1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 */
11
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45
46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
47
48 struct ib_umem_odp;
49 struct ib_uqp_object;
50 struct ib_usrq_object;
51 struct ib_uwq_object;
52 struct rdma_cm_id;
53 struct ib_port;
54 struct hw_stats_device_data;
55
56 extern struct workqueue_struct *ib_wq;
57 extern struct workqueue_struct *ib_comp_wq;
58 extern struct workqueue_struct *ib_comp_unbound_wq;
59
60 struct ib_ucq_object;
61
62 __printf(2, 3) __cold
63 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
64 __printf(2, 3) __cold
65 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
66 __printf(2, 3) __cold
67 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
68 __printf(2, 3) __cold
69 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
70 __printf(2, 3) __cold
71 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
72 __printf(2, 3) __cold
73 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
74 __printf(2, 3) __cold
75 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
76
77 #if defined(CONFIG_DYNAMIC_DEBUG) || \
78 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
79 #define ibdev_dbg(__dev, format, args...) \
80 dynamic_ibdev_dbg(__dev, format, ##args)
81 #else
82 __printf(2, 3) __cold
83 static inline
ibdev_dbg(const struct ib_device * ibdev,const char * format,...)84 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
85 #endif
86
87 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
88 do { \
89 static DEFINE_RATELIMIT_STATE(_rs, \
90 DEFAULT_RATELIMIT_INTERVAL, \
91 DEFAULT_RATELIMIT_BURST); \
92 if (__ratelimit(&_rs)) \
93 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
94 } while (0)
95
96 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
97 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
98 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
99 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
100 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
101 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
102 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
103 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
104 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
105 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
106 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
107 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
108 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
109 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
110
111 #if defined(CONFIG_DYNAMIC_DEBUG) || \
112 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
113 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
114 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
115 do { \
116 static DEFINE_RATELIMIT_STATE(_rs, \
117 DEFAULT_RATELIMIT_INTERVAL, \
118 DEFAULT_RATELIMIT_BURST); \
119 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
120 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
121 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
122 ##__VA_ARGS__); \
123 } while (0)
124 #else
125 __printf(2, 3) __cold
126 static inline
ibdev_dbg_ratelimited(const struct ib_device * ibdev,const char * format,...)127 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
128 #endif
129
130 union ib_gid {
131 u8 raw[16];
132 struct {
133 __be64 subnet_prefix;
134 __be64 interface_id;
135 } global;
136 };
137
138 extern union ib_gid zgid;
139
140 enum ib_gid_type {
141 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
142 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
143 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
144 IB_GID_TYPE_SIZE
145 };
146
147 #define ROCE_V2_UDP_DPORT 4791
148 struct ib_gid_attr {
149 struct net_device __rcu *ndev;
150 struct ib_device *device;
151 union ib_gid gid;
152 enum ib_gid_type gid_type;
153 u16 index;
154 u32 port_num;
155 };
156
157 enum {
158 /* set the local administered indication */
159 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
160 };
161
162 enum rdma_transport_type {
163 RDMA_TRANSPORT_IB,
164 RDMA_TRANSPORT_IWARP,
165 RDMA_TRANSPORT_USNIC,
166 RDMA_TRANSPORT_USNIC_UDP,
167 RDMA_TRANSPORT_UNSPECIFIED,
168 };
169
170 enum rdma_protocol_type {
171 RDMA_PROTOCOL_IB,
172 RDMA_PROTOCOL_IBOE,
173 RDMA_PROTOCOL_IWARP,
174 RDMA_PROTOCOL_USNIC_UDP
175 };
176
177 __attribute_const__ enum rdma_transport_type
178 rdma_node_get_transport(unsigned int node_type);
179
180 enum rdma_network_type {
181 RDMA_NETWORK_IB,
182 RDMA_NETWORK_ROCE_V1,
183 RDMA_NETWORK_IPV4,
184 RDMA_NETWORK_IPV6
185 };
186
ib_network_to_gid_type(enum rdma_network_type network_type)187 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
188 {
189 if (network_type == RDMA_NETWORK_IPV4 ||
190 network_type == RDMA_NETWORK_IPV6)
191 return IB_GID_TYPE_ROCE_UDP_ENCAP;
192 else if (network_type == RDMA_NETWORK_ROCE_V1)
193 return IB_GID_TYPE_ROCE;
194 else
195 return IB_GID_TYPE_IB;
196 }
197
198 static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)199 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
200 {
201 if (attr->gid_type == IB_GID_TYPE_IB)
202 return RDMA_NETWORK_IB;
203
204 if (attr->gid_type == IB_GID_TYPE_ROCE)
205 return RDMA_NETWORK_ROCE_V1;
206
207 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
208 return RDMA_NETWORK_IPV4;
209 else
210 return RDMA_NETWORK_IPV6;
211 }
212
213 enum rdma_link_layer {
214 IB_LINK_LAYER_UNSPECIFIED,
215 IB_LINK_LAYER_INFINIBAND,
216 IB_LINK_LAYER_ETHERNET,
217 };
218
219 enum ib_device_cap_flags {
220 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
221 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
222 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
223 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
224 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
225 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
226 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
227 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
228 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
229 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
230 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
231 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
232 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
233 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
234 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
235
236 /* Reserved, old SEND_W_INV = 1 << 16,*/
237 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
238 /*
239 * Devices should set IB_DEVICE_UD_IP_SUM if they support
240 * insertion of UDP and TCP checksum on outgoing UD IPoIB
241 * messages and can verify the validity of checksum for
242 * incoming messages. Setting this flag implies that the
243 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
244 */
245 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
246 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
247
248 /*
249 * This device supports the IB "base memory management extension",
250 * which includes support for fast registrations (IB_WR_REG_MR,
251 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
252 * also be set by any iWarp device which must support FRs to comply
253 * to the iWarp verbs spec. iWarp devices also support the
254 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
255 * stag.
256 */
257 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
258 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
259 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
260 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
261 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
262 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
263 IB_DEVICE_MANAGED_FLOW_STEERING =
264 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
265 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
266 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
267 /* The device supports padding incoming writes to cacheline. */
268 IB_DEVICE_PCI_WRITE_END_PADDING =
269 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
270 /* Placement type attributes */
271 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
272 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
273 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
274 };
275
276 enum ib_kernel_cap_flags {
277 /*
278 * This device supports a per-device lkey or stag that can be
279 * used without performing a memory registration for the local
280 * memory. Note that ULPs should never check this flag, but
281 * instead of use the local_dma_lkey flag in the ib_pd structure,
282 * which will always contain a usable lkey.
283 */
284 IBK_LOCAL_DMA_LKEY = 1 << 0,
285 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
286 IBK_INTEGRITY_HANDOVER = 1 << 1,
287 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
288 IBK_ON_DEMAND_PAGING = 1 << 2,
289 /* IB_MR_TYPE_SG_GAPS is supported */
290 IBK_SG_GAPS_REG = 1 << 3,
291 /* Driver supports RDMA_NLDEV_CMD_DELLINK */
292 IBK_ALLOW_USER_UNREG = 1 << 4,
293
294 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
295 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
296 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
297 IBK_UD_TSO = 1 << 6,
298 /* iopib will use the device ops:
299 * get_vf_config
300 * get_vf_guid
301 * get_vf_stats
302 * set_vf_guid
303 * set_vf_link_state
304 */
305 IBK_VIRTUAL_FUNCTION = 1 << 7,
306 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
307 IBK_RDMA_NETDEV_OPA = 1 << 8,
308 };
309
310 enum ib_atomic_cap {
311 IB_ATOMIC_NONE,
312 IB_ATOMIC_HCA,
313 IB_ATOMIC_GLOB
314 };
315
316 enum ib_odp_general_cap_bits {
317 IB_ODP_SUPPORT = IB_UVERBS_ODP_SUPPORT,
318 IB_ODP_SUPPORT_IMPLICIT = IB_UVERBS_ODP_SUPPORT_IMPLICIT,
319 };
320
321 enum ib_odp_transport_cap_bits {
322 IB_ODP_SUPPORT_SEND = IB_UVERBS_ODP_SUPPORT_SEND,
323 IB_ODP_SUPPORT_RECV = IB_UVERBS_ODP_SUPPORT_RECV,
324 IB_ODP_SUPPORT_WRITE = IB_UVERBS_ODP_SUPPORT_WRITE,
325 IB_ODP_SUPPORT_READ = IB_UVERBS_ODP_SUPPORT_READ,
326 IB_ODP_SUPPORT_ATOMIC = IB_UVERBS_ODP_SUPPORT_ATOMIC,
327 IB_ODP_SUPPORT_SRQ_RECV = IB_UVERBS_ODP_SUPPORT_SRQ_RECV,
328 IB_ODP_SUPPORT_FLUSH = IB_UVERBS_ODP_SUPPORT_FLUSH,
329 IB_ODP_SUPPORT_ATOMIC_WRITE = IB_UVERBS_ODP_SUPPORT_ATOMIC_WRITE,
330 };
331
332 struct ib_odp_caps {
333 uint64_t general_caps;
334 struct {
335 uint32_t rc_odp_caps;
336 uint32_t uc_odp_caps;
337 uint32_t ud_odp_caps;
338 uint32_t xrc_odp_caps;
339 } per_transport_caps;
340 };
341
342 struct ib_rss_caps {
343 /* Corresponding bit will be set if qp type from
344 * 'enum ib_qp_type' is supported, e.g.
345 * supported_qpts |= 1 << IB_QPT_UD
346 */
347 u32 supported_qpts;
348 u32 max_rwq_indirection_tables;
349 u32 max_rwq_indirection_table_size;
350 };
351
352 enum ib_tm_cap_flags {
353 /* Support tag matching with rendezvous offload for RC transport */
354 IB_TM_CAP_RNDV_RC = 1 << 0,
355 };
356
357 struct ib_tm_caps {
358 /* Max size of RNDV header */
359 u32 max_rndv_hdr_size;
360 /* Max number of entries in tag matching list */
361 u32 max_num_tags;
362 /* From enum ib_tm_cap_flags */
363 u32 flags;
364 /* Max number of outstanding list operations */
365 u32 max_ops;
366 /* Max number of SGE in tag matching entry */
367 u32 max_sge;
368 };
369
370 struct ib_cq_init_attr {
371 unsigned int cqe;
372 u32 comp_vector;
373 u32 flags;
374 };
375
376 enum ib_cq_attr_mask {
377 IB_CQ_MODERATE = 1 << 0,
378 };
379
380 struct ib_cq_caps {
381 u16 max_cq_moderation_count;
382 u16 max_cq_moderation_period;
383 };
384
385 struct ib_dm_mr_attr {
386 u64 length;
387 u64 offset;
388 u32 access_flags;
389 };
390
391 struct ib_dm_alloc_attr {
392 u64 length;
393 u32 alignment;
394 u32 flags;
395 };
396
397 struct ib_device_attr {
398 u64 fw_ver;
399 __be64 sys_image_guid;
400 u64 max_mr_size;
401 u64 page_size_cap;
402 u32 vendor_id;
403 u32 vendor_part_id;
404 u32 hw_ver;
405 int max_qp;
406 int max_qp_wr;
407 u64 device_cap_flags;
408 u64 kernel_cap_flags;
409 int max_send_sge;
410 int max_recv_sge;
411 int max_sge_rd;
412 int max_cq;
413 int max_cqe;
414 int max_mr;
415 int max_pd;
416 int max_qp_rd_atom;
417 int max_ee_rd_atom;
418 int max_res_rd_atom;
419 int max_qp_init_rd_atom;
420 int max_ee_init_rd_atom;
421 enum ib_atomic_cap atomic_cap;
422 enum ib_atomic_cap masked_atomic_cap;
423 int max_ee;
424 int max_rdd;
425 int max_mw;
426 int max_raw_ipv6_qp;
427 int max_raw_ethy_qp;
428 int max_mcast_grp;
429 int max_mcast_qp_attach;
430 int max_total_mcast_qp_attach;
431 int max_ah;
432 int max_srq;
433 int max_srq_wr;
434 int max_srq_sge;
435 unsigned int max_fast_reg_page_list_len;
436 unsigned int max_pi_fast_reg_page_list_len;
437 u16 max_pkeys;
438 u8 local_ca_ack_delay;
439 int sig_prot_cap;
440 int sig_guard_cap;
441 struct ib_odp_caps odp_caps;
442 uint64_t timestamp_mask;
443 uint64_t hca_core_clock; /* in KHZ */
444 struct ib_rss_caps rss_caps;
445 u32 max_wq_type_rq;
446 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
447 struct ib_tm_caps tm_caps;
448 struct ib_cq_caps cq_caps;
449 u64 max_dm_size;
450 /* Max entries for sgl for optimized performance per READ */
451 u32 max_sgl_rd;
452 };
453
454 enum ib_mtu {
455 IB_MTU_256 = 1,
456 IB_MTU_512 = 2,
457 IB_MTU_1024 = 3,
458 IB_MTU_2048 = 4,
459 IB_MTU_4096 = 5
460 };
461
462 enum opa_mtu {
463 OPA_MTU_8192 = 6,
464 OPA_MTU_10240 = 7
465 };
466
ib_mtu_enum_to_int(enum ib_mtu mtu)467 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
468 {
469 switch (mtu) {
470 case IB_MTU_256: return 256;
471 case IB_MTU_512: return 512;
472 case IB_MTU_1024: return 1024;
473 case IB_MTU_2048: return 2048;
474 case IB_MTU_4096: return 4096;
475 default: return -1;
476 }
477 }
478
ib_mtu_int_to_enum(int mtu)479 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
480 {
481 if (mtu >= 4096)
482 return IB_MTU_4096;
483 else if (mtu >= 2048)
484 return IB_MTU_2048;
485 else if (mtu >= 1024)
486 return IB_MTU_1024;
487 else if (mtu >= 512)
488 return IB_MTU_512;
489 else
490 return IB_MTU_256;
491 }
492
opa_mtu_enum_to_int(enum opa_mtu mtu)493 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
494 {
495 switch (mtu) {
496 case OPA_MTU_8192:
497 return 8192;
498 case OPA_MTU_10240:
499 return 10240;
500 default:
501 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
502 }
503 }
504
opa_mtu_int_to_enum(int mtu)505 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
506 {
507 if (mtu >= 10240)
508 return OPA_MTU_10240;
509 else if (mtu >= 8192)
510 return OPA_MTU_8192;
511 else
512 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
513 }
514
515 enum ib_port_state {
516 IB_PORT_NOP = 0,
517 IB_PORT_DOWN = 1,
518 IB_PORT_INIT = 2,
519 IB_PORT_ARMED = 3,
520 IB_PORT_ACTIVE = 4,
521 IB_PORT_ACTIVE_DEFER = 5
522 };
523
524 static inline const char *__attribute_const__
ib_port_state_to_str(enum ib_port_state state)525 ib_port_state_to_str(enum ib_port_state state)
526 {
527 const char * const states[] = {
528 [IB_PORT_NOP] = "NOP",
529 [IB_PORT_DOWN] = "DOWN",
530 [IB_PORT_INIT] = "INIT",
531 [IB_PORT_ARMED] = "ARMED",
532 [IB_PORT_ACTIVE] = "ACTIVE",
533 [IB_PORT_ACTIVE_DEFER] = "ACTIVE_DEFER",
534 };
535
536 if (state < ARRAY_SIZE(states))
537 return states[state];
538 return "UNKNOWN";
539 }
540
541 enum ib_port_phys_state {
542 IB_PORT_PHYS_STATE_SLEEP = 1,
543 IB_PORT_PHYS_STATE_POLLING = 2,
544 IB_PORT_PHYS_STATE_DISABLED = 3,
545 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
546 IB_PORT_PHYS_STATE_LINK_UP = 5,
547 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
548 IB_PORT_PHYS_STATE_PHY_TEST = 7,
549 };
550
551 enum ib_port_width {
552 IB_WIDTH_1X = 1,
553 IB_WIDTH_2X = 16,
554 IB_WIDTH_4X = 2,
555 IB_WIDTH_8X = 4,
556 IB_WIDTH_12X = 8
557 };
558
ib_width_enum_to_int(enum ib_port_width width)559 static inline int ib_width_enum_to_int(enum ib_port_width width)
560 {
561 switch (width) {
562 case IB_WIDTH_1X: return 1;
563 case IB_WIDTH_2X: return 2;
564 case IB_WIDTH_4X: return 4;
565 case IB_WIDTH_8X: return 8;
566 case IB_WIDTH_12X: return 12;
567 default: return -1;
568 }
569 }
570
571 enum ib_port_speed {
572 IB_SPEED_SDR = 1,
573 IB_SPEED_DDR = 2,
574 IB_SPEED_QDR = 4,
575 IB_SPEED_FDR10 = 8,
576 IB_SPEED_FDR = 16,
577 IB_SPEED_EDR = 32,
578 IB_SPEED_HDR = 64,
579 IB_SPEED_NDR = 128,
580 IB_SPEED_XDR = 256,
581 };
582
583 enum ib_stat_flag {
584 IB_STAT_FLAG_OPTIONAL = 1 << 0,
585 };
586
587 /**
588 * struct rdma_stat_desc
589 * @name - The name of the counter
590 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
591 * @priv - Driver private information; Core code should not use
592 */
593 struct rdma_stat_desc {
594 const char *name;
595 unsigned int flags;
596 const void *priv;
597 };
598
599 /**
600 * struct rdma_hw_stats
601 * @lock - Mutex to protect parallel write access to lifespan and values
602 * of counters, which are 64bits and not guaranteed to be written
603 * atomicaly on 32bits systems.
604 * @timestamp - Used by the core code to track when the last update was
605 * @lifespan - Used by the core code to determine how old the counters
606 * should be before being updated again. Stored in jiffies, defaults
607 * to 10 milliseconds, drivers can override the default be specifying
608 * their own value during their allocation routine.
609 * @descs - Array of pointers to static descriptors used for the counters
610 * in directory.
611 * @is_disabled - A bitmap to indicate each counter is currently disabled
612 * or not.
613 * @num_counters - How many hardware counters there are. If name is
614 * shorter than this number, a kernel oops will result. Driver authors
615 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
616 * in their code to prevent this.
617 * @value - Array of u64 counters that are accessed by the sysfs code and
618 * filled in by the drivers get_stats routine
619 */
620 struct rdma_hw_stats {
621 struct mutex lock; /* Protect lifespan and values[] */
622 unsigned long timestamp;
623 unsigned long lifespan;
624 const struct rdma_stat_desc *descs;
625 unsigned long *is_disabled;
626 int num_counters;
627 u64 value[] __counted_by(num_counters);
628 };
629
630 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
631
632 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
633 const struct rdma_stat_desc *descs, int num_counters,
634 unsigned long lifespan);
635
636 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
637
638 /* Define bits for the various functionality this port needs to be supported by
639 * the core.
640 */
641 /* Management 0x00000FFF */
642 #define RDMA_CORE_CAP_IB_MAD 0x00000001
643 #define RDMA_CORE_CAP_IB_SMI 0x00000002
644 #define RDMA_CORE_CAP_IB_CM 0x00000004
645 #define RDMA_CORE_CAP_IW_CM 0x00000008
646 #define RDMA_CORE_CAP_IB_SA 0x00000010
647 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
648
649 /* Address format 0x000FF000 */
650 #define RDMA_CORE_CAP_AF_IB 0x00001000
651 #define RDMA_CORE_CAP_ETH_AH 0x00002000
652 #define RDMA_CORE_CAP_OPA_AH 0x00004000
653 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
654
655 /* Protocol 0xFFF00000 */
656 #define RDMA_CORE_CAP_PROT_IB 0x00100000
657 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
658 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
659 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
660 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
661 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
662
663 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
664 | RDMA_CORE_CAP_PROT_ROCE \
665 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
666
667 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
668 | RDMA_CORE_CAP_IB_MAD \
669 | RDMA_CORE_CAP_IB_SMI \
670 | RDMA_CORE_CAP_IB_CM \
671 | RDMA_CORE_CAP_IB_SA \
672 | RDMA_CORE_CAP_AF_IB)
673 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
674 | RDMA_CORE_CAP_IB_MAD \
675 | RDMA_CORE_CAP_IB_CM \
676 | RDMA_CORE_CAP_AF_IB \
677 | RDMA_CORE_CAP_ETH_AH)
678 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
679 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
680 | RDMA_CORE_CAP_IB_MAD \
681 | RDMA_CORE_CAP_IB_CM \
682 | RDMA_CORE_CAP_AF_IB \
683 | RDMA_CORE_CAP_ETH_AH)
684 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
685 | RDMA_CORE_CAP_IW_CM)
686 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
687 | RDMA_CORE_CAP_OPA_MAD)
688
689 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
690
691 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
692
693 struct ib_port_attr {
694 u64 subnet_prefix;
695 enum ib_port_state state;
696 enum ib_mtu max_mtu;
697 enum ib_mtu active_mtu;
698 u32 phys_mtu;
699 int gid_tbl_len;
700 unsigned int ip_gids:1;
701 /* This is the value from PortInfo CapabilityMask, defined by IBA */
702 u32 port_cap_flags;
703 u32 max_msg_sz;
704 u32 bad_pkey_cntr;
705 u32 qkey_viol_cntr;
706 u16 pkey_tbl_len;
707 u32 sm_lid;
708 u32 lid;
709 u8 lmc;
710 u8 max_vl_num;
711 u8 sm_sl;
712 u8 subnet_timeout;
713 u8 init_type_reply;
714 u8 active_width;
715 u16 active_speed;
716 u8 phys_state;
717 u16 port_cap_flags2;
718 };
719
720 enum ib_device_modify_flags {
721 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
722 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
723 };
724
725 #define IB_DEVICE_NODE_DESC_MAX 64
726
727 struct ib_device_modify {
728 u64 sys_image_guid;
729 char node_desc[IB_DEVICE_NODE_DESC_MAX];
730 };
731
732 enum ib_port_modify_flags {
733 IB_PORT_SHUTDOWN = 1,
734 IB_PORT_INIT_TYPE = (1<<2),
735 IB_PORT_RESET_QKEY_CNTR = (1<<3),
736 IB_PORT_OPA_MASK_CHG = (1<<4)
737 };
738
739 struct ib_port_modify {
740 u32 set_port_cap_mask;
741 u32 clr_port_cap_mask;
742 u8 init_type;
743 };
744
745 enum ib_event_type {
746 IB_EVENT_CQ_ERR,
747 IB_EVENT_QP_FATAL,
748 IB_EVENT_QP_REQ_ERR,
749 IB_EVENT_QP_ACCESS_ERR,
750 IB_EVENT_COMM_EST,
751 IB_EVENT_SQ_DRAINED,
752 IB_EVENT_PATH_MIG,
753 IB_EVENT_PATH_MIG_ERR,
754 IB_EVENT_DEVICE_FATAL,
755 IB_EVENT_PORT_ACTIVE,
756 IB_EVENT_PORT_ERR,
757 IB_EVENT_LID_CHANGE,
758 IB_EVENT_PKEY_CHANGE,
759 IB_EVENT_SM_CHANGE,
760 IB_EVENT_SRQ_ERR,
761 IB_EVENT_SRQ_LIMIT_REACHED,
762 IB_EVENT_QP_LAST_WQE_REACHED,
763 IB_EVENT_CLIENT_REREGISTER,
764 IB_EVENT_GID_CHANGE,
765 IB_EVENT_WQ_FATAL,
766 };
767
768 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
769
770 struct ib_event {
771 struct ib_device *device;
772 union {
773 struct ib_cq *cq;
774 struct ib_qp *qp;
775 struct ib_srq *srq;
776 struct ib_wq *wq;
777 u32 port_num;
778 } element;
779 enum ib_event_type event;
780 };
781
782 struct ib_event_handler {
783 struct ib_device *device;
784 void (*handler)(struct ib_event_handler *, struct ib_event *);
785 struct list_head list;
786 };
787
788 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
789 do { \
790 (_ptr)->device = _device; \
791 (_ptr)->handler = _handler; \
792 INIT_LIST_HEAD(&(_ptr)->list); \
793 } while (0)
794
795 struct ib_global_route {
796 const struct ib_gid_attr *sgid_attr;
797 union ib_gid dgid;
798 u32 flow_label;
799 u8 sgid_index;
800 u8 hop_limit;
801 u8 traffic_class;
802 };
803
804 struct ib_grh {
805 __be32 version_tclass_flow;
806 __be16 paylen;
807 u8 next_hdr;
808 u8 hop_limit;
809 union ib_gid sgid;
810 union ib_gid dgid;
811 };
812
813 union rdma_network_hdr {
814 struct ib_grh ibgrh;
815 struct {
816 /* The IB spec states that if it's IPv4, the header
817 * is located in the last 20 bytes of the header.
818 */
819 u8 reserved[20];
820 struct iphdr roce4grh;
821 };
822 };
823
824 #define IB_QPN_MASK 0xFFFFFF
825
826 enum {
827 IB_MULTICAST_QPN = 0xffffff
828 };
829
830 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
831 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
832
833 enum ib_ah_flags {
834 IB_AH_GRH = 1
835 };
836
837 enum ib_rate {
838 IB_RATE_PORT_CURRENT = 0,
839 IB_RATE_2_5_GBPS = 2,
840 IB_RATE_5_GBPS = 5,
841 IB_RATE_10_GBPS = 3,
842 IB_RATE_20_GBPS = 6,
843 IB_RATE_30_GBPS = 4,
844 IB_RATE_40_GBPS = 7,
845 IB_RATE_60_GBPS = 8,
846 IB_RATE_80_GBPS = 9,
847 IB_RATE_120_GBPS = 10,
848 IB_RATE_14_GBPS = 11,
849 IB_RATE_56_GBPS = 12,
850 IB_RATE_112_GBPS = 13,
851 IB_RATE_168_GBPS = 14,
852 IB_RATE_25_GBPS = 15,
853 IB_RATE_100_GBPS = 16,
854 IB_RATE_200_GBPS = 17,
855 IB_RATE_300_GBPS = 18,
856 IB_RATE_28_GBPS = 19,
857 IB_RATE_50_GBPS = 20,
858 IB_RATE_400_GBPS = 21,
859 IB_RATE_600_GBPS = 22,
860 IB_RATE_800_GBPS = 23,
861 };
862
863 /**
864 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
865 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
866 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
867 * @rate: rate to convert.
868 */
869 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
870
871 /**
872 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
873 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
874 * @rate: rate to convert.
875 */
876 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
877
878
879 /**
880 * enum ib_mr_type - memory region type
881 * @IB_MR_TYPE_MEM_REG: memory region that is used for
882 * normal registration
883 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
884 * register any arbitrary sg lists (without
885 * the normal mr constraints - see
886 * ib_map_mr_sg)
887 * @IB_MR_TYPE_DM: memory region that is used for device
888 * memory registration
889 * @IB_MR_TYPE_USER: memory region that is used for the user-space
890 * application
891 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
892 * without address translations (VA=PA)
893 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
894 * data integrity operations
895 */
896 enum ib_mr_type {
897 IB_MR_TYPE_MEM_REG,
898 IB_MR_TYPE_SG_GAPS,
899 IB_MR_TYPE_DM,
900 IB_MR_TYPE_USER,
901 IB_MR_TYPE_DMA,
902 IB_MR_TYPE_INTEGRITY,
903 };
904
905 enum ib_mr_status_check {
906 IB_MR_CHECK_SIG_STATUS = 1,
907 };
908
909 /**
910 * struct ib_mr_status - Memory region status container
911 *
912 * @fail_status: Bitmask of MR checks status. For each
913 * failed check a corresponding status bit is set.
914 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
915 * failure.
916 */
917 struct ib_mr_status {
918 u32 fail_status;
919 struct ib_sig_err sig_err;
920 };
921
922 /**
923 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
924 * enum.
925 * @mult: multiple to convert.
926 */
927 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
928
929 struct rdma_ah_init_attr {
930 struct rdma_ah_attr *ah_attr;
931 u32 flags;
932 struct net_device *xmit_slave;
933 };
934
935 enum rdma_ah_attr_type {
936 RDMA_AH_ATTR_TYPE_UNDEFINED,
937 RDMA_AH_ATTR_TYPE_IB,
938 RDMA_AH_ATTR_TYPE_ROCE,
939 RDMA_AH_ATTR_TYPE_OPA,
940 };
941
942 struct ib_ah_attr {
943 u16 dlid;
944 u8 src_path_bits;
945 };
946
947 struct roce_ah_attr {
948 u8 dmac[ETH_ALEN];
949 };
950
951 struct opa_ah_attr {
952 u32 dlid;
953 u8 src_path_bits;
954 bool make_grd;
955 };
956
957 struct rdma_ah_attr {
958 struct ib_global_route grh;
959 u8 sl;
960 u8 static_rate;
961 u32 port_num;
962 u8 ah_flags;
963 enum rdma_ah_attr_type type;
964 union {
965 struct ib_ah_attr ib;
966 struct roce_ah_attr roce;
967 struct opa_ah_attr opa;
968 };
969 };
970
971 enum ib_wc_status {
972 IB_WC_SUCCESS,
973 IB_WC_LOC_LEN_ERR,
974 IB_WC_LOC_QP_OP_ERR,
975 IB_WC_LOC_EEC_OP_ERR,
976 IB_WC_LOC_PROT_ERR,
977 IB_WC_WR_FLUSH_ERR,
978 IB_WC_MW_BIND_ERR,
979 IB_WC_BAD_RESP_ERR,
980 IB_WC_LOC_ACCESS_ERR,
981 IB_WC_REM_INV_REQ_ERR,
982 IB_WC_REM_ACCESS_ERR,
983 IB_WC_REM_OP_ERR,
984 IB_WC_RETRY_EXC_ERR,
985 IB_WC_RNR_RETRY_EXC_ERR,
986 IB_WC_LOC_RDD_VIOL_ERR,
987 IB_WC_REM_INV_RD_REQ_ERR,
988 IB_WC_REM_ABORT_ERR,
989 IB_WC_INV_EECN_ERR,
990 IB_WC_INV_EEC_STATE_ERR,
991 IB_WC_FATAL_ERR,
992 IB_WC_RESP_TIMEOUT_ERR,
993 IB_WC_GENERAL_ERR
994 };
995
996 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
997
998 enum ib_wc_opcode {
999 IB_WC_SEND = IB_UVERBS_WC_SEND,
1000 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
1001 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
1002 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
1003 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
1004 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
1005 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
1006 IB_WC_LSO = IB_UVERBS_WC_TSO,
1007 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
1008 IB_WC_REG_MR,
1009 IB_WC_MASKED_COMP_SWAP,
1010 IB_WC_MASKED_FETCH_ADD,
1011 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
1012 /*
1013 * Set value of IB_WC_RECV so consumers can test if a completion is a
1014 * receive by testing (opcode & IB_WC_RECV).
1015 */
1016 IB_WC_RECV = 1 << 7,
1017 IB_WC_RECV_RDMA_WITH_IMM
1018 };
1019
1020 enum ib_wc_flags {
1021 IB_WC_GRH = 1,
1022 IB_WC_WITH_IMM = (1<<1),
1023 IB_WC_WITH_INVALIDATE = (1<<2),
1024 IB_WC_IP_CSUM_OK = (1<<3),
1025 IB_WC_WITH_SMAC = (1<<4),
1026 IB_WC_WITH_VLAN = (1<<5),
1027 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1028 };
1029
1030 struct ib_wc {
1031 union {
1032 u64 wr_id;
1033 struct ib_cqe *wr_cqe;
1034 };
1035 enum ib_wc_status status;
1036 enum ib_wc_opcode opcode;
1037 u32 vendor_err;
1038 u32 byte_len;
1039 struct ib_qp *qp;
1040 union {
1041 __be32 imm_data;
1042 u32 invalidate_rkey;
1043 } ex;
1044 u32 src_qp;
1045 u32 slid;
1046 int wc_flags;
1047 u16 pkey_index;
1048 u8 sl;
1049 u8 dlid_path_bits;
1050 u32 port_num; /* valid only for DR SMPs on switches */
1051 u8 smac[ETH_ALEN];
1052 u16 vlan_id;
1053 u8 network_hdr_type;
1054 };
1055
1056 enum ib_cq_notify_flags {
1057 IB_CQ_SOLICITED = 1 << 0,
1058 IB_CQ_NEXT_COMP = 1 << 1,
1059 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1060 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1061 };
1062
1063 enum ib_srq_type {
1064 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1065 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1066 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1067 };
1068
ib_srq_has_cq(enum ib_srq_type srq_type)1069 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1070 {
1071 return srq_type == IB_SRQT_XRC ||
1072 srq_type == IB_SRQT_TM;
1073 }
1074
1075 enum ib_srq_attr_mask {
1076 IB_SRQ_MAX_WR = 1 << 0,
1077 IB_SRQ_LIMIT = 1 << 1,
1078 };
1079
1080 struct ib_srq_attr {
1081 u32 max_wr;
1082 u32 max_sge;
1083 u32 srq_limit;
1084 };
1085
1086 struct ib_srq_init_attr {
1087 void (*event_handler)(struct ib_event *, void *);
1088 void *srq_context;
1089 struct ib_srq_attr attr;
1090 enum ib_srq_type srq_type;
1091
1092 struct {
1093 struct ib_cq *cq;
1094 union {
1095 struct {
1096 struct ib_xrcd *xrcd;
1097 } xrc;
1098
1099 struct {
1100 u32 max_num_tags;
1101 } tag_matching;
1102 };
1103 } ext;
1104 };
1105
1106 struct ib_qp_cap {
1107 u32 max_send_wr;
1108 u32 max_recv_wr;
1109 u32 max_send_sge;
1110 u32 max_recv_sge;
1111 u32 max_inline_data;
1112
1113 /*
1114 * Maximum number of rdma_rw_ctx structures in flight at a time.
1115 * ib_create_qp() will calculate the right amount of needed WRs
1116 * and MRs based on this.
1117 */
1118 u32 max_rdma_ctxs;
1119 };
1120
1121 enum ib_sig_type {
1122 IB_SIGNAL_ALL_WR,
1123 IB_SIGNAL_REQ_WR
1124 };
1125
1126 enum ib_qp_type {
1127 /*
1128 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1129 * here (and in that order) since the MAD layer uses them as
1130 * indices into a 2-entry table.
1131 */
1132 IB_QPT_SMI,
1133 IB_QPT_GSI,
1134
1135 IB_QPT_RC = IB_UVERBS_QPT_RC,
1136 IB_QPT_UC = IB_UVERBS_QPT_UC,
1137 IB_QPT_UD = IB_UVERBS_QPT_UD,
1138 IB_QPT_RAW_IPV6,
1139 IB_QPT_RAW_ETHERTYPE,
1140 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1141 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1142 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1143 IB_QPT_MAX,
1144 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1145 /* Reserve a range for qp types internal to the low level driver.
1146 * These qp types will not be visible at the IB core layer, so the
1147 * IB_QPT_MAX usages should not be affected in the core layer
1148 */
1149 IB_QPT_RESERVED1 = 0x1000,
1150 IB_QPT_RESERVED2,
1151 IB_QPT_RESERVED3,
1152 IB_QPT_RESERVED4,
1153 IB_QPT_RESERVED5,
1154 IB_QPT_RESERVED6,
1155 IB_QPT_RESERVED7,
1156 IB_QPT_RESERVED8,
1157 IB_QPT_RESERVED9,
1158 IB_QPT_RESERVED10,
1159 };
1160
1161 enum ib_qp_create_flags {
1162 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1163 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1164 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1165 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1166 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1167 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1168 IB_QP_CREATE_NETIF_QP = 1 << 5,
1169 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1170 IB_QP_CREATE_NETDEV_USE = 1 << 7,
1171 IB_QP_CREATE_SCATTER_FCS =
1172 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1173 IB_QP_CREATE_CVLAN_STRIPPING =
1174 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1175 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1176 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1177 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1178 /* reserve bits 26-31 for low level drivers' internal use */
1179 IB_QP_CREATE_RESERVED_START = 1 << 26,
1180 IB_QP_CREATE_RESERVED_END = 1 << 31,
1181 };
1182
1183 /*
1184 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1185 * callback to destroy the passed in QP.
1186 */
1187
1188 struct ib_qp_init_attr {
1189 /* This callback occurs in workqueue context */
1190 void (*event_handler)(struct ib_event *, void *);
1191
1192 void *qp_context;
1193 struct ib_cq *send_cq;
1194 struct ib_cq *recv_cq;
1195 struct ib_srq *srq;
1196 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1197 struct ib_qp_cap cap;
1198 enum ib_sig_type sq_sig_type;
1199 enum ib_qp_type qp_type;
1200 u32 create_flags;
1201
1202 /*
1203 * Only needed for special QP types, or when using the RW API.
1204 */
1205 u32 port_num;
1206 struct ib_rwq_ind_table *rwq_ind_tbl;
1207 u32 source_qpn;
1208 };
1209
1210 struct ib_qp_open_attr {
1211 void (*event_handler)(struct ib_event *, void *);
1212 void *qp_context;
1213 u32 qp_num;
1214 enum ib_qp_type qp_type;
1215 };
1216
1217 enum ib_rnr_timeout {
1218 IB_RNR_TIMER_655_36 = 0,
1219 IB_RNR_TIMER_000_01 = 1,
1220 IB_RNR_TIMER_000_02 = 2,
1221 IB_RNR_TIMER_000_03 = 3,
1222 IB_RNR_TIMER_000_04 = 4,
1223 IB_RNR_TIMER_000_06 = 5,
1224 IB_RNR_TIMER_000_08 = 6,
1225 IB_RNR_TIMER_000_12 = 7,
1226 IB_RNR_TIMER_000_16 = 8,
1227 IB_RNR_TIMER_000_24 = 9,
1228 IB_RNR_TIMER_000_32 = 10,
1229 IB_RNR_TIMER_000_48 = 11,
1230 IB_RNR_TIMER_000_64 = 12,
1231 IB_RNR_TIMER_000_96 = 13,
1232 IB_RNR_TIMER_001_28 = 14,
1233 IB_RNR_TIMER_001_92 = 15,
1234 IB_RNR_TIMER_002_56 = 16,
1235 IB_RNR_TIMER_003_84 = 17,
1236 IB_RNR_TIMER_005_12 = 18,
1237 IB_RNR_TIMER_007_68 = 19,
1238 IB_RNR_TIMER_010_24 = 20,
1239 IB_RNR_TIMER_015_36 = 21,
1240 IB_RNR_TIMER_020_48 = 22,
1241 IB_RNR_TIMER_030_72 = 23,
1242 IB_RNR_TIMER_040_96 = 24,
1243 IB_RNR_TIMER_061_44 = 25,
1244 IB_RNR_TIMER_081_92 = 26,
1245 IB_RNR_TIMER_122_88 = 27,
1246 IB_RNR_TIMER_163_84 = 28,
1247 IB_RNR_TIMER_245_76 = 29,
1248 IB_RNR_TIMER_327_68 = 30,
1249 IB_RNR_TIMER_491_52 = 31
1250 };
1251
1252 enum ib_qp_attr_mask {
1253 IB_QP_STATE = 1,
1254 IB_QP_CUR_STATE = (1<<1),
1255 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1256 IB_QP_ACCESS_FLAGS = (1<<3),
1257 IB_QP_PKEY_INDEX = (1<<4),
1258 IB_QP_PORT = (1<<5),
1259 IB_QP_QKEY = (1<<6),
1260 IB_QP_AV = (1<<7),
1261 IB_QP_PATH_MTU = (1<<8),
1262 IB_QP_TIMEOUT = (1<<9),
1263 IB_QP_RETRY_CNT = (1<<10),
1264 IB_QP_RNR_RETRY = (1<<11),
1265 IB_QP_RQ_PSN = (1<<12),
1266 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1267 IB_QP_ALT_PATH = (1<<14),
1268 IB_QP_MIN_RNR_TIMER = (1<<15),
1269 IB_QP_SQ_PSN = (1<<16),
1270 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1271 IB_QP_PATH_MIG_STATE = (1<<18),
1272 IB_QP_CAP = (1<<19),
1273 IB_QP_DEST_QPN = (1<<20),
1274 IB_QP_RESERVED1 = (1<<21),
1275 IB_QP_RESERVED2 = (1<<22),
1276 IB_QP_RESERVED3 = (1<<23),
1277 IB_QP_RESERVED4 = (1<<24),
1278 IB_QP_RATE_LIMIT = (1<<25),
1279
1280 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1281 };
1282
1283 enum ib_qp_state {
1284 IB_QPS_RESET,
1285 IB_QPS_INIT,
1286 IB_QPS_RTR,
1287 IB_QPS_RTS,
1288 IB_QPS_SQD,
1289 IB_QPS_SQE,
1290 IB_QPS_ERR
1291 };
1292
1293 enum ib_mig_state {
1294 IB_MIG_MIGRATED,
1295 IB_MIG_REARM,
1296 IB_MIG_ARMED
1297 };
1298
1299 enum ib_mw_type {
1300 IB_MW_TYPE_1 = 1,
1301 IB_MW_TYPE_2 = 2
1302 };
1303
1304 struct ib_qp_attr {
1305 enum ib_qp_state qp_state;
1306 enum ib_qp_state cur_qp_state;
1307 enum ib_mtu path_mtu;
1308 enum ib_mig_state path_mig_state;
1309 u32 qkey;
1310 u32 rq_psn;
1311 u32 sq_psn;
1312 u32 dest_qp_num;
1313 int qp_access_flags;
1314 struct ib_qp_cap cap;
1315 struct rdma_ah_attr ah_attr;
1316 struct rdma_ah_attr alt_ah_attr;
1317 u16 pkey_index;
1318 u16 alt_pkey_index;
1319 u8 en_sqd_async_notify;
1320 u8 sq_draining;
1321 u8 max_rd_atomic;
1322 u8 max_dest_rd_atomic;
1323 u8 min_rnr_timer;
1324 u32 port_num;
1325 u8 timeout;
1326 u8 retry_cnt;
1327 u8 rnr_retry;
1328 u32 alt_port_num;
1329 u8 alt_timeout;
1330 u32 rate_limit;
1331 struct net_device *xmit_slave;
1332 };
1333
1334 enum ib_wr_opcode {
1335 /* These are shared with userspace */
1336 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1337 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1338 IB_WR_SEND = IB_UVERBS_WR_SEND,
1339 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1340 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1341 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1342 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1343 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1344 IB_WR_LSO = IB_UVERBS_WR_TSO,
1345 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1346 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1347 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1348 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1349 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1350 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1351 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1352 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1353 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1354
1355 /* These are kernel only and can not be issued by userspace */
1356 IB_WR_REG_MR = 0x20,
1357 IB_WR_REG_MR_INTEGRITY,
1358
1359 /* reserve values for low level drivers' internal use.
1360 * These values will not be used at all in the ib core layer.
1361 */
1362 IB_WR_RESERVED1 = 0xf0,
1363 IB_WR_RESERVED2,
1364 IB_WR_RESERVED3,
1365 IB_WR_RESERVED4,
1366 IB_WR_RESERVED5,
1367 IB_WR_RESERVED6,
1368 IB_WR_RESERVED7,
1369 IB_WR_RESERVED8,
1370 IB_WR_RESERVED9,
1371 IB_WR_RESERVED10,
1372 };
1373
1374 enum ib_send_flags {
1375 IB_SEND_FENCE = 1,
1376 IB_SEND_SIGNALED = (1<<1),
1377 IB_SEND_SOLICITED = (1<<2),
1378 IB_SEND_INLINE = (1<<3),
1379 IB_SEND_IP_CSUM = (1<<4),
1380
1381 /* reserve bits 26-31 for low level drivers' internal use */
1382 IB_SEND_RESERVED_START = (1 << 26),
1383 IB_SEND_RESERVED_END = (1 << 31),
1384 };
1385
1386 struct ib_sge {
1387 u64 addr;
1388 u32 length;
1389 u32 lkey;
1390 };
1391
1392 struct ib_cqe {
1393 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1394 };
1395
1396 struct ib_send_wr {
1397 struct ib_send_wr *next;
1398 union {
1399 u64 wr_id;
1400 struct ib_cqe *wr_cqe;
1401 };
1402 struct ib_sge *sg_list;
1403 int num_sge;
1404 enum ib_wr_opcode opcode;
1405 int send_flags;
1406 union {
1407 __be32 imm_data;
1408 u32 invalidate_rkey;
1409 } ex;
1410 };
1411
1412 struct ib_rdma_wr {
1413 struct ib_send_wr wr;
1414 u64 remote_addr;
1415 u32 rkey;
1416 };
1417
rdma_wr(const struct ib_send_wr * wr)1418 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1419 {
1420 return container_of(wr, struct ib_rdma_wr, wr);
1421 }
1422
1423 struct ib_atomic_wr {
1424 struct ib_send_wr wr;
1425 u64 remote_addr;
1426 u64 compare_add;
1427 u64 swap;
1428 u64 compare_add_mask;
1429 u64 swap_mask;
1430 u32 rkey;
1431 };
1432
atomic_wr(const struct ib_send_wr * wr)1433 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1434 {
1435 return container_of(wr, struct ib_atomic_wr, wr);
1436 }
1437
1438 struct ib_ud_wr {
1439 struct ib_send_wr wr;
1440 struct ib_ah *ah;
1441 void *header;
1442 int hlen;
1443 int mss;
1444 u32 remote_qpn;
1445 u32 remote_qkey;
1446 u16 pkey_index; /* valid for GSI only */
1447 u32 port_num; /* valid for DR SMPs on switch only */
1448 };
1449
ud_wr(const struct ib_send_wr * wr)1450 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1451 {
1452 return container_of(wr, struct ib_ud_wr, wr);
1453 }
1454
1455 struct ib_reg_wr {
1456 struct ib_send_wr wr;
1457 struct ib_mr *mr;
1458 u32 key;
1459 int access;
1460 };
1461
reg_wr(const struct ib_send_wr * wr)1462 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1463 {
1464 return container_of(wr, struct ib_reg_wr, wr);
1465 }
1466
1467 struct ib_recv_wr {
1468 struct ib_recv_wr *next;
1469 union {
1470 u64 wr_id;
1471 struct ib_cqe *wr_cqe;
1472 };
1473 struct ib_sge *sg_list;
1474 int num_sge;
1475 };
1476
1477 enum ib_access_flags {
1478 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1479 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1480 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1481 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1482 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1483 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1484 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1485 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1486 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1487 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1488 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1489
1490 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1491 IB_ACCESS_SUPPORTED =
1492 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1493 };
1494
1495 /*
1496 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1497 * are hidden here instead of a uapi header!
1498 */
1499 enum ib_mr_rereg_flags {
1500 IB_MR_REREG_TRANS = 1,
1501 IB_MR_REREG_PD = (1<<1),
1502 IB_MR_REREG_ACCESS = (1<<2),
1503 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1504 };
1505
1506 struct ib_umem;
1507
1508 enum rdma_remove_reason {
1509 /*
1510 * Userspace requested uobject deletion or initial try
1511 * to remove uobject via cleanup. Call could fail
1512 */
1513 RDMA_REMOVE_DESTROY,
1514 /* Context deletion. This call should delete the actual object itself */
1515 RDMA_REMOVE_CLOSE,
1516 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1517 RDMA_REMOVE_DRIVER_REMOVE,
1518 /* uobj is being cleaned-up before being committed */
1519 RDMA_REMOVE_ABORT,
1520 /* The driver failed to destroy the uobject and is being disconnected */
1521 RDMA_REMOVE_DRIVER_FAILURE,
1522 };
1523
1524 struct ib_rdmacg_object {
1525 #ifdef CONFIG_CGROUP_RDMA
1526 struct rdma_cgroup *cg; /* owner rdma cgroup */
1527 #endif
1528 };
1529
1530 struct ib_ucontext {
1531 struct ib_device *device;
1532 struct ib_uverbs_file *ufile;
1533
1534 struct ib_rdmacg_object cg_obj;
1535 u64 enabled_caps;
1536 /*
1537 * Implementation details of the RDMA core, don't use in drivers:
1538 */
1539 struct rdma_restrack_entry res;
1540 struct xarray mmap_xa;
1541 };
1542
1543 struct ib_uobject {
1544 u64 user_handle; /* handle given to us by userspace */
1545 /* ufile & ucontext owning this object */
1546 struct ib_uverbs_file *ufile;
1547 /* FIXME, save memory: ufile->context == context */
1548 struct ib_ucontext *context; /* associated user context */
1549 void *object; /* containing object */
1550 struct list_head list; /* link to context's list */
1551 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1552 int id; /* index into kernel idr */
1553 struct kref ref;
1554 atomic_t usecnt; /* protects exclusive access */
1555 struct rcu_head rcu; /* kfree_rcu() overhead */
1556
1557 const struct uverbs_api_object *uapi_object;
1558 };
1559
1560 struct ib_udata {
1561 const void __user *inbuf;
1562 void __user *outbuf;
1563 size_t inlen;
1564 size_t outlen;
1565 };
1566
1567 struct ib_pd {
1568 u32 local_dma_lkey;
1569 u32 flags;
1570 struct ib_device *device;
1571 struct ib_uobject *uobject;
1572 atomic_t usecnt; /* count all resources */
1573
1574 u32 unsafe_global_rkey;
1575
1576 /*
1577 * Implementation details of the RDMA core, don't use in drivers:
1578 */
1579 struct ib_mr *__internal_mr;
1580 struct rdma_restrack_entry res;
1581 };
1582
1583 struct ib_xrcd {
1584 struct ib_device *device;
1585 atomic_t usecnt; /* count all exposed resources */
1586 struct inode *inode;
1587 struct rw_semaphore tgt_qps_rwsem;
1588 struct xarray tgt_qps;
1589 };
1590
1591 struct ib_ah {
1592 struct ib_device *device;
1593 struct ib_pd *pd;
1594 struct ib_uobject *uobject;
1595 const struct ib_gid_attr *sgid_attr;
1596 enum rdma_ah_attr_type type;
1597 };
1598
1599 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1600
1601 enum ib_poll_context {
1602 IB_POLL_SOFTIRQ, /* poll from softirq context */
1603 IB_POLL_WORKQUEUE, /* poll from workqueue */
1604 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1605 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1606
1607 IB_POLL_DIRECT, /* caller context, no hw completions */
1608 };
1609
1610 struct ib_cq {
1611 struct ib_device *device;
1612 struct ib_ucq_object *uobject;
1613 ib_comp_handler comp_handler;
1614 void (*event_handler)(struct ib_event *, void *);
1615 void *cq_context;
1616 int cqe;
1617 unsigned int cqe_used;
1618 atomic_t usecnt; /* count number of work queues */
1619 enum ib_poll_context poll_ctx;
1620 struct ib_wc *wc;
1621 struct list_head pool_entry;
1622 union {
1623 struct irq_poll iop;
1624 struct work_struct work;
1625 };
1626 struct workqueue_struct *comp_wq;
1627 struct dim *dim;
1628
1629 /* updated only by trace points */
1630 ktime_t timestamp;
1631 u8 interrupt:1;
1632 u8 shared:1;
1633 unsigned int comp_vector;
1634
1635 /*
1636 * Implementation details of the RDMA core, don't use in drivers:
1637 */
1638 struct rdma_restrack_entry res;
1639 };
1640
1641 struct ib_srq {
1642 struct ib_device *device;
1643 struct ib_pd *pd;
1644 struct ib_usrq_object *uobject;
1645 void (*event_handler)(struct ib_event *, void *);
1646 void *srq_context;
1647 enum ib_srq_type srq_type;
1648 atomic_t usecnt;
1649
1650 struct {
1651 struct ib_cq *cq;
1652 union {
1653 struct {
1654 struct ib_xrcd *xrcd;
1655 u32 srq_num;
1656 } xrc;
1657 };
1658 } ext;
1659
1660 /*
1661 * Implementation details of the RDMA core, don't use in drivers:
1662 */
1663 struct rdma_restrack_entry res;
1664 };
1665
1666 enum ib_raw_packet_caps {
1667 /*
1668 * Strip cvlan from incoming packet and report it in the matching work
1669 * completion is supported.
1670 */
1671 IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1672 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1673 /*
1674 * Scatter FCS field of an incoming packet to host memory is supported.
1675 */
1676 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1677 /* Checksum offloads are supported (for both send and receive). */
1678 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1679 /*
1680 * When a packet is received for an RQ with no receive WQEs, the
1681 * packet processing is delayed.
1682 */
1683 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1684 };
1685
1686 enum ib_wq_type {
1687 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1688 };
1689
1690 enum ib_wq_state {
1691 IB_WQS_RESET,
1692 IB_WQS_RDY,
1693 IB_WQS_ERR
1694 };
1695
1696 struct ib_wq {
1697 struct ib_device *device;
1698 struct ib_uwq_object *uobject;
1699 void *wq_context;
1700 void (*event_handler)(struct ib_event *, void *);
1701 struct ib_pd *pd;
1702 struct ib_cq *cq;
1703 u32 wq_num;
1704 enum ib_wq_state state;
1705 enum ib_wq_type wq_type;
1706 atomic_t usecnt;
1707 };
1708
1709 enum ib_wq_flags {
1710 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1711 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1712 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1713 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1714 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1715 };
1716
1717 struct ib_wq_init_attr {
1718 void *wq_context;
1719 enum ib_wq_type wq_type;
1720 u32 max_wr;
1721 u32 max_sge;
1722 struct ib_cq *cq;
1723 void (*event_handler)(struct ib_event *, void *);
1724 u32 create_flags; /* Use enum ib_wq_flags */
1725 };
1726
1727 enum ib_wq_attr_mask {
1728 IB_WQ_STATE = 1 << 0,
1729 IB_WQ_CUR_STATE = 1 << 1,
1730 IB_WQ_FLAGS = 1 << 2,
1731 };
1732
1733 struct ib_wq_attr {
1734 enum ib_wq_state wq_state;
1735 enum ib_wq_state curr_wq_state;
1736 u32 flags; /* Use enum ib_wq_flags */
1737 u32 flags_mask; /* Use enum ib_wq_flags */
1738 };
1739
1740 struct ib_rwq_ind_table {
1741 struct ib_device *device;
1742 struct ib_uobject *uobject;
1743 atomic_t usecnt;
1744 u32 ind_tbl_num;
1745 u32 log_ind_tbl_size;
1746 struct ib_wq **ind_tbl;
1747 };
1748
1749 struct ib_rwq_ind_table_init_attr {
1750 u32 log_ind_tbl_size;
1751 /* Each entry is a pointer to Receive Work Queue */
1752 struct ib_wq **ind_tbl;
1753 };
1754
1755 enum port_pkey_state {
1756 IB_PORT_PKEY_NOT_VALID = 0,
1757 IB_PORT_PKEY_VALID = 1,
1758 IB_PORT_PKEY_LISTED = 2,
1759 };
1760
1761 struct ib_qp_security;
1762
1763 struct ib_port_pkey {
1764 enum port_pkey_state state;
1765 u16 pkey_index;
1766 u32 port_num;
1767 struct list_head qp_list;
1768 struct list_head to_error_list;
1769 struct ib_qp_security *sec;
1770 };
1771
1772 struct ib_ports_pkeys {
1773 struct ib_port_pkey main;
1774 struct ib_port_pkey alt;
1775 };
1776
1777 struct ib_qp_security {
1778 struct ib_qp *qp;
1779 struct ib_device *dev;
1780 /* Hold this mutex when changing port and pkey settings. */
1781 struct mutex mutex;
1782 struct ib_ports_pkeys *ports_pkeys;
1783 /* A list of all open shared QP handles. Required to enforce security
1784 * properly for all users of a shared QP.
1785 */
1786 struct list_head shared_qp_list;
1787 void *security;
1788 bool destroying;
1789 atomic_t error_list_count;
1790 struct completion error_complete;
1791 int error_comps_pending;
1792 };
1793
1794 /*
1795 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1796 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1797 */
1798 struct ib_qp {
1799 struct ib_device *device;
1800 struct ib_pd *pd;
1801 struct ib_cq *send_cq;
1802 struct ib_cq *recv_cq;
1803 spinlock_t mr_lock;
1804 int mrs_used;
1805 struct list_head rdma_mrs;
1806 struct list_head sig_mrs;
1807 struct ib_srq *srq;
1808 struct completion srq_completion;
1809 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1810 struct list_head xrcd_list;
1811
1812 /* count times opened, mcast attaches, flow attaches */
1813 atomic_t usecnt;
1814 struct list_head open_list;
1815 struct ib_qp *real_qp;
1816 struct ib_uqp_object *uobject;
1817 void (*event_handler)(struct ib_event *, void *);
1818 void (*registered_event_handler)(struct ib_event *, void *);
1819 void *qp_context;
1820 /* sgid_attrs associated with the AV's */
1821 const struct ib_gid_attr *av_sgid_attr;
1822 const struct ib_gid_attr *alt_path_sgid_attr;
1823 u32 qp_num;
1824 u32 max_write_sge;
1825 u32 max_read_sge;
1826 enum ib_qp_type qp_type;
1827 struct ib_rwq_ind_table *rwq_ind_tbl;
1828 struct ib_qp_security *qp_sec;
1829 u32 port;
1830
1831 bool integrity_en;
1832 /*
1833 * Implementation details of the RDMA core, don't use in drivers:
1834 */
1835 struct rdma_restrack_entry res;
1836
1837 /* The counter the qp is bind to */
1838 struct rdma_counter *counter;
1839 };
1840
1841 struct ib_dm {
1842 struct ib_device *device;
1843 u32 length;
1844 u32 flags;
1845 struct ib_uobject *uobject;
1846 atomic_t usecnt;
1847 };
1848
1849 struct ib_mr {
1850 struct ib_device *device;
1851 struct ib_pd *pd;
1852 u32 lkey;
1853 u32 rkey;
1854 u64 iova;
1855 u64 length;
1856 unsigned int page_size;
1857 enum ib_mr_type type;
1858 bool need_inval;
1859 union {
1860 struct ib_uobject *uobject; /* user */
1861 struct list_head qp_entry; /* FR */
1862 };
1863
1864 struct ib_dm *dm;
1865 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1866 /*
1867 * Implementation details of the RDMA core, don't use in drivers:
1868 */
1869 struct rdma_restrack_entry res;
1870 };
1871
1872 struct ib_mw {
1873 struct ib_device *device;
1874 struct ib_pd *pd;
1875 struct ib_uobject *uobject;
1876 u32 rkey;
1877 enum ib_mw_type type;
1878 };
1879
1880 /* Supported steering options */
1881 enum ib_flow_attr_type {
1882 /* steering according to rule specifications */
1883 IB_FLOW_ATTR_NORMAL = 0x0,
1884 /* default unicast and multicast rule -
1885 * receive all Eth traffic which isn't steered to any QP
1886 */
1887 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1888 /* default multicast rule -
1889 * receive all Eth multicast traffic which isn't steered to any QP
1890 */
1891 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1892 /* sniffer rule - receive all port traffic */
1893 IB_FLOW_ATTR_SNIFFER = 0x3
1894 };
1895
1896 /* Supported steering header types */
1897 enum ib_flow_spec_type {
1898 /* L2 headers*/
1899 IB_FLOW_SPEC_ETH = 0x20,
1900 IB_FLOW_SPEC_IB = 0x22,
1901 /* L3 header*/
1902 IB_FLOW_SPEC_IPV4 = 0x30,
1903 IB_FLOW_SPEC_IPV6 = 0x31,
1904 IB_FLOW_SPEC_ESP = 0x34,
1905 /* L4 headers*/
1906 IB_FLOW_SPEC_TCP = 0x40,
1907 IB_FLOW_SPEC_UDP = 0x41,
1908 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1909 IB_FLOW_SPEC_GRE = 0x51,
1910 IB_FLOW_SPEC_MPLS = 0x60,
1911 IB_FLOW_SPEC_INNER = 0x100,
1912 /* Actions */
1913 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1914 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1915 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1916 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1917 };
1918 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1919 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1920
1921 enum ib_flow_flags {
1922 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1923 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1924 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1925 };
1926
1927 struct ib_flow_eth_filter {
1928 u8 dst_mac[6];
1929 u8 src_mac[6];
1930 __be16 ether_type;
1931 __be16 vlan_tag;
1932 };
1933
1934 struct ib_flow_spec_eth {
1935 u32 type;
1936 u16 size;
1937 struct ib_flow_eth_filter val;
1938 struct ib_flow_eth_filter mask;
1939 };
1940
1941 struct ib_flow_ib_filter {
1942 __be16 dlid;
1943 __u8 sl;
1944 };
1945
1946 struct ib_flow_spec_ib {
1947 u32 type;
1948 u16 size;
1949 struct ib_flow_ib_filter val;
1950 struct ib_flow_ib_filter mask;
1951 };
1952
1953 /* IPv4 header flags */
1954 enum ib_ipv4_flags {
1955 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1956 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1957 last have this flag set */
1958 };
1959
1960 struct ib_flow_ipv4_filter {
1961 __be32 src_ip;
1962 __be32 dst_ip;
1963 u8 proto;
1964 u8 tos;
1965 u8 ttl;
1966 u8 flags;
1967 };
1968
1969 struct ib_flow_spec_ipv4 {
1970 u32 type;
1971 u16 size;
1972 struct ib_flow_ipv4_filter val;
1973 struct ib_flow_ipv4_filter mask;
1974 };
1975
1976 struct ib_flow_ipv6_filter {
1977 u8 src_ip[16];
1978 u8 dst_ip[16];
1979 __be32 flow_label;
1980 u8 next_hdr;
1981 u8 traffic_class;
1982 u8 hop_limit;
1983 } __packed;
1984
1985 struct ib_flow_spec_ipv6 {
1986 u32 type;
1987 u16 size;
1988 struct ib_flow_ipv6_filter val;
1989 struct ib_flow_ipv6_filter mask;
1990 };
1991
1992 struct ib_flow_tcp_udp_filter {
1993 __be16 dst_port;
1994 __be16 src_port;
1995 };
1996
1997 struct ib_flow_spec_tcp_udp {
1998 u32 type;
1999 u16 size;
2000 struct ib_flow_tcp_udp_filter val;
2001 struct ib_flow_tcp_udp_filter mask;
2002 };
2003
2004 struct ib_flow_tunnel_filter {
2005 __be32 tunnel_id;
2006 };
2007
2008 /* ib_flow_spec_tunnel describes the Vxlan tunnel
2009 * the tunnel_id from val has the vni value
2010 */
2011 struct ib_flow_spec_tunnel {
2012 u32 type;
2013 u16 size;
2014 struct ib_flow_tunnel_filter val;
2015 struct ib_flow_tunnel_filter mask;
2016 };
2017
2018 struct ib_flow_esp_filter {
2019 __be32 spi;
2020 __be32 seq;
2021 };
2022
2023 struct ib_flow_spec_esp {
2024 u32 type;
2025 u16 size;
2026 struct ib_flow_esp_filter val;
2027 struct ib_flow_esp_filter mask;
2028 };
2029
2030 struct ib_flow_gre_filter {
2031 __be16 c_ks_res0_ver;
2032 __be16 protocol;
2033 __be32 key;
2034 };
2035
2036 struct ib_flow_spec_gre {
2037 u32 type;
2038 u16 size;
2039 struct ib_flow_gre_filter val;
2040 struct ib_flow_gre_filter mask;
2041 };
2042
2043 struct ib_flow_mpls_filter {
2044 __be32 tag;
2045 };
2046
2047 struct ib_flow_spec_mpls {
2048 u32 type;
2049 u16 size;
2050 struct ib_flow_mpls_filter val;
2051 struct ib_flow_mpls_filter mask;
2052 };
2053
2054 struct ib_flow_spec_action_tag {
2055 enum ib_flow_spec_type type;
2056 u16 size;
2057 u32 tag_id;
2058 };
2059
2060 struct ib_flow_spec_action_drop {
2061 enum ib_flow_spec_type type;
2062 u16 size;
2063 };
2064
2065 struct ib_flow_spec_action_handle {
2066 enum ib_flow_spec_type type;
2067 u16 size;
2068 struct ib_flow_action *act;
2069 };
2070
2071 enum ib_counters_description {
2072 IB_COUNTER_PACKETS,
2073 IB_COUNTER_BYTES,
2074 };
2075
2076 struct ib_flow_spec_action_count {
2077 enum ib_flow_spec_type type;
2078 u16 size;
2079 struct ib_counters *counters;
2080 };
2081
2082 union ib_flow_spec {
2083 struct {
2084 u32 type;
2085 u16 size;
2086 };
2087 struct ib_flow_spec_eth eth;
2088 struct ib_flow_spec_ib ib;
2089 struct ib_flow_spec_ipv4 ipv4;
2090 struct ib_flow_spec_tcp_udp tcp_udp;
2091 struct ib_flow_spec_ipv6 ipv6;
2092 struct ib_flow_spec_tunnel tunnel;
2093 struct ib_flow_spec_esp esp;
2094 struct ib_flow_spec_gre gre;
2095 struct ib_flow_spec_mpls mpls;
2096 struct ib_flow_spec_action_tag flow_tag;
2097 struct ib_flow_spec_action_drop drop;
2098 struct ib_flow_spec_action_handle action;
2099 struct ib_flow_spec_action_count flow_count;
2100 };
2101
2102 struct ib_flow_attr {
2103 enum ib_flow_attr_type type;
2104 u16 size;
2105 u16 priority;
2106 u32 flags;
2107 u8 num_of_specs;
2108 u32 port;
2109 union ib_flow_spec flows[];
2110 };
2111
2112 struct ib_flow {
2113 struct ib_qp *qp;
2114 struct ib_device *device;
2115 struct ib_uobject *uobject;
2116 };
2117
2118 enum ib_flow_action_type {
2119 IB_FLOW_ACTION_UNSPECIFIED,
2120 IB_FLOW_ACTION_ESP = 1,
2121 };
2122
2123 struct ib_flow_action_attrs_esp_keymats {
2124 enum ib_uverbs_flow_action_esp_keymat protocol;
2125 union {
2126 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2127 } keymat;
2128 };
2129
2130 struct ib_flow_action_attrs_esp_replays {
2131 enum ib_uverbs_flow_action_esp_replay protocol;
2132 union {
2133 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2134 } replay;
2135 };
2136
2137 enum ib_flow_action_attrs_esp_flags {
2138 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2139 * This is done in order to share the same flags between user-space and
2140 * kernel and spare an unnecessary translation.
2141 */
2142
2143 /* Kernel flags */
2144 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2145 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2146 };
2147
2148 struct ib_flow_spec_list {
2149 struct ib_flow_spec_list *next;
2150 union ib_flow_spec spec;
2151 };
2152
2153 struct ib_flow_action_attrs_esp {
2154 struct ib_flow_action_attrs_esp_keymats *keymat;
2155 struct ib_flow_action_attrs_esp_replays *replay;
2156 struct ib_flow_spec_list *encap;
2157 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2158 * Value of 0 is a valid value.
2159 */
2160 u32 esn;
2161 u32 spi;
2162 u32 seq;
2163 u32 tfc_pad;
2164 /* Use enum ib_flow_action_attrs_esp_flags */
2165 u64 flags;
2166 u64 hard_limit_pkts;
2167 };
2168
2169 struct ib_flow_action {
2170 struct ib_device *device;
2171 struct ib_uobject *uobject;
2172 enum ib_flow_action_type type;
2173 atomic_t usecnt;
2174 };
2175
2176 struct ib_mad;
2177
2178 enum ib_process_mad_flags {
2179 IB_MAD_IGNORE_MKEY = 1,
2180 IB_MAD_IGNORE_BKEY = 2,
2181 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2182 };
2183
2184 enum ib_mad_result {
2185 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2186 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2187 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2188 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2189 };
2190
2191 struct ib_port_cache {
2192 u64 subnet_prefix;
2193 struct ib_pkey_cache *pkey;
2194 struct ib_gid_table *gid;
2195 u8 lmc;
2196 enum ib_port_state port_state;
2197 enum ib_port_state last_port_state;
2198 };
2199
2200 struct ib_port_immutable {
2201 int pkey_tbl_len;
2202 int gid_tbl_len;
2203 u32 core_cap_flags;
2204 u32 max_mad_size;
2205 };
2206
2207 struct ib_port_data {
2208 struct ib_device *ib_dev;
2209
2210 struct ib_port_immutable immutable;
2211
2212 spinlock_t pkey_list_lock;
2213
2214 spinlock_t netdev_lock;
2215
2216 struct list_head pkey_list;
2217
2218 struct ib_port_cache cache;
2219
2220 struct net_device __rcu *netdev;
2221 netdevice_tracker netdev_tracker;
2222 struct hlist_node ndev_hash_link;
2223 struct rdma_port_counter port_counter;
2224 struct ib_port *sysfs;
2225 };
2226
2227 /* rdma netdev type - specifies protocol type */
2228 enum rdma_netdev_t {
2229 RDMA_NETDEV_OPA_VNIC,
2230 RDMA_NETDEV_IPOIB,
2231 };
2232
2233 /**
2234 * struct rdma_netdev - rdma netdev
2235 * For cases where netstack interfacing is required.
2236 */
2237 struct rdma_netdev {
2238 void *clnt_priv;
2239 struct ib_device *hca;
2240 u32 port_num;
2241 int mtu;
2242
2243 /*
2244 * cleanup function must be specified.
2245 * FIXME: This is only used for OPA_VNIC and that usage should be
2246 * removed too.
2247 */
2248 void (*free_rdma_netdev)(struct net_device *netdev);
2249
2250 /* control functions */
2251 void (*set_id)(struct net_device *netdev, int id);
2252 /* send packet */
2253 int (*send)(struct net_device *dev, struct sk_buff *skb,
2254 struct ib_ah *address, u32 dqpn);
2255 /* multicast */
2256 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2257 union ib_gid *gid, u16 mlid,
2258 int set_qkey, u32 qkey);
2259 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2260 union ib_gid *gid, u16 mlid);
2261 /* timeout */
2262 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2263 };
2264
2265 struct rdma_netdev_alloc_params {
2266 size_t sizeof_priv;
2267 unsigned int txqs;
2268 unsigned int rxqs;
2269 void *param;
2270
2271 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2272 struct net_device *netdev, void *param);
2273 };
2274
2275 struct ib_odp_counters {
2276 atomic64_t faults;
2277 atomic64_t faults_handled;
2278 atomic64_t invalidations;
2279 atomic64_t invalidations_handled;
2280 atomic64_t prefetch;
2281 };
2282
2283 struct ib_counters {
2284 struct ib_device *device;
2285 struct ib_uobject *uobject;
2286 /* num of objects attached */
2287 atomic_t usecnt;
2288 };
2289
2290 struct ib_counters_read_attr {
2291 u64 *counters_buff;
2292 u32 ncounters;
2293 u32 flags; /* use enum ib_read_counters_flags */
2294 };
2295
2296 struct uverbs_attr_bundle;
2297 struct iw_cm_id;
2298 struct iw_cm_conn_param;
2299
2300 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2301 .size_##ib_struct = \
2302 (sizeof(struct drv_struct) + \
2303 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2304 BUILD_BUG_ON_ZERO( \
2305 !__same_type(((struct drv_struct *)NULL)->member, \
2306 struct ib_struct)))
2307
2308 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2309 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2310 gfp, false))
2311
2312 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2313 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2314 GFP_KERNEL, true))
2315
2316 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2317 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2318
2319 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2320
2321 struct rdma_user_mmap_entry {
2322 struct kref ref;
2323 struct ib_ucontext *ucontext;
2324 unsigned long start_pgoff;
2325 size_t npages;
2326 bool driver_removed;
2327 };
2328
2329 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2330 static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry * entry)2331 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2332 {
2333 return (u64)entry->start_pgoff << PAGE_SHIFT;
2334 }
2335
2336 /**
2337 * struct ib_device_ops - InfiniBand device operations
2338 * This structure defines all the InfiniBand device operations, providers will
2339 * need to define the supported operations, otherwise they will be set to null.
2340 */
2341 struct ib_device_ops {
2342 struct module *owner;
2343 enum rdma_driver_id driver_id;
2344 u32 uverbs_abi_ver;
2345 unsigned int uverbs_no_driver_id_binding:1;
2346
2347 /*
2348 * NOTE: New drivers should not make use of device_group; instead new
2349 * device parameter should be exposed via netlink command. This
2350 * mechanism exists only for existing drivers.
2351 */
2352 const struct attribute_group *device_group;
2353 const struct attribute_group **port_groups;
2354
2355 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2356 const struct ib_send_wr **bad_send_wr);
2357 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2358 const struct ib_recv_wr **bad_recv_wr);
2359 void (*drain_rq)(struct ib_qp *qp);
2360 void (*drain_sq)(struct ib_qp *qp);
2361 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2362 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2363 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2364 int (*post_srq_recv)(struct ib_srq *srq,
2365 const struct ib_recv_wr *recv_wr,
2366 const struct ib_recv_wr **bad_recv_wr);
2367 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2368 u32 port_num, const struct ib_wc *in_wc,
2369 const struct ib_grh *in_grh,
2370 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2371 size_t *out_mad_size, u16 *out_mad_pkey_index);
2372 int (*query_device)(struct ib_device *device,
2373 struct ib_device_attr *device_attr,
2374 struct ib_udata *udata);
2375 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2376 struct ib_device_modify *device_modify);
2377 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2378 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2379 int comp_vector);
2380 int (*query_port)(struct ib_device *device, u32 port_num,
2381 struct ib_port_attr *port_attr);
2382 int (*modify_port)(struct ib_device *device, u32 port_num,
2383 int port_modify_mask,
2384 struct ib_port_modify *port_modify);
2385 /**
2386 * The following mandatory functions are used only at device
2387 * registration. Keep functions such as these at the end of this
2388 * structure to avoid cache line misses when accessing struct ib_device
2389 * in fast paths.
2390 */
2391 int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2392 struct ib_port_immutable *immutable);
2393 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2394 u32 port_num);
2395 /**
2396 * When calling get_netdev, the HW vendor's driver should return the
2397 * net device of device @device at port @port_num or NULL if such
2398 * a net device doesn't exist. The vendor driver should call dev_hold
2399 * on this net device. The HW vendor's device driver must guarantee
2400 * that this function returns NULL before the net device has finished
2401 * NETDEV_UNREGISTER state.
2402 */
2403 struct net_device *(*get_netdev)(struct ib_device *device,
2404 u32 port_num);
2405 /**
2406 * rdma netdev operation
2407 *
2408 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2409 * must return -EOPNOTSUPP if it doesn't support the specified type.
2410 */
2411 struct net_device *(*alloc_rdma_netdev)(
2412 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2413 const char *name, unsigned char name_assign_type,
2414 void (*setup)(struct net_device *));
2415
2416 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2417 enum rdma_netdev_t type,
2418 struct rdma_netdev_alloc_params *params);
2419 /**
2420 * query_gid should be return GID value for @device, when @port_num
2421 * link layer is either IB or iWarp. It is no-op if @port_num port
2422 * is RoCE link layer.
2423 */
2424 int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2425 union ib_gid *gid);
2426 /**
2427 * When calling add_gid, the HW vendor's driver should add the gid
2428 * of device of port at gid index available at @attr. Meta-info of
2429 * that gid (for example, the network device related to this gid) is
2430 * available at @attr. @context allows the HW vendor driver to store
2431 * extra information together with a GID entry. The HW vendor driver may
2432 * allocate memory to contain this information and store it in @context
2433 * when a new GID entry is written to. Params are consistent until the
2434 * next call of add_gid or delete_gid. The function should return 0 on
2435 * success or error otherwise. The function could be called
2436 * concurrently for different ports. This function is only called when
2437 * roce_gid_table is used.
2438 */
2439 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2440 /**
2441 * When calling del_gid, the HW vendor's driver should delete the
2442 * gid of device @device at gid index gid_index of port port_num
2443 * available in @attr.
2444 * Upon the deletion of a GID entry, the HW vendor must free any
2445 * allocated memory. The caller will clear @context afterwards.
2446 * This function is only called when roce_gid_table is used.
2447 */
2448 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2449 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2450 u16 *pkey);
2451 int (*alloc_ucontext)(struct ib_ucontext *context,
2452 struct ib_udata *udata);
2453 void (*dealloc_ucontext)(struct ib_ucontext *context);
2454 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2455 /**
2456 * This will be called once refcount of an entry in mmap_xa reaches
2457 * zero. The type of the memory that was mapped may differ between
2458 * entries and is opaque to the rdma_user_mmap interface.
2459 * Therefore needs to be implemented by the driver in mmap_free.
2460 */
2461 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2462 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2463 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2464 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2465 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2466 struct ib_udata *udata);
2467 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2468 struct ib_udata *udata);
2469 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2470 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2471 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2472 int (*create_srq)(struct ib_srq *srq,
2473 struct ib_srq_init_attr *srq_init_attr,
2474 struct ib_udata *udata);
2475 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2476 enum ib_srq_attr_mask srq_attr_mask,
2477 struct ib_udata *udata);
2478 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2479 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2480 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2481 struct ib_udata *udata);
2482 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2483 int qp_attr_mask, struct ib_udata *udata);
2484 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2485 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2486 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2487 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2488 struct uverbs_attr_bundle *attrs);
2489 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2490 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2491 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2492 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2493 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2494 u64 virt_addr, int mr_access_flags,
2495 struct ib_udata *udata);
2496 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2497 u64 length, u64 virt_addr, int fd,
2498 int mr_access_flags,
2499 struct uverbs_attr_bundle *attrs);
2500 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2501 u64 length, u64 virt_addr,
2502 int mr_access_flags, struct ib_pd *pd,
2503 struct ib_udata *udata);
2504 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2505 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2506 u32 max_num_sg);
2507 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2508 u32 max_num_data_sg,
2509 u32 max_num_meta_sg);
2510 int (*advise_mr)(struct ib_pd *pd,
2511 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2512 struct ib_sge *sg_list, u32 num_sge,
2513 struct uverbs_attr_bundle *attrs);
2514
2515 /*
2516 * Kernel users should universally support relaxed ordering (RO), as
2517 * they are designed to read data only after observing the CQE and use
2518 * the DMA API correctly.
2519 *
2520 * Some drivers implicitly enable RO if platform supports it.
2521 */
2522 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2523 unsigned int *sg_offset);
2524 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2525 struct ib_mr_status *mr_status);
2526 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2527 int (*dealloc_mw)(struct ib_mw *mw);
2528 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2529 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2530 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2531 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2532 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2533 struct ib_flow_attr *flow_attr,
2534 struct ib_udata *udata);
2535 int (*destroy_flow)(struct ib_flow *flow_id);
2536 int (*destroy_flow_action)(struct ib_flow_action *action);
2537 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2538 int state);
2539 int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2540 struct ifla_vf_info *ivf);
2541 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2542 struct ifla_vf_stats *stats);
2543 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2544 struct ifla_vf_guid *node_guid,
2545 struct ifla_vf_guid *port_guid);
2546 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2547 int type);
2548 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2549 struct ib_wq_init_attr *init_attr,
2550 struct ib_udata *udata);
2551 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2552 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2553 u32 wq_attr_mask, struct ib_udata *udata);
2554 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2555 struct ib_rwq_ind_table_init_attr *init_attr,
2556 struct ib_udata *udata);
2557 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2558 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2559 struct ib_ucontext *context,
2560 struct ib_dm_alloc_attr *attr,
2561 struct uverbs_attr_bundle *attrs);
2562 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2563 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2564 struct ib_dm_mr_attr *attr,
2565 struct uverbs_attr_bundle *attrs);
2566 int (*create_counters)(struct ib_counters *counters,
2567 struct uverbs_attr_bundle *attrs);
2568 int (*destroy_counters)(struct ib_counters *counters);
2569 int (*read_counters)(struct ib_counters *counters,
2570 struct ib_counters_read_attr *counters_read_attr,
2571 struct uverbs_attr_bundle *attrs);
2572 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2573 int data_sg_nents, unsigned int *data_sg_offset,
2574 struct scatterlist *meta_sg, int meta_sg_nents,
2575 unsigned int *meta_sg_offset);
2576
2577 /**
2578 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2579 * fill in the driver initialized data. The struct is kfree()'ed by
2580 * the sysfs core when the device is removed. A lifespan of -1 in the
2581 * return struct tells the core to set a default lifespan.
2582 */
2583 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2584 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2585 u32 port_num);
2586 /**
2587 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2588 * @index - The index in the value array we wish to have updated, or
2589 * num_counters if we want all stats updated
2590 * Return codes -
2591 * < 0 - Error, no counters updated
2592 * index - Updated the single counter pointed to by index
2593 * num_counters - Updated all counters (will reset the timestamp
2594 * and prevent further calls for lifespan milliseconds)
2595 * Drivers are allowed to update all counters in leiu of just the
2596 * one given in index at their option
2597 */
2598 int (*get_hw_stats)(struct ib_device *device,
2599 struct rdma_hw_stats *stats, u32 port, int index);
2600
2601 /**
2602 * modify_hw_stat - Modify the counter configuration
2603 * @enable: true/false when enable/disable a counter
2604 * Return codes - 0 on success or error code otherwise.
2605 */
2606 int (*modify_hw_stat)(struct ib_device *device, u32 port,
2607 unsigned int counter_index, bool enable);
2608 /**
2609 * Allows rdma drivers to add their own restrack attributes.
2610 */
2611 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2612 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2613 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2614 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2615 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2616 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2617 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2618 int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2619 int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2620
2621 /* Device lifecycle callbacks */
2622 /*
2623 * Called after the device becomes registered, before clients are
2624 * attached
2625 */
2626 int (*enable_driver)(struct ib_device *dev);
2627 /*
2628 * This is called as part of ib_dealloc_device().
2629 */
2630 void (*dealloc_driver)(struct ib_device *dev);
2631
2632 /* iWarp CM callbacks */
2633 void (*iw_add_ref)(struct ib_qp *qp);
2634 void (*iw_rem_ref)(struct ib_qp *qp);
2635 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2636 int (*iw_connect)(struct iw_cm_id *cm_id,
2637 struct iw_cm_conn_param *conn_param);
2638 int (*iw_accept)(struct iw_cm_id *cm_id,
2639 struct iw_cm_conn_param *conn_param);
2640 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2641 u8 pdata_len);
2642 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2643 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2644 /**
2645 * counter_bind_qp - Bind a QP to a counter.
2646 * @counter - The counter to be bound. If counter->id is zero then
2647 * the driver needs to allocate a new counter and set counter->id
2648 */
2649 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp,
2650 u32 port);
2651 /**
2652 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2653 * counter and bind it onto the default one
2654 */
2655 int (*counter_unbind_qp)(struct ib_qp *qp, u32 port);
2656 /**
2657 * counter_dealloc -De-allocate the hw counter
2658 */
2659 int (*counter_dealloc)(struct rdma_counter *counter);
2660 /**
2661 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2662 * the driver initialized data.
2663 */
2664 struct rdma_hw_stats *(*counter_alloc_stats)(
2665 struct rdma_counter *counter);
2666 /**
2667 * counter_update_stats - Query the stats value of this counter
2668 */
2669 int (*counter_update_stats)(struct rdma_counter *counter);
2670
2671 /**
2672 * counter_init - Initialize the driver specific rdma counter struct.
2673 */
2674 void (*counter_init)(struct rdma_counter *counter);
2675
2676 /**
2677 * Allows rdma drivers to add their own restrack attributes
2678 * dumped via 'rdma stat' iproute2 command.
2679 */
2680 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2681
2682 /* query driver for its ucontext properties */
2683 int (*query_ucontext)(struct ib_ucontext *context,
2684 struct uverbs_attr_bundle *attrs);
2685
2686 /*
2687 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2688 * Everyone else relies on Linux memory management model.
2689 */
2690 int (*get_numa_node)(struct ib_device *dev);
2691
2692 /**
2693 * add_sub_dev - Add a sub IB device
2694 */
2695 struct ib_device *(*add_sub_dev)(struct ib_device *parent,
2696 enum rdma_nl_dev_type type,
2697 const char *name);
2698
2699 /**
2700 * del_sub_dev - Delete a sub IB device
2701 */
2702 void (*del_sub_dev)(struct ib_device *sub_dev);
2703
2704 /**
2705 * ufile_cleanup - Attempt to cleanup ubojects HW resources inside
2706 * the ufile.
2707 */
2708 void (*ufile_hw_cleanup)(struct ib_uverbs_file *ufile);
2709
2710 /**
2711 * report_port_event - Drivers need to implement this if they have
2712 * some private stuff to handle when link status changes.
2713 */
2714 void (*report_port_event)(struct ib_device *ibdev,
2715 struct net_device *ndev, unsigned long event);
2716
2717 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2718 DECLARE_RDMA_OBJ_SIZE(ib_counters);
2719 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2720 DECLARE_RDMA_OBJ_SIZE(ib_mw);
2721 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2722 DECLARE_RDMA_OBJ_SIZE(ib_qp);
2723 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2724 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2725 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2726 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2727 DECLARE_RDMA_OBJ_SIZE(rdma_counter);
2728 };
2729
2730 struct ib_core_device {
2731 /* device must be the first element in structure until,
2732 * union of ib_core_device and device exists in ib_device.
2733 */
2734 struct device dev;
2735 possible_net_t rdma_net;
2736 struct kobject *ports_kobj;
2737 struct list_head port_list;
2738 struct ib_device *owner; /* reach back to owner ib_device */
2739 };
2740
2741 struct rdma_restrack_root;
2742 struct ib_device {
2743 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2744 struct device *dma_device;
2745 struct ib_device_ops ops;
2746 char name[IB_DEVICE_NAME_MAX];
2747 struct rcu_head rcu_head;
2748
2749 struct list_head event_handler_list;
2750 /* Protects event_handler_list */
2751 struct rw_semaphore event_handler_rwsem;
2752
2753 /* Protects QP's event_handler calls and open_qp list */
2754 spinlock_t qp_open_list_lock;
2755
2756 struct rw_semaphore client_data_rwsem;
2757 struct xarray client_data;
2758 struct mutex unregistration_lock;
2759
2760 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2761 rwlock_t cache_lock;
2762 /**
2763 * port_data is indexed by port number
2764 */
2765 struct ib_port_data *port_data;
2766
2767 int num_comp_vectors;
2768
2769 union {
2770 struct device dev;
2771 struct ib_core_device coredev;
2772 };
2773
2774 /* First group is for device attributes,
2775 * Second group is for driver provided attributes (optional).
2776 * Third group is for the hw_stats
2777 * It is a NULL terminated array.
2778 */
2779 const struct attribute_group *groups[4];
2780 u8 hw_stats_attr_index;
2781
2782 u64 uverbs_cmd_mask;
2783
2784 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2785 __be64 node_guid;
2786 u32 local_dma_lkey;
2787 u16 is_switch:1;
2788 /* Indicates kernel verbs support, should not be used in drivers */
2789 u16 kverbs_provider:1;
2790 /* CQ adaptive moderation (RDMA DIM) */
2791 u16 use_cq_dim:1;
2792 u8 node_type;
2793 u32 phys_port_cnt;
2794 struct ib_device_attr attrs;
2795 struct hw_stats_device_data *hw_stats_data;
2796
2797 #ifdef CONFIG_CGROUP_RDMA
2798 struct rdmacg_device cg_device;
2799 #endif
2800
2801 u32 index;
2802
2803 spinlock_t cq_pools_lock;
2804 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2805
2806 struct rdma_restrack_root *res;
2807
2808 const struct uapi_definition *driver_def;
2809
2810 /*
2811 * Positive refcount indicates that the device is currently
2812 * registered and cannot be unregistered.
2813 */
2814 refcount_t refcount;
2815 struct completion unreg_completion;
2816 struct work_struct unregistration_work;
2817
2818 const struct rdma_link_ops *link_ops;
2819
2820 /* Protects compat_devs xarray modifications */
2821 struct mutex compat_devs_mutex;
2822 /* Maintains compat devices for each net namespace */
2823 struct xarray compat_devs;
2824
2825 /* Used by iWarp CM */
2826 char iw_ifname[IFNAMSIZ];
2827 u32 iw_driver_flags;
2828 u32 lag_flags;
2829
2830 /* A parent device has a list of sub-devices */
2831 struct mutex subdev_lock;
2832 struct list_head subdev_list_head;
2833
2834 /* A sub device has a type and a parent */
2835 enum rdma_nl_dev_type type;
2836 struct ib_device *parent;
2837 struct list_head subdev_list;
2838
2839 enum rdma_nl_name_assign_type name_assign_type;
2840 };
2841
rdma_zalloc_obj(struct ib_device * dev,size_t size,gfp_t gfp,bool is_numa_aware)2842 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2843 gfp_t gfp, bool is_numa_aware)
2844 {
2845 if (is_numa_aware && dev->ops.get_numa_node)
2846 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2847
2848 return kzalloc(size, gfp);
2849 }
2850
2851 struct ib_client_nl_info;
2852 struct ib_client {
2853 const char *name;
2854 int (*add)(struct ib_device *ibdev);
2855 void (*remove)(struct ib_device *, void *client_data);
2856 void (*rename)(struct ib_device *dev, void *client_data);
2857 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2858 struct ib_client_nl_info *res);
2859 int (*get_global_nl_info)(struct ib_client_nl_info *res);
2860
2861 /* Returns the net_dev belonging to this ib_client and matching the
2862 * given parameters.
2863 * @dev: An RDMA device that the net_dev use for communication.
2864 * @port: A physical port number on the RDMA device.
2865 * @pkey: P_Key that the net_dev uses if applicable.
2866 * @gid: A GID that the net_dev uses to communicate.
2867 * @addr: An IP address the net_dev is configured with.
2868 * @client_data: The device's client data set by ib_set_client_data().
2869 *
2870 * An ib_client that implements a net_dev on top of RDMA devices
2871 * (such as IP over IB) should implement this callback, allowing the
2872 * rdma_cm module to find the right net_dev for a given request.
2873 *
2874 * The caller is responsible for calling dev_put on the returned
2875 * netdev. */
2876 struct net_device *(*get_net_dev_by_params)(
2877 struct ib_device *dev,
2878 u32 port,
2879 u16 pkey,
2880 const union ib_gid *gid,
2881 const struct sockaddr *addr,
2882 void *client_data);
2883
2884 refcount_t uses;
2885 struct completion uses_zero;
2886 u32 client_id;
2887
2888 /* kverbs are not required by the client */
2889 u8 no_kverbs_req:1;
2890 };
2891
2892 /*
2893 * IB block DMA iterator
2894 *
2895 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2896 * to a HW supported page size.
2897 */
2898 struct ib_block_iter {
2899 /* internal states */
2900 struct scatterlist *__sg; /* sg holding the current aligned block */
2901 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2902 size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */
2903 unsigned int __sg_nents; /* number of SG entries */
2904 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2905 unsigned int __pg_bit; /* alignment of current block */
2906 };
2907
2908 struct ib_device *_ib_alloc_device(size_t size);
2909 #define ib_alloc_device(drv_struct, member) \
2910 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2911 BUILD_BUG_ON_ZERO(offsetof( \
2912 struct drv_struct, member))), \
2913 struct drv_struct, member)
2914
2915 void ib_dealloc_device(struct ib_device *device);
2916
2917 void ib_get_device_fw_str(struct ib_device *device, char *str);
2918
2919 int ib_register_device(struct ib_device *device, const char *name,
2920 struct device *dma_device);
2921 void ib_unregister_device(struct ib_device *device);
2922 void ib_unregister_driver(enum rdma_driver_id driver_id);
2923 void ib_unregister_device_and_put(struct ib_device *device);
2924 void ib_unregister_device_queued(struct ib_device *ib_dev);
2925
2926 int ib_register_client (struct ib_client *client);
2927 void ib_unregister_client(struct ib_client *client);
2928
2929 void __rdma_block_iter_start(struct ib_block_iter *biter,
2930 struct scatterlist *sglist,
2931 unsigned int nents,
2932 unsigned long pgsz);
2933 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2934
2935 /**
2936 * rdma_block_iter_dma_address - get the aligned dma address of the current
2937 * block held by the block iterator.
2938 * @biter: block iterator holding the memory block
2939 */
2940 static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter * biter)2941 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2942 {
2943 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2944 }
2945
2946 /**
2947 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2948 * @sglist: sglist to iterate over
2949 * @biter: block iterator holding the memory block
2950 * @nents: maximum number of sg entries to iterate over
2951 * @pgsz: best HW supported page size to use
2952 *
2953 * Callers may use rdma_block_iter_dma_address() to get each
2954 * blocks aligned DMA address.
2955 */
2956 #define rdma_for_each_block(sglist, biter, nents, pgsz) \
2957 for (__rdma_block_iter_start(biter, sglist, nents, \
2958 pgsz); \
2959 __rdma_block_iter_next(biter);)
2960
2961 /**
2962 * ib_get_client_data - Get IB client context
2963 * @device:Device to get context for
2964 * @client:Client to get context for
2965 *
2966 * ib_get_client_data() returns the client context data set with
2967 * ib_set_client_data(). This can only be called while the client is
2968 * registered to the device, once the ib_client remove() callback returns this
2969 * cannot be called.
2970 */
ib_get_client_data(struct ib_device * device,struct ib_client * client)2971 static inline void *ib_get_client_data(struct ib_device *device,
2972 struct ib_client *client)
2973 {
2974 return xa_load(&device->client_data, client->client_id);
2975 }
2976 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2977 void *data);
2978 void ib_set_device_ops(struct ib_device *device,
2979 const struct ib_device_ops *ops);
2980
2981 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2982 unsigned long pfn, unsigned long size, pgprot_t prot,
2983 struct rdma_user_mmap_entry *entry);
2984 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2985 struct rdma_user_mmap_entry *entry,
2986 size_t length);
2987 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2988 struct rdma_user_mmap_entry *entry,
2989 size_t length, u32 min_pgoff,
2990 u32 max_pgoff);
2991
2992 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2993 void rdma_user_mmap_disassociate(struct ib_device *device);
2994 #else
rdma_user_mmap_disassociate(struct ib_device * device)2995 static inline void rdma_user_mmap_disassociate(struct ib_device *device)
2996 {
2997 }
2998 #endif
2999
3000 static inline int
rdma_user_mmap_entry_insert_exact(struct ib_ucontext * ucontext,struct rdma_user_mmap_entry * entry,size_t length,u32 pgoff)3001 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
3002 struct rdma_user_mmap_entry *entry,
3003 size_t length, u32 pgoff)
3004 {
3005 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
3006 pgoff);
3007 }
3008
3009 struct rdma_user_mmap_entry *
3010 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
3011 unsigned long pgoff);
3012 struct rdma_user_mmap_entry *
3013 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
3014 struct vm_area_struct *vma);
3015 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
3016
3017 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
3018
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)3019 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
3020 {
3021 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
3022 }
3023
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)3024 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
3025 {
3026 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
3027 }
3028
ib_is_buffer_cleared(const void __user * p,size_t len)3029 static inline bool ib_is_buffer_cleared(const void __user *p,
3030 size_t len)
3031 {
3032 bool ret;
3033 u8 *buf;
3034
3035 if (len > USHRT_MAX)
3036 return false;
3037
3038 buf = memdup_user(p, len);
3039 if (IS_ERR(buf))
3040 return false;
3041
3042 ret = !memchr_inv(buf, 0, len);
3043 kfree(buf);
3044 return ret;
3045 }
3046
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)3047 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
3048 size_t offset,
3049 size_t len)
3050 {
3051 return ib_is_buffer_cleared(udata->inbuf + offset, len);
3052 }
3053
3054 /**
3055 * ib_modify_qp_is_ok - Check that the supplied attribute mask
3056 * contains all required attributes and no attributes not allowed for
3057 * the given QP state transition.
3058 * @cur_state: Current QP state
3059 * @next_state: Next QP state
3060 * @type: QP type
3061 * @mask: Mask of supplied QP attributes
3062 *
3063 * This function is a helper function that a low-level driver's
3064 * modify_qp method can use to validate the consumer's input. It
3065 * checks that cur_state and next_state are valid QP states, that a
3066 * transition from cur_state to next_state is allowed by the IB spec,
3067 * and that the attribute mask supplied is allowed for the transition.
3068 */
3069 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3070 enum ib_qp_type type, enum ib_qp_attr_mask mask);
3071
3072 void ib_register_event_handler(struct ib_event_handler *event_handler);
3073 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3074 void ib_dispatch_event(const struct ib_event *event);
3075
3076 int ib_query_port(struct ib_device *device,
3077 u32 port_num, struct ib_port_attr *port_attr);
3078
3079 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3080 u32 port_num);
3081
3082 /**
3083 * rdma_cap_ib_switch - Check if the device is IB switch
3084 * @device: Device to check
3085 *
3086 * Device driver is responsible for setting is_switch bit on
3087 * in ib_device structure at init time.
3088 *
3089 * Return: true if the device is IB switch.
3090 */
rdma_cap_ib_switch(const struct ib_device * device)3091 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3092 {
3093 return device->is_switch;
3094 }
3095
3096 /**
3097 * rdma_start_port - Return the first valid port number for the device
3098 * specified
3099 *
3100 * @device: Device to be checked
3101 *
3102 * Return start port number
3103 */
rdma_start_port(const struct ib_device * device)3104 static inline u32 rdma_start_port(const struct ib_device *device)
3105 {
3106 return rdma_cap_ib_switch(device) ? 0 : 1;
3107 }
3108
3109 /**
3110 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3111 * @device - The struct ib_device * to iterate over
3112 * @iter - The unsigned int to store the port number
3113 */
3114 #define rdma_for_each_port(device, iter) \
3115 for (iter = rdma_start_port(device + \
3116 BUILD_BUG_ON_ZERO(!__same_type(u32, \
3117 iter))); \
3118 iter <= rdma_end_port(device); iter++)
3119
3120 /**
3121 * rdma_end_port - Return the last valid port number for the device
3122 * specified
3123 *
3124 * @device: Device to be checked
3125 *
3126 * Return last port number
3127 */
rdma_end_port(const struct ib_device * device)3128 static inline u32 rdma_end_port(const struct ib_device *device)
3129 {
3130 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3131 }
3132
rdma_is_port_valid(const struct ib_device * device,unsigned int port)3133 static inline int rdma_is_port_valid(const struct ib_device *device,
3134 unsigned int port)
3135 {
3136 return (port >= rdma_start_port(device) &&
3137 port <= rdma_end_port(device));
3138 }
3139
rdma_is_grh_required(const struct ib_device * device,u32 port_num)3140 static inline bool rdma_is_grh_required(const struct ib_device *device,
3141 u32 port_num)
3142 {
3143 return device->port_data[port_num].immutable.core_cap_flags &
3144 RDMA_CORE_PORT_IB_GRH_REQUIRED;
3145 }
3146
rdma_protocol_ib(const struct ib_device * device,u32 port_num)3147 static inline bool rdma_protocol_ib(const struct ib_device *device,
3148 u32 port_num)
3149 {
3150 return device->port_data[port_num].immutable.core_cap_flags &
3151 RDMA_CORE_CAP_PROT_IB;
3152 }
3153
rdma_protocol_roce(const struct ib_device * device,u32 port_num)3154 static inline bool rdma_protocol_roce(const struct ib_device *device,
3155 u32 port_num)
3156 {
3157 return device->port_data[port_num].immutable.core_cap_flags &
3158 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3159 }
3160
rdma_protocol_roce_udp_encap(const struct ib_device * device,u32 port_num)3161 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3162 u32 port_num)
3163 {
3164 return device->port_data[port_num].immutable.core_cap_flags &
3165 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3166 }
3167
rdma_protocol_roce_eth_encap(const struct ib_device * device,u32 port_num)3168 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3169 u32 port_num)
3170 {
3171 return device->port_data[port_num].immutable.core_cap_flags &
3172 RDMA_CORE_CAP_PROT_ROCE;
3173 }
3174
rdma_protocol_iwarp(const struct ib_device * device,u32 port_num)3175 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3176 u32 port_num)
3177 {
3178 return device->port_data[port_num].immutable.core_cap_flags &
3179 RDMA_CORE_CAP_PROT_IWARP;
3180 }
3181
rdma_ib_or_roce(const struct ib_device * device,u32 port_num)3182 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3183 u32 port_num)
3184 {
3185 return rdma_protocol_ib(device, port_num) ||
3186 rdma_protocol_roce(device, port_num);
3187 }
3188
rdma_protocol_raw_packet(const struct ib_device * device,u32 port_num)3189 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3190 u32 port_num)
3191 {
3192 return device->port_data[port_num].immutable.core_cap_flags &
3193 RDMA_CORE_CAP_PROT_RAW_PACKET;
3194 }
3195
rdma_protocol_usnic(const struct ib_device * device,u32 port_num)3196 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3197 u32 port_num)
3198 {
3199 return device->port_data[port_num].immutable.core_cap_flags &
3200 RDMA_CORE_CAP_PROT_USNIC;
3201 }
3202
3203 /**
3204 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3205 * Management Datagrams.
3206 * @device: Device to check
3207 * @port_num: Port number to check
3208 *
3209 * Management Datagrams (MAD) are a required part of the InfiniBand
3210 * specification and are supported on all InfiniBand devices. A slightly
3211 * extended version are also supported on OPA interfaces.
3212 *
3213 * Return: true if the port supports sending/receiving of MAD packets.
3214 */
rdma_cap_ib_mad(const struct ib_device * device,u32 port_num)3215 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3216 {
3217 return device->port_data[port_num].immutable.core_cap_flags &
3218 RDMA_CORE_CAP_IB_MAD;
3219 }
3220
3221 /**
3222 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3223 * Management Datagrams.
3224 * @device: Device to check
3225 * @port_num: Port number to check
3226 *
3227 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3228 * datagrams with their own versions. These OPA MADs share many but not all of
3229 * the characteristics of InfiniBand MADs.
3230 *
3231 * OPA MADs differ in the following ways:
3232 *
3233 * 1) MADs are variable size up to 2K
3234 * IBTA defined MADs remain fixed at 256 bytes
3235 * 2) OPA SMPs must carry valid PKeys
3236 * 3) OPA SMP packets are a different format
3237 *
3238 * Return: true if the port supports OPA MAD packet formats.
3239 */
rdma_cap_opa_mad(struct ib_device * device,u32 port_num)3240 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3241 {
3242 return device->port_data[port_num].immutable.core_cap_flags &
3243 RDMA_CORE_CAP_OPA_MAD;
3244 }
3245
3246 /**
3247 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3248 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3249 * @device: Device to check
3250 * @port_num: Port number to check
3251 *
3252 * Each InfiniBand node is required to provide a Subnet Management Agent
3253 * that the subnet manager can access. Prior to the fabric being fully
3254 * configured by the subnet manager, the SMA is accessed via a well known
3255 * interface called the Subnet Management Interface (SMI). This interface
3256 * uses directed route packets to communicate with the SM to get around the
3257 * chicken and egg problem of the SM needing to know what's on the fabric
3258 * in order to configure the fabric, and needing to configure the fabric in
3259 * order to send packets to the devices on the fabric. These directed
3260 * route packets do not need the fabric fully configured in order to reach
3261 * their destination. The SMI is the only method allowed to send
3262 * directed route packets on an InfiniBand fabric.
3263 *
3264 * Return: true if the port provides an SMI.
3265 */
rdma_cap_ib_smi(const struct ib_device * device,u32 port_num)3266 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3267 {
3268 return device->port_data[port_num].immutable.core_cap_flags &
3269 RDMA_CORE_CAP_IB_SMI;
3270 }
3271
3272 /**
3273 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3274 * Communication Manager.
3275 * @device: Device to check
3276 * @port_num: Port number to check
3277 *
3278 * The InfiniBand Communication Manager is one of many pre-defined General
3279 * Service Agents (GSA) that are accessed via the General Service
3280 * Interface (GSI). It's role is to facilitate establishment of connections
3281 * between nodes as well as other management related tasks for established
3282 * connections.
3283 *
3284 * Return: true if the port supports an IB CM (this does not guarantee that
3285 * a CM is actually running however).
3286 */
rdma_cap_ib_cm(const struct ib_device * device,u32 port_num)3287 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3288 {
3289 return device->port_data[port_num].immutable.core_cap_flags &
3290 RDMA_CORE_CAP_IB_CM;
3291 }
3292
3293 /**
3294 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3295 * Communication Manager.
3296 * @device: Device to check
3297 * @port_num: Port number to check
3298 *
3299 * Similar to above, but specific to iWARP connections which have a different
3300 * managment protocol than InfiniBand.
3301 *
3302 * Return: true if the port supports an iWARP CM (this does not guarantee that
3303 * a CM is actually running however).
3304 */
rdma_cap_iw_cm(const struct ib_device * device,u32 port_num)3305 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3306 {
3307 return device->port_data[port_num].immutable.core_cap_flags &
3308 RDMA_CORE_CAP_IW_CM;
3309 }
3310
3311 /**
3312 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3313 * Subnet Administration.
3314 * @device: Device to check
3315 * @port_num: Port number to check
3316 *
3317 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3318 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3319 * fabrics, devices should resolve routes to other hosts by contacting the
3320 * SA to query the proper route.
3321 *
3322 * Return: true if the port should act as a client to the fabric Subnet
3323 * Administration interface. This does not imply that the SA service is
3324 * running locally.
3325 */
rdma_cap_ib_sa(const struct ib_device * device,u32 port_num)3326 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3327 {
3328 return device->port_data[port_num].immutable.core_cap_flags &
3329 RDMA_CORE_CAP_IB_SA;
3330 }
3331
3332 /**
3333 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3334 * Multicast.
3335 * @device: Device to check
3336 * @port_num: Port number to check
3337 *
3338 * InfiniBand multicast registration is more complex than normal IPv4 or
3339 * IPv6 multicast registration. Each Host Channel Adapter must register
3340 * with the Subnet Manager when it wishes to join a multicast group. It
3341 * should do so only once regardless of how many queue pairs it subscribes
3342 * to this group. And it should leave the group only after all queue pairs
3343 * attached to the group have been detached.
3344 *
3345 * Return: true if the port must undertake the additional adminstrative
3346 * overhead of registering/unregistering with the SM and tracking of the
3347 * total number of queue pairs attached to the multicast group.
3348 */
rdma_cap_ib_mcast(const struct ib_device * device,u32 port_num)3349 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3350 u32 port_num)
3351 {
3352 return rdma_cap_ib_sa(device, port_num);
3353 }
3354
3355 /**
3356 * rdma_cap_af_ib - Check if the port of device has the capability
3357 * Native Infiniband Address.
3358 * @device: Device to check
3359 * @port_num: Port number to check
3360 *
3361 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3362 * GID. RoCE uses a different mechanism, but still generates a GID via
3363 * a prescribed mechanism and port specific data.
3364 *
3365 * Return: true if the port uses a GID address to identify devices on the
3366 * network.
3367 */
rdma_cap_af_ib(const struct ib_device * device,u32 port_num)3368 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3369 {
3370 return device->port_data[port_num].immutable.core_cap_flags &
3371 RDMA_CORE_CAP_AF_IB;
3372 }
3373
3374 /**
3375 * rdma_cap_eth_ah - Check if the port of device has the capability
3376 * Ethernet Address Handle.
3377 * @device: Device to check
3378 * @port_num: Port number to check
3379 *
3380 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3381 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3382 * port. Normally, packet headers are generated by the sending host
3383 * adapter, but when sending connectionless datagrams, we must manually
3384 * inject the proper headers for the fabric we are communicating over.
3385 *
3386 * Return: true if we are running as a RoCE port and must force the
3387 * addition of a Global Route Header built from our Ethernet Address
3388 * Handle into our header list for connectionless packets.
3389 */
rdma_cap_eth_ah(const struct ib_device * device,u32 port_num)3390 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3391 {
3392 return device->port_data[port_num].immutable.core_cap_flags &
3393 RDMA_CORE_CAP_ETH_AH;
3394 }
3395
3396 /**
3397 * rdma_cap_opa_ah - Check if the port of device supports
3398 * OPA Address handles
3399 * @device: Device to check
3400 * @port_num: Port number to check
3401 *
3402 * Return: true if we are running on an OPA device which supports
3403 * the extended OPA addressing.
3404 */
rdma_cap_opa_ah(struct ib_device * device,u32 port_num)3405 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3406 {
3407 return (device->port_data[port_num].immutable.core_cap_flags &
3408 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3409 }
3410
3411 /**
3412 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3413 *
3414 * @device: Device
3415 * @port_num: Port number
3416 *
3417 * This MAD size includes the MAD headers and MAD payload. No other headers
3418 * are included.
3419 *
3420 * Return the max MAD size required by the Port. Will return 0 if the port
3421 * does not support MADs
3422 */
rdma_max_mad_size(const struct ib_device * device,u32 port_num)3423 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3424 u32 port_num)
3425 {
3426 return device->port_data[port_num].immutable.max_mad_size;
3427 }
3428
3429 /**
3430 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3431 * @device: Device to check
3432 * @port_num: Port number to check
3433 *
3434 * RoCE GID table mechanism manages the various GIDs for a device.
3435 *
3436 * NOTE: if allocating the port's GID table has failed, this call will still
3437 * return true, but any RoCE GID table API will fail.
3438 *
3439 * Return: true if the port uses RoCE GID table mechanism in order to manage
3440 * its GIDs.
3441 */
rdma_cap_roce_gid_table(const struct ib_device * device,u32 port_num)3442 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3443 u32 port_num)
3444 {
3445 return rdma_protocol_roce(device, port_num) &&
3446 device->ops.add_gid && device->ops.del_gid;
3447 }
3448
3449 /*
3450 * Check if the device supports READ W/ INVALIDATE.
3451 */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3452 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3453 {
3454 /*
3455 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3456 * has support for it yet.
3457 */
3458 return rdma_protocol_iwarp(dev, port_num);
3459 }
3460
3461 /**
3462 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3463 * @device: Device
3464 * @port_num: 1 based Port number
3465 *
3466 * Return true if port is an Intel OPA port , false if not
3467 */
rdma_core_cap_opa_port(struct ib_device * device,u32 port_num)3468 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3469 u32 port_num)
3470 {
3471 return (device->port_data[port_num].immutable.core_cap_flags &
3472 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3473 }
3474
3475 /**
3476 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3477 * @device: Device
3478 * @port_num: Port number
3479 * @mtu: enum value of MTU
3480 *
3481 * Return the MTU size supported by the port as an integer value. Will return
3482 * -1 if enum value of mtu is not supported.
3483 */
rdma_mtu_enum_to_int(struct ib_device * device,u32 port,int mtu)3484 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3485 int mtu)
3486 {
3487 if (rdma_core_cap_opa_port(device, port))
3488 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3489 else
3490 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3491 }
3492
3493 /**
3494 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3495 * @device: Device
3496 * @port_num: Port number
3497 * @attr: port attribute
3498 *
3499 * Return the MTU size supported by the port as an integer value.
3500 */
rdma_mtu_from_attr(struct ib_device * device,u32 port,struct ib_port_attr * attr)3501 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3502 struct ib_port_attr *attr)
3503 {
3504 if (rdma_core_cap_opa_port(device, port))
3505 return attr->phys_mtu;
3506 else
3507 return ib_mtu_enum_to_int(attr->max_mtu);
3508 }
3509
3510 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3511 int state);
3512 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3513 struct ifla_vf_info *info);
3514 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3515 struct ifla_vf_stats *stats);
3516 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3517 struct ifla_vf_guid *node_guid,
3518 struct ifla_vf_guid *port_guid);
3519 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3520 int type);
3521
3522 int ib_query_pkey(struct ib_device *device,
3523 u32 port_num, u16 index, u16 *pkey);
3524
3525 int ib_modify_device(struct ib_device *device,
3526 int device_modify_mask,
3527 struct ib_device_modify *device_modify);
3528
3529 int ib_modify_port(struct ib_device *device,
3530 u32 port_num, int port_modify_mask,
3531 struct ib_port_modify *port_modify);
3532
3533 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3534 u32 *port_num, u16 *index);
3535
3536 int ib_find_pkey(struct ib_device *device,
3537 u32 port_num, u16 pkey, u16 *index);
3538
3539 enum ib_pd_flags {
3540 /*
3541 * Create a memory registration for all memory in the system and place
3542 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3543 * ULPs to avoid the overhead of dynamic MRs.
3544 *
3545 * This flag is generally considered unsafe and must only be used in
3546 * extremly trusted environments. Every use of it will log a warning
3547 * in the kernel log.
3548 */
3549 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3550 };
3551
3552 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3553 const char *caller);
3554
3555 /**
3556 * ib_alloc_pd - Allocates an unused protection domain.
3557 * @device: The device on which to allocate the protection domain.
3558 * @flags: protection domain flags
3559 *
3560 * A protection domain object provides an association between QPs, shared
3561 * receive queues, address handles, memory regions, and memory windows.
3562 *
3563 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3564 * memory operations.
3565 */
3566 #define ib_alloc_pd(device, flags) \
3567 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3568
3569 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3570
3571 /**
3572 * ib_dealloc_pd - Deallocate kernel PD
3573 * @pd: The protection domain
3574 *
3575 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3576 */
ib_dealloc_pd(struct ib_pd * pd)3577 static inline void ib_dealloc_pd(struct ib_pd *pd)
3578 {
3579 int ret = ib_dealloc_pd_user(pd, NULL);
3580
3581 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3582 }
3583
3584 enum rdma_create_ah_flags {
3585 /* In a sleepable context */
3586 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3587 };
3588
3589 /**
3590 * rdma_create_ah - Creates an address handle for the given address vector.
3591 * @pd: The protection domain associated with the address handle.
3592 * @ah_attr: The attributes of the address vector.
3593 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3594 *
3595 * The address handle is used to reference a local or global destination
3596 * in all UD QP post sends.
3597 */
3598 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3599 u32 flags);
3600
3601 /**
3602 * rdma_create_user_ah - Creates an address handle for the given address vector.
3603 * It resolves destination mac address for ah attribute of RoCE type.
3604 * @pd: The protection domain associated with the address handle.
3605 * @ah_attr: The attributes of the address vector.
3606 * @udata: pointer to user's input output buffer information need by
3607 * provider driver.
3608 *
3609 * It returns 0 on success and returns appropriate error code on error.
3610 * The address handle is used to reference a local or global destination
3611 * in all UD QP post sends.
3612 */
3613 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3614 struct rdma_ah_attr *ah_attr,
3615 struct ib_udata *udata);
3616 /**
3617 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3618 * work completion.
3619 * @hdr: the L3 header to parse
3620 * @net_type: type of header to parse
3621 * @sgid: place to store source gid
3622 * @dgid: place to store destination gid
3623 */
3624 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3625 enum rdma_network_type net_type,
3626 union ib_gid *sgid, union ib_gid *dgid);
3627
3628 /**
3629 * ib_get_rdma_header_version - Get the header version
3630 * @hdr: the L3 header to parse
3631 */
3632 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3633
3634 /**
3635 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3636 * work completion.
3637 * @device: Device on which the received message arrived.
3638 * @port_num: Port on which the received message arrived.
3639 * @wc: Work completion associated with the received message.
3640 * @grh: References the received global route header. This parameter is
3641 * ignored unless the work completion indicates that the GRH is valid.
3642 * @ah_attr: Returned attributes that can be used when creating an address
3643 * handle for replying to the message.
3644 * When ib_init_ah_attr_from_wc() returns success,
3645 * (a) for IB link layer it optionally contains a reference to SGID attribute
3646 * when GRH is present for IB link layer.
3647 * (b) for RoCE link layer it contains a reference to SGID attribute.
3648 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3649 * attributes which are initialized using ib_init_ah_attr_from_wc().
3650 *
3651 */
3652 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3653 const struct ib_wc *wc, const struct ib_grh *grh,
3654 struct rdma_ah_attr *ah_attr);
3655
3656 /**
3657 * ib_create_ah_from_wc - Creates an address handle associated with the
3658 * sender of the specified work completion.
3659 * @pd: The protection domain associated with the address handle.
3660 * @wc: Work completion information associated with a received message.
3661 * @grh: References the received global route header. This parameter is
3662 * ignored unless the work completion indicates that the GRH is valid.
3663 * @port_num: The outbound port number to associate with the address.
3664 *
3665 * The address handle is used to reference a local or global destination
3666 * in all UD QP post sends.
3667 */
3668 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3669 const struct ib_grh *grh, u32 port_num);
3670
3671 /**
3672 * rdma_modify_ah - Modifies the address vector associated with an address
3673 * handle.
3674 * @ah: The address handle to modify.
3675 * @ah_attr: The new address vector attributes to associate with the
3676 * address handle.
3677 */
3678 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3679
3680 /**
3681 * rdma_query_ah - Queries the address vector associated with an address
3682 * handle.
3683 * @ah: The address handle to query.
3684 * @ah_attr: The address vector attributes associated with the address
3685 * handle.
3686 */
3687 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3688
3689 enum rdma_destroy_ah_flags {
3690 /* In a sleepable context */
3691 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3692 };
3693
3694 /**
3695 * rdma_destroy_ah_user - Destroys an address handle.
3696 * @ah: The address handle to destroy.
3697 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3698 * @udata: Valid user data or NULL for kernel objects
3699 */
3700 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3701
3702 /**
3703 * rdma_destroy_ah - Destroys an kernel address handle.
3704 * @ah: The address handle to destroy.
3705 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3706 *
3707 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3708 */
rdma_destroy_ah(struct ib_ah * ah,u32 flags)3709 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3710 {
3711 int ret = rdma_destroy_ah_user(ah, flags, NULL);
3712
3713 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3714 }
3715
3716 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3717 struct ib_srq_init_attr *srq_init_attr,
3718 struct ib_usrq_object *uobject,
3719 struct ib_udata *udata);
3720 static inline struct ib_srq *
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)3721 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3722 {
3723 if (!pd->device->ops.create_srq)
3724 return ERR_PTR(-EOPNOTSUPP);
3725
3726 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3727 }
3728
3729 /**
3730 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3731 * @srq: The SRQ to modify.
3732 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3733 * the current values of selected SRQ attributes are returned.
3734 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3735 * are being modified.
3736 *
3737 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3738 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3739 * the number of receives queued drops below the limit.
3740 */
3741 int ib_modify_srq(struct ib_srq *srq,
3742 struct ib_srq_attr *srq_attr,
3743 enum ib_srq_attr_mask srq_attr_mask);
3744
3745 /**
3746 * ib_query_srq - Returns the attribute list and current values for the
3747 * specified SRQ.
3748 * @srq: The SRQ to query.
3749 * @srq_attr: The attributes of the specified SRQ.
3750 */
3751 int ib_query_srq(struct ib_srq *srq,
3752 struct ib_srq_attr *srq_attr);
3753
3754 /**
3755 * ib_destroy_srq_user - Destroys the specified SRQ.
3756 * @srq: The SRQ to destroy.
3757 * @udata: Valid user data or NULL for kernel objects
3758 */
3759 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3760
3761 /**
3762 * ib_destroy_srq - Destroys the specified kernel SRQ.
3763 * @srq: The SRQ to destroy.
3764 *
3765 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3766 */
ib_destroy_srq(struct ib_srq * srq)3767 static inline void ib_destroy_srq(struct ib_srq *srq)
3768 {
3769 int ret = ib_destroy_srq_user(srq, NULL);
3770
3771 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3772 }
3773
3774 /**
3775 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3776 * @srq: The SRQ to post the work request on.
3777 * @recv_wr: A list of work requests to post on the receive queue.
3778 * @bad_recv_wr: On an immediate failure, this parameter will reference
3779 * the work request that failed to be posted on the QP.
3780 */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3781 static inline int ib_post_srq_recv(struct ib_srq *srq,
3782 const struct ib_recv_wr *recv_wr,
3783 const struct ib_recv_wr **bad_recv_wr)
3784 {
3785 const struct ib_recv_wr *dummy;
3786
3787 return srq->device->ops.post_srq_recv(srq, recv_wr,
3788 bad_recv_wr ? : &dummy);
3789 }
3790
3791 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3792 struct ib_qp_init_attr *qp_init_attr,
3793 const char *caller);
3794 /**
3795 * ib_create_qp - Creates a kernel QP associated with the specific protection
3796 * domain.
3797 * @pd: The protection domain associated with the QP.
3798 * @init_attr: A list of initial attributes required to create the
3799 * QP. If QP creation succeeds, then the attributes are updated to
3800 * the actual capabilities of the created QP.
3801 */
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * init_attr)3802 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3803 struct ib_qp_init_attr *init_attr)
3804 {
3805 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3806 }
3807
3808 /**
3809 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3810 * @qp: The QP to modify.
3811 * @attr: On input, specifies the QP attributes to modify. On output,
3812 * the current values of selected QP attributes are returned.
3813 * @attr_mask: A bit-mask used to specify which attributes of the QP
3814 * are being modified.
3815 * @udata: pointer to user's input output buffer information
3816 * are being modified.
3817 * It returns 0 on success and returns appropriate error code on error.
3818 */
3819 int ib_modify_qp_with_udata(struct ib_qp *qp,
3820 struct ib_qp_attr *attr,
3821 int attr_mask,
3822 struct ib_udata *udata);
3823
3824 /**
3825 * ib_modify_qp - Modifies the attributes for the specified QP and then
3826 * transitions the QP to the given state.
3827 * @qp: The QP to modify.
3828 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3829 * the current values of selected QP attributes are returned.
3830 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3831 * are being modified.
3832 */
3833 int ib_modify_qp(struct ib_qp *qp,
3834 struct ib_qp_attr *qp_attr,
3835 int qp_attr_mask);
3836
3837 /**
3838 * ib_query_qp - Returns the attribute list and current values for the
3839 * specified QP.
3840 * @qp: The QP to query.
3841 * @qp_attr: The attributes of the specified QP.
3842 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3843 * @qp_init_attr: Additional attributes of the selected QP.
3844 *
3845 * The qp_attr_mask may be used to limit the query to gathering only the
3846 * selected attributes.
3847 */
3848 int ib_query_qp(struct ib_qp *qp,
3849 struct ib_qp_attr *qp_attr,
3850 int qp_attr_mask,
3851 struct ib_qp_init_attr *qp_init_attr);
3852
3853 /**
3854 * ib_destroy_qp - Destroys the specified QP.
3855 * @qp: The QP to destroy.
3856 * @udata: Valid udata or NULL for kernel objects
3857 */
3858 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3859
3860 /**
3861 * ib_destroy_qp - Destroys the specified kernel QP.
3862 * @qp: The QP to destroy.
3863 *
3864 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3865 */
ib_destroy_qp(struct ib_qp * qp)3866 static inline int ib_destroy_qp(struct ib_qp *qp)
3867 {
3868 return ib_destroy_qp_user(qp, NULL);
3869 }
3870
3871 /**
3872 * ib_open_qp - Obtain a reference to an existing sharable QP.
3873 * @xrcd - XRC domain
3874 * @qp_open_attr: Attributes identifying the QP to open.
3875 *
3876 * Returns a reference to a sharable QP.
3877 */
3878 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3879 struct ib_qp_open_attr *qp_open_attr);
3880
3881 /**
3882 * ib_close_qp - Release an external reference to a QP.
3883 * @qp: The QP handle to release
3884 *
3885 * The opened QP handle is released by the caller. The underlying
3886 * shared QP is not destroyed until all internal references are released.
3887 */
3888 int ib_close_qp(struct ib_qp *qp);
3889
3890 /**
3891 * ib_post_send - Posts a list of work requests to the send queue of
3892 * the specified QP.
3893 * @qp: The QP to post the work request on.
3894 * @send_wr: A list of work requests to post on the send queue.
3895 * @bad_send_wr: On an immediate failure, this parameter will reference
3896 * the work request that failed to be posted on the QP.
3897 *
3898 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3899 * error is returned, the QP state shall not be affected,
3900 * ib_post_send() will return an immediate error after queueing any
3901 * earlier work requests in the list.
3902 */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3903 static inline int ib_post_send(struct ib_qp *qp,
3904 const struct ib_send_wr *send_wr,
3905 const struct ib_send_wr **bad_send_wr)
3906 {
3907 const struct ib_send_wr *dummy;
3908
3909 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3910 }
3911
3912 /**
3913 * ib_post_recv - Posts a list of work requests to the receive queue of
3914 * the specified QP.
3915 * @qp: The QP to post the work request on.
3916 * @recv_wr: A list of work requests to post on the receive queue.
3917 * @bad_recv_wr: On an immediate failure, this parameter will reference
3918 * the work request that failed to be posted on the QP.
3919 */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3920 static inline int ib_post_recv(struct ib_qp *qp,
3921 const struct ib_recv_wr *recv_wr,
3922 const struct ib_recv_wr **bad_recv_wr)
3923 {
3924 const struct ib_recv_wr *dummy;
3925
3926 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3927 }
3928
3929 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3930 int comp_vector, enum ib_poll_context poll_ctx,
3931 const char *caller);
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3932 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3933 int nr_cqe, int comp_vector,
3934 enum ib_poll_context poll_ctx)
3935 {
3936 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3937 KBUILD_MODNAME);
3938 }
3939
3940 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3941 int nr_cqe, enum ib_poll_context poll_ctx,
3942 const char *caller);
3943
3944 /**
3945 * ib_alloc_cq_any: Allocate kernel CQ
3946 * @dev: The IB device
3947 * @private: Private data attached to the CQE
3948 * @nr_cqe: Number of CQEs in the CQ
3949 * @poll_ctx: Context used for polling the CQ
3950 */
ib_alloc_cq_any(struct ib_device * dev,void * private,int nr_cqe,enum ib_poll_context poll_ctx)3951 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3952 void *private, int nr_cqe,
3953 enum ib_poll_context poll_ctx)
3954 {
3955 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3956 KBUILD_MODNAME);
3957 }
3958
3959 void ib_free_cq(struct ib_cq *cq);
3960 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3961
3962 /**
3963 * ib_create_cq - Creates a CQ on the specified device.
3964 * @device: The device on which to create the CQ.
3965 * @comp_handler: A user-specified callback that is invoked when a
3966 * completion event occurs on the CQ.
3967 * @event_handler: A user-specified callback that is invoked when an
3968 * asynchronous event not associated with a completion occurs on the CQ.
3969 * @cq_context: Context associated with the CQ returned to the user via
3970 * the associated completion and event handlers.
3971 * @cq_attr: The attributes the CQ should be created upon.
3972 *
3973 * Users can examine the cq structure to determine the actual CQ size.
3974 */
3975 struct ib_cq *__ib_create_cq(struct ib_device *device,
3976 ib_comp_handler comp_handler,
3977 void (*event_handler)(struct ib_event *, void *),
3978 void *cq_context,
3979 const struct ib_cq_init_attr *cq_attr,
3980 const char *caller);
3981 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3982 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3983
3984 /**
3985 * ib_resize_cq - Modifies the capacity of the CQ.
3986 * @cq: The CQ to resize.
3987 * @cqe: The minimum size of the CQ.
3988 *
3989 * Users can examine the cq structure to determine the actual CQ size.
3990 */
3991 int ib_resize_cq(struct ib_cq *cq, int cqe);
3992
3993 /**
3994 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3995 * @cq: The CQ to modify.
3996 * @cq_count: number of CQEs that will trigger an event
3997 * @cq_period: max period of time in usec before triggering an event
3998 *
3999 */
4000 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
4001
4002 /**
4003 * ib_destroy_cq_user - Destroys the specified CQ.
4004 * @cq: The CQ to destroy.
4005 * @udata: Valid user data or NULL for kernel objects
4006 */
4007 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
4008
4009 /**
4010 * ib_destroy_cq - Destroys the specified kernel CQ.
4011 * @cq: The CQ to destroy.
4012 *
4013 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
4014 */
ib_destroy_cq(struct ib_cq * cq)4015 static inline void ib_destroy_cq(struct ib_cq *cq)
4016 {
4017 int ret = ib_destroy_cq_user(cq, NULL);
4018
4019 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
4020 }
4021
4022 /**
4023 * ib_poll_cq - poll a CQ for completion(s)
4024 * @cq:the CQ being polled
4025 * @num_entries:maximum number of completions to return
4026 * @wc:array of at least @num_entries &struct ib_wc where completions
4027 * will be returned
4028 *
4029 * Poll a CQ for (possibly multiple) completions. If the return value
4030 * is < 0, an error occurred. If the return value is >= 0, it is the
4031 * number of completions returned. If the return value is
4032 * non-negative and < num_entries, then the CQ was emptied.
4033 */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)4034 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
4035 struct ib_wc *wc)
4036 {
4037 return cq->device->ops.poll_cq(cq, num_entries, wc);
4038 }
4039
4040 /**
4041 * ib_req_notify_cq - Request completion notification on a CQ.
4042 * @cq: The CQ to generate an event for.
4043 * @flags:
4044 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
4045 * to request an event on the next solicited event or next work
4046 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
4047 * may also be |ed in to request a hint about missed events, as
4048 * described below.
4049 *
4050 * Return Value:
4051 * < 0 means an error occurred while requesting notification
4052 * == 0 means notification was requested successfully, and if
4053 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4054 * were missed and it is safe to wait for another event. In
4055 * this case is it guaranteed that any work completions added
4056 * to the CQ since the last CQ poll will trigger a completion
4057 * notification event.
4058 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4059 * in. It means that the consumer must poll the CQ again to
4060 * make sure it is empty to avoid missing an event because of a
4061 * race between requesting notification and an entry being
4062 * added to the CQ. This return value means it is possible
4063 * (but not guaranteed) that a work completion has been added
4064 * to the CQ since the last poll without triggering a
4065 * completion notification event.
4066 */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)4067 static inline int ib_req_notify_cq(struct ib_cq *cq,
4068 enum ib_cq_notify_flags flags)
4069 {
4070 return cq->device->ops.req_notify_cq(cq, flags);
4071 }
4072
4073 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4074 int comp_vector_hint,
4075 enum ib_poll_context poll_ctx);
4076
4077 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4078
4079 /*
4080 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4081 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4082 * address into the dma address.
4083 */
ib_uses_virt_dma(struct ib_device * dev)4084 static inline bool ib_uses_virt_dma(struct ib_device *dev)
4085 {
4086 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4087 }
4088
4089 /*
4090 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4091 */
ib_dma_pci_p2p_dma_supported(struct ib_device * dev)4092 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4093 {
4094 if (ib_uses_virt_dma(dev))
4095 return false;
4096
4097 return dma_pci_p2pdma_supported(dev->dma_device);
4098 }
4099
4100 /**
4101 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4102 * @dma_addr: The DMA address
4103 *
4104 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4105 * going through the dma_addr marshalling.
4106 */
ib_virt_dma_to_ptr(u64 dma_addr)4107 static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4108 {
4109 /* virt_dma mode maps the kvs's directly into the dma addr */
4110 return (void *)(uintptr_t)dma_addr;
4111 }
4112
4113 /**
4114 * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4115 * @dma_addr: The DMA address
4116 *
4117 * Used by ib_uses_virt_dma() device to get back to the struct page after going
4118 * through the dma_addr marshalling.
4119 */
ib_virt_dma_to_page(u64 dma_addr)4120 static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4121 {
4122 return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4123 }
4124
4125 /**
4126 * ib_dma_mapping_error - check a DMA addr for error
4127 * @dev: The device for which the dma_addr was created
4128 * @dma_addr: The DMA address to check
4129 */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)4130 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4131 {
4132 if (ib_uses_virt_dma(dev))
4133 return 0;
4134 return dma_mapping_error(dev->dma_device, dma_addr);
4135 }
4136
4137 /**
4138 * ib_dma_map_single - Map a kernel virtual address to DMA address
4139 * @dev: The device for which the dma_addr is to be created
4140 * @cpu_addr: The kernel virtual address
4141 * @size: The size of the region in bytes
4142 * @direction: The direction of the DMA
4143 */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)4144 static inline u64 ib_dma_map_single(struct ib_device *dev,
4145 void *cpu_addr, size_t size,
4146 enum dma_data_direction direction)
4147 {
4148 if (ib_uses_virt_dma(dev))
4149 return (uintptr_t)cpu_addr;
4150 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4151 }
4152
4153 /**
4154 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4155 * @dev: The device for which the DMA address was created
4156 * @addr: The DMA address
4157 * @size: The size of the region in bytes
4158 * @direction: The direction of the DMA
4159 */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4160 static inline void ib_dma_unmap_single(struct ib_device *dev,
4161 u64 addr, size_t size,
4162 enum dma_data_direction direction)
4163 {
4164 if (!ib_uses_virt_dma(dev))
4165 dma_unmap_single(dev->dma_device, addr, size, direction);
4166 }
4167
4168 /**
4169 * ib_dma_map_page - Map a physical page to DMA address
4170 * @dev: The device for which the dma_addr is to be created
4171 * @page: The page to be mapped
4172 * @offset: The offset within the page
4173 * @size: The size of the region in bytes
4174 * @direction: The direction of the DMA
4175 */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)4176 static inline u64 ib_dma_map_page(struct ib_device *dev,
4177 struct page *page,
4178 unsigned long offset,
4179 size_t size,
4180 enum dma_data_direction direction)
4181 {
4182 if (ib_uses_virt_dma(dev))
4183 return (uintptr_t)(page_address(page) + offset);
4184 return dma_map_page(dev->dma_device, page, offset, size, direction);
4185 }
4186
4187 /**
4188 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4189 * @dev: The device for which the DMA address was created
4190 * @addr: The DMA address
4191 * @size: The size of the region in bytes
4192 * @direction: The direction of the DMA
4193 */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4194 static inline void ib_dma_unmap_page(struct ib_device *dev,
4195 u64 addr, size_t size,
4196 enum dma_data_direction direction)
4197 {
4198 if (!ib_uses_virt_dma(dev))
4199 dma_unmap_page(dev->dma_device, addr, size, direction);
4200 }
4201
4202 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4203 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4204 struct scatterlist *sg, int nents,
4205 enum dma_data_direction direction,
4206 unsigned long dma_attrs)
4207 {
4208 if (ib_uses_virt_dma(dev))
4209 return ib_dma_virt_map_sg(dev, sg, nents);
4210 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4211 dma_attrs);
4212 }
4213
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4214 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4215 struct scatterlist *sg, int nents,
4216 enum dma_data_direction direction,
4217 unsigned long dma_attrs)
4218 {
4219 if (!ib_uses_virt_dma(dev))
4220 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4221 dma_attrs);
4222 }
4223
4224 /**
4225 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4226 * @dev: The device for which the DMA addresses are to be created
4227 * @sg: The sg_table object describing the buffer
4228 * @direction: The direction of the DMA
4229 * @attrs: Optional DMA attributes for the map operation
4230 */
ib_dma_map_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4231 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4232 struct sg_table *sgt,
4233 enum dma_data_direction direction,
4234 unsigned long dma_attrs)
4235 {
4236 int nents;
4237
4238 if (ib_uses_virt_dma(dev)) {
4239 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4240 if (!nents)
4241 return -EIO;
4242 sgt->nents = nents;
4243 return 0;
4244 }
4245 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4246 }
4247
ib_dma_unmap_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4248 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4249 struct sg_table *sgt,
4250 enum dma_data_direction direction,
4251 unsigned long dma_attrs)
4252 {
4253 if (!ib_uses_virt_dma(dev))
4254 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4255 }
4256
4257 /**
4258 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4259 * @dev: The device for which the DMA addresses are to be created
4260 * @sg: The array of scatter/gather entries
4261 * @nents: The number of scatter/gather entries
4262 * @direction: The direction of the DMA
4263 */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4264 static inline int ib_dma_map_sg(struct ib_device *dev,
4265 struct scatterlist *sg, int nents,
4266 enum dma_data_direction direction)
4267 {
4268 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4269 }
4270
4271 /**
4272 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4273 * @dev: The device for which the DMA addresses were created
4274 * @sg: The array of scatter/gather entries
4275 * @nents: The number of scatter/gather entries
4276 * @direction: The direction of the DMA
4277 */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4278 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4279 struct scatterlist *sg, int nents,
4280 enum dma_data_direction direction)
4281 {
4282 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4283 }
4284
4285 /**
4286 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4287 * @dev: The device to query
4288 *
4289 * The returned value represents a size in bytes.
4290 */
ib_dma_max_seg_size(struct ib_device * dev)4291 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4292 {
4293 if (ib_uses_virt_dma(dev))
4294 return UINT_MAX;
4295 return dma_get_max_seg_size(dev->dma_device);
4296 }
4297
4298 /**
4299 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4300 * @dev: The device for which the DMA address was created
4301 * @addr: The DMA address
4302 * @size: The size of the region in bytes
4303 * @dir: The direction of the DMA
4304 */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4305 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4306 u64 addr,
4307 size_t size,
4308 enum dma_data_direction dir)
4309 {
4310 if (!ib_uses_virt_dma(dev))
4311 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4312 }
4313
4314 /**
4315 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4316 * @dev: The device for which the DMA address was created
4317 * @addr: The DMA address
4318 * @size: The size of the region in bytes
4319 * @dir: The direction of the DMA
4320 */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4321 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4322 u64 addr,
4323 size_t size,
4324 enum dma_data_direction dir)
4325 {
4326 if (!ib_uses_virt_dma(dev))
4327 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4328 }
4329
4330 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4331 * space. This function should be called when 'current' is the owning MM.
4332 */
4333 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4334 u64 virt_addr, int mr_access_flags);
4335
4336 /* ib_advise_mr - give an advice about an address range in a memory region */
4337 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4338 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4339 /**
4340 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4341 * HCA translation table.
4342 * @mr: The memory region to deregister.
4343 * @udata: Valid user data or NULL for kernel object
4344 *
4345 * This function can fail, if the memory region has memory windows bound to it.
4346 */
4347 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4348
4349 /**
4350 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4351 * HCA translation table.
4352 * @mr: The memory region to deregister.
4353 *
4354 * This function can fail, if the memory region has memory windows bound to it.
4355 *
4356 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4357 */
ib_dereg_mr(struct ib_mr * mr)4358 static inline int ib_dereg_mr(struct ib_mr *mr)
4359 {
4360 return ib_dereg_mr_user(mr, NULL);
4361 }
4362
4363 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4364 u32 max_num_sg);
4365
4366 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4367 u32 max_num_data_sg,
4368 u32 max_num_meta_sg);
4369
4370 /**
4371 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4372 * R_Key and L_Key.
4373 * @mr - struct ib_mr pointer to be updated.
4374 * @newkey - new key to be used.
4375 */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)4376 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4377 {
4378 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4379 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4380 }
4381
4382 /**
4383 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4384 * for calculating a new rkey for type 2 memory windows.
4385 * @rkey - the rkey to increment.
4386 */
ib_inc_rkey(u32 rkey)4387 static inline u32 ib_inc_rkey(u32 rkey)
4388 {
4389 const u32 mask = 0x000000ff;
4390 return ((rkey + 1) & mask) | (rkey & ~mask);
4391 }
4392
4393 /**
4394 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4395 * @qp: QP to attach to the multicast group. The QP must be type
4396 * IB_QPT_UD.
4397 * @gid: Multicast group GID.
4398 * @lid: Multicast group LID in host byte order.
4399 *
4400 * In order to send and receive multicast packets, subnet
4401 * administration must have created the multicast group and configured
4402 * the fabric appropriately. The port associated with the specified
4403 * QP must also be a member of the multicast group.
4404 */
4405 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4406
4407 /**
4408 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4409 * @qp: QP to detach from the multicast group.
4410 * @gid: Multicast group GID.
4411 * @lid: Multicast group LID in host byte order.
4412 */
4413 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4414
4415 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4416 struct inode *inode, struct ib_udata *udata);
4417 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4418
ib_check_mr_access(struct ib_device * ib_dev,unsigned int flags)4419 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4420 unsigned int flags)
4421 {
4422 u64 device_cap = ib_dev->attrs.device_cap_flags;
4423
4424 /*
4425 * Local write permission is required if remote write or
4426 * remote atomic permission is also requested.
4427 */
4428 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4429 !(flags & IB_ACCESS_LOCAL_WRITE))
4430 return -EINVAL;
4431
4432 if (flags & ~IB_ACCESS_SUPPORTED)
4433 return -EINVAL;
4434
4435 if (flags & IB_ACCESS_ON_DEMAND &&
4436 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4437 return -EOPNOTSUPP;
4438
4439 if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4440 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4441 (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4442 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4443 return -EOPNOTSUPP;
4444
4445 return 0;
4446 }
4447
ib_access_writable(int access_flags)4448 static inline bool ib_access_writable(int access_flags)
4449 {
4450 /*
4451 * We have writable memory backing the MR if any of the following
4452 * access flags are set. "Local write" and "remote write" obviously
4453 * require write access. "Remote atomic" can do things like fetch and
4454 * add, which will modify memory, and "MW bind" can change permissions
4455 * by binding a window.
4456 */
4457 return access_flags &
4458 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4459 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4460 }
4461
4462 /**
4463 * ib_check_mr_status: lightweight check of MR status.
4464 * This routine may provide status checks on a selected
4465 * ib_mr. first use is for signature status check.
4466 *
4467 * @mr: A memory region.
4468 * @check_mask: Bitmask of which checks to perform from
4469 * ib_mr_status_check enumeration.
4470 * @mr_status: The container of relevant status checks.
4471 * failed checks will be indicated in the status bitmask
4472 * and the relevant info shall be in the error item.
4473 */
4474 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4475 struct ib_mr_status *mr_status);
4476
4477 /**
4478 * ib_device_try_get: Hold a registration lock
4479 * device: The device to lock
4480 *
4481 * A device under an active registration lock cannot become unregistered. It
4482 * is only possible to obtain a registration lock on a device that is fully
4483 * registered, otherwise this function returns false.
4484 *
4485 * The registration lock is only necessary for actions which require the
4486 * device to still be registered. Uses that only require the device pointer to
4487 * be valid should use get_device(&ibdev->dev) to hold the memory.
4488 *
4489 */
ib_device_try_get(struct ib_device * dev)4490 static inline bool ib_device_try_get(struct ib_device *dev)
4491 {
4492 return refcount_inc_not_zero(&dev->refcount);
4493 }
4494
4495 void ib_device_put(struct ib_device *device);
4496 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4497 enum rdma_driver_id driver_id);
4498 struct ib_device *ib_device_get_by_name(const char *name,
4499 enum rdma_driver_id driver_id);
4500 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4501 u16 pkey, const union ib_gid *gid,
4502 const struct sockaddr *addr);
4503 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4504 unsigned int port);
4505 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
4506 u32 port);
4507 int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev,
4508 u32 *port);
4509
ib_get_curr_port_state(struct net_device * net_dev)4510 static inline enum ib_port_state ib_get_curr_port_state(struct net_device *net_dev)
4511 {
4512 return (netif_running(net_dev) && netif_carrier_ok(net_dev)) ?
4513 IB_PORT_ACTIVE : IB_PORT_DOWN;
4514 }
4515
4516 void ib_dispatch_port_state_event(struct ib_device *ibdev,
4517 struct net_device *ndev);
4518 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4519 struct ib_wq_init_attr *init_attr);
4520 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4521
4522 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4523 unsigned int *sg_offset, unsigned int page_size);
4524 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4525 int data_sg_nents, unsigned int *data_sg_offset,
4526 struct scatterlist *meta_sg, int meta_sg_nents,
4527 unsigned int *meta_sg_offset, unsigned int page_size);
4528
4529 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)4530 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4531 unsigned int *sg_offset, unsigned int page_size)
4532 {
4533 int n;
4534
4535 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4536 mr->iova = 0;
4537
4538 return n;
4539 }
4540
4541 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4542 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4543
4544 void ib_drain_rq(struct ib_qp *qp);
4545 void ib_drain_sq(struct ib_qp *qp);
4546 void ib_drain_qp(struct ib_qp *qp);
4547
4548 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4549 u8 *width);
4550
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)4551 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4552 {
4553 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4554 return attr->roce.dmac;
4555 return NULL;
4556 }
4557
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)4558 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4559 {
4560 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4561 attr->ib.dlid = (u16)dlid;
4562 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4563 attr->opa.dlid = dlid;
4564 }
4565
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)4566 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4567 {
4568 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4569 return attr->ib.dlid;
4570 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4571 return attr->opa.dlid;
4572 return 0;
4573 }
4574
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)4575 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4576 {
4577 attr->sl = sl;
4578 }
4579
rdma_ah_get_sl(const struct rdma_ah_attr * attr)4580 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4581 {
4582 return attr->sl;
4583 }
4584
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)4585 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4586 u8 src_path_bits)
4587 {
4588 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4589 attr->ib.src_path_bits = src_path_bits;
4590 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4591 attr->opa.src_path_bits = src_path_bits;
4592 }
4593
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)4594 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4595 {
4596 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4597 return attr->ib.src_path_bits;
4598 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4599 return attr->opa.src_path_bits;
4600 return 0;
4601 }
4602
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)4603 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4604 bool make_grd)
4605 {
4606 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4607 attr->opa.make_grd = make_grd;
4608 }
4609
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)4610 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4611 {
4612 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4613 return attr->opa.make_grd;
4614 return false;
4615 }
4616
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u32 port_num)4617 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4618 {
4619 attr->port_num = port_num;
4620 }
4621
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)4622 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4623 {
4624 return attr->port_num;
4625 }
4626
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4627 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4628 u8 static_rate)
4629 {
4630 attr->static_rate = static_rate;
4631 }
4632
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4633 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4634 {
4635 return attr->static_rate;
4636 }
4637
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4638 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4639 enum ib_ah_flags flag)
4640 {
4641 attr->ah_flags = flag;
4642 }
4643
4644 static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4645 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4646 {
4647 return attr->ah_flags;
4648 }
4649
4650 static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4651 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4652 {
4653 return &attr->grh;
4654 }
4655
4656 /*To retrieve and modify the grh */
4657 static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4658 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4659 {
4660 return &attr->grh;
4661 }
4662
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4663 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4664 {
4665 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4666
4667 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4668 }
4669
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4670 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4671 __be64 prefix)
4672 {
4673 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4674
4675 grh->dgid.global.subnet_prefix = prefix;
4676 }
4677
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4678 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4679 __be64 if_id)
4680 {
4681 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4682
4683 grh->dgid.global.interface_id = if_id;
4684 }
4685
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4686 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4687 union ib_gid *dgid, u32 flow_label,
4688 u8 sgid_index, u8 hop_limit,
4689 u8 traffic_class)
4690 {
4691 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4692
4693 attr->ah_flags = IB_AH_GRH;
4694 if (dgid)
4695 grh->dgid = *dgid;
4696 grh->flow_label = flow_label;
4697 grh->sgid_index = sgid_index;
4698 grh->hop_limit = hop_limit;
4699 grh->traffic_class = traffic_class;
4700 grh->sgid_attr = NULL;
4701 }
4702
4703 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4704 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4705 u32 flow_label, u8 hop_limit, u8 traffic_class,
4706 const struct ib_gid_attr *sgid_attr);
4707 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4708 const struct rdma_ah_attr *src);
4709 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4710 const struct rdma_ah_attr *new);
4711 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4712
4713 /**
4714 * rdma_ah_find_type - Return address handle type.
4715 *
4716 * @dev: Device to be checked
4717 * @port_num: Port number
4718 */
rdma_ah_find_type(struct ib_device * dev,u32 port_num)4719 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4720 u32 port_num)
4721 {
4722 if (rdma_protocol_roce(dev, port_num))
4723 return RDMA_AH_ATTR_TYPE_ROCE;
4724 if (rdma_protocol_ib(dev, port_num)) {
4725 if (rdma_cap_opa_ah(dev, port_num))
4726 return RDMA_AH_ATTR_TYPE_OPA;
4727 return RDMA_AH_ATTR_TYPE_IB;
4728 }
4729 if (dev->type == RDMA_DEVICE_TYPE_SMI)
4730 return RDMA_AH_ATTR_TYPE_IB;
4731
4732 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4733 }
4734
4735 /**
4736 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4737 * In the current implementation the only way to
4738 * get the 32bit lid is from other sources for OPA.
4739 * For IB, lids will always be 16bits so cast the
4740 * value accordingly.
4741 *
4742 * @lid: A 32bit LID
4743 */
ib_lid_cpu16(u32 lid)4744 static inline u16 ib_lid_cpu16(u32 lid)
4745 {
4746 WARN_ON_ONCE(lid & 0xFFFF0000);
4747 return (u16)lid;
4748 }
4749
4750 /**
4751 * ib_lid_be16 - Return lid in 16bit BE encoding.
4752 *
4753 * @lid: A 32bit LID
4754 */
ib_lid_be16(u32 lid)4755 static inline __be16 ib_lid_be16(u32 lid)
4756 {
4757 WARN_ON_ONCE(lid & 0xFFFF0000);
4758 return cpu_to_be16((u16)lid);
4759 }
4760
4761 /**
4762 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4763 * vector
4764 * @device: the rdma device
4765 * @comp_vector: index of completion vector
4766 *
4767 * Returns NULL on failure, otherwise a corresponding cpu map of the
4768 * completion vector (returns all-cpus map if the device driver doesn't
4769 * implement get_vector_affinity).
4770 */
4771 static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4772 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4773 {
4774 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4775 !device->ops.get_vector_affinity)
4776 return NULL;
4777
4778 return device->ops.get_vector_affinity(device, comp_vector);
4779
4780 }
4781
4782 /**
4783 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4784 * and add their gids, as needed, to the relevant RoCE devices.
4785 *
4786 * @device: the rdma device
4787 */
4788 void rdma_roce_rescan_device(struct ib_device *ibdev);
4789 void rdma_roce_rescan_port(struct ib_device *ib_dev, u32 port);
4790 void roce_del_all_netdev_gids(struct ib_device *ib_dev,
4791 u32 port, struct net_device *ndev);
4792
4793 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4794
4795 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
4796 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4797 #else
uverbs_destroy_def_handler(struct uverbs_attr_bundle * attrs)4798 static inline int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs)
4799 {
4800 return 0;
4801 }
4802 #endif
4803
4804 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4805 enum rdma_netdev_t type, const char *name,
4806 unsigned char name_assign_type,
4807 void (*setup)(struct net_device *));
4808
4809 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4810 enum rdma_netdev_t type, const char *name,
4811 unsigned char name_assign_type,
4812 void (*setup)(struct net_device *),
4813 struct net_device *netdev);
4814
4815 /**
4816 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4817 *
4818 * @device: device pointer for which ib_device pointer to retrieve
4819 *
4820 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4821 *
4822 */
rdma_device_to_ibdev(struct device * device)4823 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4824 {
4825 struct ib_core_device *coredev =
4826 container_of(device, struct ib_core_device, dev);
4827
4828 return coredev->owner;
4829 }
4830
4831 /**
4832 * ibdev_to_node - return the NUMA node for a given ib_device
4833 * @dev: device to get the NUMA node for.
4834 */
ibdev_to_node(struct ib_device * ibdev)4835 static inline int ibdev_to_node(struct ib_device *ibdev)
4836 {
4837 struct device *parent = ibdev->dev.parent;
4838
4839 if (!parent)
4840 return NUMA_NO_NODE;
4841 return dev_to_node(parent);
4842 }
4843
4844 /**
4845 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4846 * ib_device holder structure from device pointer.
4847 *
4848 * NOTE: New drivers should not make use of this API; This API is only for
4849 * existing drivers who have exposed sysfs entries using
4850 * ops->device_group.
4851 */
4852 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4853 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4854
4855 bool rdma_dev_access_netns(const struct ib_device *device,
4856 const struct net *net);
4857
4858 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4859 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4860 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4861
4862 /**
4863 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4864 * on the flow_label
4865 *
4866 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4867 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4868 * convention.
4869 */
rdma_flow_label_to_udp_sport(u32 fl)4870 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4871 {
4872 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4873
4874 fl_low ^= fl_high >> 14;
4875 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4876 }
4877
4878 /**
4879 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4880 * local and remote qpn values
4881 *
4882 * This function folded the multiplication results of two qpns, 24 bit each,
4883 * fields, and converts it to a 20 bit results.
4884 *
4885 * This function will create symmetric flow_label value based on the local
4886 * and remote qpn values. this will allow both the requester and responder
4887 * to calculate the same flow_label for a given connection.
4888 *
4889 * This helper function should be used by driver in case the upper layer
4890 * provide a zero flow_label value. This is to improve entropy of RDMA
4891 * traffic in the network.
4892 */
rdma_calc_flow_label(u32 lqpn,u32 rqpn)4893 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4894 {
4895 u64 v = (u64)lqpn * rqpn;
4896
4897 v ^= v >> 20;
4898 v ^= v >> 40;
4899
4900 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4901 }
4902
4903 /**
4904 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4905 * label. If flow label is not defined in GRH then
4906 * calculate it based on lqpn/rqpn.
4907 *
4908 * @fl: flow label from GRH
4909 * @lqpn: local qp number
4910 * @rqpn: remote qp number
4911 */
rdma_get_udp_sport(u32 fl,u32 lqpn,u32 rqpn)4912 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4913 {
4914 if (!fl)
4915 fl = rdma_calc_flow_label(lqpn, rqpn);
4916
4917 return rdma_flow_label_to_udp_sport(fl);
4918 }
4919
4920 const struct ib_port_immutable*
4921 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4922
4923 /** ib_add_sub_device - Add a sub IB device on an existing one
4924 *
4925 * @parent: The IB device that needs to add a sub device
4926 * @type: The type of the new sub device
4927 * @name: The name of the new sub device
4928 *
4929 *
4930 * Return 0 on success, an error code otherwise
4931 */
4932 int ib_add_sub_device(struct ib_device *parent,
4933 enum rdma_nl_dev_type type,
4934 const char *name);
4935
4936
4937 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get'
4938 *
4939 * @sub: The sub device that is going to be deleted
4940 *
4941 * Return 0 on success, an error code otherwise
4942 */
4943 int ib_del_sub_device_and_put(struct ib_device *sub);
4944
ib_mark_name_assigned_by_user(struct ib_device * ibdev)4945 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev)
4946 {
4947 ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER;
4948 }
4949
4950 #endif /* IB_VERBS_H */
4951