xref: /linux/fs/udf/inode.c (revision c7bfaff47a17ec01d9d8b648a7266103cb7a305b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * inode.c
4  *
5  * PURPOSE
6  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
7  *
8  * COPYRIGHT
9  *  (C) 1998 Dave Boynton
10  *  (C) 1998-2004 Ben Fennema
11  *  (C) 1999-2000 Stelias Computing Inc
12  *
13  * HISTORY
14  *
15  *  10/04/98 dgb  Added rudimentary directory functions
16  *  10/07/98      Fully working udf_block_map! It works!
17  *  11/25/98      bmap altered to better support extents
18  *  12/06/98 blf  partition support in udf_iget, udf_block_map
19  *                and udf_read_inode
20  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
21  *                block boundaries (which is not actually allowed)
22  *  12/20/98      added support for strategy 4096
23  *  03/07/99      rewrote udf_block_map (again)
24  *                New funcs, inode_bmap, udf_next_aext
25  *  04/19/99      Support for writing device EA's for major/minor #
26  */
27 
28 #include "udfdecl.h"
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/pagemap.h>
32 #include <linux/writeback.h>
33 #include <linux/slab.h>
34 #include <linux/crc-itu-t.h>
35 #include <linux/mpage.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 
39 #include "udf_i.h"
40 #include "udf_sb.h"
41 
42 #define EXTENT_MERGE_SIZE 5
43 
44 #define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45 			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46 			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47 
48 #define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49 			 FE_PERM_O_DELETE)
50 
51 struct udf_map_rq;
52 
53 static umode_t udf_convert_permissions(struct fileEntry *);
54 static int udf_update_inode(struct inode *, int);
55 static int udf_sync_inode(struct inode *inode);
56 static int udf_alloc_i_data(struct inode *inode, size_t size);
57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58 static int udf_insert_aext(struct inode *, struct extent_position,
59 			   struct kernel_lb_addr, uint32_t);
60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61 			      struct kernel_long_ad *, int *);
62 static void udf_prealloc_extents(struct inode *, int, int,
63 				 struct kernel_long_ad *, int *);
64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66 			      int, struct extent_position *);
67 static int udf_get_block_wb(struct inode *inode, sector_t block,
68 			    struct buffer_head *bh_result, int create);
69 
__udf_clear_extent_cache(struct inode * inode)70 static void __udf_clear_extent_cache(struct inode *inode)
71 {
72 	struct udf_inode_info *iinfo = UDF_I(inode);
73 
74 	if (iinfo->cached_extent.lstart != -1) {
75 		brelse(iinfo->cached_extent.epos.bh);
76 		iinfo->cached_extent.lstart = -1;
77 	}
78 }
79 
80 /* Invalidate extent cache */
udf_clear_extent_cache(struct inode * inode)81 static void udf_clear_extent_cache(struct inode *inode)
82 {
83 	struct udf_inode_info *iinfo = UDF_I(inode);
84 
85 	spin_lock(&iinfo->i_extent_cache_lock);
86 	__udf_clear_extent_cache(inode);
87 	spin_unlock(&iinfo->i_extent_cache_lock);
88 }
89 
90 /* Return contents of extent cache */
udf_read_extent_cache(struct inode * inode,loff_t bcount,loff_t * lbcount,struct extent_position * pos)91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 				 loff_t *lbcount, struct extent_position *pos)
93 {
94 	struct udf_inode_info *iinfo = UDF_I(inode);
95 	int ret = 0;
96 
97 	spin_lock(&iinfo->i_extent_cache_lock);
98 	if ((iinfo->cached_extent.lstart <= bcount) &&
99 	    (iinfo->cached_extent.lstart != -1)) {
100 		/* Cache hit */
101 		*lbcount = iinfo->cached_extent.lstart;
102 		memcpy(pos, &iinfo->cached_extent.epos,
103 		       sizeof(struct extent_position));
104 		if (pos->bh)
105 			get_bh(pos->bh);
106 		ret = 1;
107 	}
108 	spin_unlock(&iinfo->i_extent_cache_lock);
109 	return ret;
110 }
111 
112 /* Add extent to extent cache */
udf_update_extent_cache(struct inode * inode,loff_t estart,struct extent_position * pos)113 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 				    struct extent_position *pos)
115 {
116 	struct udf_inode_info *iinfo = UDF_I(inode);
117 
118 	spin_lock(&iinfo->i_extent_cache_lock);
119 	/* Invalidate previously cached extent */
120 	__udf_clear_extent_cache(inode);
121 	if (pos->bh)
122 		get_bh(pos->bh);
123 	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124 	iinfo->cached_extent.lstart = estart;
125 	switch (iinfo->i_alloc_type) {
126 	case ICBTAG_FLAG_AD_SHORT:
127 		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128 		break;
129 	case ICBTAG_FLAG_AD_LONG:
130 		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131 		break;
132 	}
133 	spin_unlock(&iinfo->i_extent_cache_lock);
134 }
135 
udf_evict_inode(struct inode * inode)136 void udf_evict_inode(struct inode *inode)
137 {
138 	struct udf_inode_info *iinfo = UDF_I(inode);
139 	int want_delete = 0;
140 
141 	if (!is_bad_inode(inode)) {
142 		if (!inode->i_nlink) {
143 			want_delete = 1;
144 			udf_setsize(inode, 0);
145 			udf_update_inode(inode, IS_SYNC(inode));
146 		}
147 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148 		    inode->i_size != iinfo->i_lenExtents) {
149 			udf_warn(inode->i_sb,
150 				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151 				 inode->i_ino, inode->i_mode,
152 				 (unsigned long long)inode->i_size,
153 				 (unsigned long long)iinfo->i_lenExtents);
154 		}
155 	}
156 	truncate_inode_pages_final(&inode->i_data);
157 	invalidate_inode_buffers(inode);
158 	clear_inode(inode);
159 	kfree(iinfo->i_data);
160 	iinfo->i_data = NULL;
161 	udf_clear_extent_cache(inode);
162 	if (want_delete) {
163 		udf_free_inode(inode);
164 	}
165 }
166 
udf_write_failed(struct address_space * mapping,loff_t to)167 static void udf_write_failed(struct address_space *mapping, loff_t to)
168 {
169 	struct inode *inode = mapping->host;
170 	struct udf_inode_info *iinfo = UDF_I(inode);
171 	loff_t isize = inode->i_size;
172 
173 	if (to > isize) {
174 		truncate_pagecache(inode, isize);
175 		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 			down_write(&iinfo->i_data_sem);
177 			udf_clear_extent_cache(inode);
178 			udf_truncate_extents(inode);
179 			up_write(&iinfo->i_data_sem);
180 		}
181 	}
182 }
183 
udf_adinicb_writepages(struct address_space * mapping,struct writeback_control * wbc)184 static int udf_adinicb_writepages(struct address_space *mapping,
185 		      struct writeback_control *wbc)
186 {
187 	struct inode *inode = mapping->host;
188 	struct udf_inode_info *iinfo = UDF_I(inode);
189 	struct folio *folio = NULL;
190 	int error = 0;
191 
192 	while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
193 		BUG_ON(!folio_test_locked(folio));
194 		BUG_ON(folio->index != 0);
195 		memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio,
196 				0, i_size_read(inode));
197 		folio_unlock(folio);
198 	}
199 
200 	mark_inode_dirty(inode);
201 	return 0;
202 }
203 
udf_writepages(struct address_space * mapping,struct writeback_control * wbc)204 static int udf_writepages(struct address_space *mapping,
205 			  struct writeback_control *wbc)
206 {
207 	struct inode *inode = mapping->host;
208 	struct udf_inode_info *iinfo = UDF_I(inode);
209 
210 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
211 		return udf_adinicb_writepages(mapping, wbc);
212 	return mpage_writepages(mapping, wbc, udf_get_block_wb);
213 }
214 
udf_adinicb_read_folio(struct folio * folio)215 static void udf_adinicb_read_folio(struct folio *folio)
216 {
217 	struct inode *inode = folio->mapping->host;
218 	struct udf_inode_info *iinfo = UDF_I(inode);
219 	loff_t isize = i_size_read(inode);
220 
221 	folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize);
222 	folio_mark_uptodate(folio);
223 }
224 
udf_read_folio(struct file * file,struct folio * folio)225 static int udf_read_folio(struct file *file, struct folio *folio)
226 {
227 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
228 
229 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
230 		udf_adinicb_read_folio(folio);
231 		folio_unlock(folio);
232 		return 0;
233 	}
234 	return mpage_read_folio(folio, udf_get_block);
235 }
236 
udf_readahead(struct readahead_control * rac)237 static void udf_readahead(struct readahead_control *rac)
238 {
239 	struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
240 
241 	/*
242 	 * No readahead needed for in-ICB files and udf_get_block() would get
243 	 * confused for such file anyway.
244 	 */
245 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
246 		return;
247 
248 	mpage_readahead(rac, udf_get_block);
249 }
250 
udf_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)251 static int udf_write_begin(const struct kiocb *iocb,
252 			   struct address_space *mapping,
253 			   loff_t pos, unsigned len,
254 			   struct folio **foliop, void **fsdata)
255 {
256 	struct file *file = iocb->ki_filp;
257 	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
258 	struct folio *folio;
259 	int ret;
260 
261 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
262 		ret = block_write_begin(mapping, pos, len, foliop,
263 					udf_get_block);
264 		if (unlikely(ret))
265 			udf_write_failed(mapping, pos + len);
266 		return ret;
267 	}
268 	if (WARN_ON_ONCE(pos >= PAGE_SIZE))
269 		return -EIO;
270 	folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN,
271 			mapping_gfp_mask(mapping));
272 	if (IS_ERR(folio))
273 		return PTR_ERR(folio);
274 	*foliop = folio;
275 	if (!folio_test_uptodate(folio))
276 		udf_adinicb_read_folio(folio);
277 	return 0;
278 }
279 
udf_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)280 static int udf_write_end(const struct kiocb *iocb,
281 			 struct address_space *mapping,
282 			 loff_t pos, unsigned len, unsigned copied,
283 			 struct folio *folio, void *fsdata)
284 {
285 	struct inode *inode = file_inode(iocb->ki_filp);
286 	loff_t last_pos;
287 
288 	if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
289 		return generic_write_end(iocb, mapping, pos, len, copied, folio,
290 					 fsdata);
291 	last_pos = pos + copied;
292 	if (last_pos > inode->i_size)
293 		i_size_write(inode, last_pos);
294 	folio_mark_dirty(folio);
295 	folio_unlock(folio);
296 	folio_put(folio);
297 
298 	return copied;
299 }
300 
udf_direct_IO(struct kiocb * iocb,struct iov_iter * iter)301 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
302 {
303 	struct file *file = iocb->ki_filp;
304 	struct address_space *mapping = file->f_mapping;
305 	struct inode *inode = mapping->host;
306 	size_t count = iov_iter_count(iter);
307 	ssize_t ret;
308 
309 	/* Fallback to buffered IO for in-ICB files */
310 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
311 		return 0;
312 	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
313 	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
314 		udf_write_failed(mapping, iocb->ki_pos + count);
315 	return ret;
316 }
317 
udf_bmap(struct address_space * mapping,sector_t block)318 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
319 {
320 	struct udf_inode_info *iinfo = UDF_I(mapping->host);
321 
322 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
323 		return -EINVAL;
324 	return generic_block_bmap(mapping, block, udf_get_block);
325 }
326 
327 const struct address_space_operations udf_aops = {
328 	.dirty_folio	= block_dirty_folio,
329 	.invalidate_folio = block_invalidate_folio,
330 	.read_folio	= udf_read_folio,
331 	.readahead	= udf_readahead,
332 	.writepages	= udf_writepages,
333 	.write_begin	= udf_write_begin,
334 	.write_end	= udf_write_end,
335 	.direct_IO	= udf_direct_IO,
336 	.bmap		= udf_bmap,
337 	.migrate_folio	= buffer_migrate_folio,
338 };
339 
340 /*
341  * Expand file stored in ICB to a normal one-block-file
342  *
343  * This function requires i_mutex held
344  */
udf_expand_file_adinicb(struct inode * inode)345 int udf_expand_file_adinicb(struct inode *inode)
346 {
347 	struct folio *folio;
348 	struct udf_inode_info *iinfo = UDF_I(inode);
349 	int err;
350 
351 	WARN_ON_ONCE(!inode_is_locked(inode));
352 	if (!iinfo->i_lenAlloc) {
353 		down_write(&iinfo->i_data_sem);
354 		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
355 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
356 		else
357 			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
358 		up_write(&iinfo->i_data_sem);
359 		mark_inode_dirty(inode);
360 		return 0;
361 	}
362 
363 	folio = __filemap_get_folio(inode->i_mapping, 0,
364 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
365 	if (IS_ERR(folio))
366 		return PTR_ERR(folio);
367 
368 	if (!folio_test_uptodate(folio))
369 		udf_adinicb_read_folio(folio);
370 	down_write(&iinfo->i_data_sem);
371 	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
372 	       iinfo->i_lenAlloc);
373 	iinfo->i_lenAlloc = 0;
374 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
375 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
376 	else
377 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
378 	folio_mark_dirty(folio);
379 	folio_unlock(folio);
380 	up_write(&iinfo->i_data_sem);
381 	err = filemap_fdatawrite(inode->i_mapping);
382 	if (err) {
383 		/* Restore everything back so that we don't lose data... */
384 		folio_lock(folio);
385 		down_write(&iinfo->i_data_sem);
386 		memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
387 				folio, 0, inode->i_size);
388 		folio_unlock(folio);
389 		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
390 		iinfo->i_lenAlloc = inode->i_size;
391 		up_write(&iinfo->i_data_sem);
392 	}
393 	folio_put(folio);
394 	mark_inode_dirty(inode);
395 
396 	return err;
397 }
398 
399 #define UDF_MAP_CREATE		0x01	/* Mapping can allocate new blocks */
400 #define UDF_MAP_NOPREALLOC	0x02	/* Do not preallocate blocks */
401 
402 #define UDF_BLK_MAPPED	0x01	/* Block was successfully mapped */
403 #define UDF_BLK_NEW	0x02	/* Block was freshly allocated */
404 
405 struct udf_map_rq {
406 	sector_t lblk;
407 	udf_pblk_t pblk;
408 	int iflags;		/* UDF_MAP_ flags determining behavior */
409 	int oflags;		/* UDF_BLK_ flags reporting results */
410 };
411 
udf_map_block(struct inode * inode,struct udf_map_rq * map)412 static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
413 {
414 	int ret;
415 	struct udf_inode_info *iinfo = UDF_I(inode);
416 
417 	if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
418 		return -EFSCORRUPTED;
419 
420 	map->oflags = 0;
421 	if (!(map->iflags & UDF_MAP_CREATE)) {
422 		struct kernel_lb_addr eloc;
423 		uint32_t elen;
424 		sector_t offset;
425 		struct extent_position epos = {};
426 		int8_t etype;
427 
428 		down_read(&iinfo->i_data_sem);
429 		ret = inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset,
430 				 &etype);
431 		if (ret < 0)
432 			goto out_read;
433 		if (ret > 0 && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
434 			map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
435 							offset);
436 			map->oflags |= UDF_BLK_MAPPED;
437 			ret = 0;
438 		}
439 out_read:
440 		up_read(&iinfo->i_data_sem);
441 		brelse(epos.bh);
442 
443 		return ret;
444 	}
445 
446 	down_write(&iinfo->i_data_sem);
447 	/*
448 	 * Block beyond EOF and prealloc extents? Just discard preallocation
449 	 * as it is not useful and complicates things.
450 	 */
451 	if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
452 		udf_discard_prealloc(inode);
453 	udf_clear_extent_cache(inode);
454 	ret = inode_getblk(inode, map);
455 	up_write(&iinfo->i_data_sem);
456 	return ret;
457 }
458 
__udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int flags)459 static int __udf_get_block(struct inode *inode, sector_t block,
460 			   struct buffer_head *bh_result, int flags)
461 {
462 	int err;
463 	struct udf_map_rq map = {
464 		.lblk = block,
465 		.iflags = flags,
466 	};
467 
468 	err = udf_map_block(inode, &map);
469 	if (err < 0)
470 		return err;
471 	if (map.oflags & UDF_BLK_MAPPED) {
472 		map_bh(bh_result, inode->i_sb, map.pblk);
473 		if (map.oflags & UDF_BLK_NEW)
474 			set_buffer_new(bh_result);
475 	}
476 	return 0;
477 }
478 
udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)479 int udf_get_block(struct inode *inode, sector_t block,
480 		  struct buffer_head *bh_result, int create)
481 {
482 	int flags = create ? UDF_MAP_CREATE : 0;
483 
484 	/*
485 	 * We preallocate blocks only for regular files. It also makes sense
486 	 * for directories but there's a problem when to drop the
487 	 * preallocation. We might use some delayed work for that but I feel
488 	 * it's overengineering for a filesystem like UDF.
489 	 */
490 	if (!S_ISREG(inode->i_mode))
491 		flags |= UDF_MAP_NOPREALLOC;
492 	return __udf_get_block(inode, block, bh_result, flags);
493 }
494 
495 /*
496  * We shouldn't be allocating blocks on page writeback since we allocate them
497  * on page fault. We can spot dirty buffers without allocated blocks though
498  * when truncate expands file. These however don't have valid data so we can
499  * safely ignore them. So never allocate blocks from page writeback.
500  */
udf_get_block_wb(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)501 static int udf_get_block_wb(struct inode *inode, sector_t block,
502 			    struct buffer_head *bh_result, int create)
503 {
504 	return __udf_get_block(inode, block, bh_result, 0);
505 }
506 
507 /* Extend the file with new blocks totaling 'new_block_bytes',
508  * return the number of extents added
509  */
udf_do_extend_file(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,loff_t new_block_bytes)510 static int udf_do_extend_file(struct inode *inode,
511 			      struct extent_position *last_pos,
512 			      struct kernel_long_ad *last_ext,
513 			      loff_t new_block_bytes)
514 {
515 	uint32_t add;
516 	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
517 	struct super_block *sb = inode->i_sb;
518 	struct udf_inode_info *iinfo;
519 	int err;
520 
521 	/* The previous extent is fake and we should not extend by anything
522 	 * - there's nothing to do... */
523 	if (!new_block_bytes && fake)
524 		return 0;
525 
526 	iinfo = UDF_I(inode);
527 	/* Round the last extent up to a multiple of block size */
528 	if (last_ext->extLength & (sb->s_blocksize - 1)) {
529 		last_ext->extLength =
530 			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
531 			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
532 			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
533 		iinfo->i_lenExtents =
534 			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
535 			~(sb->s_blocksize - 1);
536 	}
537 
538 	add = 0;
539 	/* Can we merge with the previous extent? */
540 	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
541 					EXT_NOT_RECORDED_NOT_ALLOCATED) {
542 		add = (1 << 30) - sb->s_blocksize -
543 			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
544 		if (add > new_block_bytes)
545 			add = new_block_bytes;
546 		new_block_bytes -= add;
547 		last_ext->extLength += add;
548 	}
549 
550 	if (fake) {
551 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
552 				   last_ext->extLength, 1);
553 		if (err < 0)
554 			goto out_err;
555 		count++;
556 	} else {
557 		struct kernel_lb_addr tmploc;
558 		uint32_t tmplen;
559 		int8_t tmptype;
560 
561 		udf_write_aext(inode, last_pos, &last_ext->extLocation,
562 				last_ext->extLength, 1);
563 
564 		/*
565 		 * We've rewritten the last extent. If we are going to add
566 		 * more extents, we may need to enter possible following
567 		 * empty indirect extent.
568 		 */
569 		if (new_block_bytes) {
570 			err = udf_next_aext(inode, last_pos, &tmploc, &tmplen,
571 					    &tmptype, 0);
572 			if (err < 0)
573 				goto out_err;
574 		}
575 	}
576 	iinfo->i_lenExtents += add;
577 
578 	/* Managed to do everything necessary? */
579 	if (!new_block_bytes)
580 		goto out;
581 
582 	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
583 	last_ext->extLocation.logicalBlockNum = 0;
584 	last_ext->extLocation.partitionReferenceNum = 0;
585 	add = (1 << 30) - sb->s_blocksize;
586 	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
587 
588 	/* Create enough extents to cover the whole hole */
589 	while (new_block_bytes > add) {
590 		new_block_bytes -= add;
591 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
592 				   last_ext->extLength, 1);
593 		if (err)
594 			goto out_err;
595 		iinfo->i_lenExtents += add;
596 		count++;
597 	}
598 	if (new_block_bytes) {
599 		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
600 			new_block_bytes;
601 		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
602 				   last_ext->extLength, 1);
603 		if (err)
604 			goto out_err;
605 		iinfo->i_lenExtents += new_block_bytes;
606 		count++;
607 	}
608 
609 out:
610 	/* last_pos should point to the last written extent... */
611 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
612 		last_pos->offset -= sizeof(struct short_ad);
613 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
614 		last_pos->offset -= sizeof(struct long_ad);
615 	else
616 		return -EIO;
617 
618 	return count;
619 out_err:
620 	/* Remove extents we've created so far */
621 	udf_clear_extent_cache(inode);
622 	udf_truncate_extents(inode);
623 	return err;
624 }
625 
626 /* Extend the final block of the file to final_block_len bytes */
udf_do_extend_final_block(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,uint32_t new_elen)627 static void udf_do_extend_final_block(struct inode *inode,
628 				      struct extent_position *last_pos,
629 				      struct kernel_long_ad *last_ext,
630 				      uint32_t new_elen)
631 {
632 	uint32_t added_bytes;
633 
634 	/*
635 	 * Extent already large enough? It may be already rounded up to block
636 	 * size...
637 	 */
638 	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
639 		return;
640 	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
641 	last_ext->extLength += added_bytes;
642 	UDF_I(inode)->i_lenExtents += added_bytes;
643 
644 	udf_write_aext(inode, last_pos, &last_ext->extLocation,
645 			last_ext->extLength, 1);
646 }
647 
udf_extend_file(struct inode * inode,loff_t newsize)648 static int udf_extend_file(struct inode *inode, loff_t newsize)
649 {
650 
651 	struct extent_position epos;
652 	struct kernel_lb_addr eloc;
653 	uint32_t elen;
654 	int8_t etype;
655 	struct super_block *sb = inode->i_sb;
656 	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
657 	loff_t new_elen;
658 	int adsize;
659 	struct udf_inode_info *iinfo = UDF_I(inode);
660 	struct kernel_long_ad extent;
661 	int err = 0;
662 	bool within_last_ext;
663 
664 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
665 		adsize = sizeof(struct short_ad);
666 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
667 		adsize = sizeof(struct long_ad);
668 	else
669 		BUG();
670 
671 	down_write(&iinfo->i_data_sem);
672 	/*
673 	 * When creating hole in file, just don't bother with preserving
674 	 * preallocation. It likely won't be very useful anyway.
675 	 */
676 	udf_discard_prealloc(inode);
677 
678 	err = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset, &etype);
679 	if (err < 0)
680 		goto out;
681 	within_last_ext = (err == 1);
682 	/* We don't expect extents past EOF... */
683 	WARN_ON_ONCE(within_last_ext &&
684 		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
685 
686 	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
687 	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
688 		/* File has no extents at all or has empty last
689 		 * indirect extent! Create a fake extent... */
690 		extent.extLocation.logicalBlockNum = 0;
691 		extent.extLocation.partitionReferenceNum = 0;
692 		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
693 	} else {
694 		epos.offset -= adsize;
695 		err = udf_next_aext(inode, &epos, &extent.extLocation,
696 				    &extent.extLength, &etype, 0);
697 		if (err <= 0)
698 			goto out;
699 		extent.extLength |= etype << 30;
700 	}
701 
702 	new_elen = ((loff_t)offset << inode->i_blkbits) |
703 					(newsize & (sb->s_blocksize - 1));
704 
705 	/* File has extent covering the new size (could happen when extending
706 	 * inside a block)?
707 	 */
708 	if (within_last_ext) {
709 		/* Extending file within the last file block */
710 		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
711 	} else {
712 		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
713 	}
714 
715 	if (err < 0)
716 		goto out;
717 	err = 0;
718 out:
719 	brelse(epos.bh);
720 	up_write(&iinfo->i_data_sem);
721 	return err;
722 }
723 
inode_getblk(struct inode * inode,struct udf_map_rq * map)724 static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
725 {
726 	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
727 	struct extent_position prev_epos, cur_epos, next_epos;
728 	int count = 0, startnum = 0, endnum = 0;
729 	uint32_t elen = 0, tmpelen;
730 	struct kernel_lb_addr eloc, tmpeloc;
731 	int c = 1;
732 	loff_t lbcount = 0, b_off = 0;
733 	udf_pblk_t newblocknum;
734 	sector_t offset = 0;
735 	int8_t etype, tmpetype;
736 	struct udf_inode_info *iinfo = UDF_I(inode);
737 	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
738 	int lastblock = 0;
739 	bool isBeyondEOF = false;
740 	int ret = 0;
741 
742 	prev_epos.offset = udf_file_entry_alloc_offset(inode);
743 	prev_epos.block = iinfo->i_location;
744 	prev_epos.bh = NULL;
745 	cur_epos = next_epos = prev_epos;
746 	b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
747 
748 	/* find the extent which contains the block we are looking for.
749 	   alternate between laarr[0] and laarr[1] for locations of the
750 	   current extent, and the previous extent */
751 	do {
752 		if (prev_epos.bh != cur_epos.bh) {
753 			brelse(prev_epos.bh);
754 			get_bh(cur_epos.bh);
755 			prev_epos.bh = cur_epos.bh;
756 		}
757 		if (cur_epos.bh != next_epos.bh) {
758 			brelse(cur_epos.bh);
759 			get_bh(next_epos.bh);
760 			cur_epos.bh = next_epos.bh;
761 		}
762 
763 		lbcount += elen;
764 
765 		prev_epos.block = cur_epos.block;
766 		cur_epos.block = next_epos.block;
767 
768 		prev_epos.offset = cur_epos.offset;
769 		cur_epos.offset = next_epos.offset;
770 
771 		ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 1);
772 		if (ret < 0) {
773 			goto out_free;
774 		} else if (ret == 0) {
775 			isBeyondEOF = true;
776 			break;
777 		}
778 
779 		c = !c;
780 
781 		laarr[c].extLength = (etype << 30) | elen;
782 		laarr[c].extLocation = eloc;
783 
784 		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
785 			pgoal = eloc.logicalBlockNum +
786 				((elen + inode->i_sb->s_blocksize - 1) >>
787 				 inode->i_sb->s_blocksize_bits);
788 
789 		count++;
790 	} while (lbcount + elen <= b_off);
791 
792 	b_off -= lbcount;
793 	offset = b_off >> inode->i_sb->s_blocksize_bits;
794 	/*
795 	 * Move prev_epos and cur_epos into indirect extent if we are at
796 	 * the pointer to it
797 	 */
798 	ret = udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
799 	if (ret < 0)
800 		goto out_free;
801 	ret = udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
802 	if (ret < 0)
803 		goto out_free;
804 
805 	/* if the extent is allocated and recorded, return the block
806 	   if the extent is not a multiple of the blocksize, round up */
807 
808 	if (!isBeyondEOF && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
809 		if (elen & (inode->i_sb->s_blocksize - 1)) {
810 			elen = EXT_RECORDED_ALLOCATED |
811 				((elen + inode->i_sb->s_blocksize - 1) &
812 				 ~(inode->i_sb->s_blocksize - 1));
813 			iinfo->i_lenExtents =
814 				ALIGN(iinfo->i_lenExtents,
815 				      inode->i_sb->s_blocksize);
816 			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
817 		}
818 		map->oflags = UDF_BLK_MAPPED;
819 		map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
820 		ret = 0;
821 		goto out_free;
822 	}
823 
824 	/* Are we beyond EOF and preallocated extent? */
825 	if (isBeyondEOF) {
826 		loff_t hole_len;
827 
828 		if (count) {
829 			if (c)
830 				laarr[0] = laarr[1];
831 			startnum = 1;
832 		} else {
833 			/* Create a fake extent when there's not one */
834 			memset(&laarr[0].extLocation, 0x00,
835 				sizeof(struct kernel_lb_addr));
836 			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
837 			/* Will udf_do_extend_file() create real extent from
838 			   a fake one? */
839 			startnum = (offset > 0);
840 		}
841 		/* Create extents for the hole between EOF and offset */
842 		hole_len = (loff_t)offset << inode->i_blkbits;
843 		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
844 		if (ret < 0)
845 			goto out_free;
846 		c = 0;
847 		offset = 0;
848 		count += ret;
849 		/*
850 		 * Is there any real extent? - otherwise we overwrite the fake
851 		 * one...
852 		 */
853 		if (count)
854 			c = !c;
855 		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
856 			inode->i_sb->s_blocksize;
857 		memset(&laarr[c].extLocation, 0x00,
858 			sizeof(struct kernel_lb_addr));
859 		count++;
860 		endnum = c + 1;
861 		lastblock = 1;
862 	} else {
863 		endnum = startnum = ((count > 2) ? 2 : count);
864 
865 		/* if the current extent is in position 0,
866 		   swap it with the previous */
867 		if (!c && count != 1) {
868 			laarr[2] = laarr[0];
869 			laarr[0] = laarr[1];
870 			laarr[1] = laarr[2];
871 			c = 1;
872 		}
873 
874 		/* if the current block is located in an extent,
875 		   read the next extent */
876 		ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 0);
877 		if (ret > 0) {
878 			laarr[c + 1].extLength = (etype << 30) | elen;
879 			laarr[c + 1].extLocation = eloc;
880 			count++;
881 			startnum++;
882 			endnum++;
883 		} else if (ret == 0)
884 			lastblock = 1;
885 		else
886 			goto out_free;
887 	}
888 
889 	/* if the current extent is not recorded but allocated, get the
890 	 * block in the extent corresponding to the requested block */
891 	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
892 		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
893 	else { /* otherwise, allocate a new block */
894 		if (iinfo->i_next_alloc_block == map->lblk)
895 			goal = iinfo->i_next_alloc_goal;
896 
897 		if (!goal) {
898 			if (!(goal = pgoal)) /* XXX: what was intended here? */
899 				goal = iinfo->i_location.logicalBlockNum + 1;
900 		}
901 
902 		newblocknum = udf_new_block(inode->i_sb, inode,
903 				iinfo->i_location.partitionReferenceNum,
904 				goal, &ret);
905 		if (!newblocknum)
906 			goto out_free;
907 		if (isBeyondEOF)
908 			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
909 	}
910 
911 	/* if the extent the requsted block is located in contains multiple
912 	 * blocks, split the extent into at most three extents. blocks prior
913 	 * to requested block, requested block, and blocks after requested
914 	 * block */
915 	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
916 
917 	if (!(map->iflags & UDF_MAP_NOPREALLOC))
918 		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
919 
920 	/* merge any continuous blocks in laarr */
921 	udf_merge_extents(inode, laarr, &endnum);
922 
923 	/* write back the new extents, inserting new extents if the new number
924 	 * of extents is greater than the old number, and deleting extents if
925 	 * the new number of extents is less than the old number */
926 	ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
927 	if (ret < 0)
928 		goto out_free;
929 
930 	map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
931 				iinfo->i_location.partitionReferenceNum, 0);
932 	if (!map->pblk) {
933 		ret = -EFSCORRUPTED;
934 		goto out_free;
935 	}
936 	map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
937 	iinfo->i_next_alloc_block = map->lblk + 1;
938 	iinfo->i_next_alloc_goal = newblocknum + 1;
939 	inode_set_ctime_current(inode);
940 
941 	if (IS_SYNC(inode))
942 		udf_sync_inode(inode);
943 	else
944 		mark_inode_dirty(inode);
945 	ret = 0;
946 out_free:
947 	brelse(prev_epos.bh);
948 	brelse(cur_epos.bh);
949 	brelse(next_epos.bh);
950 	return ret;
951 }
952 
udf_split_extents(struct inode * inode,int * c,int offset,udf_pblk_t newblocknum,struct kernel_long_ad * laarr,int * endnum)953 static void udf_split_extents(struct inode *inode, int *c, int offset,
954 			       udf_pblk_t newblocknum,
955 			       struct kernel_long_ad *laarr, int *endnum)
956 {
957 	unsigned long blocksize = inode->i_sb->s_blocksize;
958 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
959 
960 	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
961 	    (laarr[*c].extLength >> 30) ==
962 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
963 		int curr = *c;
964 		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
965 			    blocksize - 1) >> blocksize_bits;
966 		int8_t etype = (laarr[curr].extLength >> 30);
967 
968 		if (blen == 1)
969 			;
970 		else if (!offset || blen == offset + 1) {
971 			laarr[curr + 2] = laarr[curr + 1];
972 			laarr[curr + 1] = laarr[curr];
973 		} else {
974 			laarr[curr + 3] = laarr[curr + 1];
975 			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
976 		}
977 
978 		if (offset) {
979 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
980 				udf_free_blocks(inode->i_sb, inode,
981 						&laarr[curr].extLocation,
982 						0, offset);
983 				laarr[curr].extLength =
984 					EXT_NOT_RECORDED_NOT_ALLOCATED |
985 					(offset << blocksize_bits);
986 				laarr[curr].extLocation.logicalBlockNum = 0;
987 				laarr[curr].extLocation.
988 						partitionReferenceNum = 0;
989 			} else
990 				laarr[curr].extLength = (etype << 30) |
991 					(offset << blocksize_bits);
992 			curr++;
993 			(*c)++;
994 			(*endnum)++;
995 		}
996 
997 		laarr[curr].extLocation.logicalBlockNum = newblocknum;
998 		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
999 			laarr[curr].extLocation.partitionReferenceNum =
1000 				UDF_I(inode)->i_location.partitionReferenceNum;
1001 		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
1002 			blocksize;
1003 		curr++;
1004 
1005 		if (blen != offset + 1) {
1006 			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
1007 				laarr[curr].extLocation.logicalBlockNum +=
1008 								offset + 1;
1009 			laarr[curr].extLength = (etype << 30) |
1010 				((blen - (offset + 1)) << blocksize_bits);
1011 			curr++;
1012 			(*endnum)++;
1013 		}
1014 	}
1015 }
1016 
udf_prealloc_extents(struct inode * inode,int c,int lastblock,struct kernel_long_ad * laarr,int * endnum)1017 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
1018 				 struct kernel_long_ad *laarr,
1019 				 int *endnum)
1020 {
1021 	int start, length = 0, currlength = 0, i;
1022 
1023 	if (*endnum >= (c + 1)) {
1024 		if (!lastblock)
1025 			return;
1026 		else
1027 			start = c;
1028 	} else {
1029 		if ((laarr[c + 1].extLength >> 30) ==
1030 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1031 			start = c + 1;
1032 			length = currlength =
1033 				(((laarr[c + 1].extLength &
1034 					UDF_EXTENT_LENGTH_MASK) +
1035 				inode->i_sb->s_blocksize - 1) >>
1036 				inode->i_sb->s_blocksize_bits);
1037 		} else
1038 			start = c;
1039 	}
1040 
1041 	for (i = start + 1; i <= *endnum; i++) {
1042 		if (i == *endnum) {
1043 			if (lastblock)
1044 				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1045 		} else if ((laarr[i].extLength >> 30) ==
1046 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1047 			length += (((laarr[i].extLength &
1048 						UDF_EXTENT_LENGTH_MASK) +
1049 				    inode->i_sb->s_blocksize - 1) >>
1050 				    inode->i_sb->s_blocksize_bits);
1051 		} else
1052 			break;
1053 	}
1054 
1055 	if (length) {
1056 		int next = laarr[start].extLocation.logicalBlockNum +
1057 			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1058 			  inode->i_sb->s_blocksize - 1) >>
1059 			  inode->i_sb->s_blocksize_bits);
1060 		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1061 				laarr[start].extLocation.partitionReferenceNum,
1062 				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1063 				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1064 				currlength);
1065 		if (numalloc) 	{
1066 			if (start == (c + 1))
1067 				laarr[start].extLength +=
1068 					(numalloc <<
1069 					 inode->i_sb->s_blocksize_bits);
1070 			else {
1071 				memmove(&laarr[c + 2], &laarr[c + 1],
1072 					sizeof(struct long_ad) * (*endnum - (c + 1)));
1073 				(*endnum)++;
1074 				laarr[c + 1].extLocation.logicalBlockNum = next;
1075 				laarr[c + 1].extLocation.partitionReferenceNum =
1076 					laarr[c].extLocation.
1077 							partitionReferenceNum;
1078 				laarr[c + 1].extLength =
1079 					EXT_NOT_RECORDED_ALLOCATED |
1080 					(numalloc <<
1081 					 inode->i_sb->s_blocksize_bits);
1082 				start = c + 1;
1083 			}
1084 
1085 			for (i = start + 1; numalloc && i < *endnum; i++) {
1086 				int elen = ((laarr[i].extLength &
1087 						UDF_EXTENT_LENGTH_MASK) +
1088 					    inode->i_sb->s_blocksize - 1) >>
1089 					    inode->i_sb->s_blocksize_bits;
1090 
1091 				if (elen > numalloc) {
1092 					laarr[i].extLength -=
1093 						(numalloc <<
1094 						 inode->i_sb->s_blocksize_bits);
1095 					numalloc = 0;
1096 				} else {
1097 					numalloc -= elen;
1098 					if (*endnum > (i + 1))
1099 						memmove(&laarr[i],
1100 							&laarr[i + 1],
1101 							sizeof(struct long_ad) *
1102 							(*endnum - (i + 1)));
1103 					i--;
1104 					(*endnum)--;
1105 				}
1106 			}
1107 			UDF_I(inode)->i_lenExtents +=
1108 				numalloc << inode->i_sb->s_blocksize_bits;
1109 		}
1110 	}
1111 }
1112 
udf_merge_extents(struct inode * inode,struct kernel_long_ad * laarr,int * endnum)1113 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1114 			      int *endnum)
1115 {
1116 	int i;
1117 	unsigned long blocksize = inode->i_sb->s_blocksize;
1118 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1119 
1120 	for (i = 0; i < (*endnum - 1); i++) {
1121 		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1122 		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1123 
1124 		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1125 			(((li->extLength >> 30) ==
1126 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1127 			((lip1->extLocation.logicalBlockNum -
1128 			  li->extLocation.logicalBlockNum) ==
1129 			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1130 			blocksize - 1) >> blocksize_bits)))) {
1131 
1132 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1133 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1134 			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1135 				li->extLength = lip1->extLength +
1136 					(((li->extLength &
1137 						UDF_EXTENT_LENGTH_MASK) +
1138 					 blocksize - 1) & ~(blocksize - 1));
1139 				if (*endnum > (i + 2))
1140 					memmove(&laarr[i + 1], &laarr[i + 2],
1141 						sizeof(struct long_ad) *
1142 						(*endnum - (i + 2)));
1143 				i--;
1144 				(*endnum)--;
1145 			}
1146 		} else if (((li->extLength >> 30) ==
1147 				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1148 			   ((lip1->extLength >> 30) ==
1149 				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1150 			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1151 					((li->extLength &
1152 					  UDF_EXTENT_LENGTH_MASK) +
1153 					 blocksize - 1) >> blocksize_bits);
1154 			li->extLocation.logicalBlockNum = 0;
1155 			li->extLocation.partitionReferenceNum = 0;
1156 
1157 			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1158 			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1159 			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1160 				lip1->extLength = (lip1->extLength -
1161 						   (li->extLength &
1162 						   UDF_EXTENT_LENGTH_MASK) +
1163 						   UDF_EXTENT_LENGTH_MASK) &
1164 						   ~(blocksize - 1);
1165 				li->extLength = (li->extLength &
1166 						 UDF_EXTENT_FLAG_MASK) +
1167 						(UDF_EXTENT_LENGTH_MASK + 1) -
1168 						blocksize;
1169 			} else {
1170 				li->extLength = lip1->extLength +
1171 					(((li->extLength &
1172 						UDF_EXTENT_LENGTH_MASK) +
1173 					  blocksize - 1) & ~(blocksize - 1));
1174 				if (*endnum > (i + 2))
1175 					memmove(&laarr[i + 1], &laarr[i + 2],
1176 						sizeof(struct long_ad) *
1177 						(*endnum - (i + 2)));
1178 				i--;
1179 				(*endnum)--;
1180 			}
1181 		} else if ((li->extLength >> 30) ==
1182 					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1183 			udf_free_blocks(inode->i_sb, inode,
1184 					&li->extLocation, 0,
1185 					((li->extLength &
1186 						UDF_EXTENT_LENGTH_MASK) +
1187 					 blocksize - 1) >> blocksize_bits);
1188 			li->extLocation.logicalBlockNum = 0;
1189 			li->extLocation.partitionReferenceNum = 0;
1190 			li->extLength = (li->extLength &
1191 						UDF_EXTENT_LENGTH_MASK) |
1192 						EXT_NOT_RECORDED_NOT_ALLOCATED;
1193 		}
1194 	}
1195 }
1196 
udf_update_extents(struct inode * inode,struct kernel_long_ad * laarr,int startnum,int endnum,struct extent_position * epos)1197 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1198 			      int startnum, int endnum,
1199 			      struct extent_position *epos)
1200 {
1201 	int start = 0, i;
1202 	struct kernel_lb_addr tmploc;
1203 	uint32_t tmplen;
1204 	int8_t tmpetype;
1205 	int err;
1206 
1207 	if (startnum > endnum) {
1208 		for (i = 0; i < (startnum - endnum); i++)
1209 			udf_delete_aext(inode, *epos);
1210 	} else if (startnum < endnum) {
1211 		for (i = 0; i < (endnum - startnum); i++) {
1212 			err = udf_insert_aext(inode, *epos,
1213 					      laarr[i].extLocation,
1214 					      laarr[i].extLength);
1215 			/*
1216 			 * If we fail here, we are likely corrupting the extent
1217 			 * list and leaking blocks. At least stop early to
1218 			 * limit the damage.
1219 			 */
1220 			if (err < 0)
1221 				return err;
1222 			err = udf_next_aext(inode, epos, &laarr[i].extLocation,
1223 				      &laarr[i].extLength, &tmpetype, 1);
1224 			if (err < 0)
1225 				return err;
1226 			start++;
1227 		}
1228 	}
1229 
1230 	for (i = start; i < endnum; i++) {
1231 		err = udf_next_aext(inode, epos, &tmploc, &tmplen, &tmpetype, 0);
1232 		if (err < 0)
1233 			return err;
1234 
1235 		udf_write_aext(inode, epos, &laarr[i].extLocation,
1236 			       laarr[i].extLength, 1);
1237 	}
1238 	return 0;
1239 }
1240 
udf_bread(struct inode * inode,udf_pblk_t block,int create,int * err)1241 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1242 			      int create, int *err)
1243 {
1244 	struct buffer_head *bh = NULL;
1245 	struct udf_map_rq map = {
1246 		.lblk = block,
1247 		.iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1248 	};
1249 
1250 	*err = udf_map_block(inode, &map);
1251 	if (*err || !(map.oflags & UDF_BLK_MAPPED))
1252 		return NULL;
1253 
1254 	bh = sb_getblk(inode->i_sb, map.pblk);
1255 	if (!bh) {
1256 		*err = -ENOMEM;
1257 		return NULL;
1258 	}
1259 	if (map.oflags & UDF_BLK_NEW) {
1260 		lock_buffer(bh);
1261 		memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1262 		set_buffer_uptodate(bh);
1263 		unlock_buffer(bh);
1264 		mark_buffer_dirty_inode(bh, inode);
1265 		return bh;
1266 	}
1267 
1268 	if (bh_read(bh, 0) >= 0)
1269 		return bh;
1270 
1271 	brelse(bh);
1272 	*err = -EIO;
1273 	return NULL;
1274 }
1275 
udf_setsize(struct inode * inode,loff_t newsize)1276 int udf_setsize(struct inode *inode, loff_t newsize)
1277 {
1278 	int err = 0;
1279 	struct udf_inode_info *iinfo;
1280 	unsigned int bsize = i_blocksize(inode);
1281 
1282 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1283 	      S_ISLNK(inode->i_mode)))
1284 		return -EINVAL;
1285 
1286 	iinfo = UDF_I(inode);
1287 	if (newsize > inode->i_size) {
1288 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1289 			if (bsize >=
1290 			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1291 				down_write(&iinfo->i_data_sem);
1292 				iinfo->i_lenAlloc = newsize;
1293 				up_write(&iinfo->i_data_sem);
1294 				goto set_size;
1295 			}
1296 			err = udf_expand_file_adinicb(inode);
1297 			if (err)
1298 				return err;
1299 		}
1300 		err = udf_extend_file(inode, newsize);
1301 		if (err)
1302 			return err;
1303 set_size:
1304 		truncate_setsize(inode, newsize);
1305 	} else {
1306 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1307 			down_write(&iinfo->i_data_sem);
1308 			udf_clear_extent_cache(inode);
1309 			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1310 			       0x00, bsize - newsize -
1311 			       udf_file_entry_alloc_offset(inode));
1312 			iinfo->i_lenAlloc = newsize;
1313 			truncate_setsize(inode, newsize);
1314 			up_write(&iinfo->i_data_sem);
1315 			goto update_time;
1316 		}
1317 		err = block_truncate_page(inode->i_mapping, newsize,
1318 					  udf_get_block);
1319 		if (err)
1320 			return err;
1321 		truncate_setsize(inode, newsize);
1322 		down_write(&iinfo->i_data_sem);
1323 		udf_clear_extent_cache(inode);
1324 		err = udf_truncate_extents(inode);
1325 		up_write(&iinfo->i_data_sem);
1326 		if (err)
1327 			return err;
1328 	}
1329 update_time:
1330 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1331 	if (IS_SYNC(inode))
1332 		udf_sync_inode(inode);
1333 	else
1334 		mark_inode_dirty(inode);
1335 	return err;
1336 }
1337 
1338 /*
1339  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1340  * arbitrary - just that we hopefully don't limit any real use of rewritten
1341  * inode on write-once media but avoid looping for too long on corrupted media.
1342  */
1343 #define UDF_MAX_ICB_NESTING 1024
1344 
udf_read_inode(struct inode * inode,bool hidden_inode)1345 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1346 {
1347 	struct buffer_head *bh = NULL;
1348 	struct fileEntry *fe;
1349 	struct extendedFileEntry *efe;
1350 	uint16_t ident;
1351 	struct udf_inode_info *iinfo = UDF_I(inode);
1352 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1353 	struct kernel_lb_addr *iloc = &iinfo->i_location;
1354 	unsigned int link_count;
1355 	unsigned int indirections = 0;
1356 	int bs = inode->i_sb->s_blocksize;
1357 	int ret = -EIO;
1358 	uint32_t uid, gid;
1359 	struct timespec64 ts;
1360 
1361 reread:
1362 	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1363 		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1364 			  iloc->partitionReferenceNum, sbi->s_partitions);
1365 		return -EIO;
1366 	}
1367 
1368 	if (iloc->logicalBlockNum >=
1369 	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1370 		udf_debug("block=%u, partition=%u out of range\n",
1371 			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1372 		return -EIO;
1373 	}
1374 
1375 	/*
1376 	 * Set defaults, but the inode is still incomplete!
1377 	 * Note: get_new_inode() sets the following on a new inode:
1378 	 *      i_sb = sb
1379 	 *      i_no = ino
1380 	 *      i_flags = sb->s_flags
1381 	 *      i_state = 0
1382 	 * clean_inode(): zero fills and sets
1383 	 *      i_count = 1
1384 	 *      i_nlink = 1
1385 	 *      i_op = NULL;
1386 	 */
1387 	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1388 	if (!bh) {
1389 		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1390 		return -EIO;
1391 	}
1392 
1393 	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1394 	    ident != TAG_IDENT_USE) {
1395 		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1396 			inode->i_ino, ident);
1397 		goto out;
1398 	}
1399 
1400 	fe = (struct fileEntry *)bh->b_data;
1401 	efe = (struct extendedFileEntry *)bh->b_data;
1402 
1403 	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1404 		struct buffer_head *ibh;
1405 
1406 		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1407 		if (ident == TAG_IDENT_IE && ibh) {
1408 			struct kernel_lb_addr loc;
1409 			struct indirectEntry *ie;
1410 
1411 			ie = (struct indirectEntry *)ibh->b_data;
1412 			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1413 
1414 			if (ie->indirectICB.extLength) {
1415 				brelse(ibh);
1416 				memcpy(&iinfo->i_location, &loc,
1417 				       sizeof(struct kernel_lb_addr));
1418 				if (++indirections > UDF_MAX_ICB_NESTING) {
1419 					udf_err(inode->i_sb,
1420 						"too many ICBs in ICB hierarchy"
1421 						" (max %d supported)\n",
1422 						UDF_MAX_ICB_NESTING);
1423 					goto out;
1424 				}
1425 				brelse(bh);
1426 				goto reread;
1427 			}
1428 		}
1429 		brelse(ibh);
1430 	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1431 		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1432 			le16_to_cpu(fe->icbTag.strategyType));
1433 		goto out;
1434 	}
1435 	if (fe->icbTag.strategyType == cpu_to_le16(4))
1436 		iinfo->i_strat4096 = 0;
1437 	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1438 		iinfo->i_strat4096 = 1;
1439 
1440 	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1441 							ICBTAG_FLAG_AD_MASK;
1442 	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1443 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1444 	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1445 		ret = -EIO;
1446 		goto out;
1447 	}
1448 	iinfo->i_hidden = hidden_inode;
1449 	iinfo->i_unique = 0;
1450 	iinfo->i_lenEAttr = 0;
1451 	iinfo->i_lenExtents = 0;
1452 	iinfo->i_lenAlloc = 0;
1453 	iinfo->i_next_alloc_block = 0;
1454 	iinfo->i_next_alloc_goal = 0;
1455 	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1456 		iinfo->i_efe = 1;
1457 		iinfo->i_use = 0;
1458 		ret = udf_alloc_i_data(inode, bs -
1459 					sizeof(struct extendedFileEntry));
1460 		if (ret)
1461 			goto out;
1462 		memcpy(iinfo->i_data,
1463 		       bh->b_data + sizeof(struct extendedFileEntry),
1464 		       bs - sizeof(struct extendedFileEntry));
1465 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1466 		iinfo->i_efe = 0;
1467 		iinfo->i_use = 0;
1468 		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1469 		if (ret)
1470 			goto out;
1471 		memcpy(iinfo->i_data,
1472 		       bh->b_data + sizeof(struct fileEntry),
1473 		       bs - sizeof(struct fileEntry));
1474 	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1475 		iinfo->i_efe = 0;
1476 		iinfo->i_use = 1;
1477 		iinfo->i_lenAlloc = le32_to_cpu(
1478 				((struct unallocSpaceEntry *)bh->b_data)->
1479 				 lengthAllocDescs);
1480 		ret = udf_alloc_i_data(inode, bs -
1481 					sizeof(struct unallocSpaceEntry));
1482 		if (ret)
1483 			goto out;
1484 		memcpy(iinfo->i_data,
1485 		       bh->b_data + sizeof(struct unallocSpaceEntry),
1486 		       bs - sizeof(struct unallocSpaceEntry));
1487 		return 0;
1488 	}
1489 
1490 	ret = -EIO;
1491 	read_lock(&sbi->s_cred_lock);
1492 	uid = le32_to_cpu(fe->uid);
1493 	if (uid == UDF_INVALID_ID ||
1494 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1495 		inode->i_uid = sbi->s_uid;
1496 	else
1497 		i_uid_write(inode, uid);
1498 
1499 	gid = le32_to_cpu(fe->gid);
1500 	if (gid == UDF_INVALID_ID ||
1501 	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1502 		inode->i_gid = sbi->s_gid;
1503 	else
1504 		i_gid_write(inode, gid);
1505 
1506 	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1507 			sbi->s_fmode != UDF_INVALID_MODE)
1508 		inode->i_mode = sbi->s_fmode;
1509 	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1510 			sbi->s_dmode != UDF_INVALID_MODE)
1511 		inode->i_mode = sbi->s_dmode;
1512 	else
1513 		inode->i_mode = udf_convert_permissions(fe);
1514 	inode->i_mode &= ~sbi->s_umask;
1515 	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1516 
1517 	read_unlock(&sbi->s_cred_lock);
1518 
1519 	link_count = le16_to_cpu(fe->fileLinkCount);
1520 	if (!link_count) {
1521 		if (!hidden_inode) {
1522 			ret = -ESTALE;
1523 			goto out;
1524 		}
1525 		link_count = 1;
1526 	}
1527 	set_nlink(inode, link_count);
1528 
1529 	inode->i_size = le64_to_cpu(fe->informationLength);
1530 	iinfo->i_lenExtents = inode->i_size;
1531 
1532 	if (iinfo->i_efe == 0) {
1533 		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1534 			(inode->i_sb->s_blocksize_bits - 9);
1535 
1536 		udf_disk_stamp_to_time(&ts, fe->accessTime);
1537 		inode_set_atime_to_ts(inode, ts);
1538 		udf_disk_stamp_to_time(&ts, fe->modificationTime);
1539 		inode_set_mtime_to_ts(inode, ts);
1540 		udf_disk_stamp_to_time(&ts, fe->attrTime);
1541 		inode_set_ctime_to_ts(inode, ts);
1542 
1543 		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1544 		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1545 		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1546 		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1547 		iinfo->i_streamdir = 0;
1548 		iinfo->i_lenStreams = 0;
1549 	} else {
1550 		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1551 		    (inode->i_sb->s_blocksize_bits - 9);
1552 
1553 		udf_disk_stamp_to_time(&ts, efe->accessTime);
1554 		inode_set_atime_to_ts(inode, ts);
1555 		udf_disk_stamp_to_time(&ts, efe->modificationTime);
1556 		inode_set_mtime_to_ts(inode, ts);
1557 		udf_disk_stamp_to_time(&ts, efe->attrTime);
1558 		inode_set_ctime_to_ts(inode, ts);
1559 		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1560 
1561 		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1562 		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1563 		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1564 		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1565 
1566 		/* Named streams */
1567 		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1568 		iinfo->i_locStreamdir =
1569 			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1570 		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1571 		if (iinfo->i_lenStreams >= inode->i_size)
1572 			iinfo->i_lenStreams -= inode->i_size;
1573 		else
1574 			iinfo->i_lenStreams = 0;
1575 	}
1576 	inode->i_generation = iinfo->i_unique;
1577 
1578 	/*
1579 	 * Sanity check length of allocation descriptors and extended attrs to
1580 	 * avoid integer overflows
1581 	 */
1582 	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1583 		goto out;
1584 	/* Now do exact checks */
1585 	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1586 		goto out;
1587 	/* Sanity checks for files in ICB so that we don't get confused later */
1588 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1589 		/*
1590 		 * For file in ICB data is stored in allocation descriptor
1591 		 * so sizes should match
1592 		 */
1593 		if (iinfo->i_lenAlloc != inode->i_size)
1594 			goto out;
1595 		/* File in ICB has to fit in there... */
1596 		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1597 			goto out;
1598 	}
1599 
1600 	switch (fe->icbTag.fileType) {
1601 	case ICBTAG_FILE_TYPE_DIRECTORY:
1602 		inode->i_op = &udf_dir_inode_operations;
1603 		inode->i_fop = &udf_dir_operations;
1604 		inode->i_mode |= S_IFDIR;
1605 		inc_nlink(inode);
1606 		break;
1607 	case ICBTAG_FILE_TYPE_REALTIME:
1608 	case ICBTAG_FILE_TYPE_REGULAR:
1609 	case ICBTAG_FILE_TYPE_UNDEF:
1610 	case ICBTAG_FILE_TYPE_VAT20:
1611 		inode->i_data.a_ops = &udf_aops;
1612 		inode->i_op = &udf_file_inode_operations;
1613 		inode->i_fop = &udf_file_operations;
1614 		inode->i_mode |= S_IFREG;
1615 		break;
1616 	case ICBTAG_FILE_TYPE_BLOCK:
1617 		inode->i_mode |= S_IFBLK;
1618 		break;
1619 	case ICBTAG_FILE_TYPE_CHAR:
1620 		inode->i_mode |= S_IFCHR;
1621 		break;
1622 	case ICBTAG_FILE_TYPE_FIFO:
1623 		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1624 		break;
1625 	case ICBTAG_FILE_TYPE_SOCKET:
1626 		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1627 		break;
1628 	case ICBTAG_FILE_TYPE_SYMLINK:
1629 		inode->i_data.a_ops = &udf_symlink_aops;
1630 		inode->i_op = &udf_symlink_inode_operations;
1631 		inode_nohighmem(inode);
1632 		inode->i_mode = S_IFLNK | 0777;
1633 		break;
1634 	case ICBTAG_FILE_TYPE_MAIN:
1635 		udf_debug("METADATA FILE-----\n");
1636 		break;
1637 	case ICBTAG_FILE_TYPE_MIRROR:
1638 		udf_debug("METADATA MIRROR FILE-----\n");
1639 		break;
1640 	case ICBTAG_FILE_TYPE_BITMAP:
1641 		udf_debug("METADATA BITMAP FILE-----\n");
1642 		break;
1643 	default:
1644 		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1645 			inode->i_ino, fe->icbTag.fileType);
1646 		goto out;
1647 	}
1648 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1649 		struct deviceSpec *dsea =
1650 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1651 		if (dsea) {
1652 			init_special_inode(inode, inode->i_mode,
1653 				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1654 				      le32_to_cpu(dsea->minorDeviceIdent)));
1655 			/* Developer ID ??? */
1656 		} else
1657 			goto out;
1658 	}
1659 	ret = 0;
1660 out:
1661 	brelse(bh);
1662 	return ret;
1663 }
1664 
udf_alloc_i_data(struct inode * inode,size_t size)1665 static int udf_alloc_i_data(struct inode *inode, size_t size)
1666 {
1667 	struct udf_inode_info *iinfo = UDF_I(inode);
1668 	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1669 	if (!iinfo->i_data)
1670 		return -ENOMEM;
1671 	return 0;
1672 }
1673 
udf_convert_permissions(struct fileEntry * fe)1674 static umode_t udf_convert_permissions(struct fileEntry *fe)
1675 {
1676 	umode_t mode;
1677 	uint32_t permissions;
1678 	uint32_t flags;
1679 
1680 	permissions = le32_to_cpu(fe->permissions);
1681 	flags = le16_to_cpu(fe->icbTag.flags);
1682 
1683 	mode =	((permissions) & 0007) |
1684 		((permissions >> 2) & 0070) |
1685 		((permissions >> 4) & 0700) |
1686 		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1687 		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1688 		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1689 
1690 	return mode;
1691 }
1692 
udf_update_extra_perms(struct inode * inode,umode_t mode)1693 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1694 {
1695 	struct udf_inode_info *iinfo = UDF_I(inode);
1696 
1697 	/*
1698 	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1699 	 * In Unix, delete permission tracks write
1700 	 */
1701 	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1702 	if (mode & 0200)
1703 		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1704 	if (mode & 0020)
1705 		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1706 	if (mode & 0002)
1707 		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1708 }
1709 
udf_write_inode(struct inode * inode,struct writeback_control * wbc)1710 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1711 {
1712 	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1713 }
1714 
udf_sync_inode(struct inode * inode)1715 static int udf_sync_inode(struct inode *inode)
1716 {
1717 	return udf_update_inode(inode, 1);
1718 }
1719 
udf_adjust_time(struct udf_inode_info * iinfo,struct timespec64 time)1720 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1721 {
1722 	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1723 	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1724 	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1725 		iinfo->i_crtime = time;
1726 }
1727 
udf_update_inode(struct inode * inode,int do_sync)1728 static int udf_update_inode(struct inode *inode, int do_sync)
1729 {
1730 	struct buffer_head *bh = NULL;
1731 	struct fileEntry *fe;
1732 	struct extendedFileEntry *efe;
1733 	uint64_t lb_recorded;
1734 	uint32_t udfperms;
1735 	uint16_t icbflags;
1736 	uint16_t crclen;
1737 	int err = 0;
1738 	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1739 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1740 	struct udf_inode_info *iinfo = UDF_I(inode);
1741 
1742 	bh = sb_getblk(inode->i_sb,
1743 			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1744 	if (!bh) {
1745 		udf_debug("getblk failure\n");
1746 		return -EIO;
1747 	}
1748 
1749 	lock_buffer(bh);
1750 	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1751 	fe = (struct fileEntry *)bh->b_data;
1752 	efe = (struct extendedFileEntry *)bh->b_data;
1753 
1754 	if (iinfo->i_use) {
1755 		struct unallocSpaceEntry *use =
1756 			(struct unallocSpaceEntry *)bh->b_data;
1757 
1758 		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1759 		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1760 		       iinfo->i_data, inode->i_sb->s_blocksize -
1761 					sizeof(struct unallocSpaceEntry));
1762 		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1763 		crclen = sizeof(struct unallocSpaceEntry);
1764 
1765 		goto finish;
1766 	}
1767 
1768 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1769 		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1770 	else
1771 		fe->uid = cpu_to_le32(i_uid_read(inode));
1772 
1773 	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1774 		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1775 	else
1776 		fe->gid = cpu_to_le32(i_gid_read(inode));
1777 
1778 	udfperms = ((inode->i_mode & 0007)) |
1779 		   ((inode->i_mode & 0070) << 2) |
1780 		   ((inode->i_mode & 0700) << 4);
1781 
1782 	udfperms |= iinfo->i_extraPerms;
1783 	fe->permissions = cpu_to_le32(udfperms);
1784 
1785 	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1786 		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1787 	else {
1788 		if (iinfo->i_hidden)
1789 			fe->fileLinkCount = cpu_to_le16(0);
1790 		else
1791 			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1792 	}
1793 
1794 	fe->informationLength = cpu_to_le64(inode->i_size);
1795 
1796 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1797 		struct regid *eid;
1798 		struct deviceSpec *dsea =
1799 			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1800 		if (!dsea) {
1801 			dsea = (struct deviceSpec *)
1802 				udf_add_extendedattr(inode,
1803 						     sizeof(struct deviceSpec) +
1804 						     sizeof(struct regid), 12, 0x3);
1805 			dsea->attrType = cpu_to_le32(12);
1806 			dsea->attrSubtype = 1;
1807 			dsea->attrLength = cpu_to_le32(
1808 						sizeof(struct deviceSpec) +
1809 						sizeof(struct regid));
1810 			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1811 		}
1812 		eid = (struct regid *)dsea->impUse;
1813 		memset(eid, 0, sizeof(*eid));
1814 		strcpy(eid->ident, UDF_ID_DEVELOPER);
1815 		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1816 		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1817 		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1818 		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1819 	}
1820 
1821 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1822 		lb_recorded = 0; /* No extents => no blocks! */
1823 	else
1824 		lb_recorded =
1825 			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1826 			(blocksize_bits - 9);
1827 
1828 	if (iinfo->i_efe == 0) {
1829 		memcpy(bh->b_data + sizeof(struct fileEntry),
1830 		       iinfo->i_data,
1831 		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1832 		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1833 
1834 		udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode));
1835 		udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode));
1836 		udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1837 		memset(&(fe->impIdent), 0, sizeof(struct regid));
1838 		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1839 		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1840 		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1841 		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1842 		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1843 		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1844 		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1845 		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1846 		crclen = sizeof(struct fileEntry);
1847 	} else {
1848 		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1849 		       iinfo->i_data,
1850 		       inode->i_sb->s_blocksize -
1851 					sizeof(struct extendedFileEntry));
1852 		efe->objectSize =
1853 			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1854 		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1855 
1856 		if (iinfo->i_streamdir) {
1857 			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1858 
1859 			icb_lad->extLocation =
1860 				cpu_to_lelb(iinfo->i_locStreamdir);
1861 			icb_lad->extLength =
1862 				cpu_to_le32(inode->i_sb->s_blocksize);
1863 		}
1864 
1865 		udf_adjust_time(iinfo, inode_get_atime(inode));
1866 		udf_adjust_time(iinfo, inode_get_mtime(inode));
1867 		udf_adjust_time(iinfo, inode_get_ctime(inode));
1868 
1869 		udf_time_to_disk_stamp(&efe->accessTime,
1870 				       inode_get_atime(inode));
1871 		udf_time_to_disk_stamp(&efe->modificationTime,
1872 				       inode_get_mtime(inode));
1873 		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1874 		udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1875 
1876 		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1877 		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1878 		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1879 		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1880 		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1881 		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1882 		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1883 		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1884 		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1885 		crclen = sizeof(struct extendedFileEntry);
1886 	}
1887 
1888 finish:
1889 	if (iinfo->i_strat4096) {
1890 		fe->icbTag.strategyType = cpu_to_le16(4096);
1891 		fe->icbTag.strategyParameter = cpu_to_le16(1);
1892 		fe->icbTag.numEntries = cpu_to_le16(2);
1893 	} else {
1894 		fe->icbTag.strategyType = cpu_to_le16(4);
1895 		fe->icbTag.numEntries = cpu_to_le16(1);
1896 	}
1897 
1898 	if (iinfo->i_use)
1899 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1900 	else if (S_ISDIR(inode->i_mode))
1901 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1902 	else if (S_ISREG(inode->i_mode))
1903 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1904 	else if (S_ISLNK(inode->i_mode))
1905 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1906 	else if (S_ISBLK(inode->i_mode))
1907 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1908 	else if (S_ISCHR(inode->i_mode))
1909 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1910 	else if (S_ISFIFO(inode->i_mode))
1911 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1912 	else if (S_ISSOCK(inode->i_mode))
1913 		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1914 
1915 	icbflags =	iinfo->i_alloc_type |
1916 			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1917 			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1918 			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1919 			(le16_to_cpu(fe->icbTag.flags) &
1920 				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1921 				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1922 
1923 	fe->icbTag.flags = cpu_to_le16(icbflags);
1924 	if (sbi->s_udfrev >= 0x0200)
1925 		fe->descTag.descVersion = cpu_to_le16(3);
1926 	else
1927 		fe->descTag.descVersion = cpu_to_le16(2);
1928 	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1929 	fe->descTag.tagLocation = cpu_to_le32(
1930 					iinfo->i_location.logicalBlockNum);
1931 	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1932 	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1933 	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1934 						  crclen));
1935 	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1936 
1937 	set_buffer_uptodate(bh);
1938 	unlock_buffer(bh);
1939 
1940 	/* write the data blocks */
1941 	mark_buffer_dirty(bh);
1942 	if (do_sync) {
1943 		sync_dirty_buffer(bh);
1944 		if (buffer_write_io_error(bh)) {
1945 			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1946 				 inode->i_ino);
1947 			err = -EIO;
1948 		}
1949 	}
1950 	brelse(bh);
1951 
1952 	return err;
1953 }
1954 
__udf_iget(struct super_block * sb,struct kernel_lb_addr * ino,bool hidden_inode)1955 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1956 			 bool hidden_inode)
1957 {
1958 	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1959 	struct inode *inode = iget_locked(sb, block);
1960 	int err;
1961 
1962 	if (!inode)
1963 		return ERR_PTR(-ENOMEM);
1964 
1965 	if (!(inode->i_state & I_NEW)) {
1966 		if (UDF_I(inode)->i_hidden != hidden_inode) {
1967 			iput(inode);
1968 			return ERR_PTR(-EFSCORRUPTED);
1969 		}
1970 		return inode;
1971 	}
1972 
1973 	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1974 	err = udf_read_inode(inode, hidden_inode);
1975 	if (err < 0) {
1976 		iget_failed(inode);
1977 		return ERR_PTR(err);
1978 	}
1979 	unlock_new_inode(inode);
1980 
1981 	return inode;
1982 }
1983 
udf_setup_indirect_aext(struct inode * inode,udf_pblk_t block,struct extent_position * epos)1984 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1985 			    struct extent_position *epos)
1986 {
1987 	struct super_block *sb = inode->i_sb;
1988 	struct buffer_head *bh;
1989 	struct allocExtDesc *aed;
1990 	struct extent_position nepos;
1991 	struct kernel_lb_addr neloc;
1992 	int ver, adsize;
1993 	int err = 0;
1994 
1995 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1996 		adsize = sizeof(struct short_ad);
1997 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1998 		adsize = sizeof(struct long_ad);
1999 	else
2000 		return -EIO;
2001 
2002 	neloc.logicalBlockNum = block;
2003 	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
2004 
2005 	bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
2006 	if (!bh)
2007 		return -EIO;
2008 	lock_buffer(bh);
2009 	memset(bh->b_data, 0x00, sb->s_blocksize);
2010 	set_buffer_uptodate(bh);
2011 	unlock_buffer(bh);
2012 	mark_buffer_dirty_inode(bh, inode);
2013 
2014 	aed = (struct allocExtDesc *)(bh->b_data);
2015 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
2016 		aed->previousAllocExtLocation =
2017 				cpu_to_le32(epos->block.logicalBlockNum);
2018 	}
2019 	aed->lengthAllocDescs = cpu_to_le32(0);
2020 	if (UDF_SB(sb)->s_udfrev >= 0x0200)
2021 		ver = 3;
2022 	else
2023 		ver = 2;
2024 	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
2025 		    sizeof(struct tag));
2026 
2027 	nepos.block = neloc;
2028 	nepos.offset = sizeof(struct allocExtDesc);
2029 	nepos.bh = bh;
2030 
2031 	/*
2032 	 * Do we have to copy current last extent to make space for indirect
2033 	 * one?
2034 	 */
2035 	if (epos->offset + adsize > sb->s_blocksize) {
2036 		struct kernel_lb_addr cp_loc;
2037 		uint32_t cp_len;
2038 		int8_t cp_type;
2039 
2040 		epos->offset -= adsize;
2041 		err = udf_current_aext(inode, epos, &cp_loc, &cp_len, &cp_type, 0);
2042 		if (err <= 0)
2043 			goto err_out;
2044 		cp_len |= ((uint32_t)cp_type) << 30;
2045 
2046 		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2047 		udf_write_aext(inode, epos, &nepos.block,
2048 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2049 	} else {
2050 		__udf_add_aext(inode, epos, &nepos.block,
2051 			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2052 	}
2053 
2054 	brelse(epos->bh);
2055 	*epos = nepos;
2056 
2057 	return 0;
2058 err_out:
2059 	brelse(bh);
2060 	return err;
2061 }
2062 
2063 /*
2064  * Append extent at the given position - should be the first free one in inode
2065  * / indirect extent. This function assumes there is enough space in the inode
2066  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2067  */
__udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2068 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2069 		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2070 {
2071 	struct udf_inode_info *iinfo = UDF_I(inode);
2072 	struct allocExtDesc *aed;
2073 	int adsize;
2074 
2075 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2076 		adsize = sizeof(struct short_ad);
2077 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2078 		adsize = sizeof(struct long_ad);
2079 	else
2080 		return -EIO;
2081 
2082 	if (!epos->bh) {
2083 		WARN_ON(iinfo->i_lenAlloc !=
2084 			epos->offset - udf_file_entry_alloc_offset(inode));
2085 	} else {
2086 		aed = (struct allocExtDesc *)epos->bh->b_data;
2087 		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2088 			epos->offset - sizeof(struct allocExtDesc));
2089 		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2090 	}
2091 
2092 	udf_write_aext(inode, epos, eloc, elen, inc);
2093 
2094 	if (!epos->bh) {
2095 		iinfo->i_lenAlloc += adsize;
2096 		mark_inode_dirty(inode);
2097 	} else {
2098 		aed = (struct allocExtDesc *)epos->bh->b_data;
2099 		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2100 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2101 				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2102 			udf_update_tag(epos->bh->b_data,
2103 					epos->offset + (inc ? 0 : adsize));
2104 		else
2105 			udf_update_tag(epos->bh->b_data,
2106 					sizeof(struct allocExtDesc));
2107 		mark_buffer_dirty_inode(epos->bh, inode);
2108 	}
2109 
2110 	return 0;
2111 }
2112 
2113 /*
2114  * Append extent at given position - should be the first free one in inode
2115  * / indirect extent. Takes care of allocating and linking indirect blocks.
2116  */
udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2117 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2118 		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2119 {
2120 	int adsize;
2121 	struct super_block *sb = inode->i_sb;
2122 
2123 	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2124 		adsize = sizeof(struct short_ad);
2125 	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2126 		adsize = sizeof(struct long_ad);
2127 	else
2128 		return -EIO;
2129 
2130 	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2131 		int err;
2132 		udf_pblk_t new_block;
2133 
2134 		new_block = udf_new_block(sb, NULL,
2135 					  epos->block.partitionReferenceNum,
2136 					  epos->block.logicalBlockNum, &err);
2137 		if (!new_block)
2138 			return -ENOSPC;
2139 
2140 		err = udf_setup_indirect_aext(inode, new_block, epos);
2141 		if (err)
2142 			return err;
2143 	}
2144 
2145 	return __udf_add_aext(inode, epos, eloc, elen, inc);
2146 }
2147 
udf_write_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2148 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2149 		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2150 {
2151 	int adsize;
2152 	uint8_t *ptr;
2153 	struct short_ad *sad;
2154 	struct long_ad *lad;
2155 	struct udf_inode_info *iinfo = UDF_I(inode);
2156 
2157 	if (!epos->bh)
2158 		ptr = iinfo->i_data + epos->offset -
2159 			udf_file_entry_alloc_offset(inode) +
2160 			iinfo->i_lenEAttr;
2161 	else
2162 		ptr = epos->bh->b_data + epos->offset;
2163 
2164 	switch (iinfo->i_alloc_type) {
2165 	case ICBTAG_FLAG_AD_SHORT:
2166 		sad = (struct short_ad *)ptr;
2167 		sad->extLength = cpu_to_le32(elen);
2168 		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2169 		adsize = sizeof(struct short_ad);
2170 		break;
2171 	case ICBTAG_FLAG_AD_LONG:
2172 		lad = (struct long_ad *)ptr;
2173 		lad->extLength = cpu_to_le32(elen);
2174 		lad->extLocation = cpu_to_lelb(*eloc);
2175 		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2176 		adsize = sizeof(struct long_ad);
2177 		break;
2178 	default:
2179 		return;
2180 	}
2181 
2182 	if (epos->bh) {
2183 		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2184 		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2185 			struct allocExtDesc *aed =
2186 				(struct allocExtDesc *)epos->bh->b_data;
2187 			udf_update_tag(epos->bh->b_data,
2188 				       le32_to_cpu(aed->lengthAllocDescs) +
2189 				       sizeof(struct allocExtDesc));
2190 		}
2191 		mark_buffer_dirty_inode(epos->bh, inode);
2192 	} else {
2193 		mark_inode_dirty(inode);
2194 	}
2195 
2196 	if (inc)
2197 		epos->offset += adsize;
2198 }
2199 
2200 /*
2201  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2202  * someone does some weird stuff.
2203  */
2204 #define UDF_MAX_INDIR_EXTS 16
2205 
2206 /*
2207  * Returns 1 on success, -errno on error, 0 on hit EOF.
2208  */
udf_next_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int8_t * etype,int inc)2209 int udf_next_aext(struct inode *inode, struct extent_position *epos,
2210 		  struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2211 		  int inc)
2212 {
2213 	unsigned int indirections = 0;
2214 	int ret = 0;
2215 	udf_pblk_t block;
2216 
2217 	while (1) {
2218 		ret = udf_current_aext(inode, epos, eloc, elen,
2219 				       etype, inc);
2220 		if (ret <= 0)
2221 			return ret;
2222 		if (*etype != (EXT_NEXT_EXTENT_ALLOCDESCS >> 30))
2223 			return ret;
2224 
2225 		if (++indirections > UDF_MAX_INDIR_EXTS) {
2226 			udf_err(inode->i_sb,
2227 				"too many indirect extents in inode %lu\n",
2228 				inode->i_ino);
2229 			return -EFSCORRUPTED;
2230 		}
2231 
2232 		epos->block = *eloc;
2233 		epos->offset = sizeof(struct allocExtDesc);
2234 		brelse(epos->bh);
2235 		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2236 		epos->bh = sb_bread(inode->i_sb, block);
2237 		if (!epos->bh) {
2238 			udf_debug("reading block %u failed!\n", block);
2239 			return -EIO;
2240 		}
2241 	}
2242 }
2243 
2244 /*
2245  * Returns 1 on success, -errno on error, 0 on hit EOF.
2246  */
udf_current_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int8_t * etype,int inc)2247 int udf_current_aext(struct inode *inode, struct extent_position *epos,
2248 		     struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2249 		     int inc)
2250 {
2251 	int alen;
2252 	uint8_t *ptr;
2253 	struct short_ad *sad;
2254 	struct long_ad *lad;
2255 	struct udf_inode_info *iinfo = UDF_I(inode);
2256 
2257 	if (!epos->bh) {
2258 		if (!epos->offset)
2259 			epos->offset = udf_file_entry_alloc_offset(inode);
2260 		ptr = iinfo->i_data + epos->offset -
2261 			udf_file_entry_alloc_offset(inode) +
2262 			iinfo->i_lenEAttr;
2263 		alen = udf_file_entry_alloc_offset(inode) +
2264 							iinfo->i_lenAlloc;
2265 	} else {
2266 		struct allocExtDesc *header =
2267 			(struct allocExtDesc *)epos->bh->b_data;
2268 
2269 		if (!epos->offset)
2270 			epos->offset = sizeof(struct allocExtDesc);
2271 		ptr = epos->bh->b_data + epos->offset;
2272 		if (check_add_overflow(sizeof(struct allocExtDesc),
2273 				le32_to_cpu(header->lengthAllocDescs), &alen))
2274 			return -1;
2275 	}
2276 
2277 	switch (iinfo->i_alloc_type) {
2278 	case ICBTAG_FLAG_AD_SHORT:
2279 		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2280 		if (!sad)
2281 			return 0;
2282 		*etype = le32_to_cpu(sad->extLength) >> 30;
2283 		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2284 		eloc->partitionReferenceNum =
2285 				iinfo->i_location.partitionReferenceNum;
2286 		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2287 		break;
2288 	case ICBTAG_FLAG_AD_LONG:
2289 		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2290 		if (!lad)
2291 			return 0;
2292 		*etype = le32_to_cpu(lad->extLength) >> 30;
2293 		*eloc = lelb_to_cpu(lad->extLocation);
2294 		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2295 		break;
2296 	default:
2297 		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2298 		return -EINVAL;
2299 	}
2300 
2301 	return 1;
2302 }
2303 
udf_insert_aext(struct inode * inode,struct extent_position epos,struct kernel_lb_addr neloc,uint32_t nelen)2304 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2305 			   struct kernel_lb_addr neloc, uint32_t nelen)
2306 {
2307 	struct kernel_lb_addr oeloc;
2308 	uint32_t oelen;
2309 	int8_t etype;
2310 	int ret;
2311 
2312 	if (epos.bh)
2313 		get_bh(epos.bh);
2314 
2315 	while (1) {
2316 		ret = udf_next_aext(inode, &epos, &oeloc, &oelen, &etype, 0);
2317 		if (ret <= 0)
2318 			break;
2319 		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2320 		neloc = oeloc;
2321 		nelen = (etype << 30) | oelen;
2322 	}
2323 	if (ret == 0)
2324 		ret = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2325 	brelse(epos.bh);
2326 
2327 	return ret;
2328 }
2329 
udf_delete_aext(struct inode * inode,struct extent_position epos)2330 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2331 {
2332 	struct extent_position oepos;
2333 	int adsize;
2334 	int8_t etype;
2335 	struct allocExtDesc *aed;
2336 	struct udf_inode_info *iinfo;
2337 	struct kernel_lb_addr eloc;
2338 	uint32_t elen;
2339 	int ret;
2340 
2341 	if (epos.bh) {
2342 		get_bh(epos.bh);
2343 		get_bh(epos.bh);
2344 	}
2345 
2346 	iinfo = UDF_I(inode);
2347 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2348 		adsize = sizeof(struct short_ad);
2349 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2350 		adsize = sizeof(struct long_ad);
2351 	else
2352 		adsize = 0;
2353 
2354 	oepos = epos;
2355 	if (udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1) <= 0)
2356 		return -1;
2357 
2358 	while (1) {
2359 		ret = udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1);
2360 		if (ret < 0) {
2361 			brelse(epos.bh);
2362 			brelse(oepos.bh);
2363 			return -1;
2364 		}
2365 		if (ret == 0)
2366 			break;
2367 		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2368 		if (oepos.bh != epos.bh) {
2369 			oepos.block = epos.block;
2370 			brelse(oepos.bh);
2371 			get_bh(epos.bh);
2372 			oepos.bh = epos.bh;
2373 			oepos.offset = epos.offset - adsize;
2374 		}
2375 	}
2376 	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2377 	elen = 0;
2378 
2379 	if (epos.bh != oepos.bh) {
2380 		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2381 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2382 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2383 		if (!oepos.bh) {
2384 			iinfo->i_lenAlloc -= (adsize * 2);
2385 			mark_inode_dirty(inode);
2386 		} else {
2387 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2388 			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2389 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2390 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2391 				udf_update_tag(oepos.bh->b_data,
2392 						oepos.offset - (2 * adsize));
2393 			else
2394 				udf_update_tag(oepos.bh->b_data,
2395 						sizeof(struct allocExtDesc));
2396 			mark_buffer_dirty_inode(oepos.bh, inode);
2397 		}
2398 	} else {
2399 		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2400 		if (!oepos.bh) {
2401 			iinfo->i_lenAlloc -= adsize;
2402 			mark_inode_dirty(inode);
2403 		} else {
2404 			aed = (struct allocExtDesc *)oepos.bh->b_data;
2405 			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2406 			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2407 			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2408 				udf_update_tag(oepos.bh->b_data,
2409 						epos.offset - adsize);
2410 			else
2411 				udf_update_tag(oepos.bh->b_data,
2412 						sizeof(struct allocExtDesc));
2413 			mark_buffer_dirty_inode(oepos.bh, inode);
2414 		}
2415 	}
2416 
2417 	brelse(epos.bh);
2418 	brelse(oepos.bh);
2419 
2420 	return (elen >> 30);
2421 }
2422 
2423 /*
2424  * Returns 1 on success, -errno on error, 0 on hit EOF.
2425  */
inode_bmap(struct inode * inode,sector_t block,struct extent_position * pos,struct kernel_lb_addr * eloc,uint32_t * elen,sector_t * offset,int8_t * etype)2426 int inode_bmap(struct inode *inode, sector_t block, struct extent_position *pos,
2427 	       struct kernel_lb_addr *eloc, uint32_t *elen, sector_t *offset,
2428 	       int8_t *etype)
2429 {
2430 	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2431 	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2432 	struct udf_inode_info *iinfo;
2433 	int err = 0;
2434 
2435 	iinfo = UDF_I(inode);
2436 	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2437 		pos->offset = 0;
2438 		pos->block = iinfo->i_location;
2439 		pos->bh = NULL;
2440 	}
2441 	*elen = 0;
2442 	do {
2443 		err = udf_next_aext(inode, pos, eloc, elen, etype, 1);
2444 		if (err <= 0) {
2445 			if (err == 0) {
2446 				*offset = (bcount - lbcount) >> blocksize_bits;
2447 				iinfo->i_lenExtents = lbcount;
2448 			}
2449 			return err;
2450 		}
2451 		lbcount += *elen;
2452 	} while (lbcount <= bcount);
2453 	/* update extent cache */
2454 	udf_update_extent_cache(inode, lbcount - *elen, pos);
2455 	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2456 
2457 	return 1;
2458 }
2459