1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include "ice_common.h"
5 #include "ice_flex_pipe.h"
6 #include "ice_flow.h"
7 #include "ice.h"
8
9 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
10 /* SWITCH */
11 {
12 ICE_SID_XLT0_SW,
13 ICE_SID_XLT_KEY_BUILDER_SW,
14 ICE_SID_XLT1_SW,
15 ICE_SID_XLT2_SW,
16 ICE_SID_PROFID_TCAM_SW,
17 ICE_SID_PROFID_REDIR_SW,
18 ICE_SID_FLD_VEC_SW,
19 ICE_SID_CDID_KEY_BUILDER_SW,
20 ICE_SID_CDID_REDIR_SW
21 },
22
23 /* ACL */
24 {
25 ICE_SID_XLT0_ACL,
26 ICE_SID_XLT_KEY_BUILDER_ACL,
27 ICE_SID_XLT1_ACL,
28 ICE_SID_XLT2_ACL,
29 ICE_SID_PROFID_TCAM_ACL,
30 ICE_SID_PROFID_REDIR_ACL,
31 ICE_SID_FLD_VEC_ACL,
32 ICE_SID_CDID_KEY_BUILDER_ACL,
33 ICE_SID_CDID_REDIR_ACL
34 },
35
36 /* FD */
37 {
38 ICE_SID_XLT0_FD,
39 ICE_SID_XLT_KEY_BUILDER_FD,
40 ICE_SID_XLT1_FD,
41 ICE_SID_XLT2_FD,
42 ICE_SID_PROFID_TCAM_FD,
43 ICE_SID_PROFID_REDIR_FD,
44 ICE_SID_FLD_VEC_FD,
45 ICE_SID_CDID_KEY_BUILDER_FD,
46 ICE_SID_CDID_REDIR_FD
47 },
48
49 /* RSS */
50 {
51 ICE_SID_XLT0_RSS,
52 ICE_SID_XLT_KEY_BUILDER_RSS,
53 ICE_SID_XLT1_RSS,
54 ICE_SID_XLT2_RSS,
55 ICE_SID_PROFID_TCAM_RSS,
56 ICE_SID_PROFID_REDIR_RSS,
57 ICE_SID_FLD_VEC_RSS,
58 ICE_SID_CDID_KEY_BUILDER_RSS,
59 ICE_SID_CDID_REDIR_RSS
60 },
61
62 /* PE */
63 {
64 ICE_SID_XLT0_PE,
65 ICE_SID_XLT_KEY_BUILDER_PE,
66 ICE_SID_XLT1_PE,
67 ICE_SID_XLT2_PE,
68 ICE_SID_PROFID_TCAM_PE,
69 ICE_SID_PROFID_REDIR_PE,
70 ICE_SID_FLD_VEC_PE,
71 ICE_SID_CDID_KEY_BUILDER_PE,
72 ICE_SID_CDID_REDIR_PE
73 }
74 };
75
76 /**
77 * ice_sect_id - returns section ID
78 * @blk: block type
79 * @sect: section type
80 *
81 * This helper function returns the proper section ID given a block type and a
82 * section type.
83 */
ice_sect_id(enum ice_block blk,enum ice_sect sect)84 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
85 {
86 return ice_sect_lkup[blk][sect];
87 }
88
89 /**
90 * ice_hw_ptype_ena - check if the PTYPE is enabled or not
91 * @hw: pointer to the HW structure
92 * @ptype: the hardware PTYPE
93 */
ice_hw_ptype_ena(struct ice_hw * hw,u16 ptype)94 bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype)
95 {
96 return ptype < ICE_FLOW_PTYPE_MAX &&
97 test_bit(ptype, hw->hw_ptype);
98 }
99
100 /* Key creation */
101
102 #define ICE_DC_KEY 0x1 /* don't care */
103 #define ICE_DC_KEYINV 0x1
104 #define ICE_NM_KEY 0x0 /* never match */
105 #define ICE_NM_KEYINV 0x0
106 #define ICE_0_KEY 0x1 /* match 0 */
107 #define ICE_0_KEYINV 0x0
108 #define ICE_1_KEY 0x0 /* match 1 */
109 #define ICE_1_KEYINV 0x1
110
111 /**
112 * ice_gen_key_word - generate 16-bits of a key/mask word
113 * @val: the value
114 * @valid: valid bits mask (change only the valid bits)
115 * @dont_care: don't care mask
116 * @nvr_mtch: never match mask
117 * @key: pointer to an array of where the resulting key portion
118 * @key_inv: pointer to an array of where the resulting key invert portion
119 *
120 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
121 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
122 * of key and 8 bits of key invert.
123 *
124 * '0' = b01, always match a 0 bit
125 * '1' = b10, always match a 1 bit
126 * '?' = b11, don't care bit (always matches)
127 * '~' = b00, never match bit
128 *
129 * Input:
130 * val: b0 1 0 1 0 1
131 * dont_care: b0 0 1 1 0 0
132 * never_mtch: b0 0 0 0 1 1
133 * ------------------------------
134 * Result: key: b01 10 11 11 00 00
135 */
136 static int
ice_gen_key_word(u8 val,u8 valid,u8 dont_care,u8 nvr_mtch,u8 * key,u8 * key_inv)137 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
138 u8 *key_inv)
139 {
140 u8 in_key = *key, in_key_inv = *key_inv;
141 u8 i;
142
143 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */
144 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
145 return -EIO;
146
147 *key = 0;
148 *key_inv = 0;
149
150 /* encode the 8 bits into 8-bit key and 8-bit key invert */
151 for (i = 0; i < 8; i++) {
152 *key >>= 1;
153 *key_inv >>= 1;
154
155 if (!(valid & 0x1)) { /* change only valid bits */
156 *key |= (in_key & 0x1) << 7;
157 *key_inv |= (in_key_inv & 0x1) << 7;
158 } else if (dont_care & 0x1) { /* don't care bit */
159 *key |= ICE_DC_KEY << 7;
160 *key_inv |= ICE_DC_KEYINV << 7;
161 } else if (nvr_mtch & 0x1) { /* never match bit */
162 *key |= ICE_NM_KEY << 7;
163 *key_inv |= ICE_NM_KEYINV << 7;
164 } else if (val & 0x01) { /* exact 1 match */
165 *key |= ICE_1_KEY << 7;
166 *key_inv |= ICE_1_KEYINV << 7;
167 } else { /* exact 0 match */
168 *key |= ICE_0_KEY << 7;
169 *key_inv |= ICE_0_KEYINV << 7;
170 }
171
172 dont_care >>= 1;
173 nvr_mtch >>= 1;
174 valid >>= 1;
175 val >>= 1;
176 in_key >>= 1;
177 in_key_inv >>= 1;
178 }
179
180 return 0;
181 }
182
183 /**
184 * ice_bits_max_set - determine if the number of bits set is within a maximum
185 * @mask: pointer to the byte array which is the mask
186 * @size: the number of bytes in the mask
187 * @max: the max number of set bits
188 *
189 * This function determines if there are at most 'max' number of bits set in an
190 * array. Returns true if the number for bits set is <= max or will return false
191 * otherwise.
192 */
ice_bits_max_set(const u8 * mask,u16 size,u16 max)193 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
194 {
195 u16 count = 0;
196 u16 i;
197
198 /* check each byte */
199 for (i = 0; i < size; i++) {
200 /* if 0, go to next byte */
201 if (!mask[i])
202 continue;
203
204 /* We know there is at least one set bit in this byte because of
205 * the above check; if we already have found 'max' number of
206 * bits set, then we can return failure now.
207 */
208 if (count == max)
209 return false;
210
211 /* count the bits in this byte, checking threshold */
212 count += hweight8(mask[i]);
213 if (count > max)
214 return false;
215 }
216
217 return true;
218 }
219
220 /**
221 * ice_set_key - generate a variable sized key with multiples of 16-bits
222 * @key: pointer to where the key will be stored
223 * @size: the size of the complete key in bytes (must be even)
224 * @val: array of 8-bit values that makes up the value portion of the key
225 * @upd: array of 8-bit masks that determine what key portion to update
226 * @dc: array of 8-bit masks that make up the don't care mask
227 * @nm: array of 8-bit masks that make up the never match mask
228 * @off: the offset of the first byte in the key to update
229 * @len: the number of bytes in the key update
230 *
231 * This function generates a key from a value, a don't care mask and a never
232 * match mask.
233 * upd, dc, and nm are optional parameters, and can be NULL:
234 * upd == NULL --> upd mask is all 1's (update all bits)
235 * dc == NULL --> dc mask is all 0's (no don't care bits)
236 * nm == NULL --> nm mask is all 0's (no never match bits)
237 */
238 static int
ice_set_key(u8 * key,u16 size,u8 * val,u8 * upd,u8 * dc,u8 * nm,u16 off,u16 len)239 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
240 u16 len)
241 {
242 u16 half_size;
243 u16 i;
244
245 /* size must be a multiple of 2 bytes. */
246 if (size % 2)
247 return -EIO;
248
249 half_size = size / 2;
250 if (off + len > half_size)
251 return -EIO;
252
253 /* Make sure at most one bit is set in the never match mask. Having more
254 * than one never match mask bit set will cause HW to consume excessive
255 * power otherwise; this is a power management efficiency check.
256 */
257 #define ICE_NVR_MTCH_BITS_MAX 1
258 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
259 return -EIO;
260
261 for (i = 0; i < len; i++)
262 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
263 dc ? dc[i] : 0, nm ? nm[i] : 0,
264 key + off + i, key + half_size + off + i))
265 return -EIO;
266
267 return 0;
268 }
269
270 /**
271 * ice_acquire_change_lock
272 * @hw: pointer to the HW structure
273 * @access: access type (read or write)
274 *
275 * This function will request ownership of the change lock.
276 */
277 int
ice_acquire_change_lock(struct ice_hw * hw,enum ice_aq_res_access_type access)278 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
279 {
280 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
281 ICE_CHANGE_LOCK_TIMEOUT);
282 }
283
284 /**
285 * ice_release_change_lock
286 * @hw: pointer to the HW structure
287 *
288 * This function will release the change lock using the proper Admin Command.
289 */
ice_release_change_lock(struct ice_hw * hw)290 void ice_release_change_lock(struct ice_hw *hw)
291 {
292 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
293 }
294
295 /**
296 * ice_get_open_tunnel_port - retrieve an open tunnel port
297 * @hw: pointer to the HW structure
298 * @port: returns open port
299 * @type: type of tunnel, can be TNL_LAST if it doesn't matter
300 */
301 bool
ice_get_open_tunnel_port(struct ice_hw * hw,u16 * port,enum ice_tunnel_type type)302 ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port,
303 enum ice_tunnel_type type)
304 {
305 bool res = false;
306 u16 i;
307
308 mutex_lock(&hw->tnl_lock);
309
310 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
311 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port &&
312 (type == TNL_LAST || type == hw->tnl.tbl[i].type)) {
313 *port = hw->tnl.tbl[i].port;
314 res = true;
315 break;
316 }
317
318 mutex_unlock(&hw->tnl_lock);
319
320 return res;
321 }
322
323 /**
324 * ice_upd_dvm_boost_entry
325 * @hw: pointer to the HW structure
326 * @entry: pointer to double vlan boost entry info
327 */
328 static int
ice_upd_dvm_boost_entry(struct ice_hw * hw,struct ice_dvm_entry * entry)329 ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry)
330 {
331 struct ice_boost_tcam_section *sect_rx, *sect_tx;
332 int status = -ENOSPC;
333 struct ice_buf_build *bld;
334 u8 val, dc, nm;
335
336 bld = ice_pkg_buf_alloc(hw);
337 if (!bld)
338 return -ENOMEM;
339
340 /* allocate 2 sections, one for Rx parser, one for Tx parser */
341 if (ice_pkg_buf_reserve_section(bld, 2))
342 goto ice_upd_dvm_boost_entry_err;
343
344 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
345 struct_size(sect_rx, tcam, 1));
346 if (!sect_rx)
347 goto ice_upd_dvm_boost_entry_err;
348 sect_rx->count = cpu_to_le16(1);
349
350 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
351 struct_size(sect_tx, tcam, 1));
352 if (!sect_tx)
353 goto ice_upd_dvm_boost_entry_err;
354 sect_tx->count = cpu_to_le16(1);
355
356 /* copy original boost entry to update package buffer */
357 memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam));
358
359 /* re-write the don't care and never match bits accordingly */
360 if (entry->enable) {
361 /* all bits are don't care */
362 val = 0x00;
363 dc = 0xFF;
364 nm = 0x00;
365 } else {
366 /* disable, one never match bit, the rest are don't care */
367 val = 0x00;
368 dc = 0xF7;
369 nm = 0x08;
370 }
371
372 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
373 &val, NULL, &dc, &nm, 0, sizeof(u8));
374
375 /* exact copy of entry to Tx section entry */
376 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
377
378 status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1);
379
380 ice_upd_dvm_boost_entry_err:
381 ice_pkg_buf_free(hw, bld);
382
383 return status;
384 }
385
386 /**
387 * ice_set_dvm_boost_entries
388 * @hw: pointer to the HW structure
389 *
390 * Enable double vlan by updating the appropriate boost tcam entries.
391 */
ice_set_dvm_boost_entries(struct ice_hw * hw)392 int ice_set_dvm_boost_entries(struct ice_hw *hw)
393 {
394 u16 i;
395
396 for (i = 0; i < hw->dvm_upd.count; i++) {
397 int status;
398
399 status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]);
400 if (status)
401 return status;
402 }
403
404 return 0;
405 }
406
407 /**
408 * ice_tunnel_idx_to_entry - convert linear index to the sparse one
409 * @hw: pointer to the HW structure
410 * @type: type of tunnel
411 * @idx: linear index
412 *
413 * Stack assumes we have 2 linear tables with indexes [0, count_valid),
414 * but really the port table may be sprase, and types are mixed, so convert
415 * the stack index into the device index.
416 */
ice_tunnel_idx_to_entry(struct ice_hw * hw,enum ice_tunnel_type type,u16 idx)417 static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
418 u16 idx)
419 {
420 u16 i;
421
422 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
423 if (hw->tnl.tbl[i].valid &&
424 hw->tnl.tbl[i].type == type &&
425 idx-- == 0)
426 return i;
427
428 WARN_ON_ONCE(1);
429 return 0;
430 }
431
432 /**
433 * ice_create_tunnel
434 * @hw: pointer to the HW structure
435 * @index: device table entry
436 * @type: type of tunnel
437 * @port: port of tunnel to create
438 *
439 * Create a tunnel by updating the parse graph in the parser. We do that by
440 * creating a package buffer with the tunnel info and issuing an update package
441 * command.
442 */
443 static int
ice_create_tunnel(struct ice_hw * hw,u16 index,enum ice_tunnel_type type,u16 port)444 ice_create_tunnel(struct ice_hw *hw, u16 index,
445 enum ice_tunnel_type type, u16 port)
446 {
447 struct ice_boost_tcam_section *sect_rx, *sect_tx;
448 struct ice_buf_build *bld;
449 int status = -ENOSPC;
450
451 mutex_lock(&hw->tnl_lock);
452
453 bld = ice_pkg_buf_alloc(hw);
454 if (!bld) {
455 status = -ENOMEM;
456 goto ice_create_tunnel_end;
457 }
458
459 /* allocate 2 sections, one for Rx parser, one for Tx parser */
460 if (ice_pkg_buf_reserve_section(bld, 2))
461 goto ice_create_tunnel_err;
462
463 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
464 struct_size(sect_rx, tcam, 1));
465 if (!sect_rx)
466 goto ice_create_tunnel_err;
467 sect_rx->count = cpu_to_le16(1);
468
469 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
470 struct_size(sect_tx, tcam, 1));
471 if (!sect_tx)
472 goto ice_create_tunnel_err;
473 sect_tx->count = cpu_to_le16(1);
474
475 /* copy original boost entry to update package buffer */
476 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
477 sizeof(*sect_rx->tcam));
478
479 /* over-write the never-match dest port key bits with the encoded port
480 * bits
481 */
482 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
483 (u8 *)&port, NULL, NULL, NULL,
484 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
485 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
486
487 /* exact copy of entry to Tx section entry */
488 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
489
490 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
491 if (!status)
492 hw->tnl.tbl[index].port = port;
493
494 ice_create_tunnel_err:
495 ice_pkg_buf_free(hw, bld);
496
497 ice_create_tunnel_end:
498 mutex_unlock(&hw->tnl_lock);
499
500 return status;
501 }
502
503 /**
504 * ice_destroy_tunnel
505 * @hw: pointer to the HW structure
506 * @index: device table entry
507 * @type: type of tunnel
508 * @port: port of tunnel to destroy (ignored if the all parameter is true)
509 *
510 * Destroys a tunnel or all tunnels by creating an update package buffer
511 * targeting the specific updates requested and then performing an update
512 * package.
513 */
514 static int
ice_destroy_tunnel(struct ice_hw * hw,u16 index,enum ice_tunnel_type type,u16 port)515 ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
516 u16 port)
517 {
518 struct ice_boost_tcam_section *sect_rx, *sect_tx;
519 struct ice_buf_build *bld;
520 int status = -ENOSPC;
521
522 mutex_lock(&hw->tnl_lock);
523
524 if (WARN_ON(!hw->tnl.tbl[index].valid ||
525 hw->tnl.tbl[index].type != type ||
526 hw->tnl.tbl[index].port != port)) {
527 status = -EIO;
528 goto ice_destroy_tunnel_end;
529 }
530
531 bld = ice_pkg_buf_alloc(hw);
532 if (!bld) {
533 status = -ENOMEM;
534 goto ice_destroy_tunnel_end;
535 }
536
537 /* allocate 2 sections, one for Rx parser, one for Tx parser */
538 if (ice_pkg_buf_reserve_section(bld, 2))
539 goto ice_destroy_tunnel_err;
540
541 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
542 struct_size(sect_rx, tcam, 1));
543 if (!sect_rx)
544 goto ice_destroy_tunnel_err;
545 sect_rx->count = cpu_to_le16(1);
546
547 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
548 struct_size(sect_tx, tcam, 1));
549 if (!sect_tx)
550 goto ice_destroy_tunnel_err;
551 sect_tx->count = cpu_to_le16(1);
552
553 /* copy original boost entry to update package buffer, one copy to Rx
554 * section, another copy to the Tx section
555 */
556 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
557 sizeof(*sect_rx->tcam));
558 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
559 sizeof(*sect_tx->tcam));
560
561 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
562 if (!status)
563 hw->tnl.tbl[index].port = 0;
564
565 ice_destroy_tunnel_err:
566 ice_pkg_buf_free(hw, bld);
567
568 ice_destroy_tunnel_end:
569 mutex_unlock(&hw->tnl_lock);
570
571 return status;
572 }
573
ice_udp_tunnel_set_port(struct net_device * netdev,unsigned int table,unsigned int idx,struct udp_tunnel_info * ti)574 int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
575 unsigned int idx, struct udp_tunnel_info *ti)
576 {
577 struct ice_pf *pf = ice_netdev_to_pf(netdev);
578 enum ice_tunnel_type tnl_type;
579 int status;
580 u16 index;
581
582 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
583 index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx);
584
585 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
586 if (status) {
587 netdev_err(netdev, "Error adding UDP tunnel - %d\n",
588 status);
589 return -EIO;
590 }
591
592 udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
593 return 0;
594 }
595
ice_udp_tunnel_unset_port(struct net_device * netdev,unsigned int table,unsigned int idx,struct udp_tunnel_info * ti)596 int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
597 unsigned int idx, struct udp_tunnel_info *ti)
598 {
599 struct ice_pf *pf = ice_netdev_to_pf(netdev);
600 enum ice_tunnel_type tnl_type;
601 int status;
602
603 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
604
605 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
606 ntohs(ti->port));
607 if (status) {
608 netdev_err(netdev, "Error removing UDP tunnel - %d\n",
609 status);
610 return -EIO;
611 }
612
613 return 0;
614 }
615
616 /**
617 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
618 * @hw: pointer to the hardware structure
619 * @blk: hardware block
620 * @prof: profile ID
621 * @fv_idx: field vector word index
622 * @prot: variable to receive the protocol ID
623 * @off: variable to receive the protocol offset
624 */
625 int
ice_find_prot_off(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 fv_idx,u8 * prot,u16 * off)626 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
627 u8 *prot, u16 *off)
628 {
629 struct ice_fv_word *fv_ext;
630
631 if (prof >= hw->blk[blk].es.count)
632 return -EINVAL;
633
634 if (fv_idx >= hw->blk[blk].es.fvw)
635 return -EINVAL;
636
637 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
638
639 *prot = fv_ext[fv_idx].prot_id;
640 *off = fv_ext[fv_idx].off;
641
642 return 0;
643 }
644
645 /* PTG Management */
646
647 /**
648 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
649 * @hw: pointer to the hardware structure
650 * @blk: HW block
651 * @ptype: the ptype to search for
652 * @ptg: pointer to variable that receives the PTG
653 *
654 * This function will search the PTGs for a particular ptype, returning the
655 * PTG ID that contains it through the PTG parameter, with the value of
656 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
657 */
658 static int
ice_ptg_find_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 * ptg)659 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
660 {
661 if (ptype >= ICE_XLT1_CNT || !ptg)
662 return -EINVAL;
663
664 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
665 return 0;
666 }
667
668 /**
669 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
670 * @hw: pointer to the hardware structure
671 * @blk: HW block
672 * @ptg: the PTG to allocate
673 *
674 * This function allocates a given packet type group ID specified by the PTG
675 * parameter.
676 */
ice_ptg_alloc_val(struct ice_hw * hw,enum ice_block blk,u8 ptg)677 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
678 {
679 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
680 }
681
682 /**
683 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
684 * @hw: pointer to the hardware structure
685 * @blk: HW block
686 * @ptype: the ptype to remove
687 * @ptg: the PTG to remove the ptype from
688 *
689 * This function will remove the ptype from the specific PTG, and move it to
690 * the default PTG (ICE_DEFAULT_PTG).
691 */
692 static int
ice_ptg_remove_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 ptg)693 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
694 {
695 struct ice_ptg_ptype **ch;
696 struct ice_ptg_ptype *p;
697
698 if (ptype > ICE_XLT1_CNT - 1)
699 return -EINVAL;
700
701 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
702 return -ENOENT;
703
704 /* Should not happen if .in_use is set, bad config */
705 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
706 return -EIO;
707
708 /* find the ptype within this PTG, and bypass the link over it */
709 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
710 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
711 while (p) {
712 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
713 *ch = p->next_ptype;
714 break;
715 }
716
717 ch = &p->next_ptype;
718 p = p->next_ptype;
719 }
720
721 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
722 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
723
724 return 0;
725 }
726
727 /**
728 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
729 * @hw: pointer to the hardware structure
730 * @blk: HW block
731 * @ptype: the ptype to add or move
732 * @ptg: the PTG to add or move the ptype to
733 *
734 * This function will either add or move a ptype to a particular PTG depending
735 * on if the ptype is already part of another group. Note that using a
736 * destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
737 * default PTG.
738 */
739 static int
ice_ptg_add_mv_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 ptg)740 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
741 {
742 u8 original_ptg;
743 int status;
744
745 if (ptype > ICE_XLT1_CNT - 1)
746 return -EINVAL;
747
748 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
749 return -ENOENT;
750
751 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
752 if (status)
753 return status;
754
755 /* Is ptype already in the correct PTG? */
756 if (original_ptg == ptg)
757 return 0;
758
759 /* Remove from original PTG and move back to the default PTG */
760 if (original_ptg != ICE_DEFAULT_PTG)
761 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
762
763 /* Moving to default PTG? Then we're done with this request */
764 if (ptg == ICE_DEFAULT_PTG)
765 return 0;
766
767 /* Add ptype to PTG at beginning of list */
768 hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
769 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
770 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
771 &hw->blk[blk].xlt1.ptypes[ptype];
772
773 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
774 hw->blk[blk].xlt1.t[ptype] = ptg;
775
776 return 0;
777 }
778
779 /* Block / table size info */
780 struct ice_blk_size_details {
781 u16 xlt1; /* # XLT1 entries */
782 u16 xlt2; /* # XLT2 entries */
783 u16 prof_tcam; /* # profile ID TCAM entries */
784 u16 prof_id; /* # profile IDs */
785 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */
786 u16 prof_redir; /* # profile redirection entries */
787 u16 es; /* # extraction sequence entries */
788 u16 fvw; /* # field vector words */
789 u8 overwrite; /* overwrite existing entries allowed */
790 u8 reverse; /* reverse FV order */
791 };
792
793 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
794 /**
795 * Table Definitions
796 * XLT1 - Number of entries in XLT1 table
797 * XLT2 - Number of entries in XLT2 table
798 * TCAM - Number of entries Profile ID TCAM table
799 * CDID - Control Domain ID of the hardware block
800 * PRED - Number of entries in the Profile Redirection Table
801 * FV - Number of entries in the Field Vector
802 * FVW - Width (in WORDs) of the Field Vector
803 * OVR - Overwrite existing table entries
804 * REV - Reverse FV
805 */
806 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
807 /* Overwrite , Reverse FV */
808 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
809 false, false },
810 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
811 false, false },
812 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
813 false, true },
814 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
815 true, true },
816 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
817 false, false },
818 };
819
820 enum ice_sid_all {
821 ICE_SID_XLT1_OFF = 0,
822 ICE_SID_XLT2_OFF,
823 ICE_SID_PR_OFF,
824 ICE_SID_PR_REDIR_OFF,
825 ICE_SID_ES_OFF,
826 ICE_SID_OFF_COUNT,
827 };
828
829 /* Characteristic handling */
830
831 /**
832 * ice_match_prop_lst - determine if properties of two lists match
833 * @list1: first properties list
834 * @list2: second properties list
835 *
836 * Count, cookies and the order must match in order to be considered equivalent.
837 */
838 static bool
ice_match_prop_lst(struct list_head * list1,struct list_head * list2)839 ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
840 {
841 struct ice_vsig_prof *tmp1;
842 struct ice_vsig_prof *tmp2;
843 u16 chk_count = 0;
844 u16 count = 0;
845
846 /* compare counts */
847 list_for_each_entry(tmp1, list1, list)
848 count++;
849 list_for_each_entry(tmp2, list2, list)
850 chk_count++;
851 if (!count || count != chk_count)
852 return false;
853
854 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
855 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
856
857 /* profile cookies must compare, and in the exact same order to take
858 * into account priority
859 */
860 while (count--) {
861 if (tmp2->profile_cookie != tmp1->profile_cookie)
862 return false;
863
864 tmp1 = list_next_entry(tmp1, list);
865 tmp2 = list_next_entry(tmp2, list);
866 }
867
868 return true;
869 }
870
871 /* VSIG Management */
872
873 /**
874 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
875 * @hw: pointer to the hardware structure
876 * @blk: HW block
877 * @vsi: VSI of interest
878 * @vsig: pointer to receive the VSI group
879 *
880 * This function will lookup the VSI entry in the XLT2 list and return
881 * the VSI group its associated with.
882 */
883 static int
ice_vsig_find_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 * vsig)884 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
885 {
886 if (!vsig || vsi >= ICE_MAX_VSI)
887 return -EINVAL;
888
889 /* As long as there's a default or valid VSIG associated with the input
890 * VSI, the functions returns a success. Any handling of VSIG will be
891 * done by the following add, update or remove functions.
892 */
893 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
894
895 return 0;
896 }
897
898 /**
899 * ice_vsig_alloc_val - allocate a new VSIG by value
900 * @hw: pointer to the hardware structure
901 * @blk: HW block
902 * @vsig: the VSIG to allocate
903 *
904 * This function will allocate a given VSIG specified by the VSIG parameter.
905 */
ice_vsig_alloc_val(struct ice_hw * hw,enum ice_block blk,u16 vsig)906 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
907 {
908 u16 idx = vsig & ICE_VSIG_IDX_M;
909
910 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
911 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
912 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
913 }
914
915 return ICE_VSIG_VALUE(idx, hw->pf_id);
916 }
917
918 /**
919 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
920 * @hw: pointer to the hardware structure
921 * @blk: HW block
922 *
923 * This function will iterate through the VSIG list and mark the first
924 * unused entry for the new VSIG entry as used and return that value.
925 */
ice_vsig_alloc(struct ice_hw * hw,enum ice_block blk)926 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
927 {
928 u16 i;
929
930 for (i = 1; i < ICE_MAX_VSIGS; i++)
931 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
932 return ice_vsig_alloc_val(hw, blk, i);
933
934 return ICE_DEFAULT_VSIG;
935 }
936
937 /**
938 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
939 * @hw: pointer to the hardware structure
940 * @blk: HW block
941 * @chs: characteristic list
942 * @vsig: returns the VSIG with the matching profiles, if found
943 *
944 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
945 * a group have the same characteristic set. To check if there exists a VSIG
946 * which has the same characteristics as the input characteristics; this
947 * function will iterate through the XLT2 list and return the VSIG that has a
948 * matching configuration. In order to make sure that priorities are accounted
949 * for, the list must match exactly, including the order in which the
950 * characteristics are listed.
951 */
952 static int
ice_find_dup_props_vsig(struct ice_hw * hw,enum ice_block blk,struct list_head * chs,u16 * vsig)953 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
954 struct list_head *chs, u16 *vsig)
955 {
956 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
957 u16 i;
958
959 for (i = 0; i < xlt2->count; i++)
960 if (xlt2->vsig_tbl[i].in_use &&
961 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
962 *vsig = ICE_VSIG_VALUE(i, hw->pf_id);
963 return 0;
964 }
965
966 return -ENOENT;
967 }
968
969 /**
970 * ice_vsig_free - free VSI group
971 * @hw: pointer to the hardware structure
972 * @blk: HW block
973 * @vsig: VSIG to remove
974 *
975 * The function will remove all VSIs associated with the input VSIG and move
976 * them to the DEFAULT_VSIG and mark the VSIG available.
977 */
ice_vsig_free(struct ice_hw * hw,enum ice_block blk,u16 vsig)978 static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
979 {
980 struct ice_vsig_prof *dtmp, *del;
981 struct ice_vsig_vsi *vsi_cur;
982 u16 idx;
983
984 idx = vsig & ICE_VSIG_IDX_M;
985 if (idx >= ICE_MAX_VSIGS)
986 return -EINVAL;
987
988 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
989 return -ENOENT;
990
991 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
992
993 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
994 /* If the VSIG has at least 1 VSI then iterate through the
995 * list and remove the VSIs before deleting the group.
996 */
997 if (vsi_cur) {
998 /* remove all vsis associated with this VSIG XLT2 entry */
999 do {
1000 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
1001
1002 vsi_cur->vsig = ICE_DEFAULT_VSIG;
1003 vsi_cur->changed = 1;
1004 vsi_cur->next_vsi = NULL;
1005 vsi_cur = tmp;
1006 } while (vsi_cur);
1007
1008 /* NULL terminate head of VSI list */
1009 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
1010 }
1011
1012 /* free characteristic list */
1013 list_for_each_entry_safe(del, dtmp,
1014 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
1015 list) {
1016 list_del(&del->list);
1017 devm_kfree(ice_hw_to_dev(hw), del);
1018 }
1019
1020 /* if VSIG characteristic list was cleared for reset
1021 * re-initialize the list head
1022 */
1023 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
1024
1025 return 0;
1026 }
1027
1028 /**
1029 * ice_vsig_remove_vsi - remove VSI from VSIG
1030 * @hw: pointer to the hardware structure
1031 * @blk: HW block
1032 * @vsi: VSI to remove
1033 * @vsig: VSI group to remove from
1034 *
1035 * The function will remove the input VSI from its VSI group and move it
1036 * to the DEFAULT_VSIG.
1037 */
1038 static int
ice_vsig_remove_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig)1039 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1040 {
1041 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
1042 u16 idx;
1043
1044 idx = vsig & ICE_VSIG_IDX_M;
1045
1046 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1047 return -EINVAL;
1048
1049 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
1050 return -ENOENT;
1051
1052 /* entry already in default VSIG, don't have to remove */
1053 if (idx == ICE_DEFAULT_VSIG)
1054 return 0;
1055
1056 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1057 if (!(*vsi_head))
1058 return -EIO;
1059
1060 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
1061 vsi_cur = (*vsi_head);
1062
1063 /* iterate the VSI list, skip over the entry to be removed */
1064 while (vsi_cur) {
1065 if (vsi_tgt == vsi_cur) {
1066 (*vsi_head) = vsi_cur->next_vsi;
1067 break;
1068 }
1069 vsi_head = &vsi_cur->next_vsi;
1070 vsi_cur = vsi_cur->next_vsi;
1071 }
1072
1073 /* verify if VSI was removed from group list */
1074 if (!vsi_cur)
1075 return -ENOENT;
1076
1077 vsi_cur->vsig = ICE_DEFAULT_VSIG;
1078 vsi_cur->changed = 1;
1079 vsi_cur->next_vsi = NULL;
1080
1081 return 0;
1082 }
1083
1084 /**
1085 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
1086 * @hw: pointer to the hardware structure
1087 * @blk: HW block
1088 * @vsi: VSI to move
1089 * @vsig: destination VSI group
1090 *
1091 * This function will move or add the input VSI to the target VSIG.
1092 * The function will find the original VSIG the VSI belongs to and
1093 * move the entry to the DEFAULT_VSIG, update the original VSIG and
1094 * then move entry to the new VSIG.
1095 */
1096 static int
ice_vsig_add_mv_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig)1097 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1098 {
1099 struct ice_vsig_vsi *tmp;
1100 u16 orig_vsig, idx;
1101 int status;
1102
1103 idx = vsig & ICE_VSIG_IDX_M;
1104
1105 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1106 return -EINVAL;
1107
1108 /* if VSIG not in use and VSIG is not default type this VSIG
1109 * doesn't exist.
1110 */
1111 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
1112 vsig != ICE_DEFAULT_VSIG)
1113 return -ENOENT;
1114
1115 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
1116 if (status)
1117 return status;
1118
1119 /* no update required if vsigs match */
1120 if (orig_vsig == vsig)
1121 return 0;
1122
1123 if (orig_vsig != ICE_DEFAULT_VSIG) {
1124 /* remove entry from orig_vsig and add to default VSIG */
1125 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
1126 if (status)
1127 return status;
1128 }
1129
1130 if (idx == ICE_DEFAULT_VSIG)
1131 return 0;
1132
1133 /* Create VSI entry and add VSIG and prop_mask values */
1134 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
1135 hw->blk[blk].xlt2.vsis[vsi].changed = 1;
1136
1137 /* Add new entry to the head of the VSIG list */
1138 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1139 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
1140 &hw->blk[blk].xlt2.vsis[vsi];
1141 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
1142 hw->blk[blk].xlt2.t[vsi] = vsig;
1143
1144 return 0;
1145 }
1146
1147 /**
1148 * ice_prof_has_mask_idx - determine if profile index masking is identical
1149 * @hw: pointer to the hardware structure
1150 * @blk: HW block
1151 * @prof: profile to check
1152 * @idx: profile index to check
1153 * @mask: mask to match
1154 */
1155 static bool
ice_prof_has_mask_idx(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 idx,u16 mask)1156 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
1157 u16 mask)
1158 {
1159 bool expect_no_mask = false;
1160 bool found = false;
1161 bool match = false;
1162 u16 i;
1163
1164 /* If mask is 0x0000 or 0xffff, then there is no masking */
1165 if (mask == 0 || mask == 0xffff)
1166 expect_no_mask = true;
1167
1168 /* Scan the enabled masks on this profile, for the specified idx */
1169 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
1170 hw->blk[blk].masks.count; i++)
1171 if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
1172 if (hw->blk[blk].masks.masks[i].in_use &&
1173 hw->blk[blk].masks.masks[i].idx == idx) {
1174 found = true;
1175 if (hw->blk[blk].masks.masks[i].mask == mask)
1176 match = true;
1177 break;
1178 }
1179
1180 if (expect_no_mask) {
1181 if (found)
1182 return false;
1183 } else {
1184 if (!match)
1185 return false;
1186 }
1187
1188 return true;
1189 }
1190
1191 /**
1192 * ice_prof_has_mask - determine if profile masking is identical
1193 * @hw: pointer to the hardware structure
1194 * @blk: HW block
1195 * @prof: profile to check
1196 * @masks: masks to match
1197 */
1198 static bool
ice_prof_has_mask(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 * masks)1199 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
1200 {
1201 u16 i;
1202
1203 /* es->mask_ena[prof] will have the mask */
1204 for (i = 0; i < hw->blk[blk].es.fvw; i++)
1205 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
1206 return false;
1207
1208 return true;
1209 }
1210
1211 /**
1212 * ice_find_prof_id_with_mask - find profile ID for a given field vector
1213 * @hw: pointer to the hardware structure
1214 * @blk: HW block
1215 * @fv: field vector to search for
1216 * @masks: masks for FV
1217 * @symm: symmetric setting for RSS flows
1218 * @prof_id: receives the profile ID
1219 */
1220 static int
ice_find_prof_id_with_mask(struct ice_hw * hw,enum ice_block blk,struct ice_fv_word * fv,u16 * masks,bool symm,u8 * prof_id)1221 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
1222 struct ice_fv_word *fv, u16 *masks, bool symm,
1223 u8 *prof_id)
1224 {
1225 struct ice_es *es = &hw->blk[blk].es;
1226 u8 i;
1227
1228 /* For FD, we don't want to re-use a existed profile with the same
1229 * field vector and mask. This will cause rule interference.
1230 */
1231 if (blk == ICE_BLK_FD)
1232 return -ENOENT;
1233
1234 for (i = 0; i < (u8)es->count; i++) {
1235 u16 off = i * es->fvw;
1236
1237 if (blk == ICE_BLK_RSS && es->symm[i] != symm)
1238 continue;
1239
1240 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
1241 continue;
1242
1243 /* check if masks settings are the same for this profile */
1244 if (masks && !ice_prof_has_mask(hw, blk, i, masks))
1245 continue;
1246
1247 *prof_id = i;
1248 return 0;
1249 }
1250
1251 return -ENOENT;
1252 }
1253
1254 /**
1255 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
1256 * @blk: the block type
1257 * @rsrc_type: pointer to variable to receive the resource type
1258 */
ice_prof_id_rsrc_type(enum ice_block blk,u16 * rsrc_type)1259 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1260 {
1261 switch (blk) {
1262 case ICE_BLK_FD:
1263 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
1264 break;
1265 case ICE_BLK_RSS:
1266 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
1267 break;
1268 default:
1269 return false;
1270 }
1271 return true;
1272 }
1273
1274 /**
1275 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
1276 * @blk: the block type
1277 * @rsrc_type: pointer to variable to receive the resource type
1278 */
ice_tcam_ent_rsrc_type(enum ice_block blk,u16 * rsrc_type)1279 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1280 {
1281 switch (blk) {
1282 case ICE_BLK_FD:
1283 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
1284 break;
1285 case ICE_BLK_RSS:
1286 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
1287 break;
1288 default:
1289 return false;
1290 }
1291 return true;
1292 }
1293
1294 /**
1295 * ice_alloc_tcam_ent - allocate hardware TCAM entry
1296 * @hw: pointer to the HW struct
1297 * @blk: the block to allocate the TCAM for
1298 * @btm: true to allocate from bottom of table, false to allocate from top
1299 * @tcam_idx: pointer to variable to receive the TCAM entry
1300 *
1301 * This function allocates a new entry in a Profile ID TCAM for a specific
1302 * block.
1303 */
1304 static int
ice_alloc_tcam_ent(struct ice_hw * hw,enum ice_block blk,bool btm,u16 * tcam_idx)1305 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
1306 u16 *tcam_idx)
1307 {
1308 u16 res_type;
1309
1310 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1311 return -EINVAL;
1312
1313 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
1314 }
1315
1316 /**
1317 * ice_free_tcam_ent - free hardware TCAM entry
1318 * @hw: pointer to the HW struct
1319 * @blk: the block from which to free the TCAM entry
1320 * @tcam_idx: the TCAM entry to free
1321 *
1322 * This function frees an entry in a Profile ID TCAM for a specific block.
1323 */
1324 static int
ice_free_tcam_ent(struct ice_hw * hw,enum ice_block blk,u16 tcam_idx)1325 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
1326 {
1327 u16 res_type;
1328
1329 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1330 return -EINVAL;
1331
1332 return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
1333 }
1334
1335 /**
1336 * ice_alloc_prof_id - allocate profile ID
1337 * @hw: pointer to the HW struct
1338 * @blk: the block to allocate the profile ID for
1339 * @prof_id: pointer to variable to receive the profile ID
1340 *
1341 * This function allocates a new profile ID, which also corresponds to a Field
1342 * Vector (Extraction Sequence) entry.
1343 */
ice_alloc_prof_id(struct ice_hw * hw,enum ice_block blk,u8 * prof_id)1344 static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
1345 {
1346 u16 res_type;
1347 u16 get_prof;
1348 int status;
1349
1350 if (!ice_prof_id_rsrc_type(blk, &res_type))
1351 return -EINVAL;
1352
1353 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
1354 if (!status)
1355 *prof_id = (u8)get_prof;
1356
1357 return status;
1358 }
1359
1360 /**
1361 * ice_free_prof_id - free profile ID
1362 * @hw: pointer to the HW struct
1363 * @blk: the block from which to free the profile ID
1364 * @prof_id: the profile ID to free
1365 *
1366 * This function frees a profile ID, which also corresponds to a Field Vector.
1367 */
ice_free_prof_id(struct ice_hw * hw,enum ice_block blk,u8 prof_id)1368 static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1369 {
1370 u16 tmp_prof_id = (u16)prof_id;
1371 u16 res_type;
1372
1373 if (!ice_prof_id_rsrc_type(blk, &res_type))
1374 return -EINVAL;
1375
1376 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
1377 }
1378
1379 /**
1380 * ice_prof_inc_ref - increment reference count for profile
1381 * @hw: pointer to the HW struct
1382 * @blk: the block from which to free the profile ID
1383 * @prof_id: the profile ID for which to increment the reference count
1384 */
ice_prof_inc_ref(struct ice_hw * hw,enum ice_block blk,u8 prof_id)1385 static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1386 {
1387 if (prof_id > hw->blk[blk].es.count)
1388 return -EINVAL;
1389
1390 hw->blk[blk].es.ref_count[prof_id]++;
1391
1392 return 0;
1393 }
1394
1395 /**
1396 * ice_write_prof_mask_reg - write profile mask register
1397 * @hw: pointer to the HW struct
1398 * @blk: hardware block
1399 * @mask_idx: mask index
1400 * @idx: index of the FV which will use the mask
1401 * @mask: the 16-bit mask
1402 */
1403 static void
ice_write_prof_mask_reg(struct ice_hw * hw,enum ice_block blk,u16 mask_idx,u16 idx,u16 mask)1404 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
1405 u16 idx, u16 mask)
1406 {
1407 u32 offset;
1408 u32 val;
1409
1410 switch (blk) {
1411 case ICE_BLK_RSS:
1412 offset = GLQF_HMASK(mask_idx);
1413 val = FIELD_PREP(GLQF_HMASK_MSK_INDEX_M, idx);
1414 val |= FIELD_PREP(GLQF_HMASK_MASK_M, mask);
1415 break;
1416 case ICE_BLK_FD:
1417 offset = GLQF_FDMASK(mask_idx);
1418 val = FIELD_PREP(GLQF_FDMASK_MSK_INDEX_M, idx);
1419 val |= FIELD_PREP(GLQF_FDMASK_MASK_M, mask);
1420 break;
1421 default:
1422 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
1423 blk);
1424 return;
1425 }
1426
1427 wr32(hw, offset, val);
1428 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
1429 blk, idx, offset, val);
1430 }
1431
1432 /**
1433 * ice_write_prof_mask_enable_res - write profile mask enable register
1434 * @hw: pointer to the HW struct
1435 * @blk: hardware block
1436 * @prof_id: profile ID
1437 * @enable_mask: enable mask
1438 */
1439 static void
ice_write_prof_mask_enable_res(struct ice_hw * hw,enum ice_block blk,u16 prof_id,u32 enable_mask)1440 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
1441 u16 prof_id, u32 enable_mask)
1442 {
1443 u32 offset;
1444
1445 switch (blk) {
1446 case ICE_BLK_RSS:
1447 offset = GLQF_HMASK_SEL(prof_id);
1448 break;
1449 case ICE_BLK_FD:
1450 offset = GLQF_FDMASK_SEL(prof_id);
1451 break;
1452 default:
1453 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
1454 blk);
1455 return;
1456 }
1457
1458 wr32(hw, offset, enable_mask);
1459 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
1460 blk, prof_id, offset, enable_mask);
1461 }
1462
1463 /**
1464 * ice_init_prof_masks - initial prof masks
1465 * @hw: pointer to the HW struct
1466 * @blk: hardware block
1467 */
ice_init_prof_masks(struct ice_hw * hw,enum ice_block blk)1468 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
1469 {
1470 u16 per_pf;
1471 u16 i;
1472
1473 mutex_init(&hw->blk[blk].masks.lock);
1474
1475 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
1476
1477 hw->blk[blk].masks.count = per_pf;
1478 hw->blk[blk].masks.first = hw->logical_pf_id * per_pf;
1479
1480 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
1481
1482 for (i = hw->blk[blk].masks.first;
1483 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
1484 ice_write_prof_mask_reg(hw, blk, i, 0, 0);
1485 }
1486
1487 /**
1488 * ice_init_all_prof_masks - initialize all prof masks
1489 * @hw: pointer to the HW struct
1490 */
ice_init_all_prof_masks(struct ice_hw * hw)1491 static void ice_init_all_prof_masks(struct ice_hw *hw)
1492 {
1493 ice_init_prof_masks(hw, ICE_BLK_RSS);
1494 ice_init_prof_masks(hw, ICE_BLK_FD);
1495 }
1496
1497 /**
1498 * ice_alloc_prof_mask - allocate profile mask
1499 * @hw: pointer to the HW struct
1500 * @blk: hardware block
1501 * @idx: index of FV which will use the mask
1502 * @mask: the 16-bit mask
1503 * @mask_idx: variable to receive the mask index
1504 */
1505 static int
ice_alloc_prof_mask(struct ice_hw * hw,enum ice_block blk,u16 idx,u16 mask,u16 * mask_idx)1506 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
1507 u16 *mask_idx)
1508 {
1509 bool found_unused = false, found_copy = false;
1510 u16 unused_idx = 0, copy_idx = 0;
1511 int status = -ENOSPC;
1512 u16 i;
1513
1514 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1515 return -EINVAL;
1516
1517 mutex_lock(&hw->blk[blk].masks.lock);
1518
1519 for (i = hw->blk[blk].masks.first;
1520 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
1521 if (hw->blk[blk].masks.masks[i].in_use) {
1522 /* if mask is in use and it exactly duplicates the
1523 * desired mask and index, then in can be reused
1524 */
1525 if (hw->blk[blk].masks.masks[i].mask == mask &&
1526 hw->blk[blk].masks.masks[i].idx == idx) {
1527 found_copy = true;
1528 copy_idx = i;
1529 break;
1530 }
1531 } else {
1532 /* save off unused index, but keep searching in case
1533 * there is an exact match later on
1534 */
1535 if (!found_unused) {
1536 found_unused = true;
1537 unused_idx = i;
1538 }
1539 }
1540
1541 if (found_copy)
1542 i = copy_idx;
1543 else if (found_unused)
1544 i = unused_idx;
1545 else
1546 goto err_ice_alloc_prof_mask;
1547
1548 /* update mask for a new entry */
1549 if (found_unused) {
1550 hw->blk[blk].masks.masks[i].in_use = true;
1551 hw->blk[blk].masks.masks[i].mask = mask;
1552 hw->blk[blk].masks.masks[i].idx = idx;
1553 hw->blk[blk].masks.masks[i].ref = 0;
1554 ice_write_prof_mask_reg(hw, blk, i, idx, mask);
1555 }
1556
1557 hw->blk[blk].masks.masks[i].ref++;
1558 *mask_idx = i;
1559 status = 0;
1560
1561 err_ice_alloc_prof_mask:
1562 mutex_unlock(&hw->blk[blk].masks.lock);
1563
1564 return status;
1565 }
1566
1567 /**
1568 * ice_free_prof_mask - free profile mask
1569 * @hw: pointer to the HW struct
1570 * @blk: hardware block
1571 * @mask_idx: index of mask
1572 */
1573 static int
ice_free_prof_mask(struct ice_hw * hw,enum ice_block blk,u16 mask_idx)1574 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
1575 {
1576 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1577 return -EINVAL;
1578
1579 if (!(mask_idx >= hw->blk[blk].masks.first &&
1580 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
1581 return -ENOENT;
1582
1583 mutex_lock(&hw->blk[blk].masks.lock);
1584
1585 if (!hw->blk[blk].masks.masks[mask_idx].in_use)
1586 goto exit_ice_free_prof_mask;
1587
1588 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
1589 hw->blk[blk].masks.masks[mask_idx].ref--;
1590 goto exit_ice_free_prof_mask;
1591 }
1592
1593 /* remove mask */
1594 hw->blk[blk].masks.masks[mask_idx].in_use = false;
1595 hw->blk[blk].masks.masks[mask_idx].mask = 0;
1596 hw->blk[blk].masks.masks[mask_idx].idx = 0;
1597
1598 /* update mask as unused entry */
1599 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
1600 mask_idx);
1601 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
1602
1603 exit_ice_free_prof_mask:
1604 mutex_unlock(&hw->blk[blk].masks.lock);
1605
1606 return 0;
1607 }
1608
1609 /**
1610 * ice_free_prof_masks - free all profile masks for a profile
1611 * @hw: pointer to the HW struct
1612 * @blk: hardware block
1613 * @prof_id: profile ID
1614 */
1615 static int
ice_free_prof_masks(struct ice_hw * hw,enum ice_block blk,u16 prof_id)1616 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
1617 {
1618 u32 mask_bm;
1619 u16 i;
1620
1621 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1622 return -EINVAL;
1623
1624 mask_bm = hw->blk[blk].es.mask_ena[prof_id];
1625 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
1626 if (mask_bm & BIT(i))
1627 ice_free_prof_mask(hw, blk, i);
1628
1629 return 0;
1630 }
1631
1632 /**
1633 * ice_shutdown_prof_masks - releases lock for masking
1634 * @hw: pointer to the HW struct
1635 * @blk: hardware block
1636 *
1637 * This should be called before unloading the driver
1638 */
ice_shutdown_prof_masks(struct ice_hw * hw,enum ice_block blk)1639 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
1640 {
1641 u16 i;
1642
1643 mutex_lock(&hw->blk[blk].masks.lock);
1644
1645 for (i = hw->blk[blk].masks.first;
1646 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
1647 ice_write_prof_mask_reg(hw, blk, i, 0, 0);
1648
1649 hw->blk[blk].masks.masks[i].in_use = false;
1650 hw->blk[blk].masks.masks[i].idx = 0;
1651 hw->blk[blk].masks.masks[i].mask = 0;
1652 }
1653
1654 mutex_unlock(&hw->blk[blk].masks.lock);
1655 mutex_destroy(&hw->blk[blk].masks.lock);
1656 }
1657
1658 /**
1659 * ice_shutdown_all_prof_masks - releases all locks for masking
1660 * @hw: pointer to the HW struct
1661 *
1662 * This should be called before unloading the driver
1663 */
ice_shutdown_all_prof_masks(struct ice_hw * hw)1664 static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
1665 {
1666 ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
1667 ice_shutdown_prof_masks(hw, ICE_BLK_FD);
1668 }
1669
1670 /**
1671 * ice_update_prof_masking - set registers according to masking
1672 * @hw: pointer to the HW struct
1673 * @blk: hardware block
1674 * @prof_id: profile ID
1675 * @masks: masks
1676 */
1677 static int
ice_update_prof_masking(struct ice_hw * hw,enum ice_block blk,u16 prof_id,u16 * masks)1678 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
1679 u16 *masks)
1680 {
1681 bool err = false;
1682 u32 ena_mask = 0;
1683 u16 idx;
1684 u16 i;
1685
1686 /* Only support FD and RSS masking, otherwise nothing to be done */
1687 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1688 return 0;
1689
1690 for (i = 0; i < hw->blk[blk].es.fvw; i++)
1691 if (masks[i] && masks[i] != 0xFFFF) {
1692 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
1693 ena_mask |= BIT(idx);
1694 } else {
1695 /* not enough bitmaps */
1696 err = true;
1697 break;
1698 }
1699 }
1700
1701 if (err) {
1702 /* free any bitmaps we have allocated */
1703 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
1704 if (ena_mask & BIT(i))
1705 ice_free_prof_mask(hw, blk, i);
1706
1707 return -EIO;
1708 }
1709
1710 /* enable the masks for this profile */
1711 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
1712
1713 /* store enabled masks with profile so that they can be freed later */
1714 hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
1715
1716 return 0;
1717 }
1718
1719 /**
1720 * ice_write_es - write an extraction sequence and symmetric setting to hardware
1721 * @hw: pointer to the HW struct
1722 * @blk: the block in which to write the extraction sequence
1723 * @prof_id: the profile ID to write
1724 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
1725 * @symm: symmetric setting for RSS profiles
1726 */
1727 static void
ice_write_es(struct ice_hw * hw,enum ice_block blk,u8 prof_id,struct ice_fv_word * fv,bool symm)1728 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
1729 struct ice_fv_word *fv, bool symm)
1730 {
1731 u16 off;
1732
1733 off = prof_id * hw->blk[blk].es.fvw;
1734 if (!fv) {
1735 memset(&hw->blk[blk].es.t[off], 0,
1736 hw->blk[blk].es.fvw * sizeof(*fv));
1737 hw->blk[blk].es.written[prof_id] = false;
1738 } else {
1739 memcpy(&hw->blk[blk].es.t[off], fv,
1740 hw->blk[blk].es.fvw * sizeof(*fv));
1741 }
1742
1743 if (blk == ICE_BLK_RSS)
1744 hw->blk[blk].es.symm[prof_id] = symm;
1745 }
1746
1747 /**
1748 * ice_prof_dec_ref - decrement reference count for profile
1749 * @hw: pointer to the HW struct
1750 * @blk: the block from which to free the profile ID
1751 * @prof_id: the profile ID for which to decrement the reference count
1752 */
1753 static int
ice_prof_dec_ref(struct ice_hw * hw,enum ice_block blk,u8 prof_id)1754 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1755 {
1756 if (prof_id > hw->blk[blk].es.count)
1757 return -EINVAL;
1758
1759 if (hw->blk[blk].es.ref_count[prof_id] > 0) {
1760 if (!--hw->blk[blk].es.ref_count[prof_id]) {
1761 ice_write_es(hw, blk, prof_id, NULL, false);
1762 ice_free_prof_masks(hw, blk, prof_id);
1763 return ice_free_prof_id(hw, blk, prof_id);
1764 }
1765 }
1766
1767 return 0;
1768 }
1769
1770 /* Block / table section IDs */
1771 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
1772 /* SWITCH */
1773 { ICE_SID_XLT1_SW,
1774 ICE_SID_XLT2_SW,
1775 ICE_SID_PROFID_TCAM_SW,
1776 ICE_SID_PROFID_REDIR_SW,
1777 ICE_SID_FLD_VEC_SW
1778 },
1779
1780 /* ACL */
1781 { ICE_SID_XLT1_ACL,
1782 ICE_SID_XLT2_ACL,
1783 ICE_SID_PROFID_TCAM_ACL,
1784 ICE_SID_PROFID_REDIR_ACL,
1785 ICE_SID_FLD_VEC_ACL
1786 },
1787
1788 /* FD */
1789 { ICE_SID_XLT1_FD,
1790 ICE_SID_XLT2_FD,
1791 ICE_SID_PROFID_TCAM_FD,
1792 ICE_SID_PROFID_REDIR_FD,
1793 ICE_SID_FLD_VEC_FD
1794 },
1795
1796 /* RSS */
1797 { ICE_SID_XLT1_RSS,
1798 ICE_SID_XLT2_RSS,
1799 ICE_SID_PROFID_TCAM_RSS,
1800 ICE_SID_PROFID_REDIR_RSS,
1801 ICE_SID_FLD_VEC_RSS
1802 },
1803
1804 /* PE */
1805 { ICE_SID_XLT1_PE,
1806 ICE_SID_XLT2_PE,
1807 ICE_SID_PROFID_TCAM_PE,
1808 ICE_SID_PROFID_REDIR_PE,
1809 ICE_SID_FLD_VEC_PE
1810 }
1811 };
1812
1813 /**
1814 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
1815 * @hw: pointer to the hardware structure
1816 * @blk: the HW block to initialize
1817 */
ice_init_sw_xlt1_db(struct ice_hw * hw,enum ice_block blk)1818 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
1819 {
1820 u16 pt;
1821
1822 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
1823 u8 ptg;
1824
1825 ptg = hw->blk[blk].xlt1.t[pt];
1826 if (ptg != ICE_DEFAULT_PTG) {
1827 ice_ptg_alloc_val(hw, blk, ptg);
1828 ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
1829 }
1830 }
1831 }
1832
1833 /**
1834 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
1835 * @hw: pointer to the hardware structure
1836 * @blk: the HW block to initialize
1837 */
ice_init_sw_xlt2_db(struct ice_hw * hw,enum ice_block blk)1838 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
1839 {
1840 u16 vsi;
1841
1842 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
1843 u16 vsig;
1844
1845 vsig = hw->blk[blk].xlt2.t[vsi];
1846 if (vsig) {
1847 ice_vsig_alloc_val(hw, blk, vsig);
1848 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
1849 /* no changes at this time, since this has been
1850 * initialized from the original package
1851 */
1852 hw->blk[blk].xlt2.vsis[vsi].changed = 0;
1853 }
1854 }
1855 }
1856
1857 /**
1858 * ice_init_sw_db - init software database from HW tables
1859 * @hw: pointer to the hardware structure
1860 */
ice_init_sw_db(struct ice_hw * hw)1861 static void ice_init_sw_db(struct ice_hw *hw)
1862 {
1863 u16 i;
1864
1865 for (i = 0; i < ICE_BLK_COUNT; i++) {
1866 ice_init_sw_xlt1_db(hw, (enum ice_block)i);
1867 ice_init_sw_xlt2_db(hw, (enum ice_block)i);
1868 }
1869 }
1870
1871 /**
1872 * ice_fill_tbl - Reads content of a single table type into database
1873 * @hw: pointer to the hardware structure
1874 * @block_id: Block ID of the table to copy
1875 * @sid: Section ID of the table to copy
1876 *
1877 * Will attempt to read the entire content of a given table of a single block
1878 * into the driver database. We assume that the buffer will always
1879 * be as large or larger than the data contained in the package. If
1880 * this condition is not met, there is most likely an error in the package
1881 * contents.
1882 */
ice_fill_tbl(struct ice_hw * hw,enum ice_block block_id,u32 sid)1883 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
1884 {
1885 u32 dst_len, sect_len, offset = 0;
1886 struct ice_prof_redir_section *pr;
1887 struct ice_prof_id_section *pid;
1888 struct ice_xlt1_section *xlt1;
1889 struct ice_xlt2_section *xlt2;
1890 struct ice_sw_fv_section *es;
1891 struct ice_pkg_enum state;
1892 u8 *src, *dst;
1893 void *sect;
1894
1895 /* if the HW segment pointer is null then the first iteration of
1896 * ice_pkg_enum_section() will fail. In this case the HW tables will
1897 * not be filled and return success.
1898 */
1899 if (!hw->seg) {
1900 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
1901 return;
1902 }
1903
1904 memset(&state, 0, sizeof(state));
1905
1906 sect = ice_pkg_enum_section(hw->seg, &state, sid);
1907
1908 while (sect) {
1909 switch (sid) {
1910 case ICE_SID_XLT1_SW:
1911 case ICE_SID_XLT1_FD:
1912 case ICE_SID_XLT1_RSS:
1913 case ICE_SID_XLT1_ACL:
1914 case ICE_SID_XLT1_PE:
1915 xlt1 = sect;
1916 src = xlt1->value;
1917 sect_len = le16_to_cpu(xlt1->count) *
1918 sizeof(*hw->blk[block_id].xlt1.t);
1919 dst = hw->blk[block_id].xlt1.t;
1920 dst_len = hw->blk[block_id].xlt1.count *
1921 sizeof(*hw->blk[block_id].xlt1.t);
1922 break;
1923 case ICE_SID_XLT2_SW:
1924 case ICE_SID_XLT2_FD:
1925 case ICE_SID_XLT2_RSS:
1926 case ICE_SID_XLT2_ACL:
1927 case ICE_SID_XLT2_PE:
1928 xlt2 = sect;
1929 src = (__force u8 *)xlt2->value;
1930 sect_len = le16_to_cpu(xlt2->count) *
1931 sizeof(*hw->blk[block_id].xlt2.t);
1932 dst = (u8 *)hw->blk[block_id].xlt2.t;
1933 dst_len = hw->blk[block_id].xlt2.count *
1934 sizeof(*hw->blk[block_id].xlt2.t);
1935 break;
1936 case ICE_SID_PROFID_TCAM_SW:
1937 case ICE_SID_PROFID_TCAM_FD:
1938 case ICE_SID_PROFID_TCAM_RSS:
1939 case ICE_SID_PROFID_TCAM_ACL:
1940 case ICE_SID_PROFID_TCAM_PE:
1941 pid = sect;
1942 src = (u8 *)pid->entry;
1943 sect_len = le16_to_cpu(pid->count) *
1944 sizeof(*hw->blk[block_id].prof.t);
1945 dst = (u8 *)hw->blk[block_id].prof.t;
1946 dst_len = hw->blk[block_id].prof.count *
1947 sizeof(*hw->blk[block_id].prof.t);
1948 break;
1949 case ICE_SID_PROFID_REDIR_SW:
1950 case ICE_SID_PROFID_REDIR_FD:
1951 case ICE_SID_PROFID_REDIR_RSS:
1952 case ICE_SID_PROFID_REDIR_ACL:
1953 case ICE_SID_PROFID_REDIR_PE:
1954 pr = sect;
1955 src = pr->redir_value;
1956 sect_len = le16_to_cpu(pr->count) *
1957 sizeof(*hw->blk[block_id].prof_redir.t);
1958 dst = hw->blk[block_id].prof_redir.t;
1959 dst_len = hw->blk[block_id].prof_redir.count *
1960 sizeof(*hw->blk[block_id].prof_redir.t);
1961 break;
1962 case ICE_SID_FLD_VEC_SW:
1963 case ICE_SID_FLD_VEC_FD:
1964 case ICE_SID_FLD_VEC_RSS:
1965 case ICE_SID_FLD_VEC_ACL:
1966 case ICE_SID_FLD_VEC_PE:
1967 es = sect;
1968 src = (u8 *)es->fv;
1969 sect_len = (u32)(le16_to_cpu(es->count) *
1970 hw->blk[block_id].es.fvw) *
1971 sizeof(*hw->blk[block_id].es.t);
1972 dst = (u8 *)hw->blk[block_id].es.t;
1973 dst_len = (u32)(hw->blk[block_id].es.count *
1974 hw->blk[block_id].es.fvw) *
1975 sizeof(*hw->blk[block_id].es.t);
1976 break;
1977 default:
1978 return;
1979 }
1980
1981 /* if the section offset exceeds destination length, terminate
1982 * table fill.
1983 */
1984 if (offset > dst_len)
1985 return;
1986
1987 /* if the sum of section size and offset exceed destination size
1988 * then we are out of bounds of the HW table size for that PF.
1989 * Changing section length to fill the remaining table space
1990 * of that PF.
1991 */
1992 if ((offset + sect_len) > dst_len)
1993 sect_len = dst_len - offset;
1994
1995 memcpy(dst + offset, src, sect_len);
1996 offset += sect_len;
1997 sect = ice_pkg_enum_section(NULL, &state, sid);
1998 }
1999 }
2000
2001 /**
2002 * ice_fill_blk_tbls - Read package context for tables
2003 * @hw: pointer to the hardware structure
2004 *
2005 * Reads the current package contents and populates the driver
2006 * database with the data iteratively for all advanced feature
2007 * blocks. Assume that the HW tables have been allocated.
2008 */
ice_fill_blk_tbls(struct ice_hw * hw)2009 void ice_fill_blk_tbls(struct ice_hw *hw)
2010 {
2011 u8 i;
2012
2013 for (i = 0; i < ICE_BLK_COUNT; i++) {
2014 enum ice_block blk_id = (enum ice_block)i;
2015
2016 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
2017 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
2018 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
2019 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
2020 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
2021 }
2022
2023 ice_init_sw_db(hw);
2024 }
2025
2026 /**
2027 * ice_free_prof_map - free profile map
2028 * @hw: pointer to the hardware structure
2029 * @blk_idx: HW block index
2030 */
ice_free_prof_map(struct ice_hw * hw,u8 blk_idx)2031 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
2032 {
2033 struct ice_es *es = &hw->blk[blk_idx].es;
2034 struct ice_prof_map *del, *tmp;
2035
2036 mutex_lock(&es->prof_map_lock);
2037 list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
2038 list_del(&del->list);
2039 devm_kfree(ice_hw_to_dev(hw), del);
2040 }
2041 INIT_LIST_HEAD(&es->prof_map);
2042 mutex_unlock(&es->prof_map_lock);
2043 }
2044
2045 /**
2046 * ice_free_flow_profs - free flow profile entries
2047 * @hw: pointer to the hardware structure
2048 * @blk_idx: HW block index
2049 */
ice_free_flow_profs(struct ice_hw * hw,u8 blk_idx)2050 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
2051 {
2052 struct ice_flow_prof *p, *tmp;
2053
2054 mutex_lock(&hw->fl_profs_locks[blk_idx]);
2055 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
2056 struct ice_flow_entry *e, *t;
2057
2058 list_for_each_entry_safe(e, t, &p->entries, l_entry)
2059 ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
2060 ICE_FLOW_ENTRY_HNDL(e));
2061
2062 list_del(&p->l_entry);
2063
2064 mutex_destroy(&p->entries_lock);
2065 devm_kfree(ice_hw_to_dev(hw), p);
2066 }
2067 mutex_unlock(&hw->fl_profs_locks[blk_idx]);
2068
2069 /* if driver is in reset and tables are being cleared
2070 * re-initialize the flow profile list heads
2071 */
2072 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2073 }
2074
2075 /**
2076 * ice_free_vsig_tbl - free complete VSIG table entries
2077 * @hw: pointer to the hardware structure
2078 * @blk: the HW block on which to free the VSIG table entries
2079 */
ice_free_vsig_tbl(struct ice_hw * hw,enum ice_block blk)2080 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
2081 {
2082 u16 i;
2083
2084 if (!hw->blk[blk].xlt2.vsig_tbl)
2085 return;
2086
2087 for (i = 1; i < ICE_MAX_VSIGS; i++)
2088 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2089 ice_vsig_free(hw, blk, i);
2090 }
2091
2092 /**
2093 * ice_free_hw_tbls - free hardware table memory
2094 * @hw: pointer to the hardware structure
2095 */
ice_free_hw_tbls(struct ice_hw * hw)2096 void ice_free_hw_tbls(struct ice_hw *hw)
2097 {
2098 struct ice_rss_cfg *r, *rt;
2099 u8 i;
2100
2101 for (i = 0; i < ICE_BLK_COUNT; i++) {
2102 if (hw->blk[i].is_list_init) {
2103 struct ice_es *es = &hw->blk[i].es;
2104
2105 ice_free_prof_map(hw, i);
2106 mutex_destroy(&es->prof_map_lock);
2107
2108 ice_free_flow_profs(hw, i);
2109 mutex_destroy(&hw->fl_profs_locks[i]);
2110
2111 hw->blk[i].is_list_init = false;
2112 }
2113 ice_free_vsig_tbl(hw, (enum ice_block)i);
2114 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
2115 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
2116 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
2117 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
2118 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
2119 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
2120 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
2121 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
2122 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
2123 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
2124 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.symm);
2125 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
2126 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
2127 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_id.id);
2128 }
2129
2130 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
2131 list_del(&r->l_entry);
2132 devm_kfree(ice_hw_to_dev(hw), r);
2133 }
2134 mutex_destroy(&hw->rss_locks);
2135 ice_shutdown_all_prof_masks(hw);
2136 memset(hw->blk, 0, sizeof(hw->blk));
2137 }
2138
2139 /**
2140 * ice_init_flow_profs - init flow profile locks and list heads
2141 * @hw: pointer to the hardware structure
2142 * @blk_idx: HW block index
2143 */
ice_init_flow_profs(struct ice_hw * hw,u8 blk_idx)2144 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
2145 {
2146 mutex_init(&hw->fl_profs_locks[blk_idx]);
2147 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2148 }
2149
2150 /**
2151 * ice_clear_hw_tbls - clear HW tables and flow profiles
2152 * @hw: pointer to the hardware structure
2153 */
ice_clear_hw_tbls(struct ice_hw * hw)2154 void ice_clear_hw_tbls(struct ice_hw *hw)
2155 {
2156 u8 i;
2157
2158 for (i = 0; i < ICE_BLK_COUNT; i++) {
2159 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2160 struct ice_prof_id *prof_id = &hw->blk[i].prof_id;
2161 struct ice_prof_tcam *prof = &hw->blk[i].prof;
2162 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2163 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2164 struct ice_es *es = &hw->blk[i].es;
2165
2166 if (hw->blk[i].is_list_init) {
2167 ice_free_prof_map(hw, i);
2168 ice_free_flow_profs(hw, i);
2169 }
2170
2171 ice_free_vsig_tbl(hw, (enum ice_block)i);
2172
2173 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
2174 memset(xlt1->ptg_tbl, 0,
2175 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
2176 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
2177
2178 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
2179 memset(xlt2->vsig_tbl, 0,
2180 xlt2->count * sizeof(*xlt2->vsig_tbl));
2181 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
2182
2183 memset(prof->t, 0, prof->count * sizeof(*prof->t));
2184 memset(prof_redir->t, 0,
2185 prof_redir->count * sizeof(*prof_redir->t));
2186
2187 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
2188 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
2189 memset(es->symm, 0, es->count * sizeof(*es->symm));
2190 memset(es->written, 0, es->count * sizeof(*es->written));
2191 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
2192
2193 memset(prof_id->id, 0, prof_id->count * sizeof(*prof_id->id));
2194 }
2195 }
2196
2197 /**
2198 * ice_init_hw_tbls - init hardware table memory
2199 * @hw: pointer to the hardware structure
2200 */
ice_init_hw_tbls(struct ice_hw * hw)2201 int ice_init_hw_tbls(struct ice_hw *hw)
2202 {
2203 u8 i;
2204
2205 mutex_init(&hw->rss_locks);
2206 INIT_LIST_HEAD(&hw->rss_list_head);
2207 ice_init_all_prof_masks(hw);
2208 for (i = 0; i < ICE_BLK_COUNT; i++) {
2209 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2210 struct ice_prof_id *prof_id = &hw->blk[i].prof_id;
2211 struct ice_prof_tcam *prof = &hw->blk[i].prof;
2212 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2213 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2214 struct ice_es *es = &hw->blk[i].es;
2215 u16 j;
2216
2217 if (hw->blk[i].is_list_init)
2218 continue;
2219
2220 ice_init_flow_profs(hw, i);
2221 mutex_init(&es->prof_map_lock);
2222 INIT_LIST_HEAD(&es->prof_map);
2223 hw->blk[i].is_list_init = true;
2224
2225 hw->blk[i].overwrite = blk_sizes[i].overwrite;
2226 es->reverse = blk_sizes[i].reverse;
2227
2228 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
2229 xlt1->count = blk_sizes[i].xlt1;
2230
2231 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
2232 sizeof(*xlt1->ptypes), GFP_KERNEL);
2233
2234 if (!xlt1->ptypes)
2235 goto err;
2236
2237 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
2238 sizeof(*xlt1->ptg_tbl),
2239 GFP_KERNEL);
2240
2241 if (!xlt1->ptg_tbl)
2242 goto err;
2243
2244 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
2245 sizeof(*xlt1->t), GFP_KERNEL);
2246 if (!xlt1->t)
2247 goto err;
2248
2249 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
2250 xlt2->count = blk_sizes[i].xlt2;
2251
2252 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2253 sizeof(*xlt2->vsis), GFP_KERNEL);
2254
2255 if (!xlt2->vsis)
2256 goto err;
2257
2258 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2259 sizeof(*xlt2->vsig_tbl),
2260 GFP_KERNEL);
2261 if (!xlt2->vsig_tbl)
2262 goto err;
2263
2264 for (j = 0; j < xlt2->count; j++)
2265 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
2266
2267 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2268 sizeof(*xlt2->t), GFP_KERNEL);
2269 if (!xlt2->t)
2270 goto err;
2271
2272 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
2273 prof->count = blk_sizes[i].prof_tcam;
2274 prof->max_prof_id = blk_sizes[i].prof_id;
2275 prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
2276 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
2277 sizeof(*prof->t), GFP_KERNEL);
2278
2279 if (!prof->t)
2280 goto err;
2281
2282 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
2283 prof_redir->count = blk_sizes[i].prof_redir;
2284 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
2285 prof_redir->count,
2286 sizeof(*prof_redir->t),
2287 GFP_KERNEL);
2288
2289 if (!prof_redir->t)
2290 goto err;
2291
2292 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
2293 es->count = blk_sizes[i].es;
2294 es->fvw = blk_sizes[i].fvw;
2295 es->t = devm_kcalloc(ice_hw_to_dev(hw),
2296 (u32)(es->count * es->fvw),
2297 sizeof(*es->t), GFP_KERNEL);
2298 if (!es->t)
2299 goto err;
2300
2301 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2302 sizeof(*es->ref_count),
2303 GFP_KERNEL);
2304 if (!es->ref_count)
2305 goto err;
2306
2307 es->symm = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2308 sizeof(*es->symm), GFP_KERNEL);
2309 if (!es->symm)
2310 goto err;
2311
2312 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2313 sizeof(*es->written), GFP_KERNEL);
2314 if (!es->written)
2315 goto err;
2316
2317 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2318 sizeof(*es->mask_ena), GFP_KERNEL);
2319 if (!es->mask_ena)
2320 goto err;
2321
2322 prof_id->count = blk_sizes[i].prof_id;
2323 prof_id->id = devm_kcalloc(ice_hw_to_dev(hw), prof_id->count,
2324 sizeof(*prof_id->id), GFP_KERNEL);
2325 if (!prof_id->id)
2326 goto err;
2327 }
2328 return 0;
2329
2330 err:
2331 ice_free_hw_tbls(hw);
2332 return -ENOMEM;
2333 }
2334
2335 /**
2336 * ice_prof_gen_key - generate profile ID key
2337 * @hw: pointer to the HW struct
2338 * @blk: the block in which to write profile ID to
2339 * @ptg: packet type group (PTG) portion of key
2340 * @vsig: VSIG portion of key
2341 * @cdid: CDID portion of key
2342 * @flags: flag portion of key
2343 * @vl_msk: valid mask
2344 * @dc_msk: don't care mask
2345 * @nm_msk: never match mask
2346 * @key: output of profile ID key
2347 */
2348 static int
ice_prof_gen_key(struct ice_hw * hw,enum ice_block blk,u8 ptg,u16 vsig,u8 cdid,u16 flags,u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],u8 key[ICE_TCAM_KEY_SZ])2349 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
2350 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2351 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
2352 u8 key[ICE_TCAM_KEY_SZ])
2353 {
2354 struct ice_prof_id_key inkey;
2355
2356 inkey.xlt1 = ptg;
2357 inkey.xlt2_cdid = cpu_to_le16(vsig);
2358 inkey.flags = cpu_to_le16(flags);
2359
2360 switch (hw->blk[blk].prof.cdid_bits) {
2361 case 0:
2362 break;
2363 case 2:
2364 #define ICE_CD_2_M 0xC000U
2365 #define ICE_CD_2_S 14
2366 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
2367 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
2368 break;
2369 case 4:
2370 #define ICE_CD_4_M 0xF000U
2371 #define ICE_CD_4_S 12
2372 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
2373 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
2374 break;
2375 case 8:
2376 #define ICE_CD_8_M 0xFF00U
2377 #define ICE_CD_8_S 16
2378 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
2379 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
2380 break;
2381 default:
2382 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
2383 break;
2384 }
2385
2386 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
2387 nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
2388 }
2389
2390 /**
2391 * ice_tcam_write_entry - write TCAM entry
2392 * @hw: pointer to the HW struct
2393 * @blk: the block in which to write profile ID to
2394 * @idx: the entry index to write to
2395 * @prof_id: profile ID
2396 * @ptg: packet type group (PTG) portion of key
2397 * @vsig: VSIG portion of key
2398 * @cdid: CDID portion of key
2399 * @flags: flag portion of key
2400 * @vl_msk: valid mask
2401 * @dc_msk: don't care mask
2402 * @nm_msk: never match mask
2403 */
2404 static int
ice_tcam_write_entry(struct ice_hw * hw,enum ice_block blk,u16 idx,u8 prof_id,u8 ptg,u16 vsig,u8 cdid,u16 flags,u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])2405 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
2406 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
2407 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2408 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
2409 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
2410 {
2411 struct ice_prof_tcam_entry;
2412 int status;
2413
2414 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
2415 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
2416 if (!status) {
2417 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
2418 hw->blk[blk].prof.t[idx].prof_id = prof_id;
2419 }
2420
2421 return status;
2422 }
2423
2424 /**
2425 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
2426 * @hw: pointer to the hardware structure
2427 * @blk: HW block
2428 * @vsig: VSIG to query
2429 * @refs: pointer to variable to receive the reference count
2430 */
2431 static int
ice_vsig_get_ref(struct ice_hw * hw,enum ice_block blk,u16 vsig,u16 * refs)2432 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
2433 {
2434 u16 idx = vsig & ICE_VSIG_IDX_M;
2435 struct ice_vsig_vsi *ptr;
2436
2437 *refs = 0;
2438
2439 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2440 return -ENOENT;
2441
2442 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2443 while (ptr) {
2444 (*refs)++;
2445 ptr = ptr->next_vsi;
2446 }
2447
2448 return 0;
2449 }
2450
2451 /**
2452 * ice_has_prof_vsig - check to see if VSIG has a specific profile
2453 * @hw: pointer to the hardware structure
2454 * @blk: HW block
2455 * @vsig: VSIG to check against
2456 * @hdl: profile handle
2457 */
2458 static bool
ice_has_prof_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl)2459 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
2460 {
2461 u16 idx = vsig & ICE_VSIG_IDX_M;
2462 struct ice_vsig_prof *ent;
2463
2464 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2465 list)
2466 if (ent->profile_cookie == hdl)
2467 return true;
2468
2469 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
2470 vsig);
2471 return false;
2472 }
2473
2474 /**
2475 * ice_prof_bld_es - build profile ID extraction sequence changes
2476 * @hw: pointer to the HW struct
2477 * @blk: hardware block
2478 * @bld: the update package buffer build to add to
2479 * @chgs: the list of changes to make in hardware
2480 */
2481 static int
ice_prof_bld_es(struct ice_hw * hw,enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)2482 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
2483 struct ice_buf_build *bld, struct list_head *chgs)
2484 {
2485 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
2486 struct ice_chs_chg *tmp;
2487
2488 list_for_each_entry(tmp, chgs, list_entry)
2489 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
2490 u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
2491 struct ice_pkg_es *p;
2492 u32 id;
2493
2494 id = ice_sect_id(blk, ICE_VEC_TBL);
2495 p = ice_pkg_buf_alloc_section(bld, id,
2496 struct_size(p, es, 1) +
2497 vec_size -
2498 sizeof(p->es[0]));
2499
2500 if (!p)
2501 return -ENOSPC;
2502
2503 p->count = cpu_to_le16(1);
2504 p->offset = cpu_to_le16(tmp->prof_id);
2505
2506 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
2507 }
2508
2509 return 0;
2510 }
2511
2512 /**
2513 * ice_prof_bld_tcam - build profile ID TCAM changes
2514 * @hw: pointer to the HW struct
2515 * @blk: hardware block
2516 * @bld: the update package buffer build to add to
2517 * @chgs: the list of changes to make in hardware
2518 */
2519 static int
ice_prof_bld_tcam(struct ice_hw * hw,enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)2520 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
2521 struct ice_buf_build *bld, struct list_head *chgs)
2522 {
2523 struct ice_chs_chg *tmp;
2524
2525 list_for_each_entry(tmp, chgs, list_entry)
2526 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
2527 struct ice_prof_id_section *p;
2528 u32 id;
2529
2530 id = ice_sect_id(blk, ICE_PROF_TCAM);
2531 p = ice_pkg_buf_alloc_section(bld, id,
2532 struct_size(p, entry, 1));
2533
2534 if (!p)
2535 return -ENOSPC;
2536
2537 p->count = cpu_to_le16(1);
2538 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
2539 p->entry[0].prof_id = tmp->prof_id;
2540
2541 memcpy(p->entry[0].key,
2542 &hw->blk[blk].prof.t[tmp->tcam_idx].key,
2543 sizeof(hw->blk[blk].prof.t->key));
2544 }
2545
2546 return 0;
2547 }
2548
2549 /**
2550 * ice_prof_bld_xlt1 - build XLT1 changes
2551 * @blk: hardware block
2552 * @bld: the update package buffer build to add to
2553 * @chgs: the list of changes to make in hardware
2554 */
2555 static int
ice_prof_bld_xlt1(enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)2556 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
2557 struct list_head *chgs)
2558 {
2559 struct ice_chs_chg *tmp;
2560
2561 list_for_each_entry(tmp, chgs, list_entry)
2562 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
2563 struct ice_xlt1_section *p;
2564 u32 id;
2565
2566 id = ice_sect_id(blk, ICE_XLT1);
2567 p = ice_pkg_buf_alloc_section(bld, id,
2568 struct_size(p, value, 1));
2569
2570 if (!p)
2571 return -ENOSPC;
2572
2573 p->count = cpu_to_le16(1);
2574 p->offset = cpu_to_le16(tmp->ptype);
2575 p->value[0] = tmp->ptg;
2576 }
2577
2578 return 0;
2579 }
2580
2581 /**
2582 * ice_prof_bld_xlt2 - build XLT2 changes
2583 * @blk: hardware block
2584 * @bld: the update package buffer build to add to
2585 * @chgs: the list of changes to make in hardware
2586 */
2587 static int
ice_prof_bld_xlt2(enum ice_block blk,struct ice_buf_build * bld,struct list_head * chgs)2588 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
2589 struct list_head *chgs)
2590 {
2591 struct ice_chs_chg *tmp;
2592
2593 list_for_each_entry(tmp, chgs, list_entry) {
2594 struct ice_xlt2_section *p;
2595 u32 id;
2596
2597 switch (tmp->type) {
2598 case ICE_VSIG_ADD:
2599 case ICE_VSI_MOVE:
2600 case ICE_VSIG_REM:
2601 id = ice_sect_id(blk, ICE_XLT2);
2602 p = ice_pkg_buf_alloc_section(bld, id,
2603 struct_size(p, value, 1));
2604
2605 if (!p)
2606 return -ENOSPC;
2607
2608 p->count = cpu_to_le16(1);
2609 p->offset = cpu_to_le16(tmp->vsi);
2610 p->value[0] = cpu_to_le16(tmp->vsig);
2611 break;
2612 default:
2613 break;
2614 }
2615 }
2616
2617 return 0;
2618 }
2619
2620 /**
2621 * ice_upd_prof_hw - update hardware using the change list
2622 * @hw: pointer to the HW struct
2623 * @blk: hardware block
2624 * @chgs: the list of changes to make in hardware
2625 */
2626 static int
ice_upd_prof_hw(struct ice_hw * hw,enum ice_block blk,struct list_head * chgs)2627 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
2628 struct list_head *chgs)
2629 {
2630 struct ice_buf_build *b;
2631 struct ice_chs_chg *tmp;
2632 u16 pkg_sects;
2633 u16 xlt1 = 0;
2634 u16 xlt2 = 0;
2635 u16 tcam = 0;
2636 u16 es = 0;
2637 int status;
2638 u16 sects;
2639
2640 /* count number of sections we need */
2641 list_for_each_entry(tmp, chgs, list_entry) {
2642 switch (tmp->type) {
2643 case ICE_PTG_ES_ADD:
2644 if (tmp->add_ptg)
2645 xlt1++;
2646 if (tmp->add_prof)
2647 es++;
2648 break;
2649 case ICE_TCAM_ADD:
2650 tcam++;
2651 break;
2652 case ICE_VSIG_ADD:
2653 case ICE_VSI_MOVE:
2654 case ICE_VSIG_REM:
2655 xlt2++;
2656 break;
2657 default:
2658 break;
2659 }
2660 }
2661 sects = xlt1 + xlt2 + tcam + es;
2662
2663 if (!sects)
2664 return 0;
2665
2666 /* Build update package buffer */
2667 b = ice_pkg_buf_alloc(hw);
2668 if (!b)
2669 return -ENOMEM;
2670
2671 status = ice_pkg_buf_reserve_section(b, sects);
2672 if (status)
2673 goto error_tmp;
2674
2675 /* Preserve order of table update: ES, TCAM, PTG, VSIG */
2676 if (es) {
2677 status = ice_prof_bld_es(hw, blk, b, chgs);
2678 if (status)
2679 goto error_tmp;
2680 }
2681
2682 if (tcam) {
2683 status = ice_prof_bld_tcam(hw, blk, b, chgs);
2684 if (status)
2685 goto error_tmp;
2686 }
2687
2688 if (xlt1) {
2689 status = ice_prof_bld_xlt1(blk, b, chgs);
2690 if (status)
2691 goto error_tmp;
2692 }
2693
2694 if (xlt2) {
2695 status = ice_prof_bld_xlt2(blk, b, chgs);
2696 if (status)
2697 goto error_tmp;
2698 }
2699
2700 /* After package buffer build check if the section count in buffer is
2701 * non-zero and matches the number of sections detected for package
2702 * update.
2703 */
2704 pkg_sects = ice_pkg_buf_get_active_sections(b);
2705 if (!pkg_sects || pkg_sects != sects) {
2706 status = -EINVAL;
2707 goto error_tmp;
2708 }
2709
2710 /* update package */
2711 status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
2712 if (status == -EIO)
2713 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
2714
2715 error_tmp:
2716 ice_pkg_buf_free(hw, b);
2717 return status;
2718 }
2719
2720 /**
2721 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
2722 * @hw: pointer to the HW struct
2723 * @prof_id: profile ID
2724 * @mask_sel: mask select
2725 *
2726 * This function enable any of the masks selected by the mask select parameter
2727 * for the profile specified.
2728 */
ice_update_fd_mask(struct ice_hw * hw,u16 prof_id,u32 mask_sel)2729 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
2730 {
2731 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
2732
2733 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
2734 GLQF_FDMASK_SEL(prof_id), mask_sel);
2735 }
2736
2737 struct ice_fd_src_dst_pair {
2738 u8 prot_id;
2739 u8 count;
2740 u16 off;
2741 };
2742
2743 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
2744 /* These are defined in pairs */
2745 { ICE_PROT_IPV4_OF_OR_S, 2, 12 },
2746 { ICE_PROT_IPV4_OF_OR_S, 2, 16 },
2747
2748 { ICE_PROT_IPV4_IL, 2, 12 },
2749 { ICE_PROT_IPV4_IL, 2, 16 },
2750
2751 { ICE_PROT_IPV6_OF_OR_S, 8, 8 },
2752 { ICE_PROT_IPV6_OF_OR_S, 8, 24 },
2753
2754 { ICE_PROT_IPV6_IL, 8, 8 },
2755 { ICE_PROT_IPV6_IL, 8, 24 },
2756
2757 { ICE_PROT_TCP_IL, 1, 0 },
2758 { ICE_PROT_TCP_IL, 1, 2 },
2759
2760 { ICE_PROT_UDP_OF, 1, 0 },
2761 { ICE_PROT_UDP_OF, 1, 2 },
2762
2763 { ICE_PROT_UDP_IL_OR_S, 1, 0 },
2764 { ICE_PROT_UDP_IL_OR_S, 1, 2 },
2765
2766 { ICE_PROT_SCTP_IL, 1, 0 },
2767 { ICE_PROT_SCTP_IL, 1, 2 }
2768 };
2769
2770 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs)
2771
2772 /**
2773 * ice_update_fd_swap - set register appropriately for a FD FV extraction
2774 * @hw: pointer to the HW struct
2775 * @prof_id: profile ID
2776 * @es: extraction sequence (length of array is determined by the block)
2777 */
2778 static int
ice_update_fd_swap(struct ice_hw * hw,u16 prof_id,struct ice_fv_word * es)2779 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
2780 {
2781 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
2782 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
2783 #define ICE_FD_FV_NOT_FOUND (-2)
2784 s8 first_free = ICE_FD_FV_NOT_FOUND;
2785 u8 used[ICE_MAX_FV_WORDS] = { 0 };
2786 s8 orig_free, si;
2787 u32 mask_sel = 0;
2788 u8 i, j, k;
2789
2790 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
2791
2792 /* This code assumes that the Flow Director field vectors are assigned
2793 * from the end of the FV indexes working towards the zero index, that
2794 * only complete fields will be included and will be consecutive, and
2795 * that there are no gaps between valid indexes.
2796 */
2797
2798 /* Determine swap fields present */
2799 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
2800 /* Find the first free entry, assuming right to left population.
2801 * This is where we can start adding additional pairs if needed.
2802 */
2803 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
2804 ICE_PROT_INVALID)
2805 first_free = i - 1;
2806
2807 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
2808 if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
2809 es[i].off == ice_fd_pairs[j].off) {
2810 __set_bit(j, pair_list);
2811 pair_start[j] = i;
2812 }
2813 }
2814
2815 orig_free = first_free;
2816
2817 /* determine missing swap fields that need to be added */
2818 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
2819 u8 bit1 = test_bit(i + 1, pair_list);
2820 u8 bit0 = test_bit(i, pair_list);
2821
2822 if (bit0 ^ bit1) {
2823 u8 index;
2824
2825 /* add the appropriate 'paired' entry */
2826 if (!bit0)
2827 index = i;
2828 else
2829 index = i + 1;
2830
2831 /* check for room */
2832 if (first_free + 1 < (s8)ice_fd_pairs[index].count)
2833 return -ENOSPC;
2834
2835 /* place in extraction sequence */
2836 for (k = 0; k < ice_fd_pairs[index].count; k++) {
2837 es[first_free - k].prot_id =
2838 ice_fd_pairs[index].prot_id;
2839 es[first_free - k].off =
2840 ice_fd_pairs[index].off + (k * 2);
2841
2842 if (k > first_free)
2843 return -EIO;
2844
2845 /* keep track of non-relevant fields */
2846 mask_sel |= BIT(first_free - k);
2847 }
2848
2849 pair_start[index] = first_free;
2850 first_free -= ice_fd_pairs[index].count;
2851 }
2852 }
2853
2854 /* fill in the swap array */
2855 si = hw->blk[ICE_BLK_FD].es.fvw - 1;
2856 while (si >= 0) {
2857 u8 indexes_used = 1;
2858
2859 /* assume flat at this index */
2860 #define ICE_SWAP_VALID 0x80
2861 used[si] = si | ICE_SWAP_VALID;
2862
2863 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
2864 si -= indexes_used;
2865 continue;
2866 }
2867
2868 /* check for a swap location */
2869 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
2870 if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
2871 es[si].off == ice_fd_pairs[j].off) {
2872 u8 idx;
2873
2874 /* determine the appropriate matching field */
2875 idx = j + ((j % 2) ? -1 : 1);
2876
2877 indexes_used = ice_fd_pairs[idx].count;
2878 for (k = 0; k < indexes_used; k++) {
2879 used[si - k] = (pair_start[idx] - k) |
2880 ICE_SWAP_VALID;
2881 }
2882
2883 break;
2884 }
2885
2886 si -= indexes_used;
2887 }
2888
2889 /* for each set of 4 swap and 4 inset indexes, write the appropriate
2890 * register
2891 */
2892 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
2893 u32 raw_swap = 0;
2894 u32 raw_in = 0;
2895
2896 for (k = 0; k < 4; k++) {
2897 u8 idx;
2898
2899 idx = (j * 4) + k;
2900 if (used[idx] && !(mask_sel & BIT(idx))) {
2901 raw_swap |= used[idx] << (k * BITS_PER_BYTE);
2902 #define ICE_INSET_DFLT 0x9f
2903 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
2904 }
2905 }
2906
2907 /* write the appropriate swap register set */
2908 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
2909
2910 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
2911 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
2912
2913 /* write the appropriate inset register set */
2914 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
2915
2916 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
2917 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
2918 }
2919
2920 /* initially clear the mask select for this profile */
2921 ice_update_fd_mask(hw, prof_id, 0);
2922
2923 return 0;
2924 }
2925
2926 /* The entries here needs to match the order of enum ice_ptype_attrib */
2927 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
2928 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK },
2929 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK },
2930 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK },
2931 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK },
2932 };
2933
2934 /**
2935 * ice_get_ptype_attrib_info - get PTYPE attribute information
2936 * @type: attribute type
2937 * @info: pointer to variable to the attribute information
2938 */
2939 static void
ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,struct ice_ptype_attrib_info * info)2940 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
2941 struct ice_ptype_attrib_info *info)
2942 {
2943 *info = ice_ptype_attributes[type];
2944 }
2945
2946 /**
2947 * ice_add_prof_attrib - add any PTG with attributes to profile
2948 * @prof: pointer to the profile to which PTG entries will be added
2949 * @ptg: PTG to be added
2950 * @ptype: PTYPE that needs to be looked up
2951 * @attr: array of attributes that will be considered
2952 * @attr_cnt: number of elements in the attribute array
2953 */
2954 static int
ice_add_prof_attrib(struct ice_prof_map * prof,u8 ptg,u16 ptype,const struct ice_ptype_attributes * attr,u16 attr_cnt)2955 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
2956 const struct ice_ptype_attributes *attr, u16 attr_cnt)
2957 {
2958 bool found = false;
2959 u16 i;
2960
2961 for (i = 0; i < attr_cnt; i++)
2962 if (attr[i].ptype == ptype) {
2963 found = true;
2964
2965 prof->ptg[prof->ptg_cnt] = ptg;
2966 ice_get_ptype_attrib_info(attr[i].attrib,
2967 &prof->attr[prof->ptg_cnt]);
2968
2969 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
2970 return -ENOSPC;
2971 }
2972
2973 if (!found)
2974 return -ENOENT;
2975
2976 return 0;
2977 }
2978
2979 /**
2980 * ice_disable_fd_swap - set register appropriately to disable FD SWAP
2981 * @hw: pointer to the HW struct
2982 * @prof_id: profile ID
2983 */
2984 static void
ice_disable_fd_swap(struct ice_hw * hw,u8 prof_id)2985 ice_disable_fd_swap(struct ice_hw *hw, u8 prof_id)
2986 {
2987 u16 swap_val, fvw_num;
2988 unsigned int i;
2989
2990 swap_val = ICE_SWAP_VALID;
2991 fvw_num = hw->blk[ICE_BLK_FD].es.fvw / ICE_FDIR_REG_SET_SIZE;
2992
2993 /* Since the SWAP Flag in the Programming Desc doesn't work,
2994 * here add method to disable the SWAP Option via setting
2995 * certain SWAP and INSET register sets.
2996 */
2997 for (i = 0; i < fvw_num ; i++) {
2998 u32 raw_swap, raw_in;
2999 unsigned int j;
3000
3001 raw_swap = 0;
3002 raw_in = 0;
3003
3004 for (j = 0; j < ICE_FDIR_REG_SET_SIZE; j++) {
3005 raw_swap |= (swap_val++) << (j * BITS_PER_BYTE);
3006 raw_in |= ICE_INSET_DFLT << (j * BITS_PER_BYTE);
3007 }
3008
3009 /* write the FDIR swap register set */
3010 wr32(hw, GLQF_FDSWAP(prof_id, i), raw_swap);
3011
3012 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): 0x%x = 0x%08x\n",
3013 prof_id, i, GLQF_FDSWAP(prof_id, i), raw_swap);
3014
3015 /* write the FDIR inset register set */
3016 wr32(hw, GLQF_FDINSET(prof_id, i), raw_in);
3017
3018 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): 0x%x = 0x%08x\n",
3019 prof_id, i, GLQF_FDINSET(prof_id, i), raw_in);
3020 }
3021 }
3022
3023 /*
3024 * ice_add_prof - add profile
3025 * @hw: pointer to the HW struct
3026 * @blk: hardware block
3027 * @id: profile tracking ID
3028 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
3029 * @attr: array of attributes
3030 * @attr_cnt: number of elements in attr array
3031 * @es: extraction sequence (length of array is determined by the block)
3032 * @masks: mask for extraction sequence
3033 * @symm: symmetric setting for RSS profiles
3034 * @fd_swap: enable/disable FDIR paired src/dst fields swap option
3035 *
3036 * This function registers a profile, which matches a set of PTYPES with a
3037 * particular extraction sequence. While the hardware profile is allocated
3038 * it will not be written until the first call to ice_add_flow that specifies
3039 * the ID value used here.
3040 */
3041 int
ice_add_prof(struct ice_hw * hw,enum ice_block blk,u64 id,unsigned long * ptypes,const struct ice_ptype_attributes * attr,u16 attr_cnt,struct ice_fv_word * es,u16 * masks,bool symm,bool fd_swap)3042 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id,
3043 unsigned long *ptypes, const struct ice_ptype_attributes *attr,
3044 u16 attr_cnt, struct ice_fv_word *es, u16 *masks, bool symm,
3045 bool fd_swap)
3046 {
3047 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3048 struct ice_prof_map *prof;
3049 int status;
3050 u8 prof_id;
3051 u16 ptype;
3052
3053 bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3054
3055 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3056
3057 /* search for existing profile */
3058 status = ice_find_prof_id_with_mask(hw, blk, es, masks, symm, &prof_id);
3059 if (status) {
3060 /* allocate profile ID */
3061 status = ice_alloc_prof_id(hw, blk, &prof_id);
3062 if (status)
3063 goto err_ice_add_prof;
3064 if (blk == ICE_BLK_FD && fd_swap) {
3065 /* For Flow Director block, the extraction sequence may
3066 * need to be altered in the case where there are paired
3067 * fields that have no match. This is necessary because
3068 * for Flow Director, src and dest fields need to paired
3069 * for filter programming and these values are swapped
3070 * during Tx.
3071 */
3072 status = ice_update_fd_swap(hw, prof_id, es);
3073 if (status)
3074 goto err_ice_add_prof;
3075 } else if (blk == ICE_BLK_FD) {
3076 ice_disable_fd_swap(hw, prof_id);
3077 }
3078 status = ice_update_prof_masking(hw, blk, prof_id, masks);
3079 if (status)
3080 goto err_ice_add_prof;
3081
3082 /* and write new es */
3083 ice_write_es(hw, blk, prof_id, es, symm);
3084 }
3085
3086 ice_prof_inc_ref(hw, blk, prof_id);
3087
3088 /* add profile info */
3089 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
3090 if (!prof) {
3091 status = -ENOMEM;
3092 goto err_ice_add_prof;
3093 }
3094
3095 prof->profile_cookie = id;
3096 prof->prof_id = prof_id;
3097 prof->ptg_cnt = 0;
3098 prof->context = 0;
3099
3100 /* build list of ptgs */
3101 for_each_set_bit(ptype, ptypes, ICE_FLOW_PTYPE_MAX) {
3102 u8 ptg;
3103
3104 /* The package should place all ptypes in a non-zero
3105 * PTG, so the following call should never fail.
3106 */
3107 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
3108 continue;
3109
3110 /* If PTG is already added, skip and continue */
3111 if (test_bit(ptg, ptgs_used))
3112 continue;
3113
3114 set_bit(ptg, ptgs_used);
3115 /* Check to see there are any attributes for this ptype, and
3116 * add them if found.
3117 */
3118 status = ice_add_prof_attrib(prof, ptg, ptype, attr, attr_cnt);
3119 if (status == -ENOSPC)
3120 break;
3121 if (status) {
3122 /* This is simple a ptype/PTG with no attribute */
3123 prof->ptg[prof->ptg_cnt] = ptg;
3124 prof->attr[prof->ptg_cnt].flags = 0;
3125 prof->attr[prof->ptg_cnt].mask = 0;
3126
3127 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
3128 break;
3129 }
3130 }
3131
3132 list_add(&prof->list, &hw->blk[blk].es.prof_map);
3133 status = 0;
3134
3135 err_ice_add_prof:
3136 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3137 return status;
3138 }
3139
3140 /**
3141 * ice_search_prof_id - Search for a profile tracking ID
3142 * @hw: pointer to the HW struct
3143 * @blk: hardware block
3144 * @id: profile tracking ID
3145 *
3146 * This will search for a profile tracking ID which was previously added.
3147 * The profile map lock should be held before calling this function.
3148 */
3149 struct ice_prof_map *
ice_search_prof_id(struct ice_hw * hw,enum ice_block blk,u64 id)3150 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
3151 {
3152 struct ice_prof_map *entry = NULL;
3153 struct ice_prof_map *map;
3154
3155 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
3156 if (map->profile_cookie == id) {
3157 entry = map;
3158 break;
3159 }
3160
3161 return entry;
3162 }
3163
3164 /**
3165 * ice_vsig_prof_id_count - count profiles in a VSIG
3166 * @hw: pointer to the HW struct
3167 * @blk: hardware block
3168 * @vsig: VSIG to remove the profile from
3169 */
3170 static u16
ice_vsig_prof_id_count(struct ice_hw * hw,enum ice_block blk,u16 vsig)3171 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
3172 {
3173 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
3174 struct ice_vsig_prof *p;
3175
3176 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3177 list)
3178 count++;
3179
3180 return count;
3181 }
3182
3183 /**
3184 * ice_rel_tcam_idx - release a TCAM index
3185 * @hw: pointer to the HW struct
3186 * @blk: hardware block
3187 * @idx: the index to release
3188 */
ice_rel_tcam_idx(struct ice_hw * hw,enum ice_block blk,u16 idx)3189 static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
3190 {
3191 /* Masks to invoke a never match entry */
3192 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3193 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
3194 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
3195 int status;
3196
3197 /* write the TCAM entry */
3198 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
3199 dc_msk, nm_msk);
3200 if (status)
3201 return status;
3202
3203 /* release the TCAM entry */
3204 status = ice_free_tcam_ent(hw, blk, idx);
3205
3206 return status;
3207 }
3208
3209 /**
3210 * ice_rem_prof_id - remove one profile from a VSIG
3211 * @hw: pointer to the HW struct
3212 * @blk: hardware block
3213 * @prof: pointer to profile structure to remove
3214 */
3215 static int
ice_rem_prof_id(struct ice_hw * hw,enum ice_block blk,struct ice_vsig_prof * prof)3216 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
3217 struct ice_vsig_prof *prof)
3218 {
3219 int status;
3220 u16 i;
3221
3222 for (i = 0; i < prof->tcam_count; i++)
3223 if (prof->tcam[i].in_use) {
3224 prof->tcam[i].in_use = false;
3225 status = ice_rel_tcam_idx(hw, blk,
3226 prof->tcam[i].tcam_idx);
3227 if (status)
3228 return -EIO;
3229 }
3230
3231 return 0;
3232 }
3233
3234 /**
3235 * ice_rem_vsig - remove VSIG
3236 * @hw: pointer to the HW struct
3237 * @blk: hardware block
3238 * @vsig: the VSIG to remove
3239 * @chg: the change list
3240 */
3241 static int
ice_rem_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct list_head * chg)3242 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3243 struct list_head *chg)
3244 {
3245 u16 idx = vsig & ICE_VSIG_IDX_M;
3246 struct ice_vsig_vsi *vsi_cur;
3247 struct ice_vsig_prof *d, *t;
3248
3249 /* remove TCAM entries */
3250 list_for_each_entry_safe(d, t,
3251 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3252 list) {
3253 int status;
3254
3255 status = ice_rem_prof_id(hw, blk, d);
3256 if (status)
3257 return status;
3258
3259 list_del(&d->list);
3260 devm_kfree(ice_hw_to_dev(hw), d);
3261 }
3262
3263 /* Move all VSIS associated with this VSIG to the default VSIG */
3264 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3265 /* If the VSIG has at least 1 VSI then iterate through the list
3266 * and remove the VSIs before deleting the group.
3267 */
3268 if (vsi_cur)
3269 do {
3270 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
3271 struct ice_chs_chg *p;
3272
3273 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3274 GFP_KERNEL);
3275 if (!p)
3276 return -ENOMEM;
3277
3278 p->type = ICE_VSIG_REM;
3279 p->orig_vsig = vsig;
3280 p->vsig = ICE_DEFAULT_VSIG;
3281 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
3282
3283 list_add(&p->list_entry, chg);
3284
3285 vsi_cur = tmp;
3286 } while (vsi_cur);
3287
3288 return ice_vsig_free(hw, blk, vsig);
3289 }
3290
3291 /**
3292 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
3293 * @hw: pointer to the HW struct
3294 * @blk: hardware block
3295 * @vsig: VSIG to remove the profile from
3296 * @hdl: profile handle indicating which profile to remove
3297 * @chg: list to receive a record of changes
3298 */
3299 static int
ice_rem_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl,struct list_head * chg)3300 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3301 struct list_head *chg)
3302 {
3303 u16 idx = vsig & ICE_VSIG_IDX_M;
3304 struct ice_vsig_prof *p, *t;
3305
3306 list_for_each_entry_safe(p, t,
3307 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3308 list)
3309 if (p->profile_cookie == hdl) {
3310 int status;
3311
3312 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
3313 /* this is the last profile, remove the VSIG */
3314 return ice_rem_vsig(hw, blk, vsig, chg);
3315
3316 status = ice_rem_prof_id(hw, blk, p);
3317 if (!status) {
3318 list_del(&p->list);
3319 devm_kfree(ice_hw_to_dev(hw), p);
3320 }
3321 return status;
3322 }
3323
3324 return -ENOENT;
3325 }
3326
3327 /**
3328 * ice_rem_flow_all - remove all flows with a particular profile
3329 * @hw: pointer to the HW struct
3330 * @blk: hardware block
3331 * @id: profile tracking ID
3332 */
ice_rem_flow_all(struct ice_hw * hw,enum ice_block blk,u64 id)3333 static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
3334 {
3335 struct ice_chs_chg *del, *tmp;
3336 struct list_head chg;
3337 int status;
3338 u16 i;
3339
3340 INIT_LIST_HEAD(&chg);
3341
3342 for (i = 1; i < ICE_MAX_VSIGS; i++)
3343 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
3344 if (ice_has_prof_vsig(hw, blk, i, id)) {
3345 status = ice_rem_prof_id_vsig(hw, blk, i, id,
3346 &chg);
3347 if (status)
3348 goto err_ice_rem_flow_all;
3349 }
3350 }
3351
3352 status = ice_upd_prof_hw(hw, blk, &chg);
3353
3354 err_ice_rem_flow_all:
3355 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
3356 list_del(&del->list_entry);
3357 devm_kfree(ice_hw_to_dev(hw), del);
3358 }
3359
3360 return status;
3361 }
3362
3363 /**
3364 * ice_rem_prof - remove profile
3365 * @hw: pointer to the HW struct
3366 * @blk: hardware block
3367 * @id: profile tracking ID
3368 *
3369 * This will remove the profile specified by the ID parameter, which was
3370 * previously created through ice_add_prof. If any existing entries
3371 * are associated with this profile, they will be removed as well.
3372 */
ice_rem_prof(struct ice_hw * hw,enum ice_block blk,u64 id)3373 int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
3374 {
3375 struct ice_prof_map *pmap;
3376 int status;
3377
3378 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3379
3380 pmap = ice_search_prof_id(hw, blk, id);
3381 if (!pmap) {
3382 status = -ENOENT;
3383 goto err_ice_rem_prof;
3384 }
3385
3386 /* remove all flows with this profile */
3387 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
3388 if (status)
3389 goto err_ice_rem_prof;
3390
3391 /* dereference profile, and possibly remove */
3392 ice_prof_dec_ref(hw, blk, pmap->prof_id);
3393
3394 list_del(&pmap->list);
3395 devm_kfree(ice_hw_to_dev(hw), pmap);
3396
3397 err_ice_rem_prof:
3398 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3399 return status;
3400 }
3401
3402 /**
3403 * ice_get_prof - get profile
3404 * @hw: pointer to the HW struct
3405 * @blk: hardware block
3406 * @hdl: profile handle
3407 * @chg: change list
3408 */
3409 static int
ice_get_prof(struct ice_hw * hw,enum ice_block blk,u64 hdl,struct list_head * chg)3410 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
3411 struct list_head *chg)
3412 {
3413 struct ice_prof_map *map;
3414 struct ice_chs_chg *p;
3415 int status = 0;
3416 u16 i;
3417
3418 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3419 /* Get the details on the profile specified by the handle ID */
3420 map = ice_search_prof_id(hw, blk, hdl);
3421 if (!map) {
3422 status = -ENOENT;
3423 goto err_ice_get_prof;
3424 }
3425
3426 for (i = 0; i < map->ptg_cnt; i++)
3427 if (!hw->blk[blk].es.written[map->prof_id]) {
3428 /* add ES to change list */
3429 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3430 GFP_KERNEL);
3431 if (!p) {
3432 status = -ENOMEM;
3433 goto err_ice_get_prof;
3434 }
3435
3436 p->type = ICE_PTG_ES_ADD;
3437 p->ptype = 0;
3438 p->ptg = map->ptg[i];
3439 p->add_ptg = 0;
3440
3441 p->add_prof = 1;
3442 p->prof_id = map->prof_id;
3443
3444 hw->blk[blk].es.written[map->prof_id] = true;
3445
3446 list_add(&p->list_entry, chg);
3447 }
3448
3449 err_ice_get_prof:
3450 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3451 /* let caller clean up the change list */
3452 return status;
3453 }
3454
3455 /**
3456 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
3457 * @hw: pointer to the HW struct
3458 * @blk: hardware block
3459 * @vsig: VSIG from which to copy the list
3460 * @lst: output list
3461 *
3462 * This routine makes a copy of the list of profiles in the specified VSIG.
3463 */
3464 static int
ice_get_profs_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct list_head * lst)3465 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3466 struct list_head *lst)
3467 {
3468 struct ice_vsig_prof *ent1, *ent2;
3469 u16 idx = vsig & ICE_VSIG_IDX_M;
3470
3471 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3472 list) {
3473 struct ice_vsig_prof *p;
3474
3475 /* copy to the input list */
3476 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
3477 GFP_KERNEL);
3478 if (!p)
3479 goto err_ice_get_profs_vsig;
3480
3481 list_add_tail(&p->list, lst);
3482 }
3483
3484 return 0;
3485
3486 err_ice_get_profs_vsig:
3487 list_for_each_entry_safe(ent1, ent2, lst, list) {
3488 list_del(&ent1->list);
3489 devm_kfree(ice_hw_to_dev(hw), ent1);
3490 }
3491
3492 return -ENOMEM;
3493 }
3494
3495 /**
3496 * ice_add_prof_to_lst - add profile entry to a list
3497 * @hw: pointer to the HW struct
3498 * @blk: hardware block
3499 * @lst: the list to be added to
3500 * @hdl: profile handle of entry to add
3501 */
3502 static int
ice_add_prof_to_lst(struct ice_hw * hw,enum ice_block blk,struct list_head * lst,u64 hdl)3503 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
3504 struct list_head *lst, u64 hdl)
3505 {
3506 struct ice_prof_map *map;
3507 struct ice_vsig_prof *p;
3508 int status = 0;
3509 u16 i;
3510
3511 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3512 map = ice_search_prof_id(hw, blk, hdl);
3513 if (!map) {
3514 status = -ENOENT;
3515 goto err_ice_add_prof_to_lst;
3516 }
3517
3518 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3519 if (!p) {
3520 status = -ENOMEM;
3521 goto err_ice_add_prof_to_lst;
3522 }
3523
3524 p->profile_cookie = map->profile_cookie;
3525 p->prof_id = map->prof_id;
3526 p->tcam_count = map->ptg_cnt;
3527
3528 for (i = 0; i < map->ptg_cnt; i++) {
3529 p->tcam[i].prof_id = map->prof_id;
3530 p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
3531 p->tcam[i].ptg = map->ptg[i];
3532 }
3533
3534 list_add(&p->list, lst);
3535
3536 err_ice_add_prof_to_lst:
3537 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3538 return status;
3539 }
3540
3541 /**
3542 * ice_move_vsi - move VSI to another VSIG
3543 * @hw: pointer to the HW struct
3544 * @blk: hardware block
3545 * @vsi: the VSI to move
3546 * @vsig: the VSIG to move the VSI to
3547 * @chg: the change list
3548 */
3549 static int
ice_move_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig,struct list_head * chg)3550 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
3551 struct list_head *chg)
3552 {
3553 struct ice_chs_chg *p;
3554 u16 orig_vsig;
3555 int status;
3556
3557 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3558 if (!p)
3559 return -ENOMEM;
3560
3561 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3562 if (!status)
3563 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3564
3565 if (status) {
3566 devm_kfree(ice_hw_to_dev(hw), p);
3567 return status;
3568 }
3569
3570 p->type = ICE_VSI_MOVE;
3571 p->vsi = vsi;
3572 p->orig_vsig = orig_vsig;
3573 p->vsig = vsig;
3574
3575 list_add(&p->list_entry, chg);
3576
3577 return 0;
3578 }
3579
3580 /**
3581 * ice_set_tcam_flags - set TCAM flag don't care mask
3582 * @mask: mask for flags
3583 * @dc_mask: pointer to the don't care mask
3584 */
ice_set_tcam_flags(u16 mask,u8 dc_mask[ICE_TCAM_KEY_VAL_SZ])3585 static void ice_set_tcam_flags(u16 mask, u8 dc_mask[ICE_TCAM_KEY_VAL_SZ])
3586 {
3587 u16 inverted_mask = ~mask;
3588
3589 /* flags are lowest u16 */
3590 put_unaligned_le16(inverted_mask, dc_mask);
3591 }
3592
3593 /**
3594 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
3595 * @hw: pointer to the HW struct
3596 * @idx: the index of the TCAM entry to remove
3597 * @chg: the list of change structures to search
3598 */
3599 static void
ice_rem_chg_tcam_ent(struct ice_hw * hw,u16 idx,struct list_head * chg)3600 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
3601 {
3602 struct ice_chs_chg *pos, *tmp;
3603
3604 list_for_each_entry_safe(tmp, pos, chg, list_entry)
3605 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
3606 list_del(&tmp->list_entry);
3607 devm_kfree(ice_hw_to_dev(hw), tmp);
3608 }
3609 }
3610
3611 /**
3612 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
3613 * @hw: pointer to the HW struct
3614 * @blk: hardware block
3615 * @enable: true to enable, false to disable
3616 * @vsig: the VSIG of the TCAM entry
3617 * @tcam: pointer the TCAM info structure of the TCAM to disable
3618 * @chg: the change list
3619 *
3620 * This function appends an enable or disable TCAM entry in the change log
3621 */
3622 static int
ice_prof_tcam_ena_dis(struct ice_hw * hw,enum ice_block blk,bool enable,u16 vsig,struct ice_tcam_inf * tcam,struct list_head * chg)3623 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
3624 u16 vsig, struct ice_tcam_inf *tcam,
3625 struct list_head *chg)
3626 {
3627 struct ice_chs_chg *p;
3628 int status;
3629
3630 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3631 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3632 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3633
3634 /* if disabling, free the TCAM */
3635 if (!enable) {
3636 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
3637
3638 /* if we have already created a change for this TCAM entry, then
3639 * we need to remove that entry, in order to prevent writing to
3640 * a TCAM entry we no longer will have ownership of.
3641 */
3642 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
3643 tcam->tcam_idx = 0;
3644 tcam->in_use = 0;
3645 return status;
3646 }
3647
3648 /* for re-enabling, reallocate a TCAM */
3649 /* for entries with empty attribute masks, allocate entry from
3650 * the bottom of the TCAM table; otherwise, allocate from the
3651 * top of the table in order to give it higher priority
3652 */
3653 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
3654 &tcam->tcam_idx);
3655 if (status)
3656 return status;
3657
3658 /* add TCAM to change list */
3659 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3660 if (!p)
3661 return -ENOMEM;
3662
3663 /* set don't care masks for TCAM flags */
3664 ice_set_tcam_flags(tcam->attr.mask, dc_msk);
3665
3666 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
3667 tcam->ptg, vsig, 0, tcam->attr.flags,
3668 vl_msk, dc_msk, nm_msk);
3669 if (status)
3670 goto err_ice_prof_tcam_ena_dis;
3671
3672 tcam->in_use = 1;
3673
3674 p->type = ICE_TCAM_ADD;
3675 p->add_tcam_idx = true;
3676 p->prof_id = tcam->prof_id;
3677 p->ptg = tcam->ptg;
3678 p->vsig = 0;
3679 p->tcam_idx = tcam->tcam_idx;
3680
3681 /* log change */
3682 list_add(&p->list_entry, chg);
3683
3684 return 0;
3685
3686 err_ice_prof_tcam_ena_dis:
3687 devm_kfree(ice_hw_to_dev(hw), p);
3688 return status;
3689 }
3690
3691 /**
3692 * ice_ptg_attr_in_use - determine if PTG and attribute pair is in use
3693 * @ptg_attr: pointer to the PTG and attribute pair to check
3694 * @ptgs_used: bitmap that denotes which PTGs are in use
3695 * @attr_used: array of PTG and attributes pairs already used
3696 * @attr_cnt: count of entries in the attr_used array
3697 *
3698 * Return: true if the PTG and attribute pair is in use, false otherwise.
3699 */
3700 static bool
ice_ptg_attr_in_use(struct ice_tcam_inf * ptg_attr,unsigned long * ptgs_used,struct ice_tcam_inf * attr_used[],u16 attr_cnt)3701 ice_ptg_attr_in_use(struct ice_tcam_inf *ptg_attr, unsigned long *ptgs_used,
3702 struct ice_tcam_inf *attr_used[], u16 attr_cnt)
3703 {
3704 u16 i;
3705
3706 if (!test_bit(ptg_attr->ptg, ptgs_used))
3707 return false;
3708
3709 /* the PTG is used, so now look for correct attributes */
3710 for (i = 0; i < attr_cnt; i++)
3711 if (attr_used[i]->ptg == ptg_attr->ptg &&
3712 attr_used[i]->attr.flags == ptg_attr->attr.flags &&
3713 attr_used[i]->attr.mask == ptg_attr->attr.mask)
3714 return true;
3715
3716 return false;
3717 }
3718
3719 /**
3720 * ice_adj_prof_priorities - adjust profile based on priorities
3721 * @hw: pointer to the HW struct
3722 * @blk: hardware block
3723 * @vsig: the VSIG for which to adjust profile priorities
3724 * @chg: the change list
3725 */
3726 static int
ice_adj_prof_priorities(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct list_head * chg)3727 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3728 struct list_head *chg)
3729 {
3730 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3731 struct ice_tcam_inf **attr_used;
3732 struct ice_vsig_prof *t;
3733 u16 attr_used_cnt = 0;
3734 int status = 0;
3735 u16 idx;
3736
3737 attr_used = kcalloc(ICE_MAX_PTG_ATTRS, sizeof(*attr_used), GFP_KERNEL);
3738 if (!attr_used)
3739 return -ENOMEM;
3740
3741 bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3742 idx = vsig & ICE_VSIG_IDX_M;
3743
3744 /* Priority is based on the order in which the profiles are added. The
3745 * newest added profile has highest priority and the oldest added
3746 * profile has the lowest priority. Since the profile property list for
3747 * a VSIG is sorted from newest to oldest, this code traverses the list
3748 * in order and enables the first of each PTG that it finds (that is not
3749 * already enabled); it also disables any duplicate PTGs that it finds
3750 * in the older profiles (that are currently enabled).
3751 */
3752
3753 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3754 list) {
3755 u16 i;
3756
3757 for (i = 0; i < t->tcam_count; i++) {
3758 bool used;
3759
3760 /* Scan the priorities from newest to oldest.
3761 * Make sure that the newest profiles take priority.
3762 */
3763 used = ice_ptg_attr_in_use(&t->tcam[i], ptgs_used,
3764 attr_used, attr_used_cnt);
3765
3766 if (used && t->tcam[i].in_use) {
3767 /* need to mark this PTG as never match, as it
3768 * was already in use and therefore duplicate
3769 * (and lower priority)
3770 */
3771 status = ice_prof_tcam_ena_dis(hw, blk, false,
3772 vsig,
3773 &t->tcam[i],
3774 chg);
3775 if (status)
3776 goto free_attr_used;
3777 } else if (!used && !t->tcam[i].in_use) {
3778 /* need to enable this PTG, as it in not in use
3779 * and not enabled (highest priority)
3780 */
3781 status = ice_prof_tcam_ena_dis(hw, blk, true,
3782 vsig,
3783 &t->tcam[i],
3784 chg);
3785 if (status)
3786 goto free_attr_used;
3787 }
3788
3789 /* keep track of used ptgs */
3790 set_bit(t->tcam[i].ptg, ptgs_used);
3791 if (attr_used_cnt < ICE_MAX_PTG_ATTRS)
3792 attr_used[attr_used_cnt++] = &t->tcam[i];
3793 else
3794 ice_debug(hw, ICE_DBG_INIT, "Warn: ICE_MAX_PTG_ATTRS exceeded\n");
3795 }
3796 }
3797
3798 free_attr_used:
3799 kfree(attr_used);
3800 return status;
3801 }
3802
3803 /**
3804 * ice_add_prof_id_vsig - add profile to VSIG
3805 * @hw: pointer to the HW struct
3806 * @blk: hardware block
3807 * @vsig: the VSIG to which this profile is to be added
3808 * @hdl: the profile handle indicating the profile to add
3809 * @rev: true to add entries to the end of the list
3810 * @chg: the change list
3811 */
3812 static int
ice_add_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl,bool rev,struct list_head * chg)3813 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3814 bool rev, struct list_head *chg)
3815 {
3816 /* Masks that ignore flags */
3817 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3818 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3819 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3820 struct ice_prof_map *map;
3821 struct ice_vsig_prof *t;
3822 struct ice_chs_chg *p;
3823 u16 vsig_idx, i;
3824 int status = 0;
3825
3826 /* Error, if this VSIG already has this profile */
3827 if (ice_has_prof_vsig(hw, blk, vsig, hdl))
3828 return -EEXIST;
3829
3830 /* new VSIG profile structure */
3831 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
3832 if (!t)
3833 return -ENOMEM;
3834
3835 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3836 /* Get the details on the profile specified by the handle ID */
3837 map = ice_search_prof_id(hw, blk, hdl);
3838 if (!map) {
3839 status = -ENOENT;
3840 goto err_ice_add_prof_id_vsig;
3841 }
3842
3843 t->profile_cookie = map->profile_cookie;
3844 t->prof_id = map->prof_id;
3845 t->tcam_count = map->ptg_cnt;
3846
3847 /* create TCAM entries */
3848 for (i = 0; i < map->ptg_cnt; i++) {
3849 u16 tcam_idx;
3850
3851 /* add TCAM to change list */
3852 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3853 if (!p) {
3854 status = -ENOMEM;
3855 goto err_ice_add_prof_id_vsig;
3856 }
3857
3858 /* allocate the TCAM entry index */
3859 /* for entries with empty attribute masks, allocate entry from
3860 * the bottom of the TCAM table; otherwise, allocate from the
3861 * top of the table in order to give it higher priority
3862 */
3863 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
3864 &tcam_idx);
3865 if (status) {
3866 devm_kfree(ice_hw_to_dev(hw), p);
3867 goto err_ice_add_prof_id_vsig;
3868 }
3869
3870 t->tcam[i].ptg = map->ptg[i];
3871 t->tcam[i].prof_id = map->prof_id;
3872 t->tcam[i].tcam_idx = tcam_idx;
3873 t->tcam[i].attr = map->attr[i];
3874 t->tcam[i].in_use = true;
3875
3876 p->type = ICE_TCAM_ADD;
3877 p->add_tcam_idx = true;
3878 p->prof_id = t->tcam[i].prof_id;
3879 p->ptg = t->tcam[i].ptg;
3880 p->vsig = vsig;
3881 p->tcam_idx = t->tcam[i].tcam_idx;
3882
3883 /* set don't care masks for TCAM flags */
3884 ice_set_tcam_flags(t->tcam[i].attr.mask, dc_msk);
3885
3886 /* write the TCAM entry */
3887 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
3888 t->tcam[i].prof_id,
3889 t->tcam[i].ptg, vsig, 0,
3890 t->tcam[i].attr.flags, vl_msk,
3891 dc_msk, nm_msk);
3892 if (status) {
3893 devm_kfree(ice_hw_to_dev(hw), p);
3894 goto err_ice_add_prof_id_vsig;
3895 }
3896
3897 /* log change */
3898 list_add(&p->list_entry, chg);
3899 }
3900
3901 /* add profile to VSIG */
3902 vsig_idx = vsig & ICE_VSIG_IDX_M;
3903 if (rev)
3904 list_add_tail(&t->list,
3905 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3906 else
3907 list_add(&t->list,
3908 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3909
3910 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3911 return status;
3912
3913 err_ice_add_prof_id_vsig:
3914 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3915 /* let caller clean up the change list */
3916 devm_kfree(ice_hw_to_dev(hw), t);
3917 return status;
3918 }
3919
3920 /**
3921 * ice_create_prof_id_vsig - add a new VSIG with a single profile
3922 * @hw: pointer to the HW struct
3923 * @blk: hardware block
3924 * @vsi: the initial VSI that will be in VSIG
3925 * @hdl: the profile handle of the profile that will be added to the VSIG
3926 * @chg: the change list
3927 */
3928 static int
ice_create_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl,struct list_head * chg)3929 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
3930 struct list_head *chg)
3931 {
3932 struct ice_chs_chg *p;
3933 u16 new_vsig;
3934 int status;
3935
3936 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3937 if (!p)
3938 return -ENOMEM;
3939
3940 new_vsig = ice_vsig_alloc(hw, blk);
3941 if (!new_vsig) {
3942 status = -EIO;
3943 goto err_ice_create_prof_id_vsig;
3944 }
3945
3946 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
3947 if (status)
3948 goto err_ice_create_prof_id_vsig;
3949
3950 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
3951 if (status)
3952 goto err_ice_create_prof_id_vsig;
3953
3954 p->type = ICE_VSIG_ADD;
3955 p->vsi = vsi;
3956 p->orig_vsig = ICE_DEFAULT_VSIG;
3957 p->vsig = new_vsig;
3958
3959 list_add(&p->list_entry, chg);
3960
3961 return 0;
3962
3963 err_ice_create_prof_id_vsig:
3964 /* let caller clean up the change list */
3965 devm_kfree(ice_hw_to_dev(hw), p);
3966 return status;
3967 }
3968
3969 /**
3970 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
3971 * @hw: pointer to the HW struct
3972 * @blk: hardware block
3973 * @vsi: the initial VSI that will be in VSIG
3974 * @lst: the list of profile that will be added to the VSIG
3975 * @new_vsig: return of new VSIG
3976 * @chg: the change list
3977 */
3978 static int
ice_create_vsig_from_lst(struct ice_hw * hw,enum ice_block blk,u16 vsi,struct list_head * lst,u16 * new_vsig,struct list_head * chg)3979 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
3980 struct list_head *lst, u16 *new_vsig,
3981 struct list_head *chg)
3982 {
3983 struct ice_vsig_prof *t;
3984 int status;
3985 u16 vsig;
3986
3987 vsig = ice_vsig_alloc(hw, blk);
3988 if (!vsig)
3989 return -EIO;
3990
3991 status = ice_move_vsi(hw, blk, vsi, vsig, chg);
3992 if (status)
3993 return status;
3994
3995 list_for_each_entry(t, lst, list) {
3996 /* Reverse the order here since we are copying the list */
3997 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
3998 true, chg);
3999 if (status)
4000 return status;
4001 }
4002
4003 *new_vsig = vsig;
4004
4005 return 0;
4006 }
4007
4008 /**
4009 * ice_find_prof_vsig - find a VSIG with a specific profile handle
4010 * @hw: pointer to the HW struct
4011 * @blk: hardware block
4012 * @hdl: the profile handle of the profile to search for
4013 * @vsig: returns the VSIG with the matching profile
4014 */
4015 static bool
ice_find_prof_vsig(struct ice_hw * hw,enum ice_block blk,u64 hdl,u16 * vsig)4016 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
4017 {
4018 struct ice_vsig_prof *t;
4019 struct list_head lst;
4020 int status;
4021
4022 INIT_LIST_HEAD(&lst);
4023
4024 t = kzalloc(sizeof(*t), GFP_KERNEL);
4025 if (!t)
4026 return false;
4027
4028 t->profile_cookie = hdl;
4029 list_add(&t->list, &lst);
4030
4031 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
4032
4033 list_del(&t->list);
4034 kfree(t);
4035
4036 return !status;
4037 }
4038
4039 /**
4040 * ice_add_prof_id_flow - add profile flow
4041 * @hw: pointer to the HW struct
4042 * @blk: hardware block
4043 * @vsi: the VSI to enable with the profile specified by ID
4044 * @hdl: profile handle
4045 *
4046 * Calling this function will update the hardware tables to enable the
4047 * profile indicated by the ID parameter for the VSIs specified in the VSI
4048 * array. Once successfully called, the flow will be enabled.
4049 */
4050 int
ice_add_prof_id_flow(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl)4051 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4052 {
4053 struct ice_vsig_prof *tmp1, *del1;
4054 struct ice_chs_chg *tmp, *del;
4055 struct list_head union_lst;
4056 struct list_head chg;
4057 int status;
4058 u16 vsig;
4059
4060 INIT_LIST_HEAD(&union_lst);
4061 INIT_LIST_HEAD(&chg);
4062
4063 /* Get profile */
4064 status = ice_get_prof(hw, blk, hdl, &chg);
4065 if (status)
4066 return status;
4067
4068 /* determine if VSI is already part of a VSIG */
4069 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4070 if (!status && vsig) {
4071 bool only_vsi;
4072 u16 or_vsig;
4073 u16 ref;
4074
4075 /* found in VSIG */
4076 or_vsig = vsig;
4077
4078 /* make sure that there is no overlap/conflict between the new
4079 * characteristics and the existing ones; we don't support that
4080 * scenario
4081 */
4082 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
4083 status = -EEXIST;
4084 goto err_ice_add_prof_id_flow;
4085 }
4086
4087 /* last VSI in the VSIG? */
4088 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4089 if (status)
4090 goto err_ice_add_prof_id_flow;
4091 only_vsi = (ref == 1);
4092
4093 /* create a union of the current profiles and the one being
4094 * added
4095 */
4096 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
4097 if (status)
4098 goto err_ice_add_prof_id_flow;
4099
4100 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
4101 if (status)
4102 goto err_ice_add_prof_id_flow;
4103
4104 /* search for an existing VSIG with an exact charc match */
4105 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
4106 if (!status) {
4107 /* move VSI to the VSIG that matches */
4108 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4109 if (status)
4110 goto err_ice_add_prof_id_flow;
4111
4112 /* VSI has been moved out of or_vsig. If the or_vsig had
4113 * only that VSI it is now empty and can be removed.
4114 */
4115 if (only_vsi) {
4116 status = ice_rem_vsig(hw, blk, or_vsig, &chg);
4117 if (status)
4118 goto err_ice_add_prof_id_flow;
4119 }
4120 } else if (only_vsi) {
4121 /* If the original VSIG only contains one VSI, then it
4122 * will be the requesting VSI. In this case the VSI is
4123 * not sharing entries and we can simply add the new
4124 * profile to the VSIG.
4125 */
4126 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
4127 &chg);
4128 if (status)
4129 goto err_ice_add_prof_id_flow;
4130
4131 /* Adjust priorities */
4132 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4133 if (status)
4134 goto err_ice_add_prof_id_flow;
4135 } else {
4136 /* No match, so we need a new VSIG */
4137 status = ice_create_vsig_from_lst(hw, blk, vsi,
4138 &union_lst, &vsig,
4139 &chg);
4140 if (status)
4141 goto err_ice_add_prof_id_flow;
4142
4143 /* Adjust priorities */
4144 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4145 if (status)
4146 goto err_ice_add_prof_id_flow;
4147 }
4148 } else {
4149 /* need to find or add a VSIG */
4150 /* search for an existing VSIG with an exact charc match */
4151 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
4152 /* found an exact match */
4153 /* add or move VSI to the VSIG that matches */
4154 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4155 if (status)
4156 goto err_ice_add_prof_id_flow;
4157 } else {
4158 /* we did not find an exact match */
4159 /* we need to add a VSIG */
4160 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
4161 &chg);
4162 if (status)
4163 goto err_ice_add_prof_id_flow;
4164 }
4165 }
4166
4167 /* update hardware */
4168 if (!status)
4169 status = ice_upd_prof_hw(hw, blk, &chg);
4170
4171 err_ice_add_prof_id_flow:
4172 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4173 list_del(&del->list_entry);
4174 devm_kfree(ice_hw_to_dev(hw), del);
4175 }
4176
4177 list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
4178 list_del(&del1->list);
4179 devm_kfree(ice_hw_to_dev(hw), del1);
4180 }
4181
4182 return status;
4183 }
4184
4185 /**
4186 * ice_flow_assoc_fdir_prof - add an FDIR profile for main/ctrl VSI
4187 * @hw: pointer to the HW struct
4188 * @blk: HW block
4189 * @dest_vsi: dest VSI
4190 * @fdir_vsi: fdir programming VSI
4191 * @hdl: profile handle
4192 *
4193 * Update the hardware tables to enable the FDIR profile indicated by @hdl for
4194 * the VSI specified by @dest_vsi. On success, the flow will be enabled.
4195 *
4196 * Return: 0 on success or negative errno on failure.
4197 */
4198 int
ice_flow_assoc_fdir_prof(struct ice_hw * hw,enum ice_block blk,u16 dest_vsi,u16 fdir_vsi,u64 hdl)4199 ice_flow_assoc_fdir_prof(struct ice_hw *hw, enum ice_block blk,
4200 u16 dest_vsi, u16 fdir_vsi, u64 hdl)
4201 {
4202 u16 vsi_num;
4203 int status;
4204
4205 vsi_num = ice_get_hw_vsi_num(hw, dest_vsi);
4206 status = ice_add_prof_id_flow(hw, blk, vsi_num, hdl);
4207 if (status) {
4208 ice_debug(hw, ICE_DBG_FLOW, "Adding HW profile failed for main VSI flow entry: %d\n",
4209 status);
4210 return status;
4211 }
4212
4213 if (blk != ICE_BLK_FD)
4214 return 0;
4215
4216 vsi_num = ice_get_hw_vsi_num(hw, fdir_vsi);
4217 status = ice_add_prof_id_flow(hw, blk, vsi_num, hdl);
4218 if (status) {
4219 ice_debug(hw, ICE_DBG_FLOW, "Adding HW profile failed for ctrl VSI flow entry: %d\n",
4220 status);
4221 goto err;
4222 }
4223
4224 return 0;
4225
4226 err:
4227 vsi_num = ice_get_hw_vsi_num(hw, dest_vsi);
4228 ice_rem_prof_id_flow(hw, blk, vsi_num, hdl);
4229
4230 return status;
4231 }
4232
4233 /**
4234 * ice_rem_prof_from_list - remove a profile from list
4235 * @hw: pointer to the HW struct
4236 * @lst: list to remove the profile from
4237 * @hdl: the profile handle indicating the profile to remove
4238 */
4239 static int
ice_rem_prof_from_list(struct ice_hw * hw,struct list_head * lst,u64 hdl)4240 ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
4241 {
4242 struct ice_vsig_prof *ent, *tmp;
4243
4244 list_for_each_entry_safe(ent, tmp, lst, list)
4245 if (ent->profile_cookie == hdl) {
4246 list_del(&ent->list);
4247 devm_kfree(ice_hw_to_dev(hw), ent);
4248 return 0;
4249 }
4250
4251 return -ENOENT;
4252 }
4253
4254 /**
4255 * ice_rem_prof_id_flow - remove flow
4256 * @hw: pointer to the HW struct
4257 * @blk: hardware block
4258 * @vsi: the VSI from which to remove the profile specified by ID
4259 * @hdl: profile tracking handle
4260 *
4261 * Calling this function will update the hardware tables to remove the
4262 * profile indicated by the ID parameter for the VSIs specified in the VSI
4263 * array. Once successfully called, the flow will be disabled.
4264 */
4265 int
ice_rem_prof_id_flow(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl)4266 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4267 {
4268 struct ice_vsig_prof *tmp1, *del1;
4269 struct ice_chs_chg *tmp, *del;
4270 struct list_head chg, copy;
4271 int status;
4272 u16 vsig;
4273
4274 INIT_LIST_HEAD(©);
4275 INIT_LIST_HEAD(&chg);
4276
4277 /* determine if VSI is already part of a VSIG */
4278 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4279 if (!status && vsig) {
4280 bool last_profile;
4281 bool only_vsi;
4282 u16 ref;
4283
4284 /* found in VSIG */
4285 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
4286 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4287 if (status)
4288 goto err_ice_rem_prof_id_flow;
4289 only_vsi = (ref == 1);
4290
4291 if (only_vsi) {
4292 /* If the original VSIG only contains one reference,
4293 * which will be the requesting VSI, then the VSI is not
4294 * sharing entries and we can simply remove the specific
4295 * characteristics from the VSIG.
4296 */
4297
4298 if (last_profile) {
4299 /* If there are no profiles left for this VSIG,
4300 * then simply remove the VSIG.
4301 */
4302 status = ice_rem_vsig(hw, blk, vsig, &chg);
4303 if (status)
4304 goto err_ice_rem_prof_id_flow;
4305 } else {
4306 status = ice_rem_prof_id_vsig(hw, blk, vsig,
4307 hdl, &chg);
4308 if (status)
4309 goto err_ice_rem_prof_id_flow;
4310
4311 /* Adjust priorities */
4312 status = ice_adj_prof_priorities(hw, blk, vsig,
4313 &chg);
4314 if (status)
4315 goto err_ice_rem_prof_id_flow;
4316 }
4317
4318 } else {
4319 /* Make a copy of the VSIG's list of Profiles */
4320 status = ice_get_profs_vsig(hw, blk, vsig, ©);
4321 if (status)
4322 goto err_ice_rem_prof_id_flow;
4323
4324 /* Remove specified profile entry from the list */
4325 status = ice_rem_prof_from_list(hw, ©, hdl);
4326 if (status)
4327 goto err_ice_rem_prof_id_flow;
4328
4329 if (list_empty(©)) {
4330 status = ice_move_vsi(hw, blk, vsi,
4331 ICE_DEFAULT_VSIG, &chg);
4332 if (status)
4333 goto err_ice_rem_prof_id_flow;
4334
4335 } else if (!ice_find_dup_props_vsig(hw, blk, ©,
4336 &vsig)) {
4337 /* found an exact match */
4338 /* add or move VSI to the VSIG that matches */
4339 /* Search for a VSIG with a matching profile
4340 * list
4341 */
4342
4343 /* Found match, move VSI to the matching VSIG */
4344 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4345 if (status)
4346 goto err_ice_rem_prof_id_flow;
4347 } else {
4348 /* since no existing VSIG supports this
4349 * characteristic pattern, we need to create a
4350 * new VSIG and TCAM entries
4351 */
4352 status = ice_create_vsig_from_lst(hw, blk, vsi,
4353 ©, &vsig,
4354 &chg);
4355 if (status)
4356 goto err_ice_rem_prof_id_flow;
4357
4358 /* Adjust priorities */
4359 status = ice_adj_prof_priorities(hw, blk, vsig,
4360 &chg);
4361 if (status)
4362 goto err_ice_rem_prof_id_flow;
4363 }
4364 }
4365 } else {
4366 status = -ENOENT;
4367 }
4368
4369 /* update hardware tables */
4370 if (!status)
4371 status = ice_upd_prof_hw(hw, blk, &chg);
4372
4373 err_ice_rem_prof_id_flow:
4374 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4375 list_del(&del->list_entry);
4376 devm_kfree(ice_hw_to_dev(hw), del);
4377 }
4378
4379 list_for_each_entry_safe(del1, tmp1, ©, list) {
4380 list_del(&del1->list);
4381 devm_kfree(ice_hw_to_dev(hw), del1);
4382 }
4383
4384 return status;
4385 }
4386