xref: /linux/arch/x86/kernel/cpu/bugs.c (revision dbfc6422a34d6cb28e5c0432af309b24f66ef27e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19 
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34 
35 #include "cpu.h"
36 
37 /*
38  * Speculation Vulnerability Handling
39  *
40  * Each vulnerability is handled with the following functions:
41  *   <vuln>_select_mitigation() -- Selects a mitigation to use.  This should
42  *				   take into account all relevant command line
43  *				   options.
44  *   <vuln>_update_mitigation() -- This is called after all vulnerabilities have
45  *				   selected a mitigation, in case the selection
46  *				   may want to change based on other choices
47  *				   made.  This function is optional.
48  *   <vuln>_apply_mitigation() -- Enable the selected mitigation.
49  *
50  * The compile-time mitigation in all cases should be AUTO.  An explicit
51  * command-line option can override AUTO.  If no such option is
52  * provided, <vuln>_select_mitigation() will override AUTO to the best
53  * mitigation option.
54  */
55 
56 static void __init spectre_v1_select_mitigation(void);
57 static void __init spectre_v1_apply_mitigation(void);
58 static void __init spectre_v2_select_mitigation(void);
59 static void __init spectre_v2_update_mitigation(void);
60 static void __init spectre_v2_apply_mitigation(void);
61 static void __init retbleed_select_mitigation(void);
62 static void __init retbleed_update_mitigation(void);
63 static void __init retbleed_apply_mitigation(void);
64 static void __init spectre_v2_user_select_mitigation(void);
65 static void __init spectre_v2_user_update_mitigation(void);
66 static void __init spectre_v2_user_apply_mitigation(void);
67 static void __init ssb_select_mitigation(void);
68 static void __init ssb_apply_mitigation(void);
69 static void __init l1tf_select_mitigation(void);
70 static void __init l1tf_apply_mitigation(void);
71 static void __init mds_select_mitigation(void);
72 static void __init mds_update_mitigation(void);
73 static void __init mds_apply_mitigation(void);
74 static void __init taa_select_mitigation(void);
75 static void __init taa_update_mitigation(void);
76 static void __init taa_apply_mitigation(void);
77 static void __init mmio_select_mitigation(void);
78 static void __init mmio_update_mitigation(void);
79 static void __init mmio_apply_mitigation(void);
80 static void __init rfds_select_mitigation(void);
81 static void __init rfds_update_mitigation(void);
82 static void __init rfds_apply_mitigation(void);
83 static void __init srbds_select_mitigation(void);
84 static void __init srbds_apply_mitigation(void);
85 static void __init l1d_flush_select_mitigation(void);
86 static void __init srso_select_mitigation(void);
87 static void __init srso_update_mitigation(void);
88 static void __init srso_apply_mitigation(void);
89 static void __init gds_select_mitigation(void);
90 static void __init gds_apply_mitigation(void);
91 static void __init bhi_select_mitigation(void);
92 static void __init bhi_update_mitigation(void);
93 static void __init bhi_apply_mitigation(void);
94 static void __init its_select_mitigation(void);
95 static void __init its_update_mitigation(void);
96 static void __init its_apply_mitigation(void);
97 static void __init tsa_select_mitigation(void);
98 static void __init tsa_apply_mitigation(void);
99 static void __init vmscape_select_mitigation(void);
100 static void __init vmscape_update_mitigation(void);
101 static void __init vmscape_apply_mitigation(void);
102 
103 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
104 u64 x86_spec_ctrl_base;
105 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
106 
107 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
108 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
109 EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
110 
111 /*
112  * Set when the CPU has run a potentially malicious guest. An IBPB will
113  * be needed to before running userspace. That IBPB will flush the branch
114  * predictor content.
115  */
116 DEFINE_PER_CPU(bool, x86_ibpb_exit_to_user);
117 EXPORT_PER_CPU_SYMBOL_GPL(x86_ibpb_exit_to_user);
118 
119 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
120 
121 static u64 __ro_after_init x86_arch_cap_msr;
122 
123 static DEFINE_MUTEX(spec_ctrl_mutex);
124 
125 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
126 
set_return_thunk(void * thunk)127 static void __init set_return_thunk(void *thunk)
128 {
129 	x86_return_thunk = thunk;
130 
131 	pr_info("active return thunk: %ps\n", thunk);
132 }
133 
134 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
update_spec_ctrl(u64 val)135 static void update_spec_ctrl(u64 val)
136 {
137 	this_cpu_write(x86_spec_ctrl_current, val);
138 	wrmsrq(MSR_IA32_SPEC_CTRL, val);
139 }
140 
141 /*
142  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
143  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
144  */
update_spec_ctrl_cond(u64 val)145 void update_spec_ctrl_cond(u64 val)
146 {
147 	if (this_cpu_read(x86_spec_ctrl_current) == val)
148 		return;
149 
150 	this_cpu_write(x86_spec_ctrl_current, val);
151 
152 	/*
153 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
154 	 * forced the update can be delayed until that time.
155 	 */
156 	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
157 		wrmsrq(MSR_IA32_SPEC_CTRL, val);
158 }
159 
spec_ctrl_current(void)160 noinstr u64 spec_ctrl_current(void)
161 {
162 	return this_cpu_read(x86_spec_ctrl_current);
163 }
164 EXPORT_SYMBOL_GPL(spec_ctrl_current);
165 
166 /*
167  * AMD specific MSR info for Speculative Store Bypass control.
168  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
169  */
170 u64 __ro_after_init x86_amd_ls_cfg_base;
171 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
172 
173 /* Control conditional STIBP in switch_to() */
174 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
175 /* Control conditional IBPB in switch_mm() */
176 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
177 /* Control unconditional IBPB in switch_mm() */
178 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
179 
180 /* Control IBPB on vCPU load */
181 DEFINE_STATIC_KEY_FALSE(switch_vcpu_ibpb);
182 EXPORT_SYMBOL_GPL(switch_vcpu_ibpb);
183 
184 /* Control CPU buffer clear before idling (halt, mwait) */
185 DEFINE_STATIC_KEY_FALSE(cpu_buf_idle_clear);
186 EXPORT_SYMBOL_GPL(cpu_buf_idle_clear);
187 
188 /*
189  * Controls whether l1d flush based mitigations are enabled,
190  * based on hw features and admin setting via boot parameter
191  * defaults to false
192  */
193 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
194 
195 /*
196  * Controls CPU Fill buffer clear before VMenter. This is a subset of
197  * X86_FEATURE_CLEAR_CPU_BUF, and should only be enabled when KVM-only
198  * mitigation is required.
199  */
200 DEFINE_STATIC_KEY_FALSE(cpu_buf_vm_clear);
201 EXPORT_SYMBOL_GPL(cpu_buf_vm_clear);
202 
203 #undef pr_fmt
204 #define pr_fmt(fmt)	"mitigations: " fmt
205 
cpu_print_attack_vectors(void)206 static void __init cpu_print_attack_vectors(void)
207 {
208 	pr_info("Enabled attack vectors: ");
209 
210 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL))
211 		pr_cont("user_kernel, ");
212 
213 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER))
214 		pr_cont("user_user, ");
215 
216 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST))
217 		pr_cont("guest_host, ");
218 
219 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST))
220 		pr_cont("guest_guest, ");
221 
222 	pr_cont("SMT mitigations: ");
223 
224 	switch (smt_mitigations) {
225 	case SMT_MITIGATIONS_OFF:
226 		pr_cont("off\n");
227 		break;
228 	case SMT_MITIGATIONS_AUTO:
229 		pr_cont("auto\n");
230 		break;
231 	case SMT_MITIGATIONS_ON:
232 		pr_cont("on\n");
233 	}
234 }
235 
cpu_select_mitigations(void)236 void __init cpu_select_mitigations(void)
237 {
238 	/*
239 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
240 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
241 	 * init code as it is not enumerated and depends on the family.
242 	 */
243 	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
244 		rdmsrq(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
245 
246 		/*
247 		 * Previously running kernel (kexec), may have some controls
248 		 * turned ON. Clear them and let the mitigations setup below
249 		 * rediscover them based on configuration.
250 		 */
251 		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
252 	}
253 
254 	x86_arch_cap_msr = x86_read_arch_cap_msr();
255 
256 	cpu_print_attack_vectors();
257 
258 	/* Select the proper CPU mitigations before patching alternatives: */
259 	spectre_v1_select_mitigation();
260 	spectre_v2_select_mitigation();
261 	retbleed_select_mitigation();
262 	spectre_v2_user_select_mitigation();
263 	ssb_select_mitigation();
264 	l1tf_select_mitigation();
265 	mds_select_mitigation();
266 	taa_select_mitigation();
267 	mmio_select_mitigation();
268 	rfds_select_mitigation();
269 	srbds_select_mitigation();
270 	l1d_flush_select_mitigation();
271 	srso_select_mitigation();
272 	gds_select_mitigation();
273 	its_select_mitigation();
274 	bhi_select_mitigation();
275 	tsa_select_mitigation();
276 	vmscape_select_mitigation();
277 
278 	/*
279 	 * After mitigations are selected, some may need to update their
280 	 * choices.
281 	 */
282 	spectre_v2_update_mitigation();
283 	/*
284 	 * retbleed_update_mitigation() relies on the state set by
285 	 * spectre_v2_update_mitigation(); specifically it wants to know about
286 	 * spectre_v2=ibrs.
287 	 */
288 	retbleed_update_mitigation();
289 	/*
290 	 * its_update_mitigation() depends on spectre_v2_update_mitigation()
291 	 * and retbleed_update_mitigation().
292 	 */
293 	its_update_mitigation();
294 
295 	/*
296 	 * spectre_v2_user_update_mitigation() depends on
297 	 * retbleed_update_mitigation(), specifically the STIBP
298 	 * selection is forced for UNRET or IBPB.
299 	 */
300 	spectre_v2_user_update_mitigation();
301 	mds_update_mitigation();
302 	taa_update_mitigation();
303 	mmio_update_mitigation();
304 	rfds_update_mitigation();
305 	bhi_update_mitigation();
306 	/* srso_update_mitigation() depends on retbleed_update_mitigation(). */
307 	srso_update_mitigation();
308 	vmscape_update_mitigation();
309 
310 	spectre_v1_apply_mitigation();
311 	spectre_v2_apply_mitigation();
312 	retbleed_apply_mitigation();
313 	spectre_v2_user_apply_mitigation();
314 	ssb_apply_mitigation();
315 	l1tf_apply_mitigation();
316 	mds_apply_mitigation();
317 	taa_apply_mitigation();
318 	mmio_apply_mitigation();
319 	rfds_apply_mitigation();
320 	srbds_apply_mitigation();
321 	srso_apply_mitigation();
322 	gds_apply_mitigation();
323 	its_apply_mitigation();
324 	bhi_apply_mitigation();
325 	tsa_apply_mitigation();
326 	vmscape_apply_mitigation();
327 }
328 
329 /*
330  * NOTE: This function is *only* called for SVM, since Intel uses
331  * MSR_IA32_SPEC_CTRL for SSBD.
332  */
333 void
x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl,bool setguest)334 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
335 {
336 	u64 guestval, hostval;
337 	struct thread_info *ti = current_thread_info();
338 
339 	/*
340 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
341 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
342 	 */
343 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
344 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
345 		return;
346 
347 	/*
348 	 * If the host has SSBD mitigation enabled, force it in the host's
349 	 * virtual MSR value. If its not permanently enabled, evaluate
350 	 * current's TIF_SSBD thread flag.
351 	 */
352 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
353 		hostval = SPEC_CTRL_SSBD;
354 	else
355 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
356 
357 	/* Sanitize the guest value */
358 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
359 
360 	if (hostval != guestval) {
361 		unsigned long tif;
362 
363 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
364 				 ssbd_spec_ctrl_to_tif(hostval);
365 
366 		speculation_ctrl_update(tif);
367 	}
368 }
369 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
370 
x86_amd_ssb_disable(void)371 static void x86_amd_ssb_disable(void)
372 {
373 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
374 
375 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
376 		wrmsrq(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
377 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
378 		wrmsrq(MSR_AMD64_LS_CFG, msrval);
379 }
380 
381 #undef pr_fmt
382 #define pr_fmt(fmt)	"MDS: " fmt
383 
384 /*
385  * Returns true if vulnerability should be mitigated based on the
386  * selected attack vector controls.
387  *
388  * See Documentation/admin-guide/hw-vuln/attack_vector_controls.rst
389  */
should_mitigate_vuln(unsigned int bug)390 static bool __init should_mitigate_vuln(unsigned int bug)
391 {
392 	switch (bug) {
393 	/*
394 	 * The only runtime-selected spectre_v1 mitigations in the kernel are
395 	 * related to SWAPGS protection on kernel entry.  Therefore, protection
396 	 * is only required for the user->kernel attack vector.
397 	 */
398 	case X86_BUG_SPECTRE_V1:
399 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL);
400 
401 	case X86_BUG_SPECTRE_V2:
402 	case X86_BUG_RETBLEED:
403 	case X86_BUG_L1TF:
404 	case X86_BUG_ITS:
405 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
406 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST);
407 
408 	case X86_BUG_SPECTRE_V2_USER:
409 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
410 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST);
411 
412 	/*
413 	 * All the vulnerabilities below allow potentially leaking data
414 	 * across address spaces.  Therefore, mitigation is required for
415 	 * any of these 4 attack vectors.
416 	 */
417 	case X86_BUG_MDS:
418 	case X86_BUG_TAA:
419 	case X86_BUG_MMIO_STALE_DATA:
420 	case X86_BUG_RFDS:
421 	case X86_BUG_SRBDS:
422 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
423 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
424 		       cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
425 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST);
426 
427 	case X86_BUG_GDS:
428 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
429 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
430 		       cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
431 		       cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST) ||
432 		       (smt_mitigations != SMT_MITIGATIONS_OFF);
433 
434 	case X86_BUG_SPEC_STORE_BYPASS:
435 		return cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER);
436 
437 	case X86_BUG_VMSCAPE:
438 		return cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST);
439 
440 	default:
441 		WARN(1, "Unknown bug %x\n", bug);
442 		return false;
443 	}
444 }
445 
446 /* Default mitigation for MDS-affected CPUs */
447 static enum mds_mitigations mds_mitigation __ro_after_init =
448 	IS_ENABLED(CONFIG_MITIGATION_MDS) ? MDS_MITIGATION_AUTO : MDS_MITIGATION_OFF;
449 static bool mds_nosmt __ro_after_init = false;
450 
451 static const char * const mds_strings[] = {
452 	[MDS_MITIGATION_OFF]	= "Vulnerable",
453 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
454 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
455 };
456 
457 enum taa_mitigations {
458 	TAA_MITIGATION_OFF,
459 	TAA_MITIGATION_AUTO,
460 	TAA_MITIGATION_UCODE_NEEDED,
461 	TAA_MITIGATION_VERW,
462 	TAA_MITIGATION_TSX_DISABLED,
463 };
464 
465 /* Default mitigation for TAA-affected CPUs */
466 static enum taa_mitigations taa_mitigation __ro_after_init =
467 	IS_ENABLED(CONFIG_MITIGATION_TAA) ? TAA_MITIGATION_AUTO : TAA_MITIGATION_OFF;
468 
469 enum mmio_mitigations {
470 	MMIO_MITIGATION_OFF,
471 	MMIO_MITIGATION_AUTO,
472 	MMIO_MITIGATION_UCODE_NEEDED,
473 	MMIO_MITIGATION_VERW,
474 };
475 
476 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
477 static enum mmio_mitigations mmio_mitigation __ro_after_init =
478 	IS_ENABLED(CONFIG_MITIGATION_MMIO_STALE_DATA) ?	MMIO_MITIGATION_AUTO : MMIO_MITIGATION_OFF;
479 
480 enum rfds_mitigations {
481 	RFDS_MITIGATION_OFF,
482 	RFDS_MITIGATION_AUTO,
483 	RFDS_MITIGATION_VERW,
484 	RFDS_MITIGATION_UCODE_NEEDED,
485 };
486 
487 /* Default mitigation for Register File Data Sampling */
488 static enum rfds_mitigations rfds_mitigation __ro_after_init =
489 	IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_AUTO : RFDS_MITIGATION_OFF;
490 
491 /*
492  * Set if any of MDS/TAA/MMIO/RFDS are going to enable VERW clearing
493  * through X86_FEATURE_CLEAR_CPU_BUF on kernel and guest entry.
494  */
495 static bool verw_clear_cpu_buf_mitigation_selected __ro_after_init;
496 
mds_select_mitigation(void)497 static void __init mds_select_mitigation(void)
498 {
499 	if (!boot_cpu_has_bug(X86_BUG_MDS)) {
500 		mds_mitigation = MDS_MITIGATION_OFF;
501 		return;
502 	}
503 
504 	if (mds_mitigation == MDS_MITIGATION_AUTO) {
505 		if (should_mitigate_vuln(X86_BUG_MDS))
506 			mds_mitigation = MDS_MITIGATION_FULL;
507 		else
508 			mds_mitigation = MDS_MITIGATION_OFF;
509 	}
510 
511 	if (mds_mitigation == MDS_MITIGATION_OFF)
512 		return;
513 
514 	verw_clear_cpu_buf_mitigation_selected = true;
515 }
516 
mds_update_mitigation(void)517 static void __init mds_update_mitigation(void)
518 {
519 	if (!boot_cpu_has_bug(X86_BUG_MDS))
520 		return;
521 
522 	/* If TAA, MMIO, or RFDS are being mitigated, MDS gets mitigated too. */
523 	if (verw_clear_cpu_buf_mitigation_selected)
524 		mds_mitigation = MDS_MITIGATION_FULL;
525 
526 	if (mds_mitigation == MDS_MITIGATION_FULL) {
527 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
528 			mds_mitigation = MDS_MITIGATION_VMWERV;
529 	}
530 
531 	pr_info("%s\n", mds_strings[mds_mitigation]);
532 }
533 
mds_apply_mitigation(void)534 static void __init mds_apply_mitigation(void)
535 {
536 	if (mds_mitigation == MDS_MITIGATION_FULL ||
537 	    mds_mitigation == MDS_MITIGATION_VMWERV) {
538 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
539 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
540 		    (mds_nosmt || smt_mitigations == SMT_MITIGATIONS_ON))
541 			cpu_smt_disable(false);
542 	}
543 }
544 
mds_cmdline(char * str)545 static int __init mds_cmdline(char *str)
546 {
547 	if (!boot_cpu_has_bug(X86_BUG_MDS))
548 		return 0;
549 
550 	if (!str)
551 		return -EINVAL;
552 
553 	if (!strcmp(str, "off"))
554 		mds_mitigation = MDS_MITIGATION_OFF;
555 	else if (!strcmp(str, "full"))
556 		mds_mitigation = MDS_MITIGATION_FULL;
557 	else if (!strcmp(str, "full,nosmt")) {
558 		mds_mitigation = MDS_MITIGATION_FULL;
559 		mds_nosmt = true;
560 	}
561 
562 	return 0;
563 }
564 early_param("mds", mds_cmdline);
565 
566 #undef pr_fmt
567 #define pr_fmt(fmt)	"TAA: " fmt
568 
569 static bool taa_nosmt __ro_after_init;
570 
571 static const char * const taa_strings[] = {
572 	[TAA_MITIGATION_OFF]		= "Vulnerable",
573 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
574 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
575 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
576 };
577 
taa_vulnerable(void)578 static bool __init taa_vulnerable(void)
579 {
580 	return boot_cpu_has_bug(X86_BUG_TAA) && boot_cpu_has(X86_FEATURE_RTM);
581 }
582 
taa_select_mitigation(void)583 static void __init taa_select_mitigation(void)
584 {
585 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
586 		taa_mitigation = TAA_MITIGATION_OFF;
587 		return;
588 	}
589 
590 	/* TSX previously disabled by tsx=off */
591 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
592 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
593 		return;
594 	}
595 
596 	/* Microcode will be checked in taa_update_mitigation(). */
597 	if (taa_mitigation == TAA_MITIGATION_AUTO) {
598 		if (should_mitigate_vuln(X86_BUG_TAA))
599 			taa_mitigation = TAA_MITIGATION_VERW;
600 		else
601 			taa_mitigation = TAA_MITIGATION_OFF;
602 	}
603 
604 	if (taa_mitigation != TAA_MITIGATION_OFF)
605 		verw_clear_cpu_buf_mitigation_selected = true;
606 }
607 
taa_update_mitigation(void)608 static void __init taa_update_mitigation(void)
609 {
610 	if (!taa_vulnerable())
611 		return;
612 
613 	if (verw_clear_cpu_buf_mitigation_selected)
614 		taa_mitigation = TAA_MITIGATION_VERW;
615 
616 	if (taa_mitigation == TAA_MITIGATION_VERW) {
617 		/* Check if the requisite ucode is available. */
618 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
619 			taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
620 
621 		/*
622 		 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
623 		 * A microcode update fixes this behavior to clear CPU buffers. It also
624 		 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
625 		 * ARCH_CAP_TSX_CTRL_MSR bit.
626 		 *
627 		 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
628 		 * update is required.
629 		 */
630 		if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
631 		   !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
632 			taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
633 	}
634 
635 	pr_info("%s\n", taa_strings[taa_mitigation]);
636 }
637 
taa_apply_mitigation(void)638 static void __init taa_apply_mitigation(void)
639 {
640 	if (taa_mitigation == TAA_MITIGATION_VERW ||
641 	    taa_mitigation == TAA_MITIGATION_UCODE_NEEDED) {
642 		/*
643 		 * TSX is enabled, select alternate mitigation for TAA which is
644 		 * the same as MDS. Enable MDS static branch to clear CPU buffers.
645 		 *
646 		 * For guests that can't determine whether the correct microcode is
647 		 * present on host, enable the mitigation for UCODE_NEEDED as well.
648 		 */
649 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
650 
651 		if (taa_nosmt || smt_mitigations == SMT_MITIGATIONS_ON)
652 			cpu_smt_disable(false);
653 	}
654 }
655 
tsx_async_abort_parse_cmdline(char * str)656 static int __init tsx_async_abort_parse_cmdline(char *str)
657 {
658 	if (!boot_cpu_has_bug(X86_BUG_TAA))
659 		return 0;
660 
661 	if (!str)
662 		return -EINVAL;
663 
664 	if (!strcmp(str, "off")) {
665 		taa_mitigation = TAA_MITIGATION_OFF;
666 	} else if (!strcmp(str, "full")) {
667 		taa_mitigation = TAA_MITIGATION_VERW;
668 	} else if (!strcmp(str, "full,nosmt")) {
669 		taa_mitigation = TAA_MITIGATION_VERW;
670 		taa_nosmt = true;
671 	}
672 
673 	return 0;
674 }
675 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
676 
677 #undef pr_fmt
678 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
679 
680 static bool mmio_nosmt __ro_after_init = false;
681 
682 static const char * const mmio_strings[] = {
683 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
684 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
685 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
686 };
687 
mmio_select_mitigation(void)688 static void __init mmio_select_mitigation(void)
689 {
690 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
691 		mmio_mitigation = MMIO_MITIGATION_OFF;
692 		return;
693 	}
694 
695 	/* Microcode will be checked in mmio_update_mitigation(). */
696 	if (mmio_mitigation == MMIO_MITIGATION_AUTO) {
697 		if (should_mitigate_vuln(X86_BUG_MMIO_STALE_DATA))
698 			mmio_mitigation = MMIO_MITIGATION_VERW;
699 		else
700 			mmio_mitigation = MMIO_MITIGATION_OFF;
701 	}
702 
703 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
704 		return;
705 
706 	/*
707 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
708 	 * by MDS or TAA.
709 	 */
710 	if (boot_cpu_has_bug(X86_BUG_MDS) || taa_vulnerable())
711 		verw_clear_cpu_buf_mitigation_selected = true;
712 }
713 
mmio_update_mitigation(void)714 static void __init mmio_update_mitigation(void)
715 {
716 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
717 		return;
718 
719 	if (verw_clear_cpu_buf_mitigation_selected)
720 		mmio_mitigation = MMIO_MITIGATION_VERW;
721 
722 	if (mmio_mitigation == MMIO_MITIGATION_VERW) {
723 		/*
724 		 * Check if the system has the right microcode.
725 		 *
726 		 * CPU Fill buffer clear mitigation is enumerated by either an explicit
727 		 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
728 		 * affected systems.
729 		 */
730 		if (!((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
731 		      (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
732 		       boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
733 		     !(x86_arch_cap_msr & ARCH_CAP_MDS_NO))))
734 			mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
735 	}
736 
737 	pr_info("%s\n", mmio_strings[mmio_mitigation]);
738 }
739 
mmio_apply_mitigation(void)740 static void __init mmio_apply_mitigation(void)
741 {
742 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
743 		return;
744 
745 	/*
746 	 * Only enable the VMM mitigation if the CPU buffer clear mitigation is
747 	 * not being used.
748 	 */
749 	if (verw_clear_cpu_buf_mitigation_selected) {
750 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
751 		static_branch_disable(&cpu_buf_vm_clear);
752 	} else {
753 		static_branch_enable(&cpu_buf_vm_clear);
754 	}
755 
756 	/*
757 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
758 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
759 	 * is required irrespective of SMT state.
760 	 */
761 	if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
762 		static_branch_enable(&cpu_buf_idle_clear);
763 
764 	if (mmio_nosmt || smt_mitigations == SMT_MITIGATIONS_ON)
765 		cpu_smt_disable(false);
766 }
767 
mmio_stale_data_parse_cmdline(char * str)768 static int __init mmio_stale_data_parse_cmdline(char *str)
769 {
770 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
771 		return 0;
772 
773 	if (!str)
774 		return -EINVAL;
775 
776 	if (!strcmp(str, "off")) {
777 		mmio_mitigation = MMIO_MITIGATION_OFF;
778 	} else if (!strcmp(str, "full")) {
779 		mmio_mitigation = MMIO_MITIGATION_VERW;
780 	} else if (!strcmp(str, "full,nosmt")) {
781 		mmio_mitigation = MMIO_MITIGATION_VERW;
782 		mmio_nosmt = true;
783 	}
784 
785 	return 0;
786 }
787 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
788 
789 #undef pr_fmt
790 #define pr_fmt(fmt)	"Register File Data Sampling: " fmt
791 
792 static const char * const rfds_strings[] = {
793 	[RFDS_MITIGATION_OFF]			= "Vulnerable",
794 	[RFDS_MITIGATION_VERW]			= "Mitigation: Clear Register File",
795 	[RFDS_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
796 };
797 
verw_clears_cpu_reg_file(void)798 static inline bool __init verw_clears_cpu_reg_file(void)
799 {
800 	return (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR);
801 }
802 
rfds_select_mitigation(void)803 static void __init rfds_select_mitigation(void)
804 {
805 	if (!boot_cpu_has_bug(X86_BUG_RFDS)) {
806 		rfds_mitigation = RFDS_MITIGATION_OFF;
807 		return;
808 	}
809 
810 	if (rfds_mitigation == RFDS_MITIGATION_AUTO) {
811 		if (should_mitigate_vuln(X86_BUG_RFDS))
812 			rfds_mitigation = RFDS_MITIGATION_VERW;
813 		else
814 			rfds_mitigation = RFDS_MITIGATION_OFF;
815 	}
816 
817 	if (rfds_mitigation == RFDS_MITIGATION_OFF)
818 		return;
819 
820 	if (verw_clears_cpu_reg_file())
821 		verw_clear_cpu_buf_mitigation_selected = true;
822 }
823 
rfds_update_mitigation(void)824 static void __init rfds_update_mitigation(void)
825 {
826 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
827 		return;
828 
829 	if (verw_clear_cpu_buf_mitigation_selected)
830 		rfds_mitigation = RFDS_MITIGATION_VERW;
831 
832 	if (rfds_mitigation == RFDS_MITIGATION_VERW) {
833 		if (!verw_clears_cpu_reg_file())
834 			rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
835 	}
836 
837 	pr_info("%s\n", rfds_strings[rfds_mitigation]);
838 }
839 
rfds_apply_mitigation(void)840 static void __init rfds_apply_mitigation(void)
841 {
842 	if (rfds_mitigation == RFDS_MITIGATION_VERW)
843 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
844 }
845 
rfds_parse_cmdline(char * str)846 static __init int rfds_parse_cmdline(char *str)
847 {
848 	if (!str)
849 		return -EINVAL;
850 
851 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
852 		return 0;
853 
854 	if (!strcmp(str, "off"))
855 		rfds_mitigation = RFDS_MITIGATION_OFF;
856 	else if (!strcmp(str, "on"))
857 		rfds_mitigation = RFDS_MITIGATION_VERW;
858 
859 	return 0;
860 }
861 early_param("reg_file_data_sampling", rfds_parse_cmdline);
862 
863 #undef pr_fmt
864 #define pr_fmt(fmt)	"SRBDS: " fmt
865 
866 enum srbds_mitigations {
867 	SRBDS_MITIGATION_OFF,
868 	SRBDS_MITIGATION_AUTO,
869 	SRBDS_MITIGATION_UCODE_NEEDED,
870 	SRBDS_MITIGATION_FULL,
871 	SRBDS_MITIGATION_TSX_OFF,
872 	SRBDS_MITIGATION_HYPERVISOR,
873 };
874 
875 static enum srbds_mitigations srbds_mitigation __ro_after_init =
876 	IS_ENABLED(CONFIG_MITIGATION_SRBDS) ? SRBDS_MITIGATION_AUTO : SRBDS_MITIGATION_OFF;
877 
878 static const char * const srbds_strings[] = {
879 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
880 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
881 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
882 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
883 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
884 };
885 
886 static bool srbds_off;
887 
update_srbds_msr(void)888 void update_srbds_msr(void)
889 {
890 	u64 mcu_ctrl;
891 
892 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
893 		return;
894 
895 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
896 		return;
897 
898 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
899 		return;
900 
901 	/*
902 	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
903 	 * being disabled and it hasn't received the SRBDS MSR microcode.
904 	 */
905 	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
906 		return;
907 
908 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
909 
910 	switch (srbds_mitigation) {
911 	case SRBDS_MITIGATION_OFF:
912 	case SRBDS_MITIGATION_TSX_OFF:
913 		mcu_ctrl |= RNGDS_MITG_DIS;
914 		break;
915 	case SRBDS_MITIGATION_FULL:
916 		mcu_ctrl &= ~RNGDS_MITG_DIS;
917 		break;
918 	default:
919 		break;
920 	}
921 
922 	wrmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
923 }
924 
srbds_select_mitigation(void)925 static void __init srbds_select_mitigation(void)
926 {
927 	if (!boot_cpu_has_bug(X86_BUG_SRBDS)) {
928 		srbds_mitigation = SRBDS_MITIGATION_OFF;
929 		return;
930 	}
931 
932 	if (srbds_mitigation == SRBDS_MITIGATION_AUTO) {
933 		if (should_mitigate_vuln(X86_BUG_SRBDS))
934 			srbds_mitigation = SRBDS_MITIGATION_FULL;
935 		else {
936 			srbds_mitigation = SRBDS_MITIGATION_OFF;
937 			return;
938 		}
939 	}
940 
941 	/*
942 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
943 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
944 	 * by Processor MMIO Stale Data vulnerability.
945 	 */
946 	if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
947 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
948 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
949 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
950 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
951 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
952 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
953 	else if (srbds_off)
954 		srbds_mitigation = SRBDS_MITIGATION_OFF;
955 
956 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
957 }
958 
srbds_apply_mitigation(void)959 static void __init srbds_apply_mitigation(void)
960 {
961 	update_srbds_msr();
962 }
963 
srbds_parse_cmdline(char * str)964 static int __init srbds_parse_cmdline(char *str)
965 {
966 	if (!str)
967 		return -EINVAL;
968 
969 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
970 		return 0;
971 
972 	srbds_off = !strcmp(str, "off");
973 	return 0;
974 }
975 early_param("srbds", srbds_parse_cmdline);
976 
977 #undef pr_fmt
978 #define pr_fmt(fmt)     "L1D Flush : " fmt
979 
980 enum l1d_flush_mitigations {
981 	L1D_FLUSH_OFF = 0,
982 	L1D_FLUSH_ON,
983 };
984 
985 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
986 
l1d_flush_select_mitigation(void)987 static void __init l1d_flush_select_mitigation(void)
988 {
989 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
990 		return;
991 
992 	static_branch_enable(&switch_mm_cond_l1d_flush);
993 	pr_info("Conditional flush on switch_mm() enabled\n");
994 }
995 
l1d_flush_parse_cmdline(char * str)996 static int __init l1d_flush_parse_cmdline(char *str)
997 {
998 	if (!strcmp(str, "on"))
999 		l1d_flush_mitigation = L1D_FLUSH_ON;
1000 
1001 	return 0;
1002 }
1003 early_param("l1d_flush", l1d_flush_parse_cmdline);
1004 
1005 #undef pr_fmt
1006 #define pr_fmt(fmt)	"GDS: " fmt
1007 
1008 enum gds_mitigations {
1009 	GDS_MITIGATION_OFF,
1010 	GDS_MITIGATION_AUTO,
1011 	GDS_MITIGATION_UCODE_NEEDED,
1012 	GDS_MITIGATION_FORCE,
1013 	GDS_MITIGATION_FULL,
1014 	GDS_MITIGATION_FULL_LOCKED,
1015 	GDS_MITIGATION_HYPERVISOR,
1016 };
1017 
1018 static enum gds_mitigations gds_mitigation __ro_after_init =
1019 	IS_ENABLED(CONFIG_MITIGATION_GDS) ? GDS_MITIGATION_AUTO : GDS_MITIGATION_OFF;
1020 
1021 static const char * const gds_strings[] = {
1022 	[GDS_MITIGATION_OFF]		= "Vulnerable",
1023 	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
1024 	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
1025 	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
1026 	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
1027 	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
1028 };
1029 
gds_ucode_mitigated(void)1030 bool gds_ucode_mitigated(void)
1031 {
1032 	return (gds_mitigation == GDS_MITIGATION_FULL ||
1033 		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
1034 }
1035 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
1036 
update_gds_msr(void)1037 void update_gds_msr(void)
1038 {
1039 	u64 mcu_ctrl_after;
1040 	u64 mcu_ctrl;
1041 
1042 	switch (gds_mitigation) {
1043 	case GDS_MITIGATION_OFF:
1044 		rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1045 		mcu_ctrl |= GDS_MITG_DIS;
1046 		break;
1047 	case GDS_MITIGATION_FULL_LOCKED:
1048 		/*
1049 		 * The LOCKED state comes from the boot CPU. APs might not have
1050 		 * the same state. Make sure the mitigation is enabled on all
1051 		 * CPUs.
1052 		 */
1053 	case GDS_MITIGATION_FULL:
1054 		rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1055 		mcu_ctrl &= ~GDS_MITG_DIS;
1056 		break;
1057 	case GDS_MITIGATION_FORCE:
1058 	case GDS_MITIGATION_UCODE_NEEDED:
1059 	case GDS_MITIGATION_HYPERVISOR:
1060 	case GDS_MITIGATION_AUTO:
1061 		return;
1062 	}
1063 
1064 	wrmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1065 
1066 	/*
1067 	 * Check to make sure that the WRMSR value was not ignored. Writes to
1068 	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
1069 	 * processor was not.
1070 	 */
1071 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
1072 	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
1073 }
1074 
gds_select_mitigation(void)1075 static void __init gds_select_mitigation(void)
1076 {
1077 	u64 mcu_ctrl;
1078 
1079 	if (!boot_cpu_has_bug(X86_BUG_GDS))
1080 		return;
1081 
1082 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1083 		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
1084 		return;
1085 	}
1086 
1087 	/* Will verify below that mitigation _can_ be disabled */
1088 	if (gds_mitigation == GDS_MITIGATION_AUTO) {
1089 		if (should_mitigate_vuln(X86_BUG_GDS))
1090 			gds_mitigation = GDS_MITIGATION_FULL;
1091 		else
1092 			gds_mitigation = GDS_MITIGATION_OFF;
1093 	}
1094 
1095 	/* No microcode */
1096 	if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
1097 		if (gds_mitigation != GDS_MITIGATION_FORCE)
1098 			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
1099 		return;
1100 	}
1101 
1102 	/* Microcode has mitigation, use it */
1103 	if (gds_mitigation == GDS_MITIGATION_FORCE)
1104 		gds_mitigation = GDS_MITIGATION_FULL;
1105 
1106 	rdmsrq(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
1107 	if (mcu_ctrl & GDS_MITG_LOCKED) {
1108 		if (gds_mitigation == GDS_MITIGATION_OFF)
1109 			pr_warn("Mitigation locked. Disable failed.\n");
1110 
1111 		/*
1112 		 * The mitigation is selected from the boot CPU. All other CPUs
1113 		 * _should_ have the same state. If the boot CPU isn't locked
1114 		 * but others are then update_gds_msr() will WARN() of the state
1115 		 * mismatch. If the boot CPU is locked update_gds_msr() will
1116 		 * ensure the other CPUs have the mitigation enabled.
1117 		 */
1118 		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
1119 	}
1120 }
1121 
gds_apply_mitigation(void)1122 static void __init gds_apply_mitigation(void)
1123 {
1124 	if (!boot_cpu_has_bug(X86_BUG_GDS))
1125 		return;
1126 
1127 	/* Microcode is present */
1128 	if (x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)
1129 		update_gds_msr();
1130 	else if (gds_mitigation == GDS_MITIGATION_FORCE) {
1131 		/*
1132 		 * This only needs to be done on the boot CPU so do it
1133 		 * here rather than in update_gds_msr()
1134 		 */
1135 		setup_clear_cpu_cap(X86_FEATURE_AVX);
1136 		pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
1137 	}
1138 
1139 	pr_info("%s\n", gds_strings[gds_mitigation]);
1140 }
1141 
gds_parse_cmdline(char * str)1142 static int __init gds_parse_cmdline(char *str)
1143 {
1144 	if (!str)
1145 		return -EINVAL;
1146 
1147 	if (!boot_cpu_has_bug(X86_BUG_GDS))
1148 		return 0;
1149 
1150 	if (!strcmp(str, "off"))
1151 		gds_mitigation = GDS_MITIGATION_OFF;
1152 	else if (!strcmp(str, "force"))
1153 		gds_mitigation = GDS_MITIGATION_FORCE;
1154 
1155 	return 0;
1156 }
1157 early_param("gather_data_sampling", gds_parse_cmdline);
1158 
1159 #undef pr_fmt
1160 #define pr_fmt(fmt)     "Spectre V1 : " fmt
1161 
1162 enum spectre_v1_mitigation {
1163 	SPECTRE_V1_MITIGATION_NONE,
1164 	SPECTRE_V1_MITIGATION_AUTO,
1165 };
1166 
1167 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
1168 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V1) ?
1169 		SPECTRE_V1_MITIGATION_AUTO : SPECTRE_V1_MITIGATION_NONE;
1170 
1171 static const char * const spectre_v1_strings[] = {
1172 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
1173 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
1174 };
1175 
1176 /*
1177  * Does SMAP provide full mitigation against speculative kernel access to
1178  * userspace?
1179  */
smap_works_speculatively(void)1180 static bool smap_works_speculatively(void)
1181 {
1182 	if (!boot_cpu_has(X86_FEATURE_SMAP))
1183 		return false;
1184 
1185 	/*
1186 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
1187 	 * prevent speculative access to user data in the L1 cache.
1188 	 * Consider SMAP to be non-functional as a mitigation on these
1189 	 * CPUs.
1190 	 */
1191 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
1192 		return false;
1193 
1194 	return true;
1195 }
1196 
spectre_v1_select_mitigation(void)1197 static void __init spectre_v1_select_mitigation(void)
1198 {
1199 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1))
1200 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
1201 
1202 	if (!should_mitigate_vuln(X86_BUG_SPECTRE_V1))
1203 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
1204 }
1205 
spectre_v1_apply_mitigation(void)1206 static void __init spectre_v1_apply_mitigation(void)
1207 {
1208 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1))
1209 		return;
1210 
1211 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
1212 		/*
1213 		 * With Spectre v1, a user can speculatively control either
1214 		 * path of a conditional swapgs with a user-controlled GS
1215 		 * value.  The mitigation is to add lfences to both code paths.
1216 		 *
1217 		 * If FSGSBASE is enabled, the user can put a kernel address in
1218 		 * GS, in which case SMAP provides no protection.
1219 		 *
1220 		 * If FSGSBASE is disabled, the user can only put a user space
1221 		 * address in GS.  That makes an attack harder, but still
1222 		 * possible if there's no SMAP protection.
1223 		 */
1224 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
1225 		    !smap_works_speculatively()) {
1226 			/*
1227 			 * Mitigation can be provided from SWAPGS itself or
1228 			 * PTI as the CR3 write in the Meltdown mitigation
1229 			 * is serializing.
1230 			 *
1231 			 * If neither is there, mitigate with an LFENCE to
1232 			 * stop speculation through swapgs.
1233 			 */
1234 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
1235 			    !boot_cpu_has(X86_FEATURE_PTI))
1236 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
1237 
1238 			/*
1239 			 * Enable lfences in the kernel entry (non-swapgs)
1240 			 * paths, to prevent user entry from speculatively
1241 			 * skipping swapgs.
1242 			 */
1243 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
1244 		}
1245 	}
1246 
1247 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
1248 }
1249 
nospectre_v1_cmdline(char * str)1250 static int __init nospectre_v1_cmdline(char *str)
1251 {
1252 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
1253 	return 0;
1254 }
1255 early_param("nospectre_v1", nospectre_v1_cmdline);
1256 
1257 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
1258 
1259 /* Depends on spectre_v2 mitigation selected already */
cdt_possible(enum spectre_v2_mitigation mode)1260 static inline bool cdt_possible(enum spectre_v2_mitigation mode)
1261 {
1262 	if (!IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) ||
1263 	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE))
1264 		return false;
1265 
1266 	if (mode == SPECTRE_V2_RETPOLINE ||
1267 	    mode == SPECTRE_V2_EIBRS_RETPOLINE)
1268 		return true;
1269 
1270 	return false;
1271 }
1272 
1273 #undef pr_fmt
1274 #define pr_fmt(fmt)     "RETBleed: " fmt
1275 
1276 enum its_mitigation {
1277 	ITS_MITIGATION_OFF,
1278 	ITS_MITIGATION_AUTO,
1279 	ITS_MITIGATION_VMEXIT_ONLY,
1280 	ITS_MITIGATION_ALIGNED_THUNKS,
1281 	ITS_MITIGATION_RETPOLINE_STUFF,
1282 };
1283 
1284 static enum its_mitigation its_mitigation __ro_after_init =
1285 	IS_ENABLED(CONFIG_MITIGATION_ITS) ? ITS_MITIGATION_AUTO : ITS_MITIGATION_OFF;
1286 
1287 enum retbleed_mitigation {
1288 	RETBLEED_MITIGATION_NONE,
1289 	RETBLEED_MITIGATION_AUTO,
1290 	RETBLEED_MITIGATION_UNRET,
1291 	RETBLEED_MITIGATION_IBPB,
1292 	RETBLEED_MITIGATION_IBRS,
1293 	RETBLEED_MITIGATION_EIBRS,
1294 	RETBLEED_MITIGATION_STUFF,
1295 };
1296 
1297 static const char * const retbleed_strings[] = {
1298 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
1299 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
1300 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
1301 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
1302 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
1303 	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
1304 };
1305 
1306 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
1307 	IS_ENABLED(CONFIG_MITIGATION_RETBLEED) ? RETBLEED_MITIGATION_AUTO : RETBLEED_MITIGATION_NONE;
1308 
1309 static int __ro_after_init retbleed_nosmt = false;
1310 
1311 enum srso_mitigation {
1312 	SRSO_MITIGATION_NONE,
1313 	SRSO_MITIGATION_AUTO,
1314 	SRSO_MITIGATION_UCODE_NEEDED,
1315 	SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
1316 	SRSO_MITIGATION_MICROCODE,
1317 	SRSO_MITIGATION_NOSMT,
1318 	SRSO_MITIGATION_SAFE_RET,
1319 	SRSO_MITIGATION_IBPB,
1320 	SRSO_MITIGATION_IBPB_ON_VMEXIT,
1321 	SRSO_MITIGATION_BP_SPEC_REDUCE,
1322 };
1323 
1324 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_AUTO;
1325 
retbleed_parse_cmdline(char * str)1326 static int __init retbleed_parse_cmdline(char *str)
1327 {
1328 	if (!str)
1329 		return -EINVAL;
1330 
1331 	while (str) {
1332 		char *next = strchr(str, ',');
1333 		if (next) {
1334 			*next = 0;
1335 			next++;
1336 		}
1337 
1338 		if (!strcmp(str, "off")) {
1339 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1340 		} else if (!strcmp(str, "auto")) {
1341 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1342 		} else if (!strcmp(str, "unret")) {
1343 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1344 		} else if (!strcmp(str, "ibpb")) {
1345 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1346 		} else if (!strcmp(str, "stuff")) {
1347 			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1348 		} else if (!strcmp(str, "nosmt")) {
1349 			retbleed_nosmt = true;
1350 		} else if (!strcmp(str, "force")) {
1351 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1352 		} else {
1353 			pr_err("Ignoring unknown retbleed option (%s).", str);
1354 		}
1355 
1356 		str = next;
1357 	}
1358 
1359 	return 0;
1360 }
1361 early_param("retbleed", retbleed_parse_cmdline);
1362 
1363 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1364 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1365 
retbleed_select_mitigation(void)1366 static void __init retbleed_select_mitigation(void)
1367 {
1368 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED)) {
1369 		retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1370 		return;
1371 	}
1372 
1373 	switch (retbleed_mitigation) {
1374 	case RETBLEED_MITIGATION_UNRET:
1375 		if (!IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
1376 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1377 			pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
1378 		}
1379 		break;
1380 	case RETBLEED_MITIGATION_IBPB:
1381 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1382 			pr_err("WARNING: CPU does not support IBPB.\n");
1383 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1384 		} else if (!IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
1385 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
1386 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1387 		}
1388 		break;
1389 	case RETBLEED_MITIGATION_STUFF:
1390 		if (!IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING)) {
1391 			pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1392 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1393 		} else if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1394 			pr_err("WARNING: retbleed=stuff only supported for Intel CPUs.\n");
1395 			retbleed_mitigation = RETBLEED_MITIGATION_AUTO;
1396 		}
1397 		break;
1398 	default:
1399 		break;
1400 	}
1401 
1402 	if (retbleed_mitigation != RETBLEED_MITIGATION_AUTO)
1403 		return;
1404 
1405 	if (!should_mitigate_vuln(X86_BUG_RETBLEED)) {
1406 		retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1407 		return;
1408 	}
1409 
1410 	/* Intel mitigation selected in retbleed_update_mitigation() */
1411 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1412 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1413 		if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1414 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1415 		else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1416 			 boot_cpu_has(X86_FEATURE_IBPB))
1417 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1418 		else
1419 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1420 	} else if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1421 		/* Final mitigation depends on spectre-v2 selection */
1422 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1423 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1424 		else if (boot_cpu_has(X86_FEATURE_IBRS))
1425 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1426 		else
1427 			retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1428 	}
1429 }
1430 
retbleed_update_mitigation(void)1431 static void __init retbleed_update_mitigation(void)
1432 {
1433 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED))
1434 		return;
1435 
1436 	 /* ITS can also enable stuffing */
1437 	if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF)
1438 		retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1439 
1440 	/* If SRSO is using IBPB, that works for retbleed too */
1441 	if (srso_mitigation == SRSO_MITIGATION_IBPB)
1442 		retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1443 
1444 	if (retbleed_mitigation == RETBLEED_MITIGATION_STUFF &&
1445 	    !cdt_possible(spectre_v2_enabled)) {
1446 		pr_err("WARNING: retbleed=stuff depends on retpoline\n");
1447 		retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1448 	}
1449 
1450 	/*
1451 	 * Let IBRS trump all on Intel without affecting the effects of the
1452 	 * retbleed= cmdline option except for call depth based stuffing
1453 	 */
1454 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1455 		switch (spectre_v2_enabled) {
1456 		case SPECTRE_V2_IBRS:
1457 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1458 			break;
1459 		case SPECTRE_V2_EIBRS:
1460 		case SPECTRE_V2_EIBRS_RETPOLINE:
1461 		case SPECTRE_V2_EIBRS_LFENCE:
1462 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1463 			break;
1464 		default:
1465 			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF) {
1466 				if (retbleed_mitigation != RETBLEED_MITIGATION_NONE)
1467 					pr_err(RETBLEED_INTEL_MSG);
1468 
1469 				retbleed_mitigation = RETBLEED_MITIGATION_NONE;
1470 			}
1471 		}
1472 	}
1473 
1474 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1475 }
1476 
retbleed_apply_mitigation(void)1477 static void __init retbleed_apply_mitigation(void)
1478 {
1479 	bool mitigate_smt = false;
1480 
1481 	switch (retbleed_mitigation) {
1482 	case RETBLEED_MITIGATION_NONE:
1483 		return;
1484 
1485 	case RETBLEED_MITIGATION_UNRET:
1486 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1487 		setup_force_cpu_cap(X86_FEATURE_UNRET);
1488 
1489 		set_return_thunk(retbleed_return_thunk);
1490 
1491 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1492 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1493 			pr_err(RETBLEED_UNTRAIN_MSG);
1494 
1495 		mitigate_smt = true;
1496 		break;
1497 
1498 	case RETBLEED_MITIGATION_IBPB:
1499 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1500 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1501 		mitigate_smt = true;
1502 
1503 		/*
1504 		 * IBPB on entry already obviates the need for
1505 		 * software-based untraining so clear those in case some
1506 		 * other mitigation like SRSO has selected them.
1507 		 */
1508 		setup_clear_cpu_cap(X86_FEATURE_UNRET);
1509 		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
1510 
1511 		/*
1512 		 * There is no need for RSB filling: write_ibpb() ensures
1513 		 * all predictions, including the RSB, are invalidated,
1514 		 * regardless of IBPB implementation.
1515 		 */
1516 		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1517 
1518 		break;
1519 
1520 	case RETBLEED_MITIGATION_STUFF:
1521 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1522 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1523 
1524 		set_return_thunk(call_depth_return_thunk);
1525 		break;
1526 
1527 	default:
1528 		break;
1529 	}
1530 
1531 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1532 	    (retbleed_nosmt || smt_mitigations == SMT_MITIGATIONS_ON))
1533 		cpu_smt_disable(false);
1534 }
1535 
1536 #undef pr_fmt
1537 #define pr_fmt(fmt)     "ITS: " fmt
1538 
1539 static const char * const its_strings[] = {
1540 	[ITS_MITIGATION_OFF]			= "Vulnerable",
1541 	[ITS_MITIGATION_VMEXIT_ONLY]		= "Mitigation: Vulnerable, KVM: Not affected",
1542 	[ITS_MITIGATION_ALIGNED_THUNKS]		= "Mitigation: Aligned branch/return thunks",
1543 	[ITS_MITIGATION_RETPOLINE_STUFF]	= "Mitigation: Retpolines, Stuffing RSB",
1544 };
1545 
its_parse_cmdline(char * str)1546 static int __init its_parse_cmdline(char *str)
1547 {
1548 	if (!str)
1549 		return -EINVAL;
1550 
1551 	if (!IS_ENABLED(CONFIG_MITIGATION_ITS)) {
1552 		pr_err("Mitigation disabled at compile time, ignoring option (%s)", str);
1553 		return 0;
1554 	}
1555 
1556 	if (!strcmp(str, "off")) {
1557 		its_mitigation = ITS_MITIGATION_OFF;
1558 	} else if (!strcmp(str, "on")) {
1559 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1560 	} else if (!strcmp(str, "force")) {
1561 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1562 		setup_force_cpu_bug(X86_BUG_ITS);
1563 	} else if (!strcmp(str, "vmexit")) {
1564 		its_mitigation = ITS_MITIGATION_VMEXIT_ONLY;
1565 	} else if (!strcmp(str, "stuff")) {
1566 		its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF;
1567 	} else {
1568 		pr_err("Ignoring unknown indirect_target_selection option (%s).", str);
1569 	}
1570 
1571 	return 0;
1572 }
1573 early_param("indirect_target_selection", its_parse_cmdline);
1574 
its_select_mitigation(void)1575 static void __init its_select_mitigation(void)
1576 {
1577 	if (!boot_cpu_has_bug(X86_BUG_ITS)) {
1578 		its_mitigation = ITS_MITIGATION_OFF;
1579 		return;
1580 	}
1581 
1582 	if (its_mitigation == ITS_MITIGATION_AUTO) {
1583 		if (should_mitigate_vuln(X86_BUG_ITS))
1584 			its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1585 		else
1586 			its_mitigation = ITS_MITIGATION_OFF;
1587 	}
1588 
1589 	if (its_mitigation == ITS_MITIGATION_OFF)
1590 		return;
1591 
1592 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) ||
1593 	    !IS_ENABLED(CONFIG_MITIGATION_RETHUNK)) {
1594 		pr_err("WARNING: ITS mitigation depends on retpoline and rethunk support\n");
1595 		its_mitigation = ITS_MITIGATION_OFF;
1596 		return;
1597 	}
1598 
1599 	if (IS_ENABLED(CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B)) {
1600 		pr_err("WARNING: ITS mitigation is not compatible with CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B\n");
1601 		its_mitigation = ITS_MITIGATION_OFF;
1602 		return;
1603 	}
1604 
1605 	if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF &&
1606 	    !IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING)) {
1607 		pr_err("RSB stuff mitigation not supported, using default\n");
1608 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1609 	}
1610 
1611 	if (its_mitigation == ITS_MITIGATION_VMEXIT_ONLY &&
1612 	    !boot_cpu_has_bug(X86_BUG_ITS_NATIVE_ONLY))
1613 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1614 }
1615 
its_update_mitigation(void)1616 static void __init its_update_mitigation(void)
1617 {
1618 	if (!boot_cpu_has_bug(X86_BUG_ITS))
1619 		return;
1620 
1621 	switch (spectre_v2_enabled) {
1622 	case SPECTRE_V2_NONE:
1623 		if (its_mitigation != ITS_MITIGATION_OFF)
1624 			pr_err("WARNING: Spectre-v2 mitigation is off, disabling ITS\n");
1625 		its_mitigation = ITS_MITIGATION_OFF;
1626 		break;
1627 	case SPECTRE_V2_RETPOLINE:
1628 	case SPECTRE_V2_EIBRS_RETPOLINE:
1629 		/* Retpoline+CDT mitigates ITS */
1630 		if (retbleed_mitigation == RETBLEED_MITIGATION_STUFF)
1631 			its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF;
1632 		break;
1633 	case SPECTRE_V2_LFENCE:
1634 	case SPECTRE_V2_EIBRS_LFENCE:
1635 		pr_err("WARNING: ITS mitigation is not compatible with lfence mitigation\n");
1636 		its_mitigation = ITS_MITIGATION_OFF;
1637 		break;
1638 	default:
1639 		break;
1640 	}
1641 
1642 	if (its_mitigation == ITS_MITIGATION_RETPOLINE_STUFF &&
1643 	    !cdt_possible(spectre_v2_enabled))
1644 		its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1645 
1646 	pr_info("%s\n", its_strings[its_mitigation]);
1647 }
1648 
its_apply_mitigation(void)1649 static void __init its_apply_mitigation(void)
1650 {
1651 	switch (its_mitigation) {
1652 	case ITS_MITIGATION_OFF:
1653 	case ITS_MITIGATION_AUTO:
1654 	case ITS_MITIGATION_VMEXIT_ONLY:
1655 		break;
1656 	case ITS_MITIGATION_ALIGNED_THUNKS:
1657 		if (!boot_cpu_has(X86_FEATURE_RETPOLINE))
1658 			setup_force_cpu_cap(X86_FEATURE_INDIRECT_THUNK_ITS);
1659 
1660 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1661 		set_return_thunk(its_return_thunk);
1662 		break;
1663 	case ITS_MITIGATION_RETPOLINE_STUFF:
1664 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1665 		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1666 		set_return_thunk(call_depth_return_thunk);
1667 		break;
1668 	}
1669 }
1670 
1671 #undef pr_fmt
1672 #define pr_fmt(fmt)	"Transient Scheduler Attacks: " fmt
1673 
1674 enum tsa_mitigations {
1675 	TSA_MITIGATION_NONE,
1676 	TSA_MITIGATION_AUTO,
1677 	TSA_MITIGATION_UCODE_NEEDED,
1678 	TSA_MITIGATION_USER_KERNEL,
1679 	TSA_MITIGATION_VM,
1680 	TSA_MITIGATION_FULL,
1681 };
1682 
1683 static const char * const tsa_strings[] = {
1684 	[TSA_MITIGATION_NONE]		= "Vulnerable",
1685 	[TSA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
1686 	[TSA_MITIGATION_USER_KERNEL]	= "Mitigation: Clear CPU buffers: user/kernel boundary",
1687 	[TSA_MITIGATION_VM]		= "Mitigation: Clear CPU buffers: VM",
1688 	[TSA_MITIGATION_FULL]		= "Mitigation: Clear CPU buffers",
1689 };
1690 
1691 static enum tsa_mitigations tsa_mitigation __ro_after_init =
1692 	IS_ENABLED(CONFIG_MITIGATION_TSA) ? TSA_MITIGATION_AUTO : TSA_MITIGATION_NONE;
1693 
tsa_parse_cmdline(char * str)1694 static int __init tsa_parse_cmdline(char *str)
1695 {
1696 	if (!str)
1697 		return -EINVAL;
1698 
1699 	if (!strcmp(str, "off"))
1700 		tsa_mitigation = TSA_MITIGATION_NONE;
1701 	else if (!strcmp(str, "on"))
1702 		tsa_mitigation = TSA_MITIGATION_FULL;
1703 	else if (!strcmp(str, "user"))
1704 		tsa_mitigation = TSA_MITIGATION_USER_KERNEL;
1705 	else if (!strcmp(str, "vm"))
1706 		tsa_mitigation = TSA_MITIGATION_VM;
1707 	else
1708 		pr_err("Ignoring unknown tsa=%s option.\n", str);
1709 
1710 	return 0;
1711 }
1712 early_param("tsa", tsa_parse_cmdline);
1713 
tsa_select_mitigation(void)1714 static void __init tsa_select_mitigation(void)
1715 {
1716 	if (!boot_cpu_has_bug(X86_BUG_TSA)) {
1717 		tsa_mitigation = TSA_MITIGATION_NONE;
1718 		return;
1719 	}
1720 
1721 	if (tsa_mitigation == TSA_MITIGATION_AUTO) {
1722 		bool vm = false, uk = false;
1723 
1724 		tsa_mitigation = TSA_MITIGATION_NONE;
1725 
1726 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) ||
1727 		    cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER)) {
1728 			tsa_mitigation = TSA_MITIGATION_USER_KERNEL;
1729 			uk = true;
1730 		}
1731 
1732 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
1733 		    cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST)) {
1734 			tsa_mitigation = TSA_MITIGATION_VM;
1735 			vm = true;
1736 		}
1737 
1738 		if (uk && vm)
1739 			tsa_mitigation = TSA_MITIGATION_FULL;
1740 	}
1741 
1742 	if (tsa_mitigation == TSA_MITIGATION_NONE)
1743 		return;
1744 
1745 	if (!boot_cpu_has(X86_FEATURE_VERW_CLEAR))
1746 		tsa_mitigation = TSA_MITIGATION_UCODE_NEEDED;
1747 
1748 	/*
1749 	 * No need to set verw_clear_cpu_buf_mitigation_selected - it
1750 	 * doesn't fit all cases here and it is not needed because this
1751 	 * is the only VERW-based mitigation on AMD.
1752 	 */
1753 	pr_info("%s\n", tsa_strings[tsa_mitigation]);
1754 }
1755 
tsa_apply_mitigation(void)1756 static void __init tsa_apply_mitigation(void)
1757 {
1758 	switch (tsa_mitigation) {
1759 	case TSA_MITIGATION_USER_KERNEL:
1760 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
1761 		break;
1762 	case TSA_MITIGATION_VM:
1763 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM);
1764 		break;
1765 	case TSA_MITIGATION_FULL:
1766 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
1767 		setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF_VM);
1768 		break;
1769 	default:
1770 		break;
1771 	}
1772 }
1773 
1774 #undef pr_fmt
1775 #define pr_fmt(fmt)     "Spectre V2 : " fmt
1776 
1777 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1778 	SPECTRE_V2_USER_NONE;
1779 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1780 	SPECTRE_V2_USER_NONE;
1781 
1782 #ifdef CONFIG_MITIGATION_RETPOLINE
1783 static bool spectre_v2_bad_module;
1784 
retpoline_module_ok(bool has_retpoline)1785 bool retpoline_module_ok(bool has_retpoline)
1786 {
1787 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1788 		return true;
1789 
1790 	pr_err("System may be vulnerable to spectre v2\n");
1791 	spectre_v2_bad_module = true;
1792 	return false;
1793 }
1794 
spectre_v2_module_string(void)1795 static inline const char *spectre_v2_module_string(void)
1796 {
1797 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1798 }
1799 #else
spectre_v2_module_string(void)1800 static inline const char *spectre_v2_module_string(void) { return ""; }
1801 #endif
1802 
1803 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1804 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1805 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1806 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1807 
1808 #ifdef CONFIG_BPF_SYSCALL
unpriv_ebpf_notify(int new_state)1809 void unpriv_ebpf_notify(int new_state)
1810 {
1811 	if (new_state)
1812 		return;
1813 
1814 	/* Unprivileged eBPF is enabled */
1815 
1816 	switch (spectre_v2_enabled) {
1817 	case SPECTRE_V2_EIBRS:
1818 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1819 		break;
1820 	case SPECTRE_V2_EIBRS_LFENCE:
1821 		if (sched_smt_active())
1822 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1823 		break;
1824 	default:
1825 		break;
1826 	}
1827 }
1828 #endif
1829 
1830 /* The kernel command line selection for spectre v2 */
1831 enum spectre_v2_mitigation_cmd {
1832 	SPECTRE_V2_CMD_NONE,
1833 	SPECTRE_V2_CMD_AUTO,
1834 	SPECTRE_V2_CMD_FORCE,
1835 	SPECTRE_V2_CMD_RETPOLINE,
1836 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1837 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1838 	SPECTRE_V2_CMD_EIBRS,
1839 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1840 	SPECTRE_V2_CMD_EIBRS_LFENCE,
1841 	SPECTRE_V2_CMD_IBRS,
1842 };
1843 
1844 static enum spectre_v2_mitigation_cmd spectre_v2_cmd __ro_after_init =
1845 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ? SPECTRE_V2_CMD_AUTO : SPECTRE_V2_CMD_NONE;
1846 
1847 enum spectre_v2_user_mitigation_cmd {
1848 	SPECTRE_V2_USER_CMD_NONE,
1849 	SPECTRE_V2_USER_CMD_AUTO,
1850 	SPECTRE_V2_USER_CMD_FORCE,
1851 	SPECTRE_V2_USER_CMD_PRCTL,
1852 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1853 	SPECTRE_V2_USER_CMD_SECCOMP,
1854 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1855 };
1856 
1857 static enum spectre_v2_user_mitigation_cmd spectre_v2_user_cmd __ro_after_init =
1858 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ? SPECTRE_V2_USER_CMD_AUTO : SPECTRE_V2_USER_CMD_NONE;
1859 
1860 static const char * const spectre_v2_user_strings[] = {
1861 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1862 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1863 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1864 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1865 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1866 };
1867 
spectre_v2_user_parse_cmdline(char * str)1868 static int __init spectre_v2_user_parse_cmdline(char *str)
1869 {
1870 	if (!str)
1871 		return -EINVAL;
1872 
1873 	if (!strcmp(str, "auto"))
1874 		spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_AUTO;
1875 	else if (!strcmp(str, "off"))
1876 		spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_NONE;
1877 	else if (!strcmp(str, "on"))
1878 		spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_FORCE;
1879 	else if (!strcmp(str, "prctl"))
1880 		spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_PRCTL;
1881 	else if (!strcmp(str, "prctl,ibpb"))
1882 		spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_PRCTL_IBPB;
1883 	else if (!strcmp(str, "seccomp"))
1884 		spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_SECCOMP;
1885 	else if (!strcmp(str, "seccomp,ibpb"))
1886 		spectre_v2_user_cmd = SPECTRE_V2_USER_CMD_SECCOMP_IBPB;
1887 	else
1888 		pr_err("Ignoring unknown spectre_v2_user option (%s).", str);
1889 
1890 	return 0;
1891 }
1892 early_param("spectre_v2_user", spectre_v2_user_parse_cmdline);
1893 
spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)1894 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1895 {
1896 	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1897 }
1898 
spectre_v2_user_select_mitigation(void)1899 static void __init spectre_v2_user_select_mitigation(void)
1900 {
1901 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1902 		return;
1903 
1904 	switch (spectre_v2_user_cmd) {
1905 	case SPECTRE_V2_USER_CMD_NONE:
1906 		return;
1907 	case SPECTRE_V2_USER_CMD_FORCE:
1908 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_STRICT;
1909 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT;
1910 		break;
1911 	case SPECTRE_V2_USER_CMD_AUTO:
1912 		if (!should_mitigate_vuln(X86_BUG_SPECTRE_V2_USER))
1913 			break;
1914 		spectre_v2_user_ibpb = SPECTRE_V2_USER_PRCTL;
1915 		if (smt_mitigations == SMT_MITIGATIONS_OFF)
1916 			break;
1917 		spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1918 		break;
1919 	case SPECTRE_V2_USER_CMD_PRCTL:
1920 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_PRCTL;
1921 		spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1922 		break;
1923 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1924 		spectre_v2_user_ibpb  = SPECTRE_V2_USER_STRICT;
1925 		spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1926 		break;
1927 	case SPECTRE_V2_USER_CMD_SECCOMP:
1928 		if (IS_ENABLED(CONFIG_SECCOMP))
1929 			spectre_v2_user_ibpb = SPECTRE_V2_USER_SECCOMP;
1930 		else
1931 			spectre_v2_user_ibpb = SPECTRE_V2_USER_PRCTL;
1932 		spectre_v2_user_stibp = spectre_v2_user_ibpb;
1933 		break;
1934 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1935 		spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1936 		if (IS_ENABLED(CONFIG_SECCOMP))
1937 			spectre_v2_user_stibp = SPECTRE_V2_USER_SECCOMP;
1938 		else
1939 			spectre_v2_user_stibp = SPECTRE_V2_USER_PRCTL;
1940 		break;
1941 	}
1942 
1943 	/*
1944 	 * At this point, an STIBP mode other than "off" has been set.
1945 	 * If STIBP support is not being forced, check if STIBP always-on
1946 	 * is preferred.
1947 	 */
1948 	if ((spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1949 	     spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) &&
1950 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1951 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT_PREFERRED;
1952 
1953 	if (!boot_cpu_has(X86_FEATURE_IBPB))
1954 		spectre_v2_user_ibpb = SPECTRE_V2_USER_NONE;
1955 
1956 	if (!boot_cpu_has(X86_FEATURE_STIBP))
1957 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1958 }
1959 
spectre_v2_user_update_mitigation(void)1960 static void __init spectre_v2_user_update_mitigation(void)
1961 {
1962 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1963 		return;
1964 
1965 	/* The spectre_v2 cmd line can override spectre_v2_user options */
1966 	if (spectre_v2_cmd == SPECTRE_V2_CMD_NONE) {
1967 		spectre_v2_user_ibpb = SPECTRE_V2_USER_NONE;
1968 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1969 	} else if (spectre_v2_cmd == SPECTRE_V2_CMD_FORCE) {
1970 		spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1971 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT;
1972 	}
1973 
1974 	/*
1975 	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1976 	 * is not required.
1977 	 *
1978 	 * Intel's Enhanced IBRS also protects against cross-thread branch target
1979 	 * injection in user-mode as the IBRS bit remains always set which
1980 	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1981 	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1982 	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
1983 	 * These modes therefore disable the implicit cross-thread protection,
1984 	 * so allow for STIBP to be selected in those cases.
1985 	 */
1986 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1987 	    !cpu_smt_possible() ||
1988 	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1989 	     !boot_cpu_has(X86_FEATURE_AUTOIBRS))) {
1990 		spectre_v2_user_stibp = SPECTRE_V2_USER_NONE;
1991 		return;
1992 	}
1993 
1994 	if (spectre_v2_user_stibp != SPECTRE_V2_USER_NONE &&
1995 	    (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1996 	     retbleed_mitigation == RETBLEED_MITIGATION_IBPB)) {
1997 		if (spectre_v2_user_stibp != SPECTRE_V2_USER_STRICT &&
1998 		    spectre_v2_user_stibp != SPECTRE_V2_USER_STRICT_PREFERRED)
1999 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
2000 		spectre_v2_user_stibp = SPECTRE_V2_USER_STRICT_PREFERRED;
2001 	}
2002 	pr_info("%s\n", spectre_v2_user_strings[spectre_v2_user_stibp]);
2003 }
2004 
spectre_v2_user_apply_mitigation(void)2005 static void __init spectre_v2_user_apply_mitigation(void)
2006 {
2007 	/* Initialize Indirect Branch Prediction Barrier */
2008 	if (spectre_v2_user_ibpb != SPECTRE_V2_USER_NONE) {
2009 		static_branch_enable(&switch_vcpu_ibpb);
2010 
2011 		switch (spectre_v2_user_ibpb) {
2012 		case SPECTRE_V2_USER_STRICT:
2013 			static_branch_enable(&switch_mm_always_ibpb);
2014 			break;
2015 		case SPECTRE_V2_USER_PRCTL:
2016 		case SPECTRE_V2_USER_SECCOMP:
2017 			static_branch_enable(&switch_mm_cond_ibpb);
2018 			break;
2019 		default:
2020 			break;
2021 		}
2022 
2023 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
2024 			static_key_enabled(&switch_mm_always_ibpb) ?
2025 			"always-on" : "conditional");
2026 	}
2027 }
2028 
2029 static const char * const spectre_v2_strings[] = {
2030 	[SPECTRE_V2_NONE]			= "Vulnerable",
2031 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
2032 	[SPECTRE_V2_LFENCE]			= "Vulnerable: LFENCE",
2033 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
2034 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
2035 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
2036 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
2037 };
2038 
2039 static bool nospectre_v2 __ro_after_init;
2040 
nospectre_v2_parse_cmdline(char * str)2041 static int __init nospectre_v2_parse_cmdline(char *str)
2042 {
2043 	nospectre_v2 = true;
2044 	spectre_v2_cmd = SPECTRE_V2_CMD_NONE;
2045 	return 0;
2046 }
2047 early_param("nospectre_v2", nospectre_v2_parse_cmdline);
2048 
spectre_v2_parse_cmdline(char * str)2049 static int __init spectre_v2_parse_cmdline(char *str)
2050 {
2051 	if (!str)
2052 		return -EINVAL;
2053 
2054 	if (nospectre_v2)
2055 		return 0;
2056 
2057 	if (!strcmp(str, "off")) {
2058 		spectre_v2_cmd = SPECTRE_V2_CMD_NONE;
2059 	} else if (!strcmp(str, "on")) {
2060 		spectre_v2_cmd = SPECTRE_V2_CMD_FORCE;
2061 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
2062 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2_USER);
2063 	} else if (!strcmp(str, "retpoline")) {
2064 		spectre_v2_cmd = SPECTRE_V2_CMD_RETPOLINE;
2065 	} else if (!strcmp(str, "retpoline,amd") ||
2066 		 !strcmp(str, "retpoline,lfence")) {
2067 		spectre_v2_cmd = SPECTRE_V2_CMD_RETPOLINE_LFENCE;
2068 	} else if (!strcmp(str, "retpoline,generic")) {
2069 		spectre_v2_cmd = SPECTRE_V2_CMD_RETPOLINE_GENERIC;
2070 	} else if (!strcmp(str, "eibrs")) {
2071 		spectre_v2_cmd = SPECTRE_V2_CMD_EIBRS;
2072 	} else if (!strcmp(str, "eibrs,lfence")) {
2073 		spectre_v2_cmd = SPECTRE_V2_CMD_EIBRS_LFENCE;
2074 	} else if (!strcmp(str, "eibrs,retpoline")) {
2075 		spectre_v2_cmd = SPECTRE_V2_CMD_EIBRS_RETPOLINE;
2076 	} else if (!strcmp(str, "auto")) {
2077 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2078 	} else if (!strcmp(str, "ibrs")) {
2079 		spectre_v2_cmd = SPECTRE_V2_CMD_IBRS;
2080 	} else {
2081 		pr_err("Ignoring unknown spectre_v2 option (%s).", str);
2082 	}
2083 
2084 	return 0;
2085 }
2086 early_param("spectre_v2", spectre_v2_parse_cmdline);
2087 
spectre_v2_select_retpoline(void)2088 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
2089 {
2090 	if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
2091 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
2092 		return SPECTRE_V2_NONE;
2093 	}
2094 
2095 	return SPECTRE_V2_RETPOLINE;
2096 }
2097 
2098 static bool __ro_after_init rrsba_disabled;
2099 
2100 /* Disable in-kernel use of non-RSB RET predictors */
spec_ctrl_disable_kernel_rrsba(void)2101 static void __init spec_ctrl_disable_kernel_rrsba(void)
2102 {
2103 	if (rrsba_disabled)
2104 		return;
2105 
2106 	if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
2107 		rrsba_disabled = true;
2108 		return;
2109 	}
2110 
2111 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
2112 		return;
2113 
2114 	x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
2115 	update_spec_ctrl(x86_spec_ctrl_base);
2116 	rrsba_disabled = true;
2117 }
2118 
spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode)2119 static void __init spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode)
2120 {
2121 	/*
2122 	 * WARNING! There are many subtleties to consider when changing *any*
2123 	 * code related to RSB-related mitigations.  Before doing so, carefully
2124 	 * read the following document, and update if necessary:
2125 	 *
2126 	 *   Documentation/admin-guide/hw-vuln/rsb.rst
2127 	 *
2128 	 * In an overly simplified nutshell:
2129 	 *
2130 	 *   - User->user RSB attacks are conditionally mitigated during
2131 	 *     context switches by cond_mitigation -> write_ibpb().
2132 	 *
2133 	 *   - User->kernel and guest->host attacks are mitigated by eIBRS or
2134 	 *     RSB filling.
2135 	 *
2136 	 *     Though, depending on config, note that other alternative
2137 	 *     mitigations may end up getting used instead, e.g., IBPB on
2138 	 *     entry/vmexit, call depth tracking, or return thunks.
2139 	 */
2140 
2141 	switch (mode) {
2142 	case SPECTRE_V2_NONE:
2143 		break;
2144 
2145 	case SPECTRE_V2_EIBRS:
2146 	case SPECTRE_V2_EIBRS_LFENCE:
2147 	case SPECTRE_V2_EIBRS_RETPOLINE:
2148 		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2149 			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
2150 			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
2151 		}
2152 		break;
2153 
2154 	case SPECTRE_V2_RETPOLINE:
2155 	case SPECTRE_V2_LFENCE:
2156 	case SPECTRE_V2_IBRS:
2157 		pr_info("Spectre v2 / SpectreRSB: Filling RSB on context switch and VMEXIT\n");
2158 		setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
2159 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2160 		break;
2161 
2162 	default:
2163 		pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation\n");
2164 		dump_stack();
2165 		break;
2166 	}
2167 }
2168 
2169 /*
2170  * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
2171  * branch history in userspace. Not needed if BHI_NO is set.
2172  */
spec_ctrl_bhi_dis(void)2173 static bool __init spec_ctrl_bhi_dis(void)
2174 {
2175 	if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
2176 		return false;
2177 
2178 	x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
2179 	update_spec_ctrl(x86_spec_ctrl_base);
2180 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
2181 
2182 	return true;
2183 }
2184 
2185 enum bhi_mitigations {
2186 	BHI_MITIGATION_OFF,
2187 	BHI_MITIGATION_AUTO,
2188 	BHI_MITIGATION_ON,
2189 	BHI_MITIGATION_VMEXIT_ONLY,
2190 };
2191 
2192 static enum bhi_mitigations bhi_mitigation __ro_after_init =
2193 	IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_AUTO : BHI_MITIGATION_OFF;
2194 
spectre_bhi_parse_cmdline(char * str)2195 static int __init spectre_bhi_parse_cmdline(char *str)
2196 {
2197 	if (!str)
2198 		return -EINVAL;
2199 
2200 	if (!strcmp(str, "off"))
2201 		bhi_mitigation = BHI_MITIGATION_OFF;
2202 	else if (!strcmp(str, "on"))
2203 		bhi_mitigation = BHI_MITIGATION_ON;
2204 	else if (!strcmp(str, "vmexit"))
2205 		bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
2206 	else
2207 		pr_err("Ignoring unknown spectre_bhi option (%s)", str);
2208 
2209 	return 0;
2210 }
2211 early_param("spectre_bhi", spectre_bhi_parse_cmdline);
2212 
bhi_select_mitigation(void)2213 static void __init bhi_select_mitigation(void)
2214 {
2215 	if (!boot_cpu_has(X86_BUG_BHI))
2216 		bhi_mitigation = BHI_MITIGATION_OFF;
2217 
2218 	if (bhi_mitigation != BHI_MITIGATION_AUTO)
2219 		return;
2220 
2221 	if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST)) {
2222 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL))
2223 			bhi_mitigation = BHI_MITIGATION_ON;
2224 		else
2225 			bhi_mitigation = BHI_MITIGATION_VMEXIT_ONLY;
2226 	} else {
2227 		bhi_mitigation = BHI_MITIGATION_OFF;
2228 	}
2229 }
2230 
bhi_update_mitigation(void)2231 static void __init bhi_update_mitigation(void)
2232 {
2233 	if (spectre_v2_cmd == SPECTRE_V2_CMD_NONE)
2234 		bhi_mitigation = BHI_MITIGATION_OFF;
2235 }
2236 
bhi_apply_mitigation(void)2237 static void __init bhi_apply_mitigation(void)
2238 {
2239 	if (bhi_mitigation == BHI_MITIGATION_OFF)
2240 		return;
2241 
2242 	/* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
2243 	if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
2244 	    !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
2245 		spec_ctrl_disable_kernel_rrsba();
2246 		if (rrsba_disabled)
2247 			return;
2248 	}
2249 
2250 	if (!IS_ENABLED(CONFIG_X86_64))
2251 		return;
2252 
2253 	/* Mitigate in hardware if supported */
2254 	if (spec_ctrl_bhi_dis())
2255 		return;
2256 
2257 	if (bhi_mitigation == BHI_MITIGATION_VMEXIT_ONLY) {
2258 		pr_info("Spectre BHI mitigation: SW BHB clearing on VM exit only\n");
2259 		setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_VMEXIT);
2260 		return;
2261 	}
2262 
2263 	pr_info("Spectre BHI mitigation: SW BHB clearing on syscall and VM exit\n");
2264 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
2265 	setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_VMEXIT);
2266 }
2267 
spectre_v2_select_mitigation(void)2268 static void __init spectre_v2_select_mitigation(void)
2269 {
2270 	if ((spectre_v2_cmd == SPECTRE_V2_CMD_RETPOLINE ||
2271 	     spectre_v2_cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
2272 	     spectre_v2_cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
2273 	     spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
2274 	     spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
2275 	    !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
2276 		pr_err("RETPOLINE selected but not compiled in. Switching to AUTO select\n");
2277 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2278 	}
2279 
2280 	if ((spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS ||
2281 	     spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
2282 	     spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
2283 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
2284 		pr_err("EIBRS selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n");
2285 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2286 	}
2287 
2288 	if ((spectre_v2_cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
2289 	     spectre_v2_cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
2290 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
2291 		pr_err("LFENCE selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n");
2292 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2293 	}
2294 
2295 	if (spectre_v2_cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
2296 		pr_err("IBRS selected but not compiled in. Switching to AUTO select\n");
2297 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2298 	}
2299 
2300 	if (spectre_v2_cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
2301 		pr_err("IBRS selected but not Intel CPU. Switching to AUTO select\n");
2302 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2303 	}
2304 
2305 	if (spectre_v2_cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
2306 		pr_err("IBRS selected but CPU doesn't have IBRS. Switching to AUTO select\n");
2307 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2308 	}
2309 
2310 	if (spectre_v2_cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
2311 		pr_err("IBRS selected but running as XenPV guest. Switching to AUTO select\n");
2312 		spectre_v2_cmd = SPECTRE_V2_CMD_AUTO;
2313 	}
2314 
2315 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) {
2316 		spectre_v2_cmd = SPECTRE_V2_CMD_NONE;
2317 		return;
2318 	}
2319 
2320 	switch (spectre_v2_cmd) {
2321 	case SPECTRE_V2_CMD_NONE:
2322 		return;
2323 
2324 	case SPECTRE_V2_CMD_AUTO:
2325 		if (!should_mitigate_vuln(X86_BUG_SPECTRE_V2))
2326 			break;
2327 		fallthrough;
2328 	case SPECTRE_V2_CMD_FORCE:
2329 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
2330 			spectre_v2_enabled = SPECTRE_V2_EIBRS;
2331 			break;
2332 		}
2333 
2334 		spectre_v2_enabled = spectre_v2_select_retpoline();
2335 		break;
2336 
2337 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
2338 		pr_err(SPECTRE_V2_LFENCE_MSG);
2339 		spectre_v2_enabled = SPECTRE_V2_LFENCE;
2340 		break;
2341 
2342 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
2343 		spectre_v2_enabled = SPECTRE_V2_RETPOLINE;
2344 		break;
2345 
2346 	case SPECTRE_V2_CMD_RETPOLINE:
2347 		spectre_v2_enabled = spectre_v2_select_retpoline();
2348 		break;
2349 
2350 	case SPECTRE_V2_CMD_IBRS:
2351 		spectre_v2_enabled = SPECTRE_V2_IBRS;
2352 		break;
2353 
2354 	case SPECTRE_V2_CMD_EIBRS:
2355 		spectre_v2_enabled = SPECTRE_V2_EIBRS;
2356 		break;
2357 
2358 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
2359 		spectre_v2_enabled = SPECTRE_V2_EIBRS_LFENCE;
2360 		break;
2361 
2362 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
2363 		spectre_v2_enabled = SPECTRE_V2_EIBRS_RETPOLINE;
2364 		break;
2365 	}
2366 }
2367 
spectre_v2_update_mitigation(void)2368 static void __init spectre_v2_update_mitigation(void)
2369 {
2370 	if (spectre_v2_cmd == SPECTRE_V2_CMD_AUTO &&
2371 	    !spectre_v2_in_eibrs_mode(spectre_v2_enabled)) {
2372 		if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
2373 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
2374 		    retbleed_mitigation != RETBLEED_MITIGATION_NONE &&
2375 		    retbleed_mitigation != RETBLEED_MITIGATION_STUFF &&
2376 		    boot_cpu_has(X86_FEATURE_IBRS) &&
2377 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
2378 			spectre_v2_enabled = SPECTRE_V2_IBRS;
2379 		}
2380 	}
2381 
2382 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2383 		pr_info("%s\n", spectre_v2_strings[spectre_v2_enabled]);
2384 }
2385 
spectre_v2_apply_mitigation(void)2386 static void __init spectre_v2_apply_mitigation(void)
2387 {
2388 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2389 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
2390 
2391 	if (spectre_v2_in_ibrs_mode(spectre_v2_enabled)) {
2392 		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
2393 			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
2394 		} else {
2395 			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
2396 			update_spec_ctrl(x86_spec_ctrl_base);
2397 		}
2398 	}
2399 
2400 	switch (spectre_v2_enabled) {
2401 	case SPECTRE_V2_NONE:
2402 		return;
2403 
2404 	case SPECTRE_V2_EIBRS:
2405 		break;
2406 
2407 	case SPECTRE_V2_IBRS:
2408 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
2409 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
2410 			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
2411 		break;
2412 
2413 	case SPECTRE_V2_LFENCE:
2414 	case SPECTRE_V2_EIBRS_LFENCE:
2415 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
2416 		fallthrough;
2417 
2418 	case SPECTRE_V2_RETPOLINE:
2419 	case SPECTRE_V2_EIBRS_RETPOLINE:
2420 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
2421 		break;
2422 	}
2423 
2424 	/*
2425 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
2426 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
2427 	 * prediction from a non-RSB predictor is still a risk.
2428 	 */
2429 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE ||
2430 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_RETPOLINE ||
2431 	    spectre_v2_enabled == SPECTRE_V2_RETPOLINE)
2432 		spec_ctrl_disable_kernel_rrsba();
2433 
2434 	spectre_v2_select_rsb_mitigation(spectre_v2_enabled);
2435 
2436 	/*
2437 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
2438 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
2439 	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
2440 	 * otherwise enabled.
2441 	 *
2442 	 * Use "spectre_v2_enabled" to check Enhanced IBRS instead of
2443 	 * boot_cpu_has(), because the user might select retpoline on the kernel
2444 	 * command line and if the CPU supports Enhanced IBRS, kernel might
2445 	 * un-intentionally not enable IBRS around firmware calls.
2446 	 */
2447 	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
2448 	    boot_cpu_has(X86_FEATURE_IBPB) &&
2449 	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2450 	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
2451 
2452 		if (retbleed_mitigation != RETBLEED_MITIGATION_IBPB) {
2453 			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
2454 			pr_info("Enabling Speculation Barrier for firmware calls\n");
2455 		}
2456 
2457 	} else if (boot_cpu_has(X86_FEATURE_IBRS) &&
2458 		   !spectre_v2_in_ibrs_mode(spectre_v2_enabled)) {
2459 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
2460 		pr_info("Enabling Restricted Speculation for firmware calls\n");
2461 	}
2462 }
2463 
update_stibp_msr(void * __unused)2464 static void update_stibp_msr(void * __unused)
2465 {
2466 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
2467 	update_spec_ctrl(val);
2468 }
2469 
2470 /* Update x86_spec_ctrl_base in case SMT state changed. */
update_stibp_strict(void)2471 static void update_stibp_strict(void)
2472 {
2473 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
2474 
2475 	if (sched_smt_active())
2476 		mask |= SPEC_CTRL_STIBP;
2477 
2478 	if (mask == x86_spec_ctrl_base)
2479 		return;
2480 
2481 	pr_info("Update user space SMT mitigation: STIBP %s\n",
2482 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
2483 	x86_spec_ctrl_base = mask;
2484 	on_each_cpu(update_stibp_msr, NULL, 1);
2485 }
2486 
2487 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
update_indir_branch_cond(void)2488 static void update_indir_branch_cond(void)
2489 {
2490 	if (sched_smt_active())
2491 		static_branch_enable(&switch_to_cond_stibp);
2492 	else
2493 		static_branch_disable(&switch_to_cond_stibp);
2494 }
2495 
2496 #undef pr_fmt
2497 #define pr_fmt(fmt) fmt
2498 
2499 /* Update the static key controlling the MDS CPU buffer clear in idle */
update_mds_branch_idle(void)2500 static void update_mds_branch_idle(void)
2501 {
2502 	/*
2503 	 * Enable the idle clearing if SMT is active on CPUs which are
2504 	 * affected only by MSBDS and not any other MDS variant.
2505 	 *
2506 	 * The other variants cannot be mitigated when SMT is enabled, so
2507 	 * clearing the buffers on idle just to prevent the Store Buffer
2508 	 * repartitioning leak would be a window dressing exercise.
2509 	 */
2510 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
2511 		return;
2512 
2513 	if (sched_smt_active()) {
2514 		static_branch_enable(&cpu_buf_idle_clear);
2515 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
2516 		   (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
2517 		static_branch_disable(&cpu_buf_idle_clear);
2518 	}
2519 }
2520 
2521 #undef pr_fmt
2522 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
2523 
2524 static enum ssb_mitigation ssb_mode __ro_after_init =
2525 	IS_ENABLED(CONFIG_MITIGATION_SSB) ? SPEC_STORE_BYPASS_AUTO : SPEC_STORE_BYPASS_NONE;
2526 
2527 static const char * const ssb_strings[] = {
2528 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
2529 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
2530 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
2531 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2532 };
2533 
2534 static bool nossb __ro_after_init;
2535 
nossb_parse_cmdline(char * str)2536 static int __init nossb_parse_cmdline(char *str)
2537 {
2538 	nossb = true;
2539 	ssb_mode = SPEC_STORE_BYPASS_NONE;
2540 	return 0;
2541 }
2542 early_param("nospec_store_bypass_disable", nossb_parse_cmdline);
2543 
ssb_parse_cmdline(char * str)2544 static int __init ssb_parse_cmdline(char *str)
2545 {
2546 	if (!str)
2547 		return -EINVAL;
2548 
2549 	if (nossb)
2550 		return 0;
2551 
2552 	if (!strcmp(str, "auto"))
2553 		ssb_mode = SPEC_STORE_BYPASS_AUTO;
2554 	else if (!strcmp(str, "on"))
2555 		ssb_mode = SPEC_STORE_BYPASS_DISABLE;
2556 	else if (!strcmp(str, "off"))
2557 		ssb_mode = SPEC_STORE_BYPASS_NONE;
2558 	else if (!strcmp(str, "prctl"))
2559 		ssb_mode = SPEC_STORE_BYPASS_PRCTL;
2560 	else if (!strcmp(str, "seccomp"))
2561 		ssb_mode = IS_ENABLED(CONFIG_SECCOMP) ?
2562 			SPEC_STORE_BYPASS_SECCOMP : SPEC_STORE_BYPASS_PRCTL;
2563 	else
2564 		pr_err("Ignoring unknown spec_store_bypass_disable option (%s).\n",
2565 			str);
2566 
2567 	return 0;
2568 }
2569 early_param("spec_store_bypass_disable", ssb_parse_cmdline);
2570 
ssb_select_mitigation(void)2571 static void __init ssb_select_mitigation(void)
2572 {
2573 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) {
2574 		ssb_mode = SPEC_STORE_BYPASS_NONE;
2575 		return;
2576 	}
2577 
2578 	if (ssb_mode == SPEC_STORE_BYPASS_AUTO) {
2579 		if (should_mitigate_vuln(X86_BUG_SPEC_STORE_BYPASS))
2580 			ssb_mode = SPEC_STORE_BYPASS_PRCTL;
2581 		else
2582 			ssb_mode = SPEC_STORE_BYPASS_NONE;
2583 	}
2584 
2585 	if (!boot_cpu_has(X86_FEATURE_SSBD))
2586 		ssb_mode = SPEC_STORE_BYPASS_NONE;
2587 
2588 	pr_info("%s\n", ssb_strings[ssb_mode]);
2589 }
2590 
ssb_apply_mitigation(void)2591 static void __init ssb_apply_mitigation(void)
2592 {
2593 	/*
2594 	 * We have three CPU feature flags that are in play here:
2595 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2596 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2597 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2598 	 */
2599 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE) {
2600 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2601 		/*
2602 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2603 		 * use a completely different MSR and bit dependent on family.
2604 		 */
2605 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2606 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2607 			x86_amd_ssb_disable();
2608 		} else {
2609 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2610 			update_spec_ctrl(x86_spec_ctrl_base);
2611 		}
2612 	}
2613 }
2614 
2615 #undef pr_fmt
2616 #define pr_fmt(fmt)     "Speculation prctl: " fmt
2617 
task_update_spec_tif(struct task_struct * tsk)2618 static void task_update_spec_tif(struct task_struct *tsk)
2619 {
2620 	/* Force the update of the real TIF bits */
2621 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2622 
2623 	/*
2624 	 * Immediately update the speculation control MSRs for the current
2625 	 * task, but for a non-current task delay setting the CPU
2626 	 * mitigation until it is scheduled next.
2627 	 *
2628 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
2629 	 * always the current task.
2630 	 */
2631 	if (tsk == current)
2632 		speculation_ctrl_update_current();
2633 }
2634 
l1d_flush_prctl_set(struct task_struct * task,unsigned long ctrl)2635 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2636 {
2637 
2638 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2639 		return -EPERM;
2640 
2641 	switch (ctrl) {
2642 	case PR_SPEC_ENABLE:
2643 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2644 		return 0;
2645 	case PR_SPEC_DISABLE:
2646 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2647 		return 0;
2648 	default:
2649 		return -ERANGE;
2650 	}
2651 }
2652 
ssb_prctl_set(struct task_struct * task,unsigned long ctrl)2653 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2654 {
2655 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2656 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2657 		return -ENXIO;
2658 
2659 	switch (ctrl) {
2660 	case PR_SPEC_ENABLE:
2661 		/* If speculation is force disabled, enable is not allowed */
2662 		if (task_spec_ssb_force_disable(task))
2663 			return -EPERM;
2664 		task_clear_spec_ssb_disable(task);
2665 		task_clear_spec_ssb_noexec(task);
2666 		task_update_spec_tif(task);
2667 		break;
2668 	case PR_SPEC_DISABLE:
2669 		task_set_spec_ssb_disable(task);
2670 		task_clear_spec_ssb_noexec(task);
2671 		task_update_spec_tif(task);
2672 		break;
2673 	case PR_SPEC_FORCE_DISABLE:
2674 		task_set_spec_ssb_disable(task);
2675 		task_set_spec_ssb_force_disable(task);
2676 		task_clear_spec_ssb_noexec(task);
2677 		task_update_spec_tif(task);
2678 		break;
2679 	case PR_SPEC_DISABLE_NOEXEC:
2680 		if (task_spec_ssb_force_disable(task))
2681 			return -EPERM;
2682 		task_set_spec_ssb_disable(task);
2683 		task_set_spec_ssb_noexec(task);
2684 		task_update_spec_tif(task);
2685 		break;
2686 	default:
2687 		return -ERANGE;
2688 	}
2689 	return 0;
2690 }
2691 
is_spec_ib_user_controlled(void)2692 static bool is_spec_ib_user_controlled(void)
2693 {
2694 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2695 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2696 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2697 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2698 }
2699 
ib_prctl_set(struct task_struct * task,unsigned long ctrl)2700 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2701 {
2702 	switch (ctrl) {
2703 	case PR_SPEC_ENABLE:
2704 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2705 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2706 			return 0;
2707 
2708 		/*
2709 		 * With strict mode for both IBPB and STIBP, the instruction
2710 		 * code paths avoid checking this task flag and instead,
2711 		 * unconditionally run the instruction. However, STIBP and IBPB
2712 		 * are independent and either can be set to conditionally
2713 		 * enabled regardless of the mode of the other.
2714 		 *
2715 		 * If either is set to conditional, allow the task flag to be
2716 		 * updated, unless it was force-disabled by a previous prctl
2717 		 * call. Currently, this is possible on an AMD CPU which has the
2718 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2719 		 * kernel is booted with 'spectre_v2_user=seccomp', then
2720 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2721 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2722 		 */
2723 		if (!is_spec_ib_user_controlled() ||
2724 		    task_spec_ib_force_disable(task))
2725 			return -EPERM;
2726 
2727 		task_clear_spec_ib_disable(task);
2728 		task_update_spec_tif(task);
2729 		break;
2730 	case PR_SPEC_DISABLE:
2731 	case PR_SPEC_FORCE_DISABLE:
2732 		/*
2733 		 * Indirect branch speculation is always allowed when
2734 		 * mitigation is force disabled.
2735 		 */
2736 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2737 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2738 			return -EPERM;
2739 
2740 		if (!is_spec_ib_user_controlled())
2741 			return 0;
2742 
2743 		task_set_spec_ib_disable(task);
2744 		if (ctrl == PR_SPEC_FORCE_DISABLE)
2745 			task_set_spec_ib_force_disable(task);
2746 		task_update_spec_tif(task);
2747 		if (task == current)
2748 			indirect_branch_prediction_barrier();
2749 		break;
2750 	default:
2751 		return -ERANGE;
2752 	}
2753 	return 0;
2754 }
2755 
arch_prctl_spec_ctrl_set(struct task_struct * task,unsigned long which,unsigned long ctrl)2756 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2757 			     unsigned long ctrl)
2758 {
2759 	switch (which) {
2760 	case PR_SPEC_STORE_BYPASS:
2761 		return ssb_prctl_set(task, ctrl);
2762 	case PR_SPEC_INDIRECT_BRANCH:
2763 		return ib_prctl_set(task, ctrl);
2764 	case PR_SPEC_L1D_FLUSH:
2765 		return l1d_flush_prctl_set(task, ctrl);
2766 	default:
2767 		return -ENODEV;
2768 	}
2769 }
2770 
2771 #ifdef CONFIG_SECCOMP
arch_seccomp_spec_mitigate(struct task_struct * task)2772 void arch_seccomp_spec_mitigate(struct task_struct *task)
2773 {
2774 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2775 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2776 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2777 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2778 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2779 }
2780 #endif
2781 
l1d_flush_prctl_get(struct task_struct * task)2782 static int l1d_flush_prctl_get(struct task_struct *task)
2783 {
2784 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2785 		return PR_SPEC_FORCE_DISABLE;
2786 
2787 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2788 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2789 	else
2790 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2791 }
2792 
ssb_prctl_get(struct task_struct * task)2793 static int ssb_prctl_get(struct task_struct *task)
2794 {
2795 	switch (ssb_mode) {
2796 	case SPEC_STORE_BYPASS_NONE:
2797 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2798 			return PR_SPEC_ENABLE;
2799 		return PR_SPEC_NOT_AFFECTED;
2800 	case SPEC_STORE_BYPASS_DISABLE:
2801 		return PR_SPEC_DISABLE;
2802 	case SPEC_STORE_BYPASS_SECCOMP:
2803 	case SPEC_STORE_BYPASS_PRCTL:
2804 	case SPEC_STORE_BYPASS_AUTO:
2805 		if (task_spec_ssb_force_disable(task))
2806 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2807 		if (task_spec_ssb_noexec(task))
2808 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2809 		if (task_spec_ssb_disable(task))
2810 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2811 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2812 	}
2813 	BUG();
2814 }
2815 
ib_prctl_get(struct task_struct * task)2816 static int ib_prctl_get(struct task_struct *task)
2817 {
2818 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2819 		return PR_SPEC_NOT_AFFECTED;
2820 
2821 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2822 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2823 		return PR_SPEC_ENABLE;
2824 	else if (is_spec_ib_user_controlled()) {
2825 		if (task_spec_ib_force_disable(task))
2826 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2827 		if (task_spec_ib_disable(task))
2828 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2829 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2830 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2831 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2832 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2833 		return PR_SPEC_DISABLE;
2834 	else
2835 		return PR_SPEC_NOT_AFFECTED;
2836 }
2837 
arch_prctl_spec_ctrl_get(struct task_struct * task,unsigned long which)2838 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2839 {
2840 	switch (which) {
2841 	case PR_SPEC_STORE_BYPASS:
2842 		return ssb_prctl_get(task);
2843 	case PR_SPEC_INDIRECT_BRANCH:
2844 		return ib_prctl_get(task);
2845 	case PR_SPEC_L1D_FLUSH:
2846 		return l1d_flush_prctl_get(task);
2847 	default:
2848 		return -ENODEV;
2849 	}
2850 }
2851 
x86_spec_ctrl_setup_ap(void)2852 void x86_spec_ctrl_setup_ap(void)
2853 {
2854 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2855 		update_spec_ctrl(x86_spec_ctrl_base);
2856 
2857 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2858 		x86_amd_ssb_disable();
2859 }
2860 
2861 bool itlb_multihit_kvm_mitigation;
2862 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2863 
2864 #undef pr_fmt
2865 #define pr_fmt(fmt)	"L1TF: " fmt
2866 
2867 /* Default mitigation for L1TF-affected CPUs */
2868 enum l1tf_mitigations l1tf_mitigation __ro_after_init =
2869 	IS_ENABLED(CONFIG_MITIGATION_L1TF) ? L1TF_MITIGATION_AUTO : L1TF_MITIGATION_OFF;
2870 #if IS_ENABLED(CONFIG_KVM_INTEL)
2871 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2872 #endif
2873 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2874 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2875 
2876 /*
2877  * These CPUs all support 44bits physical address space internally in the
2878  * cache but CPUID can report a smaller number of physical address bits.
2879  *
2880  * The L1TF mitigation uses the top most address bit for the inversion of
2881  * non present PTEs. When the installed memory reaches into the top most
2882  * address bit due to memory holes, which has been observed on machines
2883  * which report 36bits physical address bits and have 32G RAM installed,
2884  * then the mitigation range check in l1tf_select_mitigation() triggers.
2885  * This is a false positive because the mitigation is still possible due to
2886  * the fact that the cache uses 44bit internally. Use the cache bits
2887  * instead of the reported physical bits and adjust them on the affected
2888  * machines to 44bit if the reported bits are less than 44.
2889  */
override_cache_bits(struct cpuinfo_x86 * c)2890 static void override_cache_bits(struct cpuinfo_x86 *c)
2891 {
2892 	if (c->x86 != 6)
2893 		return;
2894 
2895 	switch (c->x86_vfm) {
2896 	case INTEL_NEHALEM:
2897 	case INTEL_WESTMERE:
2898 	case INTEL_SANDYBRIDGE:
2899 	case INTEL_IVYBRIDGE:
2900 	case INTEL_HASWELL:
2901 	case INTEL_HASWELL_L:
2902 	case INTEL_HASWELL_G:
2903 	case INTEL_BROADWELL:
2904 	case INTEL_BROADWELL_G:
2905 	case INTEL_SKYLAKE_L:
2906 	case INTEL_SKYLAKE:
2907 	case INTEL_KABYLAKE_L:
2908 	case INTEL_KABYLAKE:
2909 		if (c->x86_cache_bits < 44)
2910 			c->x86_cache_bits = 44;
2911 		break;
2912 	}
2913 }
2914 
l1tf_select_mitigation(void)2915 static void __init l1tf_select_mitigation(void)
2916 {
2917 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
2918 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2919 		return;
2920 	}
2921 
2922 	if (l1tf_mitigation != L1TF_MITIGATION_AUTO)
2923 		return;
2924 
2925 	if (!should_mitigate_vuln(X86_BUG_L1TF)) {
2926 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2927 		return;
2928 	}
2929 
2930 	if (smt_mitigations == SMT_MITIGATIONS_ON)
2931 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2932 	else
2933 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2934 }
2935 
l1tf_apply_mitigation(void)2936 static void __init l1tf_apply_mitigation(void)
2937 {
2938 	u64 half_pa;
2939 
2940 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2941 		return;
2942 
2943 	override_cache_bits(&boot_cpu_data);
2944 
2945 	switch (l1tf_mitigation) {
2946 	case L1TF_MITIGATION_OFF:
2947 	case L1TF_MITIGATION_FLUSH_NOWARN:
2948 	case L1TF_MITIGATION_FLUSH:
2949 	case L1TF_MITIGATION_AUTO:
2950 		break;
2951 	case L1TF_MITIGATION_FLUSH_NOSMT:
2952 	case L1TF_MITIGATION_FULL:
2953 		cpu_smt_disable(false);
2954 		break;
2955 	case L1TF_MITIGATION_FULL_FORCE:
2956 		cpu_smt_disable(true);
2957 		break;
2958 	}
2959 
2960 #if CONFIG_PGTABLE_LEVELS == 2
2961 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2962 	return;
2963 #endif
2964 
2965 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2966 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2967 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2968 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2969 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2970 				half_pa);
2971 		pr_info("However, doing so will make a part of your RAM unusable.\n");
2972 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2973 		return;
2974 	}
2975 
2976 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2977 }
2978 
l1tf_cmdline(char * str)2979 static int __init l1tf_cmdline(char *str)
2980 {
2981 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2982 		return 0;
2983 
2984 	if (!str)
2985 		return -EINVAL;
2986 
2987 	if (!strcmp(str, "off"))
2988 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2989 	else if (!strcmp(str, "flush,nowarn"))
2990 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2991 	else if (!strcmp(str, "flush"))
2992 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2993 	else if (!strcmp(str, "flush,nosmt"))
2994 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2995 	else if (!strcmp(str, "full"))
2996 		l1tf_mitigation = L1TF_MITIGATION_FULL;
2997 	else if (!strcmp(str, "full,force"))
2998 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2999 
3000 	return 0;
3001 }
3002 early_param("l1tf", l1tf_cmdline);
3003 
3004 #undef pr_fmt
3005 #define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
3006 
3007 static const char * const srso_strings[] = {
3008 	[SRSO_MITIGATION_NONE]			= "Vulnerable",
3009 	[SRSO_MITIGATION_UCODE_NEEDED]		= "Vulnerable: No microcode",
3010 	[SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED]	= "Vulnerable: Safe RET, no microcode",
3011 	[SRSO_MITIGATION_MICROCODE]		= "Vulnerable: Microcode, no safe RET",
3012 	[SRSO_MITIGATION_NOSMT]			= "Mitigation: SMT disabled",
3013 	[SRSO_MITIGATION_SAFE_RET]		= "Mitigation: Safe RET",
3014 	[SRSO_MITIGATION_IBPB]			= "Mitigation: IBPB",
3015 	[SRSO_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT only",
3016 	[SRSO_MITIGATION_BP_SPEC_REDUCE]	= "Mitigation: Reduced Speculation"
3017 };
3018 
srso_parse_cmdline(char * str)3019 static int __init srso_parse_cmdline(char *str)
3020 {
3021 	if (!str)
3022 		return -EINVAL;
3023 
3024 	if (!strcmp(str, "off"))
3025 		srso_mitigation = SRSO_MITIGATION_NONE;
3026 	else if (!strcmp(str, "microcode"))
3027 		srso_mitigation = SRSO_MITIGATION_MICROCODE;
3028 	else if (!strcmp(str, "safe-ret"))
3029 		srso_mitigation = SRSO_MITIGATION_SAFE_RET;
3030 	else if (!strcmp(str, "ibpb"))
3031 		srso_mitigation = SRSO_MITIGATION_IBPB;
3032 	else if (!strcmp(str, "ibpb-vmexit"))
3033 		srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
3034 	else
3035 		pr_err("Ignoring unknown SRSO option (%s).", str);
3036 
3037 	return 0;
3038 }
3039 early_param("spec_rstack_overflow", srso_parse_cmdline);
3040 
3041 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
3042 
srso_select_mitigation(void)3043 static void __init srso_select_mitigation(void)
3044 {
3045 	if (!boot_cpu_has_bug(X86_BUG_SRSO)) {
3046 		srso_mitigation = SRSO_MITIGATION_NONE;
3047 		return;
3048 	}
3049 
3050 	if (srso_mitigation == SRSO_MITIGATION_AUTO) {
3051 		/*
3052 		 * Use safe-RET if user->kernel or guest->host protection is
3053 		 * required.  Otherwise the 'microcode' mitigation is sufficient
3054 		 * to protect the user->user and guest->guest vectors.
3055 		 */
3056 		if (cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_HOST) ||
3057 		    (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_KERNEL) &&
3058 		     !boot_cpu_has(X86_FEATURE_SRSO_USER_KERNEL_NO))) {
3059 			srso_mitigation = SRSO_MITIGATION_SAFE_RET;
3060 		} else if (cpu_attack_vector_mitigated(CPU_MITIGATE_USER_USER) ||
3061 			   cpu_attack_vector_mitigated(CPU_MITIGATE_GUEST_GUEST)) {
3062 			srso_mitigation = SRSO_MITIGATION_MICROCODE;
3063 		} else {
3064 			srso_mitigation = SRSO_MITIGATION_NONE;
3065 			return;
3066 		}
3067 	}
3068 
3069 	/* Zen1/2 with SMT off aren't vulnerable to SRSO. */
3070 	if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
3071 		srso_mitigation = SRSO_MITIGATION_NOSMT;
3072 		return;
3073 	}
3074 
3075 	if (!boot_cpu_has(X86_FEATURE_IBPB_BRTYPE)) {
3076 		pr_warn("IBPB-extending microcode not applied!\n");
3077 		pr_warn(SRSO_NOTICE);
3078 
3079 		/*
3080 		 * Safe-RET provides partial mitigation without microcode, but
3081 		 * other mitigations require microcode to provide any
3082 		 * mitigations.
3083 		 */
3084 		if (srso_mitigation == SRSO_MITIGATION_SAFE_RET)
3085 			srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
3086 		else
3087 			srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
3088 	}
3089 
3090 	switch (srso_mitigation) {
3091 	case SRSO_MITIGATION_SAFE_RET:
3092 	case SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED:
3093 		if (boot_cpu_has(X86_FEATURE_SRSO_USER_KERNEL_NO)) {
3094 			srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
3095 			goto ibpb_on_vmexit;
3096 		}
3097 
3098 		if (!IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
3099 			pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
3100 			srso_mitigation = SRSO_MITIGATION_NONE;
3101 		}
3102 		break;
3103 ibpb_on_vmexit:
3104 	case SRSO_MITIGATION_IBPB_ON_VMEXIT:
3105 		if (boot_cpu_has(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) {
3106 			pr_notice("Reducing speculation to address VM/HV SRSO attack vector.\n");
3107 			srso_mitigation = SRSO_MITIGATION_BP_SPEC_REDUCE;
3108 			break;
3109 		}
3110 		fallthrough;
3111 	case SRSO_MITIGATION_IBPB:
3112 		if (!IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
3113 			pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
3114 			srso_mitigation = SRSO_MITIGATION_NONE;
3115 		}
3116 		break;
3117 	default:
3118 		break;
3119 	}
3120 }
3121 
srso_update_mitigation(void)3122 static void __init srso_update_mitigation(void)
3123 {
3124 	if (!boot_cpu_has_bug(X86_BUG_SRSO))
3125 		return;
3126 
3127 	/* If retbleed is using IBPB, that works for SRSO as well */
3128 	if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB &&
3129 	    boot_cpu_has(X86_FEATURE_IBPB_BRTYPE))
3130 		srso_mitigation = SRSO_MITIGATION_IBPB;
3131 
3132 	pr_info("%s\n", srso_strings[srso_mitigation]);
3133 }
3134 
srso_apply_mitigation(void)3135 static void __init srso_apply_mitigation(void)
3136 {
3137 	/*
3138 	 * Clear the feature flag if this mitigation is not selected as that
3139 	 * feature flag controls the BpSpecReduce MSR bit toggling in KVM.
3140 	 */
3141 	if (srso_mitigation != SRSO_MITIGATION_BP_SPEC_REDUCE)
3142 		setup_clear_cpu_cap(X86_FEATURE_SRSO_BP_SPEC_REDUCE);
3143 
3144 	if (srso_mitigation == SRSO_MITIGATION_NONE) {
3145 		if (boot_cpu_has(X86_FEATURE_SBPB))
3146 			x86_pred_cmd = PRED_CMD_SBPB;
3147 		return;
3148 	}
3149 
3150 	switch (srso_mitigation) {
3151 	case SRSO_MITIGATION_SAFE_RET:
3152 	case SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED:
3153 		/*
3154 		 * Enable the return thunk for generated code
3155 		 * like ftrace, static_call, etc.
3156 		 */
3157 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
3158 		setup_force_cpu_cap(X86_FEATURE_UNRET);
3159 
3160 		if (boot_cpu_data.x86 == 0x19) {
3161 			setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
3162 			set_return_thunk(srso_alias_return_thunk);
3163 		} else {
3164 			setup_force_cpu_cap(X86_FEATURE_SRSO);
3165 			set_return_thunk(srso_return_thunk);
3166 		}
3167 		break;
3168 	case SRSO_MITIGATION_IBPB:
3169 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
3170 		/*
3171 		 * IBPB on entry already obviates the need for
3172 		 * software-based untraining so clear those in case some
3173 		 * other mitigation like Retbleed has selected them.
3174 		 */
3175 		setup_clear_cpu_cap(X86_FEATURE_UNRET);
3176 		setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
3177 		fallthrough;
3178 	case SRSO_MITIGATION_IBPB_ON_VMEXIT:
3179 		setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
3180 		/*
3181 		 * There is no need for RSB filling: entry_ibpb() ensures
3182 		 * all predictions, including the RSB, are invalidated,
3183 		 * regardless of IBPB implementation.
3184 		 */
3185 		setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
3186 		break;
3187 	default:
3188 		break;
3189 	}
3190 }
3191 
3192 #undef pr_fmt
3193 #define pr_fmt(fmt)	"VMSCAPE: " fmt
3194 
3195 enum vmscape_mitigations {
3196 	VMSCAPE_MITIGATION_NONE,
3197 	VMSCAPE_MITIGATION_AUTO,
3198 	VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER,
3199 	VMSCAPE_MITIGATION_IBPB_ON_VMEXIT,
3200 };
3201 
3202 static const char * const vmscape_strings[] = {
3203 	[VMSCAPE_MITIGATION_NONE]		= "Vulnerable",
3204 	/* [VMSCAPE_MITIGATION_AUTO] */
3205 	[VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER]	= "Mitigation: IBPB before exit to userspace",
3206 	[VMSCAPE_MITIGATION_IBPB_ON_VMEXIT]	= "Mitigation: IBPB on VMEXIT",
3207 };
3208 
3209 static enum vmscape_mitigations vmscape_mitigation __ro_after_init =
3210 	IS_ENABLED(CONFIG_MITIGATION_VMSCAPE) ? VMSCAPE_MITIGATION_AUTO : VMSCAPE_MITIGATION_NONE;
3211 
vmscape_parse_cmdline(char * str)3212 static int __init vmscape_parse_cmdline(char *str)
3213 {
3214 	if (!str)
3215 		return -EINVAL;
3216 
3217 	if (!strcmp(str, "off")) {
3218 		vmscape_mitigation = VMSCAPE_MITIGATION_NONE;
3219 	} else if (!strcmp(str, "ibpb")) {
3220 		vmscape_mitigation = VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER;
3221 	} else if (!strcmp(str, "force")) {
3222 		setup_force_cpu_bug(X86_BUG_VMSCAPE);
3223 		vmscape_mitigation = VMSCAPE_MITIGATION_AUTO;
3224 	} else {
3225 		pr_err("Ignoring unknown vmscape=%s option.\n", str);
3226 	}
3227 
3228 	return 0;
3229 }
3230 early_param("vmscape", vmscape_parse_cmdline);
3231 
vmscape_select_mitigation(void)3232 static void __init vmscape_select_mitigation(void)
3233 {
3234 	if (!boot_cpu_has_bug(X86_BUG_VMSCAPE) ||
3235 	    !boot_cpu_has(X86_FEATURE_IBPB)) {
3236 		vmscape_mitigation = VMSCAPE_MITIGATION_NONE;
3237 		return;
3238 	}
3239 
3240 	if (vmscape_mitigation == VMSCAPE_MITIGATION_AUTO) {
3241 		if (should_mitigate_vuln(X86_BUG_VMSCAPE))
3242 			vmscape_mitigation = VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER;
3243 		else
3244 			vmscape_mitigation = VMSCAPE_MITIGATION_NONE;
3245 	}
3246 }
3247 
vmscape_update_mitigation(void)3248 static void __init vmscape_update_mitigation(void)
3249 {
3250 	if (!boot_cpu_has_bug(X86_BUG_VMSCAPE))
3251 		return;
3252 
3253 	if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB ||
3254 	    srso_mitigation == SRSO_MITIGATION_IBPB_ON_VMEXIT)
3255 		vmscape_mitigation = VMSCAPE_MITIGATION_IBPB_ON_VMEXIT;
3256 
3257 	pr_info("%s\n", vmscape_strings[vmscape_mitigation]);
3258 }
3259 
vmscape_apply_mitigation(void)3260 static void __init vmscape_apply_mitigation(void)
3261 {
3262 	if (vmscape_mitigation == VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER)
3263 		setup_force_cpu_cap(X86_FEATURE_IBPB_EXIT_TO_USER);
3264 }
3265 
3266 #undef pr_fmt
3267 #define pr_fmt(fmt) fmt
3268 
3269 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
3270 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
3271 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
3272 #define VMSCAPE_MSG_SMT "VMSCAPE: SMT on, STIBP is required for full protection. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/vmscape.html for more details.\n"
3273 
cpu_bugs_smt_update(void)3274 void cpu_bugs_smt_update(void)
3275 {
3276 	mutex_lock(&spec_ctrl_mutex);
3277 
3278 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
3279 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
3280 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
3281 
3282 	switch (spectre_v2_user_stibp) {
3283 	case SPECTRE_V2_USER_NONE:
3284 		break;
3285 	case SPECTRE_V2_USER_STRICT:
3286 	case SPECTRE_V2_USER_STRICT_PREFERRED:
3287 		update_stibp_strict();
3288 		break;
3289 	case SPECTRE_V2_USER_PRCTL:
3290 	case SPECTRE_V2_USER_SECCOMP:
3291 		update_indir_branch_cond();
3292 		break;
3293 	}
3294 
3295 	switch (mds_mitigation) {
3296 	case MDS_MITIGATION_FULL:
3297 	case MDS_MITIGATION_AUTO:
3298 	case MDS_MITIGATION_VMWERV:
3299 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
3300 			pr_warn_once(MDS_MSG_SMT);
3301 		update_mds_branch_idle();
3302 		break;
3303 	case MDS_MITIGATION_OFF:
3304 		break;
3305 	}
3306 
3307 	switch (taa_mitigation) {
3308 	case TAA_MITIGATION_VERW:
3309 	case TAA_MITIGATION_AUTO:
3310 	case TAA_MITIGATION_UCODE_NEEDED:
3311 		if (sched_smt_active())
3312 			pr_warn_once(TAA_MSG_SMT);
3313 		break;
3314 	case TAA_MITIGATION_TSX_DISABLED:
3315 	case TAA_MITIGATION_OFF:
3316 		break;
3317 	}
3318 
3319 	switch (mmio_mitigation) {
3320 	case MMIO_MITIGATION_VERW:
3321 	case MMIO_MITIGATION_AUTO:
3322 	case MMIO_MITIGATION_UCODE_NEEDED:
3323 		if (sched_smt_active())
3324 			pr_warn_once(MMIO_MSG_SMT);
3325 		break;
3326 	case MMIO_MITIGATION_OFF:
3327 		break;
3328 	}
3329 
3330 	switch (tsa_mitigation) {
3331 	case TSA_MITIGATION_USER_KERNEL:
3332 	case TSA_MITIGATION_VM:
3333 	case TSA_MITIGATION_AUTO:
3334 	case TSA_MITIGATION_FULL:
3335 		/*
3336 		 * TSA-SQ can potentially lead to info leakage between
3337 		 * SMT threads.
3338 		 */
3339 		if (sched_smt_active())
3340 			static_branch_enable(&cpu_buf_idle_clear);
3341 		else
3342 			static_branch_disable(&cpu_buf_idle_clear);
3343 		break;
3344 	case TSA_MITIGATION_NONE:
3345 	case TSA_MITIGATION_UCODE_NEEDED:
3346 		break;
3347 	}
3348 
3349 	switch (vmscape_mitigation) {
3350 	case VMSCAPE_MITIGATION_NONE:
3351 	case VMSCAPE_MITIGATION_AUTO:
3352 		break;
3353 	case VMSCAPE_MITIGATION_IBPB_ON_VMEXIT:
3354 	case VMSCAPE_MITIGATION_IBPB_EXIT_TO_USER:
3355 		/*
3356 		 * Hypervisors can be attacked across-threads, warn for SMT when
3357 		 * STIBP is not already enabled system-wide.
3358 		 *
3359 		 * Intel eIBRS (!AUTOIBRS) implies STIBP on.
3360 		 */
3361 		if (!sched_smt_active() ||
3362 		    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
3363 		    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ||
3364 		    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
3365 		     !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
3366 			break;
3367 		pr_warn_once(VMSCAPE_MSG_SMT);
3368 		break;
3369 	}
3370 
3371 	mutex_unlock(&spec_ctrl_mutex);
3372 }
3373 
3374 #ifdef CONFIG_SYSFS
3375 
3376 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
3377 
3378 #if IS_ENABLED(CONFIG_KVM_INTEL)
3379 static const char * const l1tf_vmx_states[] = {
3380 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
3381 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
3382 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
3383 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
3384 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
3385 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
3386 };
3387 
l1tf_show_state(char * buf)3388 static ssize_t l1tf_show_state(char *buf)
3389 {
3390 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
3391 		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
3392 
3393 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
3394 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
3395 	     sched_smt_active())) {
3396 		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
3397 				  l1tf_vmx_states[l1tf_vmx_mitigation]);
3398 	}
3399 
3400 	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
3401 			  l1tf_vmx_states[l1tf_vmx_mitigation],
3402 			  sched_smt_active() ? "vulnerable" : "disabled");
3403 }
3404 
itlb_multihit_show_state(char * buf)3405 static ssize_t itlb_multihit_show_state(char *buf)
3406 {
3407 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
3408 	    !boot_cpu_has(X86_FEATURE_VMX))
3409 		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
3410 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
3411 		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
3412 	else if (itlb_multihit_kvm_mitigation)
3413 		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
3414 	else
3415 		return sysfs_emit(buf, "KVM: Vulnerable\n");
3416 }
3417 #else
l1tf_show_state(char * buf)3418 static ssize_t l1tf_show_state(char *buf)
3419 {
3420 	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
3421 }
3422 
itlb_multihit_show_state(char * buf)3423 static ssize_t itlb_multihit_show_state(char *buf)
3424 {
3425 	return sysfs_emit(buf, "Processor vulnerable\n");
3426 }
3427 #endif
3428 
mds_show_state(char * buf)3429 static ssize_t mds_show_state(char *buf)
3430 {
3431 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3432 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3433 				  mds_strings[mds_mitigation]);
3434 	}
3435 
3436 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
3437 		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
3438 				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
3439 				   sched_smt_active() ? "mitigated" : "disabled"));
3440 	}
3441 
3442 	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
3443 			  sched_smt_active() ? "vulnerable" : "disabled");
3444 }
3445 
tsx_async_abort_show_state(char * buf)3446 static ssize_t tsx_async_abort_show_state(char *buf)
3447 {
3448 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
3449 	    (taa_mitigation == TAA_MITIGATION_OFF))
3450 		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
3451 
3452 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3453 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3454 				  taa_strings[taa_mitigation]);
3455 	}
3456 
3457 	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
3458 			  sched_smt_active() ? "vulnerable" : "disabled");
3459 }
3460 
mmio_stale_data_show_state(char * buf)3461 static ssize_t mmio_stale_data_show_state(char *buf)
3462 {
3463 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
3464 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
3465 
3466 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
3467 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
3468 				  mmio_strings[mmio_mitigation]);
3469 	}
3470 
3471 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
3472 			  sched_smt_active() ? "vulnerable" : "disabled");
3473 }
3474 
rfds_show_state(char * buf)3475 static ssize_t rfds_show_state(char *buf)
3476 {
3477 	return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
3478 }
3479 
old_microcode_show_state(char * buf)3480 static ssize_t old_microcode_show_state(char *buf)
3481 {
3482 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
3483 		return sysfs_emit(buf, "Unknown: running under hypervisor");
3484 
3485 	return sysfs_emit(buf, "Vulnerable\n");
3486 }
3487 
its_show_state(char * buf)3488 static ssize_t its_show_state(char *buf)
3489 {
3490 	return sysfs_emit(buf, "%s\n", its_strings[its_mitigation]);
3491 }
3492 
stibp_state(void)3493 static char *stibp_state(void)
3494 {
3495 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
3496 	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
3497 		return "";
3498 
3499 	switch (spectre_v2_user_stibp) {
3500 	case SPECTRE_V2_USER_NONE:
3501 		return "; STIBP: disabled";
3502 	case SPECTRE_V2_USER_STRICT:
3503 		return "; STIBP: forced";
3504 	case SPECTRE_V2_USER_STRICT_PREFERRED:
3505 		return "; STIBP: always-on";
3506 	case SPECTRE_V2_USER_PRCTL:
3507 	case SPECTRE_V2_USER_SECCOMP:
3508 		if (static_key_enabled(&switch_to_cond_stibp))
3509 			return "; STIBP: conditional";
3510 	}
3511 	return "";
3512 }
3513 
ibpb_state(void)3514 static char *ibpb_state(void)
3515 {
3516 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
3517 		if (static_key_enabled(&switch_mm_always_ibpb))
3518 			return "; IBPB: always-on";
3519 		if (static_key_enabled(&switch_mm_cond_ibpb))
3520 			return "; IBPB: conditional";
3521 		return "; IBPB: disabled";
3522 	}
3523 	return "";
3524 }
3525 
pbrsb_eibrs_state(void)3526 static char *pbrsb_eibrs_state(void)
3527 {
3528 	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
3529 		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
3530 		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
3531 			return "; PBRSB-eIBRS: SW sequence";
3532 		else
3533 			return "; PBRSB-eIBRS: Vulnerable";
3534 	} else {
3535 		return "; PBRSB-eIBRS: Not affected";
3536 	}
3537 }
3538 
spectre_bhi_state(void)3539 static const char *spectre_bhi_state(void)
3540 {
3541 	if (!boot_cpu_has_bug(X86_BUG_BHI))
3542 		return "; BHI: Not affected";
3543 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
3544 		return "; BHI: BHI_DIS_S";
3545 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
3546 		return "; BHI: SW loop, KVM: SW loop";
3547 	else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
3548 		 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
3549 		 rrsba_disabled)
3550 		return "; BHI: Retpoline";
3551 	else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_VMEXIT))
3552 		return "; BHI: Vulnerable, KVM: SW loop";
3553 
3554 	return "; BHI: Vulnerable";
3555 }
3556 
spectre_v2_show_state(char * buf)3557 static ssize_t spectre_v2_show_state(char *buf)
3558 {
3559 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
3560 		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
3561 
3562 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
3563 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
3564 		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
3565 
3566 	return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
3567 			  spectre_v2_strings[spectre_v2_enabled],
3568 			  ibpb_state(),
3569 			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
3570 			  stibp_state(),
3571 			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
3572 			  pbrsb_eibrs_state(),
3573 			  spectre_bhi_state(),
3574 			  /* this should always be at the end */
3575 			  spectre_v2_module_string());
3576 }
3577 
srbds_show_state(char * buf)3578 static ssize_t srbds_show_state(char *buf)
3579 {
3580 	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
3581 }
3582 
retbleed_show_state(char * buf)3583 static ssize_t retbleed_show_state(char *buf)
3584 {
3585 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
3586 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
3587 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
3588 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
3589 			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
3590 
3591 		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
3592 				  !sched_smt_active() ? "disabled" :
3593 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
3594 				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
3595 				  "enabled with STIBP protection" : "vulnerable");
3596 	}
3597 
3598 	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
3599 }
3600 
srso_show_state(char * buf)3601 static ssize_t srso_show_state(char *buf)
3602 {
3603 	return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
3604 }
3605 
gds_show_state(char * buf)3606 static ssize_t gds_show_state(char *buf)
3607 {
3608 	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
3609 }
3610 
tsa_show_state(char * buf)3611 static ssize_t tsa_show_state(char *buf)
3612 {
3613 	return sysfs_emit(buf, "%s\n", tsa_strings[tsa_mitigation]);
3614 }
3615 
vmscape_show_state(char * buf)3616 static ssize_t vmscape_show_state(char *buf)
3617 {
3618 	return sysfs_emit(buf, "%s\n", vmscape_strings[vmscape_mitigation]);
3619 }
3620 
cpu_show_common(struct device * dev,struct device_attribute * attr,char * buf,unsigned int bug)3621 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
3622 			       char *buf, unsigned int bug)
3623 {
3624 	if (!boot_cpu_has_bug(bug))
3625 		return sysfs_emit(buf, "Not affected\n");
3626 
3627 	switch (bug) {
3628 	case X86_BUG_CPU_MELTDOWN:
3629 		if (boot_cpu_has(X86_FEATURE_PTI))
3630 			return sysfs_emit(buf, "Mitigation: PTI\n");
3631 
3632 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
3633 			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
3634 
3635 		break;
3636 
3637 	case X86_BUG_SPECTRE_V1:
3638 		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
3639 
3640 	case X86_BUG_SPECTRE_V2:
3641 		return spectre_v2_show_state(buf);
3642 
3643 	case X86_BUG_SPEC_STORE_BYPASS:
3644 		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
3645 
3646 	case X86_BUG_L1TF:
3647 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
3648 			return l1tf_show_state(buf);
3649 		break;
3650 
3651 	case X86_BUG_MDS:
3652 		return mds_show_state(buf);
3653 
3654 	case X86_BUG_TAA:
3655 		return tsx_async_abort_show_state(buf);
3656 
3657 	case X86_BUG_ITLB_MULTIHIT:
3658 		return itlb_multihit_show_state(buf);
3659 
3660 	case X86_BUG_SRBDS:
3661 		return srbds_show_state(buf);
3662 
3663 	case X86_BUG_MMIO_STALE_DATA:
3664 		return mmio_stale_data_show_state(buf);
3665 
3666 	case X86_BUG_RETBLEED:
3667 		return retbleed_show_state(buf);
3668 
3669 	case X86_BUG_SRSO:
3670 		return srso_show_state(buf);
3671 
3672 	case X86_BUG_GDS:
3673 		return gds_show_state(buf);
3674 
3675 	case X86_BUG_RFDS:
3676 		return rfds_show_state(buf);
3677 
3678 	case X86_BUG_OLD_MICROCODE:
3679 		return old_microcode_show_state(buf);
3680 
3681 	case X86_BUG_ITS:
3682 		return its_show_state(buf);
3683 
3684 	case X86_BUG_TSA:
3685 		return tsa_show_state(buf);
3686 
3687 	case X86_BUG_VMSCAPE:
3688 		return vmscape_show_state(buf);
3689 
3690 	default:
3691 		break;
3692 	}
3693 
3694 	return sysfs_emit(buf, "Vulnerable\n");
3695 }
3696 
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)3697 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
3698 {
3699 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
3700 }
3701 
cpu_show_spectre_v1(struct device * dev,struct device_attribute * attr,char * buf)3702 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
3703 {
3704 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
3705 }
3706 
cpu_show_spectre_v2(struct device * dev,struct device_attribute * attr,char * buf)3707 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
3708 {
3709 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
3710 }
3711 
cpu_show_spec_store_bypass(struct device * dev,struct device_attribute * attr,char * buf)3712 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
3713 {
3714 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
3715 }
3716 
cpu_show_l1tf(struct device * dev,struct device_attribute * attr,char * buf)3717 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
3718 {
3719 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
3720 }
3721 
cpu_show_mds(struct device * dev,struct device_attribute * attr,char * buf)3722 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
3723 {
3724 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
3725 }
3726 
cpu_show_tsx_async_abort(struct device * dev,struct device_attribute * attr,char * buf)3727 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
3728 {
3729 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
3730 }
3731 
cpu_show_itlb_multihit(struct device * dev,struct device_attribute * attr,char * buf)3732 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
3733 {
3734 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
3735 }
3736 
cpu_show_srbds(struct device * dev,struct device_attribute * attr,char * buf)3737 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
3738 {
3739 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
3740 }
3741 
cpu_show_mmio_stale_data(struct device * dev,struct device_attribute * attr,char * buf)3742 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
3743 {
3744 	return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
3745 }
3746 
cpu_show_retbleed(struct device * dev,struct device_attribute * attr,char * buf)3747 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3748 {
3749 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3750 }
3751 
cpu_show_spec_rstack_overflow(struct device * dev,struct device_attribute * attr,char * buf)3752 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3753 {
3754 	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3755 }
3756 
cpu_show_gds(struct device * dev,struct device_attribute * attr,char * buf)3757 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3758 {
3759 	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3760 }
3761 
cpu_show_reg_file_data_sampling(struct device * dev,struct device_attribute * attr,char * buf)3762 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3763 {
3764 	return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3765 }
3766 
cpu_show_old_microcode(struct device * dev,struct device_attribute * attr,char * buf)3767 ssize_t cpu_show_old_microcode(struct device *dev, struct device_attribute *attr, char *buf)
3768 {
3769 	return cpu_show_common(dev, attr, buf, X86_BUG_OLD_MICROCODE);
3770 }
3771 
cpu_show_indirect_target_selection(struct device * dev,struct device_attribute * attr,char * buf)3772 ssize_t cpu_show_indirect_target_selection(struct device *dev, struct device_attribute *attr, char *buf)
3773 {
3774 	return cpu_show_common(dev, attr, buf, X86_BUG_ITS);
3775 }
3776 
cpu_show_tsa(struct device * dev,struct device_attribute * attr,char * buf)3777 ssize_t cpu_show_tsa(struct device *dev, struct device_attribute *attr, char *buf)
3778 {
3779 	return cpu_show_common(dev, attr, buf, X86_BUG_TSA);
3780 }
3781 
cpu_show_vmscape(struct device * dev,struct device_attribute * attr,char * buf)3782 ssize_t cpu_show_vmscape(struct device *dev, struct device_attribute *attr, char *buf)
3783 {
3784 	return cpu_show_common(dev, attr, buf, X86_BUG_VMSCAPE);
3785 }
3786 #endif
3787 
__warn_thunk(void)3788 void __warn_thunk(void)
3789 {
3790 	WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
3791 }
3792