return status;
2377 }
2378 
2379 /**
2380  * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2381  * @pi: port information structure
2382  * @vsi_handle: software VSI handle
2383  * @agg_id: aggregator ID
2384  * @tc: TC number
2385  *
2386  * This function moves a VSI to an aggregator node or its subtree.
2387  * Intermediate nodes may be created if required.
2388  */
2389 static int
ice_sched_move_vsi_to_agg(struct ice_port_info * pi,u16 vsi_handle,u32 agg_id,u8 tc)2390 ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2391 			  u8 tc)
2392 {
2393 	struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2394 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2395 	u32 first_node_teid, vsi_teid;
2396 	u16 num_nodes_added;
2397 	u8 aggl, vsil, i;
2398 	int status;
2399 
2400 	tc_node = ice_sched_get_tc_node(pi, tc);
2401 	if (!tc_node)
2402 		return -EIO;
2403 
2404 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2405 	if (!agg_node)
2406 		return -ENOENT;
2407 
2408 	vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2409 	if (!vsi_node)
2410 		return -ENOENT;
2411 
2412 	/* Is this VSI already part of given aggregator? */
2413 	if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2414 		return 0;
2415 
2416 	aggl = ice_sched_get_agg_layer(pi->hw);
2417 	vsil = ice_sched_get_vsi_layer(pi->hw);
2418 
2419 	/* set intermediate node count to 1 between aggregator and VSI layers */
2420 	for (i = aggl + 1; i < vsil; i++)
2421 		num_nodes[i] = 1;
2422 
2423 	/* Check if the aggregator subtree has any free node to add the VSI */
2424 	for (i = 0; i < agg_node->num_children; i++) {
2425 		parent = ice_sched_get_free_vsi_parent(pi->hw,
2426 						       agg_node->children[i],
2427 						       num_nodes);
2428 		if (parent)
2429 			goto move_nodes;
2430 	}
2431 
2432 	/* add new nodes */
2433 	parent = agg_node;
2434 	for (i = aggl + 1; i < vsil; i++) {
2435 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2436 						      num_nodes[i],
2437 						      &first_node_teid,
2438 						      &num_nodes_added);
2439 		if (status || num_nodes[i] != num_nodes_added)
2440 			return -EIO;
2441 
2442 		/* The newly added node can be a new parent for the next
2443 		 * layer nodes
2444 		 */
2445 		if (num_nodes_added)
2446 			parent = ice_sched_find_node_by_teid(tc_node,
2447 							     first_node_teid);
2448 		else
2449 			parent = parent->children[0];
2450 
2451 		if (!parent)
2452 			return -EIO;
2453 	}
2454 
2455 move_nodes:
2456 	vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2457 	return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2458 }
2459 
2460 /**
2461  * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2462  * @pi: port information structure
2463  * @agg_info: aggregator info
2464  * @tc: traffic class number
2465  * @rm_vsi_info: true or false
2466  *
2467  * This function move all the VSI(s) to the default aggregator and delete
2468  * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2469  * caller holds the scheduler lock.
2470  */
2471 static int
ice_move_all_vsi_to_dflt_agg(struct ice_port_info * pi,struct ice_sched_agg_info * agg_info,u8 tc,bool rm_vsi_info)2472 ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2473 			     struct ice_sched_agg_info *agg_info, u8 tc,
2474 			     bool rm_vsi_info)
2475 {
2476 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2477 	struct ice_sched_agg_vsi_info *tmp;
2478 	int status = 0;
2479 
2480 	list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2481 				 list_entry) {
2482 		u16 vsi_handle = agg_vsi_info->vsi_handle;
2483 
2484 		/* Move VSI to default aggregator */
2485 		if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2486 			continue;
2487 
2488 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2489 						   ICE_DFLT_AGG_ID, tc);
2490 		if (status)
2491 			break;
2492 
2493 		clear_bit(tc, agg_vsi_info->tc_bitmap);
2494 		if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2495 			list_del(&agg_vsi_info->list_entry);
2496 			devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2497 		}
2498 	}
2499 
2500 	return status;
2501 }
2502 
2503 /**
2504  * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2505  * @pi: port information structure
2506  * @node: node pointer
2507  *
2508  * This function checks whether the aggregator is attached with any VSI or not.
2509  */
2510 static bool
ice_sched_is_agg_inuse(struct ice_port_info * pi,struct ice_sched_node * node)2511 ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2512 {
2513 	u8 vsil, i;
2514 
2515 	vsil = ice_sched_get_vsi_layer(pi->hw);
2516 	if (node->tx_sched_layer < vsil - 1) {
2517 		for (i = 0; i < node->num_children; i++)
2518 			if (ice_sched_is_agg_inuse(pi, node->children[i]))
2519 				return true;
2520 		return false;
2521 	} else {
2522 		return node->num_children ? true : false;
2523 	}
2524 }
2525 
2526 /**
2527  * ice_sched_rm_agg_cfg - remove the aggregator node
2528  * @pi: port information structure
2529  * @agg_id: aggregator ID
2530  * @tc: TC number
2531  *
2532  * This function removes the aggregator node and intermediate nodes if any
2533  * from the given TC
2534  */
2535 static int
ice_sched_rm_agg_cfg(struct ice_port_info * pi,u32 agg_id,u8 tc)2536 ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2537 {
2538 	struct ice_sched_node *tc_node, *agg_node;
2539 	struct ice_hw *hw = pi->hw;
2540 
2541 	tc_node = ice_sched_get_tc_node(pi, tc);
2542 	if (!tc_node)
2543 		return -EIO;
2544 
2545 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2546 	if (!agg_node)
2547 		return -ENOENT;
2548 
2549 	/* Can't remove the aggregator node if it has children */
2550 	if (ice_sched_is_agg_inuse(pi, agg_node))
2551 		return -EBUSY;
2552 
2553 	/* need to remove the whole subtree if aggregator node is the
2554 	 * only child.
2555 	 */
2556 	while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2557 		struct ice_sched_node *parent = agg_node->parent;
2558 
2559 		if (!parent)
2560 			return -EIO;
2561 
2562 		if (parent->num_children > 1)
2563 			break;
2564 
2565 		agg_node = parent;
2566 	}
2567 
2568 	ice_free_sched_node(pi, agg_node);
2569 	return 0;
2570 }
2571 
2572 /**
2573  * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2574  * @pi: port information structure
2575  * @agg_info: aggregator ID
2576  * @tc: TC number
2577  * @rm_vsi_info: bool value true or false
2578  *
2579  * This function removes aggregator reference to VSI of given TC. It removes
2580  * the aggregator configuration completely for requested TC. The caller needs
2581  * to hold the scheduler lock.
2582  */
2583 static int
ice_rm_agg_cfg_tc(struct ice_port_info * pi,struct ice_sched_agg_info * agg_info,u8 tc,bool rm_vsi_info)2584 ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2585 		  u8 tc, bool rm_vsi_info)
2586 {
2587 	int status = 0;
2588 
2589 	/* If nothing to remove - return success */
2590 	if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2591 		goto exit_rm_agg_cfg_tc;
2592 
2593 	status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2594 	if (status)
2595 		goto exit_rm_agg_cfg_tc;
2596 
2597 	/* Delete aggregator node(s) */
2598 	status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2599 	if (status)
2600 		goto exit_rm_agg_cfg_tc;
2601 
2602 	clear_bit(tc, agg_info->tc_bitmap);
2603 exit_rm_agg_cfg_tc:
2604 	return status;
2605 }
2606 
2607 /**
2608  * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2609  * @pi: port information structure
2610  * @agg_id: aggregator ID
2611  * @tc_bitmap: 8 bits TC bitmap
2612  *
2613  * Save aggregator TC bitmap. This function needs to be called with scheduler
2614  * lock held.
2615  */
2616 static int
ice_save_agg_tc_bitmap(struct ice_port_info * pi,u32 agg_id,unsigned long * tc_bitmap)2617 ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2618 		       unsigned long *tc_bitmap)
2619 {
2620 	struct ice_sched_agg_info *agg_info;
2621 
2622 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2623 	if (!agg_info)
2624 		return -EINVAL;
2625 	bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2626 		    ICE_MAX_TRAFFIC_CLASS);
2627 	return 0;
2628 }
2629 
2630 /**
2631  * ice_sched_add_agg_cfg - create an aggregator node
2632  * @pi: port information structure
2633  * @agg_id: aggregator ID
2634  * @tc: TC number
2635  *
2636  * This function creates an aggregator node and intermediate nodes if required
2637  * for the given TC
2638  */
2639 static int
ice_sched_add_agg_cfg(struct ice_port_info * pi,u32 agg_id,u8 tc)2640 ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2641 {
2642 	struct ice_sched_node *parent, *agg_node, *tc_node;
2643 	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2644 	struct ice_hw *hw = pi->hw;
2645 	u32 first_node_teid;
2646 	u16 num_nodes_added;
2647 	int status = 0;
2648 	u8 i, aggl;
2649 
2650 	tc_node = ice_sched_get_tc_node(pi, tc);
2651 	if (!tc_node)
2652 		return -EIO;
2653 
2654 	agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2655 	/* Does Agg node already exist ? */
2656 	if (agg_node)
2657 		return status;
2658 
2659 	aggl = ice_sched_get_agg_layer(hw);
2660 
2661 	/* need one node in Agg layer */
2662 	num_nodes[aggl] = 1;
2663 
2664 	/* Check whether the intermediate nodes have space to add the
2665 	 * new aggregator. If they are full, then SW needs to allocate a new
2666 	 * intermediate node on those layers
2667 	 */
2668 	for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2669 		parent = ice_sched_get_first_node(pi, tc_node, i);
2670 
2671 		/* scan all the siblings */
2672 		while (parent) {
2673 			if (parent->num_children < hw->max_children[i])
2674 				break;
2675 			parent = parent->sibling;
2676 		}
2677 
2678 		/* all the nodes are full, reserve one for this layer */
2679 		if (!parent)
2680 			num_nodes[i]++;
2681 	}
2682 
2683 	/* add the aggregator node */
2684 	parent = tc_node;
2685 	for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2686 		if (!parent)
2687 			return -EIO;
2688 
2689 		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2690 						      num_nodes[i],
2691 						      &first_node_teid,
2692 						      &num_nodes_added);
2693 		if (status || num_nodes[i] != num_nodes_added)
2694 			return -EIO;
2695 
2696 		/* The newly added node can be a new parent for the next
2697 		 * layer nodes
2698 		 */
2699 		if (num_nodes_added) {
2700 			parent = ice_sched_find_node_by_teid(tc_node,
2701 							     first_node_teid);
2702 			/* register aggregator ID with the aggregator node */
2703 			if (parent && i == aggl)
2704 				parent->agg_id = agg_id;
2705 		} else {
2706 			parent = parent->children[0];
2707 		}
2708 	}
2709 
2710 	return 0;
2711 }
2712 
2713 /**
2714  * ice_sched_cfg_agg - configure aggregator node
2715  * @pi: port information structure
2716  * @agg_id: aggregator ID
2717  * @agg_type: aggregator type queue, VSI, or aggregator group
2718  * @tc_bitmap: bits TC bitmap
2719  *
2720  * It registers a unique aggregator node into scheduler services. It
2721  * allows a user to register with a unique ID to track it's resources.
2722  * The aggregator type determines if this is a queue group, VSI group
2723  * or aggregator group. It then creates the aggregator node(s) for requested
2724  * TC(s) or removes an existing aggregator node including its configuration
2725  * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2726  * resources and remove aggregator ID.
2727  * This function needs to be called with scheduler lock held.
2728  */
2729 static int
ice_sched_cfg_agg(struct ice_port_info * pi,u32 agg_id,enum ice_agg_type agg_type,unsigned long * tc_bitmap)2730 ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2731 		  enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2732 {
2733 	struct ice_sched_agg_info *agg_info;
2734 	struct ice_hw *hw = pi->hw;
2735 	int status = 0;
2736 	u8 tc;
2737 
2738 	agg_info = ice_get_agg_info(hw, agg_id);
2739 	if (!agg_info) {
2740 		/* Create new entry for new aggregator ID */
2741 		agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2742 					GFP_KERNEL);
2743 		if (!agg_info)
2744 			return -ENOMEM;
2745 
2746 		agg_info->agg_id = agg_id;
2747 		agg_info->agg_type = agg_type;
2748 		agg_info->tc_bitmap[0] = 0;
2749 
2750 		/* Initialize the aggregator VSI list head */
2751 		INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2752 
2753 		/* Add new entry in aggregator list */
2754 		list_add(&agg_info->list_entry, &hw->agg_list);
2755 	}
2756 	/* Create aggregator node(s) for requested TC(s) */
2757 	ice_for_each_traffic_class(tc) {
2758 		if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2759 			/* Delete aggregator cfg TC if it exists previously */
2760 			status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2761 			if (status)
2762 				break;
2763 			continue;
2764 		}
2765 
2766 		/* Check if aggregator node for TC already exists */
2767 		if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2768 			continue;
2769 
2770 		/* Create new aggregator node for TC */
2771 		status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2772 		if (status)
2773 			break;
2774 
2775 		/* Save aggregator node's TC information */
2776 		set_bit(tc, agg_info->tc_bitmap);
2777 	}
2778 
2779 	return status;
2780 }
2781 
2782 /**
2783  * ice_cfg_agg - config aggregator node
2784  * @pi: port information structure
2785  * @agg_id: aggregator ID
2786  * @agg_type: aggregator type queue, VSI, or aggregator group
2787  * @tc_bitmap: bits TC bitmap
2788  *
2789  * This function configures aggregator node(s).
2790  */
2791 int
ice_cfg_agg(struct ice_port_info * pi,u32 agg_id,enum ice_agg_type agg_type,u8 tc_bitmap)2792 ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2793 	    u8 tc_bitmap)
2794 {
2795 	unsigned long bitmap = tc_bitmap;
2796 	int status;
2797 
2798 	mutex_lock(&pi->sched_lock);
2799 	status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
2800 	if (!status)
2801 		status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
2802 	mutex_unlock(&pi->sched_lock);
2803 	return status;
2804 }
2805 
2806 /**
2807  * ice_get_agg_vsi_info - get the aggregator ID
2808  * @agg_info: aggregator info
2809  * @vsi_handle: software VSI handle
2810  *
2811  * The function returns aggregator VSI info based on VSI handle. This function
2812  * needs to be called with scheduler lock held.
2813  */
2814 static struct ice_sched_agg_vsi_info *
ice_get_agg_vsi_info(struct ice_sched_agg_info * agg_info,u16 vsi_handle)2815 ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2816 {
2817 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2818 
2819 	list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2820 		if (agg_vsi_info->vsi_handle == vsi_handle)
2821 			return agg_vsi_info;
2822 
2823 	return NULL;
2824 }
2825 
2826 /**
2827  * ice_get_vsi_agg_info - get the aggregator info of VSI
2828  * @hw: pointer to the hardware structure
2829  * @vsi_handle: Sw VSI handle
2830  *
2831  * The function returns aggregator info of VSI represented via vsi_handle. The
2832  * VSI has in this case a different aggregator than the default one. This
2833  * function needs to be called with scheduler lock held.
2834  */
2835 static struct ice_sched_agg_info *
ice_get_vsi_agg_info(struct ice_hw * hw,u16 vsi_handle)2836 ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2837 {
2838 	struct ice_sched_agg_info *agg_info;
2839 
2840 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2841 		struct ice_sched_agg_vsi_info *agg_vsi_info;
2842 
2843 		agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2844 		if (agg_vsi_info)
2845 			return agg_info;
2846 	}
2847 	return NULL;
2848 }
2849 
2850 /**
2851  * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2852  * @pi: port information structure
2853  * @agg_id: aggregator ID
2854  * @vsi_handle: software VSI handle
2855  * @tc_bitmap: TC bitmap of enabled TC(s)
2856  *
2857  * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2858  * lock held.
2859  */
2860 static int
ice_save_agg_vsi_tc_bitmap(struct ice_port_info * pi,u32 agg_id,u16 vsi_handle,unsigned long * tc_bitmap)2861 ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2862 			   unsigned long *tc_bitmap)
2863 {
2864 	struct ice_sched_agg_vsi_info *agg_vsi_info;
2865 	struct ice_sched_agg_info *agg_info;
2866 
2867 	agg_info = ice_get_agg_info(pi->hw, agg_id);
2868 	if (!agg_info)
2869 		return -EINVAL;
2870 	/* check if entry already exist */
2871 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2872 	if (!agg_vsi_info)
2873 		return -EINVAL;
2874 	bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2875 		    ICE_MAX_TRAFFIC_CLASS);
2876 	return 0;
2877 }
2878 
2879 /**
2880  * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2881  * @pi: port information structure
2882  * @agg_id: aggregator ID
2883  * @vsi_handle: software VSI handle
2884  * @tc_bitmap: TC bitmap of enabled TC(s)
2885  *
2886  * This function moves VSI to a new or default aggregator node. If VSI is
2887  * already associated to the aggregator node then no operation is performed on
2888  * the tree. This function needs to be called with scheduler lock held.
2889  */
2890 static int
ice_sched_assoc_vsi_to_agg(struct ice_port_info * pi,u32 agg_id,u16 vsi_handle,unsigned long * tc_bitmap)2891 ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2892 			   u16 vsi_handle, unsigned long *tc_bitmap)
2893 {
2894 	struct ice_sched_agg_vsi_info *agg_vsi_info, *iter, *old_agg_vsi_info = NULL;
2895 	struct ice_sched_agg_info *agg_info, *old_agg_info;
2896 	struct ice_hw *hw = pi->hw;
2897 	int status = 0;
2898 	u8 tc;
2899 
2900 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2901 		return -EINVAL;
2902 	agg_info = ice_get_agg_info(hw, agg_id);
2903 	if (!agg_info)
2904 		return -EINVAL;
2905 	/* If the VSI is already part of another aggregator then update
2906 	 * its VSI info list
2907 	 */
2908 	old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2909 	if (old_agg_info && old_agg_info != agg_info) {
2910 		struct ice_sched_agg_vsi_info *vtmp;
2911 
2912 		list_for_each_entry_safe(iter, vtmp,
2913 					 &old_agg_info->agg_vsi_list,
2914 					 list_entry)
2915 			if (iter->vsi_handle == vsi_handle) {
2916 				old_agg_vsi_info = iter;
2917 				break;
2918 			}
2919 	}
2920 
2921 	/* check if entry already exist */
2922 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2923 	if (!agg_vsi_info) {
2924 		/* Create new entry for VSI under aggregator list */
2925 		agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2926 					    sizeof(*agg_vsi_info), GFP_KERNEL);
2927 		if (!agg_vsi_info)
2928 			return -EINVAL;
2929 
2930 		/* add VSI ID into the aggregator list */
2931 		agg_vsi_info->vsi_handle = vsi_handle;
2932 		list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2933 	}
2934 	/* Move VSI node to new aggregator node for requested TC(s) */
2935 	ice_for_each_traffic_class(tc) {
2936 		if (!ice_is_tc_ena(*tc_bitmap, tc))
2937 			continue;
2938 
2939 		/* Move VSI to new aggregator */
2940 		status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2941 		if (status)
2942 			break;
2943 
2944 		set_bit(tc, agg_vsi_info->tc_bitmap);
2945 		if (old_agg_vsi_info)
2946 			clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2947 	}
2948 	if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2949 		list_del(&old_agg_vsi_info->list_entry);
2950 		devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2951 	}
2952 	return status;
2953 }
2954 
2955 /**
2956  * ice_sched_rm_unused_rl_prof - remove unused RL profile
2957  * @pi: port information structure
2958  *
2959  * This function removes unused rate limit profiles from the HW and
2960  * SW DB. The caller needs to hold scheduler lock.
2961  */
ice_sched_rm_unused_rl_prof(struct ice_port_info * pi)2962 static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2963 {
2964 	u16 ln;
2965 
2966 	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2967 		struct ice_aqc_rl_profile_info *rl_prof_elem;
2968 		struct ice_aqc_rl_profile_info *rl_prof_tmp;
2969 
2970 		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2971 					 &pi->rl_prof_list[ln], list_entry) {
2972 			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2973 				ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2974 		}
2975 	}
2976 }
2977 
2978 /**
2979  * ice_sched_update_elem - update element
2980  * @hw: pointer to the HW struct
2981  * @node: pointer to node
2982  * @info: node info to update
2983  *
2984  * Update the HW DB, and local SW DB of node. Update the scheduling
2985  * parameters of node from argument info data buffer (Info->data buf) and
2986  * returns success or error on config sched element failure. The caller
2987  * needs to hold scheduler lock.
2988  */
2989 static int
ice_sched_update_elem(struct ice_hw * hw,struct ice_sched_node * node,struct ice_aqc_txsched_elem_data * info)2990 ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2991 		      struct ice_aqc_txsched_elem_data *info)
2992 {
2993 	struct ice_aqc_txsched_elem_data buf;
2994 	u16 elem_cfgd = 0;
2995 	u16 num_elems = 1;
2996 	int status;
2997 
2998 	buf = *info;
2999 	/* Parent TEID is reserved field in this aq call */
3000 	buf.parent_teid = 0;
3001 	/* Element type is reserved field in this aq call */
3002 	buf.data.elem_type = 0;
3003 	/* Flags is reserved field in this aq call */
3004 	buf.data.flags = 0;
3005 
3006 	/* Update HW DB */
3007 	/* Configure element node */
3008 	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
3009 					&elem_cfgd, NULL);
3010 	if (status || elem_cfgd != num_elems) {
3011 		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
3012 		return -EIO;
3013 	}
3014 
3015 	/* Config success case */
3016 	/* Now update local SW DB */
3017 	/* Only copy the data portion of info buffer */
3018 	node->info.data = info->data;
3019 	return status;
3020 }
3021 
3022 /**
3023  * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
3024  * @hw: pointer to the HW struct
3025  * @node: sched node to configure
3026  * @rl_type: rate limit type CIR, EIR, or shared
3027  * @bw_alloc: BW weight/allocation
3028  *
3029  * This function configures node element's BW allocation.
3030  */
3031 static int
ice_sched_cfg_node_bw_alloc(struct ice_hw * hw,struct ice_sched_node * node,enum ice_rl_type rl_type,u16 bw_alloc)3032 ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
3033 			    enum ice_rl_type rl_type, u16 bw_alloc)
3034 {
3035 	struct ice_aqc_txsched_elem_data buf;
3036 	struct ice_aqc_txsched_elem *data;
3037 
3038 	buf = node->info;
3039 	data = &buf.data;
3040 	if (rl_type == ICE_MIN_BW) {
3041 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3042 		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
3043 	} else if (rl_type == ICE_MAX_BW) {
3044 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3045 		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
3046 	} else {
3047 		return -EINVAL;
3048 	}
3049 
3050 	/* Configure element */
3051 	return ice_sched_update_elem(hw, node, &buf);
3052 }
3053 
3054 /**
3055  * ice_move_vsi_to_agg - moves VSI to new or default aggregator
3056  * @pi: port information structure
3057  * @agg_id: aggregator ID
3058  * @vsi_handle: software VSI handle
3059  * @tc_bitmap: TC bitmap of enabled TC(s)
3060  *
3061  * Move or associate VSI to a new or default aggregator node.
3062  */
3063 int
ice_move_vsi_to_agg(struct ice_port_info * pi,u32 agg_id,u16 vsi_handle,u8 tc_bitmap)3064 ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
3065 		    u8 tc_bitmap)
3066 {
3067 	unsigned long bitmap = tc_bitmap;
3068 	int status;
3069 
3070 	mutex_lock(&pi->sched_lock);
3071 	status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
3072 					    (unsigned long *)&bitmap);
3073 	if (!status)
3074 		status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
3075 						    (unsigned long *)&bitmap);
3076 	mutex_unlock(&pi->sched_lock);
3077 	return status;
3078 }
3079 
3080 /**
3081  * ice_set_clear_cir_bw - set or clear CIR BW
3082  * @bw_t_info: bandwidth type information structure
3083  * @bw: bandwidth in Kbps - Kilo bits per sec
3084  *
3085  * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
3086  */
ice_set_clear_cir_bw(struct ice_bw_type_info * bw_t_info,u32 bw)3087 static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3088 {
3089 	if (bw == ICE_SCHED_DFLT_BW) {
3090 		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3091 		bw_t_info->cir_bw.bw = 0;
3092 	} else {
3093 		/* Save type of BW information */
3094 		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3095 		bw_t_info->cir_bw.bw = bw;
3096 	}
3097 }
3098 
3099 /**
3100  * ice_set_clear_eir_bw - set or clear EIR BW
3101  * @bw_t_info: bandwidth type information structure
3102  * @bw: bandwidth in Kbps - Kilo bits per sec
3103  *
3104  * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
3105  */
ice_set_clear_eir_bw(struct ice_bw_type_info * bw_t_info,u32 bw)3106 static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3107 {
3108 	if (bw == ICE_SCHED_DFLT_BW) {
3109 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3110 		bw_t_info->eir_bw.bw = 0;
3111 	} else {
3112 		/* EIR BW and Shared BW profiles are mutually exclusive and
3113 		 * hence only one of them may be set for any given element.
3114 		 * First clear earlier saved shared BW information.
3115 		 */
3116 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3117 		bw_t_info->shared_bw = 0;
3118 		/* save EIR BW information */
3119 		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3120 		bw_t_info->eir_bw.bw = bw;
3121 	}
3122 }
3123 
3124 /**
3125  * ice_set_clear_shared_bw - set or clear shared BW
3126  * @bw_t_info: bandwidth type information structure
3127  * @bw: bandwidth in Kbps - Kilo bits per sec
3128  *
3129  * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3130  */
ice_set_clear_shared_bw(struct ice_bw_type_info * bw_t_info,u32 bw)3131 static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3132 {
3133 	if (bw == ICE_SCHED_DFLT_BW) {
3134 		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3135 		bw_t_info->shared_bw = 0;
3136 	} else {
3137 		/* EIR BW and Shared BW profiles are mutually exclusive and
3138 		 * hence only one of them may be set for any given element.
3139 		 * First clear earlier saved EIR BW information.
3140 		 */
3141 		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3142 		bw_t_info->eir_bw.bw = 0;
3143 		/* save shared BW information */
3144 		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3145 		bw_t_info->shared_bw = bw;
3146 	}
3147 }
3148 
3149 /**
3150  * ice_sched_save_vsi_bw - save VSI node's BW information
3151  * @pi: port information structure
3152  * @vsi_handle: sw VSI handle
3153  * @tc: traffic class
3154  * @rl_type: rate limit type min, max, or shared
3155  * @bw: bandwidth in Kbps - Kilo bits per sec
3156  *
3157  * Save BW information of VSI type node for post replay use.
3158  */
3159 static int
ice_sched_save_vsi_bw(struct ice_port_info * pi,u16 vsi_handle,u8 tc,enum ice_rl_type rl_type,u32 bw)3160 ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3161 		      enum ice_rl_type rl_type, u32 bw)
3162 {
3163 	struct ice_vsi_ctx *vsi_ctx;
3164 
3165 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3166 		return -EINVAL;
3167 	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3168 	if (!vsi_ctx)
3169 		return -EINVAL;
3170 	switch (rl_type) {
3171 	case ICE_MIN_BW:
3172 		ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3173 		break;
3174 	case ICE_MAX_BW:
3175 		ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3176 		break;
3177 	case ICE_SHARED_BW:
3178 		ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3179 		break;
3180 	default:
3181 		return -EINVAL;
3182 	}
3183 	return 0;
3184 }
3185 
3186 /**
3187  * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3188  * @hw: pointer to the HW struct
3189  * @bw: bandwidth in Kbps
3190  *
3191  * This function calculates the wakeup parameter of RL profile.
3192  */
ice_sched_calc_wakeup(struct ice_hw * hw,s32 bw)3193 static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3194 {
3195 	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3196 	s32 wakeup_f_int;
3197 	u16 wakeup = 0;
3198 
3199 	/* Get the wakeup integer value */
3200 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3201 	wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3202 	if (wakeup_int > 63) {
3203 		wakeup = (u16)((1 << 15) | wakeup_int);
3204 	} else {
3205 		/* Calculate fraction value up to 4 decimals
3206 		 * Convert Integer value to a constant multiplier
3207 		 */
3208 		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3209 		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3210 					   hw->psm_clk_freq, bytes_per_sec);
3211 
3212 		/* Get Fraction value */
3213 		wakeup_f = wakeup_a - wakeup_b;
3214 
3215 		/* Round up the Fractional value via Ceil(Fractional value) */
3216 		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3217 			wakeup_f += 1;
3218 
3219 		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3220 					       ICE_RL_PROF_MULTIPLIER);
3221 		wakeup |= (u16)(wakeup_int << 9);
3222 		wakeup |= (u16)(0x1ff & wakeup_f_int);
3223 	}
3224 
3225 	return wakeup;
3226 }
3227 
3228 /**
3229  * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3230  * @hw: pointer to the HW struct
3231  * @bw: bandwidth in Kbps
3232  * @profile: profile parameters to return
3233  *
3234  * This function converts the BW to profile structure format.
3235  */
3236 static int
ice_sched_bw_to_rl_profile(struct ice_hw * hw,u32 bw,struct ice_aqc_rl_profile_elem * profile)3237 ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3238 			   struct ice_aqc_rl_profile_elem *profile)
3239 {
3240 	s64 bytes_per_sec, ts_rate, mv_tmp;
3241 	int status = -EINVAL;
3242 	bool found = false;
3243 	s32 encode = 0;
3244 	s64 mv = 0;
3245 	s32 i;
3246 
3247 	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3248 	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3249 		return status;
3250 
3251 	/* Bytes per second from Kbps */
3252 	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3253 
3254 	/* encode is 6 bits but really useful are 5 bits */
3255 	for (i = 0; i < 64; i++) {
3256 		u64 pow_result = BIT_ULL(i);
3257 
3258 		ts_rate = div64_long((s64)hw->psm_clk_freq,
3259 				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3260 		if (ts_rate <= 0)
3261 			continue;
3262 
3263 		/* Multiplier value */
3264 		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3265 				    ts_rate);
3266 
3267 		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3268 		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3269 
3270 		/* First multiplier value greater than the given
3271 		 * accuracy bytes
3272 		 */
3273 		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3274 			encode = i;
3275 			found = true;
3276 			break;
3277 		}
3278 	}
3279 	if (found) {
3280 		u16 wm;
3281 
3282 		wm = ice_sched_calc_wakeup(hw, bw);
3283 		profile->rl_multiply = cpu_to_le16(mv);
3284 		profile->wake_up_calc = cpu_to_le16(wm);
3285 		profile->rl_encode = cpu_to_le16(encode);
3286 		status = 0;
3287 	} else {
3288 		status = -ENOENT;
3289 	}
3290 
3291 	return status;
3292 }
3293 
3294 /**
3295  * ice_sched_add_rl_profile - add RL profile
3296  * @pi: port information structure
3297  * @rl_type: type of rate limit BW - min, max, or shared
3298  * @bw: bandwidth in Kbps - Kilo bits per sec
3299  * @layer_num: specifies in which layer to create profile
3300  *
3301  * This function first checks the existing list for corresponding BW
3302  * parameter. If it exists, it returns the associated profile otherwise
3303  * it creates a new rate limit profile for requested BW, and adds it to
3304  * the HW DB and local list. It returns the new profile or null on error.
3305  * The caller needs to hold the scheduler lock.
3306  */
3307 static struct ice_aqc_rl_profile_info *
ice_sched_add_rl_profile(struct ice_port_info * pi,enum ice_rl_type rl_type,u32 bw,u8 layer_num)3308 ice_sched_add_rl_profile(struct ice_port_info *pi,
3309 			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3310 {
3311 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3312 	u16 profiles_added = 0, num_profiles = 1;
3313 	struct ice_aqc_rl_profile_elem *buf;
3314 	struct ice_hw *hw;
3315 	u8 profile_type;
3316 	int status;
3317 
3318 	if (!pi || layer_num >= pi->hw->num_tx_sched_layers)
3319 		return NULL;
3320 	switch (rl_type) {
3321 	case ICE_MIN_BW:
3322 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3323 		break;
3324 	case ICE_MAX_BW:
3325 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3326 		break;
3327 	case ICE_SHARED_BW:
3328 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3329 		break;
3330 	default:
3331 		return NULL;
3332 	}
3333 
3334 	hw = pi->hw;
3335 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3336 			    list_entry)
3337 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3338 		    profile_type && rl_prof_elem->bw == bw)
3339 			/* Return existing profile ID info */
3340 			return rl_prof_elem;
3341 
3342 	/* Create new profile ID */
3343 	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3344 				    GFP_KERNEL);
3345 
3346 	if (!rl_prof_elem)
3347 		return NULL;
3348 
3349 	status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3350 	if (status)
3351 		goto exit_add_rl_prof;
3352 
3353 	rl_prof_elem->bw = bw;
3354 	/* layer_num is zero relative, and fw expects level from 1 to 9 */
3355 	rl_prof_elem->profile.level = layer_num + 1;
3356 	rl_prof_elem->profile.flags = profile_type;
3357 	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3358 
3359 	/* Create new entry in HW DB */
3360 	buf = &rl_prof_elem->profile;
3361 	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3362 				       &profiles_added, NULL);
3363 	if (status || profiles_added != num_profiles)
3364 		goto exit_add_rl_prof;
3365 
3366 	/* Good entry - add in the list */
3367 	rl_prof_elem->prof_id_ref = 0;
3368 	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3369 	return rl_prof_elem;
3370 
3371 exit_add_rl_prof:
3372 	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3373 	return NULL;
3374 }
3375 
3376 /**
3377  * ice_sched_cfg_node_bw_lmt - configure node sched params
3378  * @hw: pointer to the HW struct
3379  * @node: sched node to configure
3380  * @rl_type: rate limit type CIR, EIR, or shared
3381  * @rl_prof_id: rate limit profile ID
3382  *
3383  * This function configures node element's BW limit.
3384  */
3385 static int
ice_sched_cfg_node_bw_lmt(struct ice_hw * hw,struct ice_sched_node * node,enum ice_rl_type rl_type,u16 rl_prof_id)3386 ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3387 			  enum ice_rl_type rl_type, u16 rl_prof_id)
3388 {
3389 	struct ice_aqc_txsched_elem_data buf;
3390 	struct ice_aqc_txsched_elem *data;
3391 
3392 	buf = node->info;
3393 	data = &buf.data;
3394 	switch (rl_type) {
3395 	case ICE_MIN_BW:
3396 		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3397 		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3398 		break;
3399 	case ICE_MAX_BW:
3400 		/* EIR BW and Shared BW profiles are mutually exclusive and
3401 		 * hence only one of them may be set for any given element
3402 		 */
3403 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3404 			return -EIO;
3405 		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3406 		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3407 		break;
3408 	case ICE_SHARED_BW:
3409 		/* Check for removing shared BW */
3410 		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3411 			/* remove shared profile */
3412 			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3413 			data->srl_id = 0; /* clear SRL field */
3414 
3415 			/* enable back EIR to default profile */
3416 			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3417 			data->eir_bw.bw_profile_idx =
3418 				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3419 			break;
3420 		}
3421 		/* EIR BW and Shared BW profiles are mutually exclusive and
3422 		 * hence only one of them may be set for any given element
3423 		 */
3424 		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3425 		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3426 			    ICE_SCHED_DFLT_RL_PROF_ID))
3427 			return -EIO;
3428 		/* EIR BW is set to default, disable it */
3429 		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3430 		/* Okay to enable shared BW now */
3431 		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3432 		data->srl_id = cpu_to_le16(rl_prof_id);
3433 		break;
3434 	default:
3435 		/* Unknown rate limit type */
3436 		return -EINVAL;
3437 	}
3438 
3439 	/* Configure element */
3440 	return ice_sched_update_elem(hw, node, &buf);
3441 }
3442 
3443 /**
3444  * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3445  * @node: sched node
3446  * @rl_type: rate limit type
3447  *
3448  * If existing profile matches, it returns the corresponding rate
3449  * limit profile ID, otherwise it returns an invalid ID as error.
3450  */
3451 static u16
ice_sched_get_node_rl_prof_id(struct ice_sched_node * node,enum ice_rl_type rl_type)3452 ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3453 			      enum ice_rl_type rl_type)
3454 {
3455 	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3456 	struct ice_aqc_txsched_elem *data;
3457 
3458 	data = &node->info.data;
3459 	switch (rl_type) {
3460 	case ICE_MIN_BW:
3461 		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3462 			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3463 		break;
3464 	case ICE_MAX_BW:
3465 		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3466 			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3467 		break;
3468 	case ICE_SHARED_BW:
3469 		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3470 			rl_prof_id = le16_to_cpu(data->srl_id);
3471 		break;
3472 	default:
3473 		break;
3474 	}
3475 
3476 	return rl_prof_id;
3477 }
3478 
3479 /**
3480  * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3481  * @pi: port information structure
3482  * @rl_type: type of rate limit BW - min, max, or shared
3483  * @layer_index: layer index
3484  *
3485  * This function returns requested profile creation layer.
3486  */
3487 static u8
ice_sched_get_rl_prof_layer(struct ice_port_info * pi,enum ice_rl_type rl_type,u8 layer_index)3488 ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3489 			    u8 layer_index)
3490 {
3491 	struct ice_hw *hw = pi->hw;
3492 
3493 	if (layer_index >= hw->num_tx_sched_layers)
3494 		return ICE_SCHED_INVAL_LAYER_NUM;
3495 	switch (rl_type) {
3496 	case ICE_MIN_BW:
3497 		if (hw->layer_info[layer_index].max_cir_rl_profiles)
3498 			return layer_index;
3499 		break;
3500 	case ICE_MAX_BW:
3501 		if (hw->layer_info[layer_index].max_eir_rl_profiles)
3502 			return layer_index;
3503 		break;
3504 	case ICE_SHARED_BW:
3505 		/* if current layer doesn't support SRL profile creation
3506 		 * then try a layer up or down.
3507 		 */
3508 		if (hw->layer_info[layer_index].max_srl_profiles)
3509 			return layer_index;
3510 		else if (layer_index < hw->num_tx_sched_layers - 1 &&
3511 			 hw->layer_info[layer_index + 1].max_srl_profiles)
3512 			return layer_index + 1;
3513 		else if (layer_index > 0 &&
3514 			 hw->layer_info[layer_index - 1].max_srl_profiles)
3515 			return layer_index - 1;
3516 		break;
3517 	default:
3518 		break;
3519 	}
3520 	return ICE_SCHED_INVAL_LAYER_NUM;
3521 }
3522 
3523 /**
3524  * ice_sched_get_srl_node - get shared rate limit node
3525  * @node: tree node
3526  * @srl_layer: shared rate limit layer
3527  *
3528  * This function returns SRL node to be used for shared rate limit purpose.
3529  * The caller needs to hold scheduler lock.
3530  */
3531 static struct ice_sched_node *
ice_sched_get_srl_node(struct ice_sched_node * node,u8 srl_layer)3532 ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3533 {
3534 	if (srl_layer > node->tx_sched_layer)
3535 		return node->children[0];
3536 	else if (srl_layer < node->tx_sched_layer)
3537 		/* Node can't be created without a parent. It will always
3538 		 * have a valid parent except root node.
3539 		 */
3540 		return node->parent;
3541 	else
3542 		return node;
3543 }
3544 
3545 /**
3546  * ice_sched_rm_rl_profile - remove RL profile ID
3547  * @pi: port information structure
3548  * @layer_num: layer number where profiles are saved
3549  * @profile_type: profile type like EIR, CIR, or SRL
3550  * @profile_id: profile ID to remove
3551  *
3552  * This function removes rate limit profile from layer 'layer_num' of type
3553  * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3554  * scheduler lock.
3555  */
3556 static int
ice_sched_rm_rl_profile(struct ice_port_info * pi,u8 layer_num,u8 profile_type,u16 profile_id)3557 ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3558 			u16 profile_id)
3559 {
3560 	struct ice_aqc_rl_profile_info *rl_prof_elem;
3561 	int status = 0;
3562 
3563 	if (layer_num >= pi->hw->num_tx_sched_layers)
3564 		return -EINVAL;
3565 	/* Check the existing list for RL profile */
3566 	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3567 			    list_entry)
3568 		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3569 		    profile_type &&
3570 		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3571 		    profile_id) {
3572 			if (rl_prof_elem->prof_id_ref)
3573 				rl_prof_elem->prof_id_ref--;
3574 
3575 			/* Remove old profile ID from database */
3576 			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3577 			if (status && status != -EBUSY)
3578 				ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3579 			break;
3580 		}
3581 	if (status == -EBUSY)
3582 		status = 0;
3583 	return status;
3584 }
3585 
3586 /**
3587  * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3588  * @pi: port information structure
3589  * @node: pointer to node structure
3590  * @rl_type: rate limit type min, max, or shared
3591  * @layer_num: layer number where RL profiles are saved
3592  *
3593  * This function configures node element's BW rate limit profile ID of
3594  * type CIR, EIR, or SRL to default. This function needs to be called
3595  * with the scheduler lock held.
3596  */
3597 static int
ice_sched_set_node_bw_dflt(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type,u8 layer_num)3598 ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3599 			   struct ice_sched_node *node,
3600 			   enum ice_rl_type rl_type, u8 layer_num)
3601 {
3602 	struct ice_hw *hw;
3603 	u8 profile_type;
3604 	u16 rl_prof_id;
3605 	u16 old_id;
3606 	int status;
3607 
3608 	hw = pi->hw;
3609 	switch (rl_type) {
3610 	case ICE_MIN_BW:
3611 		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3612 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3613 		break;
3614 	case ICE_MAX_BW:
3615 		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3616 		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3617 		break;
3618 	case ICE_SHARED_BW:
3619 		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3620 		/* No SRL is configured for default case */
3621 		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3622 		break;
3623 	default:
3624 		return -EINVAL;
3625 	}
3626 	/* Save existing RL prof ID for later clean up */
3627 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3628 	/* Configure BW scheduling parameters */
3629 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3630 	if (status)
3631 		return status;
3632 
3633 	/* Remove stale RL profile ID */
3634 	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3635 	    old_id == ICE_SCHED_INVAL_PROF_ID)
3636 		return 0;
3637 
3638 	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3639 }
3640 
3641 /**
3642  * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3643  * @pi: port information structure
3644  * @node: pointer to node structure
3645  * @layer_num: layer number where rate limit profiles are saved
3646  * @rl_type: rate limit type min, max, or shared
3647  * @bw: bandwidth value
3648  *
3649  * This function prepares node element's bandwidth to SRL or EIR exclusively.
3650  * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3651  * them may be set for any given element. This function needs to be called
3652  * with the scheduler lock held.
3653  */
3654 static int
ice_sched_set_eir_srl_excl(struct ice_port_info * pi,struct ice_sched_node * node,u8 layer_num,enum ice_rl_type rl_type,u32 bw)3655 ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3656 			   struct ice_sched_node *node,
3657 			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3658 {
3659 	if (rl_type == ICE_SHARED_BW) {
3660 		/* SRL node passed in this case, it may be different node */
3661 		if (bw == ICE_SCHED_DFLT_BW)
3662 			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
3663 			 * enables EIR to default. EIR is not set in this
3664 			 * case, so no additional action is required.
3665 			 */
3666 			return 0;
3667 
3668 		/* SRL being configured, set EIR to default here.
3669 		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3670 		 * configures SRL
3671 		 */
3672 		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3673 						  layer_num);
3674 	} else if (rl_type == ICE_MAX_BW &&
3675 		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3676 		/* Remove Shared profile. Set default shared BW call
3677 		 * removes shared profile for a node.
3678 		 */
3679 		return ice_sched_set_node_bw_dflt(pi, node,
3680 						  ICE_SHARED_BW,
3681 						  layer_num);
3682 	}
3683 	return 0;
3684 }
3685 
3686 /**
3687  * ice_sched_set_node_bw - set node's bandwidth
3688  * @pi: port information structure
3689  * @node: tree node
3690  * @rl_type: rate limit type min, max, or shared
3691  * @bw: bandwidth in Kbps - Kilo bits per sec
3692  * @layer_num: layer number
3693  *
3694  * This function adds new profile corresponding to requested BW, configures
3695  * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3696  * ID from local database. The caller needs to hold scheduler lock.
3697  */
3698 int
ice_sched_set_node_bw(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type,u32 bw,u8 layer_num)3699 ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3700 		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3701 {
3702 	struct ice_aqc_rl_profile_info *rl_prof_info;
3703 	struct ice_hw *hw = pi->hw;
3704 	u16 old_id, rl_prof_id;
3705 	int status = -EINVAL;
3706 
3707 	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3708 	if (!rl_prof_info)
3709 		return status;
3710 
3711 	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3712 
3713 	/* Save existing RL prof ID for later clean up */
3714 	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3715 	/* Configure BW scheduling parameters */
3716 	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3717 	if (status)
3718 		return status;
3719 
3720 	/* New changes has been applied */
3721 	/* Increment the profile ID reference count */
3722 	rl_prof_info->prof_id_ref++;
3723 
3724 	/* Check for old ID removal */
3725 	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3726 	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3727 		return 0;
3728 
3729 	return ice_sched_rm_rl_profile(pi, layer_num,
3730 				       rl_prof_info->profile.flags &
3731 				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3732 }
3733 
3734 /**
3735  * ice_sched_set_node_priority - set node's priority
3736  * @pi: port information structure
3737  * @node: tree node
3738  * @priority: number 0-7 representing priority among siblings
3739  *
3740  * This function sets priority of a node among it's siblings.
3741  */
3742 int
ice_sched_set_node_priority(struct ice_port_info * pi,struct ice_sched_node * node,u16 priority)3743 ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
3744 			    u16 priority)
3745 {
3746 	struct ice_aqc_txsched_elem_data buf;
3747 	struct ice_aqc_txsched_elem *data;
3748 
3749 	buf = node->info;
3750 	data = &buf.data;
3751 
3752 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3753 	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority);
3754 
3755 	return ice_sched_update_elem(pi->hw, node, &buf);
3756 }
3757 
3758 /**
3759  * ice_sched_set_node_weight - set node's weight
3760  * @pi: port information structure
3761  * @node: tree node
3762  * @weight: number 1-200 representing weight for WFQ
3763  *
3764  * This function sets weight of the node for WFQ algorithm.
3765  */
3766 int
ice_sched_set_node_weight(struct ice_port_info * pi,struct ice_sched_node * node,u16 weight)3767 ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
3768 {
3769 	struct ice_aqc_txsched_elem_data buf;
3770 	struct ice_aqc_txsched_elem *data;
3771 
3772 	buf = node->info;
3773 	data = &buf.data;
3774 
3775 	data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
3776 			       ICE_AQC_ELEM_VALID_GENERIC;
3777 	data->cir_bw.bw_alloc = cpu_to_le16(weight);
3778 	data->eir_bw.bw_alloc = cpu_to_le16(weight);
3779 
3780 	data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0);
3781 
3782 	return ice_sched_update_elem(pi->hw, node, &buf);
3783 }
3784 
3785 /**
3786  * ice_sched_set_node_bw_lmt - set node's BW limit
3787  * @pi: port information structure
3788  * @node: tree node
3789  * @rl_type: rate limit type min, max, or shared
3790  * @bw: bandwidth in Kbps - Kilo bits per sec
3791  *
3792  * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3793  * EIR, or SRL. The caller needs to hold scheduler lock.
3794  */
3795 int
ice_sched_set_node_bw_lmt(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type,u32 bw)3796 ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3797 			  enum ice_rl_type rl_type, u32 bw)
3798 {
3799 	struct ice_sched_node *cfg_node = node;
3800 	int status;
3801 
3802 	struct ice_hw *hw;
3803 	u8 layer_num;
3804 
3805 	if (!pi)
3806 		return -EINVAL;
3807 	hw = pi->hw;
3808 	/* Remove unused RL profile IDs from HW and SW DB */
3809 	ice_sched_rm_unused_rl_prof(pi);
3810 	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3811 						node->tx_sched_layer);
3812 	if (layer_num >= hw->num_tx_sched_layers)
3813 		return -EINVAL;
3814 
3815 	if (rl_type == ICE_SHARED_BW) {
3816 		/* SRL node may be different */
3817 		cfg_node = ice_sched_get_srl_node(node, layer_num);
3818 		if (!cfg_node)
3819 			return -EIO;
3820 	}
3821 	/* EIR BW and Shared BW profiles are mutually exclusive and
3822 	 * hence only one of them may be set for any given element
3823 	 */
3824 	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3825 					    bw);
3826 	if (status)
3827 		return status;
3828 	if (bw == ICE_SCHED_DFLT_BW)
3829 		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3830 						  layer_num);
3831 	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3832 }
3833 
3834 /**
3835  * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3836  * @pi: port information structure
3837  * @node: pointer to node structure
3838  * @rl_type: rate limit type min, max, or shared
3839  *
3840  * This function configures node element's BW rate limit profile ID of
3841  * type CIR, EIR, or SRL to default. This function needs to be called
3842  * with the scheduler lock held.
3843  */
3844 static int
ice_sched_set_node_bw_dflt_lmt(struct ice_port_info * pi,struct ice_sched_node * node,enum ice_rl_type rl_type)3845 ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3846 			       struct ice_sched_node *node,
3847 			       enum ice_rl_type rl_type)
3848 {
3849 	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3850 					 ICE_SCHED_DFLT_BW);
3851 }
3852 
3853 /**
3854  * ice_sched_validate_srl_node - Check node for SRL applicability
3855  * @node: sched node to configure
3856  * @sel_layer: selected SRL layer
3857  *
3858  * This function checks if the SRL can be applied to a selected layer node on
3859  * behalf of the requested node (first argument). This function needs to be
3860  * called with scheduler lock held.
3861  */
3862 static int
ice_sched_validate_srl_node(struct ice_sched_node * node,u8 sel_layer)3863 ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3864 {
3865 	/* SRL profiles are not available on all layers. Check if the
3866 	 * SRL profile can be applied to a node above or below the
3867 	 * requested node. SRL configuration is possible only if the
3868 	 * selected layer's node has single child.
3869 	 */
3870 	if (sel_layer == node->tx_sched_layer ||
3871 	    ((sel_layer == node->tx_sched_layer + 1) &&
3872 	    node->num_children == 1) ||
3873 	    ((sel_layer == node->tx_sched_layer - 1) &&
3874 	    (node->parent && node->parent->num_children == 1)))
3875 		return 0;
3876 
3877 	return -EIO;
3878 }
3879 
3880 /**
3881  * ice_sched_save_q_bw - save queue node's BW information
3882  * @q_ctx: queue context structure
3883  * @rl_type: rate limit type min, max, or shared
3884  * @bw: bandwidth in Kbps - Kilo bits per sec
3885  *
3886  * Save BW information of queue type node for post replay use.
3887  */
3888 static int
ice_sched_save_q_bw(struct ice_q_ctx * q_ctx,enum ice_rl_type rl_type,u32 bw)3889 ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3890 {
3891 	switch (rl_type) {
3892 	case ICE_MIN_BW:
3893 		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3894 		break;
3895 	case ICE_MAX_BW:
3896 		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3897 		break;
3898 	case ICE_SHARED_BW:
3899 		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3900 		break;
3901 	default:
3902 		return -EINVAL;
3903 	}
3904 	return 0;
3905 }
3906 
3907 /**
3908  * ice_sched_set_q_bw_lmt - sets queue BW limit
3909  * @pi: port information structure
3910  * @vsi_handle: sw VSI handle
3911  * @tc: traffic class
3912  * @q_handle: software queue handle
3913  * @rl_type: min, max, or shared
3914  * @bw: bandwidth in Kbps
3915  *
3916  * This function sets BW limit of queue scheduling node.
3917  */
3918 static int
ice_sched_set_q_bw_lmt(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,enum ice_rl_type rl_type,u32 bw)3919 ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3920 		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3921 {
3922 	struct ice_sched_node *node;
3923 	struct ice_q_ctx *q_ctx;
3924 	int status = -EINVAL;
3925 
3926 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3927 		return -EINVAL;
3928 	mutex_lock(&pi->sched_lock);
3929 	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3930 	if (!q_ctx)
3931 		goto exit_q_bw_lmt;
3932 	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3933 	if (!node) {
3934 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3935 		goto exit_q_bw_lmt;
3936 	}
3937 
3938 	/* Return error if it is not a leaf node */
3939 	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3940 		goto exit_q_bw_lmt;
3941 
3942 	/* SRL bandwidth layer selection */
3943 	if (rl_type == ICE_SHARED_BW) {
3944 		u8 sel_layer; /* selected layer */
3945 
3946 		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3947 							node->tx_sched_layer);
3948 		if (sel_layer >= pi->hw->num_tx_sched_layers) {
3949 			status = -EINVAL;
3950 			goto exit_q_bw_lmt;
3951 		}
3952 		status = ice_sched_validate_srl_node(node, sel_layer);
3953 		if (status)
3954 			goto exit_q_bw_lmt;
3955 	}
3956 
3957 	if (bw == ICE_SCHED_DFLT_BW)
3958 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3959 	else
3960 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3961 
3962 	if (!status)
3963 		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3964 
3965 exit_q_bw_lmt:
3966 	mutex_unlock(&pi->sched_lock);
3967 	return status;
3968 }
3969 
3970 /**
3971  * ice_cfg_q_bw_lmt - configure queue BW limit
3972  * @pi: port information structure
3973  * @vsi_handle: sw VSI handle
3974  * @tc: traffic class
3975  * @q_handle: software queue handle
3976  * @rl_type: min, max, or shared
3977  * @bw: bandwidth in Kbps
3978  *
3979  * This function configures BW limit of queue scheduling node.
3980  */
3981 int
ice_cfg_q_bw_lmt(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,enum ice_rl_type rl_type,u32 bw)3982 ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3983 		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3984 {
3985 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3986 				      bw);
3987 }
3988 
3989 /**
3990  * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3991  * @pi: port information structure
3992  * @vsi_handle: sw VSI handle
3993  * @tc: traffic class
3994  * @q_handle: software queue handle
3995  * @rl_type: min, max, or shared
3996  *
3997  * This function configures BW default limit of queue scheduling node.
3998  */
3999 int
ice_cfg_q_bw_dflt_lmt(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,enum ice_rl_type rl_type)4000 ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4001 		      u16 q_handle, enum ice_rl_type rl_type)
4002 {
4003 	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4004 				      ICE_SCHED_DFLT_BW);
4005 }
4006 
4007 /**
4008  * ice_sched_get_node_by_id_type - get node from ID type
4009  * @pi: port information structure
4010  * @id: identifier
4011  * @agg_type: type of aggregator
4012  * @tc: traffic class
4013  *
4014  * This function returns node identified by ID of type aggregator, and
4015  * based on traffic class (TC). This function needs to be called with
4016  * the scheduler lock held.
4017  */
4018 static struct ice_sched_node *
ice_sched_get_node_by_id_type(struct ice_port_info * pi,u32 id,enum ice_agg_type agg_type,u8 tc)4019 ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
4020 			      enum ice_agg_type agg_type, u8 tc)
4021 {
4022 	struct ice_sched_node *node = NULL;
4023 
4024 	switch (agg_type) {
4025 	case ICE_AGG_TYPE_VSI: {
4026 		struct ice_vsi_ctx *vsi_ctx;
4027 		u16 vsi_handle = (u16)id;
4028 
4029 		if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4030 			break;
4031 		/* Get sched_vsi_info */
4032 		vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4033 		if (!vsi_ctx)
4034 			break;
4035 		node = vsi_ctx->sched.vsi_node[tc];
4036 		break;
4037 	}
4038 
4039 	case ICE_AGG_TYPE_AGG: {
4040 		struct ice_sched_node *tc_node;
4041 
4042 		tc_node = ice_sched_get_tc_node(pi, tc);
4043 		if (tc_node)
4044 			node = ice_sched_get_agg_node(pi, tc_node, id);
4045 		break;
4046 	}
4047 
4048 	default:
4049 		break;
4050 	}
4051 
4052 	return node;
4053 }
4054 
4055 /**
4056  * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
4057  * @pi: port information structure
4058  * @id: ID (software VSI handle or AGG ID)
4059  * @agg_type: aggregator type (VSI or AGG type node)
4060  * @tc: traffic class
4061  * @rl_type: min or max
4062  * @bw: bandwidth in Kbps
4063  *
4064  * This function sets BW limit of VSI or Aggregator scheduling node
4065  * based on TC information from passed in argument BW.
4066  */
4067 static int
ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info * pi,u32 id,enum ice_agg_type agg_type,u8 tc,enum ice_rl_type rl_type,u32 bw)4068 ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
4069 				 enum ice_agg_type agg_type, u8 tc,
4070 				 enum ice_rl_type rl_type, u32 bw)
4071 {
4072 	struct ice_sched_node *node;
4073 	int status = -EINVAL;
4074 
4075 	if (!pi)
4076 		return status;
4077 
4078 	if (rl_type == ICE_UNKNOWN_BW)
4079 		return status;
4080 
4081 	mutex_lock(&pi->sched_lock);
4082 	node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
4083 	if (!node) {
4084 		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
4085 		goto exit_set_node_bw_lmt_per_tc;
4086 	}
4087 	if (bw == ICE_SCHED_DFLT_BW)
4088 		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
4089 	else
4090 		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
4091 
4092 exit_set_node_bw_lmt_per_tc:
4093 	mutex_unlock(&pi->sched_lock);
4094 	return status;
4095 }
4096 
4097 /**
4098  * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
4099  * @pi: port information structure
4100  * @vsi_handle: software VSI handle
4101  * @tc: traffic class
4102  * @rl_type: min or max
4103  * @bw: bandwidth in Kbps
4104  *
4105  * This function configures BW limit of VSI scheduling node based on TC
4106  * information.
4107  */
4108 int
ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info * pi,u16 vsi_handle,u8 tc,enum ice_rl_type rl_type,u32 bw)4109 ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4110 			  enum ice_rl_type rl_type, u32 bw)
4111 {
4112 	int status;
4113 
4114 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4115 						  ICE_AGG_TYPE_VSI,
4116 						  tc, rl_type, bw);
4117 	if (!status) {
4118 		mutex_lock(&pi->sched_lock);
4119 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4120 		mutex_unlock(&pi->sched_lock);
4121 	}
4122 	return status;
4123 }
4124 
4125 /**
4126  * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
4127  * @pi: port information structure
4128  * @vsi_handle: software VSI handle
4129  * @tc: traffic class
4130  * @rl_type: min or max
4131  *
4132  * This function configures default BW limit of VSI scheduling node based on TC
4133  * information.
4134  */
4135 int
ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info * pi,u16 vsi_handle,u8 tc,enum ice_rl_type rl_type)4136 ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4137 			       enum ice_rl_type rl_type)
4138 {
4139 	int status;
4140 
4141 	status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4142 						  ICE_AGG_TYPE_VSI,
4143 						  tc, rl_type,
4144 						  ICE_SCHED_DFLT_BW);
4145 	if (!status) {
4146 		mutex_lock(&pi->sched_lock);
4147 		status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
4148 					       ICE_SCHED_DFLT_BW);
4149 		mutex_unlock(&pi->sched_lock);
4150 	}
4151 	return status;
4152 }
4153 
4154 /**
4155  * ice_cfg_rl_burst_size - Set burst size value
4156  * @hw: pointer to the HW struct
4157  * @bytes: burst size in bytes
4158  *
4159  * This function configures/set the burst size to requested new value. The new
4160  * burst size value is used for future rate limit calls. It doesn't change the
4161  * existing or previously created RL profiles.
4162  */
ice_cfg_rl_burst_size(struct ice_hw * hw,u32 bytes)4163 int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
4164 {
4165 	u16 burst_size_to_prog;
4166 
4167 	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
4168 	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
4169 		return -EINVAL;
4170 	if (ice_round_to_num(bytes, 64) <=
4171 	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
4172 		/* 64 byte granularity case */
4173 		/* Disable MSB granularity bit */
4174 		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
4175 		/* round number to nearest 64 byte granularity */
4176 		bytes = ice_round_to_num(bytes, 64);
4177 		/* The value is in 64 byte chunks */
4178 		burst_size_to_prog |= (u16)(bytes / 64);
4179 	} else {
4180 		/* k bytes granularity case */
4181 		/* Enable MSB granularity bit */
4182 		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
4183 		/* round number to nearest 1024 granularity */
4184 		bytes = ice_round_to_num(bytes, 1024);
4185 		/* check rounding doesn't go beyond allowed */
4186 		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4187 			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4188 		/* The value is in k bytes */
4189 		burst_size_to_prog |= (u16)(bytes / 1024);
4190 	}
4191 	hw->max_burst_size = burst_size_to_prog;
4192 	return 0;
4193 }
4194 
4195 /**
4196  * ice_sched_replay_node_prio - re-configure node priority
4197  * @hw: pointer to the HW struct
4198  * @node: sched node to configure
4199  * @priority: priority value
4200  *
4201  * This function configures node element's priority value. It
4202  * needs to be called with scheduler lock held.
4203  */
4204 static int
ice_sched_replay_node_prio(struct ice_hw * hw,struct ice_sched_node * node,u8 priority)4205 ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4206 			   u8 priority)
4207 {
4208 	struct ice_aqc_txsched_elem_data buf;
4209 	struct ice_aqc_txsched_elem *data;
4210 	int status;
4211 
4212 	buf = node->info;
4213 	data = &buf.data;
4214 	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4215 	data->generic = priority;
4216 
4217 	/* Configure element */
4218 	status = ice_sched_update_elem(hw, node, &buf);
4219 	return status;
4220 }
4221 
4222 /**
4223  * ice_sched_replay_node_bw - replay node(s) BW
4224  * @hw: pointer to the HW struct
4225  * @node: sched node to configure
4226  * @bw_t_info: BW type information
4227  *
4228  * This function restores node's BW from bw_t_info. The caller needs
4229  * to hold the scheduler lock.
4230  */
4231 static int
ice_sched_replay_node_bw(struct ice_hw * hw,struct ice_sched_node * node,struct ice_bw_type_info * bw_t_info)4232 ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4233 			 struct ice_bw_type_info *bw_t_info)
4234 {
4235 	struct ice_port_info *pi = hw->port_info;
4236 	int status = -EINVAL;
4237 	u16 bw_alloc;
4238 
4239 	if (!node)
4240 		return status;
4241 	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
4242 		return 0;
4243 	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4244 		status = ice_sched_replay_node_prio(hw, node,
4245 						    bw_t_info->generic);
4246 		if (status)
4247 			return status;
4248 	}
4249 	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4250 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
4251 						   bw_t_info->cir_bw.bw);
4252 		if (status)
4253 			return status;
4254 	}
4255 	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4256 		bw_alloc = bw_t_info->cir_bw.bw_alloc;
4257 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
4258 						     bw_alloc);
4259 		if (status)
4260 			return status;
4261 	}
4262 	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4263 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
4264 						   bw_t_info->eir_bw.bw);
4265 		if (status)
4266 			return status;
4267 	}
4268 	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4269 		bw_alloc = bw_t_info->eir_bw.bw_alloc;
4270 		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
4271 						     bw_alloc);
4272 		if (status)
4273 			return status;
4274 	}
4275 	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4276 		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
4277 						   bw_t_info->shared_bw);
4278 	return status;
4279 }
4280 
4281 /**
4282  * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4283  * @pi: port info struct
4284  * @tc_bitmap: 8 bits TC bitmap to check
4285  * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4286  *
4287  * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4288  * may be missing, it returns enabled TCs. This function needs to be called with
4289  * scheduler lock held.
4290  */
4291 static void
ice_sched_get_ena_tc_bitmap(struct ice_port_info * pi,unsigned long * tc_bitmap,unsigned long * ena_tc_bitmap)4292 ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4293 			    unsigned long *tc_bitmap,
4294 			    unsigned long *ena_tc_bitmap)
4295 {
4296 	u8 tc;
4297 
4298 	/* Some TC(s) may be missing after reset, adjust for replay */
4299 	ice_for_each_traffic_class(tc)
4300 		if (ice_is_tc_ena(*tc_bitmap, tc) &&
4301 		    (ice_sched_get_tc_node(pi, tc)))
4302 			set_bit(tc, ena_tc_bitmap);
4303 }
4304 
4305 /**
4306  * ice_sched_replay_agg - recreate aggregator node(s)
4307  * @hw: pointer to the HW struct
4308  *
4309  * This function recreate aggregator type nodes which are not replayed earlier.
4310  * It also replay aggregator BW information. These aggregator nodes are not
4311  * associated with VSI type node yet.
4312  */
ice_sched_replay_agg(struct ice_hw * hw)4313 void ice_sched_replay_agg(struct ice_hw *hw)
4314 {
4315 	struct ice_port_info *pi = hw->port_info;
4316 	struct ice_sched_agg_info *agg_info;
4317 
4318 	mutex_lock(&pi->sched_lock);
4319 	list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4320 		/* replay aggregator (re-create aggregator node) */
4321 		if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
4322 				  ICE_MAX_TRAFFIC_CLASS)) {
4323 			DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4324 			int status;
4325 
4326 			bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4327 			ice_sched_get_ena_tc_bitmap(pi,
4328 						    agg_info->replay_tc_bitmap,
4329 						    replay_bitmap);
4330 			status = ice_sched_cfg_agg(hw->port_info,
4331 						   agg_info->agg_id,
4332 						   ICE_AGG_TYPE_AGG,
4333 						   replay_bitmap);
4334 			if (status) {
4335 				dev_info(ice_hw_to_dev(hw),
4336 					 "Replay agg id[%d] failed\n",
4337 					 agg_info->agg_id);
4338 				/* Move on to next one */
4339 				continue;
4340 			}
4341 		}
4342 	mutex_unlock(&pi->sched_lock);
4343 }
4344 
4345 /**
4346  * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4347  * @hw: pointer to the HW struct
4348  *
4349  * This function initialize aggregator(s) TC bitmap to zero. A required
4350  * preinit step for replaying aggregators.
4351  */
ice_sched_replay_agg_vsi_preinit(struct ice_hw * hw)4352 void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4353 {
4354 	struct ice_port_info *pi = hw->port_info;
4355 	struct ice_sched_agg_info *agg_info;
4356 
4357 	mutex_lock(&pi->sched_lock);
4358 	list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4359 		struct ice_sched_agg_vsi_info *agg_vsi_info;
4360 
4361 		agg_info->tc_bitmap[0] = 0;
4362 		list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4363 				    list_entry)
4364 			agg_vsi_info->tc_bitmap[0] = 0;
4365 	}
4366 	mutex_unlock(&pi->sched_lock);
4367 }
4368 
4369 /**
4370  * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4371  * @hw: pointer to the HW struct
4372  * @vsi_handle: software VSI handle
4373  *
4374  * This function replays aggregator node, VSI to aggregator type nodes, and
4375  * their node bandwidth information. This function needs to be called with
4376  * scheduler lock held.
4377  */
ice_sched_replay_vsi_agg(struct ice_hw * hw,u16 vsi_handle)4378 static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4379 {
4380 	DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4381 	struct ice_sched_agg_vsi_info *agg_vsi_info;
4382 	struct ice_port_info *pi = hw->port_info;
4383 	struct ice_sched_agg_info *agg_info;
4384 	int status;
4385 
4386 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4387 	if (!ice_is_vsi_valid(hw, vsi_handle))
4388 		return -EINVAL;
4389 	agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4390 	if (!agg_info)
4391 		return 0; /* Not present in list - default Agg case */
4392 	agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4393 	if (!agg_vsi_info)
4394 		return 0; /* Not present in list - default Agg case */
4395 	ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4396 				    replay_bitmap);
4397 	/* Replay aggregator node associated to vsi_handle */
4398 	status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4399 				   ICE_AGG_TYPE_AGG, replay_bitmap);
4400 	if (status)
4401 		return status;
4402 
4403 	bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4404 	ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4405 				    replay_bitmap);
4406 	/* Move this VSI (vsi_handle) to above aggregator */
4407 	return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4408 					  replay_bitmap);
4409 }
4410 
4411 /**
4412  * ice_replay_vsi_agg - replay VSI to aggregator node
4413  * @hw: pointer to the HW struct
4414  * @vsi_handle: software VSI handle
4415  *
4416  * This function replays association of VSI to aggregator type nodes, and
4417  * node bandwidth information.
4418  */
ice_replay_vsi_agg(struct ice_hw * hw,u16 vsi_handle)4419 int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4420 {
4421 	struct ice_port_info *pi = hw->port_info;
4422 	int status;
4423 
4424 	mutex_lock(&pi->sched_lock);
4425 	status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4426 	mutex_unlock(&pi->sched_lock);
4427 	return status;
4428 }
4429 
4430 /**
4431  * ice_sched_replay_q_bw - replay queue type node BW
4432  * @pi: port information structure
4433  * @q_ctx: queue context structure
4434  *
4435  * This function replays queue type node bandwidth. This function needs to be
4436  * called with scheduler lock held.
4437  */
ice_sched_replay_q_bw(struct ice_port_info * pi,struct ice_q_ctx * q_ctx)4438 int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4439 {
4440 	struct ice_sched_node *q_node;
4441 
4442 	/* Following also checks the presence of node in tree */
4443 	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4444 	if (!q_node)
4445 		return -EINVAL;
4446 	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4447 }
4448