1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/net/intel/libie/rx.h>
5
6 #include "iavf.h"
7 #include "iavf_prototype.h"
8 /* All iavf tracepoints are defined by the include below, which must
9 * be included exactly once across the whole kernel with
10 * CREATE_TRACE_POINTS defined
11 */
12 #define CREATE_TRACE_POINTS
13 #include "iavf_trace.h"
14
15 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
16 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
17 static int iavf_close(struct net_device *netdev);
18 static void iavf_init_get_resources(struct iavf_adapter *adapter);
19 static int iavf_check_reset_complete(struct iavf_hw *hw);
20
21 char iavf_driver_name[] = "iavf";
22 static const char iavf_driver_string[] =
23 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
24
25 static const char iavf_copyright[] =
26 "Copyright (c) 2013 - 2018 Intel Corporation.";
27
28 /* iavf_pci_tbl - PCI Device ID Table
29 *
30 * Wildcard entries (PCI_ANY_ID) should come last
31 * Last entry must be all 0s
32 *
33 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
34 * Class, Class Mask, private data (not used) }
35 */
36 static const struct pci_device_id iavf_pci_tbl[] = {
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
40 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
41 /* required last entry */
42 {0, }
43 };
44
45 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
46
47 MODULE_ALIAS("i40evf");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_IMPORT_NS("LIBETH");
50 MODULE_IMPORT_NS("LIBIE");
51 MODULE_LICENSE("GPL v2");
52
53 static const struct net_device_ops iavf_netdev_ops;
54
iavf_status_to_errno(enum iavf_status status)55 int iavf_status_to_errno(enum iavf_status status)
56 {
57 switch (status) {
58 case IAVF_SUCCESS:
59 return 0;
60 case IAVF_ERR_PARAM:
61 case IAVF_ERR_MAC_TYPE:
62 case IAVF_ERR_INVALID_MAC_ADDR:
63 case IAVF_ERR_INVALID_LINK_SETTINGS:
64 case IAVF_ERR_INVALID_PD_ID:
65 case IAVF_ERR_INVALID_QP_ID:
66 case IAVF_ERR_INVALID_CQ_ID:
67 case IAVF_ERR_INVALID_CEQ_ID:
68 case IAVF_ERR_INVALID_AEQ_ID:
69 case IAVF_ERR_INVALID_SIZE:
70 case IAVF_ERR_INVALID_ARP_INDEX:
71 case IAVF_ERR_INVALID_FPM_FUNC_ID:
72 case IAVF_ERR_QP_INVALID_MSG_SIZE:
73 case IAVF_ERR_INVALID_FRAG_COUNT:
74 case IAVF_ERR_INVALID_ALIGNMENT:
75 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
76 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
77 case IAVF_ERR_INVALID_VF_ID:
78 case IAVF_ERR_INVALID_HMCFN_ID:
79 case IAVF_ERR_INVALID_PBLE_INDEX:
80 case IAVF_ERR_INVALID_SD_INDEX:
81 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
82 case IAVF_ERR_INVALID_SD_TYPE:
83 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
84 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
85 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
86 return -EINVAL;
87 case IAVF_ERR_NVM:
88 case IAVF_ERR_NVM_CHECKSUM:
89 case IAVF_ERR_PHY:
90 case IAVF_ERR_CONFIG:
91 case IAVF_ERR_UNKNOWN_PHY:
92 case IAVF_ERR_LINK_SETUP:
93 case IAVF_ERR_ADAPTER_STOPPED:
94 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
95 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
96 case IAVF_ERR_RESET_FAILED:
97 case IAVF_ERR_BAD_PTR:
98 case IAVF_ERR_SWFW_SYNC:
99 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
100 case IAVF_ERR_QUEUE_EMPTY:
101 case IAVF_ERR_FLUSHED_QUEUE:
102 case IAVF_ERR_OPCODE_MISMATCH:
103 case IAVF_ERR_CQP_COMPL_ERROR:
104 case IAVF_ERR_BACKING_PAGE_ERROR:
105 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
106 case IAVF_ERR_MEMCPY_FAILED:
107 case IAVF_ERR_SRQ_ENABLED:
108 case IAVF_ERR_ADMIN_QUEUE_ERROR:
109 case IAVF_ERR_ADMIN_QUEUE_FULL:
110 case IAVF_ERR_BAD_RDMA_CQE:
111 case IAVF_ERR_NVM_BLANK_MODE:
112 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
113 case IAVF_ERR_DIAG_TEST_FAILED:
114 case IAVF_ERR_FIRMWARE_API_VERSION:
115 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
116 return -EIO;
117 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
118 return -ENODEV;
119 case IAVF_ERR_NO_AVAILABLE_VSI:
120 case IAVF_ERR_RING_FULL:
121 return -ENOSPC;
122 case IAVF_ERR_NO_MEMORY:
123 return -ENOMEM;
124 case IAVF_ERR_TIMEOUT:
125 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
126 return -ETIMEDOUT;
127 case IAVF_ERR_NOT_IMPLEMENTED:
128 case IAVF_NOT_SUPPORTED:
129 return -EOPNOTSUPP;
130 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
131 return -EALREADY;
132 case IAVF_ERR_NOT_READY:
133 return -EBUSY;
134 case IAVF_ERR_BUF_TOO_SHORT:
135 return -EMSGSIZE;
136 }
137
138 return -EIO;
139 }
140
virtchnl_status_to_errno(enum virtchnl_status_code v_status)141 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
142 {
143 switch (v_status) {
144 case VIRTCHNL_STATUS_SUCCESS:
145 return 0;
146 case VIRTCHNL_STATUS_ERR_PARAM:
147 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
148 return -EINVAL;
149 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
150 return -ENOMEM;
151 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
152 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
153 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
154 return -EIO;
155 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
156 return -EOPNOTSUPP;
157 }
158
159 return -EIO;
160 }
161
162 /**
163 * iavf_pdev_to_adapter - go from pci_dev to adapter
164 * @pdev: pci_dev pointer
165 */
iavf_pdev_to_adapter(struct pci_dev * pdev)166 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
167 {
168 return netdev_priv(pci_get_drvdata(pdev));
169 }
170
171 /**
172 * iavf_is_reset_in_progress - Check if a reset is in progress
173 * @adapter: board private structure
174 */
iavf_is_reset_in_progress(struct iavf_adapter * adapter)175 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
176 {
177 if (adapter->state == __IAVF_RESETTING ||
178 adapter->flags & (IAVF_FLAG_RESET_PENDING |
179 IAVF_FLAG_RESET_NEEDED))
180 return true;
181
182 return false;
183 }
184
185 /**
186 * iavf_wait_for_reset - Wait for reset to finish.
187 * @adapter: board private structure
188 *
189 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
190 */
iavf_wait_for_reset(struct iavf_adapter * adapter)191 int iavf_wait_for_reset(struct iavf_adapter *adapter)
192 {
193 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
194 !iavf_is_reset_in_progress(adapter),
195 msecs_to_jiffies(5000));
196
197 /* If ret < 0 then it means wait was interrupted.
198 * If ret == 0 then it means we got a timeout while waiting
199 * for reset to finish.
200 * If ret > 0 it means reset has finished.
201 */
202 if (ret > 0)
203 return 0;
204 else if (ret < 0)
205 return -EINTR;
206 else
207 return -EBUSY;
208 }
209
210 /**
211 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
212 * @hw: pointer to the HW structure
213 * @mem: ptr to mem struct to fill out
214 * @size: size of memory requested
215 * @alignment: what to align the allocation to
216 **/
iavf_allocate_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem,u64 size,u32 alignment)217 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
218 struct iavf_dma_mem *mem,
219 u64 size, u32 alignment)
220 {
221 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
222
223 if (!mem)
224 return IAVF_ERR_PARAM;
225
226 mem->size = ALIGN(size, alignment);
227 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
228 (dma_addr_t *)&mem->pa, GFP_KERNEL);
229 if (mem->va)
230 return 0;
231 else
232 return IAVF_ERR_NO_MEMORY;
233 }
234
235 /**
236 * iavf_free_dma_mem - wrapper for DMA memory freeing
237 * @hw: pointer to the HW structure
238 * @mem: ptr to mem struct to free
239 **/
iavf_free_dma_mem(struct iavf_hw * hw,struct iavf_dma_mem * mem)240 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
241 {
242 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
243
244 if (!mem || !mem->va)
245 return IAVF_ERR_PARAM;
246 dma_free_coherent(&adapter->pdev->dev, mem->size,
247 mem->va, (dma_addr_t)mem->pa);
248 return 0;
249 }
250
251 /**
252 * iavf_allocate_virt_mem - virt memory alloc wrapper
253 * @hw: pointer to the HW structure
254 * @mem: ptr to mem struct to fill out
255 * @size: size of memory requested
256 **/
iavf_allocate_virt_mem(struct iavf_hw * hw,struct iavf_virt_mem * mem,u32 size)257 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
258 struct iavf_virt_mem *mem, u32 size)
259 {
260 if (!mem)
261 return IAVF_ERR_PARAM;
262
263 mem->size = size;
264 mem->va = kzalloc(size, GFP_KERNEL);
265
266 if (mem->va)
267 return 0;
268 else
269 return IAVF_ERR_NO_MEMORY;
270 }
271
272 /**
273 * iavf_free_virt_mem - virt memory free wrapper
274 * @hw: pointer to the HW structure
275 * @mem: ptr to mem struct to free
276 **/
iavf_free_virt_mem(struct iavf_hw * hw,struct iavf_virt_mem * mem)277 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
278 {
279 kfree(mem->va);
280 }
281
282 /**
283 * iavf_schedule_reset - Set the flags and schedule a reset event
284 * @adapter: board private structure
285 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
286 **/
iavf_schedule_reset(struct iavf_adapter * adapter,u64 flags)287 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
288 {
289 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
290 !(adapter->flags &
291 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
292 adapter->flags |= flags;
293 queue_work(adapter->wq, &adapter->reset_task);
294 }
295 }
296
297 /**
298 * iavf_schedule_aq_request - Set the flags and schedule aq request
299 * @adapter: board private structure
300 * @flags: requested aq flags
301 **/
iavf_schedule_aq_request(struct iavf_adapter * adapter,u64 flags)302 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
303 {
304 adapter->aq_required |= flags;
305 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
306 }
307
308 /**
309 * iavf_tx_timeout - Respond to a Tx Hang
310 * @netdev: network interface device structure
311 * @txqueue: queue number that is timing out
312 **/
iavf_tx_timeout(struct net_device * netdev,unsigned int txqueue)313 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
314 {
315 struct iavf_adapter *adapter = netdev_priv(netdev);
316
317 adapter->tx_timeout_count++;
318 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
319 }
320
321 /**
322 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
323 * @adapter: board private structure
324 **/
iavf_misc_irq_disable(struct iavf_adapter * adapter)325 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
326 {
327 struct iavf_hw *hw = &adapter->hw;
328
329 if (!adapter->msix_entries)
330 return;
331
332 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
333
334 iavf_flush(hw);
335
336 synchronize_irq(adapter->msix_entries[0].vector);
337 }
338
339 /**
340 * iavf_misc_irq_enable - Enable default interrupt generation settings
341 * @adapter: board private structure
342 **/
iavf_misc_irq_enable(struct iavf_adapter * adapter)343 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
344 {
345 struct iavf_hw *hw = &adapter->hw;
346
347 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
348 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
349 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
350
351 iavf_flush(hw);
352 }
353
354 /**
355 * iavf_irq_disable - Mask off interrupt generation on the NIC
356 * @adapter: board private structure
357 **/
iavf_irq_disable(struct iavf_adapter * adapter)358 static void iavf_irq_disable(struct iavf_adapter *adapter)
359 {
360 int i;
361 struct iavf_hw *hw = &adapter->hw;
362
363 if (!adapter->msix_entries)
364 return;
365
366 for (i = 1; i < adapter->num_msix_vectors; i++) {
367 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
368 synchronize_irq(adapter->msix_entries[i].vector);
369 }
370 iavf_flush(hw);
371 }
372
373 /**
374 * iavf_irq_enable_queues - Enable interrupt for all queues
375 * @adapter: board private structure
376 **/
iavf_irq_enable_queues(struct iavf_adapter * adapter)377 static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
378 {
379 struct iavf_hw *hw = &adapter->hw;
380 int i;
381
382 for (i = 1; i < adapter->num_msix_vectors; i++) {
383 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
384 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
385 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
386 }
387 }
388
389 /**
390 * iavf_irq_enable - Enable default interrupt generation settings
391 * @adapter: board private structure
392 * @flush: boolean value whether to run rd32()
393 **/
iavf_irq_enable(struct iavf_adapter * adapter,bool flush)394 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
395 {
396 struct iavf_hw *hw = &adapter->hw;
397
398 iavf_misc_irq_enable(adapter);
399 iavf_irq_enable_queues(adapter);
400
401 if (flush)
402 iavf_flush(hw);
403 }
404
405 /**
406 * iavf_msix_aq - Interrupt handler for vector 0
407 * @irq: interrupt number
408 * @data: pointer to netdev
409 **/
iavf_msix_aq(int irq,void * data)410 static irqreturn_t iavf_msix_aq(int irq, void *data)
411 {
412 struct net_device *netdev = data;
413 struct iavf_adapter *adapter = netdev_priv(netdev);
414 struct iavf_hw *hw = &adapter->hw;
415
416 /* handle non-queue interrupts, these reads clear the registers */
417 rd32(hw, IAVF_VFINT_ICR01);
418 rd32(hw, IAVF_VFINT_ICR0_ENA1);
419
420 if (adapter->state != __IAVF_REMOVE)
421 /* schedule work on the private workqueue */
422 queue_work(adapter->wq, &adapter->adminq_task);
423
424 return IRQ_HANDLED;
425 }
426
427 /**
428 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
429 * @irq: interrupt number
430 * @data: pointer to a q_vector
431 **/
iavf_msix_clean_rings(int irq,void * data)432 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
433 {
434 struct iavf_q_vector *q_vector = data;
435
436 if (!q_vector->tx.ring && !q_vector->rx.ring)
437 return IRQ_HANDLED;
438
439 napi_schedule_irqoff(&q_vector->napi);
440
441 return IRQ_HANDLED;
442 }
443
444 /**
445 * iavf_map_vector_to_rxq - associate irqs with rx queues
446 * @adapter: board private structure
447 * @v_idx: interrupt number
448 * @r_idx: queue number
449 **/
450 static void
iavf_map_vector_to_rxq(struct iavf_adapter * adapter,int v_idx,int r_idx)451 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
452 {
453 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
454 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
455 struct iavf_hw *hw = &adapter->hw;
456
457 rx_ring->q_vector = q_vector;
458 rx_ring->next = q_vector->rx.ring;
459 rx_ring->vsi = &adapter->vsi;
460 q_vector->rx.ring = rx_ring;
461 q_vector->rx.count++;
462 q_vector->rx.next_update = jiffies + 1;
463 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
464 q_vector->ring_mask |= BIT(r_idx);
465 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
466 q_vector->rx.current_itr >> 1);
467 q_vector->rx.current_itr = q_vector->rx.target_itr;
468 }
469
470 /**
471 * iavf_map_vector_to_txq - associate irqs with tx queues
472 * @adapter: board private structure
473 * @v_idx: interrupt number
474 * @t_idx: queue number
475 **/
476 static void
iavf_map_vector_to_txq(struct iavf_adapter * adapter,int v_idx,int t_idx)477 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
478 {
479 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
480 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
481 struct iavf_hw *hw = &adapter->hw;
482
483 tx_ring->q_vector = q_vector;
484 tx_ring->next = q_vector->tx.ring;
485 tx_ring->vsi = &adapter->vsi;
486 q_vector->tx.ring = tx_ring;
487 q_vector->tx.count++;
488 q_vector->tx.next_update = jiffies + 1;
489 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
490 q_vector->num_ringpairs++;
491 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
492 q_vector->tx.target_itr >> 1);
493 q_vector->tx.current_itr = q_vector->tx.target_itr;
494 }
495
496 /**
497 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
498 * @adapter: board private structure to initialize
499 *
500 * This function maps descriptor rings to the queue-specific vectors
501 * we were allotted through the MSI-X enabling code. Ideally, we'd have
502 * one vector per ring/queue, but on a constrained vector budget, we
503 * group the rings as "efficiently" as possible. You would add new
504 * mapping configurations in here.
505 **/
iavf_map_rings_to_vectors(struct iavf_adapter * adapter)506 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
507 {
508 int rings_remaining = adapter->num_active_queues;
509 int ridx = 0, vidx = 0;
510 int q_vectors;
511
512 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
513
514 for (; ridx < rings_remaining; ridx++) {
515 iavf_map_vector_to_rxq(adapter, vidx, ridx);
516 iavf_map_vector_to_txq(adapter, vidx, ridx);
517
518 /* In the case where we have more queues than vectors, continue
519 * round-robin on vectors until all queues are mapped.
520 */
521 if (++vidx >= q_vectors)
522 vidx = 0;
523 }
524
525 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
526 }
527
528 /**
529 * iavf_irq_affinity_notify - Callback for affinity changes
530 * @notify: context as to what irq was changed
531 * @mask: the new affinity mask
532 *
533 * This is a callback function used by the irq_set_affinity_notifier function
534 * so that we may register to receive changes to the irq affinity masks.
535 **/
iavf_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)536 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
537 const cpumask_t *mask)
538 {
539 struct iavf_q_vector *q_vector =
540 container_of(notify, struct iavf_q_vector, affinity_notify);
541
542 cpumask_copy(&q_vector->affinity_mask, mask);
543 }
544
545 /**
546 * iavf_irq_affinity_release - Callback for affinity notifier release
547 * @ref: internal core kernel usage
548 *
549 * This is a callback function used by the irq_set_affinity_notifier function
550 * to inform the current notification subscriber that they will no longer
551 * receive notifications.
552 **/
iavf_irq_affinity_release(struct kref * ref)553 static void iavf_irq_affinity_release(struct kref *ref) {}
554
555 /**
556 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
557 * @adapter: board private structure
558 * @basename: device basename
559 *
560 * Allocates MSI-X vectors for tx and rx handling, and requests
561 * interrupts from the kernel.
562 **/
563 static int
iavf_request_traffic_irqs(struct iavf_adapter * adapter,char * basename)564 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
565 {
566 unsigned int vector, q_vectors;
567 unsigned int rx_int_idx = 0, tx_int_idx = 0;
568 int irq_num, err;
569 int cpu;
570
571 iavf_irq_disable(adapter);
572 /* Decrement for Other and TCP Timer vectors */
573 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
574
575 for (vector = 0; vector < q_vectors; vector++) {
576 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
577
578 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
579
580 if (q_vector->tx.ring && q_vector->rx.ring) {
581 snprintf(q_vector->name, sizeof(q_vector->name),
582 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
583 tx_int_idx++;
584 } else if (q_vector->rx.ring) {
585 snprintf(q_vector->name, sizeof(q_vector->name),
586 "iavf-%s-rx-%u", basename, rx_int_idx++);
587 } else if (q_vector->tx.ring) {
588 snprintf(q_vector->name, sizeof(q_vector->name),
589 "iavf-%s-tx-%u", basename, tx_int_idx++);
590 } else {
591 /* skip this unused q_vector */
592 continue;
593 }
594 err = request_irq(irq_num,
595 iavf_msix_clean_rings,
596 0,
597 q_vector->name,
598 q_vector);
599 if (err) {
600 dev_info(&adapter->pdev->dev,
601 "Request_irq failed, error: %d\n", err);
602 goto free_queue_irqs;
603 }
604 /* register for affinity change notifications */
605 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
606 q_vector->affinity_notify.release =
607 iavf_irq_affinity_release;
608 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
609 /* Spread the IRQ affinity hints across online CPUs. Note that
610 * get_cpu_mask returns a mask with a permanent lifetime so
611 * it's safe to use as a hint for irq_update_affinity_hint.
612 */
613 cpu = cpumask_local_spread(q_vector->v_idx, -1);
614 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
615 }
616
617 return 0;
618
619 free_queue_irqs:
620 while (vector) {
621 vector--;
622 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
623 irq_set_affinity_notifier(irq_num, NULL);
624 irq_update_affinity_hint(irq_num, NULL);
625 free_irq(irq_num, &adapter->q_vectors[vector]);
626 }
627 return err;
628 }
629
630 /**
631 * iavf_request_misc_irq - Initialize MSI-X interrupts
632 * @adapter: board private structure
633 *
634 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
635 * vector is only for the admin queue, and stays active even when the netdev
636 * is closed.
637 **/
iavf_request_misc_irq(struct iavf_adapter * adapter)638 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
639 {
640 struct net_device *netdev = adapter->netdev;
641 int err;
642
643 snprintf(adapter->misc_vector_name,
644 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
645 dev_name(&adapter->pdev->dev));
646 err = request_irq(adapter->msix_entries[0].vector,
647 &iavf_msix_aq, 0,
648 adapter->misc_vector_name, netdev);
649 if (err) {
650 dev_err(&adapter->pdev->dev,
651 "request_irq for %s failed: %d\n",
652 adapter->misc_vector_name, err);
653 free_irq(adapter->msix_entries[0].vector, netdev);
654 }
655 return err;
656 }
657
658 /**
659 * iavf_free_traffic_irqs - Free MSI-X interrupts
660 * @adapter: board private structure
661 *
662 * Frees all MSI-X vectors other than 0.
663 **/
iavf_free_traffic_irqs(struct iavf_adapter * adapter)664 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
665 {
666 int vector, irq_num, q_vectors;
667
668 if (!adapter->msix_entries)
669 return;
670
671 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
672
673 for (vector = 0; vector < q_vectors; vector++) {
674 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
675 irq_set_affinity_notifier(irq_num, NULL);
676 irq_update_affinity_hint(irq_num, NULL);
677 free_irq(irq_num, &adapter->q_vectors[vector]);
678 }
679 }
680
681 /**
682 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
683 * @adapter: board private structure
684 *
685 * Frees MSI-X vector 0.
686 **/
iavf_free_misc_irq(struct iavf_adapter * adapter)687 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
688 {
689 struct net_device *netdev = adapter->netdev;
690
691 if (!adapter->msix_entries)
692 return;
693
694 free_irq(adapter->msix_entries[0].vector, netdev);
695 }
696
697 /**
698 * iavf_configure_tx - Configure Transmit Unit after Reset
699 * @adapter: board private structure
700 *
701 * Configure the Tx unit of the MAC after a reset.
702 **/
iavf_configure_tx(struct iavf_adapter * adapter)703 static void iavf_configure_tx(struct iavf_adapter *adapter)
704 {
705 struct iavf_hw *hw = &adapter->hw;
706 int i;
707
708 for (i = 0; i < adapter->num_active_queues; i++)
709 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
710 }
711
712 /**
713 * iavf_configure_rx - Configure Receive Unit after Reset
714 * @adapter: board private structure
715 *
716 * Configure the Rx unit of the MAC after a reset.
717 **/
iavf_configure_rx(struct iavf_adapter * adapter)718 static void iavf_configure_rx(struct iavf_adapter *adapter)
719 {
720 struct iavf_hw *hw = &adapter->hw;
721
722 for (u32 i = 0; i < adapter->num_active_queues; i++)
723 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
724 }
725
726 /**
727 * iavf_find_vlan - Search filter list for specific vlan filter
728 * @adapter: board private structure
729 * @vlan: vlan tag
730 *
731 * Returns ptr to the filter object or NULL. Must be called while holding the
732 * mac_vlan_list_lock.
733 **/
734 static struct
iavf_find_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)735 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
736 struct iavf_vlan vlan)
737 {
738 struct iavf_vlan_filter *f;
739
740 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
741 if (f->vlan.vid == vlan.vid &&
742 f->vlan.tpid == vlan.tpid)
743 return f;
744 }
745
746 return NULL;
747 }
748
749 /**
750 * iavf_add_vlan - Add a vlan filter to the list
751 * @adapter: board private structure
752 * @vlan: VLAN tag
753 *
754 * Returns ptr to the filter object or NULL when no memory available.
755 **/
756 static struct
iavf_add_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)757 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
758 struct iavf_vlan vlan)
759 {
760 struct iavf_vlan_filter *f = NULL;
761
762 spin_lock_bh(&adapter->mac_vlan_list_lock);
763
764 f = iavf_find_vlan(adapter, vlan);
765 if (!f) {
766 f = kzalloc(sizeof(*f), GFP_ATOMIC);
767 if (!f)
768 goto clearout;
769
770 f->vlan = vlan;
771
772 list_add_tail(&f->list, &adapter->vlan_filter_list);
773 f->state = IAVF_VLAN_ADD;
774 adapter->num_vlan_filters++;
775 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
776 }
777
778 clearout:
779 spin_unlock_bh(&adapter->mac_vlan_list_lock);
780 return f;
781 }
782
783 /**
784 * iavf_del_vlan - Remove a vlan filter from the list
785 * @adapter: board private structure
786 * @vlan: VLAN tag
787 **/
iavf_del_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)788 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
789 {
790 struct iavf_vlan_filter *f;
791
792 spin_lock_bh(&adapter->mac_vlan_list_lock);
793
794 f = iavf_find_vlan(adapter, vlan);
795 if (f) {
796 f->state = IAVF_VLAN_REMOVE;
797 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
798 }
799
800 spin_unlock_bh(&adapter->mac_vlan_list_lock);
801 }
802
803 /**
804 * iavf_restore_filters
805 * @adapter: board private structure
806 *
807 * Restore existing non MAC filters when VF netdev comes back up
808 **/
iavf_restore_filters(struct iavf_adapter * adapter)809 static void iavf_restore_filters(struct iavf_adapter *adapter)
810 {
811 struct iavf_vlan_filter *f;
812
813 /* re-add all VLAN filters */
814 spin_lock_bh(&adapter->mac_vlan_list_lock);
815
816 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
817 if (f->state == IAVF_VLAN_INACTIVE)
818 f->state = IAVF_VLAN_ADD;
819 }
820
821 spin_unlock_bh(&adapter->mac_vlan_list_lock);
822 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
823 }
824
825 /**
826 * iavf_get_num_vlans_added - get number of VLANs added
827 * @adapter: board private structure
828 */
iavf_get_num_vlans_added(struct iavf_adapter * adapter)829 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
830 {
831 return adapter->num_vlan_filters;
832 }
833
834 /**
835 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
836 * @adapter: board private structure
837 *
838 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
839 * do not impose a limit as that maintains current behavior and for
840 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
841 **/
iavf_get_max_vlans_allowed(struct iavf_adapter * adapter)842 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
843 {
844 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
845 * never been a limit on the VF driver side
846 */
847 if (VLAN_ALLOWED(adapter))
848 return VLAN_N_VID;
849 else if (VLAN_V2_ALLOWED(adapter))
850 return adapter->vlan_v2_caps.filtering.max_filters;
851
852 return 0;
853 }
854
855 /**
856 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
857 * @adapter: board private structure
858 **/
iavf_max_vlans_added(struct iavf_adapter * adapter)859 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
860 {
861 if (iavf_get_num_vlans_added(adapter) <
862 iavf_get_max_vlans_allowed(adapter))
863 return false;
864
865 return true;
866 }
867
868 /**
869 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
870 * @netdev: network device struct
871 * @proto: unused protocol data
872 * @vid: VLAN tag
873 **/
iavf_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)874 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
875 __always_unused __be16 proto, u16 vid)
876 {
877 struct iavf_adapter *adapter = netdev_priv(netdev);
878
879 /* Do not track VLAN 0 filter, always added by the PF on VF init */
880 if (!vid)
881 return 0;
882
883 if (!VLAN_FILTERING_ALLOWED(adapter))
884 return -EIO;
885
886 if (iavf_max_vlans_added(adapter)) {
887 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
888 iavf_get_max_vlans_allowed(adapter));
889 return -EIO;
890 }
891
892 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
893 return -ENOMEM;
894
895 return 0;
896 }
897
898 /**
899 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
900 * @netdev: network device struct
901 * @proto: unused protocol data
902 * @vid: VLAN tag
903 **/
iavf_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)904 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
905 __always_unused __be16 proto, u16 vid)
906 {
907 struct iavf_adapter *adapter = netdev_priv(netdev);
908
909 /* We do not track VLAN 0 filter */
910 if (!vid)
911 return 0;
912
913 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
914 return 0;
915 }
916
917 /**
918 * iavf_find_filter - Search filter list for specific mac filter
919 * @adapter: board private structure
920 * @macaddr: the MAC address
921 *
922 * Returns ptr to the filter object or NULL. Must be called while holding the
923 * mac_vlan_list_lock.
924 **/
925 static struct
iavf_find_filter(struct iavf_adapter * adapter,const u8 * macaddr)926 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
927 const u8 *macaddr)
928 {
929 struct iavf_mac_filter *f;
930
931 if (!macaddr)
932 return NULL;
933
934 list_for_each_entry(f, &adapter->mac_filter_list, list) {
935 if (ether_addr_equal(macaddr, f->macaddr))
936 return f;
937 }
938 return NULL;
939 }
940
941 /**
942 * iavf_add_filter - Add a mac filter to the filter list
943 * @adapter: board private structure
944 * @macaddr: the MAC address
945 *
946 * Returns ptr to the filter object or NULL when no memory available.
947 **/
iavf_add_filter(struct iavf_adapter * adapter,const u8 * macaddr)948 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
949 const u8 *macaddr)
950 {
951 struct iavf_mac_filter *f;
952
953 if (!macaddr)
954 return NULL;
955
956 f = iavf_find_filter(adapter, macaddr);
957 if (!f) {
958 f = kzalloc(sizeof(*f), GFP_ATOMIC);
959 if (!f)
960 return f;
961
962 ether_addr_copy(f->macaddr, macaddr);
963
964 list_add_tail(&f->list, &adapter->mac_filter_list);
965 f->add = true;
966 f->add_handled = false;
967 f->is_new_mac = true;
968 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
969 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
970 } else {
971 f->remove = false;
972 }
973
974 return f;
975 }
976
977 /**
978 * iavf_replace_primary_mac - Replace current primary address
979 * @adapter: board private structure
980 * @new_mac: new MAC address to be applied
981 *
982 * Replace current dev_addr and send request to PF for removal of previous
983 * primary MAC address filter and addition of new primary MAC filter.
984 * Return 0 for success, -ENOMEM for failure.
985 *
986 * Do not call this with mac_vlan_list_lock!
987 **/
iavf_replace_primary_mac(struct iavf_adapter * adapter,const u8 * new_mac)988 static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
989 const u8 *new_mac)
990 {
991 struct iavf_hw *hw = &adapter->hw;
992 struct iavf_mac_filter *new_f;
993 struct iavf_mac_filter *old_f;
994
995 spin_lock_bh(&adapter->mac_vlan_list_lock);
996
997 new_f = iavf_add_filter(adapter, new_mac);
998 if (!new_f) {
999 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1000 return -ENOMEM;
1001 }
1002
1003 old_f = iavf_find_filter(adapter, hw->mac.addr);
1004 if (old_f) {
1005 old_f->is_primary = false;
1006 old_f->remove = true;
1007 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1008 }
1009 /* Always send the request to add if changing primary MAC,
1010 * even if filter is already present on the list
1011 */
1012 new_f->is_primary = true;
1013 new_f->add = true;
1014 ether_addr_copy(hw->mac.addr, new_mac);
1015
1016 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1017
1018 /* schedule the watchdog task to immediately process the request */
1019 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1020 return 0;
1021 }
1022
1023 /**
1024 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1025 * @netdev: network interface device structure
1026 * @macaddr: MAC address to set
1027 *
1028 * Returns true on success, false on failure
1029 */
iavf_is_mac_set_handled(struct net_device * netdev,const u8 * macaddr)1030 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1031 const u8 *macaddr)
1032 {
1033 struct iavf_adapter *adapter = netdev_priv(netdev);
1034 struct iavf_mac_filter *f;
1035 bool ret = false;
1036
1037 spin_lock_bh(&adapter->mac_vlan_list_lock);
1038
1039 f = iavf_find_filter(adapter, macaddr);
1040
1041 if (!f || (!f->add && f->add_handled))
1042 ret = true;
1043
1044 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1045
1046 return ret;
1047 }
1048
1049 /**
1050 * iavf_set_mac - NDO callback to set port MAC address
1051 * @netdev: network interface device structure
1052 * @p: pointer to an address structure
1053 *
1054 * Returns 0 on success, negative on failure
1055 */
iavf_set_mac(struct net_device * netdev,void * p)1056 static int iavf_set_mac(struct net_device *netdev, void *p)
1057 {
1058 struct iavf_adapter *adapter = netdev_priv(netdev);
1059 struct sockaddr *addr = p;
1060 int ret;
1061
1062 if (!is_valid_ether_addr(addr->sa_data))
1063 return -EADDRNOTAVAIL;
1064
1065 ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1066
1067 if (ret)
1068 return ret;
1069
1070 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1071 iavf_is_mac_set_handled(netdev, addr->sa_data),
1072 msecs_to_jiffies(2500));
1073
1074 /* If ret < 0 then it means wait was interrupted.
1075 * If ret == 0 then it means we got a timeout.
1076 * else it means we got response for set MAC from PF,
1077 * check if netdev MAC was updated to requested MAC,
1078 * if yes then set MAC succeeded otherwise it failed return -EACCES
1079 */
1080 if (ret < 0)
1081 return ret;
1082
1083 if (!ret)
1084 return -EAGAIN;
1085
1086 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1087 return -EACCES;
1088
1089 return 0;
1090 }
1091
1092 /**
1093 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1094 * @netdev: the netdevice
1095 * @addr: address to add
1096 *
1097 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1098 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1099 */
iavf_addr_sync(struct net_device * netdev,const u8 * addr)1100 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1101 {
1102 struct iavf_adapter *adapter = netdev_priv(netdev);
1103
1104 if (iavf_add_filter(adapter, addr))
1105 return 0;
1106 else
1107 return -ENOMEM;
1108 }
1109
1110 /**
1111 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1112 * @netdev: the netdevice
1113 * @addr: address to add
1114 *
1115 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1116 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1117 */
iavf_addr_unsync(struct net_device * netdev,const u8 * addr)1118 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1119 {
1120 struct iavf_adapter *adapter = netdev_priv(netdev);
1121 struct iavf_mac_filter *f;
1122
1123 /* Under some circumstances, we might receive a request to delete
1124 * our own device address from our uc list. Because we store the
1125 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1126 * such requests and not delete our device address from this list.
1127 */
1128 if (ether_addr_equal(addr, netdev->dev_addr))
1129 return 0;
1130
1131 f = iavf_find_filter(adapter, addr);
1132 if (f) {
1133 f->remove = true;
1134 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1135 }
1136 return 0;
1137 }
1138
1139 /**
1140 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1141 * @adapter: device specific adapter
1142 */
iavf_promiscuous_mode_changed(struct iavf_adapter * adapter)1143 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1144 {
1145 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1146 (IFF_PROMISC | IFF_ALLMULTI);
1147 }
1148
1149 /**
1150 * iavf_set_rx_mode - NDO callback to set the netdev filters
1151 * @netdev: network interface device structure
1152 **/
iavf_set_rx_mode(struct net_device * netdev)1153 static void iavf_set_rx_mode(struct net_device *netdev)
1154 {
1155 struct iavf_adapter *adapter = netdev_priv(netdev);
1156
1157 spin_lock_bh(&adapter->mac_vlan_list_lock);
1158 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1159 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1160 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1161
1162 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1163 if (iavf_promiscuous_mode_changed(adapter))
1164 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1165 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1166 }
1167
1168 /**
1169 * iavf_napi_enable_all - enable NAPI on all queue vectors
1170 * @adapter: board private structure
1171 **/
iavf_napi_enable_all(struct iavf_adapter * adapter)1172 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1173 {
1174 int q_idx;
1175 struct iavf_q_vector *q_vector;
1176 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1177
1178 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1179 struct napi_struct *napi;
1180
1181 q_vector = &adapter->q_vectors[q_idx];
1182 napi = &q_vector->napi;
1183 napi_enable(napi);
1184 }
1185 }
1186
1187 /**
1188 * iavf_napi_disable_all - disable NAPI on all queue vectors
1189 * @adapter: board private structure
1190 **/
iavf_napi_disable_all(struct iavf_adapter * adapter)1191 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1192 {
1193 int q_idx;
1194 struct iavf_q_vector *q_vector;
1195 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1196
1197 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1198 q_vector = &adapter->q_vectors[q_idx];
1199 napi_disable(&q_vector->napi);
1200 }
1201 }
1202
1203 /**
1204 * iavf_configure - set up transmit and receive data structures
1205 * @adapter: board private structure
1206 **/
iavf_configure(struct iavf_adapter * adapter)1207 static void iavf_configure(struct iavf_adapter *adapter)
1208 {
1209 struct net_device *netdev = adapter->netdev;
1210 int i;
1211
1212 iavf_set_rx_mode(netdev);
1213
1214 iavf_configure_tx(adapter);
1215 iavf_configure_rx(adapter);
1216 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1217
1218 for (i = 0; i < adapter->num_active_queues; i++) {
1219 struct iavf_ring *ring = &adapter->rx_rings[i];
1220
1221 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1222 }
1223 }
1224
1225 /**
1226 * iavf_up_complete - Finish the last steps of bringing up a connection
1227 * @adapter: board private structure
1228 *
1229 * Expects to be called while holding crit_lock.
1230 **/
iavf_up_complete(struct iavf_adapter * adapter)1231 static void iavf_up_complete(struct iavf_adapter *adapter)
1232 {
1233 iavf_change_state(adapter, __IAVF_RUNNING);
1234 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1235
1236 iavf_napi_enable_all(adapter);
1237
1238 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
1239 }
1240
1241 /**
1242 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1243 * yet and mark other to be removed.
1244 * @adapter: board private structure
1245 **/
iavf_clear_mac_vlan_filters(struct iavf_adapter * adapter)1246 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1247 {
1248 struct iavf_vlan_filter *vlf, *vlftmp;
1249 struct iavf_mac_filter *f, *ftmp;
1250
1251 spin_lock_bh(&adapter->mac_vlan_list_lock);
1252 /* clear the sync flag on all filters */
1253 __dev_uc_unsync(adapter->netdev, NULL);
1254 __dev_mc_unsync(adapter->netdev, NULL);
1255
1256 /* remove all MAC filters */
1257 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1258 list) {
1259 if (f->add) {
1260 list_del(&f->list);
1261 kfree(f);
1262 } else {
1263 f->remove = true;
1264 }
1265 }
1266
1267 /* disable all VLAN filters */
1268 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1269 list)
1270 vlf->state = IAVF_VLAN_DISABLE;
1271
1272 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1273 }
1274
1275 /**
1276 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1277 * mark other to be removed.
1278 * @adapter: board private structure
1279 **/
iavf_clear_cloud_filters(struct iavf_adapter * adapter)1280 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1281 {
1282 struct iavf_cloud_filter *cf, *cftmp;
1283
1284 /* remove all cloud filters */
1285 spin_lock_bh(&adapter->cloud_filter_list_lock);
1286 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1287 list) {
1288 if (cf->add) {
1289 list_del(&cf->list);
1290 kfree(cf);
1291 adapter->num_cloud_filters--;
1292 } else {
1293 cf->del = true;
1294 }
1295 }
1296 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1297 }
1298
1299 /**
1300 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1301 * other to be removed.
1302 * @adapter: board private structure
1303 **/
iavf_clear_fdir_filters(struct iavf_adapter * adapter)1304 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1305 {
1306 struct iavf_fdir_fltr *fdir;
1307
1308 /* remove all Flow Director filters */
1309 spin_lock_bh(&adapter->fdir_fltr_lock);
1310 list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1311 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1312 /* Cancel a request, keep filter as inactive */
1313 fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1314 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1315 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1316 /* Disable filters which are active or have a pending
1317 * request to PF to be added
1318 */
1319 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1320 }
1321 }
1322 spin_unlock_bh(&adapter->fdir_fltr_lock);
1323 }
1324
1325 /**
1326 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1327 * other to be removed.
1328 * @adapter: board private structure
1329 **/
iavf_clear_adv_rss_conf(struct iavf_adapter * adapter)1330 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1331 {
1332 struct iavf_adv_rss *rss, *rsstmp;
1333
1334 /* remove all advance RSS configuration */
1335 spin_lock_bh(&adapter->adv_rss_lock);
1336 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1337 list) {
1338 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1339 list_del(&rss->list);
1340 kfree(rss);
1341 } else {
1342 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1343 }
1344 }
1345 spin_unlock_bh(&adapter->adv_rss_lock);
1346 }
1347
1348 /**
1349 * iavf_down - Shutdown the connection processing
1350 * @adapter: board private structure
1351 *
1352 * Expects to be called while holding crit_lock.
1353 **/
iavf_down(struct iavf_adapter * adapter)1354 void iavf_down(struct iavf_adapter *adapter)
1355 {
1356 struct net_device *netdev = adapter->netdev;
1357
1358 if (adapter->state <= __IAVF_DOWN_PENDING)
1359 return;
1360
1361 netif_carrier_off(netdev);
1362 netif_tx_disable(netdev);
1363 adapter->link_up = false;
1364 iavf_napi_disable_all(adapter);
1365 iavf_irq_disable(adapter);
1366
1367 iavf_clear_mac_vlan_filters(adapter);
1368 iavf_clear_cloud_filters(adapter);
1369 iavf_clear_fdir_filters(adapter);
1370 iavf_clear_adv_rss_conf(adapter);
1371
1372 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1373 return;
1374
1375 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1376 /* cancel any current operation */
1377 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1378 /* Schedule operations to close down the HW. Don't wait
1379 * here for this to complete. The watchdog is still running
1380 * and it will take care of this.
1381 */
1382 if (!list_empty(&adapter->mac_filter_list))
1383 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1384 if (!list_empty(&adapter->vlan_filter_list))
1385 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1386 if (!list_empty(&adapter->cloud_filter_list))
1387 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1388 if (!list_empty(&adapter->fdir_list_head))
1389 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1390 if (!list_empty(&adapter->adv_rss_list_head))
1391 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1392 }
1393
1394 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1395 }
1396
1397 /**
1398 * iavf_acquire_msix_vectors - Setup the MSIX capability
1399 * @adapter: board private structure
1400 * @vectors: number of vectors to request
1401 *
1402 * Work with the OS to set up the MSIX vectors needed.
1403 *
1404 * Returns 0 on success, negative on failure
1405 **/
1406 static int
iavf_acquire_msix_vectors(struct iavf_adapter * adapter,int vectors)1407 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1408 {
1409 int err, vector_threshold;
1410
1411 /* We'll want at least 3 (vector_threshold):
1412 * 0) Other (Admin Queue and link, mostly)
1413 * 1) TxQ[0] Cleanup
1414 * 2) RxQ[0] Cleanup
1415 */
1416 vector_threshold = MIN_MSIX_COUNT;
1417
1418 /* The more we get, the more we will assign to Tx/Rx Cleanup
1419 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1420 * Right now, we simply care about how many we'll get; we'll
1421 * set them up later while requesting irq's.
1422 */
1423 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1424 vector_threshold, vectors);
1425 if (err < 0) {
1426 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1427 kfree(adapter->msix_entries);
1428 adapter->msix_entries = NULL;
1429 return err;
1430 }
1431
1432 /* Adjust for only the vectors we'll use, which is minimum
1433 * of max_msix_q_vectors + NONQ_VECS, or the number of
1434 * vectors we were allocated.
1435 */
1436 adapter->num_msix_vectors = err;
1437 return 0;
1438 }
1439
1440 /**
1441 * iavf_free_queues - Free memory for all rings
1442 * @adapter: board private structure to initialize
1443 *
1444 * Free all of the memory associated with queue pairs.
1445 **/
iavf_free_queues(struct iavf_adapter * adapter)1446 static void iavf_free_queues(struct iavf_adapter *adapter)
1447 {
1448 if (!adapter->vsi_res)
1449 return;
1450 adapter->num_active_queues = 0;
1451 kfree(adapter->tx_rings);
1452 adapter->tx_rings = NULL;
1453 kfree(adapter->rx_rings);
1454 adapter->rx_rings = NULL;
1455 }
1456
1457 /**
1458 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1459 * @adapter: board private structure
1460 *
1461 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1462 * stripped in certain descriptor fields. Instead of checking the offload
1463 * capability bits in the hot path, cache the location the ring specific
1464 * flags.
1465 */
iavf_set_queue_vlan_tag_loc(struct iavf_adapter * adapter)1466 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1467 {
1468 int i;
1469
1470 for (i = 0; i < adapter->num_active_queues; i++) {
1471 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1472 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1473
1474 /* prevent multiple L2TAG bits being set after VFR */
1475 tx_ring->flags &=
1476 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1477 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1478 rx_ring->flags &=
1479 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1480 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1481
1482 if (VLAN_ALLOWED(adapter)) {
1483 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1484 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1485 } else if (VLAN_V2_ALLOWED(adapter)) {
1486 struct virtchnl_vlan_supported_caps *stripping_support;
1487 struct virtchnl_vlan_supported_caps *insertion_support;
1488
1489 stripping_support =
1490 &adapter->vlan_v2_caps.offloads.stripping_support;
1491 insertion_support =
1492 &adapter->vlan_v2_caps.offloads.insertion_support;
1493
1494 if (stripping_support->outer) {
1495 if (stripping_support->outer &
1496 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1497 rx_ring->flags |=
1498 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1499 else if (stripping_support->outer &
1500 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1501 rx_ring->flags |=
1502 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1503 } else if (stripping_support->inner) {
1504 if (stripping_support->inner &
1505 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1506 rx_ring->flags |=
1507 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1508 else if (stripping_support->inner &
1509 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1510 rx_ring->flags |=
1511 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1512 }
1513
1514 if (insertion_support->outer) {
1515 if (insertion_support->outer &
1516 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1517 tx_ring->flags |=
1518 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1519 else if (insertion_support->outer &
1520 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1521 tx_ring->flags |=
1522 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1523 } else if (insertion_support->inner) {
1524 if (insertion_support->inner &
1525 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1526 tx_ring->flags |=
1527 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1528 else if (insertion_support->inner &
1529 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1530 tx_ring->flags |=
1531 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1532 }
1533 }
1534 }
1535 }
1536
1537 /**
1538 * iavf_alloc_queues - Allocate memory for all rings
1539 * @adapter: board private structure to initialize
1540 *
1541 * We allocate one ring per queue at run-time since we don't know the
1542 * number of queues at compile-time. The polling_netdev array is
1543 * intended for Multiqueue, but should work fine with a single queue.
1544 **/
iavf_alloc_queues(struct iavf_adapter * adapter)1545 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1546 {
1547 int i, num_active_queues;
1548
1549 /* If we're in reset reallocating queues we don't actually know yet for
1550 * certain the PF gave us the number of queues we asked for but we'll
1551 * assume it did. Once basic reset is finished we'll confirm once we
1552 * start negotiating config with PF.
1553 */
1554 if (adapter->num_req_queues)
1555 num_active_queues = adapter->num_req_queues;
1556 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1557 adapter->num_tc)
1558 num_active_queues = adapter->ch_config.total_qps;
1559 else
1560 num_active_queues = min_t(int,
1561 adapter->vsi_res->num_queue_pairs,
1562 (int)(num_online_cpus()));
1563
1564
1565 adapter->tx_rings = kcalloc(num_active_queues,
1566 sizeof(struct iavf_ring), GFP_KERNEL);
1567 if (!adapter->tx_rings)
1568 goto err_out;
1569 adapter->rx_rings = kcalloc(num_active_queues,
1570 sizeof(struct iavf_ring), GFP_KERNEL);
1571 if (!adapter->rx_rings)
1572 goto err_out;
1573
1574 for (i = 0; i < num_active_queues; i++) {
1575 struct iavf_ring *tx_ring;
1576 struct iavf_ring *rx_ring;
1577
1578 tx_ring = &adapter->tx_rings[i];
1579
1580 tx_ring->queue_index = i;
1581 tx_ring->netdev = adapter->netdev;
1582 tx_ring->dev = &adapter->pdev->dev;
1583 tx_ring->count = adapter->tx_desc_count;
1584 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1585 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1586 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1587
1588 rx_ring = &adapter->rx_rings[i];
1589 rx_ring->queue_index = i;
1590 rx_ring->netdev = adapter->netdev;
1591 rx_ring->count = adapter->rx_desc_count;
1592 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1593 }
1594
1595 adapter->num_active_queues = num_active_queues;
1596
1597 iavf_set_queue_vlan_tag_loc(adapter);
1598
1599 return 0;
1600
1601 err_out:
1602 iavf_free_queues(adapter);
1603 return -ENOMEM;
1604 }
1605
1606 /**
1607 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1608 * @adapter: board private structure to initialize
1609 *
1610 * Attempt to configure the interrupts using the best available
1611 * capabilities of the hardware and the kernel.
1612 **/
iavf_set_interrupt_capability(struct iavf_adapter * adapter)1613 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1614 {
1615 int vector, v_budget;
1616 int pairs = 0;
1617 int err = 0;
1618
1619 if (!adapter->vsi_res) {
1620 err = -EIO;
1621 goto out;
1622 }
1623 pairs = adapter->num_active_queues;
1624
1625 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1626 * us much good if we have more vectors than CPUs. However, we already
1627 * limit the total number of queues by the number of CPUs so we do not
1628 * need any further limiting here.
1629 */
1630 v_budget = min_t(int, pairs + NONQ_VECS,
1631 (int)adapter->vf_res->max_vectors);
1632
1633 adapter->msix_entries = kcalloc(v_budget,
1634 sizeof(struct msix_entry), GFP_KERNEL);
1635 if (!adapter->msix_entries) {
1636 err = -ENOMEM;
1637 goto out;
1638 }
1639
1640 for (vector = 0; vector < v_budget; vector++)
1641 adapter->msix_entries[vector].entry = vector;
1642
1643 err = iavf_acquire_msix_vectors(adapter, v_budget);
1644 if (!err)
1645 iavf_schedule_finish_config(adapter);
1646
1647 out:
1648 return err;
1649 }
1650
1651 /**
1652 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1653 * @adapter: board private structure
1654 *
1655 * Return 0 on success, negative on failure
1656 **/
iavf_config_rss_aq(struct iavf_adapter * adapter)1657 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1658 {
1659 struct iavf_aqc_get_set_rss_key_data *rss_key =
1660 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1661 struct iavf_hw *hw = &adapter->hw;
1662 enum iavf_status status;
1663
1664 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1665 /* bail because we already have a command pending */
1666 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1667 adapter->current_op);
1668 return -EBUSY;
1669 }
1670
1671 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1672 if (status) {
1673 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1674 iavf_stat_str(hw, status),
1675 iavf_aq_str(hw, hw->aq.asq_last_status));
1676 return iavf_status_to_errno(status);
1677
1678 }
1679
1680 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1681 adapter->rss_lut, adapter->rss_lut_size);
1682 if (status) {
1683 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1684 iavf_stat_str(hw, status),
1685 iavf_aq_str(hw, hw->aq.asq_last_status));
1686 return iavf_status_to_errno(status);
1687 }
1688
1689 return 0;
1690
1691 }
1692
1693 /**
1694 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1695 * @adapter: board private structure
1696 *
1697 * Returns 0 on success, negative on failure
1698 **/
iavf_config_rss_reg(struct iavf_adapter * adapter)1699 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1700 {
1701 struct iavf_hw *hw = &adapter->hw;
1702 u32 *dw;
1703 u16 i;
1704
1705 dw = (u32 *)adapter->rss_key;
1706 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1707 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1708
1709 dw = (u32 *)adapter->rss_lut;
1710 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1711 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1712
1713 iavf_flush(hw);
1714
1715 return 0;
1716 }
1717
1718 /**
1719 * iavf_config_rss - Configure RSS keys and lut
1720 * @adapter: board private structure
1721 *
1722 * Returns 0 on success, negative on failure
1723 **/
iavf_config_rss(struct iavf_adapter * adapter)1724 int iavf_config_rss(struct iavf_adapter *adapter)
1725 {
1726
1727 if (RSS_PF(adapter)) {
1728 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1729 IAVF_FLAG_AQ_SET_RSS_KEY;
1730 return 0;
1731 } else if (RSS_AQ(adapter)) {
1732 return iavf_config_rss_aq(adapter);
1733 } else {
1734 return iavf_config_rss_reg(adapter);
1735 }
1736 }
1737
1738 /**
1739 * iavf_fill_rss_lut - Fill the lut with default values
1740 * @adapter: board private structure
1741 **/
iavf_fill_rss_lut(struct iavf_adapter * adapter)1742 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1743 {
1744 u16 i;
1745
1746 for (i = 0; i < adapter->rss_lut_size; i++)
1747 adapter->rss_lut[i] = i % adapter->num_active_queues;
1748 }
1749
1750 /**
1751 * iavf_init_rss - Prepare for RSS
1752 * @adapter: board private structure
1753 *
1754 * Return 0 on success, negative on failure
1755 **/
iavf_init_rss(struct iavf_adapter * adapter)1756 static int iavf_init_rss(struct iavf_adapter *adapter)
1757 {
1758 struct iavf_hw *hw = &adapter->hw;
1759
1760 if (!RSS_PF(adapter)) {
1761 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1762 if (adapter->vf_res->vf_cap_flags &
1763 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1764 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1765 else
1766 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1767
1768 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1769 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1770 }
1771
1772 iavf_fill_rss_lut(adapter);
1773 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1774
1775 return iavf_config_rss(adapter);
1776 }
1777
1778 /**
1779 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1780 * @adapter: board private structure to initialize
1781 *
1782 * We allocate one q_vector per queue interrupt. If allocation fails we
1783 * return -ENOMEM.
1784 **/
iavf_alloc_q_vectors(struct iavf_adapter * adapter)1785 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1786 {
1787 int q_idx = 0, num_q_vectors;
1788 struct iavf_q_vector *q_vector;
1789
1790 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1791 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1792 GFP_KERNEL);
1793 if (!adapter->q_vectors)
1794 return -ENOMEM;
1795
1796 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1797 q_vector = &adapter->q_vectors[q_idx];
1798 q_vector->adapter = adapter;
1799 q_vector->vsi = &adapter->vsi;
1800 q_vector->v_idx = q_idx;
1801 q_vector->reg_idx = q_idx;
1802 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1803 netif_napi_add(adapter->netdev, &q_vector->napi,
1804 iavf_napi_poll);
1805 }
1806
1807 return 0;
1808 }
1809
1810 /**
1811 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1812 * @adapter: board private structure to initialize
1813 *
1814 * This function frees the memory allocated to the q_vectors. In addition if
1815 * NAPI is enabled it will delete any references to the NAPI struct prior
1816 * to freeing the q_vector.
1817 **/
iavf_free_q_vectors(struct iavf_adapter * adapter)1818 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1819 {
1820 int q_idx, num_q_vectors;
1821
1822 if (!adapter->q_vectors)
1823 return;
1824
1825 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1826
1827 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1828 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1829
1830 netif_napi_del(&q_vector->napi);
1831 }
1832 kfree(adapter->q_vectors);
1833 adapter->q_vectors = NULL;
1834 }
1835
1836 /**
1837 * iavf_reset_interrupt_capability - Reset MSIX setup
1838 * @adapter: board private structure
1839 *
1840 **/
iavf_reset_interrupt_capability(struct iavf_adapter * adapter)1841 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1842 {
1843 if (!adapter->msix_entries)
1844 return;
1845
1846 pci_disable_msix(adapter->pdev);
1847 kfree(adapter->msix_entries);
1848 adapter->msix_entries = NULL;
1849 }
1850
1851 /**
1852 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1853 * @adapter: board private structure to initialize
1854 *
1855 **/
iavf_init_interrupt_scheme(struct iavf_adapter * adapter)1856 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1857 {
1858 int err;
1859
1860 err = iavf_alloc_queues(adapter);
1861 if (err) {
1862 dev_err(&adapter->pdev->dev,
1863 "Unable to allocate memory for queues\n");
1864 goto err_alloc_queues;
1865 }
1866
1867 err = iavf_set_interrupt_capability(adapter);
1868 if (err) {
1869 dev_err(&adapter->pdev->dev,
1870 "Unable to setup interrupt capabilities\n");
1871 goto err_set_interrupt;
1872 }
1873
1874 err = iavf_alloc_q_vectors(adapter);
1875 if (err) {
1876 dev_err(&adapter->pdev->dev,
1877 "Unable to allocate memory for queue vectors\n");
1878 goto err_alloc_q_vectors;
1879 }
1880
1881 /* If we've made it so far while ADq flag being ON, then we haven't
1882 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1883 * resources have been allocated in the reset path.
1884 * Now we can truly claim that ADq is enabled.
1885 */
1886 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1887 adapter->num_tc)
1888 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1889 adapter->num_tc);
1890
1891 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1892 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1893 adapter->num_active_queues);
1894
1895 return 0;
1896 err_alloc_q_vectors:
1897 iavf_reset_interrupt_capability(adapter);
1898 err_set_interrupt:
1899 iavf_free_queues(adapter);
1900 err_alloc_queues:
1901 return err;
1902 }
1903
1904 /**
1905 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1906 * @adapter: board private structure
1907 **/
iavf_free_interrupt_scheme(struct iavf_adapter * adapter)1908 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1909 {
1910 iavf_free_q_vectors(adapter);
1911 iavf_reset_interrupt_capability(adapter);
1912 iavf_free_queues(adapter);
1913 }
1914
1915 /**
1916 * iavf_free_rss - Free memory used by RSS structs
1917 * @adapter: board private structure
1918 **/
iavf_free_rss(struct iavf_adapter * adapter)1919 static void iavf_free_rss(struct iavf_adapter *adapter)
1920 {
1921 kfree(adapter->rss_key);
1922 adapter->rss_key = NULL;
1923
1924 kfree(adapter->rss_lut);
1925 adapter->rss_lut = NULL;
1926 }
1927
1928 /**
1929 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1930 * @adapter: board private structure
1931 * @running: true if adapter->state == __IAVF_RUNNING
1932 *
1933 * Returns 0 on success, negative on failure
1934 **/
iavf_reinit_interrupt_scheme(struct iavf_adapter * adapter,bool running)1935 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1936 {
1937 struct net_device *netdev = adapter->netdev;
1938 int err;
1939
1940 if (running)
1941 iavf_free_traffic_irqs(adapter);
1942 iavf_free_misc_irq(adapter);
1943 iavf_free_interrupt_scheme(adapter);
1944
1945 err = iavf_init_interrupt_scheme(adapter);
1946 if (err)
1947 goto err;
1948
1949 netif_tx_stop_all_queues(netdev);
1950
1951 err = iavf_request_misc_irq(adapter);
1952 if (err)
1953 goto err;
1954
1955 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1956
1957 iavf_map_rings_to_vectors(adapter);
1958 err:
1959 return err;
1960 }
1961
1962 /**
1963 * iavf_finish_config - do all netdev work that needs RTNL
1964 * @work: our work_struct
1965 *
1966 * Do work that needs both RTNL and crit_lock.
1967 **/
iavf_finish_config(struct work_struct * work)1968 static void iavf_finish_config(struct work_struct *work)
1969 {
1970 struct iavf_adapter *adapter;
1971 int pairs, err;
1972
1973 adapter = container_of(work, struct iavf_adapter, finish_config);
1974
1975 /* Always take RTNL first to prevent circular lock dependency;
1976 * The dev->lock is needed to update the queue number
1977 */
1978 rtnl_lock();
1979 mutex_lock(&adapter->netdev->lock);
1980 mutex_lock(&adapter->crit_lock);
1981
1982 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
1983 adapter->netdev->reg_state == NETREG_REGISTERED &&
1984 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1985 netdev_update_features(adapter->netdev);
1986 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
1987 }
1988
1989 switch (adapter->state) {
1990 case __IAVF_DOWN:
1991 if (adapter->netdev->reg_state != NETREG_REGISTERED) {
1992 err = register_netdevice(adapter->netdev);
1993 if (err) {
1994 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
1995 err);
1996
1997 /* go back and try again.*/
1998 iavf_free_rss(adapter);
1999 iavf_free_misc_irq(adapter);
2000 iavf_reset_interrupt_capability(adapter);
2001 iavf_change_state(adapter,
2002 __IAVF_INIT_CONFIG_ADAPTER);
2003 goto out;
2004 }
2005 }
2006
2007 /* Set the real number of queues when reset occurs while
2008 * state == __IAVF_DOWN
2009 */
2010 fallthrough;
2011 case __IAVF_RUNNING:
2012 pairs = adapter->num_active_queues;
2013 netif_set_real_num_rx_queues(adapter->netdev, pairs);
2014 netif_set_real_num_tx_queues(adapter->netdev, pairs);
2015 break;
2016
2017 default:
2018 break;
2019 }
2020
2021 out:
2022 mutex_unlock(&adapter->crit_lock);
2023 mutex_unlock(&adapter->netdev->lock);
2024 rtnl_unlock();
2025 }
2026
2027 /**
2028 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2029 * @adapter: board private structure
2030 **/
iavf_schedule_finish_config(struct iavf_adapter * adapter)2031 void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2032 {
2033 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2034 queue_work(adapter->wq, &adapter->finish_config);
2035 }
2036
2037 /**
2038 * iavf_process_aq_command - process aq_required flags
2039 * and sends aq command
2040 * @adapter: pointer to iavf adapter structure
2041 *
2042 * Returns 0 on success
2043 * Returns error code if no command was sent
2044 * or error code if the command failed.
2045 **/
iavf_process_aq_command(struct iavf_adapter * adapter)2046 static int iavf_process_aq_command(struct iavf_adapter *adapter)
2047 {
2048 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2049 return iavf_send_vf_config_msg(adapter);
2050 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2051 return iavf_send_vf_offload_vlan_v2_msg(adapter);
2052 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2053 iavf_disable_queues(adapter);
2054 return 0;
2055 }
2056
2057 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2058 iavf_map_queues(adapter);
2059 return 0;
2060 }
2061
2062 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2063 iavf_add_ether_addrs(adapter);
2064 return 0;
2065 }
2066
2067 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2068 iavf_add_vlans(adapter);
2069 return 0;
2070 }
2071
2072 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2073 iavf_del_ether_addrs(adapter);
2074 return 0;
2075 }
2076
2077 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2078 iavf_del_vlans(adapter);
2079 return 0;
2080 }
2081
2082 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2083 iavf_enable_vlan_stripping(adapter);
2084 return 0;
2085 }
2086
2087 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2088 iavf_disable_vlan_stripping(adapter);
2089 return 0;
2090 }
2091
2092 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW) {
2093 iavf_cfg_queues_bw(adapter);
2094 return 0;
2095 }
2096
2097 if (adapter->aq_required & IAVF_FLAG_AQ_GET_QOS_CAPS) {
2098 iavf_get_qos_caps(adapter);
2099 return 0;
2100 }
2101
2102 if (adapter->aq_required & IAVF_FLAG_AQ_CFG_QUEUES_QUANTA_SIZE) {
2103 iavf_cfg_queues_quanta_size(adapter);
2104 return 0;
2105 }
2106
2107 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2108 iavf_configure_queues(adapter);
2109 return 0;
2110 }
2111
2112 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2113 iavf_enable_queues(adapter);
2114 return 0;
2115 }
2116
2117 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2118 /* This message goes straight to the firmware, not the
2119 * PF, so we don't have to set current_op as we will
2120 * not get a response through the ARQ.
2121 */
2122 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2123 return 0;
2124 }
2125 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2126 iavf_get_hena(adapter);
2127 return 0;
2128 }
2129 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2130 iavf_set_hena(adapter);
2131 return 0;
2132 }
2133 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2134 iavf_set_rss_key(adapter);
2135 return 0;
2136 }
2137 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2138 iavf_set_rss_lut(adapter);
2139 return 0;
2140 }
2141 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2142 iavf_set_rss_hfunc(adapter);
2143 return 0;
2144 }
2145
2146 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2147 iavf_set_promiscuous(adapter);
2148 return 0;
2149 }
2150
2151 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2152 iavf_enable_channels(adapter);
2153 return 0;
2154 }
2155
2156 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2157 iavf_disable_channels(adapter);
2158 return 0;
2159 }
2160 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2161 iavf_add_cloud_filter(adapter);
2162 return 0;
2163 }
2164 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2165 iavf_del_cloud_filter(adapter);
2166 return 0;
2167 }
2168 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2169 iavf_add_fdir_filter(adapter);
2170 return IAVF_SUCCESS;
2171 }
2172 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2173 iavf_del_fdir_filter(adapter);
2174 return IAVF_SUCCESS;
2175 }
2176 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2177 iavf_add_adv_rss_cfg(adapter);
2178 return 0;
2179 }
2180 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2181 iavf_del_adv_rss_cfg(adapter);
2182 return 0;
2183 }
2184 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2185 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2186 return 0;
2187 }
2188 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2189 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2190 return 0;
2191 }
2192 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2193 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2194 return 0;
2195 }
2196 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2197 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2198 return 0;
2199 }
2200 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2201 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2202 return 0;
2203 }
2204 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2205 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2206 return 0;
2207 }
2208 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2209 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2210 return 0;
2211 }
2212 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2213 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2214 return 0;
2215 }
2216
2217 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2218 iavf_request_stats(adapter);
2219 return 0;
2220 }
2221
2222 return -EAGAIN;
2223 }
2224
2225 /**
2226 * iavf_set_vlan_offload_features - set VLAN offload configuration
2227 * @adapter: board private structure
2228 * @prev_features: previous features used for comparison
2229 * @features: updated features used for configuration
2230 *
2231 * Set the aq_required bit(s) based on the requested features passed in to
2232 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2233 * the watchdog if any changes are requested to expedite the request via
2234 * virtchnl.
2235 **/
2236 static void
iavf_set_vlan_offload_features(struct iavf_adapter * adapter,netdev_features_t prev_features,netdev_features_t features)2237 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2238 netdev_features_t prev_features,
2239 netdev_features_t features)
2240 {
2241 bool enable_stripping = true, enable_insertion = true;
2242 u16 vlan_ethertype = 0;
2243 u64 aq_required = 0;
2244
2245 /* keep cases separate because one ethertype for offloads can be
2246 * disabled at the same time as another is disabled, so check for an
2247 * enabled ethertype first, then check for disabled. Default to
2248 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2249 * stripping.
2250 */
2251 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2252 vlan_ethertype = ETH_P_8021AD;
2253 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2254 vlan_ethertype = ETH_P_8021Q;
2255 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2256 vlan_ethertype = ETH_P_8021AD;
2257 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2258 vlan_ethertype = ETH_P_8021Q;
2259 else
2260 vlan_ethertype = ETH_P_8021Q;
2261
2262 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2263 enable_stripping = false;
2264 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2265 enable_insertion = false;
2266
2267 if (VLAN_ALLOWED(adapter)) {
2268 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2269 * stripping via virtchnl. VLAN insertion can be toggled on the
2270 * netdev, but it doesn't require a virtchnl message
2271 */
2272 if (enable_stripping)
2273 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2274 else
2275 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2276
2277 } else if (VLAN_V2_ALLOWED(adapter)) {
2278 switch (vlan_ethertype) {
2279 case ETH_P_8021Q:
2280 if (enable_stripping)
2281 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2282 else
2283 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2284
2285 if (enable_insertion)
2286 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2287 else
2288 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2289 break;
2290 case ETH_P_8021AD:
2291 if (enable_stripping)
2292 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2293 else
2294 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2295
2296 if (enable_insertion)
2297 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2298 else
2299 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2300 break;
2301 }
2302 }
2303
2304 if (aq_required)
2305 iavf_schedule_aq_request(adapter, aq_required);
2306 }
2307
2308 /**
2309 * iavf_startup - first step of driver startup
2310 * @adapter: board private structure
2311 *
2312 * Function process __IAVF_STARTUP driver state.
2313 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2314 * when fails the state is changed to __IAVF_INIT_FAILED
2315 **/
iavf_startup(struct iavf_adapter * adapter)2316 static void iavf_startup(struct iavf_adapter *adapter)
2317 {
2318 struct pci_dev *pdev = adapter->pdev;
2319 struct iavf_hw *hw = &adapter->hw;
2320 enum iavf_status status;
2321 int ret;
2322
2323 WARN_ON(adapter->state != __IAVF_STARTUP);
2324
2325 /* driver loaded, probe complete */
2326 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2327 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2328
2329 ret = iavf_check_reset_complete(hw);
2330 if (ret) {
2331 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2332 ret);
2333 goto err;
2334 }
2335 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2336 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2337 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2338 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2339
2340 status = iavf_init_adminq(hw);
2341 if (status) {
2342 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2343 status);
2344 goto err;
2345 }
2346 ret = iavf_send_api_ver(adapter);
2347 if (ret) {
2348 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2349 iavf_shutdown_adminq(hw);
2350 goto err;
2351 }
2352 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2353 return;
2354 err:
2355 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2356 }
2357
2358 /**
2359 * iavf_init_version_check - second step of driver startup
2360 * @adapter: board private structure
2361 *
2362 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2363 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2364 * when fails the state is changed to __IAVF_INIT_FAILED
2365 **/
iavf_init_version_check(struct iavf_adapter * adapter)2366 static void iavf_init_version_check(struct iavf_adapter *adapter)
2367 {
2368 struct pci_dev *pdev = adapter->pdev;
2369 struct iavf_hw *hw = &adapter->hw;
2370 int err = -EAGAIN;
2371
2372 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2373
2374 if (!iavf_asq_done(hw)) {
2375 dev_err(&pdev->dev, "Admin queue command never completed\n");
2376 iavf_shutdown_adminq(hw);
2377 iavf_change_state(adapter, __IAVF_STARTUP);
2378 goto err;
2379 }
2380
2381 /* aq msg sent, awaiting reply */
2382 err = iavf_verify_api_ver(adapter);
2383 if (err) {
2384 if (err == -EALREADY)
2385 err = iavf_send_api_ver(adapter);
2386 else
2387 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2388 adapter->pf_version.major,
2389 adapter->pf_version.minor,
2390 VIRTCHNL_VERSION_MAJOR,
2391 VIRTCHNL_VERSION_MINOR);
2392 goto err;
2393 }
2394 err = iavf_send_vf_config_msg(adapter);
2395 if (err) {
2396 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2397 err);
2398 goto err;
2399 }
2400 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2401 return;
2402 err:
2403 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2404 }
2405
2406 /**
2407 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2408 * @adapter: board private structure
2409 */
iavf_parse_vf_resource_msg(struct iavf_adapter * adapter)2410 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2411 {
2412 int i, num_req_queues = adapter->num_req_queues;
2413 struct iavf_vsi *vsi = &adapter->vsi;
2414
2415 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2416 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2417 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2418 }
2419 if (!adapter->vsi_res) {
2420 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2421 return -ENODEV;
2422 }
2423
2424 if (num_req_queues &&
2425 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2426 /* Problem. The PF gave us fewer queues than what we had
2427 * negotiated in our request. Need a reset to see if we can't
2428 * get back to a working state.
2429 */
2430 dev_err(&adapter->pdev->dev,
2431 "Requested %d queues, but PF only gave us %d.\n",
2432 num_req_queues,
2433 adapter->vsi_res->num_queue_pairs);
2434 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2435 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2436 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2437
2438 return -EAGAIN;
2439 }
2440 adapter->num_req_queues = 0;
2441 adapter->vsi.id = adapter->vsi_res->vsi_id;
2442
2443 adapter->vsi.back = adapter;
2444 adapter->vsi.base_vector = 1;
2445 vsi->netdev = adapter->netdev;
2446 vsi->qs_handle = adapter->vsi_res->qset_handle;
2447 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2448 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2449 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2450 } else {
2451 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2452 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2453 }
2454
2455 return 0;
2456 }
2457
2458 /**
2459 * iavf_init_get_resources - third step of driver startup
2460 * @adapter: board private structure
2461 *
2462 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2463 * finishes driver initialization procedure.
2464 * When success the state is changed to __IAVF_DOWN
2465 * when fails the state is changed to __IAVF_INIT_FAILED
2466 **/
iavf_init_get_resources(struct iavf_adapter * adapter)2467 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2468 {
2469 struct pci_dev *pdev = adapter->pdev;
2470 struct iavf_hw *hw = &adapter->hw;
2471 int err;
2472
2473 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2474 /* aq msg sent, awaiting reply */
2475 if (!adapter->vf_res) {
2476 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2477 GFP_KERNEL);
2478 if (!adapter->vf_res) {
2479 err = -ENOMEM;
2480 goto err;
2481 }
2482 }
2483 err = iavf_get_vf_config(adapter);
2484 if (err == -EALREADY) {
2485 err = iavf_send_vf_config_msg(adapter);
2486 goto err;
2487 } else if (err == -EINVAL) {
2488 /* We only get -EINVAL if the device is in a very bad
2489 * state or if we've been disabled for previous bad
2490 * behavior. Either way, we're done now.
2491 */
2492 iavf_shutdown_adminq(hw);
2493 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2494 return;
2495 }
2496 if (err) {
2497 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2498 goto err_alloc;
2499 }
2500
2501 err = iavf_parse_vf_resource_msg(adapter);
2502 if (err) {
2503 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2504 err);
2505 goto err_alloc;
2506 }
2507 /* Some features require additional messages to negotiate extended
2508 * capabilities. These are processed in sequence by the
2509 * __IAVF_INIT_EXTENDED_CAPS driver state.
2510 */
2511 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2512
2513 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2514 return;
2515
2516 err_alloc:
2517 kfree(adapter->vf_res);
2518 adapter->vf_res = NULL;
2519 err:
2520 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2521 }
2522
2523 /**
2524 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2525 * @adapter: board private structure
2526 *
2527 * Function processes send of the extended VLAN V2 capability message to the
2528 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2529 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2530 */
iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter * adapter)2531 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2532 {
2533 int ret;
2534
2535 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2536
2537 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2538 if (ret && ret == -EOPNOTSUPP) {
2539 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2540 * we did not send the capability exchange message and do not
2541 * expect a response.
2542 */
2543 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2544 }
2545
2546 /* We sent the message, so move on to the next step */
2547 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2548 }
2549
2550 /**
2551 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2552 * @adapter: board private structure
2553 *
2554 * Function processes receipt of the extended VLAN V2 capability message from
2555 * the PF.
2556 **/
iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter * adapter)2557 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2558 {
2559 int ret;
2560
2561 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2562
2563 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2564
2565 ret = iavf_get_vf_vlan_v2_caps(adapter);
2566 if (ret)
2567 goto err;
2568
2569 /* We've processed receipt of the VLAN V2 caps message */
2570 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2571 return;
2572 err:
2573 /* We didn't receive a reply. Make sure we try sending again when
2574 * __IAVF_INIT_FAILED attempts to recover.
2575 */
2576 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2577 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2578 }
2579
2580 /**
2581 * iavf_init_process_extended_caps - Part of driver startup
2582 * @adapter: board private structure
2583 *
2584 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2585 * handles negotiating capabilities for features which require an additional
2586 * message.
2587 *
2588 * Once all extended capabilities exchanges are finished, the driver will
2589 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2590 */
iavf_init_process_extended_caps(struct iavf_adapter * adapter)2591 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2592 {
2593 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2594
2595 /* Process capability exchange for VLAN V2 */
2596 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2597 iavf_init_send_offload_vlan_v2_caps(adapter);
2598 return;
2599 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2600 iavf_init_recv_offload_vlan_v2_caps(adapter);
2601 return;
2602 }
2603
2604 /* When we reach here, no further extended capabilities exchanges are
2605 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2606 */
2607 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2608 }
2609
2610 /**
2611 * iavf_init_config_adapter - last part of driver startup
2612 * @adapter: board private structure
2613 *
2614 * After all the supported capabilities are negotiated, then the
2615 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2616 */
iavf_init_config_adapter(struct iavf_adapter * adapter)2617 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2618 {
2619 struct net_device *netdev = adapter->netdev;
2620 struct pci_dev *pdev = adapter->pdev;
2621 int err;
2622
2623 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2624
2625 if (iavf_process_config(adapter))
2626 goto err;
2627
2628 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2629
2630 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2631
2632 netdev->netdev_ops = &iavf_netdev_ops;
2633 iavf_set_ethtool_ops(netdev);
2634 netdev->watchdog_timeo = 5 * HZ;
2635
2636 netdev->min_mtu = ETH_MIN_MTU;
2637 netdev->max_mtu = LIBIE_MAX_MTU;
2638
2639 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2640 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2641 adapter->hw.mac.addr);
2642 eth_hw_addr_random(netdev);
2643 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2644 } else {
2645 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2646 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2647 }
2648
2649 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2650 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2651 err = iavf_init_interrupt_scheme(adapter);
2652 if (err)
2653 goto err_sw_init;
2654 iavf_map_rings_to_vectors(adapter);
2655 if (adapter->vf_res->vf_cap_flags &
2656 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2657 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2658
2659 err = iavf_request_misc_irq(adapter);
2660 if (err)
2661 goto err_sw_init;
2662
2663 netif_carrier_off(netdev);
2664 adapter->link_up = false;
2665 netif_tx_stop_all_queues(netdev);
2666
2667 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2668 if (netdev->features & NETIF_F_GRO)
2669 dev_info(&pdev->dev, "GRO is enabled\n");
2670
2671 iavf_change_state(adapter, __IAVF_DOWN);
2672 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2673
2674 iavf_misc_irq_enable(adapter);
2675 wake_up(&adapter->down_waitqueue);
2676
2677 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2678 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2679 if (!adapter->rss_key || !adapter->rss_lut) {
2680 err = -ENOMEM;
2681 goto err_mem;
2682 }
2683 if (RSS_AQ(adapter))
2684 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2685 else
2686 iavf_init_rss(adapter);
2687
2688 if (VLAN_V2_ALLOWED(adapter))
2689 /* request initial VLAN offload settings */
2690 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2691
2692 if (QOS_ALLOWED(adapter))
2693 adapter->aq_required |= IAVF_FLAG_AQ_GET_QOS_CAPS;
2694
2695 iavf_schedule_finish_config(adapter);
2696 return;
2697
2698 err_mem:
2699 iavf_free_rss(adapter);
2700 iavf_free_misc_irq(adapter);
2701 err_sw_init:
2702 iavf_reset_interrupt_capability(adapter);
2703 err:
2704 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2705 }
2706
2707 /**
2708 * iavf_watchdog_task - Periodic call-back task
2709 * @work: pointer to work_struct
2710 **/
iavf_watchdog_task(struct work_struct * work)2711 static void iavf_watchdog_task(struct work_struct *work)
2712 {
2713 struct iavf_adapter *adapter = container_of(work,
2714 struct iavf_adapter,
2715 watchdog_task.work);
2716 struct iavf_hw *hw = &adapter->hw;
2717 u32 reg_val;
2718
2719 if (!mutex_trylock(&adapter->crit_lock)) {
2720 if (adapter->state == __IAVF_REMOVE)
2721 return;
2722
2723 goto restart_watchdog;
2724 }
2725
2726 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2727 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2728
2729 switch (adapter->state) {
2730 case __IAVF_STARTUP:
2731 iavf_startup(adapter);
2732 mutex_unlock(&adapter->crit_lock);
2733 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2734 msecs_to_jiffies(30));
2735 return;
2736 case __IAVF_INIT_VERSION_CHECK:
2737 iavf_init_version_check(adapter);
2738 mutex_unlock(&adapter->crit_lock);
2739 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2740 msecs_to_jiffies(30));
2741 return;
2742 case __IAVF_INIT_GET_RESOURCES:
2743 iavf_init_get_resources(adapter);
2744 mutex_unlock(&adapter->crit_lock);
2745 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2746 msecs_to_jiffies(1));
2747 return;
2748 case __IAVF_INIT_EXTENDED_CAPS:
2749 iavf_init_process_extended_caps(adapter);
2750 mutex_unlock(&adapter->crit_lock);
2751 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2752 msecs_to_jiffies(1));
2753 return;
2754 case __IAVF_INIT_CONFIG_ADAPTER:
2755 iavf_init_config_adapter(adapter);
2756 mutex_unlock(&adapter->crit_lock);
2757 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2758 msecs_to_jiffies(1));
2759 return;
2760 case __IAVF_INIT_FAILED:
2761 if (test_bit(__IAVF_IN_REMOVE_TASK,
2762 &adapter->crit_section)) {
2763 /* Do not update the state and do not reschedule
2764 * watchdog task, iavf_remove should handle this state
2765 * as it can loop forever
2766 */
2767 mutex_unlock(&adapter->crit_lock);
2768 return;
2769 }
2770 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2771 dev_err(&adapter->pdev->dev,
2772 "Failed to communicate with PF; waiting before retry\n");
2773 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2774 iavf_shutdown_adminq(hw);
2775 mutex_unlock(&adapter->crit_lock);
2776 queue_delayed_work(adapter->wq,
2777 &adapter->watchdog_task, (5 * HZ));
2778 return;
2779 }
2780 /* Try again from failed step*/
2781 iavf_change_state(adapter, adapter->last_state);
2782 mutex_unlock(&adapter->crit_lock);
2783 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2784 return;
2785 case __IAVF_COMM_FAILED:
2786 if (test_bit(__IAVF_IN_REMOVE_TASK,
2787 &adapter->crit_section)) {
2788 /* Set state to __IAVF_INIT_FAILED and perform remove
2789 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2790 * doesn't bring the state back to __IAVF_COMM_FAILED.
2791 */
2792 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2793 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2794 mutex_unlock(&adapter->crit_lock);
2795 return;
2796 }
2797 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2798 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2799 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2800 reg_val == VIRTCHNL_VFR_COMPLETED) {
2801 /* A chance for redemption! */
2802 dev_err(&adapter->pdev->dev,
2803 "Hardware came out of reset. Attempting reinit.\n");
2804 /* When init task contacts the PF and
2805 * gets everything set up again, it'll restart the
2806 * watchdog for us. Down, boy. Sit. Stay. Woof.
2807 */
2808 iavf_change_state(adapter, __IAVF_STARTUP);
2809 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2810 }
2811 adapter->aq_required = 0;
2812 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2813 mutex_unlock(&adapter->crit_lock);
2814 queue_delayed_work(adapter->wq,
2815 &adapter->watchdog_task,
2816 msecs_to_jiffies(10));
2817 return;
2818 case __IAVF_RESETTING:
2819 mutex_unlock(&adapter->crit_lock);
2820 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2821 HZ * 2);
2822 return;
2823 case __IAVF_DOWN:
2824 case __IAVF_DOWN_PENDING:
2825 case __IAVF_TESTING:
2826 case __IAVF_RUNNING:
2827 if (adapter->current_op) {
2828 if (!iavf_asq_done(hw)) {
2829 dev_dbg(&adapter->pdev->dev,
2830 "Admin queue timeout\n");
2831 iavf_send_api_ver(adapter);
2832 }
2833 } else {
2834 int ret = iavf_process_aq_command(adapter);
2835
2836 /* An error will be returned if no commands were
2837 * processed; use this opportunity to update stats
2838 * if the error isn't -ENOTSUPP
2839 */
2840 if (ret && ret != -EOPNOTSUPP &&
2841 adapter->state == __IAVF_RUNNING)
2842 iavf_request_stats(adapter);
2843 }
2844 if (adapter->state == __IAVF_RUNNING)
2845 iavf_detect_recover_hung(&adapter->vsi);
2846 break;
2847 case __IAVF_REMOVE:
2848 default:
2849 mutex_unlock(&adapter->crit_lock);
2850 return;
2851 }
2852
2853 /* check for hw reset */
2854 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2855 if (!reg_val) {
2856 adapter->aq_required = 0;
2857 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2858 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2859 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2860 mutex_unlock(&adapter->crit_lock);
2861 queue_delayed_work(adapter->wq,
2862 &adapter->watchdog_task, HZ * 2);
2863 return;
2864 }
2865
2866 mutex_unlock(&adapter->crit_lock);
2867 restart_watchdog:
2868 if (adapter->state >= __IAVF_DOWN)
2869 queue_work(adapter->wq, &adapter->adminq_task);
2870 if (adapter->aq_required)
2871 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2872 msecs_to_jiffies(20));
2873 else
2874 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2875 HZ * 2);
2876 }
2877
2878 /**
2879 * iavf_disable_vf - disable VF
2880 * @adapter: board private structure
2881 *
2882 * Set communication failed flag and free all resources.
2883 * NOTE: This function is expected to be called with crit_lock being held.
2884 **/
iavf_disable_vf(struct iavf_adapter * adapter)2885 static void iavf_disable_vf(struct iavf_adapter *adapter)
2886 {
2887 struct iavf_mac_filter *f, *ftmp;
2888 struct iavf_vlan_filter *fv, *fvtmp;
2889 struct iavf_cloud_filter *cf, *cftmp;
2890
2891 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2892
2893 /* We don't use netif_running() because it may be true prior to
2894 * ndo_open() returning, so we can't assume it means all our open
2895 * tasks have finished, since we're not holding the rtnl_lock here.
2896 */
2897 if (adapter->state == __IAVF_RUNNING) {
2898 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2899 netif_carrier_off(adapter->netdev);
2900 netif_tx_disable(adapter->netdev);
2901 adapter->link_up = false;
2902 iavf_napi_disable_all(adapter);
2903 iavf_irq_disable(adapter);
2904 iavf_free_traffic_irqs(adapter);
2905 iavf_free_all_tx_resources(adapter);
2906 iavf_free_all_rx_resources(adapter);
2907 }
2908
2909 spin_lock_bh(&adapter->mac_vlan_list_lock);
2910
2911 /* Delete all of the filters */
2912 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2913 list_del(&f->list);
2914 kfree(f);
2915 }
2916
2917 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2918 list_del(&fv->list);
2919 kfree(fv);
2920 }
2921 adapter->num_vlan_filters = 0;
2922
2923 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2924
2925 spin_lock_bh(&adapter->cloud_filter_list_lock);
2926 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2927 list_del(&cf->list);
2928 kfree(cf);
2929 adapter->num_cloud_filters--;
2930 }
2931 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2932
2933 iavf_free_misc_irq(adapter);
2934 iavf_free_interrupt_scheme(adapter);
2935 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2936 iavf_shutdown_adminq(&adapter->hw);
2937 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2938 iavf_change_state(adapter, __IAVF_DOWN);
2939 wake_up(&adapter->down_waitqueue);
2940 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2941 }
2942
2943 /**
2944 * iavf_reconfig_qs_bw - Call-back task to handle hardware reset
2945 * @adapter: board private structure
2946 *
2947 * After a reset, the shaper parameters of queues need to be replayed again.
2948 * Since the net_shaper object inside TX rings persists across reset,
2949 * set the update flag for all queues so that the virtchnl message is triggered
2950 * for all queues.
2951 **/
iavf_reconfig_qs_bw(struct iavf_adapter * adapter)2952 static void iavf_reconfig_qs_bw(struct iavf_adapter *adapter)
2953 {
2954 int i, num = 0;
2955
2956 for (i = 0; i < adapter->num_active_queues; i++)
2957 if (adapter->tx_rings[i].q_shaper.bw_min ||
2958 adapter->tx_rings[i].q_shaper.bw_max) {
2959 adapter->tx_rings[i].q_shaper_update = true;
2960 num++;
2961 }
2962
2963 if (num)
2964 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
2965 }
2966
2967 /**
2968 * iavf_reset_task - Call-back task to handle hardware reset
2969 * @work: pointer to work_struct
2970 *
2971 * During reset we need to shut down and reinitialize the admin queue
2972 * before we can use it to communicate with the PF again. We also clear
2973 * and reinit the rings because that context is lost as well.
2974 **/
iavf_reset_task(struct work_struct * work)2975 static void iavf_reset_task(struct work_struct *work)
2976 {
2977 struct iavf_adapter *adapter = container_of(work,
2978 struct iavf_adapter,
2979 reset_task);
2980 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2981 struct net_device *netdev = adapter->netdev;
2982 struct iavf_hw *hw = &adapter->hw;
2983 struct iavf_mac_filter *f, *ftmp;
2984 struct iavf_cloud_filter *cf;
2985 enum iavf_status status;
2986 u32 reg_val;
2987 int i = 0, err;
2988 bool running;
2989
2990 /* When device is being removed it doesn't make sense to run the reset
2991 * task, just return in such a case.
2992 */
2993 mutex_lock(&netdev->lock);
2994 if (!mutex_trylock(&adapter->crit_lock)) {
2995 if (adapter->state != __IAVF_REMOVE)
2996 queue_work(adapter->wq, &adapter->reset_task);
2997
2998 mutex_unlock(&netdev->lock);
2999 return;
3000 }
3001
3002 iavf_misc_irq_disable(adapter);
3003 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
3004 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
3005 /* Restart the AQ here. If we have been reset but didn't
3006 * detect it, or if the PF had to reinit, our AQ will be hosed.
3007 */
3008 iavf_shutdown_adminq(hw);
3009 iavf_init_adminq(hw);
3010 iavf_request_reset(adapter);
3011 }
3012 adapter->flags |= IAVF_FLAG_RESET_PENDING;
3013
3014 /* poll until we see the reset actually happen */
3015 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3016 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3017 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3018 if (!reg_val)
3019 break;
3020 usleep_range(5000, 10000);
3021 }
3022 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3023 dev_info(&adapter->pdev->dev, "Never saw reset\n");
3024 goto continue_reset; /* act like the reset happened */
3025 }
3026
3027 /* wait until the reset is complete and the PF is responding to us */
3028 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3029 /* sleep first to make sure a minimum wait time is met */
3030 msleep(IAVF_RESET_WAIT_MS);
3031
3032 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3033 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3034 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3035 break;
3036 }
3037
3038 pci_set_master(adapter->pdev);
3039 pci_restore_msi_state(adapter->pdev);
3040
3041 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3042 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3043 reg_val);
3044 iavf_disable_vf(adapter);
3045 mutex_unlock(&adapter->crit_lock);
3046 mutex_unlock(&netdev->lock);
3047 return; /* Do not attempt to reinit. It's dead, Jim. */
3048 }
3049
3050 continue_reset:
3051 /* We don't use netif_running() because it may be true prior to
3052 * ndo_open() returning, so we can't assume it means all our open
3053 * tasks have finished, since we're not holding the rtnl_lock here.
3054 */
3055 running = adapter->state == __IAVF_RUNNING;
3056
3057 if (running) {
3058 netif_carrier_off(netdev);
3059 netif_tx_stop_all_queues(netdev);
3060 adapter->link_up = false;
3061 iavf_napi_disable_all(adapter);
3062 }
3063 iavf_irq_disable(adapter);
3064
3065 iavf_change_state(adapter, __IAVF_RESETTING);
3066 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3067
3068 /* free the Tx/Rx rings and descriptors, might be better to just
3069 * re-use them sometime in the future
3070 */
3071 iavf_free_all_rx_resources(adapter);
3072 iavf_free_all_tx_resources(adapter);
3073
3074 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3075 /* kill and reinit the admin queue */
3076 iavf_shutdown_adminq(hw);
3077 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3078 status = iavf_init_adminq(hw);
3079 if (status) {
3080 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3081 status);
3082 goto reset_err;
3083 }
3084 adapter->aq_required = 0;
3085
3086 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3087 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3088 err = iavf_reinit_interrupt_scheme(adapter, running);
3089 if (err)
3090 goto reset_err;
3091 }
3092
3093 if (RSS_AQ(adapter)) {
3094 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3095 } else {
3096 err = iavf_init_rss(adapter);
3097 if (err)
3098 goto reset_err;
3099 }
3100
3101 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3102 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3103 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3104 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3105 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3106 * been successfully sent and negotiated
3107 */
3108 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3109 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3110
3111 spin_lock_bh(&adapter->mac_vlan_list_lock);
3112
3113 /* Delete filter for the current MAC address, it could have
3114 * been changed by the PF via administratively set MAC.
3115 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3116 */
3117 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3118 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3119 list_del(&f->list);
3120 kfree(f);
3121 }
3122 }
3123 /* re-add all MAC filters */
3124 list_for_each_entry(f, &adapter->mac_filter_list, list) {
3125 f->add = true;
3126 }
3127 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3128
3129 /* check if TCs are running and re-add all cloud filters */
3130 spin_lock_bh(&adapter->cloud_filter_list_lock);
3131 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3132 adapter->num_tc) {
3133 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3134 cf->add = true;
3135 }
3136 }
3137 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3138
3139 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3140 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3141 iavf_misc_irq_enable(adapter);
3142
3143 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3144
3145 /* We were running when the reset started, so we need to restore some
3146 * state here.
3147 */
3148 if (running) {
3149 /* allocate transmit descriptors */
3150 err = iavf_setup_all_tx_resources(adapter);
3151 if (err)
3152 goto reset_err;
3153
3154 /* allocate receive descriptors */
3155 err = iavf_setup_all_rx_resources(adapter);
3156 if (err)
3157 goto reset_err;
3158
3159 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3160 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3161 err = iavf_request_traffic_irqs(adapter, netdev->name);
3162 if (err)
3163 goto reset_err;
3164
3165 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3166 }
3167
3168 iavf_configure(adapter);
3169
3170 /* iavf_up_complete() will switch device back
3171 * to __IAVF_RUNNING
3172 */
3173 iavf_up_complete(adapter);
3174
3175 iavf_irq_enable(adapter, true);
3176
3177 iavf_reconfig_qs_bw(adapter);
3178 } else {
3179 iavf_change_state(adapter, __IAVF_DOWN);
3180 wake_up(&adapter->down_waitqueue);
3181 }
3182
3183 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3184
3185 wake_up(&adapter->reset_waitqueue);
3186 mutex_unlock(&adapter->crit_lock);
3187 mutex_unlock(&netdev->lock);
3188
3189 return;
3190 reset_err:
3191 if (running) {
3192 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3193 iavf_free_traffic_irqs(adapter);
3194 }
3195 iavf_disable_vf(adapter);
3196
3197 mutex_unlock(&adapter->crit_lock);
3198 mutex_unlock(&netdev->lock);
3199 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3200 }
3201
3202 /**
3203 * iavf_adminq_task - worker thread to clean the admin queue
3204 * @work: pointer to work_struct containing our data
3205 **/
iavf_adminq_task(struct work_struct * work)3206 static void iavf_adminq_task(struct work_struct *work)
3207 {
3208 struct iavf_adapter *adapter =
3209 container_of(work, struct iavf_adapter, adminq_task);
3210 struct iavf_hw *hw = &adapter->hw;
3211 struct iavf_arq_event_info event;
3212 enum virtchnl_ops v_op;
3213 enum iavf_status ret, v_ret;
3214 u32 val, oldval;
3215 u16 pending;
3216
3217 if (!mutex_trylock(&adapter->crit_lock)) {
3218 if (adapter->state == __IAVF_REMOVE)
3219 return;
3220
3221 queue_work(adapter->wq, &adapter->adminq_task);
3222 goto out;
3223 }
3224
3225 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3226 goto unlock;
3227
3228 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3229 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3230 if (!event.msg_buf)
3231 goto unlock;
3232
3233 do {
3234 ret = iavf_clean_arq_element(hw, &event, &pending);
3235 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3236 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3237
3238 if (ret || !v_op)
3239 break; /* No event to process or error cleaning ARQ */
3240
3241 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3242 event.msg_len);
3243 if (pending != 0)
3244 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3245 } while (pending);
3246
3247 if (iavf_is_reset_in_progress(adapter))
3248 goto freedom;
3249
3250 /* check for error indications */
3251 val = rd32(hw, IAVF_VF_ARQLEN1);
3252 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3253 goto freedom;
3254 oldval = val;
3255 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3256 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3257 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3258 }
3259 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3260 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3261 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3262 }
3263 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3264 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3265 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3266 }
3267 if (oldval != val)
3268 wr32(hw, IAVF_VF_ARQLEN1, val);
3269
3270 val = rd32(hw, IAVF_VF_ATQLEN1);
3271 oldval = val;
3272 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3273 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3274 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3275 }
3276 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3277 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3278 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3279 }
3280 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3281 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3282 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3283 }
3284 if (oldval != val)
3285 wr32(hw, IAVF_VF_ATQLEN1, val);
3286
3287 freedom:
3288 kfree(event.msg_buf);
3289 unlock:
3290 mutex_unlock(&adapter->crit_lock);
3291 out:
3292 /* re-enable Admin queue interrupt cause */
3293 iavf_misc_irq_enable(adapter);
3294 }
3295
3296 /**
3297 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3298 * @adapter: board private structure
3299 *
3300 * Free all transmit software resources
3301 **/
iavf_free_all_tx_resources(struct iavf_adapter * adapter)3302 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3303 {
3304 int i;
3305
3306 if (!adapter->tx_rings)
3307 return;
3308
3309 for (i = 0; i < adapter->num_active_queues; i++)
3310 if (adapter->tx_rings[i].desc)
3311 iavf_free_tx_resources(&adapter->tx_rings[i]);
3312 }
3313
3314 /**
3315 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3316 * @adapter: board private structure
3317 *
3318 * If this function returns with an error, then it's possible one or
3319 * more of the rings is populated (while the rest are not). It is the
3320 * callers duty to clean those orphaned rings.
3321 *
3322 * Return 0 on success, negative on failure
3323 **/
iavf_setup_all_tx_resources(struct iavf_adapter * adapter)3324 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3325 {
3326 int i, err = 0;
3327
3328 for (i = 0; i < adapter->num_active_queues; i++) {
3329 adapter->tx_rings[i].count = adapter->tx_desc_count;
3330 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3331 if (!err)
3332 continue;
3333 dev_err(&adapter->pdev->dev,
3334 "Allocation for Tx Queue %u failed\n", i);
3335 break;
3336 }
3337
3338 return err;
3339 }
3340
3341 /**
3342 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3343 * @adapter: board private structure
3344 *
3345 * If this function returns with an error, then it's possible one or
3346 * more of the rings is populated (while the rest are not). It is the
3347 * callers duty to clean those orphaned rings.
3348 *
3349 * Return 0 on success, negative on failure
3350 **/
iavf_setup_all_rx_resources(struct iavf_adapter * adapter)3351 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3352 {
3353 int i, err = 0;
3354
3355 for (i = 0; i < adapter->num_active_queues; i++) {
3356 adapter->rx_rings[i].count = adapter->rx_desc_count;
3357 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3358 if (!err)
3359 continue;
3360 dev_err(&adapter->pdev->dev,
3361 "Allocation for Rx Queue %u failed\n", i);
3362 break;
3363 }
3364 return err;
3365 }
3366
3367 /**
3368 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3369 * @adapter: board private structure
3370 *
3371 * Free all receive software resources
3372 **/
iavf_free_all_rx_resources(struct iavf_adapter * adapter)3373 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3374 {
3375 int i;
3376
3377 if (!adapter->rx_rings)
3378 return;
3379
3380 for (i = 0; i < adapter->num_active_queues; i++)
3381 if (adapter->rx_rings[i].desc)
3382 iavf_free_rx_resources(&adapter->rx_rings[i]);
3383 }
3384
3385 /**
3386 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3387 * @adapter: board private structure
3388 * @max_tx_rate: max Tx bw for a tc
3389 **/
iavf_validate_tx_bandwidth(struct iavf_adapter * adapter,u64 max_tx_rate)3390 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3391 u64 max_tx_rate)
3392 {
3393 int speed = 0, ret = 0;
3394
3395 if (ADV_LINK_SUPPORT(adapter)) {
3396 if (adapter->link_speed_mbps < U32_MAX) {
3397 speed = adapter->link_speed_mbps;
3398 goto validate_bw;
3399 } else {
3400 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3401 return -EINVAL;
3402 }
3403 }
3404
3405 switch (adapter->link_speed) {
3406 case VIRTCHNL_LINK_SPEED_40GB:
3407 speed = SPEED_40000;
3408 break;
3409 case VIRTCHNL_LINK_SPEED_25GB:
3410 speed = SPEED_25000;
3411 break;
3412 case VIRTCHNL_LINK_SPEED_20GB:
3413 speed = SPEED_20000;
3414 break;
3415 case VIRTCHNL_LINK_SPEED_10GB:
3416 speed = SPEED_10000;
3417 break;
3418 case VIRTCHNL_LINK_SPEED_5GB:
3419 speed = SPEED_5000;
3420 break;
3421 case VIRTCHNL_LINK_SPEED_2_5GB:
3422 speed = SPEED_2500;
3423 break;
3424 case VIRTCHNL_LINK_SPEED_1GB:
3425 speed = SPEED_1000;
3426 break;
3427 case VIRTCHNL_LINK_SPEED_100MB:
3428 speed = SPEED_100;
3429 break;
3430 default:
3431 break;
3432 }
3433
3434 validate_bw:
3435 if (max_tx_rate > speed) {
3436 dev_err(&adapter->pdev->dev,
3437 "Invalid tx rate specified\n");
3438 ret = -EINVAL;
3439 }
3440
3441 return ret;
3442 }
3443
3444 /**
3445 * iavf_validate_ch_config - validate queue mapping info
3446 * @adapter: board private structure
3447 * @mqprio_qopt: queue parameters
3448 *
3449 * This function validates if the config provided by the user to
3450 * configure queue channels is valid or not. Returns 0 on a valid
3451 * config.
3452 **/
iavf_validate_ch_config(struct iavf_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio_qopt)3453 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3454 struct tc_mqprio_qopt_offload *mqprio_qopt)
3455 {
3456 u64 total_max_rate = 0;
3457 u32 tx_rate_rem = 0;
3458 int i, num_qps = 0;
3459 u64 tx_rate = 0;
3460 int ret = 0;
3461
3462 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3463 mqprio_qopt->qopt.num_tc < 1)
3464 return -EINVAL;
3465
3466 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3467 if (!mqprio_qopt->qopt.count[i] ||
3468 mqprio_qopt->qopt.offset[i] != num_qps)
3469 return -EINVAL;
3470 if (mqprio_qopt->min_rate[i]) {
3471 dev_err(&adapter->pdev->dev,
3472 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3473 i);
3474 return -EINVAL;
3475 }
3476
3477 /* convert to Mbps */
3478 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3479 IAVF_MBPS_DIVISOR);
3480
3481 if (mqprio_qopt->max_rate[i] &&
3482 tx_rate < IAVF_MBPS_QUANTA) {
3483 dev_err(&adapter->pdev->dev,
3484 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3485 i, IAVF_MBPS_QUANTA);
3486 return -EINVAL;
3487 }
3488
3489 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3490
3491 if (tx_rate_rem != 0) {
3492 dev_err(&adapter->pdev->dev,
3493 "Invalid max tx rate for TC%d, not divisible by %d\n",
3494 i, IAVF_MBPS_QUANTA);
3495 return -EINVAL;
3496 }
3497
3498 total_max_rate += tx_rate;
3499 num_qps += mqprio_qopt->qopt.count[i];
3500 }
3501 if (num_qps > adapter->num_active_queues) {
3502 dev_err(&adapter->pdev->dev,
3503 "Cannot support requested number of queues\n");
3504 return -EINVAL;
3505 }
3506
3507 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3508 return ret;
3509 }
3510
3511 /**
3512 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3513 * @adapter: board private structure
3514 **/
iavf_del_all_cloud_filters(struct iavf_adapter * adapter)3515 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3516 {
3517 struct iavf_cloud_filter *cf, *cftmp;
3518
3519 spin_lock_bh(&adapter->cloud_filter_list_lock);
3520 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3521 list) {
3522 list_del(&cf->list);
3523 kfree(cf);
3524 adapter->num_cloud_filters--;
3525 }
3526 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3527 }
3528
3529 /**
3530 * iavf_is_tc_config_same - Compare the mqprio TC config with the
3531 * TC config already configured on this adapter.
3532 * @adapter: board private structure
3533 * @mqprio_qopt: TC config received from kernel.
3534 *
3535 * This function compares the TC config received from the kernel
3536 * with the config already configured on the adapter.
3537 *
3538 * Return: True if configuration is same, false otherwise.
3539 **/
iavf_is_tc_config_same(struct iavf_adapter * adapter,struct tc_mqprio_qopt * mqprio_qopt)3540 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3541 struct tc_mqprio_qopt *mqprio_qopt)
3542 {
3543 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3544 int i;
3545
3546 if (adapter->num_tc != mqprio_qopt->num_tc)
3547 return false;
3548
3549 for (i = 0; i < adapter->num_tc; i++) {
3550 if (ch[i].count != mqprio_qopt->count[i] ||
3551 ch[i].offset != mqprio_qopt->offset[i])
3552 return false;
3553 }
3554 return true;
3555 }
3556
3557 /**
3558 * __iavf_setup_tc - configure multiple traffic classes
3559 * @netdev: network interface device structure
3560 * @type_data: tc offload data
3561 *
3562 * This function processes the config information provided by the
3563 * user to configure traffic classes/queue channels and packages the
3564 * information to request the PF to setup traffic classes.
3565 *
3566 * Returns 0 on success.
3567 **/
__iavf_setup_tc(struct net_device * netdev,void * type_data)3568 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3569 {
3570 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3571 struct iavf_adapter *adapter = netdev_priv(netdev);
3572 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3573 u8 num_tc = 0, total_qps = 0;
3574 int ret = 0, netdev_tc = 0;
3575 u64 max_tx_rate;
3576 u16 mode;
3577 int i;
3578
3579 num_tc = mqprio_qopt->qopt.num_tc;
3580 mode = mqprio_qopt->mode;
3581
3582 /* delete queue_channel */
3583 if (!mqprio_qopt->qopt.hw) {
3584 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3585 /* reset the tc configuration */
3586 netdev_reset_tc(netdev);
3587 adapter->num_tc = 0;
3588 netif_tx_stop_all_queues(netdev);
3589 netif_tx_disable(netdev);
3590 iavf_del_all_cloud_filters(adapter);
3591 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3592 total_qps = adapter->orig_num_active_queues;
3593 goto exit;
3594 } else {
3595 return -EINVAL;
3596 }
3597 }
3598
3599 /* add queue channel */
3600 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3601 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3602 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3603 return -EOPNOTSUPP;
3604 }
3605 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3606 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3607 return -EINVAL;
3608 }
3609
3610 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3611 if (ret)
3612 return ret;
3613 /* Return if same TC config is requested */
3614 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3615 return 0;
3616 adapter->num_tc = num_tc;
3617
3618 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3619 if (i < num_tc) {
3620 adapter->ch_config.ch_info[i].count =
3621 mqprio_qopt->qopt.count[i];
3622 adapter->ch_config.ch_info[i].offset =
3623 mqprio_qopt->qopt.offset[i];
3624 total_qps += mqprio_qopt->qopt.count[i];
3625 max_tx_rate = mqprio_qopt->max_rate[i];
3626 /* convert to Mbps */
3627 max_tx_rate = div_u64(max_tx_rate,
3628 IAVF_MBPS_DIVISOR);
3629 adapter->ch_config.ch_info[i].max_tx_rate =
3630 max_tx_rate;
3631 } else {
3632 adapter->ch_config.ch_info[i].count = 1;
3633 adapter->ch_config.ch_info[i].offset = 0;
3634 }
3635 }
3636
3637 /* Take snapshot of original config such as "num_active_queues"
3638 * It is used later when delete ADQ flow is exercised, so that
3639 * once delete ADQ flow completes, VF shall go back to its
3640 * original queue configuration
3641 */
3642
3643 adapter->orig_num_active_queues = adapter->num_active_queues;
3644
3645 /* Store queue info based on TC so that VF gets configured
3646 * with correct number of queues when VF completes ADQ config
3647 * flow
3648 */
3649 adapter->ch_config.total_qps = total_qps;
3650
3651 netif_tx_stop_all_queues(netdev);
3652 netif_tx_disable(netdev);
3653 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3654 netdev_reset_tc(netdev);
3655 /* Report the tc mapping up the stack */
3656 netdev_set_num_tc(adapter->netdev, num_tc);
3657 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3658 u16 qcount = mqprio_qopt->qopt.count[i];
3659 u16 qoffset = mqprio_qopt->qopt.offset[i];
3660
3661 if (i < num_tc)
3662 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3663 qoffset);
3664 }
3665 }
3666 exit:
3667 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3668 return 0;
3669
3670 mutex_lock(&netdev->lock);
3671 netif_set_real_num_rx_queues(netdev, total_qps);
3672 netif_set_real_num_tx_queues(netdev, total_qps);
3673 mutex_unlock(&netdev->lock);
3674
3675 return ret;
3676 }
3677
3678 /**
3679 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3680 * @adapter: board private structure
3681 * @f: pointer to struct flow_cls_offload
3682 * @filter: pointer to cloud filter structure
3683 */
iavf_parse_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * f,struct iavf_cloud_filter * filter)3684 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3685 struct flow_cls_offload *f,
3686 struct iavf_cloud_filter *filter)
3687 {
3688 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3689 struct flow_dissector *dissector = rule->match.dissector;
3690 u16 n_proto_mask = 0;
3691 u16 n_proto_key = 0;
3692 u8 field_flags = 0;
3693 u16 addr_type = 0;
3694 u16 n_proto = 0;
3695 int i = 0;
3696 struct virtchnl_filter *vf = &filter->f;
3697
3698 if (dissector->used_keys &
3699 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3700 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3701 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3702 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3703 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3704 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3705 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3706 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3707 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3708 dissector->used_keys);
3709 return -EOPNOTSUPP;
3710 }
3711
3712 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3713 struct flow_match_enc_keyid match;
3714
3715 flow_rule_match_enc_keyid(rule, &match);
3716 if (match.mask->keyid != 0)
3717 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3718 }
3719
3720 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3721 struct flow_match_basic match;
3722
3723 flow_rule_match_basic(rule, &match);
3724 n_proto_key = ntohs(match.key->n_proto);
3725 n_proto_mask = ntohs(match.mask->n_proto);
3726
3727 if (n_proto_key == ETH_P_ALL) {
3728 n_proto_key = 0;
3729 n_proto_mask = 0;
3730 }
3731 n_proto = n_proto_key & n_proto_mask;
3732 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3733 return -EINVAL;
3734 if (n_proto == ETH_P_IPV6) {
3735 /* specify flow type as TCP IPv6 */
3736 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3737 }
3738
3739 if (match.key->ip_proto != IPPROTO_TCP) {
3740 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3741 return -EINVAL;
3742 }
3743 }
3744
3745 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3746 struct flow_match_eth_addrs match;
3747
3748 flow_rule_match_eth_addrs(rule, &match);
3749
3750 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3751 if (!is_zero_ether_addr(match.mask->dst)) {
3752 if (is_broadcast_ether_addr(match.mask->dst)) {
3753 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3754 } else {
3755 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3756 match.mask->dst);
3757 return -EINVAL;
3758 }
3759 }
3760
3761 if (!is_zero_ether_addr(match.mask->src)) {
3762 if (is_broadcast_ether_addr(match.mask->src)) {
3763 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3764 } else {
3765 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3766 match.mask->src);
3767 return -EINVAL;
3768 }
3769 }
3770
3771 if (!is_zero_ether_addr(match.key->dst))
3772 if (is_valid_ether_addr(match.key->dst) ||
3773 is_multicast_ether_addr(match.key->dst)) {
3774 /* set the mask if a valid dst_mac address */
3775 for (i = 0; i < ETH_ALEN; i++)
3776 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3777 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3778 match.key->dst);
3779 }
3780
3781 if (!is_zero_ether_addr(match.key->src))
3782 if (is_valid_ether_addr(match.key->src) ||
3783 is_multicast_ether_addr(match.key->src)) {
3784 /* set the mask if a valid dst_mac address */
3785 for (i = 0; i < ETH_ALEN; i++)
3786 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3787 ether_addr_copy(vf->data.tcp_spec.src_mac,
3788 match.key->src);
3789 }
3790 }
3791
3792 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3793 struct flow_match_vlan match;
3794
3795 flow_rule_match_vlan(rule, &match);
3796 if (match.mask->vlan_id) {
3797 if (match.mask->vlan_id == VLAN_VID_MASK) {
3798 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3799 } else {
3800 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3801 match.mask->vlan_id);
3802 return -EINVAL;
3803 }
3804 }
3805 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3806 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3807 }
3808
3809 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3810 struct flow_match_control match;
3811
3812 flow_rule_match_control(rule, &match);
3813 addr_type = match.key->addr_type;
3814
3815 if (flow_rule_has_control_flags(match.mask->flags,
3816 f->common.extack))
3817 return -EOPNOTSUPP;
3818 }
3819
3820 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3821 struct flow_match_ipv4_addrs match;
3822
3823 flow_rule_match_ipv4_addrs(rule, &match);
3824 if (match.mask->dst) {
3825 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3826 field_flags |= IAVF_CLOUD_FIELD_IIP;
3827 } else {
3828 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3829 be32_to_cpu(match.mask->dst));
3830 return -EINVAL;
3831 }
3832 }
3833
3834 if (match.mask->src) {
3835 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3836 field_flags |= IAVF_CLOUD_FIELD_IIP;
3837 } else {
3838 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3839 be32_to_cpu(match.mask->src));
3840 return -EINVAL;
3841 }
3842 }
3843
3844 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3845 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3846 return -EINVAL;
3847 }
3848 if (match.key->dst) {
3849 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3850 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3851 }
3852 if (match.key->src) {
3853 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3854 vf->data.tcp_spec.src_ip[0] = match.key->src;
3855 }
3856 }
3857
3858 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3859 struct flow_match_ipv6_addrs match;
3860
3861 flow_rule_match_ipv6_addrs(rule, &match);
3862
3863 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3864 if (ipv6_addr_any(&match.mask->dst)) {
3865 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3866 IPV6_ADDR_ANY);
3867 return -EINVAL;
3868 }
3869
3870 /* src and dest IPv6 address should not be LOOPBACK
3871 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3872 */
3873 if (ipv6_addr_loopback(&match.key->dst) ||
3874 ipv6_addr_loopback(&match.key->src)) {
3875 dev_err(&adapter->pdev->dev,
3876 "ipv6 addr should not be loopback\n");
3877 return -EINVAL;
3878 }
3879 if (!ipv6_addr_any(&match.mask->dst) ||
3880 !ipv6_addr_any(&match.mask->src))
3881 field_flags |= IAVF_CLOUD_FIELD_IIP;
3882
3883 for (i = 0; i < 4; i++)
3884 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3885 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3886 sizeof(vf->data.tcp_spec.dst_ip));
3887 for (i = 0; i < 4; i++)
3888 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3889 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3890 sizeof(vf->data.tcp_spec.src_ip));
3891 }
3892 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3893 struct flow_match_ports match;
3894
3895 flow_rule_match_ports(rule, &match);
3896 if (match.mask->src) {
3897 if (match.mask->src == cpu_to_be16(0xffff)) {
3898 field_flags |= IAVF_CLOUD_FIELD_IIP;
3899 } else {
3900 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3901 be16_to_cpu(match.mask->src));
3902 return -EINVAL;
3903 }
3904 }
3905
3906 if (match.mask->dst) {
3907 if (match.mask->dst == cpu_to_be16(0xffff)) {
3908 field_flags |= IAVF_CLOUD_FIELD_IIP;
3909 } else {
3910 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3911 be16_to_cpu(match.mask->dst));
3912 return -EINVAL;
3913 }
3914 }
3915 if (match.key->dst) {
3916 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3917 vf->data.tcp_spec.dst_port = match.key->dst;
3918 }
3919
3920 if (match.key->src) {
3921 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3922 vf->data.tcp_spec.src_port = match.key->src;
3923 }
3924 }
3925 vf->field_flags = field_flags;
3926
3927 return 0;
3928 }
3929
3930 /**
3931 * iavf_handle_tclass - Forward to a traffic class on the device
3932 * @adapter: board private structure
3933 * @tc: traffic class index on the device
3934 * @filter: pointer to cloud filter structure
3935 */
iavf_handle_tclass(struct iavf_adapter * adapter,u32 tc,struct iavf_cloud_filter * filter)3936 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3937 struct iavf_cloud_filter *filter)
3938 {
3939 if (tc == 0)
3940 return 0;
3941 if (tc < adapter->num_tc) {
3942 if (!filter->f.data.tcp_spec.dst_port) {
3943 dev_err(&adapter->pdev->dev,
3944 "Specify destination port to redirect to traffic class other than TC0\n");
3945 return -EINVAL;
3946 }
3947 }
3948 /* redirect to a traffic class on the same device */
3949 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3950 filter->f.action_meta = tc;
3951 return 0;
3952 }
3953
3954 /**
3955 * iavf_find_cf - Find the cloud filter in the list
3956 * @adapter: Board private structure
3957 * @cookie: filter specific cookie
3958 *
3959 * Returns ptr to the filter object or NULL. Must be called while holding the
3960 * cloud_filter_list_lock.
3961 */
iavf_find_cf(struct iavf_adapter * adapter,unsigned long * cookie)3962 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3963 unsigned long *cookie)
3964 {
3965 struct iavf_cloud_filter *filter = NULL;
3966
3967 if (!cookie)
3968 return NULL;
3969
3970 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3971 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3972 return filter;
3973 }
3974 return NULL;
3975 }
3976
3977 /**
3978 * iavf_configure_clsflower - Add tc flower filters
3979 * @adapter: board private structure
3980 * @cls_flower: Pointer to struct flow_cls_offload
3981 */
iavf_configure_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3982 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3983 struct flow_cls_offload *cls_flower)
3984 {
3985 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3986 struct iavf_cloud_filter *filter = NULL;
3987 int err = -EINVAL, count = 50;
3988
3989 if (tc < 0) {
3990 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3991 return -EINVAL;
3992 }
3993
3994 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3995 if (!filter)
3996 return -ENOMEM;
3997
3998 while (!mutex_trylock(&adapter->crit_lock)) {
3999 if (--count == 0) {
4000 kfree(filter);
4001 return err;
4002 }
4003 udelay(1);
4004 }
4005
4006 filter->cookie = cls_flower->cookie;
4007
4008 /* bail out here if filter already exists */
4009 spin_lock_bh(&adapter->cloud_filter_list_lock);
4010 if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4011 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4012 err = -EEXIST;
4013 goto spin_unlock;
4014 }
4015 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4016
4017 /* set the mask to all zeroes to begin with */
4018 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4019 /* start out with flow type and eth type IPv4 to begin with */
4020 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4021 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4022 if (err)
4023 goto err;
4024
4025 err = iavf_handle_tclass(adapter, tc, filter);
4026 if (err)
4027 goto err;
4028
4029 /* add filter to the list */
4030 spin_lock_bh(&adapter->cloud_filter_list_lock);
4031 list_add_tail(&filter->list, &adapter->cloud_filter_list);
4032 adapter->num_cloud_filters++;
4033 filter->add = true;
4034 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4035 spin_unlock:
4036 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4037 err:
4038 if (err)
4039 kfree(filter);
4040
4041 mutex_unlock(&adapter->crit_lock);
4042 return err;
4043 }
4044
4045 /**
4046 * iavf_delete_clsflower - Remove tc flower filters
4047 * @adapter: board private structure
4048 * @cls_flower: Pointer to struct flow_cls_offload
4049 */
iavf_delete_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)4050 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4051 struct flow_cls_offload *cls_flower)
4052 {
4053 struct iavf_cloud_filter *filter = NULL;
4054 int err = 0;
4055
4056 spin_lock_bh(&adapter->cloud_filter_list_lock);
4057 filter = iavf_find_cf(adapter, &cls_flower->cookie);
4058 if (filter) {
4059 filter->del = true;
4060 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4061 } else {
4062 err = -EINVAL;
4063 }
4064 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4065
4066 return err;
4067 }
4068
4069 /**
4070 * iavf_setup_tc_cls_flower - flower classifier offloads
4071 * @adapter: pointer to iavf adapter structure
4072 * @cls_flower: pointer to flow_cls_offload struct with flow info
4073 */
iavf_setup_tc_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)4074 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4075 struct flow_cls_offload *cls_flower)
4076 {
4077 switch (cls_flower->command) {
4078 case FLOW_CLS_REPLACE:
4079 return iavf_configure_clsflower(adapter, cls_flower);
4080 case FLOW_CLS_DESTROY:
4081 return iavf_delete_clsflower(adapter, cls_flower);
4082 case FLOW_CLS_STATS:
4083 return -EOPNOTSUPP;
4084 default:
4085 return -EOPNOTSUPP;
4086 }
4087 }
4088
4089 /**
4090 * iavf_add_cls_u32 - Add U32 classifier offloads
4091 * @adapter: pointer to iavf adapter structure
4092 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4093 *
4094 * Return: 0 on success or negative errno on failure.
4095 */
iavf_add_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4096 static int iavf_add_cls_u32(struct iavf_adapter *adapter,
4097 struct tc_cls_u32_offload *cls_u32)
4098 {
4099 struct netlink_ext_ack *extack = cls_u32->common.extack;
4100 struct virtchnl_fdir_rule *rule_cfg;
4101 struct virtchnl_filter_action *vact;
4102 struct virtchnl_proto_hdrs *hdrs;
4103 struct ethhdr *spec_h, *mask_h;
4104 const struct tc_action *act;
4105 struct iavf_fdir_fltr *fltr;
4106 struct tcf_exts *exts;
4107 unsigned int q_index;
4108 int i, status = 0;
4109 int off_base = 0;
4110
4111 if (cls_u32->knode.link_handle) {
4112 NL_SET_ERR_MSG_MOD(extack, "Linking not supported");
4113 return -EOPNOTSUPP;
4114 }
4115
4116 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
4117 if (!fltr)
4118 return -ENOMEM;
4119
4120 rule_cfg = &fltr->vc_add_msg.rule_cfg;
4121 hdrs = &rule_cfg->proto_hdrs;
4122 hdrs->count = 0;
4123
4124 /* The parser lib at the PF expects the packet starting with MAC hdr */
4125 switch (ntohs(cls_u32->common.protocol)) {
4126 case ETH_P_802_3:
4127 break;
4128 case ETH_P_IP:
4129 spec_h = (struct ethhdr *)hdrs->raw.spec;
4130 mask_h = (struct ethhdr *)hdrs->raw.mask;
4131 spec_h->h_proto = htons(ETH_P_IP);
4132 mask_h->h_proto = htons(0xFFFF);
4133 off_base += ETH_HLEN;
4134 break;
4135 default:
4136 NL_SET_ERR_MSG_MOD(extack, "Only 802_3 and ip filter protocols are supported");
4137 status = -EOPNOTSUPP;
4138 goto free_alloc;
4139 }
4140
4141 for (i = 0; i < cls_u32->knode.sel->nkeys; i++) {
4142 __be32 val, mask;
4143 int off;
4144
4145 off = off_base + cls_u32->knode.sel->keys[i].off;
4146 val = cls_u32->knode.sel->keys[i].val;
4147 mask = cls_u32->knode.sel->keys[i].mask;
4148
4149 if (off >= sizeof(hdrs->raw.spec)) {
4150 NL_SET_ERR_MSG_MOD(extack, "Input exceeds maximum allowed.");
4151 status = -EINVAL;
4152 goto free_alloc;
4153 }
4154
4155 memcpy(&hdrs->raw.spec[off], &val, sizeof(val));
4156 memcpy(&hdrs->raw.mask[off], &mask, sizeof(mask));
4157 hdrs->raw.pkt_len = off + sizeof(val);
4158 }
4159
4160 /* Only one action is allowed */
4161 rule_cfg->action_set.count = 1;
4162 vact = &rule_cfg->action_set.actions[0];
4163 exts = cls_u32->knode.exts;
4164
4165 tcf_exts_for_each_action(i, act, exts) {
4166 /* FDIR queue */
4167 if (is_tcf_skbedit_rx_queue_mapping(act)) {
4168 q_index = tcf_skbedit_rx_queue_mapping(act);
4169 if (q_index >= adapter->num_active_queues) {
4170 status = -EINVAL;
4171 goto free_alloc;
4172 }
4173
4174 vact->type = VIRTCHNL_ACTION_QUEUE;
4175 vact->act_conf.queue.index = q_index;
4176 break;
4177 }
4178
4179 /* Drop */
4180 if (is_tcf_gact_shot(act)) {
4181 vact->type = VIRTCHNL_ACTION_DROP;
4182 break;
4183 }
4184
4185 /* Unsupported action */
4186 NL_SET_ERR_MSG_MOD(extack, "Unsupported action.");
4187 status = -EOPNOTSUPP;
4188 goto free_alloc;
4189 }
4190
4191 fltr->vc_add_msg.vsi_id = adapter->vsi.id;
4192 fltr->cls_u32_handle = cls_u32->knode.handle;
4193 return iavf_fdir_add_fltr(adapter, fltr);
4194
4195 free_alloc:
4196 kfree(fltr);
4197 return status;
4198 }
4199
4200 /**
4201 * iavf_del_cls_u32 - Delete U32 classifier offloads
4202 * @adapter: pointer to iavf adapter structure
4203 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4204 *
4205 * Return: 0 on success or negative errno on failure.
4206 */
iavf_del_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4207 static int iavf_del_cls_u32(struct iavf_adapter *adapter,
4208 struct tc_cls_u32_offload *cls_u32)
4209 {
4210 return iavf_fdir_del_fltr(adapter, true, cls_u32->knode.handle);
4211 }
4212
4213 /**
4214 * iavf_setup_tc_cls_u32 - U32 filter offloads
4215 * @adapter: pointer to iavf adapter structure
4216 * @cls_u32: pointer to tc_cls_u32_offload struct with flow info
4217 *
4218 * Return: 0 on success or negative errno on failure.
4219 */
iavf_setup_tc_cls_u32(struct iavf_adapter * adapter,struct tc_cls_u32_offload * cls_u32)4220 static int iavf_setup_tc_cls_u32(struct iavf_adapter *adapter,
4221 struct tc_cls_u32_offload *cls_u32)
4222 {
4223 if (!TC_U32_SUPPORT(adapter) || !FDIR_FLTR_SUPPORT(adapter))
4224 return -EOPNOTSUPP;
4225
4226 switch (cls_u32->command) {
4227 case TC_CLSU32_NEW_KNODE:
4228 case TC_CLSU32_REPLACE_KNODE:
4229 return iavf_add_cls_u32(adapter, cls_u32);
4230 case TC_CLSU32_DELETE_KNODE:
4231 return iavf_del_cls_u32(adapter, cls_u32);
4232 default:
4233 return -EOPNOTSUPP;
4234 }
4235 }
4236
4237 /**
4238 * iavf_setup_tc_block_cb - block callback for tc
4239 * @type: type of offload
4240 * @type_data: offload data
4241 * @cb_priv:
4242 *
4243 * This function is the block callback for traffic classes
4244 **/
iavf_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)4245 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4246 void *cb_priv)
4247 {
4248 struct iavf_adapter *adapter = cb_priv;
4249
4250 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4251 return -EOPNOTSUPP;
4252
4253 switch (type) {
4254 case TC_SETUP_CLSFLOWER:
4255 return iavf_setup_tc_cls_flower(cb_priv, type_data);
4256 case TC_SETUP_CLSU32:
4257 return iavf_setup_tc_cls_u32(cb_priv, type_data);
4258 default:
4259 return -EOPNOTSUPP;
4260 }
4261 }
4262
4263 static LIST_HEAD(iavf_block_cb_list);
4264
4265 /**
4266 * iavf_setup_tc - configure multiple traffic classes
4267 * @netdev: network interface device structure
4268 * @type: type of offload
4269 * @type_data: tc offload data
4270 *
4271 * This function is the callback to ndo_setup_tc in the
4272 * netdev_ops.
4273 *
4274 * Returns 0 on success
4275 **/
iavf_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)4276 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4277 void *type_data)
4278 {
4279 struct iavf_adapter *adapter = netdev_priv(netdev);
4280
4281 switch (type) {
4282 case TC_SETUP_QDISC_MQPRIO:
4283 return __iavf_setup_tc(netdev, type_data);
4284 case TC_SETUP_BLOCK:
4285 return flow_block_cb_setup_simple(type_data,
4286 &iavf_block_cb_list,
4287 iavf_setup_tc_block_cb,
4288 adapter, adapter, true);
4289 default:
4290 return -EOPNOTSUPP;
4291 }
4292 }
4293
4294 /**
4295 * iavf_restore_fdir_filters
4296 * @adapter: board private structure
4297 *
4298 * Restore existing FDIR filters when VF netdev comes back up.
4299 **/
iavf_restore_fdir_filters(struct iavf_adapter * adapter)4300 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4301 {
4302 struct iavf_fdir_fltr *f;
4303
4304 spin_lock_bh(&adapter->fdir_fltr_lock);
4305 list_for_each_entry(f, &adapter->fdir_list_head, list) {
4306 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4307 /* Cancel a request, keep filter as active */
4308 f->state = IAVF_FDIR_FLTR_ACTIVE;
4309 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4310 f->state == IAVF_FDIR_FLTR_INACTIVE) {
4311 /* Add filters which are inactive or have a pending
4312 * request to PF to be deleted
4313 */
4314 f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4315 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4316 }
4317 }
4318 spin_unlock_bh(&adapter->fdir_fltr_lock);
4319 }
4320
4321 /**
4322 * iavf_open - Called when a network interface is made active
4323 * @netdev: network interface device structure
4324 *
4325 * Returns 0 on success, negative value on failure
4326 *
4327 * The open entry point is called when a network interface is made
4328 * active by the system (IFF_UP). At this point all resources needed
4329 * for transmit and receive operations are allocated, the interrupt
4330 * handler is registered with the OS, the watchdog is started,
4331 * and the stack is notified that the interface is ready.
4332 **/
iavf_open(struct net_device * netdev)4333 static int iavf_open(struct net_device *netdev)
4334 {
4335 struct iavf_adapter *adapter = netdev_priv(netdev);
4336 int err;
4337
4338 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4339 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4340 return -EIO;
4341 }
4342
4343 while (!mutex_trylock(&adapter->crit_lock)) {
4344 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4345 * is already taken and iavf_open is called from an upper
4346 * device's notifier reacting on NETDEV_REGISTER event.
4347 * We have to leave here to avoid dead lock.
4348 */
4349 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4350 return -EBUSY;
4351
4352 usleep_range(500, 1000);
4353 }
4354
4355 if (adapter->state != __IAVF_DOWN) {
4356 err = -EBUSY;
4357 goto err_unlock;
4358 }
4359
4360 if (adapter->state == __IAVF_RUNNING &&
4361 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4362 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4363 err = 0;
4364 goto err_unlock;
4365 }
4366
4367 /* allocate transmit descriptors */
4368 err = iavf_setup_all_tx_resources(adapter);
4369 if (err)
4370 goto err_setup_tx;
4371
4372 /* allocate receive descriptors */
4373 err = iavf_setup_all_rx_resources(adapter);
4374 if (err)
4375 goto err_setup_rx;
4376
4377 /* clear any pending interrupts, may auto mask */
4378 err = iavf_request_traffic_irqs(adapter, netdev->name);
4379 if (err)
4380 goto err_req_irq;
4381
4382 spin_lock_bh(&adapter->mac_vlan_list_lock);
4383
4384 iavf_add_filter(adapter, adapter->hw.mac.addr);
4385
4386 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4387
4388 /* Restore filters that were removed with IFF_DOWN */
4389 iavf_restore_filters(adapter);
4390 iavf_restore_fdir_filters(adapter);
4391
4392 iavf_configure(adapter);
4393
4394 iavf_up_complete(adapter);
4395
4396 iavf_irq_enable(adapter, true);
4397
4398 mutex_unlock(&adapter->crit_lock);
4399
4400 return 0;
4401
4402 err_req_irq:
4403 iavf_down(adapter);
4404 iavf_free_traffic_irqs(adapter);
4405 err_setup_rx:
4406 iavf_free_all_rx_resources(adapter);
4407 err_setup_tx:
4408 iavf_free_all_tx_resources(adapter);
4409 err_unlock:
4410 mutex_unlock(&adapter->crit_lock);
4411
4412 return err;
4413 }
4414
4415 /**
4416 * iavf_close - Disables a network interface
4417 * @netdev: network interface device structure
4418 *
4419 * Returns 0, this is not allowed to fail
4420 *
4421 * The close entry point is called when an interface is de-activated
4422 * by the OS. The hardware is still under the drivers control, but
4423 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4424 * are freed, along with all transmit and receive resources.
4425 **/
iavf_close(struct net_device * netdev)4426 static int iavf_close(struct net_device *netdev)
4427 {
4428 struct iavf_adapter *adapter = netdev_priv(netdev);
4429 u64 aq_to_restore;
4430 int status;
4431
4432 mutex_lock(&adapter->crit_lock);
4433
4434 if (adapter->state <= __IAVF_DOWN_PENDING) {
4435 mutex_unlock(&adapter->crit_lock);
4436 return 0;
4437 }
4438
4439 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4440 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4441 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4442 * deadlock with adminq_task() until iavf_close timeouts. We must send
4443 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4444 * disable queues possible for vf. Give only necessary flags to
4445 * iavf_down and save other to set them right before iavf_close()
4446 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4447 * iavf will be in DOWN state.
4448 */
4449 aq_to_restore = adapter->aq_required;
4450 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4451
4452 /* Remove flags which we do not want to send after close or we want to
4453 * send before disable queues.
4454 */
4455 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
4456 IAVF_FLAG_AQ_ENABLE_QUEUES |
4457 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
4458 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
4459 IAVF_FLAG_AQ_ADD_MAC_FILTER |
4460 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
4461 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
4462 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4463
4464 iavf_down(adapter);
4465 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4466 iavf_free_traffic_irqs(adapter);
4467
4468 mutex_unlock(&adapter->crit_lock);
4469
4470 /* We explicitly don't free resources here because the hardware is
4471 * still active and can DMA into memory. Resources are cleared in
4472 * iavf_virtchnl_completion() after we get confirmation from the PF
4473 * driver that the rings have been stopped.
4474 *
4475 * Also, we wait for state to transition to __IAVF_DOWN before
4476 * returning. State change occurs in iavf_virtchnl_completion() after
4477 * VF resources are released (which occurs after PF driver processes and
4478 * responds to admin queue commands).
4479 */
4480
4481 status = wait_event_timeout(adapter->down_waitqueue,
4482 adapter->state == __IAVF_DOWN,
4483 msecs_to_jiffies(500));
4484 if (!status)
4485 netdev_warn(netdev, "Device resources not yet released\n");
4486
4487 mutex_lock(&adapter->crit_lock);
4488 adapter->aq_required |= aq_to_restore;
4489 mutex_unlock(&adapter->crit_lock);
4490 return 0;
4491 }
4492
4493 /**
4494 * iavf_change_mtu - Change the Maximum Transfer Unit
4495 * @netdev: network interface device structure
4496 * @new_mtu: new value for maximum frame size
4497 *
4498 * Returns 0 on success, negative on failure
4499 **/
iavf_change_mtu(struct net_device * netdev,int new_mtu)4500 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4501 {
4502 struct iavf_adapter *adapter = netdev_priv(netdev);
4503 int ret = 0;
4504
4505 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4506 netdev->mtu, new_mtu);
4507 WRITE_ONCE(netdev->mtu, new_mtu);
4508
4509 if (netif_running(netdev)) {
4510 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4511 ret = iavf_wait_for_reset(adapter);
4512 if (ret < 0)
4513 netdev_warn(netdev, "MTU change interrupted waiting for reset");
4514 else if (ret)
4515 netdev_warn(netdev, "MTU change timed out waiting for reset");
4516 }
4517
4518 return ret;
4519 }
4520
4521 /**
4522 * iavf_disable_fdir - disable Flow Director and clear existing filters
4523 * @adapter: board private structure
4524 **/
iavf_disable_fdir(struct iavf_adapter * adapter)4525 static void iavf_disable_fdir(struct iavf_adapter *adapter)
4526 {
4527 struct iavf_fdir_fltr *fdir, *fdirtmp;
4528 bool del_filters = false;
4529
4530 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4531
4532 /* remove all Flow Director filters */
4533 spin_lock_bh(&adapter->fdir_fltr_lock);
4534 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4535 list) {
4536 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4537 fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4538 /* Delete filters not registered in PF */
4539 list_del(&fdir->list);
4540 iavf_dec_fdir_active_fltr(adapter, fdir);
4541 kfree(fdir);
4542 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4543 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4544 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4545 /* Filters registered in PF, schedule their deletion */
4546 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4547 del_filters = true;
4548 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4549 /* Request to delete filter already sent to PF, change
4550 * state to DEL_PENDING to delete filter after PF's
4551 * response, not set as INACTIVE
4552 */
4553 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4554 }
4555 }
4556 spin_unlock_bh(&adapter->fdir_fltr_lock);
4557
4558 if (del_filters) {
4559 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4560 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4561 }
4562 }
4563
4564 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4565 NETIF_F_HW_VLAN_CTAG_TX | \
4566 NETIF_F_HW_VLAN_STAG_RX | \
4567 NETIF_F_HW_VLAN_STAG_TX)
4568
4569 /**
4570 * iavf_set_features - set the netdev feature flags
4571 * @netdev: ptr to the netdev being adjusted
4572 * @features: the feature set that the stack is suggesting
4573 * Note: expects to be called while under rtnl_lock()
4574 **/
iavf_set_features(struct net_device * netdev,netdev_features_t features)4575 static int iavf_set_features(struct net_device *netdev,
4576 netdev_features_t features)
4577 {
4578 struct iavf_adapter *adapter = netdev_priv(netdev);
4579
4580 /* trigger update on any VLAN feature change */
4581 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4582 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4583 iavf_set_vlan_offload_features(adapter, netdev->features,
4584 features);
4585 if (CRC_OFFLOAD_ALLOWED(adapter) &&
4586 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4587 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4588
4589 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4590 if (features & NETIF_F_NTUPLE)
4591 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4592 else
4593 iavf_disable_fdir(adapter);
4594 }
4595
4596 return 0;
4597 }
4598
4599 /**
4600 * iavf_features_check - Validate encapsulated packet conforms to limits
4601 * @skb: skb buff
4602 * @dev: This physical port's netdev
4603 * @features: Offload features that the stack believes apply
4604 **/
iavf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)4605 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4606 struct net_device *dev,
4607 netdev_features_t features)
4608 {
4609 size_t len;
4610
4611 /* No point in doing any of this if neither checksum nor GSO are
4612 * being requested for this frame. We can rule out both by just
4613 * checking for CHECKSUM_PARTIAL
4614 */
4615 if (skb->ip_summed != CHECKSUM_PARTIAL)
4616 return features;
4617
4618 /* We cannot support GSO if the MSS is going to be less than
4619 * 64 bytes. If it is then we need to drop support for GSO.
4620 */
4621 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4622 features &= ~NETIF_F_GSO_MASK;
4623
4624 /* MACLEN can support at most 63 words */
4625 len = skb_network_offset(skb);
4626 if (len & ~(63 * 2))
4627 goto out_err;
4628
4629 /* IPLEN and EIPLEN can support at most 127 dwords */
4630 len = skb_network_header_len(skb);
4631 if (len & ~(127 * 4))
4632 goto out_err;
4633
4634 if (skb->encapsulation) {
4635 /* L4TUNLEN can support 127 words */
4636 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4637 if (len & ~(127 * 2))
4638 goto out_err;
4639
4640 /* IPLEN can support at most 127 dwords */
4641 len = skb_inner_transport_header(skb) -
4642 skb_inner_network_header(skb);
4643 if (len & ~(127 * 4))
4644 goto out_err;
4645 }
4646
4647 /* No need to validate L4LEN as TCP is the only protocol with a
4648 * flexible value and we support all possible values supported
4649 * by TCP, which is at most 15 dwords
4650 */
4651
4652 return features;
4653 out_err:
4654 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4655 }
4656
4657 /**
4658 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4659 * @adapter: board private structure
4660 *
4661 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4662 * were negotiated determine the VLAN features that can be toggled on and off.
4663 **/
4664 static netdev_features_t
iavf_get_netdev_vlan_hw_features(struct iavf_adapter * adapter)4665 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4666 {
4667 netdev_features_t hw_features = 0;
4668
4669 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4670 return hw_features;
4671
4672 /* Enable VLAN features if supported */
4673 if (VLAN_ALLOWED(adapter)) {
4674 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4675 NETIF_F_HW_VLAN_CTAG_RX);
4676 } else if (VLAN_V2_ALLOWED(adapter)) {
4677 struct virtchnl_vlan_caps *vlan_v2_caps =
4678 &adapter->vlan_v2_caps;
4679 struct virtchnl_vlan_supported_caps *stripping_support =
4680 &vlan_v2_caps->offloads.stripping_support;
4681 struct virtchnl_vlan_supported_caps *insertion_support =
4682 &vlan_v2_caps->offloads.insertion_support;
4683
4684 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4685 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4686 if (stripping_support->outer &
4687 VIRTCHNL_VLAN_ETHERTYPE_8100)
4688 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4689 if (stripping_support->outer &
4690 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4691 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4692 } else if (stripping_support->inner !=
4693 VIRTCHNL_VLAN_UNSUPPORTED &&
4694 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4695 if (stripping_support->inner &
4696 VIRTCHNL_VLAN_ETHERTYPE_8100)
4697 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4698 }
4699
4700 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4701 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4702 if (insertion_support->outer &
4703 VIRTCHNL_VLAN_ETHERTYPE_8100)
4704 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4705 if (insertion_support->outer &
4706 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4707 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4708 } else if (insertion_support->inner &&
4709 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4710 if (insertion_support->inner &
4711 VIRTCHNL_VLAN_ETHERTYPE_8100)
4712 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4713 }
4714 }
4715
4716 if (CRC_OFFLOAD_ALLOWED(adapter))
4717 hw_features |= NETIF_F_RXFCS;
4718
4719 return hw_features;
4720 }
4721
4722 /**
4723 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4724 * @adapter: board private structure
4725 *
4726 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4727 * were negotiated determine the VLAN features that are enabled by default.
4728 **/
4729 static netdev_features_t
iavf_get_netdev_vlan_features(struct iavf_adapter * adapter)4730 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4731 {
4732 netdev_features_t features = 0;
4733
4734 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4735 return features;
4736
4737 if (VLAN_ALLOWED(adapter)) {
4738 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4739 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4740 } else if (VLAN_V2_ALLOWED(adapter)) {
4741 struct virtchnl_vlan_caps *vlan_v2_caps =
4742 &adapter->vlan_v2_caps;
4743 struct virtchnl_vlan_supported_caps *filtering_support =
4744 &vlan_v2_caps->filtering.filtering_support;
4745 struct virtchnl_vlan_supported_caps *stripping_support =
4746 &vlan_v2_caps->offloads.stripping_support;
4747 struct virtchnl_vlan_supported_caps *insertion_support =
4748 &vlan_v2_caps->offloads.insertion_support;
4749 u32 ethertype_init;
4750
4751 /* give priority to outer stripping and don't support both outer
4752 * and inner stripping
4753 */
4754 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4755 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4756 if (stripping_support->outer &
4757 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4758 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4759 features |= NETIF_F_HW_VLAN_CTAG_RX;
4760 else if (stripping_support->outer &
4761 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4762 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4763 features |= NETIF_F_HW_VLAN_STAG_RX;
4764 } else if (stripping_support->inner !=
4765 VIRTCHNL_VLAN_UNSUPPORTED) {
4766 if (stripping_support->inner &
4767 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4768 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4769 features |= NETIF_F_HW_VLAN_CTAG_RX;
4770 }
4771
4772 /* give priority to outer insertion and don't support both outer
4773 * and inner insertion
4774 */
4775 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4776 if (insertion_support->outer &
4777 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4778 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4779 features |= NETIF_F_HW_VLAN_CTAG_TX;
4780 else if (insertion_support->outer &
4781 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4782 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4783 features |= NETIF_F_HW_VLAN_STAG_TX;
4784 } else if (insertion_support->inner !=
4785 VIRTCHNL_VLAN_UNSUPPORTED) {
4786 if (insertion_support->inner &
4787 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4788 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4789 features |= NETIF_F_HW_VLAN_CTAG_TX;
4790 }
4791
4792 /* give priority to outer filtering and don't bother if both
4793 * outer and inner filtering are enabled
4794 */
4795 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4796 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4797 if (filtering_support->outer &
4798 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4799 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4800 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4801 if (filtering_support->outer &
4802 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4803 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4804 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4805 } else if (filtering_support->inner !=
4806 VIRTCHNL_VLAN_UNSUPPORTED) {
4807 if (filtering_support->inner &
4808 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4809 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4810 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4811 if (filtering_support->inner &
4812 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4813 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4814 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4815 }
4816 }
4817
4818 return features;
4819 }
4820
4821 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4822 (!(((requested) & (feature_bit)) && \
4823 !((allowed) & (feature_bit))))
4824
4825 /**
4826 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4827 * @adapter: board private structure
4828 * @requested_features: stack requested NETDEV features
4829 **/
4830 static netdev_features_t
iavf_fix_netdev_vlan_features(struct iavf_adapter * adapter,netdev_features_t requested_features)4831 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4832 netdev_features_t requested_features)
4833 {
4834 netdev_features_t allowed_features;
4835
4836 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4837 iavf_get_netdev_vlan_features(adapter);
4838
4839 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4840 allowed_features,
4841 NETIF_F_HW_VLAN_CTAG_TX))
4842 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4843
4844 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4845 allowed_features,
4846 NETIF_F_HW_VLAN_CTAG_RX))
4847 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4848
4849 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4850 allowed_features,
4851 NETIF_F_HW_VLAN_STAG_TX))
4852 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4853 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4854 allowed_features,
4855 NETIF_F_HW_VLAN_STAG_RX))
4856 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4857
4858 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4859 allowed_features,
4860 NETIF_F_HW_VLAN_CTAG_FILTER))
4861 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4862
4863 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4864 allowed_features,
4865 NETIF_F_HW_VLAN_STAG_FILTER))
4866 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4867
4868 if ((requested_features &
4869 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4870 (requested_features &
4871 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4872 adapter->vlan_v2_caps.offloads.ethertype_match ==
4873 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4874 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4875 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4876 NETIF_F_HW_VLAN_STAG_TX);
4877 }
4878
4879 return requested_features;
4880 }
4881
4882 /**
4883 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4884 * @adapter: board private structure
4885 * @requested_features: stack requested NETDEV features
4886 *
4887 * Returns fixed-up features bits
4888 **/
4889 static netdev_features_t
iavf_fix_strip_features(struct iavf_adapter * adapter,netdev_features_t requested_features)4890 iavf_fix_strip_features(struct iavf_adapter *adapter,
4891 netdev_features_t requested_features)
4892 {
4893 struct net_device *netdev = adapter->netdev;
4894 bool crc_offload_req, is_vlan_strip;
4895 netdev_features_t vlan_strip;
4896 int num_non_zero_vlan;
4897
4898 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4899 (requested_features & NETIF_F_RXFCS);
4900 num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4901 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4902 is_vlan_strip = requested_features & vlan_strip;
4903
4904 if (!crc_offload_req)
4905 return requested_features;
4906
4907 if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4908 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4909 requested_features &= ~vlan_strip;
4910 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4911 return requested_features;
4912 }
4913
4914 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4915 requested_features &= ~vlan_strip;
4916 if (!(netdev->features & vlan_strip))
4917 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4918
4919 return requested_features;
4920 }
4921
4922 if (num_non_zero_vlan && is_vlan_strip &&
4923 !(netdev->features & NETIF_F_RXFCS)) {
4924 requested_features &= ~NETIF_F_RXFCS;
4925 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4926 }
4927
4928 return requested_features;
4929 }
4930
4931 /**
4932 * iavf_fix_features - fix up the netdev feature bits
4933 * @netdev: our net device
4934 * @features: desired feature bits
4935 *
4936 * Returns fixed-up features bits
4937 **/
iavf_fix_features(struct net_device * netdev,netdev_features_t features)4938 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4939 netdev_features_t features)
4940 {
4941 struct iavf_adapter *adapter = netdev_priv(netdev);
4942
4943 features = iavf_fix_netdev_vlan_features(adapter, features);
4944
4945 if (!FDIR_FLTR_SUPPORT(adapter))
4946 features &= ~NETIF_F_NTUPLE;
4947
4948 return iavf_fix_strip_features(adapter, features);
4949 }
4950
4951 static int
iavf_verify_shaper(struct net_shaper_binding * binding,const struct net_shaper * shaper,struct netlink_ext_ack * extack)4952 iavf_verify_shaper(struct net_shaper_binding *binding,
4953 const struct net_shaper *shaper,
4954 struct netlink_ext_ack *extack)
4955 {
4956 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
4957 u64 vf_max;
4958
4959 if (shaper->handle.scope == NET_SHAPER_SCOPE_QUEUE) {
4960 vf_max = adapter->qos_caps->cap[0].shaper.peak;
4961 if (vf_max && shaper->bw_max > vf_max) {
4962 NL_SET_ERR_MSG_FMT(extack, "Max rate (%llu) of queue %d can't exceed max TX rate of VF (%llu kbps)",
4963 shaper->bw_max, shaper->handle.id,
4964 vf_max);
4965 return -EINVAL;
4966 }
4967 }
4968 return 0;
4969 }
4970
4971 static int
iavf_shaper_set(struct net_shaper_binding * binding,const struct net_shaper * shaper,struct netlink_ext_ack * extack)4972 iavf_shaper_set(struct net_shaper_binding *binding,
4973 const struct net_shaper *shaper,
4974 struct netlink_ext_ack *extack)
4975 {
4976 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
4977 const struct net_shaper_handle *handle = &shaper->handle;
4978 struct iavf_ring *tx_ring;
4979 int ret = 0;
4980
4981 mutex_lock(&adapter->crit_lock);
4982 if (handle->id >= adapter->num_active_queues)
4983 goto unlock;
4984
4985 ret = iavf_verify_shaper(binding, shaper, extack);
4986 if (ret)
4987 goto unlock;
4988
4989 tx_ring = &adapter->tx_rings[handle->id];
4990
4991 tx_ring->q_shaper.bw_min = div_u64(shaper->bw_min, 1000);
4992 tx_ring->q_shaper.bw_max = div_u64(shaper->bw_max, 1000);
4993 tx_ring->q_shaper_update = true;
4994
4995 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
4996
4997 unlock:
4998 mutex_unlock(&adapter->crit_lock);
4999 return ret;
5000 }
5001
iavf_shaper_del(struct net_shaper_binding * binding,const struct net_shaper_handle * handle,struct netlink_ext_ack * extack)5002 static int iavf_shaper_del(struct net_shaper_binding *binding,
5003 const struct net_shaper_handle *handle,
5004 struct netlink_ext_ack *extack)
5005 {
5006 struct iavf_adapter *adapter = netdev_priv(binding->netdev);
5007 struct iavf_ring *tx_ring;
5008
5009 mutex_lock(&adapter->crit_lock);
5010 if (handle->id >= adapter->num_active_queues)
5011 goto unlock;
5012
5013 tx_ring = &adapter->tx_rings[handle->id];
5014 tx_ring->q_shaper.bw_min = 0;
5015 tx_ring->q_shaper.bw_max = 0;
5016 tx_ring->q_shaper_update = true;
5017
5018 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES_BW;
5019
5020 unlock:
5021 mutex_unlock(&adapter->crit_lock);
5022 return 0;
5023 }
5024
iavf_shaper_cap(struct net_shaper_binding * binding,enum net_shaper_scope scope,unsigned long * flags)5025 static void iavf_shaper_cap(struct net_shaper_binding *binding,
5026 enum net_shaper_scope scope,
5027 unsigned long *flags)
5028 {
5029 if (scope != NET_SHAPER_SCOPE_QUEUE)
5030 return;
5031
5032 *flags = BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MIN) |
5033 BIT(NET_SHAPER_A_CAPS_SUPPORT_BW_MAX) |
5034 BIT(NET_SHAPER_A_CAPS_SUPPORT_METRIC_BPS);
5035 }
5036
5037 static const struct net_shaper_ops iavf_shaper_ops = {
5038 .set = iavf_shaper_set,
5039 .delete = iavf_shaper_del,
5040 .capabilities = iavf_shaper_cap,
5041 };
5042
5043 static const struct net_device_ops iavf_netdev_ops = {
5044 .ndo_open = iavf_open,
5045 .ndo_stop = iavf_close,
5046 .ndo_start_xmit = iavf_xmit_frame,
5047 .ndo_set_rx_mode = iavf_set_rx_mode,
5048 .ndo_validate_addr = eth_validate_addr,
5049 .ndo_set_mac_address = iavf_set_mac,
5050 .ndo_change_mtu = iavf_change_mtu,
5051 .ndo_tx_timeout = iavf_tx_timeout,
5052 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
5053 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
5054 .ndo_features_check = iavf_features_check,
5055 .ndo_fix_features = iavf_fix_features,
5056 .ndo_set_features = iavf_set_features,
5057 .ndo_setup_tc = iavf_setup_tc,
5058 .net_shaper_ops = &iavf_shaper_ops,
5059 };
5060
5061 /**
5062 * iavf_check_reset_complete - check that VF reset is complete
5063 * @hw: pointer to hw struct
5064 *
5065 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
5066 **/
iavf_check_reset_complete(struct iavf_hw * hw)5067 static int iavf_check_reset_complete(struct iavf_hw *hw)
5068 {
5069 u32 rstat;
5070 int i;
5071
5072 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
5073 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
5074 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
5075 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
5076 (rstat == VIRTCHNL_VFR_COMPLETED))
5077 return 0;
5078 msleep(IAVF_RESET_WAIT_MS);
5079 }
5080 return -EBUSY;
5081 }
5082
5083 /**
5084 * iavf_process_config - Process the config information we got from the PF
5085 * @adapter: board private structure
5086 *
5087 * Verify that we have a valid config struct, and set up our netdev features
5088 * and our VSI struct.
5089 **/
iavf_process_config(struct iavf_adapter * adapter)5090 int iavf_process_config(struct iavf_adapter *adapter)
5091 {
5092 struct virtchnl_vf_resource *vfres = adapter->vf_res;
5093 netdev_features_t hw_vlan_features, vlan_features;
5094 struct net_device *netdev = adapter->netdev;
5095 netdev_features_t hw_enc_features;
5096 netdev_features_t hw_features;
5097
5098 hw_enc_features = NETIF_F_SG |
5099 NETIF_F_IP_CSUM |
5100 NETIF_F_IPV6_CSUM |
5101 NETIF_F_HIGHDMA |
5102 NETIF_F_SOFT_FEATURES |
5103 NETIF_F_TSO |
5104 NETIF_F_TSO_ECN |
5105 NETIF_F_TSO6 |
5106 NETIF_F_SCTP_CRC |
5107 NETIF_F_RXHASH |
5108 NETIF_F_RXCSUM |
5109 0;
5110
5111 /* advertise to stack only if offloads for encapsulated packets is
5112 * supported
5113 */
5114 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
5115 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
5116 NETIF_F_GSO_GRE |
5117 NETIF_F_GSO_GRE_CSUM |
5118 NETIF_F_GSO_IPXIP4 |
5119 NETIF_F_GSO_IPXIP6 |
5120 NETIF_F_GSO_UDP_TUNNEL_CSUM |
5121 NETIF_F_GSO_PARTIAL |
5122 0;
5123
5124 if (!(vfres->vf_cap_flags &
5125 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
5126 netdev->gso_partial_features |=
5127 NETIF_F_GSO_UDP_TUNNEL_CSUM;
5128
5129 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
5130 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
5131 netdev->hw_enc_features |= hw_enc_features;
5132 }
5133 /* record features VLANs can make use of */
5134 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
5135
5136 /* Write features and hw_features separately to avoid polluting
5137 * with, or dropping, features that are set when we registered.
5138 */
5139 hw_features = hw_enc_features;
5140
5141 /* get HW VLAN features that can be toggled */
5142 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
5143
5144 /* Enable HW TC offload if ADQ or tc U32 is supported */
5145 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ ||
5146 TC_U32_SUPPORT(adapter))
5147 hw_features |= NETIF_F_HW_TC;
5148
5149 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
5150 hw_features |= NETIF_F_GSO_UDP_L4;
5151
5152 netdev->hw_features |= hw_features | hw_vlan_features;
5153 vlan_features = iavf_get_netdev_vlan_features(adapter);
5154
5155 netdev->features |= hw_features | vlan_features;
5156
5157 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
5158 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5159
5160 if (FDIR_FLTR_SUPPORT(adapter)) {
5161 netdev->hw_features |= NETIF_F_NTUPLE;
5162 netdev->features |= NETIF_F_NTUPLE;
5163 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
5164 }
5165
5166 netdev->priv_flags |= IFF_UNICAST_FLT;
5167
5168 /* Do not turn on offloads when they are requested to be turned off.
5169 * TSO needs minimum 576 bytes to work correctly.
5170 */
5171 if (netdev->wanted_features) {
5172 if (!(netdev->wanted_features & NETIF_F_TSO) ||
5173 netdev->mtu < 576)
5174 netdev->features &= ~NETIF_F_TSO;
5175 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
5176 netdev->mtu < 576)
5177 netdev->features &= ~NETIF_F_TSO6;
5178 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
5179 netdev->features &= ~NETIF_F_TSO_ECN;
5180 if (!(netdev->wanted_features & NETIF_F_GRO))
5181 netdev->features &= ~NETIF_F_GRO;
5182 if (!(netdev->wanted_features & NETIF_F_GSO))
5183 netdev->features &= ~NETIF_F_GSO;
5184 }
5185
5186 return 0;
5187 }
5188
5189 /**
5190 * iavf_probe - Device Initialization Routine
5191 * @pdev: PCI device information struct
5192 * @ent: entry in iavf_pci_tbl
5193 *
5194 * Returns 0 on success, negative on failure
5195 *
5196 * iavf_probe initializes an adapter identified by a pci_dev structure.
5197 * The OS initialization, configuring of the adapter private structure,
5198 * and a hardware reset occur.
5199 **/
iavf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)5200 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5201 {
5202 struct net_device *netdev;
5203 struct iavf_adapter *adapter = NULL;
5204 struct iavf_hw *hw = NULL;
5205 int err, len;
5206
5207 err = pci_enable_device(pdev);
5208 if (err)
5209 return err;
5210
5211 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5212 if (err) {
5213 dev_err(&pdev->dev,
5214 "DMA configuration failed: 0x%x\n", err);
5215 goto err_dma;
5216 }
5217
5218 err = pci_request_regions(pdev, iavf_driver_name);
5219 if (err) {
5220 dev_err(&pdev->dev,
5221 "pci_request_regions failed 0x%x\n", err);
5222 goto err_pci_reg;
5223 }
5224
5225 pci_set_master(pdev);
5226
5227 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
5228 IAVF_MAX_REQ_QUEUES);
5229 if (!netdev) {
5230 err = -ENOMEM;
5231 goto err_alloc_etherdev;
5232 }
5233
5234 SET_NETDEV_DEV(netdev, &pdev->dev);
5235
5236 pci_set_drvdata(pdev, netdev);
5237 adapter = netdev_priv(netdev);
5238
5239 adapter->netdev = netdev;
5240 adapter->pdev = pdev;
5241
5242 hw = &adapter->hw;
5243 hw->back = adapter;
5244
5245 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
5246 iavf_driver_name);
5247 if (!adapter->wq) {
5248 err = -ENOMEM;
5249 goto err_alloc_wq;
5250 }
5251
5252 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
5253 iavf_change_state(adapter, __IAVF_STARTUP);
5254
5255 /* Call save state here because it relies on the adapter struct. */
5256 pci_save_state(pdev);
5257
5258 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
5259 pci_resource_len(pdev, 0));
5260 if (!hw->hw_addr) {
5261 err = -EIO;
5262 goto err_ioremap;
5263 }
5264 hw->vendor_id = pdev->vendor;
5265 hw->device_id = pdev->device;
5266 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5267 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5268 hw->subsystem_device_id = pdev->subsystem_device;
5269 hw->bus.device = PCI_SLOT(pdev->devfn);
5270 hw->bus.func = PCI_FUNC(pdev->devfn);
5271 hw->bus.bus_id = pdev->bus->number;
5272
5273 len = struct_size(adapter->qos_caps, cap, IAVF_MAX_QOS_TC_NUM);
5274 adapter->qos_caps = kzalloc(len, GFP_KERNEL);
5275 if (!adapter->qos_caps) {
5276 err = -ENOMEM;
5277 goto err_alloc_qos_cap;
5278 }
5279
5280 /* set up the locks for the AQ, do this only once in probe
5281 * and destroy them only once in remove
5282 */
5283 mutex_init(&adapter->crit_lock);
5284 mutex_init(&hw->aq.asq_mutex);
5285 mutex_init(&hw->aq.arq_mutex);
5286
5287 spin_lock_init(&adapter->mac_vlan_list_lock);
5288 spin_lock_init(&adapter->cloud_filter_list_lock);
5289 spin_lock_init(&adapter->fdir_fltr_lock);
5290 spin_lock_init(&adapter->adv_rss_lock);
5291 spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5292
5293 INIT_LIST_HEAD(&adapter->mac_filter_list);
5294 INIT_LIST_HEAD(&adapter->vlan_filter_list);
5295 INIT_LIST_HEAD(&adapter->cloud_filter_list);
5296 INIT_LIST_HEAD(&adapter->fdir_list_head);
5297 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5298
5299 INIT_WORK(&adapter->reset_task, iavf_reset_task);
5300 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5301 INIT_WORK(&adapter->finish_config, iavf_finish_config);
5302 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5303
5304 /* Setup the wait queue for indicating transition to down status */
5305 init_waitqueue_head(&adapter->down_waitqueue);
5306
5307 /* Setup the wait queue for indicating transition to running state */
5308 init_waitqueue_head(&adapter->reset_waitqueue);
5309
5310 /* Setup the wait queue for indicating virtchannel events */
5311 init_waitqueue_head(&adapter->vc_waitqueue);
5312
5313 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5314 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5315 /* Initialization goes on in the work. Do not add more of it below. */
5316 return 0;
5317
5318 err_alloc_qos_cap:
5319 iounmap(hw->hw_addr);
5320 err_ioremap:
5321 destroy_workqueue(adapter->wq);
5322 err_alloc_wq:
5323 free_netdev(netdev);
5324 err_alloc_etherdev:
5325 pci_release_regions(pdev);
5326 err_pci_reg:
5327 err_dma:
5328 pci_disable_device(pdev);
5329 return err;
5330 }
5331
5332 /**
5333 * iavf_suspend - Power management suspend routine
5334 * @dev_d: device info pointer
5335 *
5336 * Called when the system (VM) is entering sleep/suspend.
5337 **/
iavf_suspend(struct device * dev_d)5338 static int iavf_suspend(struct device *dev_d)
5339 {
5340 struct net_device *netdev = dev_get_drvdata(dev_d);
5341 struct iavf_adapter *adapter = netdev_priv(netdev);
5342
5343 netif_device_detach(netdev);
5344
5345 mutex_lock(&adapter->crit_lock);
5346
5347 if (netif_running(netdev)) {
5348 rtnl_lock();
5349 iavf_down(adapter);
5350 rtnl_unlock();
5351 }
5352 iavf_free_misc_irq(adapter);
5353 iavf_reset_interrupt_capability(adapter);
5354
5355 mutex_unlock(&adapter->crit_lock);
5356
5357 return 0;
5358 }
5359
5360 /**
5361 * iavf_resume - Power management resume routine
5362 * @dev_d: device info pointer
5363 *
5364 * Called when the system (VM) is resumed from sleep/suspend.
5365 **/
iavf_resume(struct device * dev_d)5366 static int iavf_resume(struct device *dev_d)
5367 {
5368 struct pci_dev *pdev = to_pci_dev(dev_d);
5369 struct iavf_adapter *adapter;
5370 u32 err;
5371
5372 adapter = iavf_pdev_to_adapter(pdev);
5373
5374 pci_set_master(pdev);
5375
5376 rtnl_lock();
5377 err = iavf_set_interrupt_capability(adapter);
5378 if (err) {
5379 rtnl_unlock();
5380 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5381 return err;
5382 }
5383 err = iavf_request_misc_irq(adapter);
5384 rtnl_unlock();
5385 if (err) {
5386 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5387 return err;
5388 }
5389
5390 queue_work(adapter->wq, &adapter->reset_task);
5391
5392 netif_device_attach(adapter->netdev);
5393
5394 return err;
5395 }
5396
5397 /**
5398 * iavf_remove - Device Removal Routine
5399 * @pdev: PCI device information struct
5400 *
5401 * iavf_remove is called by the PCI subsystem to alert the driver
5402 * that it should release a PCI device. The could be caused by a
5403 * Hot-Plug event, or because the driver is going to be removed from
5404 * memory.
5405 **/
iavf_remove(struct pci_dev * pdev)5406 static void iavf_remove(struct pci_dev *pdev)
5407 {
5408 struct iavf_fdir_fltr *fdir, *fdirtmp;
5409 struct iavf_vlan_filter *vlf, *vlftmp;
5410 struct iavf_cloud_filter *cf, *cftmp;
5411 struct iavf_adv_rss *rss, *rsstmp;
5412 struct iavf_mac_filter *f, *ftmp;
5413 struct iavf_adapter *adapter;
5414 struct net_device *netdev;
5415 struct iavf_hw *hw;
5416
5417 /* Don't proceed with remove if netdev is already freed */
5418 netdev = pci_get_drvdata(pdev);
5419 if (!netdev)
5420 return;
5421
5422 adapter = iavf_pdev_to_adapter(pdev);
5423 hw = &adapter->hw;
5424
5425 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5426 return;
5427
5428 /* Wait until port initialization is complete.
5429 * There are flows where register/unregister netdev may race.
5430 */
5431 while (1) {
5432 mutex_lock(&adapter->crit_lock);
5433 if (adapter->state == __IAVF_RUNNING ||
5434 adapter->state == __IAVF_DOWN ||
5435 adapter->state == __IAVF_INIT_FAILED) {
5436 mutex_unlock(&adapter->crit_lock);
5437 break;
5438 }
5439 /* Simply return if we already went through iavf_shutdown */
5440 if (adapter->state == __IAVF_REMOVE) {
5441 mutex_unlock(&adapter->crit_lock);
5442 return;
5443 }
5444
5445 mutex_unlock(&adapter->crit_lock);
5446 usleep_range(500, 1000);
5447 }
5448 cancel_delayed_work_sync(&adapter->watchdog_task);
5449 cancel_work_sync(&adapter->finish_config);
5450
5451 if (netdev->reg_state == NETREG_REGISTERED)
5452 unregister_netdev(netdev);
5453
5454 mutex_lock(&adapter->crit_lock);
5455 dev_info(&adapter->pdev->dev, "Removing device\n");
5456 iavf_change_state(adapter, __IAVF_REMOVE);
5457
5458 iavf_request_reset(adapter);
5459 msleep(50);
5460 /* If the FW isn't responding, kick it once, but only once. */
5461 if (!iavf_asq_done(hw)) {
5462 iavf_request_reset(adapter);
5463 msleep(50);
5464 }
5465
5466 iavf_misc_irq_disable(adapter);
5467 /* Shut down all the garbage mashers on the detention level */
5468 cancel_work_sync(&adapter->reset_task);
5469 cancel_delayed_work_sync(&adapter->watchdog_task);
5470 cancel_work_sync(&adapter->adminq_task);
5471
5472 adapter->aq_required = 0;
5473 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5474
5475 iavf_free_all_tx_resources(adapter);
5476 iavf_free_all_rx_resources(adapter);
5477 iavf_free_misc_irq(adapter);
5478 iavf_free_interrupt_scheme(adapter);
5479
5480 iavf_free_rss(adapter);
5481
5482 if (hw->aq.asq.count)
5483 iavf_shutdown_adminq(hw);
5484
5485 /* destroy the locks only once, here */
5486 mutex_destroy(&hw->aq.arq_mutex);
5487 mutex_destroy(&hw->aq.asq_mutex);
5488 mutex_unlock(&adapter->crit_lock);
5489 mutex_destroy(&adapter->crit_lock);
5490
5491 iounmap(hw->hw_addr);
5492 pci_release_regions(pdev);
5493 kfree(adapter->vf_res);
5494 spin_lock_bh(&adapter->mac_vlan_list_lock);
5495 /* If we got removed before an up/down sequence, we've got a filter
5496 * hanging out there that we need to get rid of.
5497 */
5498 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5499 list_del(&f->list);
5500 kfree(f);
5501 }
5502 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5503 list) {
5504 list_del(&vlf->list);
5505 kfree(vlf);
5506 }
5507
5508 spin_unlock_bh(&adapter->mac_vlan_list_lock);
5509
5510 spin_lock_bh(&adapter->cloud_filter_list_lock);
5511 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5512 list_del(&cf->list);
5513 kfree(cf);
5514 }
5515 spin_unlock_bh(&adapter->cloud_filter_list_lock);
5516
5517 spin_lock_bh(&adapter->fdir_fltr_lock);
5518 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5519 list_del(&fdir->list);
5520 kfree(fdir);
5521 }
5522 spin_unlock_bh(&adapter->fdir_fltr_lock);
5523
5524 spin_lock_bh(&adapter->adv_rss_lock);
5525 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5526 list) {
5527 list_del(&rss->list);
5528 kfree(rss);
5529 }
5530 spin_unlock_bh(&adapter->adv_rss_lock);
5531
5532 destroy_workqueue(adapter->wq);
5533
5534 pci_set_drvdata(pdev, NULL);
5535
5536 free_netdev(netdev);
5537
5538 pci_disable_device(pdev);
5539 }
5540
5541 /**
5542 * iavf_shutdown - Shutdown the device in preparation for a reboot
5543 * @pdev: pci device structure
5544 **/
iavf_shutdown(struct pci_dev * pdev)5545 static void iavf_shutdown(struct pci_dev *pdev)
5546 {
5547 iavf_remove(pdev);
5548
5549 if (system_state == SYSTEM_POWER_OFF)
5550 pci_set_power_state(pdev, PCI_D3hot);
5551 }
5552
5553 static DEFINE_SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5554
5555 static struct pci_driver iavf_driver = {
5556 .name = iavf_driver_name,
5557 .id_table = iavf_pci_tbl,
5558 .probe = iavf_probe,
5559 .remove = iavf_remove,
5560 .driver.pm = pm_sleep_ptr(&iavf_pm_ops),
5561 .shutdown = iavf_shutdown,
5562 };
5563
5564 /**
5565 * iavf_init_module - Driver Registration Routine
5566 *
5567 * iavf_init_module is the first routine called when the driver is
5568 * loaded. All it does is register with the PCI subsystem.
5569 **/
iavf_init_module(void)5570 static int __init iavf_init_module(void)
5571 {
5572 pr_info("iavf: %s\n", iavf_driver_string);
5573
5574 pr_info("%s\n", iavf_copyright);
5575
5576 return pci_register_driver(&iavf_driver);
5577 }
5578
5579 module_init(iavf_init_module);
5580
5581 /**
5582 * iavf_exit_module - Driver Exit Cleanup Routine
5583 *
5584 * iavf_exit_module is called just before the driver is removed
5585 * from memory.
5586 **/
iavf_exit_module(void)5587 static void __exit iavf_exit_module(void)
5588 {
5589 pci_unregister_driver(&iavf_driver);
5590 }
5591
5592 module_exit(iavf_exit_module);
5593
5594 /* iavf_main.c */
5595