1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/bitfield.h>
5 #include <linux/net/intel/libie/rx.h>
6 #include <linux/prefetch.h>
7
8 #include "iavf.h"
9 #include "iavf_trace.h"
10 #include "iavf_prototype.h"
11 #include "iavf_ptp.h"
12
13 /**
14 * iavf_is_descriptor_done - tests DD bit in Rx descriptor
15 * @qw1: quad word 1 from descriptor to get Descriptor Done field from
16 * @flex: is the descriptor flex or legacy
17 *
18 * This function tests the descriptor done bit in specified descriptor. Because
19 * there are two types of descriptors (legacy and flex) the parameter rx_ring
20 * is used to distinguish.
21 *
22 * Return: true or false based on the state of DD bit in Rx descriptor.
23 */
iavf_is_descriptor_done(u64 qw1,bool flex)24 static bool iavf_is_descriptor_done(u64 qw1, bool flex)
25 {
26 if (flex)
27 return FIELD_GET(IAVF_RXD_FLEX_DD_M, qw1);
28 else
29 return FIELD_GET(IAVF_RXD_LEGACY_DD_M, qw1);
30 }
31
build_ctob(u32 td_cmd,u32 td_offset,unsigned int size,u32 td_tag)32 static __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33 u32 td_tag)
34 {
35 return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
36 ((u64)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) |
37 ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
38 ((u64)size << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
39 ((u64)td_tag << IAVF_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
43
44 /**
45 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
46 * @ring: the ring that owns the buffer
47 * @tx_buffer: the buffer to free
48 **/
iavf_unmap_and_free_tx_resource(struct iavf_ring * ring,struct iavf_tx_buffer * tx_buffer)49 static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
50 struct iavf_tx_buffer *tx_buffer)
51 {
52 if (tx_buffer->skb) {
53 if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
54 kfree(tx_buffer->raw_buf);
55 else
56 dev_kfree_skb_any(tx_buffer->skb);
57 if (dma_unmap_len(tx_buffer, len))
58 dma_unmap_single(ring->dev,
59 dma_unmap_addr(tx_buffer, dma),
60 dma_unmap_len(tx_buffer, len),
61 DMA_TO_DEVICE);
62 } else if (dma_unmap_len(tx_buffer, len)) {
63 dma_unmap_page(ring->dev,
64 dma_unmap_addr(tx_buffer, dma),
65 dma_unmap_len(tx_buffer, len),
66 DMA_TO_DEVICE);
67 }
68
69 tx_buffer->next_to_watch = NULL;
70 tx_buffer->skb = NULL;
71 dma_unmap_len_set(tx_buffer, len, 0);
72 /* tx_buffer must be completely set up in the transmit path */
73 }
74
75 /**
76 * iavf_clean_tx_ring - Free any empty Tx buffers
77 * @tx_ring: ring to be cleaned
78 **/
iavf_clean_tx_ring(struct iavf_ring * tx_ring)79 static void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
80 {
81 unsigned long bi_size;
82 u16 i;
83
84 /* ring already cleared, nothing to do */
85 if (!tx_ring->tx_bi)
86 return;
87
88 /* Free all the Tx ring sk_buffs */
89 for (i = 0; i < tx_ring->count; i++)
90 iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
91
92 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
93 memset(tx_ring->tx_bi, 0, bi_size);
94
95 /* Zero out the descriptor ring */
96 memset(tx_ring->desc, 0, tx_ring->size);
97
98 tx_ring->next_to_use = 0;
99 tx_ring->next_to_clean = 0;
100
101 if (!tx_ring->netdev)
102 return;
103
104 /* cleanup Tx queue statistics */
105 netdev_tx_reset_queue(txring_txq(tx_ring));
106 }
107
108 /**
109 * iavf_free_tx_resources - Free Tx resources per queue
110 * @tx_ring: Tx descriptor ring for a specific queue
111 *
112 * Free all transmit software resources
113 **/
iavf_free_tx_resources(struct iavf_ring * tx_ring)114 void iavf_free_tx_resources(struct iavf_ring *tx_ring)
115 {
116 iavf_clean_tx_ring(tx_ring);
117 kfree(tx_ring->tx_bi);
118 tx_ring->tx_bi = NULL;
119
120 if (tx_ring->desc) {
121 dma_free_coherent(tx_ring->dev, tx_ring->size,
122 tx_ring->desc, tx_ring->dma);
123 tx_ring->desc = NULL;
124 }
125 }
126
127 /**
128 * iavf_get_tx_pending - how many Tx descriptors not processed
129 * @ring: the ring of descriptors
130 * @in_sw: is tx_pending being checked in SW or HW
131 *
132 * Since there is no access to the ring head register
133 * in XL710, we need to use our local copies
134 **/
iavf_get_tx_pending(struct iavf_ring * ring,bool in_sw)135 static u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
136 {
137 u32 head, tail;
138
139 /* underlying hardware might not allow access and/or always return
140 * 0 for the head/tail registers so just use the cached values
141 */
142 head = ring->next_to_clean;
143 tail = ring->next_to_use;
144
145 if (head != tail)
146 return (head < tail) ?
147 tail - head : (tail + ring->count - head);
148
149 return 0;
150 }
151
152 /**
153 * iavf_force_wb - Issue SW Interrupt so HW does a wb
154 * @vsi: the VSI we care about
155 * @q_vector: the vector on which to force writeback
156 **/
iavf_force_wb(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)157 static void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
158 {
159 u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
160 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
161 IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
162 IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
163 /* allow 00 to be written to the index */;
164
165 wr32(&vsi->back->hw,
166 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
167 val);
168 }
169
170 /**
171 * iavf_detect_recover_hung - Function to detect and recover hung_queues
172 * @vsi: pointer to vsi struct with tx queues
173 *
174 * VSI has netdev and netdev has TX queues. This function is to check each of
175 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
176 **/
iavf_detect_recover_hung(struct iavf_vsi * vsi)177 void iavf_detect_recover_hung(struct iavf_vsi *vsi)
178 {
179 struct iavf_ring *tx_ring = NULL;
180 struct net_device *netdev;
181 unsigned int i;
182 int packets;
183
184 if (!vsi)
185 return;
186
187 if (test_bit(__IAVF_VSI_DOWN, vsi->state))
188 return;
189
190 netdev = vsi->netdev;
191 if (!netdev)
192 return;
193
194 if (!netif_carrier_ok(netdev))
195 return;
196
197 for (i = 0; i < vsi->back->num_active_queues; i++) {
198 tx_ring = &vsi->back->tx_rings[i];
199 if (tx_ring && tx_ring->desc) {
200 /* If packet counter has not changed the queue is
201 * likely stalled, so force an interrupt for this
202 * queue.
203 *
204 * prev_pkt_ctr would be negative if there was no
205 * pending work.
206 */
207 packets = tx_ring->stats.packets & INT_MAX;
208 if (tx_ring->prev_pkt_ctr == packets) {
209 iavf_force_wb(vsi, tx_ring->q_vector);
210 continue;
211 }
212
213 /* Memory barrier between read of packet count and call
214 * to iavf_get_tx_pending()
215 */
216 smp_rmb();
217 tx_ring->prev_pkt_ctr =
218 iavf_get_tx_pending(tx_ring, true) ? packets : -1;
219 }
220 }
221 }
222
223 #define WB_STRIDE 4
224
225 /**
226 * iavf_clean_tx_irq - Reclaim resources after transmit completes
227 * @vsi: the VSI we care about
228 * @tx_ring: Tx ring to clean
229 * @napi_budget: Used to determine if we are in netpoll
230 *
231 * Returns true if there's any budget left (e.g. the clean is finished)
232 **/
iavf_clean_tx_irq(struct iavf_vsi * vsi,struct iavf_ring * tx_ring,int napi_budget)233 static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
234 struct iavf_ring *tx_ring, int napi_budget)
235 {
236 int i = tx_ring->next_to_clean;
237 struct iavf_tx_buffer *tx_buf;
238 struct iavf_tx_desc *tx_desc;
239 unsigned int total_bytes = 0, total_packets = 0;
240 unsigned int budget = IAVF_DEFAULT_IRQ_WORK;
241
242 tx_buf = &tx_ring->tx_bi[i];
243 tx_desc = IAVF_TX_DESC(tx_ring, i);
244 i -= tx_ring->count;
245
246 do {
247 struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
248
249 /* if next_to_watch is not set then there is no work pending */
250 if (!eop_desc)
251 break;
252
253 /* prevent any other reads prior to eop_desc */
254 smp_rmb();
255
256 iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
257 /* if the descriptor isn't done, no work yet to do */
258 if (!(eop_desc->cmd_type_offset_bsz &
259 cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
260 break;
261
262 /* clear next_to_watch to prevent false hangs */
263 tx_buf->next_to_watch = NULL;
264
265 /* update the statistics for this packet */
266 total_bytes += tx_buf->bytecount;
267 total_packets += tx_buf->gso_segs;
268
269 /* free the skb */
270 napi_consume_skb(tx_buf->skb, napi_budget);
271
272 /* unmap skb header data */
273 dma_unmap_single(tx_ring->dev,
274 dma_unmap_addr(tx_buf, dma),
275 dma_unmap_len(tx_buf, len),
276 DMA_TO_DEVICE);
277
278 /* clear tx_buffer data */
279 tx_buf->skb = NULL;
280 dma_unmap_len_set(tx_buf, len, 0);
281
282 /* unmap remaining buffers */
283 while (tx_desc != eop_desc) {
284 iavf_trace(clean_tx_irq_unmap,
285 tx_ring, tx_desc, tx_buf);
286
287 tx_buf++;
288 tx_desc++;
289 i++;
290 if (unlikely(!i)) {
291 i -= tx_ring->count;
292 tx_buf = tx_ring->tx_bi;
293 tx_desc = IAVF_TX_DESC(tx_ring, 0);
294 }
295
296 /* unmap any remaining paged data */
297 if (dma_unmap_len(tx_buf, len)) {
298 dma_unmap_page(tx_ring->dev,
299 dma_unmap_addr(tx_buf, dma),
300 dma_unmap_len(tx_buf, len),
301 DMA_TO_DEVICE);
302 dma_unmap_len_set(tx_buf, len, 0);
303 }
304 }
305
306 /* move us one more past the eop_desc for start of next pkt */
307 tx_buf++;
308 tx_desc++;
309 i++;
310 if (unlikely(!i)) {
311 i -= tx_ring->count;
312 tx_buf = tx_ring->tx_bi;
313 tx_desc = IAVF_TX_DESC(tx_ring, 0);
314 }
315
316 prefetch(tx_desc);
317
318 /* update budget accounting */
319 budget--;
320 } while (likely(budget));
321
322 i += tx_ring->count;
323 tx_ring->next_to_clean = i;
324 u64_stats_update_begin(&tx_ring->syncp);
325 tx_ring->stats.bytes += total_bytes;
326 tx_ring->stats.packets += total_packets;
327 u64_stats_update_end(&tx_ring->syncp);
328 tx_ring->q_vector->tx.total_bytes += total_bytes;
329 tx_ring->q_vector->tx.total_packets += total_packets;
330
331 if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
332 /* check to see if there are < 4 descriptors
333 * waiting to be written back, then kick the hardware to force
334 * them to be written back in case we stay in NAPI.
335 * In this mode on X722 we do not enable Interrupt.
336 */
337 unsigned int j = iavf_get_tx_pending(tx_ring, false);
338
339 if (budget &&
340 ((j / WB_STRIDE) == 0) && (j > 0) &&
341 !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
342 (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
343 tx_ring->flags |= IAVF_TXR_FLAGS_ARM_WB;
344 }
345
346 /* notify netdev of completed buffers */
347 netdev_tx_completed_queue(txring_txq(tx_ring),
348 total_packets, total_bytes);
349
350 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
351 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
352 (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
353 /* Make sure that anybody stopping the queue after this
354 * sees the new next_to_clean.
355 */
356 smp_mb();
357 if (__netif_subqueue_stopped(tx_ring->netdev,
358 tx_ring->queue_index) &&
359 !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
360 netif_wake_subqueue(tx_ring->netdev,
361 tx_ring->queue_index);
362 ++tx_ring->tx_stats.restart_queue;
363 }
364 }
365
366 return !!budget;
367 }
368
369 /**
370 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
371 * @vsi: the VSI we care about
372 * @q_vector: the vector on which to enable writeback
373 *
374 **/
iavf_enable_wb_on_itr(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)375 static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
376 struct iavf_q_vector *q_vector)
377 {
378 u16 flags = q_vector->tx.ring[0].flags;
379 u32 val;
380
381 if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
382 return;
383
384 if (q_vector->arm_wb_state)
385 return;
386
387 val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
388 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
389
390 wr32(&vsi->back->hw,
391 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
392 q_vector->arm_wb_state = true;
393 }
394
iavf_container_is_rx(struct iavf_q_vector * q_vector,struct iavf_ring_container * rc)395 static bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
396 struct iavf_ring_container *rc)
397 {
398 return &q_vector->rx == rc;
399 }
400
401 #define IAVF_AIM_MULTIPLIER_100G 2560
402 #define IAVF_AIM_MULTIPLIER_50G 1280
403 #define IAVF_AIM_MULTIPLIER_40G 1024
404 #define IAVF_AIM_MULTIPLIER_20G 512
405 #define IAVF_AIM_MULTIPLIER_10G 256
406 #define IAVF_AIM_MULTIPLIER_1G 32
407
iavf_mbps_itr_multiplier(u32 speed_mbps)408 static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps)
409 {
410 switch (speed_mbps) {
411 case SPEED_100000:
412 return IAVF_AIM_MULTIPLIER_100G;
413 case SPEED_50000:
414 return IAVF_AIM_MULTIPLIER_50G;
415 case SPEED_40000:
416 return IAVF_AIM_MULTIPLIER_40G;
417 case SPEED_25000:
418 case SPEED_20000:
419 return IAVF_AIM_MULTIPLIER_20G;
420 case SPEED_10000:
421 default:
422 return IAVF_AIM_MULTIPLIER_10G;
423 case SPEED_1000:
424 case SPEED_100:
425 return IAVF_AIM_MULTIPLIER_1G;
426 }
427 }
428
429 static unsigned int
iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl)430 iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl)
431 {
432 switch (speed_virtchnl) {
433 case VIRTCHNL_LINK_SPEED_40GB:
434 return IAVF_AIM_MULTIPLIER_40G;
435 case VIRTCHNL_LINK_SPEED_25GB:
436 case VIRTCHNL_LINK_SPEED_20GB:
437 return IAVF_AIM_MULTIPLIER_20G;
438 case VIRTCHNL_LINK_SPEED_10GB:
439 default:
440 return IAVF_AIM_MULTIPLIER_10G;
441 case VIRTCHNL_LINK_SPEED_1GB:
442 case VIRTCHNL_LINK_SPEED_100MB:
443 return IAVF_AIM_MULTIPLIER_1G;
444 }
445 }
446
iavf_itr_divisor(struct iavf_adapter * adapter)447 static unsigned int iavf_itr_divisor(struct iavf_adapter *adapter)
448 {
449 if (ADV_LINK_SUPPORT(adapter))
450 return IAVF_ITR_ADAPTIVE_MIN_INC *
451 iavf_mbps_itr_multiplier(adapter->link_speed_mbps);
452 else
453 return IAVF_ITR_ADAPTIVE_MIN_INC *
454 iavf_virtchnl_itr_multiplier(adapter->link_speed);
455 }
456
457 /**
458 * iavf_update_itr - update the dynamic ITR value based on statistics
459 * @q_vector: structure containing interrupt and ring information
460 * @rc: structure containing ring performance data
461 *
462 * Stores a new ITR value based on packets and byte
463 * counts during the last interrupt. The advantage of per interrupt
464 * computation is faster updates and more accurate ITR for the current
465 * traffic pattern. Constants in this function were computed
466 * based on theoretical maximum wire speed and thresholds were set based
467 * on testing data as well as attempting to minimize response time
468 * while increasing bulk throughput.
469 **/
iavf_update_itr(struct iavf_q_vector * q_vector,struct iavf_ring_container * rc)470 static void iavf_update_itr(struct iavf_q_vector *q_vector,
471 struct iavf_ring_container *rc)
472 {
473 unsigned int avg_wire_size, packets, bytes, itr;
474 unsigned long next_update = jiffies;
475
476 /* If we don't have any rings just leave ourselves set for maximum
477 * possible latency so we take ourselves out of the equation.
478 */
479 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
480 return;
481
482 /* For Rx we want to push the delay up and default to low latency.
483 * for Tx we want to pull the delay down and default to high latency.
484 */
485 itr = iavf_container_is_rx(q_vector, rc) ?
486 IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
487 IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
488
489 /* If we didn't update within up to 1 - 2 jiffies we can assume
490 * that either packets are coming in so slow there hasn't been
491 * any work, or that there is so much work that NAPI is dealing
492 * with interrupt moderation and we don't need to do anything.
493 */
494 if (time_after(next_update, rc->next_update))
495 goto clear_counts;
496
497 /* If itr_countdown is set it means we programmed an ITR within
498 * the last 4 interrupt cycles. This has a side effect of us
499 * potentially firing an early interrupt. In order to work around
500 * this we need to throw out any data received for a few
501 * interrupts following the update.
502 */
503 if (q_vector->itr_countdown) {
504 itr = rc->target_itr;
505 goto clear_counts;
506 }
507
508 packets = rc->total_packets;
509 bytes = rc->total_bytes;
510
511 if (iavf_container_is_rx(q_vector, rc)) {
512 /* If Rx there are 1 to 4 packets and bytes are less than
513 * 9000 assume insufficient data to use bulk rate limiting
514 * approach unless Tx is already in bulk rate limiting. We
515 * are likely latency driven.
516 */
517 if (packets && packets < 4 && bytes < 9000 &&
518 (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
519 itr = IAVF_ITR_ADAPTIVE_LATENCY;
520 goto adjust_by_size;
521 }
522 } else if (packets < 4) {
523 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
524 * bulk mode and we are receiving 4 or fewer packets just
525 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
526 * that the Rx can relax.
527 */
528 if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
529 (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
530 IAVF_ITR_ADAPTIVE_MAX_USECS)
531 goto clear_counts;
532 } else if (packets > 32) {
533 /* If we have processed over 32 packets in a single interrupt
534 * for Tx assume we need to switch over to "bulk" mode.
535 */
536 rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
537 }
538
539 /* We have no packets to actually measure against. This means
540 * either one of the other queues on this vector is active or
541 * we are a Tx queue doing TSO with too high of an interrupt rate.
542 *
543 * Between 4 and 56 we can assume that our current interrupt delay
544 * is only slightly too low. As such we should increase it by a small
545 * fixed amount.
546 */
547 if (packets < 56) {
548 itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
549 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
550 itr &= IAVF_ITR_ADAPTIVE_LATENCY;
551 itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
552 }
553 goto clear_counts;
554 }
555
556 if (packets <= 256) {
557 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
558 itr &= IAVF_ITR_MASK;
559
560 /* Between 56 and 112 is our "goldilocks" zone where we are
561 * working out "just right". Just report that our current
562 * ITR is good for us.
563 */
564 if (packets <= 112)
565 goto clear_counts;
566
567 /* If packet count is 128 or greater we are likely looking
568 * at a slight overrun of the delay we want. Try halving
569 * our delay to see if that will cut the number of packets
570 * in half per interrupt.
571 */
572 itr /= 2;
573 itr &= IAVF_ITR_MASK;
574 if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
575 itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
576
577 goto clear_counts;
578 }
579
580 /* The paths below assume we are dealing with a bulk ITR since
581 * number of packets is greater than 256. We are just going to have
582 * to compute a value and try to bring the count under control,
583 * though for smaller packet sizes there isn't much we can do as
584 * NAPI polling will likely be kicking in sooner rather than later.
585 */
586 itr = IAVF_ITR_ADAPTIVE_BULK;
587
588 adjust_by_size:
589 /* If packet counts are 256 or greater we can assume we have a gross
590 * overestimation of what the rate should be. Instead of trying to fine
591 * tune it just use the formula below to try and dial in an exact value
592 * give the current packet size of the frame.
593 */
594 avg_wire_size = bytes / packets;
595
596 /* The following is a crude approximation of:
597 * wmem_default / (size + overhead) = desired_pkts_per_int
598 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
599 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
600 *
601 * Assuming wmem_default is 212992 and overhead is 640 bytes per
602 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
603 * formula down to
604 *
605 * (170 * (size + 24)) / (size + 640) = ITR
606 *
607 * We first do some math on the packet size and then finally bitshift
608 * by 8 after rounding up. We also have to account for PCIe link speed
609 * difference as ITR scales based on this.
610 */
611 if (avg_wire_size <= 60) {
612 /* Start at 250k ints/sec */
613 avg_wire_size = 4096;
614 } else if (avg_wire_size <= 380) {
615 /* 250K ints/sec to 60K ints/sec */
616 avg_wire_size *= 40;
617 avg_wire_size += 1696;
618 } else if (avg_wire_size <= 1084) {
619 /* 60K ints/sec to 36K ints/sec */
620 avg_wire_size *= 15;
621 avg_wire_size += 11452;
622 } else if (avg_wire_size <= 1980) {
623 /* 36K ints/sec to 30K ints/sec */
624 avg_wire_size *= 5;
625 avg_wire_size += 22420;
626 } else {
627 /* plateau at a limit of 30K ints/sec */
628 avg_wire_size = 32256;
629 }
630
631 /* If we are in low latency mode halve our delay which doubles the
632 * rate to somewhere between 100K to 16K ints/sec
633 */
634 if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
635 avg_wire_size /= 2;
636
637 /* Resultant value is 256 times larger than it needs to be. This
638 * gives us room to adjust the value as needed to either increase
639 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
640 *
641 * Use addition as we have already recorded the new latency flag
642 * for the ITR value.
643 */
644 itr += DIV_ROUND_UP(avg_wire_size,
645 iavf_itr_divisor(q_vector->adapter)) *
646 IAVF_ITR_ADAPTIVE_MIN_INC;
647
648 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
649 itr &= IAVF_ITR_ADAPTIVE_LATENCY;
650 itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
651 }
652
653 clear_counts:
654 /* write back value */
655 rc->target_itr = itr;
656
657 /* next update should occur within next jiffy */
658 rc->next_update = next_update + 1;
659
660 rc->total_bytes = 0;
661 rc->total_packets = 0;
662 }
663
664 /**
665 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
666 * @tx_ring: the tx ring to set up
667 *
668 * Return 0 on success, negative on error
669 **/
iavf_setup_tx_descriptors(struct iavf_ring * tx_ring)670 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
671 {
672 struct device *dev = tx_ring->dev;
673 int bi_size;
674
675 if (!dev)
676 return -ENOMEM;
677
678 /* warn if we are about to overwrite the pointer */
679 WARN_ON(tx_ring->tx_bi);
680 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
681 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
682 if (!tx_ring->tx_bi)
683 goto err;
684
685 /* round up to nearest 4K */
686 tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
687 tx_ring->size = ALIGN(tx_ring->size, 4096);
688 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
689 &tx_ring->dma, GFP_KERNEL);
690 if (!tx_ring->desc) {
691 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
692 tx_ring->size);
693 goto err;
694 }
695
696 tx_ring->next_to_use = 0;
697 tx_ring->next_to_clean = 0;
698 tx_ring->prev_pkt_ctr = -1;
699 return 0;
700
701 err:
702 kfree(tx_ring->tx_bi);
703 tx_ring->tx_bi = NULL;
704 return -ENOMEM;
705 }
706
707 /**
708 * iavf_clean_rx_ring - Free Rx buffers
709 * @rx_ring: ring to be cleaned
710 **/
iavf_clean_rx_ring(struct iavf_ring * rx_ring)711 static void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
712 {
713 /* ring already cleared, nothing to do */
714 if (!rx_ring->rx_fqes)
715 return;
716
717 if (rx_ring->skb) {
718 dev_kfree_skb(rx_ring->skb);
719 rx_ring->skb = NULL;
720 }
721
722 /* Free all the Rx ring buffers */
723 for (u32 i = rx_ring->next_to_clean; i != rx_ring->next_to_use; ) {
724 const struct libeth_fqe *rx_fqes = &rx_ring->rx_fqes[i];
725
726 page_pool_put_full_page(rx_ring->pp, rx_fqes->page, false);
727
728 if (unlikely(++i == rx_ring->count))
729 i = 0;
730 }
731
732 rx_ring->next_to_clean = 0;
733 rx_ring->next_to_use = 0;
734 }
735
736 /**
737 * iavf_free_rx_resources - Free Rx resources
738 * @rx_ring: ring to clean the resources from
739 *
740 * Free all receive software resources
741 **/
iavf_free_rx_resources(struct iavf_ring * rx_ring)742 void iavf_free_rx_resources(struct iavf_ring *rx_ring)
743 {
744 struct libeth_fq fq = {
745 .fqes = rx_ring->rx_fqes,
746 .pp = rx_ring->pp,
747 };
748
749 iavf_clean_rx_ring(rx_ring);
750
751 if (rx_ring->desc) {
752 dma_free_coherent(rx_ring->pp->p.dev, rx_ring->size,
753 rx_ring->desc, rx_ring->dma);
754 rx_ring->desc = NULL;
755 }
756
757 libeth_rx_fq_destroy(&fq);
758 rx_ring->rx_fqes = NULL;
759 rx_ring->pp = NULL;
760 }
761
762 /**
763 * iavf_setup_rx_descriptors - Allocate Rx descriptors
764 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
765 *
766 * Returns 0 on success, negative on failure
767 **/
iavf_setup_rx_descriptors(struct iavf_ring * rx_ring)768 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
769 {
770 struct libeth_fq fq = {
771 .count = rx_ring->count,
772 .buf_len = LIBIE_MAX_RX_BUF_LEN,
773 .nid = NUMA_NO_NODE,
774 };
775 int ret;
776
777 ret = libeth_rx_fq_create(&fq, &rx_ring->q_vector->napi);
778 if (ret)
779 return ret;
780
781 rx_ring->pp = fq.pp;
782 rx_ring->rx_fqes = fq.fqes;
783 rx_ring->truesize = fq.truesize;
784 rx_ring->rx_buf_len = fq.buf_len;
785
786 u64_stats_init(&rx_ring->syncp);
787
788 /* Round up to nearest 4K */
789 rx_ring->size = rx_ring->count * sizeof(struct iavf_rx_desc);
790 rx_ring->size = ALIGN(rx_ring->size, 4096);
791 rx_ring->desc = dma_alloc_coherent(fq.pp->p.dev, rx_ring->size,
792 &rx_ring->dma, GFP_KERNEL);
793
794 if (!rx_ring->desc) {
795 dev_info(fq.pp->p.dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
796 rx_ring->size);
797 goto err;
798 }
799
800 rx_ring->next_to_clean = 0;
801 rx_ring->next_to_use = 0;
802
803 return 0;
804
805 err:
806 libeth_rx_fq_destroy(&fq);
807 rx_ring->rx_fqes = NULL;
808 rx_ring->pp = NULL;
809
810 return -ENOMEM;
811 }
812
813 /**
814 * iavf_release_rx_desc - Store the new tail and head values
815 * @rx_ring: ring to bump
816 * @val: new head index
817 **/
iavf_release_rx_desc(struct iavf_ring * rx_ring,u32 val)818 static void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
819 {
820 rx_ring->next_to_use = val;
821
822 /* Force memory writes to complete before letting h/w
823 * know there are new descriptors to fetch. (Only
824 * applicable for weak-ordered memory model archs,
825 * such as IA-64).
826 */
827 wmb();
828 writel(val, rx_ring->tail);
829 }
830
831 /**
832 * iavf_receive_skb - Send a completed packet up the stack
833 * @rx_ring: rx ring in play
834 * @skb: packet to send up
835 * @vlan_tag: vlan tag for packet
836 **/
iavf_receive_skb(struct iavf_ring * rx_ring,struct sk_buff * skb,u16 vlan_tag)837 static void iavf_receive_skb(struct iavf_ring *rx_ring,
838 struct sk_buff *skb, u16 vlan_tag)
839 {
840 struct iavf_q_vector *q_vector = rx_ring->q_vector;
841
842 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
843 (vlan_tag & VLAN_VID_MASK))
844 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
845 else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) &&
846 vlan_tag & VLAN_VID_MASK)
847 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag);
848
849 napi_gro_receive(&q_vector->napi, skb);
850 }
851
852 /**
853 * iavf_alloc_rx_buffers - Replace used receive buffers
854 * @rx_ring: ring to place buffers on
855 * @cleaned_count: number of buffers to replace
856 *
857 * Returns false if all allocations were successful, true if any fail
858 **/
iavf_alloc_rx_buffers(struct iavf_ring * rx_ring,u16 cleaned_count)859 bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
860 {
861 const struct libeth_fq_fp fq = {
862 .pp = rx_ring->pp,
863 .fqes = rx_ring->rx_fqes,
864 .truesize = rx_ring->truesize,
865 .count = rx_ring->count,
866 };
867 u16 ntu = rx_ring->next_to_use;
868 struct iavf_rx_desc *rx_desc;
869
870 /* do nothing if no valid netdev defined */
871 if (!rx_ring->netdev || !cleaned_count)
872 return false;
873
874 rx_desc = IAVF_RX_DESC(rx_ring, ntu);
875
876 do {
877 dma_addr_t addr;
878
879 addr = libeth_rx_alloc(&fq, ntu);
880 if (addr == DMA_MAPPING_ERROR)
881 goto no_buffers;
882
883 /* Refresh the desc even if buffer_addrs didn't change
884 * because each write-back erases this info.
885 */
886 rx_desc->qw0 = cpu_to_le64(addr);
887
888 rx_desc++;
889 ntu++;
890 if (unlikely(ntu == rx_ring->count)) {
891 rx_desc = IAVF_RX_DESC(rx_ring, 0);
892 ntu = 0;
893 }
894
895 /* clear the status bits for the next_to_use descriptor */
896 rx_desc->qw1 = 0;
897
898 cleaned_count--;
899 } while (cleaned_count);
900
901 if (rx_ring->next_to_use != ntu)
902 iavf_release_rx_desc(rx_ring, ntu);
903
904 return false;
905
906 no_buffers:
907 if (rx_ring->next_to_use != ntu)
908 iavf_release_rx_desc(rx_ring, ntu);
909
910 rx_ring->rx_stats.alloc_page_failed++;
911
912 /* make sure to come back via polling to try again after
913 * allocation failure
914 */
915 return true;
916 }
917
918 /**
919 * iavf_rx_csum - Indicate in skb if hw indicated a good checksum
920 * @vsi: the VSI we care about
921 * @skb: skb currently being received and modified
922 * @decoded_pt: decoded ptype information
923 * @csum_bits: decoded Rx descriptor information
924 **/
iavf_rx_csum(const struct iavf_vsi * vsi,struct sk_buff * skb,struct libeth_rx_pt decoded_pt,struct libeth_rx_csum csum_bits)925 static void iavf_rx_csum(const struct iavf_vsi *vsi, struct sk_buff *skb,
926 struct libeth_rx_pt decoded_pt,
927 struct libeth_rx_csum csum_bits)
928 {
929 bool ipv4, ipv6;
930
931 skb->ip_summed = CHECKSUM_NONE;
932
933 /* did the hardware decode the packet and checksum? */
934 if (unlikely(!csum_bits.l3l4p))
935 return;
936
937 ipv4 = libeth_rx_pt_get_ip_ver(decoded_pt) == LIBETH_RX_PT_OUTER_IPV4;
938 ipv6 = libeth_rx_pt_get_ip_ver(decoded_pt) == LIBETH_RX_PT_OUTER_IPV6;
939
940 if (unlikely(ipv4 && (csum_bits.ipe || csum_bits.eipe)))
941 goto checksum_fail;
942
943 /* likely incorrect csum if alternate IP extension headers found */
944 if (unlikely(ipv6 && csum_bits.ipv6exadd))
945 return;
946
947 /* there was some L4 error, count error and punt packet to the stack */
948 if (unlikely(csum_bits.l4e))
949 goto checksum_fail;
950
951 /* handle packets that were not able to be checksummed due
952 * to arrival speed, in this case the stack can compute
953 * the csum.
954 */
955 if (unlikely(csum_bits.pprs))
956 return;
957
958 skb->ip_summed = CHECKSUM_UNNECESSARY;
959 return;
960
961 checksum_fail:
962 vsi->back->hw_csum_rx_error++;
963 }
964
965 /**
966 * iavf_legacy_rx_csum - Indicate in skb if hw indicated a good checksum
967 * @vsi: the VSI we care about
968 * @qw1: quad word 1
969 * @decoded_pt: decoded packet type
970 *
971 * This function only operates on the VIRTCHNL_RXDID_1_32B_BASE legacy 32byte
972 * descriptor writeback format.
973 *
974 * Return: decoded checksum bits.
975 **/
976 static struct libeth_rx_csum
iavf_legacy_rx_csum(const struct iavf_vsi * vsi,u64 qw1,const struct libeth_rx_pt decoded_pt)977 iavf_legacy_rx_csum(const struct iavf_vsi *vsi, u64 qw1,
978 const struct libeth_rx_pt decoded_pt)
979 {
980 struct libeth_rx_csum csum_bits = {};
981
982 if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded_pt))
983 return csum_bits;
984
985 csum_bits.ipe = FIELD_GET(IAVF_RXD_LEGACY_IPE_M, qw1);
986 csum_bits.eipe = FIELD_GET(IAVF_RXD_LEGACY_EIPE_M, qw1);
987 csum_bits.l4e = FIELD_GET(IAVF_RXD_LEGACY_L4E_M, qw1);
988 csum_bits.pprs = FIELD_GET(IAVF_RXD_LEGACY_PPRS_M, qw1);
989 csum_bits.l3l4p = FIELD_GET(IAVF_RXD_LEGACY_L3L4P_M, qw1);
990 csum_bits.ipv6exadd = FIELD_GET(IAVF_RXD_LEGACY_IPV6EXADD_M, qw1);
991
992 return csum_bits;
993 }
994
995 /**
996 * iavf_flex_rx_csum - Indicate in skb if hw indicated a good checksum
997 * @vsi: the VSI we care about
998 * @qw1: quad word 1
999 * @decoded_pt: decoded packet type
1000 *
1001 * This function only operates on the VIRTCHNL_RXDID_2_FLEX_SQ_NIC flexible
1002 * descriptor writeback format.
1003 *
1004 * Return: decoded checksum bits.
1005 **/
1006 static struct libeth_rx_csum
iavf_flex_rx_csum(const struct iavf_vsi * vsi,u64 qw1,const struct libeth_rx_pt decoded_pt)1007 iavf_flex_rx_csum(const struct iavf_vsi *vsi, u64 qw1,
1008 const struct libeth_rx_pt decoded_pt)
1009 {
1010 struct libeth_rx_csum csum_bits = {};
1011
1012 if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded_pt))
1013 return csum_bits;
1014
1015 csum_bits.ipe = FIELD_GET(IAVF_RXD_FLEX_XSUM_IPE_M, qw1);
1016 csum_bits.eipe = FIELD_GET(IAVF_RXD_FLEX_XSUM_EIPE_M, qw1);
1017 csum_bits.l4e = FIELD_GET(IAVF_RXD_FLEX_XSUM_L4E_M, qw1);
1018 csum_bits.eudpe = FIELD_GET(IAVF_RXD_FLEX_XSUM_EUDPE_M, qw1);
1019 csum_bits.l3l4p = FIELD_GET(IAVF_RXD_FLEX_L3L4P_M, qw1);
1020 csum_bits.ipv6exadd = FIELD_GET(IAVF_RXD_FLEX_IPV6EXADD_M, qw1);
1021 csum_bits.nat = FIELD_GET(IAVF_RXD_FLEX_NAT_M, qw1);
1022
1023 return csum_bits;
1024 }
1025
1026 /**
1027 * iavf_legacy_rx_hash - set the hash value in the skb
1028 * @ring: descriptor ring
1029 * @qw0: quad word 0
1030 * @qw1: quad word 1
1031 * @skb: skb currently being received and modified
1032 * @decoded_pt: decoded packet type
1033 *
1034 * This function only operates on the VIRTCHNL_RXDID_1_32B_BASE legacy 32byte
1035 * descriptor writeback format.
1036 **/
iavf_legacy_rx_hash(const struct iavf_ring * ring,__le64 qw0,__le64 qw1,struct sk_buff * skb,const struct libeth_rx_pt decoded_pt)1037 static void iavf_legacy_rx_hash(const struct iavf_ring *ring, __le64 qw0,
1038 __le64 qw1, struct sk_buff *skb,
1039 const struct libeth_rx_pt decoded_pt)
1040 {
1041 const __le64 rss_mask = cpu_to_le64(IAVF_RXD_LEGACY_FLTSTAT_M);
1042 u32 hash;
1043
1044 if (!libeth_rx_pt_has_hash(ring->netdev, decoded_pt))
1045 return;
1046
1047 if ((qw1 & rss_mask) == rss_mask) {
1048 hash = le64_get_bits(qw0, IAVF_RXD_LEGACY_RSS_M);
1049 libeth_rx_pt_set_hash(skb, hash, decoded_pt);
1050 }
1051 }
1052
1053 /**
1054 * iavf_flex_rx_hash - set the hash value in the skb
1055 * @ring: descriptor ring
1056 * @qw1: quad word 1
1057 * @skb: skb currently being received and modified
1058 * @decoded_pt: decoded packet type
1059 *
1060 * This function only operates on the VIRTCHNL_RXDID_2_FLEX_SQ_NIC flexible
1061 * descriptor writeback format.
1062 **/
iavf_flex_rx_hash(const struct iavf_ring * ring,__le64 qw1,struct sk_buff * skb,const struct libeth_rx_pt decoded_pt)1063 static void iavf_flex_rx_hash(const struct iavf_ring *ring, __le64 qw1,
1064 struct sk_buff *skb,
1065 const struct libeth_rx_pt decoded_pt)
1066 {
1067 bool rss_valid;
1068 u32 hash;
1069
1070 if (!libeth_rx_pt_has_hash(ring->netdev, decoded_pt))
1071 return;
1072
1073 rss_valid = le64_get_bits(qw1, IAVF_RXD_FLEX_RSS_VALID_M);
1074 if (rss_valid) {
1075 hash = le64_get_bits(qw1, IAVF_RXD_FLEX_RSS_HASH_M);
1076 libeth_rx_pt_set_hash(skb, hash, decoded_pt);
1077 }
1078 }
1079
1080 /**
1081 * iavf_flex_rx_tstamp - Capture Rx timestamp from the descriptor
1082 * @rx_ring: descriptor ring
1083 * @qw2: quad word 2 of descriptor
1084 * @qw3: quad word 3 of descriptor
1085 * @skb: skb currently being received
1086 *
1087 * Read the Rx timestamp value from the descriptor and pass it to the stack.
1088 *
1089 * This function only operates on the VIRTCHNL_RXDID_2_FLEX_SQ_NIC flexible
1090 * descriptor writeback format.
1091 */
iavf_flex_rx_tstamp(const struct iavf_ring * rx_ring,__le64 qw2,__le64 qw3,struct sk_buff * skb)1092 static void iavf_flex_rx_tstamp(const struct iavf_ring *rx_ring, __le64 qw2,
1093 __le64 qw3, struct sk_buff *skb)
1094 {
1095 u32 tstamp;
1096 u64 ns;
1097
1098 /* Skip processing if timestamps aren't enabled */
1099 if (!(rx_ring->flags & IAVF_TXRX_FLAGS_HW_TSTAMP))
1100 return;
1101
1102 /* Check if this Rx descriptor has a valid timestamp */
1103 if (!le64_get_bits(qw2, IAVF_PTP_40B_TSTAMP_VALID))
1104 return;
1105
1106 /* the ts_low field only contains the valid bit and sub-nanosecond
1107 * precision, so we don't need to extract it.
1108 */
1109 tstamp = le64_get_bits(qw3, IAVF_RXD_FLEX_QW3_TSTAMP_HIGH_M);
1110
1111 ns = iavf_ptp_extend_32b_timestamp(rx_ring->ptp->cached_phc_time,
1112 tstamp);
1113
1114 *skb_hwtstamps(skb) = (struct skb_shared_hwtstamps) {
1115 .hwtstamp = ns_to_ktime(ns),
1116 };
1117 }
1118
1119 /**
1120 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1121 * @rx_ring: rx descriptor ring packet is being transacted on
1122 * @rx_desc: pointer to the EOP Rx descriptor
1123 * @skb: pointer to current skb being populated
1124 * @ptype: the packet type decoded by hardware
1125 * @flex: is the descriptor flex or legacy
1126 *
1127 * This function checks the ring, descriptor, and packet information in
1128 * order to populate the hash, checksum, VLAN, protocol, and
1129 * other fields within the skb.
1130 **/
iavf_process_skb_fields(const struct iavf_ring * rx_ring,const struct iavf_rx_desc * rx_desc,struct sk_buff * skb,u32 ptype,bool flex)1131 static void iavf_process_skb_fields(const struct iavf_ring *rx_ring,
1132 const struct iavf_rx_desc *rx_desc,
1133 struct sk_buff *skb, u32 ptype,
1134 bool flex)
1135 {
1136 struct libeth_rx_csum csum_bits;
1137 struct libeth_rx_pt decoded_pt;
1138 __le64 qw0 = rx_desc->qw0;
1139 __le64 qw1 = rx_desc->qw1;
1140 __le64 qw2 = rx_desc->qw2;
1141 __le64 qw3 = rx_desc->qw3;
1142
1143 decoded_pt = libie_rx_pt_parse(ptype);
1144
1145 if (flex) {
1146 iavf_flex_rx_hash(rx_ring, qw1, skb, decoded_pt);
1147 iavf_flex_rx_tstamp(rx_ring, qw2, qw3, skb);
1148 csum_bits = iavf_flex_rx_csum(rx_ring->vsi, le64_to_cpu(qw1),
1149 decoded_pt);
1150 } else {
1151 iavf_legacy_rx_hash(rx_ring, qw0, qw1, skb, decoded_pt);
1152 csum_bits = iavf_legacy_rx_csum(rx_ring->vsi, le64_to_cpu(qw1),
1153 decoded_pt);
1154 }
1155 iavf_rx_csum(rx_ring->vsi, skb, decoded_pt, csum_bits);
1156
1157 skb_record_rx_queue(skb, rx_ring->queue_index);
1158
1159 /* modifies the skb - consumes the enet header */
1160 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1161 }
1162
1163 /**
1164 * iavf_cleanup_headers - Correct empty headers
1165 * @rx_ring: rx descriptor ring packet is being transacted on
1166 * @skb: pointer to current skb being fixed
1167 *
1168 * Also address the case where we are pulling data in on pages only
1169 * and as such no data is present in the skb header.
1170 *
1171 * In addition if skb is not at least 60 bytes we need to pad it so that
1172 * it is large enough to qualify as a valid Ethernet frame.
1173 *
1174 * Returns true if an error was encountered and skb was freed.
1175 **/
iavf_cleanup_headers(struct iavf_ring * rx_ring,struct sk_buff * skb)1176 static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1177 {
1178 /* if eth_skb_pad returns an error the skb was freed */
1179 if (eth_skb_pad(skb))
1180 return true;
1181
1182 return false;
1183 }
1184
1185 /**
1186 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1187 * @skb: sk_buff to place the data into
1188 * @rx_buffer: buffer containing page to add
1189 * @size: packet length from rx_desc
1190 *
1191 * This function will add the data contained in rx_buffer->page to the skb.
1192 * It will just attach the page as a frag to the skb.
1193 *
1194 * The function will then update the page offset.
1195 **/
iavf_add_rx_frag(struct sk_buff * skb,const struct libeth_fqe * rx_buffer,unsigned int size)1196 static void iavf_add_rx_frag(struct sk_buff *skb,
1197 const struct libeth_fqe *rx_buffer,
1198 unsigned int size)
1199 {
1200 u32 hr = rx_buffer->page->pp->p.offset;
1201
1202 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1203 rx_buffer->offset + hr, size, rx_buffer->truesize);
1204 }
1205
1206 /**
1207 * iavf_build_skb - Build skb around an existing buffer
1208 * @rx_buffer: Rx buffer to pull data from
1209 * @size: size of buffer to add to skb
1210 *
1211 * This function builds an skb around an existing Rx buffer, taking care
1212 * to set up the skb correctly and avoid any memcpy overhead.
1213 */
iavf_build_skb(const struct libeth_fqe * rx_buffer,unsigned int size)1214 static struct sk_buff *iavf_build_skb(const struct libeth_fqe *rx_buffer,
1215 unsigned int size)
1216 {
1217 u32 hr = rx_buffer->page->pp->p.offset;
1218 struct sk_buff *skb;
1219 void *va;
1220
1221 /* prefetch first cache line of first page */
1222 va = page_address(rx_buffer->page) + rx_buffer->offset;
1223 net_prefetch(va + hr);
1224
1225 /* build an skb around the page buffer */
1226 skb = napi_build_skb(va, rx_buffer->truesize);
1227 if (unlikely(!skb))
1228 return NULL;
1229
1230 skb_mark_for_recycle(skb);
1231
1232 /* update pointers within the skb to store the data */
1233 skb_reserve(skb, hr);
1234 __skb_put(skb, size);
1235
1236 return skb;
1237 }
1238
1239 /**
1240 * iavf_is_non_eop - process handling of non-EOP buffers
1241 * @rx_ring: Rx ring being processed
1242 * @fields: Rx descriptor extracted fields
1243 *
1244 * This function updates next to clean. If the buffer is an EOP buffer
1245 * this function exits returning false, otherwise it will place the
1246 * sk_buff in the next buffer to be chained and return true indicating
1247 * that this is in fact a non-EOP buffer.
1248 **/
iavf_is_non_eop(struct iavf_ring * rx_ring,struct libeth_rqe_info fields)1249 static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1250 struct libeth_rqe_info fields)
1251 {
1252 u32 ntc = rx_ring->next_to_clean + 1;
1253
1254 /* fetch, update, and store next to clean */
1255 ntc = (ntc < rx_ring->count) ? ntc : 0;
1256 rx_ring->next_to_clean = ntc;
1257
1258 prefetch(IAVF_RX_DESC(rx_ring, ntc));
1259
1260 /* if we are the last buffer then there is nothing else to do */
1261 if (likely(fields.eop))
1262 return false;
1263
1264 rx_ring->rx_stats.non_eop_descs++;
1265
1266 return true;
1267 }
1268
1269 /**
1270 * iavf_extract_legacy_rx_fields - Extract fields from the Rx descriptor
1271 * @rx_ring: rx descriptor ring
1272 * @rx_desc: the descriptor to process
1273 *
1274 * Decode the Rx descriptor and extract relevant information including the
1275 * size, VLAN tag, Rx packet type, end of packet field and RXE field value.
1276 *
1277 * This function only operates on the VIRTCHNL_RXDID_1_32B_BASE legacy 32byte
1278 * descriptor writeback format.
1279 *
1280 * Return: fields extracted from the Rx descriptor.
1281 */
1282 static struct libeth_rqe_info
iavf_extract_legacy_rx_fields(const struct iavf_ring * rx_ring,const struct iavf_rx_desc * rx_desc)1283 iavf_extract_legacy_rx_fields(const struct iavf_ring *rx_ring,
1284 const struct iavf_rx_desc *rx_desc)
1285 {
1286 u64 qw0 = le64_to_cpu(rx_desc->qw0);
1287 u64 qw1 = le64_to_cpu(rx_desc->qw1);
1288 u64 qw2 = le64_to_cpu(rx_desc->qw2);
1289 struct libeth_rqe_info fields;
1290 bool l2tag1p, l2tag2p;
1291
1292 fields.eop = FIELD_GET(IAVF_RXD_LEGACY_EOP_M, qw1);
1293 fields.len = FIELD_GET(IAVF_RXD_LEGACY_LENGTH_M, qw1);
1294
1295 if (!fields.eop)
1296 return fields;
1297
1298 fields.rxe = FIELD_GET(IAVF_RXD_LEGACY_RXE_M, qw1);
1299 fields.ptype = FIELD_GET(IAVF_RXD_LEGACY_PTYPE_M, qw1);
1300 fields.vlan = 0;
1301
1302 if (rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
1303 l2tag1p = FIELD_GET(IAVF_RXD_LEGACY_L2TAG1P_M, qw1);
1304 if (l2tag1p)
1305 fields.vlan = FIELD_GET(IAVF_RXD_LEGACY_L2TAG1_M, qw0);
1306 } else if (rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2) {
1307 l2tag2p = FIELD_GET(IAVF_RXD_LEGACY_L2TAG2P_M, qw2);
1308 if (l2tag2p)
1309 fields.vlan = FIELD_GET(IAVF_RXD_LEGACY_L2TAG2_M, qw2);
1310 }
1311
1312 return fields;
1313 }
1314
1315 /**
1316 * iavf_extract_flex_rx_fields - Extract fields from the Rx descriptor
1317 * @rx_ring: rx descriptor ring
1318 * @rx_desc: the descriptor to process
1319 *
1320 * Decode the Rx descriptor and extract relevant information including the
1321 * size, VLAN tag, Rx packet type, end of packet field and RXE field value.
1322 *
1323 * This function only operates on the VIRTCHNL_RXDID_2_FLEX_SQ_NIC flexible
1324 * descriptor writeback format.
1325 *
1326 * Return: fields extracted from the Rx descriptor.
1327 */
1328 static struct libeth_rqe_info
iavf_extract_flex_rx_fields(const struct iavf_ring * rx_ring,const struct iavf_rx_desc * rx_desc)1329 iavf_extract_flex_rx_fields(const struct iavf_ring *rx_ring,
1330 const struct iavf_rx_desc *rx_desc)
1331 {
1332 struct libeth_rqe_info fields = {};
1333 u64 qw0 = le64_to_cpu(rx_desc->qw0);
1334 u64 qw1 = le64_to_cpu(rx_desc->qw1);
1335 u64 qw2 = le64_to_cpu(rx_desc->qw2);
1336 bool l2tag1p, l2tag2p;
1337
1338 fields.eop = FIELD_GET(IAVF_RXD_FLEX_EOP_M, qw1);
1339 fields.len = FIELD_GET(IAVF_RXD_FLEX_PKT_LEN_M, qw0);
1340
1341 if (!fields.eop)
1342 return fields;
1343
1344 fields.rxe = FIELD_GET(IAVF_RXD_FLEX_RXE_M, qw1);
1345 fields.ptype = FIELD_GET(IAVF_RXD_FLEX_PTYPE_M, qw0);
1346 fields.vlan = 0;
1347
1348 if (rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
1349 l2tag1p = FIELD_GET(IAVF_RXD_FLEX_L2TAG1P_M, qw1);
1350 if (l2tag1p)
1351 fields.vlan = FIELD_GET(IAVF_RXD_FLEX_L2TAG1_M, qw1);
1352 } else if (rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2) {
1353 l2tag2p = FIELD_GET(IAVF_RXD_FLEX_L2TAG2P_M, qw2);
1354 if (l2tag2p)
1355 fields.vlan = FIELD_GET(IAVF_RXD_FLEX_L2TAG2_2_M, qw2);
1356 }
1357
1358 return fields;
1359 }
1360
1361 static struct libeth_rqe_info
iavf_extract_rx_fields(const struct iavf_ring * rx_ring,const struct iavf_rx_desc * rx_desc,bool flex)1362 iavf_extract_rx_fields(const struct iavf_ring *rx_ring,
1363 const struct iavf_rx_desc *rx_desc,
1364 bool flex)
1365 {
1366 if (flex)
1367 return iavf_extract_flex_rx_fields(rx_ring, rx_desc);
1368 else
1369 return iavf_extract_legacy_rx_fields(rx_ring, rx_desc);
1370 }
1371
1372 /**
1373 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1374 * @rx_ring: rx descriptor ring to transact packets on
1375 * @budget: Total limit on number of packets to process
1376 *
1377 * This function provides a "bounce buffer" approach to Rx interrupt
1378 * processing. The advantage to this is that on systems that have
1379 * expensive overhead for IOMMU access this provides a means of avoiding
1380 * it by maintaining the mapping of the page to the system.
1381 *
1382 * Returns amount of work completed
1383 **/
iavf_clean_rx_irq(struct iavf_ring * rx_ring,int budget)1384 static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1385 {
1386 bool flex = rx_ring->rxdid == VIRTCHNL_RXDID_2_FLEX_SQ_NIC;
1387 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1388 struct sk_buff *skb = rx_ring->skb;
1389 u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1390 bool failure = false;
1391
1392 while (likely(total_rx_packets < (unsigned int)budget)) {
1393 struct libeth_rqe_info fields;
1394 struct libeth_fqe *rx_buffer;
1395 struct iavf_rx_desc *rx_desc;
1396 u64 qw1;
1397
1398 /* return some buffers to hardware, one at a time is too slow */
1399 if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1400 failure = failure ||
1401 iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1402 cleaned_count = 0;
1403 }
1404
1405 rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1406
1407 /* This memory barrier is needed to keep us from reading
1408 * any other fields out of the rx_desc until we have
1409 * verified the descriptor has been written back.
1410 */
1411 dma_rmb();
1412
1413 qw1 = le64_to_cpu(rx_desc->qw1);
1414 /* If DD field (descriptor done) is unset then other fields are
1415 * not valid
1416 */
1417 if (!iavf_is_descriptor_done(qw1, flex))
1418 break;
1419
1420 fields = iavf_extract_rx_fields(rx_ring, rx_desc, flex);
1421
1422 iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1423
1424 rx_buffer = &rx_ring->rx_fqes[rx_ring->next_to_clean];
1425 if (!libeth_rx_sync_for_cpu(rx_buffer, fields.len))
1426 goto skip_data;
1427
1428 /* retrieve a buffer from the ring */
1429 if (skb)
1430 iavf_add_rx_frag(skb, rx_buffer, fields.len);
1431 else
1432 skb = iavf_build_skb(rx_buffer, fields.len);
1433
1434 /* exit if we failed to retrieve a buffer */
1435 if (!skb) {
1436 rx_ring->rx_stats.alloc_buff_failed++;
1437 break;
1438 }
1439
1440 skip_data:
1441 cleaned_count++;
1442
1443 if (iavf_is_non_eop(rx_ring, fields) || unlikely(!skb))
1444 continue;
1445
1446 /* RXE field in descriptor is an indication of the MAC errors
1447 * (like CRC, alignment, oversize etc). If it is set then iavf
1448 * should finish.
1449 */
1450 if (unlikely(fields.rxe)) {
1451 dev_kfree_skb_any(skb);
1452 skb = NULL;
1453 continue;
1454 }
1455
1456 if (iavf_cleanup_headers(rx_ring, skb)) {
1457 skb = NULL;
1458 continue;
1459 }
1460
1461 /* probably a little skewed due to removing CRC */
1462 total_rx_bytes += skb->len;
1463
1464 /* populate checksum, VLAN, and protocol */
1465 iavf_process_skb_fields(rx_ring, rx_desc, skb, fields.ptype, flex);
1466
1467 iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1468 iavf_receive_skb(rx_ring, skb, fields.vlan);
1469 skb = NULL;
1470
1471 /* update budget accounting */
1472 total_rx_packets++;
1473 }
1474
1475 rx_ring->skb = skb;
1476
1477 u64_stats_update_begin(&rx_ring->syncp);
1478 rx_ring->stats.packets += total_rx_packets;
1479 rx_ring->stats.bytes += total_rx_bytes;
1480 u64_stats_update_end(&rx_ring->syncp);
1481 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1482 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1483
1484 /* guarantee a trip back through this routine if there was a failure */
1485 return failure ? budget : (int)total_rx_packets;
1486 }
1487
iavf_buildreg_itr(const int type,u16 itr)1488 static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1489 {
1490 u32 val;
1491
1492 /* We don't bother with setting the CLEARPBA bit as the data sheet
1493 * points out doing so is "meaningless since it was already
1494 * auto-cleared". The auto-clearing happens when the interrupt is
1495 * asserted.
1496 *
1497 * Hardware errata 28 for also indicates that writing to a
1498 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1499 * an event in the PBA anyway so we need to rely on the automask
1500 * to hold pending events for us until the interrupt is re-enabled
1501 *
1502 * The itr value is reported in microseconds, and the register
1503 * value is recorded in 2 microsecond units. For this reason we
1504 * only need to shift by the interval shift - 1 instead of the
1505 * full value.
1506 */
1507 itr &= IAVF_ITR_MASK;
1508
1509 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1510 (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1511 (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1512
1513 return val;
1514 }
1515
1516 /* a small macro to shorten up some long lines */
1517 #define INTREG IAVF_VFINT_DYN_CTLN1
1518
1519 /* The act of updating the ITR will cause it to immediately trigger. In order
1520 * to prevent this from throwing off adaptive update statistics we defer the
1521 * update so that it can only happen so often. So after either Tx or Rx are
1522 * updated we make the adaptive scheme wait until either the ITR completely
1523 * expires via the next_update expiration or we have been through at least
1524 * 3 interrupts.
1525 */
1526 #define ITR_COUNTDOWN_START 3
1527
1528 /**
1529 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1530 * @vsi: the VSI we care about
1531 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1532 *
1533 **/
iavf_update_enable_itr(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)1534 static void iavf_update_enable_itr(struct iavf_vsi *vsi,
1535 struct iavf_q_vector *q_vector)
1536 {
1537 struct iavf_hw *hw = &vsi->back->hw;
1538 u32 intval;
1539
1540 /* These will do nothing if dynamic updates are not enabled */
1541 iavf_update_itr(q_vector, &q_vector->tx);
1542 iavf_update_itr(q_vector, &q_vector->rx);
1543
1544 /* This block of logic allows us to get away with only updating
1545 * one ITR value with each interrupt. The idea is to perform a
1546 * pseudo-lazy update with the following criteria.
1547 *
1548 * 1. Rx is given higher priority than Tx if both are in same state
1549 * 2. If we must reduce an ITR that is given highest priority.
1550 * 3. We then give priority to increasing ITR based on amount.
1551 */
1552 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1553 /* Rx ITR needs to be reduced, this is highest priority */
1554 intval = iavf_buildreg_itr(IAVF_RX_ITR,
1555 q_vector->rx.target_itr);
1556 q_vector->rx.current_itr = q_vector->rx.target_itr;
1557 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1558 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1559 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1560 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1561 /* Tx ITR needs to be reduced, this is second priority
1562 * Tx ITR needs to be increased more than Rx, fourth priority
1563 */
1564 intval = iavf_buildreg_itr(IAVF_TX_ITR,
1565 q_vector->tx.target_itr);
1566 q_vector->tx.current_itr = q_vector->tx.target_itr;
1567 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1568 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1569 /* Rx ITR needs to be increased, third priority */
1570 intval = iavf_buildreg_itr(IAVF_RX_ITR,
1571 q_vector->rx.target_itr);
1572 q_vector->rx.current_itr = q_vector->rx.target_itr;
1573 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1574 } else {
1575 /* No ITR update, lowest priority */
1576 intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1577 if (q_vector->itr_countdown)
1578 q_vector->itr_countdown--;
1579 }
1580
1581 if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1582 wr32(hw, INTREG(q_vector->reg_idx), intval);
1583 }
1584
1585 /**
1586 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1587 * @napi: napi struct with our devices info in it
1588 * @budget: amount of work driver is allowed to do this pass, in packets
1589 *
1590 * This function will clean all queues associated with a q_vector.
1591 *
1592 * Returns the amount of work done
1593 **/
iavf_napi_poll(struct napi_struct * napi,int budget)1594 int iavf_napi_poll(struct napi_struct *napi, int budget)
1595 {
1596 struct iavf_q_vector *q_vector =
1597 container_of(napi, struct iavf_q_vector, napi);
1598 struct iavf_vsi *vsi = q_vector->vsi;
1599 struct iavf_ring *ring;
1600 bool clean_complete = true;
1601 bool arm_wb = false;
1602 int budget_per_ring;
1603 int work_done = 0;
1604
1605 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1606 napi_complete(napi);
1607 return 0;
1608 }
1609
1610 /* Since the actual Tx work is minimal, we can give the Tx a larger
1611 * budget and be more aggressive about cleaning up the Tx descriptors.
1612 */
1613 iavf_for_each_ring(ring, q_vector->tx) {
1614 if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1615 clean_complete = false;
1616 continue;
1617 }
1618 arm_wb |= !!(ring->flags & IAVF_TXR_FLAGS_ARM_WB);
1619 ring->flags &= ~IAVF_TXR_FLAGS_ARM_WB;
1620 }
1621
1622 /* Handle case where we are called by netpoll with a budget of 0 */
1623 if (budget <= 0)
1624 goto tx_only;
1625
1626 /* We attempt to distribute budget to each Rx queue fairly, but don't
1627 * allow the budget to go below 1 because that would exit polling early.
1628 */
1629 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1630
1631 iavf_for_each_ring(ring, q_vector->rx) {
1632 int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1633
1634 work_done += cleaned;
1635 /* if we clean as many as budgeted, we must not be done */
1636 if (cleaned >= budget_per_ring)
1637 clean_complete = false;
1638 }
1639
1640 /* If work not completed, return budget and polling will return */
1641 if (!clean_complete) {
1642 int cpu_id = smp_processor_id();
1643
1644 /* It is possible that the interrupt affinity has changed but,
1645 * if the cpu is pegged at 100%, polling will never exit while
1646 * traffic continues and the interrupt will be stuck on this
1647 * cpu. We check to make sure affinity is correct before we
1648 * continue to poll, otherwise we must stop polling so the
1649 * interrupt can move to the correct cpu.
1650 */
1651 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1652 /* Tell napi that we are done polling */
1653 napi_complete_done(napi, work_done);
1654
1655 /* Force an interrupt */
1656 iavf_force_wb(vsi, q_vector);
1657
1658 /* Return budget-1 so that polling stops */
1659 return budget - 1;
1660 }
1661 tx_only:
1662 if (arm_wb) {
1663 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1664 iavf_enable_wb_on_itr(vsi, q_vector);
1665 }
1666 return budget;
1667 }
1668
1669 if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1670 q_vector->arm_wb_state = false;
1671
1672 /* Exit the polling mode, but don't re-enable interrupts if stack might
1673 * poll us due to busy-polling
1674 */
1675 if (likely(napi_complete_done(napi, work_done)))
1676 iavf_update_enable_itr(vsi, q_vector);
1677
1678 return min_t(int, work_done, budget - 1);
1679 }
1680
1681 /**
1682 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1683 * @skb: send buffer
1684 * @tx_ring: ring to send buffer on
1685 * @flags: the tx flags to be set
1686 *
1687 * Checks the skb and set up correspondingly several generic transmit flags
1688 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1689 *
1690 * Returns error code indicate the frame should be dropped upon error and the
1691 * otherwise returns 0 to indicate the flags has been set properly.
1692 **/
iavf_tx_prepare_vlan_flags(struct sk_buff * skb,struct iavf_ring * tx_ring,u32 * flags)1693 static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1694 struct iavf_ring *tx_ring, u32 *flags)
1695 {
1696 u32 tx_flags = 0;
1697
1698
1699 /* stack will only request hardware VLAN insertion offload for protocols
1700 * that the driver supports and has enabled
1701 */
1702 if (!skb_vlan_tag_present(skb))
1703 return;
1704
1705 tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1706 if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) {
1707 tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1708 } else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
1709 tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1710 } else {
1711 dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n");
1712 return;
1713 }
1714
1715 *flags = tx_flags;
1716 }
1717
1718 /**
1719 * iavf_tso - set up the tso context descriptor
1720 * @first: pointer to first Tx buffer for xmit
1721 * @hdr_len: ptr to the size of the packet header
1722 * @cd_type_cmd_tso_mss: Quad Word 1
1723 *
1724 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1725 **/
iavf_tso(struct iavf_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)1726 static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1727 u64 *cd_type_cmd_tso_mss)
1728 {
1729 struct sk_buff *skb = first->skb;
1730 u64 cd_cmd, cd_tso_len, cd_mss;
1731 union {
1732 struct iphdr *v4;
1733 struct ipv6hdr *v6;
1734 unsigned char *hdr;
1735 } ip;
1736 union {
1737 struct tcphdr *tcp;
1738 struct udphdr *udp;
1739 unsigned char *hdr;
1740 } l4;
1741 u32 paylen, l4_offset;
1742 u16 gso_segs, gso_size;
1743 int err;
1744
1745 if (skb->ip_summed != CHECKSUM_PARTIAL)
1746 return 0;
1747
1748 if (!skb_is_gso(skb))
1749 return 0;
1750
1751 err = skb_cow_head(skb, 0);
1752 if (err < 0)
1753 return err;
1754
1755 ip.hdr = skb_network_header(skb);
1756 l4.hdr = skb_transport_header(skb);
1757
1758 /* initialize outer IP header fields */
1759 if (ip.v4->version == 4) {
1760 ip.v4->tot_len = 0;
1761 ip.v4->check = 0;
1762 } else {
1763 ip.v6->payload_len = 0;
1764 }
1765
1766 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1767 SKB_GSO_GRE_CSUM |
1768 SKB_GSO_IPXIP4 |
1769 SKB_GSO_IPXIP6 |
1770 SKB_GSO_UDP_TUNNEL |
1771 SKB_GSO_UDP_TUNNEL_CSUM)) {
1772 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1773 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1774 l4.udp->len = 0;
1775
1776 /* determine offset of outer transport header */
1777 l4_offset = l4.hdr - skb->data;
1778
1779 /* remove payload length from outer checksum */
1780 paylen = skb->len - l4_offset;
1781 csum_replace_by_diff(&l4.udp->check,
1782 (__force __wsum)htonl(paylen));
1783 }
1784
1785 /* reset pointers to inner headers */
1786 ip.hdr = skb_inner_network_header(skb);
1787 l4.hdr = skb_inner_transport_header(skb);
1788
1789 /* initialize inner IP header fields */
1790 if (ip.v4->version == 4) {
1791 ip.v4->tot_len = 0;
1792 ip.v4->check = 0;
1793 } else {
1794 ip.v6->payload_len = 0;
1795 }
1796 }
1797
1798 /* determine offset of inner transport header */
1799 l4_offset = l4.hdr - skb->data;
1800 /* remove payload length from inner checksum */
1801 paylen = skb->len - l4_offset;
1802
1803 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1804 csum_replace_by_diff(&l4.udp->check,
1805 (__force __wsum)htonl(paylen));
1806 /* compute length of UDP segmentation header */
1807 *hdr_len = (u8)sizeof(l4.udp) + l4_offset;
1808 } else {
1809 csum_replace_by_diff(&l4.tcp->check,
1810 (__force __wsum)htonl(paylen));
1811 /* compute length of TCP segmentation header */
1812 *hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset);
1813 }
1814
1815 /* pull values out of skb_shinfo */
1816 gso_size = skb_shinfo(skb)->gso_size;
1817 gso_segs = skb_shinfo(skb)->gso_segs;
1818
1819 /* update GSO size and bytecount with header size */
1820 first->gso_segs = gso_segs;
1821 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1822
1823 /* find the field values */
1824 cd_cmd = IAVF_TX_CTX_DESC_TSO;
1825 cd_tso_len = skb->len - *hdr_len;
1826 cd_mss = gso_size;
1827 *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1828 (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1829 (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1830 return 1;
1831 }
1832
1833 /**
1834 * iavf_tx_enable_csum - Enable Tx checksum offloads
1835 * @skb: send buffer
1836 * @tx_flags: pointer to Tx flags currently set
1837 * @td_cmd: Tx descriptor command bits to set
1838 * @td_offset: Tx descriptor header offsets to set
1839 * @tx_ring: Tx descriptor ring
1840 * @cd_tunneling: ptr to context desc bits
1841 **/
iavf_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct iavf_ring * tx_ring,u32 * cd_tunneling)1842 static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1843 u32 *td_cmd, u32 *td_offset,
1844 struct iavf_ring *tx_ring,
1845 u32 *cd_tunneling)
1846 {
1847 union {
1848 struct iphdr *v4;
1849 struct ipv6hdr *v6;
1850 unsigned char *hdr;
1851 } ip;
1852 union {
1853 struct tcphdr *tcp;
1854 struct udphdr *udp;
1855 unsigned char *hdr;
1856 } l4;
1857 unsigned char *exthdr;
1858 u32 offset, cmd = 0;
1859 __be16 frag_off;
1860 u8 l4_proto = 0;
1861
1862 if (skb->ip_summed != CHECKSUM_PARTIAL)
1863 return 0;
1864
1865 ip.hdr = skb_network_header(skb);
1866 l4.hdr = skb_transport_header(skb);
1867
1868 /* compute outer L2 header size */
1869 offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1870
1871 if (skb->encapsulation) {
1872 u32 tunnel = 0;
1873 /* define outer network header type */
1874 if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1875 tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1876 IAVF_TX_CTX_EXT_IP_IPV4 :
1877 IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1878
1879 l4_proto = ip.v4->protocol;
1880 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
1881 tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
1882
1883 exthdr = ip.hdr + sizeof(*ip.v6);
1884 l4_proto = ip.v6->nexthdr;
1885 if (l4.hdr != exthdr)
1886 ipv6_skip_exthdr(skb, exthdr - skb->data,
1887 &l4_proto, &frag_off);
1888 }
1889
1890 /* define outer transport */
1891 switch (l4_proto) {
1892 case IPPROTO_UDP:
1893 tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
1894 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
1895 break;
1896 case IPPROTO_GRE:
1897 tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
1898 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
1899 break;
1900 case IPPROTO_IPIP:
1901 case IPPROTO_IPV6:
1902 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
1903 l4.hdr = skb_inner_network_header(skb);
1904 break;
1905 default:
1906 if (*tx_flags & IAVF_TX_FLAGS_TSO)
1907 return -1;
1908
1909 skb_checksum_help(skb);
1910 return 0;
1911 }
1912
1913 /* compute outer L3 header size */
1914 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1915 IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1916
1917 /* switch IP header pointer from outer to inner header */
1918 ip.hdr = skb_inner_network_header(skb);
1919
1920 /* compute tunnel header size */
1921 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1922 IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
1923
1924 /* indicate if we need to offload outer UDP header */
1925 if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
1926 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1927 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1928 tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
1929
1930 /* record tunnel offload values */
1931 *cd_tunneling |= tunnel;
1932
1933 /* switch L4 header pointer from outer to inner */
1934 l4.hdr = skb_inner_transport_header(skb);
1935 l4_proto = 0;
1936
1937 /* reset type as we transition from outer to inner headers */
1938 *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
1939 if (ip.v4->version == 4)
1940 *tx_flags |= IAVF_TX_FLAGS_IPV4;
1941 if (ip.v6->version == 6)
1942 *tx_flags |= IAVF_TX_FLAGS_IPV6;
1943 }
1944
1945 /* Enable IP checksum offloads */
1946 if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1947 l4_proto = ip.v4->protocol;
1948 /* the stack computes the IP header already, the only time we
1949 * need the hardware to recompute it is in the case of TSO.
1950 */
1951 cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1952 IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
1953 IAVF_TX_DESC_CMD_IIPT_IPV4;
1954 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
1955 cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
1956
1957 exthdr = ip.hdr + sizeof(*ip.v6);
1958 l4_proto = ip.v6->nexthdr;
1959 if (l4.hdr != exthdr)
1960 ipv6_skip_exthdr(skb, exthdr - skb->data,
1961 &l4_proto, &frag_off);
1962 }
1963
1964 /* compute inner L3 header size */
1965 offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1966
1967 /* Enable L4 checksum offloads */
1968 switch (l4_proto) {
1969 case IPPROTO_TCP:
1970 /* enable checksum offloads */
1971 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1972 offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1973 break;
1974 case IPPROTO_SCTP:
1975 /* enable SCTP checksum offload */
1976 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
1977 offset |= (sizeof(struct sctphdr) >> 2) <<
1978 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1979 break;
1980 case IPPROTO_UDP:
1981 /* enable UDP checksum offload */
1982 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
1983 offset |= (sizeof(struct udphdr) >> 2) <<
1984 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1985 break;
1986 default:
1987 if (*tx_flags & IAVF_TX_FLAGS_TSO)
1988 return -1;
1989 skb_checksum_help(skb);
1990 return 0;
1991 }
1992
1993 *td_cmd |= cmd;
1994 *td_offset |= offset;
1995
1996 return 1;
1997 }
1998
1999 /**
2000 * iavf_create_tx_ctx - Build the Tx context descriptor
2001 * @tx_ring: ring to create the descriptor on
2002 * @cd_type_cmd_tso_mss: Quad Word 1
2003 * @cd_tunneling: Quad Word 0 - bits 0-31
2004 * @cd_l2tag2: Quad Word 0 - bits 32-63
2005 **/
iavf_create_tx_ctx(struct iavf_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)2006 static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2007 const u64 cd_type_cmd_tso_mss,
2008 const u32 cd_tunneling, const u32 cd_l2tag2)
2009 {
2010 struct iavf_tx_context_desc *context_desc;
2011 int i = tx_ring->next_to_use;
2012
2013 if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2014 !cd_tunneling && !cd_l2tag2)
2015 return;
2016
2017 /* grab the next descriptor */
2018 context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2019
2020 i++;
2021 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2022
2023 /* cpu_to_le32 and assign to struct fields */
2024 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2025 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2026 context_desc->rsvd = cpu_to_le16(0);
2027 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2028 }
2029
2030 /**
2031 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2032 * @skb: send buffer
2033 *
2034 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2035 * and so we need to figure out the cases where we need to linearize the skb.
2036 *
2037 * For TSO we need to count the TSO header and segment payload separately.
2038 * As such we need to check cases where we have 7 fragments or more as we
2039 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2040 * the segment payload in the first descriptor, and another 7 for the
2041 * fragments.
2042 **/
__iavf_chk_linearize(struct sk_buff * skb)2043 bool __iavf_chk_linearize(struct sk_buff *skb)
2044 {
2045 const skb_frag_t *frag, *stale;
2046 int nr_frags, sum;
2047
2048 /* no need to check if number of frags is less than 7 */
2049 nr_frags = skb_shinfo(skb)->nr_frags;
2050 if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2051 return false;
2052
2053 /* We need to walk through the list and validate that each group
2054 * of 6 fragments totals at least gso_size.
2055 */
2056 nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2057 frag = &skb_shinfo(skb)->frags[0];
2058
2059 /* Initialize size to the negative value of gso_size minus 1. We
2060 * use this as the worst case scenerio in which the frag ahead
2061 * of us only provides one byte which is why we are limited to 6
2062 * descriptors for a single transmit as the header and previous
2063 * fragment are already consuming 2 descriptors.
2064 */
2065 sum = 1 - skb_shinfo(skb)->gso_size;
2066
2067 /* Add size of frags 0 through 4 to create our initial sum */
2068 sum += skb_frag_size(frag++);
2069 sum += skb_frag_size(frag++);
2070 sum += skb_frag_size(frag++);
2071 sum += skb_frag_size(frag++);
2072 sum += skb_frag_size(frag++);
2073
2074 /* Walk through fragments adding latest fragment, testing it, and
2075 * then removing stale fragments from the sum.
2076 */
2077 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2078 int stale_size = skb_frag_size(stale);
2079
2080 sum += skb_frag_size(frag++);
2081
2082 /* The stale fragment may present us with a smaller
2083 * descriptor than the actual fragment size. To account
2084 * for that we need to remove all the data on the front and
2085 * figure out what the remainder would be in the last
2086 * descriptor associated with the fragment.
2087 */
2088 if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2089 int align_pad = -(skb_frag_off(stale)) &
2090 (IAVF_MAX_READ_REQ_SIZE - 1);
2091
2092 sum -= align_pad;
2093 stale_size -= align_pad;
2094
2095 do {
2096 sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2097 stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2098 } while (stale_size > IAVF_MAX_DATA_PER_TXD);
2099 }
2100
2101 /* if sum is negative we failed to make sufficient progress */
2102 if (sum < 0)
2103 return true;
2104
2105 if (!nr_frags--)
2106 break;
2107
2108 sum -= stale_size;
2109 }
2110
2111 return false;
2112 }
2113
2114 /**
2115 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2116 * @tx_ring: the ring to be checked
2117 * @size: the size buffer we want to assure is available
2118 *
2119 * Returns -EBUSY if a stop is needed, else 0
2120 **/
__iavf_maybe_stop_tx(struct iavf_ring * tx_ring,int size)2121 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2122 {
2123 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2124 /* Memory barrier before checking head and tail */
2125 smp_mb();
2126
2127 /* Check again in a case another CPU has just made room available. */
2128 if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2129 return -EBUSY;
2130
2131 /* A reprieve! - use start_queue because it doesn't call schedule */
2132 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2133 ++tx_ring->tx_stats.restart_queue;
2134 return 0;
2135 }
2136
2137 /**
2138 * iavf_tx_map - Build the Tx descriptor
2139 * @tx_ring: ring to send buffer on
2140 * @skb: send buffer
2141 * @first: first buffer info buffer to use
2142 * @tx_flags: collected send information
2143 * @hdr_len: size of the packet header
2144 * @td_cmd: the command field in the descriptor
2145 * @td_offset: offset for checksum or crc
2146 **/
iavf_tx_map(struct iavf_ring * tx_ring,struct sk_buff * skb,struct iavf_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)2147 static void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2148 struct iavf_tx_buffer *first, u32 tx_flags,
2149 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2150 {
2151 unsigned int data_len = skb->data_len;
2152 unsigned int size = skb_headlen(skb);
2153 skb_frag_t *frag;
2154 struct iavf_tx_buffer *tx_bi;
2155 struct iavf_tx_desc *tx_desc;
2156 u16 i = tx_ring->next_to_use;
2157 u32 td_tag = 0;
2158 dma_addr_t dma;
2159
2160 if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2161 td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2162 td_tag = FIELD_GET(IAVF_TX_FLAGS_VLAN_MASK, tx_flags);
2163 }
2164
2165 first->tx_flags = tx_flags;
2166
2167 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2168
2169 tx_desc = IAVF_TX_DESC(tx_ring, i);
2170 tx_bi = first;
2171
2172 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2173 unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2174
2175 if (dma_mapping_error(tx_ring->dev, dma))
2176 goto dma_error;
2177
2178 /* record length, and DMA address */
2179 dma_unmap_len_set(tx_bi, len, size);
2180 dma_unmap_addr_set(tx_bi, dma, dma);
2181
2182 /* align size to end of page */
2183 max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2184 tx_desc->buffer_addr = cpu_to_le64(dma);
2185
2186 while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2187 tx_desc->cmd_type_offset_bsz =
2188 build_ctob(td_cmd, td_offset,
2189 max_data, td_tag);
2190
2191 tx_desc++;
2192 i++;
2193
2194 if (i == tx_ring->count) {
2195 tx_desc = IAVF_TX_DESC(tx_ring, 0);
2196 i = 0;
2197 }
2198
2199 dma += max_data;
2200 size -= max_data;
2201
2202 max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2203 tx_desc->buffer_addr = cpu_to_le64(dma);
2204 }
2205
2206 if (likely(!data_len))
2207 break;
2208
2209 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2210 size, td_tag);
2211
2212 tx_desc++;
2213 i++;
2214
2215 if (i == tx_ring->count) {
2216 tx_desc = IAVF_TX_DESC(tx_ring, 0);
2217 i = 0;
2218 }
2219
2220 size = skb_frag_size(frag);
2221 data_len -= size;
2222
2223 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2224 DMA_TO_DEVICE);
2225
2226 tx_bi = &tx_ring->tx_bi[i];
2227 }
2228
2229 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2230
2231 i++;
2232 if (i == tx_ring->count)
2233 i = 0;
2234
2235 tx_ring->next_to_use = i;
2236
2237 iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2238
2239 /* write last descriptor with RS and EOP bits */
2240 td_cmd |= IAVF_TXD_CMD;
2241 tx_desc->cmd_type_offset_bsz =
2242 build_ctob(td_cmd, td_offset, size, td_tag);
2243
2244 skb_tx_timestamp(skb);
2245
2246 /* Force memory writes to complete before letting h/w know there
2247 * are new descriptors to fetch.
2248 *
2249 * We also use this memory barrier to make certain all of the
2250 * status bits have been updated before next_to_watch is written.
2251 */
2252 wmb();
2253
2254 /* set next_to_watch value indicating a packet is present */
2255 first->next_to_watch = tx_desc;
2256
2257 /* notify HW of packet */
2258 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2259 writel(i, tx_ring->tail);
2260 }
2261
2262 return;
2263
2264 dma_error:
2265 dev_info(tx_ring->dev, "TX DMA map failed\n");
2266
2267 /* clear dma mappings for failed tx_bi map */
2268 for (;;) {
2269 tx_bi = &tx_ring->tx_bi[i];
2270 iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2271 if (tx_bi == first)
2272 break;
2273 if (i == 0)
2274 i = tx_ring->count;
2275 i--;
2276 }
2277
2278 tx_ring->next_to_use = i;
2279 }
2280
2281 /**
2282 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2283 * @skb: send buffer
2284 * @tx_ring: ring to send buffer on
2285 *
2286 * Returns NETDEV_TX_OK if sent, else an error code
2287 **/
iavf_xmit_frame_ring(struct sk_buff * skb,struct iavf_ring * tx_ring)2288 static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2289 struct iavf_ring *tx_ring)
2290 {
2291 u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2292 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2293 struct iavf_tx_buffer *first;
2294 u32 td_offset = 0;
2295 u32 tx_flags = 0;
2296 __be16 protocol;
2297 u32 td_cmd = 0;
2298 u8 hdr_len = 0;
2299 int tso, count;
2300
2301 /* prefetch the data, we'll need it later */
2302 prefetch(skb->data);
2303
2304 iavf_trace(xmit_frame_ring, skb, tx_ring);
2305
2306 count = iavf_xmit_descriptor_count(skb);
2307 if (iavf_chk_linearize(skb, count)) {
2308 if (__skb_linearize(skb)) {
2309 dev_kfree_skb_any(skb);
2310 return NETDEV_TX_OK;
2311 }
2312 count = iavf_txd_use_count(skb->len);
2313 tx_ring->tx_stats.tx_linearize++;
2314 }
2315
2316 /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2317 * + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2318 * + 4 desc gap to avoid the cache line where head is,
2319 * + 1 desc for context descriptor,
2320 * otherwise try next time
2321 */
2322 if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2323 tx_ring->tx_stats.tx_busy++;
2324 return NETDEV_TX_BUSY;
2325 }
2326
2327 /* record the location of the first descriptor for this packet */
2328 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2329 first->skb = skb;
2330 first->bytecount = skb->len;
2331 first->gso_segs = 1;
2332
2333 /* prepare the xmit flags */
2334 iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags);
2335 if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2336 cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 <<
2337 IAVF_TXD_CTX_QW1_CMD_SHIFT;
2338 cd_l2tag2 = FIELD_GET(IAVF_TX_FLAGS_VLAN_MASK, tx_flags);
2339 }
2340
2341 /* obtain protocol of skb */
2342 protocol = vlan_get_protocol(skb);
2343
2344 /* setup IPv4/IPv6 offloads */
2345 if (protocol == htons(ETH_P_IP))
2346 tx_flags |= IAVF_TX_FLAGS_IPV4;
2347 else if (protocol == htons(ETH_P_IPV6))
2348 tx_flags |= IAVF_TX_FLAGS_IPV6;
2349
2350 tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2351
2352 if (tso < 0)
2353 goto out_drop;
2354 else if (tso)
2355 tx_flags |= IAVF_TX_FLAGS_TSO;
2356
2357 /* Always offload the checksum, since it's in the data descriptor */
2358 tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2359 tx_ring, &cd_tunneling);
2360 if (tso < 0)
2361 goto out_drop;
2362
2363 /* always enable CRC insertion offload */
2364 td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2365
2366 iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2367 cd_tunneling, cd_l2tag2);
2368
2369 iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2370 td_cmd, td_offset);
2371
2372 return NETDEV_TX_OK;
2373
2374 out_drop:
2375 iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2376 dev_kfree_skb_any(first->skb);
2377 first->skb = NULL;
2378 return NETDEV_TX_OK;
2379 }
2380
2381 /**
2382 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2383 * @skb: send buffer
2384 * @netdev: network interface device structure
2385 *
2386 * Returns NETDEV_TX_OK if sent, else an error code
2387 **/
iavf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2388 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2389 {
2390 struct iavf_adapter *adapter = netdev_priv(netdev);
2391 struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2392
2393 /* hardware can't handle really short frames, hardware padding works
2394 * beyond this point
2395 */
2396 if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2397 if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2398 return NETDEV_TX_OK;
2399 skb->len = IAVF_MIN_TX_LEN;
2400 skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2401 }
2402
2403 return iavf_xmit_frame_ring(skb, tx_ring);
2404 }
2405