1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <linux/net/intel/libie/pctype.h>
6 #include <linux/net/intel/libie/rx.h>
7 #include <linux/prefetch.h>
8 #include <linux/sctp.h>
9 #include <net/mpls.h>
10 #include <net/xdp.h>
11 #include "i40e_txrx_common.h"
12 #include "i40e_trace.h"
13 #include "i40e_xsk.h"
14
15 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
16 /**
17 * i40e_fdir - Generate a Flow Director descriptor based on fdata
18 * @tx_ring: Tx ring to send buffer on
19 * @fdata: Flow director filter data
20 * @add: Indicate if we are adding a rule or deleting one
21 *
22 **/
i40e_fdir(struct i40e_ring * tx_ring,struct i40e_fdir_filter * fdata,bool add)23 static void i40e_fdir(struct i40e_ring *tx_ring,
24 struct i40e_fdir_filter *fdata, bool add)
25 {
26 struct i40e_filter_program_desc *fdir_desc;
27 struct i40e_pf *pf = tx_ring->vsi->back;
28 u32 flex_ptype, dtype_cmd, vsi_id;
29 u16 i;
30
31 /* grab the next descriptor */
32 i = tx_ring->next_to_use;
33 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
34
35 i++;
36 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
37
38 flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
39
40 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
41 fdata->flex_off);
42
43 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
44
45 /* Use LAN VSI Id if not programmed by user */
46 vsi_id = fdata->dest_vsi ? : i40e_pf_get_main_vsi(pf)->id;
47 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, vsi_id);
48
49 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
50
51 dtype_cmd |= add ?
52 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
53 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
54 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
55 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
56
57 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
58
59 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
60 fdata->fd_status);
61
62 if (fdata->cnt_index) {
63 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
64 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
65 fdata->cnt_index);
66 }
67
68 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
69 fdir_desc->rsvd = cpu_to_le32(0);
70 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
71 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
72 }
73
74 #define I40E_FD_CLEAN_DELAY 10
75 /**
76 * i40e_program_fdir_filter - Program a Flow Director filter
77 * @fdir_data: Packet data that will be filter parameters
78 * @raw_packet: the pre-allocated packet buffer for FDir
79 * @pf: The PF pointer
80 * @add: True for add/update, False for remove
81 **/
i40e_program_fdir_filter(struct i40e_fdir_filter * fdir_data,u8 * raw_packet,struct i40e_pf * pf,bool add)82 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
83 u8 *raw_packet, struct i40e_pf *pf,
84 bool add)
85 {
86 struct i40e_tx_buffer *tx_buf, *first;
87 struct i40e_tx_desc *tx_desc;
88 struct i40e_ring *tx_ring;
89 struct i40e_vsi *vsi;
90 struct device *dev;
91 dma_addr_t dma;
92 u32 td_cmd = 0;
93 u16 i;
94
95 /* find existing FDIR VSI */
96 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
97 if (!vsi)
98 return -ENOENT;
99
100 tx_ring = vsi->tx_rings[0];
101 dev = tx_ring->dev;
102
103 /* we need two descriptors to add/del a filter and we can wait */
104 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
105 if (!i)
106 return -EAGAIN;
107 msleep_interruptible(1);
108 }
109
110 dma = dma_map_single(dev, raw_packet,
111 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
112 if (dma_mapping_error(dev, dma))
113 goto dma_fail;
114
115 /* grab the next descriptor */
116 i = tx_ring->next_to_use;
117 first = &tx_ring->tx_bi[i];
118 i40e_fdir(tx_ring, fdir_data, add);
119
120 /* Now program a dummy descriptor */
121 i = tx_ring->next_to_use;
122 tx_desc = I40E_TX_DESC(tx_ring, i);
123 tx_buf = &tx_ring->tx_bi[i];
124
125 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
126
127 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
128
129 /* record length, and DMA address */
130 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
131 dma_unmap_addr_set(tx_buf, dma, dma);
132
133 tx_desc->buffer_addr = cpu_to_le64(dma);
134 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
135
136 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
137 tx_buf->raw_buf = (void *)raw_packet;
138
139 tx_desc->cmd_type_offset_bsz =
140 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
141
142 /* Force memory writes to complete before letting h/w
143 * know there are new descriptors to fetch.
144 */
145 wmb();
146
147 /* Mark the data descriptor to be watched */
148 first->next_to_watch = tx_desc;
149
150 writel(tx_ring->next_to_use, tx_ring->tail);
151 return 0;
152
153 dma_fail:
154 return -1;
155 }
156
157 /**
158 * i40e_create_dummy_packet - Constructs dummy packet for HW
159 * @dummy_packet: preallocated space for dummy packet
160 * @ipv4: is layer 3 packet of version 4 or 6
161 * @l4proto: next level protocol used in data portion of l3
162 * @data: filter data
163 *
164 * Returns address of layer 4 protocol dummy packet.
165 **/
i40e_create_dummy_packet(u8 * dummy_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)166 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
167 struct i40e_fdir_filter *data)
168 {
169 bool is_vlan = !!data->vlan_tag;
170 struct vlan_hdr vlan = {};
171 struct ipv6hdr ipv6 = {};
172 struct ethhdr eth = {};
173 struct iphdr ip = {};
174 u8 *tmp;
175
176 if (ipv4) {
177 eth.h_proto = cpu_to_be16(ETH_P_IP);
178 ip.protocol = l4proto;
179 ip.version = 0x4;
180 ip.ihl = 0x5;
181
182 ip.daddr = data->dst_ip;
183 ip.saddr = data->src_ip;
184 } else {
185 eth.h_proto = cpu_to_be16(ETH_P_IPV6);
186 ipv6.nexthdr = l4proto;
187 ipv6.version = 0x6;
188
189 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
190 sizeof(__be32) * 4);
191 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
192 sizeof(__be32) * 4);
193 }
194
195 if (is_vlan) {
196 vlan.h_vlan_TCI = data->vlan_tag;
197 vlan.h_vlan_encapsulated_proto = eth.h_proto;
198 eth.h_proto = data->vlan_etype;
199 }
200
201 tmp = dummy_packet;
202 memcpy(tmp, ð, sizeof(eth));
203 tmp += sizeof(eth);
204
205 if (is_vlan) {
206 memcpy(tmp, &vlan, sizeof(vlan));
207 tmp += sizeof(vlan);
208 }
209
210 if (ipv4) {
211 memcpy(tmp, &ip, sizeof(ip));
212 tmp += sizeof(ip);
213 } else {
214 memcpy(tmp, &ipv6, sizeof(ipv6));
215 tmp += sizeof(ipv6);
216 }
217
218 return tmp;
219 }
220
221 /**
222 * i40e_create_dummy_udp_packet - helper function to create UDP packet
223 * @raw_packet: preallocated space for dummy packet
224 * @ipv4: is layer 3 packet of version 4 or 6
225 * @l4proto: next level protocol used in data portion of l3
226 * @data: filter data
227 *
228 * Helper function to populate udp fields.
229 **/
i40e_create_dummy_udp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)230 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
231 struct i40e_fdir_filter *data)
232 {
233 struct udphdr *udp;
234 u8 *tmp;
235
236 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
237 udp = (struct udphdr *)(tmp);
238 udp->dest = data->dst_port;
239 udp->source = data->src_port;
240 }
241
242 /**
243 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
244 * @raw_packet: preallocated space for dummy packet
245 * @ipv4: is layer 3 packet of version 4 or 6
246 * @l4proto: next level protocol used in data portion of l3
247 * @data: filter data
248 *
249 * Helper function to populate tcp fields.
250 **/
i40e_create_dummy_tcp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)251 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
252 struct i40e_fdir_filter *data)
253 {
254 struct tcphdr *tcp;
255 u8 *tmp;
256 /* Dummy tcp packet */
257 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
258 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
259
260 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
261
262 tcp = (struct tcphdr *)tmp;
263 memcpy(tcp, tcp_packet, sizeof(tcp_packet));
264 tcp->dest = data->dst_port;
265 tcp->source = data->src_port;
266 }
267
268 /**
269 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
270 * @raw_packet: preallocated space for dummy packet
271 * @ipv4: is layer 3 packet of version 4 or 6
272 * @l4proto: next level protocol used in data portion of l3
273 * @data: filter data
274 *
275 * Helper function to populate sctp fields.
276 **/
i40e_create_dummy_sctp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)277 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
278 u8 l4proto,
279 struct i40e_fdir_filter *data)
280 {
281 struct sctphdr *sctp;
282 u8 *tmp;
283
284 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
285
286 sctp = (struct sctphdr *)tmp;
287 sctp->dest = data->dst_port;
288 sctp->source = data->src_port;
289 }
290
291 /**
292 * i40e_prepare_fdir_filter - Prepare and program fdir filter
293 * @pf: physical function to attach filter to
294 * @fd_data: filter data
295 * @add: add or delete filter
296 * @packet_addr: address of dummy packet, used in filtering
297 * @payload_offset: offset from dummy packet address to user defined data
298 * @pctype: Packet type for which filter is used
299 *
300 * Helper function to offset data of dummy packet, program it and
301 * handle errors.
302 **/
i40e_prepare_fdir_filter(struct i40e_pf * pf,struct i40e_fdir_filter * fd_data,bool add,char * packet_addr,int payload_offset,u8 pctype)303 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
304 struct i40e_fdir_filter *fd_data,
305 bool add, char *packet_addr,
306 int payload_offset, u8 pctype)
307 {
308 int ret;
309
310 if (fd_data->flex_filter) {
311 u8 *payload;
312 __be16 pattern = fd_data->flex_word;
313 u16 off = fd_data->flex_offset;
314
315 payload = packet_addr + payload_offset;
316
317 /* If user provided vlan, offset payload by vlan header length */
318 if (!!fd_data->vlan_tag)
319 payload += VLAN_HLEN;
320
321 *((__force __be16 *)(payload + off)) = pattern;
322 }
323
324 fd_data->pctype = pctype;
325 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
326 if (ret) {
327 dev_info(&pf->pdev->dev,
328 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
329 fd_data->pctype, fd_data->fd_id, ret);
330 /* Free the packet buffer since it wasn't added to the ring */
331 return -EOPNOTSUPP;
332 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
333 if (add)
334 dev_info(&pf->pdev->dev,
335 "Filter OK for PCTYPE %d loc = %d\n",
336 fd_data->pctype, fd_data->fd_id);
337 else
338 dev_info(&pf->pdev->dev,
339 "Filter deleted for PCTYPE %d loc = %d\n",
340 fd_data->pctype, fd_data->fd_id);
341 }
342
343 return ret;
344 }
345
346 /**
347 * i40e_change_filter_num - Prepare and program fdir filter
348 * @ipv4: is layer 3 packet of version 4 or 6
349 * @add: add or delete filter
350 * @ipv4_filter_num: field to update
351 * @ipv6_filter_num: field to update
352 *
353 * Update filter number field for pf.
354 **/
i40e_change_filter_num(bool ipv4,bool add,u16 * ipv4_filter_num,u16 * ipv6_filter_num)355 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
356 u16 *ipv6_filter_num)
357 {
358 if (add) {
359 if (ipv4)
360 (*ipv4_filter_num)++;
361 else
362 (*ipv6_filter_num)++;
363 } else {
364 if (ipv4)
365 (*ipv4_filter_num)--;
366 else
367 (*ipv6_filter_num)--;
368 }
369 }
370
371 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
372 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62
373 /**
374 * i40e_add_del_fdir_udp - Add/Remove UDP filters
375 * @vsi: pointer to the targeted VSI
376 * @fd_data: the flow director data required for the FDir descriptor
377 * @add: true adds a filter, false removes it
378 * @ipv4: true is v4, false is v6
379 *
380 * Returns 0 if the filters were successfully added or removed
381 **/
i40e_add_del_fdir_udp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)382 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
383 struct i40e_fdir_filter *fd_data,
384 bool add,
385 bool ipv4)
386 {
387 struct i40e_pf *pf = vsi->back;
388 u8 *raw_packet;
389 int ret;
390
391 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
392 if (!raw_packet)
393 return -ENOMEM;
394
395 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
396
397 if (ipv4)
398 ret = i40e_prepare_fdir_filter
399 (pf, fd_data, add, raw_packet,
400 I40E_UDPIP_DUMMY_PACKET_LEN,
401 LIBIE_FILTER_PCTYPE_NONF_IPV4_UDP);
402 else
403 ret = i40e_prepare_fdir_filter
404 (pf, fd_data, add, raw_packet,
405 I40E_UDPIP6_DUMMY_PACKET_LEN,
406 LIBIE_FILTER_PCTYPE_NONF_IPV6_UDP);
407
408 if (ret) {
409 kfree(raw_packet);
410 return ret;
411 }
412
413 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
414 &pf->fd_udp6_filter_cnt);
415
416 return 0;
417 }
418
419 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
420 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74
421 /**
422 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
423 * @vsi: pointer to the targeted VSI
424 * @fd_data: the flow director data required for the FDir descriptor
425 * @add: true adds a filter, false removes it
426 * @ipv4: true is v4, false is v6
427 *
428 * Returns 0 if the filters were successfully added or removed
429 **/
i40e_add_del_fdir_tcp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)430 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
431 struct i40e_fdir_filter *fd_data,
432 bool add,
433 bool ipv4)
434 {
435 struct i40e_pf *pf = vsi->back;
436 u8 *raw_packet;
437 int ret;
438
439 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
440 if (!raw_packet)
441 return -ENOMEM;
442
443 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
444 if (ipv4)
445 ret = i40e_prepare_fdir_filter
446 (pf, fd_data, add, raw_packet,
447 I40E_TCPIP_DUMMY_PACKET_LEN,
448 LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP);
449 else
450 ret = i40e_prepare_fdir_filter
451 (pf, fd_data, add, raw_packet,
452 I40E_TCPIP6_DUMMY_PACKET_LEN,
453 LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP);
454
455 if (ret) {
456 kfree(raw_packet);
457 return ret;
458 }
459
460 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
461 &pf->fd_tcp6_filter_cnt);
462
463 if (add) {
464 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
465 I40E_DEBUG_FD & pf->hw.debug_mask)
466 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
467 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
468 }
469 return 0;
470 }
471
472 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
473 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
474 /**
475 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
476 * a specific flow spec
477 * @vsi: pointer to the targeted VSI
478 * @fd_data: the flow director data required for the FDir descriptor
479 * @add: true adds a filter, false removes it
480 * @ipv4: true is v4, false is v6
481 *
482 * Returns 0 if the filters were successfully added or removed
483 **/
i40e_add_del_fdir_sctp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)484 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
485 struct i40e_fdir_filter *fd_data,
486 bool add,
487 bool ipv4)
488 {
489 struct i40e_pf *pf = vsi->back;
490 u8 *raw_packet;
491 int ret;
492
493 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
494 if (!raw_packet)
495 return -ENOMEM;
496
497 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
498
499 if (ipv4)
500 ret = i40e_prepare_fdir_filter
501 (pf, fd_data, add, raw_packet,
502 I40E_SCTPIP_DUMMY_PACKET_LEN,
503 LIBIE_FILTER_PCTYPE_NONF_IPV4_SCTP);
504 else
505 ret = i40e_prepare_fdir_filter
506 (pf, fd_data, add, raw_packet,
507 I40E_SCTPIP6_DUMMY_PACKET_LEN,
508 LIBIE_FILTER_PCTYPE_NONF_IPV6_SCTP);
509
510 if (ret) {
511 kfree(raw_packet);
512 return ret;
513 }
514
515 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
516 &pf->fd_sctp6_filter_cnt);
517
518 return 0;
519 }
520
521 #define I40E_IP_DUMMY_PACKET_LEN 34
522 #define I40E_IP6_DUMMY_PACKET_LEN 54
523 /**
524 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
525 * a specific flow spec
526 * @vsi: pointer to the targeted VSI
527 * @fd_data: the flow director data required for the FDir descriptor
528 * @add: true adds a filter, false removes it
529 * @ipv4: true is v4, false is v6
530 *
531 * Returns 0 if the filters were successfully added or removed
532 **/
i40e_add_del_fdir_ip(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)533 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
534 struct i40e_fdir_filter *fd_data,
535 bool add,
536 bool ipv4)
537 {
538 struct i40e_pf *pf = vsi->back;
539 int payload_offset;
540 u8 *raw_packet;
541 int iter_start;
542 int iter_end;
543 int ret;
544 int i;
545
546 if (ipv4) {
547 iter_start = LIBIE_FILTER_PCTYPE_NONF_IPV4_OTHER;
548 iter_end = LIBIE_FILTER_PCTYPE_FRAG_IPV4;
549 } else {
550 iter_start = LIBIE_FILTER_PCTYPE_NONF_IPV6_OTHER;
551 iter_end = LIBIE_FILTER_PCTYPE_FRAG_IPV6;
552 }
553
554 for (i = iter_start; i <= iter_end; i++) {
555 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
556 if (!raw_packet)
557 return -ENOMEM;
558
559 /* IPv6 no header option differs from IPv4 */
560 (void)i40e_create_dummy_packet
561 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
562 fd_data);
563
564 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
565 I40E_IP6_DUMMY_PACKET_LEN;
566 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
567 payload_offset, i);
568 if (ret)
569 goto err;
570 }
571
572 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
573 &pf->fd_ip6_filter_cnt);
574
575 return 0;
576 err:
577 kfree(raw_packet);
578 return ret;
579 }
580
581 /**
582 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
583 * @vsi: pointer to the targeted VSI
584 * @input: filter to add or delete
585 * @add: true adds a filter, false removes it
586 *
587 **/
i40e_add_del_fdir(struct i40e_vsi * vsi,struct i40e_fdir_filter * input,bool add)588 int i40e_add_del_fdir(struct i40e_vsi *vsi,
589 struct i40e_fdir_filter *input, bool add)
590 {
591 enum ip_ver { ipv6 = 0, ipv4 = 1 };
592 struct i40e_pf *pf = vsi->back;
593 int ret;
594
595 switch (input->flow_type & ~FLOW_EXT) {
596 case TCP_V4_FLOW:
597 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
598 break;
599 case UDP_V4_FLOW:
600 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
601 break;
602 case SCTP_V4_FLOW:
603 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
604 break;
605 case TCP_V6_FLOW:
606 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
607 break;
608 case UDP_V6_FLOW:
609 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
610 break;
611 case SCTP_V6_FLOW:
612 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
613 break;
614 case IP_USER_FLOW:
615 switch (input->ipl4_proto) {
616 case IPPROTO_TCP:
617 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
618 break;
619 case IPPROTO_UDP:
620 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
621 break;
622 case IPPROTO_SCTP:
623 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
624 break;
625 case IPPROTO_IP:
626 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
627 break;
628 default:
629 /* We cannot support masking based on protocol */
630 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
631 input->ipl4_proto);
632 return -EINVAL;
633 }
634 break;
635 case IPV6_USER_FLOW:
636 switch (input->ipl4_proto) {
637 case IPPROTO_TCP:
638 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
639 break;
640 case IPPROTO_UDP:
641 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
642 break;
643 case IPPROTO_SCTP:
644 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
645 break;
646 case IPPROTO_IP:
647 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
648 break;
649 default:
650 /* We cannot support masking based on protocol */
651 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
652 input->ipl4_proto);
653 return -EINVAL;
654 }
655 break;
656 default:
657 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
658 input->flow_type);
659 return -EINVAL;
660 }
661
662 /* The buffer allocated here will be normally be freed by
663 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
664 * completion. In the event of an error adding the buffer to the FDIR
665 * ring, it will immediately be freed. It may also be freed by
666 * i40e_clean_tx_ring() when closing the VSI.
667 */
668 return ret;
669 }
670
671 /**
672 * i40e_fd_handle_status - check the Programming Status for FD
673 * @rx_ring: the Rx ring for this descriptor
674 * @qword0_raw: qword0
675 * @qword1: qword1 after le_to_cpu
676 * @prog_id: the id originally used for programming
677 *
678 * This is used to verify if the FD programming or invalidation
679 * requested by SW to the HW is successful or not and take actions accordingly.
680 **/
i40e_fd_handle_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1,u8 prog_id)681 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
682 u64 qword1, u8 prog_id)
683 {
684 struct i40e_pf *pf = rx_ring->vsi->back;
685 struct pci_dev *pdev = pf->pdev;
686 struct i40e_16b_rx_wb_qw0 *qw0;
687 u32 fcnt_prog, fcnt_avail;
688 u32 error;
689
690 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
691 error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
692
693 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
694 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
695 if (qw0->hi_dword.fd_id != 0 ||
696 (I40E_DEBUG_FD & pf->hw.debug_mask))
697 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
698 pf->fd_inv);
699
700 /* Check if the programming error is for ATR.
701 * If so, auto disable ATR and set a state for
702 * flush in progress. Next time we come here if flush is in
703 * progress do nothing, once flush is complete the state will
704 * be cleared.
705 */
706 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
707 return;
708
709 pf->fd_add_err++;
710 /* store the current atr filter count */
711 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
712
713 if (qw0->hi_dword.fd_id == 0 &&
714 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
715 /* These set_bit() calls aren't atomic with the
716 * test_bit() here, but worse case we potentially
717 * disable ATR and queue a flush right after SB
718 * support is re-enabled. That shouldn't cause an
719 * issue in practice
720 */
721 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
722 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
723 }
724
725 /* filter programming failed most likely due to table full */
726 fcnt_prog = i40e_get_global_fd_count(pf);
727 fcnt_avail = pf->fdir_pf_filter_count;
728 /* If ATR is running fcnt_prog can quickly change,
729 * if we are very close to full, it makes sense to disable
730 * FD ATR/SB and then re-enable it when there is room.
731 */
732 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
733 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
734 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
735 pf->state))
736 if (I40E_DEBUG_FD & pf->hw.debug_mask)
737 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
738 }
739 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
740 if (I40E_DEBUG_FD & pf->hw.debug_mask)
741 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
742 qw0->hi_dword.fd_id);
743 }
744 }
745
746 /**
747 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
748 * @ring: the ring that owns the buffer
749 * @tx_buffer: the buffer to free
750 **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)751 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
752 struct i40e_tx_buffer *tx_buffer)
753 {
754 if (tx_buffer->skb) {
755 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
756 kfree(tx_buffer->raw_buf);
757 else if (ring_is_xdp(ring))
758 xdp_return_frame(tx_buffer->xdpf);
759 else
760 dev_kfree_skb_any(tx_buffer->skb);
761 if (dma_unmap_len(tx_buffer, len))
762 dma_unmap_single(ring->dev,
763 dma_unmap_addr(tx_buffer, dma),
764 dma_unmap_len(tx_buffer, len),
765 DMA_TO_DEVICE);
766 } else if (dma_unmap_len(tx_buffer, len)) {
767 dma_unmap_page(ring->dev,
768 dma_unmap_addr(tx_buffer, dma),
769 dma_unmap_len(tx_buffer, len),
770 DMA_TO_DEVICE);
771 }
772
773 tx_buffer->next_to_watch = NULL;
774 tx_buffer->skb = NULL;
775 dma_unmap_len_set(tx_buffer, len, 0);
776 /* tx_buffer must be completely set up in the transmit path */
777 }
778
779 /**
780 * i40e_clean_tx_ring - Free any empty Tx buffers
781 * @tx_ring: ring to be cleaned
782 **/
i40e_clean_tx_ring(struct i40e_ring * tx_ring)783 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
784 {
785 unsigned long bi_size;
786 u16 i;
787
788 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
789 i40e_xsk_clean_tx_ring(tx_ring);
790 } else {
791 /* ring already cleared, nothing to do */
792 if (!tx_ring->tx_bi)
793 return;
794
795 /* Free all the Tx ring sk_buffs */
796 for (i = 0; i < tx_ring->count; i++)
797 i40e_unmap_and_free_tx_resource(tx_ring,
798 &tx_ring->tx_bi[i]);
799 }
800
801 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
802 memset(tx_ring->tx_bi, 0, bi_size);
803
804 /* Zero out the descriptor ring */
805 memset(tx_ring->desc, 0, tx_ring->size);
806
807 tx_ring->next_to_use = 0;
808 tx_ring->next_to_clean = 0;
809
810 if (!tx_ring->netdev)
811 return;
812
813 /* cleanup Tx queue statistics */
814 netdev_tx_reset_queue(txring_txq(tx_ring));
815 }
816
817 /**
818 * i40e_free_tx_resources - Free Tx resources per queue
819 * @tx_ring: Tx descriptor ring for a specific queue
820 *
821 * Free all transmit software resources
822 **/
i40e_free_tx_resources(struct i40e_ring * tx_ring)823 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
824 {
825 i40e_clean_tx_ring(tx_ring);
826 kfree(tx_ring->tx_bi);
827 tx_ring->tx_bi = NULL;
828
829 if (tx_ring->desc) {
830 dma_free_coherent(tx_ring->dev, tx_ring->size,
831 tx_ring->desc, tx_ring->dma);
832 tx_ring->desc = NULL;
833 }
834 }
835
836 /**
837 * i40e_get_tx_pending - how many tx descriptors not processed
838 * @ring: the ring of descriptors
839 * @in_sw: use SW variables
840 *
841 * Since there is no access to the ring head register
842 * in XL710, we need to use our local copies
843 **/
i40e_get_tx_pending(struct i40e_ring * ring,bool in_sw)844 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
845 {
846 u32 head, tail;
847
848 if (!in_sw) {
849 head = i40e_get_head(ring);
850 tail = readl(ring->tail);
851 } else {
852 head = ring->next_to_clean;
853 tail = ring->next_to_use;
854 }
855
856 if (head != tail)
857 return (head < tail) ?
858 tail - head : (tail + ring->count - head);
859
860 return 0;
861 }
862
863 /**
864 * i40e_detect_recover_hung - Function to detect and recover hung_queues
865 * @pf: pointer to PF struct
866 *
867 * LAN VSI has netdev and netdev has TX queues. This function is to check
868 * each of those TX queues if they are hung, trigger recovery by issuing
869 * SW interrupt.
870 **/
i40e_detect_recover_hung(struct i40e_pf * pf)871 void i40e_detect_recover_hung(struct i40e_pf *pf)
872 {
873 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
874 struct i40e_ring *tx_ring = NULL;
875 struct net_device *netdev;
876 unsigned int i;
877 int packets;
878
879 if (!vsi)
880 return;
881
882 if (test_bit(__I40E_VSI_DOWN, vsi->state))
883 return;
884
885 netdev = vsi->netdev;
886 if (!netdev)
887 return;
888
889 if (!netif_carrier_ok(netdev))
890 return;
891
892 for (i = 0; i < vsi->num_queue_pairs; i++) {
893 tx_ring = vsi->tx_rings[i];
894 if (tx_ring && tx_ring->desc) {
895 /* If packet counter has not changed the queue is
896 * likely stalled, so force an interrupt for this
897 * queue.
898 *
899 * prev_pkt_ctr would be negative if there was no
900 * pending work.
901 */
902 packets = tx_ring->stats.packets & INT_MAX;
903 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
904 i40e_force_wb(vsi, tx_ring->q_vector);
905 continue;
906 }
907
908 /* Memory barrier between read of packet count and call
909 * to i40e_get_tx_pending()
910 */
911 smp_rmb();
912 tx_ring->tx_stats.prev_pkt_ctr =
913 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
914 }
915 }
916 }
917
918 /**
919 * i40e_clean_tx_irq - Reclaim resources after transmit completes
920 * @vsi: the VSI we care about
921 * @tx_ring: Tx ring to clean
922 * @napi_budget: Used to determine if we are in netpoll
923 * @tx_cleaned: Out parameter set to the number of TXes cleaned
924 *
925 * Returns true if there's any budget left (e.g. the clean is finished)
926 **/
i40e_clean_tx_irq(struct i40e_vsi * vsi,struct i40e_ring * tx_ring,int napi_budget,unsigned int * tx_cleaned)927 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
928 struct i40e_ring *tx_ring, int napi_budget,
929 unsigned int *tx_cleaned)
930 {
931 int i = tx_ring->next_to_clean;
932 struct i40e_tx_buffer *tx_buf;
933 struct i40e_tx_desc *tx_head;
934 struct i40e_tx_desc *tx_desc;
935 unsigned int total_bytes = 0, total_packets = 0;
936 unsigned int budget = vsi->work_limit;
937
938 tx_buf = &tx_ring->tx_bi[i];
939 tx_desc = I40E_TX_DESC(tx_ring, i);
940 i -= tx_ring->count;
941
942 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
943
944 do {
945 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
946
947 /* if next_to_watch is not set then there is no work pending */
948 if (!eop_desc)
949 break;
950
951 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
952 /* we have caught up to head, no work left to do */
953 if (tx_head == tx_desc)
954 break;
955
956 /* clear next_to_watch to prevent false hangs */
957 tx_buf->next_to_watch = NULL;
958
959 /* update the statistics for this packet */
960 total_bytes += tx_buf->bytecount;
961 total_packets += tx_buf->gso_segs;
962
963 /* free the skb/XDP data */
964 if (ring_is_xdp(tx_ring))
965 xdp_return_frame(tx_buf->xdpf);
966 else
967 napi_consume_skb(tx_buf->skb, napi_budget);
968
969 /* unmap skb header data */
970 dma_unmap_single(tx_ring->dev,
971 dma_unmap_addr(tx_buf, dma),
972 dma_unmap_len(tx_buf, len),
973 DMA_TO_DEVICE);
974
975 /* clear tx_buffer data */
976 tx_buf->skb = NULL;
977 dma_unmap_len_set(tx_buf, len, 0);
978
979 /* unmap remaining buffers */
980 while (tx_desc != eop_desc) {
981 i40e_trace(clean_tx_irq_unmap,
982 tx_ring, tx_desc, tx_buf);
983
984 tx_buf++;
985 tx_desc++;
986 i++;
987 if (unlikely(!i)) {
988 i -= tx_ring->count;
989 tx_buf = tx_ring->tx_bi;
990 tx_desc = I40E_TX_DESC(tx_ring, 0);
991 }
992
993 /* unmap any remaining paged data */
994 if (dma_unmap_len(tx_buf, len)) {
995 dma_unmap_page(tx_ring->dev,
996 dma_unmap_addr(tx_buf, dma),
997 dma_unmap_len(tx_buf, len),
998 DMA_TO_DEVICE);
999 dma_unmap_len_set(tx_buf, len, 0);
1000 }
1001 }
1002
1003 /* move us one more past the eop_desc for start of next pkt */
1004 tx_buf++;
1005 tx_desc++;
1006 i++;
1007 if (unlikely(!i)) {
1008 i -= tx_ring->count;
1009 tx_buf = tx_ring->tx_bi;
1010 tx_desc = I40E_TX_DESC(tx_ring, 0);
1011 }
1012
1013 prefetch(tx_desc);
1014
1015 /* update budget accounting */
1016 budget--;
1017 } while (likely(budget));
1018
1019 i += tx_ring->count;
1020 tx_ring->next_to_clean = i;
1021 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1022 i40e_arm_wb(tx_ring, vsi, budget);
1023
1024 if (ring_is_xdp(tx_ring))
1025 return !!budget;
1026
1027 /* notify netdev of completed buffers */
1028 netdev_tx_completed_queue(txring_txq(tx_ring),
1029 total_packets, total_bytes);
1030
1031 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1032 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1033 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1034 /* Make sure that anybody stopping the queue after this
1035 * sees the new next_to_clean.
1036 */
1037 smp_mb();
1038 if (__netif_subqueue_stopped(tx_ring->netdev,
1039 tx_ring->queue_index) &&
1040 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1041 netif_wake_subqueue(tx_ring->netdev,
1042 tx_ring->queue_index);
1043 ++tx_ring->tx_stats.restart_queue;
1044 }
1045 }
1046
1047 *tx_cleaned = total_packets;
1048 return !!budget;
1049 }
1050
1051 /**
1052 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1053 * @vsi: the VSI we care about
1054 * @q_vector: the vector on which to enable writeback
1055 *
1056 **/
i40e_enable_wb_on_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1057 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1058 struct i40e_q_vector *q_vector)
1059 {
1060 u16 flags = q_vector->tx.ring[0].flags;
1061 u32 val;
1062
1063 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1064 return;
1065
1066 if (q_vector->arm_wb_state)
1067 return;
1068
1069 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1070 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1071 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1072
1073 wr32(&vsi->back->hw,
1074 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1075 val);
1076 } else {
1077 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1078 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1079
1080 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1081 }
1082 q_vector->arm_wb_state = true;
1083 }
1084
1085 /**
1086 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1087 * @vsi: the VSI we care about
1088 * @q_vector: the vector on which to force writeback
1089 *
1090 **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1091 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1092 {
1093 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1094 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1095 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1096 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1097 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1098 /* allow 00 to be written to the index */
1099
1100 wr32(&vsi->back->hw,
1101 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1102 } else {
1103 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1104 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1105 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1106 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1107 /* allow 00 to be written to the index */
1108
1109 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1110 }
1111 }
1112
i40e_container_is_rx(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1113 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1114 struct i40e_ring_container *rc)
1115 {
1116 return &q_vector->rx == rc;
1117 }
1118
i40e_itr_divisor(struct i40e_q_vector * q_vector)1119 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1120 {
1121 unsigned int divisor;
1122
1123 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1124 case I40E_LINK_SPEED_40GB:
1125 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1126 break;
1127 case I40E_LINK_SPEED_25GB:
1128 case I40E_LINK_SPEED_20GB:
1129 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1130 break;
1131 default:
1132 case I40E_LINK_SPEED_10GB:
1133 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1134 break;
1135 case I40E_LINK_SPEED_1GB:
1136 case I40E_LINK_SPEED_100MB:
1137 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1138 break;
1139 }
1140
1141 return divisor;
1142 }
1143
1144 /**
1145 * i40e_update_itr - update the dynamic ITR value based on statistics
1146 * @q_vector: structure containing interrupt and ring information
1147 * @rc: structure containing ring performance data
1148 *
1149 * Stores a new ITR value based on packets and byte
1150 * counts during the last interrupt. The advantage of per interrupt
1151 * computation is faster updates and more accurate ITR for the current
1152 * traffic pattern. Constants in this function were computed
1153 * based on theoretical maximum wire speed and thresholds were set based
1154 * on testing data as well as attempting to minimize response time
1155 * while increasing bulk throughput.
1156 **/
i40e_update_itr(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1157 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1158 struct i40e_ring_container *rc)
1159 {
1160 unsigned int avg_wire_size, packets, bytes, itr;
1161 unsigned long next_update = jiffies;
1162
1163 /* If we don't have any rings just leave ourselves set for maximum
1164 * possible latency so we take ourselves out of the equation.
1165 */
1166 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1167 return;
1168
1169 /* For Rx we want to push the delay up and default to low latency.
1170 * for Tx we want to pull the delay down and default to high latency.
1171 */
1172 itr = i40e_container_is_rx(q_vector, rc) ?
1173 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1174 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1175
1176 /* If we didn't update within up to 1 - 2 jiffies we can assume
1177 * that either packets are coming in so slow there hasn't been
1178 * any work, or that there is so much work that NAPI is dealing
1179 * with interrupt moderation and we don't need to do anything.
1180 */
1181 if (time_after(next_update, rc->next_update))
1182 goto clear_counts;
1183
1184 /* If itr_countdown is set it means we programmed an ITR within
1185 * the last 4 interrupt cycles. This has a side effect of us
1186 * potentially firing an early interrupt. In order to work around
1187 * this we need to throw out any data received for a few
1188 * interrupts following the update.
1189 */
1190 if (q_vector->itr_countdown) {
1191 itr = rc->target_itr;
1192 goto clear_counts;
1193 }
1194
1195 packets = rc->total_packets;
1196 bytes = rc->total_bytes;
1197
1198 if (i40e_container_is_rx(q_vector, rc)) {
1199 /* If Rx there are 1 to 4 packets and bytes are less than
1200 * 9000 assume insufficient data to use bulk rate limiting
1201 * approach unless Tx is already in bulk rate limiting. We
1202 * are likely latency driven.
1203 */
1204 if (packets && packets < 4 && bytes < 9000 &&
1205 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1206 itr = I40E_ITR_ADAPTIVE_LATENCY;
1207 goto adjust_by_size;
1208 }
1209 } else if (packets < 4) {
1210 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1211 * bulk mode and we are receiving 4 or fewer packets just
1212 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1213 * that the Rx can relax.
1214 */
1215 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1216 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1217 I40E_ITR_ADAPTIVE_MAX_USECS)
1218 goto clear_counts;
1219 } else if (packets > 32) {
1220 /* If we have processed over 32 packets in a single interrupt
1221 * for Tx assume we need to switch over to "bulk" mode.
1222 */
1223 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1224 }
1225
1226 /* We have no packets to actually measure against. This means
1227 * either one of the other queues on this vector is active or
1228 * we are a Tx queue doing TSO with too high of an interrupt rate.
1229 *
1230 * Between 4 and 56 we can assume that our current interrupt delay
1231 * is only slightly too low. As such we should increase it by a small
1232 * fixed amount.
1233 */
1234 if (packets < 56) {
1235 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1236 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1237 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1238 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1239 }
1240 goto clear_counts;
1241 }
1242
1243 if (packets <= 256) {
1244 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1245 itr &= I40E_ITR_MASK;
1246
1247 /* Between 56 and 112 is our "goldilocks" zone where we are
1248 * working out "just right". Just report that our current
1249 * ITR is good for us.
1250 */
1251 if (packets <= 112)
1252 goto clear_counts;
1253
1254 /* If packet count is 128 or greater we are likely looking
1255 * at a slight overrun of the delay we want. Try halving
1256 * our delay to see if that will cut the number of packets
1257 * in half per interrupt.
1258 */
1259 itr /= 2;
1260 itr &= I40E_ITR_MASK;
1261 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1262 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1263
1264 goto clear_counts;
1265 }
1266
1267 /* The paths below assume we are dealing with a bulk ITR since
1268 * number of packets is greater than 256. We are just going to have
1269 * to compute a value and try to bring the count under control,
1270 * though for smaller packet sizes there isn't much we can do as
1271 * NAPI polling will likely be kicking in sooner rather than later.
1272 */
1273 itr = I40E_ITR_ADAPTIVE_BULK;
1274
1275 adjust_by_size:
1276 /* If packet counts are 256 or greater we can assume we have a gross
1277 * overestimation of what the rate should be. Instead of trying to fine
1278 * tune it just use the formula below to try and dial in an exact value
1279 * give the current packet size of the frame.
1280 */
1281 avg_wire_size = bytes / packets;
1282
1283 /* The following is a crude approximation of:
1284 * wmem_default / (size + overhead) = desired_pkts_per_int
1285 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1286 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1287 *
1288 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1289 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1290 * formula down to
1291 *
1292 * (170 * (size + 24)) / (size + 640) = ITR
1293 *
1294 * We first do some math on the packet size and then finally bitshift
1295 * by 8 after rounding up. We also have to account for PCIe link speed
1296 * difference as ITR scales based on this.
1297 */
1298 if (avg_wire_size <= 60) {
1299 /* Start at 250k ints/sec */
1300 avg_wire_size = 4096;
1301 } else if (avg_wire_size <= 380) {
1302 /* 250K ints/sec to 60K ints/sec */
1303 avg_wire_size *= 40;
1304 avg_wire_size += 1696;
1305 } else if (avg_wire_size <= 1084) {
1306 /* 60K ints/sec to 36K ints/sec */
1307 avg_wire_size *= 15;
1308 avg_wire_size += 11452;
1309 } else if (avg_wire_size <= 1980) {
1310 /* 36K ints/sec to 30K ints/sec */
1311 avg_wire_size *= 5;
1312 avg_wire_size += 22420;
1313 } else {
1314 /* plateau at a limit of 30K ints/sec */
1315 avg_wire_size = 32256;
1316 }
1317
1318 /* If we are in low latency mode halve our delay which doubles the
1319 * rate to somewhere between 100K to 16K ints/sec
1320 */
1321 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1322 avg_wire_size /= 2;
1323
1324 /* Resultant value is 256 times larger than it needs to be. This
1325 * gives us room to adjust the value as needed to either increase
1326 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1327 *
1328 * Use addition as we have already recorded the new latency flag
1329 * for the ITR value.
1330 */
1331 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1332 I40E_ITR_ADAPTIVE_MIN_INC;
1333
1334 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1335 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1336 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1337 }
1338
1339 clear_counts:
1340 /* write back value */
1341 rc->target_itr = itr;
1342
1343 /* next update should occur within next jiffy */
1344 rc->next_update = next_update + 1;
1345
1346 rc->total_bytes = 0;
1347 rc->total_packets = 0;
1348 }
1349
i40e_rx_bi(struct i40e_ring * rx_ring,u32 idx)1350 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1351 {
1352 return &rx_ring->rx_bi[idx];
1353 }
1354
1355 /**
1356 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1357 * @rx_ring: rx descriptor ring to store buffers on
1358 * @old_buff: donor buffer to have page reused
1359 *
1360 * Synchronizes page for reuse by the adapter
1361 **/
i40e_reuse_rx_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * old_buff)1362 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1363 struct i40e_rx_buffer *old_buff)
1364 {
1365 struct i40e_rx_buffer *new_buff;
1366 u16 nta = rx_ring->next_to_alloc;
1367
1368 new_buff = i40e_rx_bi(rx_ring, nta);
1369
1370 /* update, and store next to alloc */
1371 nta++;
1372 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1373
1374 /* transfer page from old buffer to new buffer */
1375 new_buff->dma = old_buff->dma;
1376 new_buff->page = old_buff->page;
1377 new_buff->page_offset = old_buff->page_offset;
1378 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1379
1380 /* clear contents of buffer_info */
1381 old_buff->page = NULL;
1382 }
1383
1384 /**
1385 * i40e_clean_programming_status - clean the programming status descriptor
1386 * @rx_ring: the rx ring that has this descriptor
1387 * @qword0_raw: qword0
1388 * @qword1: qword1 representing status_error_len in CPU ordering
1389 *
1390 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1391 * status being successful or not and take actions accordingly. FCoE should
1392 * handle its context/filter programming/invalidation status and take actions.
1393 *
1394 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1395 **/
i40e_clean_programming_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1)1396 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1397 u64 qword1)
1398 {
1399 u8 id;
1400
1401 id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
1402
1403 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1404 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1405 }
1406
1407 /**
1408 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1409 * @tx_ring: the tx ring to set up
1410 *
1411 * Return 0 on success, negative on error
1412 **/
i40e_setup_tx_descriptors(struct i40e_ring * tx_ring)1413 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1414 {
1415 struct device *dev = tx_ring->dev;
1416 int bi_size;
1417
1418 if (!dev)
1419 return -ENOMEM;
1420
1421 /* warn if we are about to overwrite the pointer */
1422 WARN_ON(tx_ring->tx_bi);
1423 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1424 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1425 if (!tx_ring->tx_bi)
1426 goto err;
1427
1428 u64_stats_init(&tx_ring->syncp);
1429
1430 /* round up to nearest 4K */
1431 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1432 /* add u32 for head writeback, align after this takes care of
1433 * guaranteeing this is at least one cache line in size
1434 */
1435 tx_ring->size += sizeof(u32);
1436 tx_ring->size = ALIGN(tx_ring->size, 4096);
1437 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1438 &tx_ring->dma, GFP_KERNEL);
1439 if (!tx_ring->desc) {
1440 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1441 tx_ring->size);
1442 goto err;
1443 }
1444
1445 tx_ring->next_to_use = 0;
1446 tx_ring->next_to_clean = 0;
1447 tx_ring->tx_stats.prev_pkt_ctr = -1;
1448 return 0;
1449
1450 err:
1451 kfree(tx_ring->tx_bi);
1452 tx_ring->tx_bi = NULL;
1453 return -ENOMEM;
1454 }
1455
i40e_clear_rx_bi(struct i40e_ring * rx_ring)1456 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1457 {
1458 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1459 }
1460
1461 /**
1462 * i40e_clean_rx_ring - Free Rx buffers
1463 * @rx_ring: ring to be cleaned
1464 **/
i40e_clean_rx_ring(struct i40e_ring * rx_ring)1465 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1466 {
1467 u16 i;
1468
1469 /* ring already cleared, nothing to do */
1470 if (!rx_ring->rx_bi)
1471 return;
1472
1473 if (rx_ring->xsk_pool) {
1474 i40e_xsk_clean_rx_ring(rx_ring);
1475 goto skip_free;
1476 }
1477
1478 /* Free all the Rx ring sk_buffs */
1479 for (i = 0; i < rx_ring->count; i++) {
1480 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1481
1482 if (!rx_bi->page)
1483 continue;
1484
1485 /* Invalidate cache lines that may have been written to by
1486 * device so that we avoid corrupting memory.
1487 */
1488 dma_sync_single_range_for_cpu(rx_ring->dev,
1489 rx_bi->dma,
1490 rx_bi->page_offset,
1491 rx_ring->rx_buf_len,
1492 DMA_FROM_DEVICE);
1493
1494 /* free resources associated with mapping */
1495 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1496 i40e_rx_pg_size(rx_ring),
1497 DMA_FROM_DEVICE,
1498 I40E_RX_DMA_ATTR);
1499
1500 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1501
1502 rx_bi->page = NULL;
1503 rx_bi->page_offset = 0;
1504 }
1505
1506 skip_free:
1507 if (rx_ring->xsk_pool)
1508 i40e_clear_rx_bi_zc(rx_ring);
1509 else
1510 i40e_clear_rx_bi(rx_ring);
1511
1512 /* Zero out the descriptor ring */
1513 memset(rx_ring->desc, 0, rx_ring->size);
1514
1515 rx_ring->next_to_alloc = 0;
1516 rx_ring->next_to_clean = 0;
1517 rx_ring->next_to_process = 0;
1518 rx_ring->next_to_use = 0;
1519 }
1520
1521 /**
1522 * i40e_free_rx_resources - Free Rx resources
1523 * @rx_ring: ring to clean the resources from
1524 *
1525 * Free all receive software resources
1526 **/
i40e_free_rx_resources(struct i40e_ring * rx_ring)1527 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1528 {
1529 i40e_clean_rx_ring(rx_ring);
1530 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1531 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1532 rx_ring->xdp_prog = NULL;
1533 kfree(rx_ring->rx_bi);
1534 rx_ring->rx_bi = NULL;
1535
1536 if (rx_ring->desc) {
1537 dma_free_coherent(rx_ring->dev, rx_ring->size,
1538 rx_ring->desc, rx_ring->dma);
1539 rx_ring->desc = NULL;
1540 }
1541 }
1542
1543 /**
1544 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1545 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1546 *
1547 * Returns 0 on success, negative on failure
1548 **/
i40e_setup_rx_descriptors(struct i40e_ring * rx_ring)1549 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1550 {
1551 struct device *dev = rx_ring->dev;
1552
1553 u64_stats_init(&rx_ring->syncp);
1554
1555 /* Round up to nearest 4K */
1556 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1557 rx_ring->size = ALIGN(rx_ring->size, 4096);
1558 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1559 &rx_ring->dma, GFP_KERNEL);
1560
1561 if (!rx_ring->desc) {
1562 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1563 rx_ring->size);
1564 return -ENOMEM;
1565 }
1566
1567 rx_ring->next_to_alloc = 0;
1568 rx_ring->next_to_clean = 0;
1569 rx_ring->next_to_process = 0;
1570 rx_ring->next_to_use = 0;
1571
1572 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1573
1574 rx_ring->rx_bi =
1575 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1576 if (!rx_ring->rx_bi)
1577 return -ENOMEM;
1578
1579 return 0;
1580 }
1581
1582 /**
1583 * i40e_release_rx_desc - Store the new tail and head values
1584 * @rx_ring: ring to bump
1585 * @val: new head index
1586 **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)1587 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1588 {
1589 rx_ring->next_to_use = val;
1590
1591 /* update next to alloc since we have filled the ring */
1592 rx_ring->next_to_alloc = val;
1593
1594 /* Force memory writes to complete before letting h/w
1595 * know there are new descriptors to fetch. (Only
1596 * applicable for weak-ordered memory model archs,
1597 * such as IA-64).
1598 */
1599 wmb();
1600 writel(val, rx_ring->tail);
1601 }
1602
1603 #if (PAGE_SIZE >= 8192)
i40e_rx_frame_truesize(struct i40e_ring * rx_ring,unsigned int size)1604 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1605 unsigned int size)
1606 {
1607 unsigned int truesize;
1608
1609 truesize = rx_ring->rx_offset ?
1610 SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1611 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1612 SKB_DATA_ALIGN(size);
1613 return truesize;
1614 }
1615 #endif
1616
1617 /**
1618 * i40e_alloc_mapped_page - recycle or make a new page
1619 * @rx_ring: ring to use
1620 * @bi: rx_buffer struct to modify
1621 *
1622 * Returns true if the page was successfully allocated or
1623 * reused.
1624 **/
i40e_alloc_mapped_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * bi)1625 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1626 struct i40e_rx_buffer *bi)
1627 {
1628 struct page *page = bi->page;
1629 dma_addr_t dma;
1630
1631 /* since we are recycling buffers we should seldom need to alloc */
1632 if (likely(page)) {
1633 rx_ring->rx_stats.page_reuse_count++;
1634 return true;
1635 }
1636
1637 /* alloc new page for storage */
1638 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1639 if (unlikely(!page)) {
1640 rx_ring->rx_stats.alloc_page_failed++;
1641 return false;
1642 }
1643
1644 rx_ring->rx_stats.page_alloc_count++;
1645
1646 /* map page for use */
1647 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1648 i40e_rx_pg_size(rx_ring),
1649 DMA_FROM_DEVICE,
1650 I40E_RX_DMA_ATTR);
1651
1652 /* if mapping failed free memory back to system since
1653 * there isn't much point in holding memory we can't use
1654 */
1655 if (dma_mapping_error(rx_ring->dev, dma)) {
1656 __free_pages(page, i40e_rx_pg_order(rx_ring));
1657 rx_ring->rx_stats.alloc_page_failed++;
1658 return false;
1659 }
1660
1661 bi->dma = dma;
1662 bi->page = page;
1663 bi->page_offset = rx_ring->rx_offset;
1664 page_ref_add(page, USHRT_MAX - 1);
1665 bi->pagecnt_bias = USHRT_MAX;
1666
1667 return true;
1668 }
1669
1670 /**
1671 * i40e_alloc_rx_buffers - Replace used receive buffers
1672 * @rx_ring: ring to place buffers on
1673 * @cleaned_count: number of buffers to replace
1674 *
1675 * Returns false if all allocations were successful, true if any fail
1676 **/
i40e_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)1677 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1678 {
1679 u16 ntu = rx_ring->next_to_use;
1680 union i40e_rx_desc *rx_desc;
1681 struct i40e_rx_buffer *bi;
1682
1683 /* do nothing if no valid netdev defined */
1684 if (!rx_ring->netdev || !cleaned_count)
1685 return false;
1686
1687 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1688 bi = i40e_rx_bi(rx_ring, ntu);
1689
1690 do {
1691 if (!i40e_alloc_mapped_page(rx_ring, bi))
1692 goto no_buffers;
1693
1694 /* sync the buffer for use by the device */
1695 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1696 bi->page_offset,
1697 rx_ring->rx_buf_len,
1698 DMA_FROM_DEVICE);
1699
1700 /* Refresh the desc even if buffer_addrs didn't change
1701 * because each write-back erases this info.
1702 */
1703 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1704
1705 rx_desc++;
1706 bi++;
1707 ntu++;
1708 if (unlikely(ntu == rx_ring->count)) {
1709 rx_desc = I40E_RX_DESC(rx_ring, 0);
1710 bi = i40e_rx_bi(rx_ring, 0);
1711 ntu = 0;
1712 }
1713
1714 /* clear the status bits for the next_to_use descriptor */
1715 rx_desc->wb.qword1.status_error_len = 0;
1716
1717 cleaned_count--;
1718 } while (cleaned_count);
1719
1720 if (rx_ring->next_to_use != ntu)
1721 i40e_release_rx_desc(rx_ring, ntu);
1722
1723 return false;
1724
1725 no_buffers:
1726 if (rx_ring->next_to_use != ntu)
1727 i40e_release_rx_desc(rx_ring, ntu);
1728
1729 /* make sure to come back via polling to try again after
1730 * allocation failure
1731 */
1732 return true;
1733 }
1734
1735 /**
1736 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1737 * @vsi: the VSI we care about
1738 * @skb: skb currently being received and modified
1739 * @rx_desc: the receive descriptor
1740 **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1741 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1742 struct sk_buff *skb,
1743 union i40e_rx_desc *rx_desc)
1744 {
1745 struct libeth_rx_pt decoded;
1746 u32 rx_error, rx_status;
1747 bool ipv4, ipv6;
1748 u8 ptype;
1749 u64 qword;
1750
1751 skb->ip_summed = CHECKSUM_NONE;
1752
1753 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1754 ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1755
1756 decoded = libie_rx_pt_parse(ptype);
1757 if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
1758 return;
1759
1760 rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1761 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1762
1763 /* did the hardware decode the packet and checksum? */
1764 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1765 return;
1766
1767 ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
1768 ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
1769
1770 if (ipv4 &&
1771 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1772 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1773 goto checksum_fail;
1774
1775 /* likely incorrect csum if alternate IP extension headers found */
1776 if (ipv6 &&
1777 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1778 /* don't increment checksum err here, non-fatal err */
1779 return;
1780
1781 /* there was some L4 error, count error and punt packet to the stack */
1782 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1783 goto checksum_fail;
1784
1785 /* handle packets that were not able to be checksummed due
1786 * to arrival speed, in this case the stack can compute
1787 * the csum.
1788 */
1789 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1790 return;
1791
1792 /* If there is an outer header present that might contain a checksum
1793 * we need to bump the checksum level by 1 to reflect the fact that
1794 * we are indicating we validated the inner checksum.
1795 */
1796 if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
1797 skb->csum_level = 1;
1798
1799 skb->ip_summed = CHECKSUM_UNNECESSARY;
1800 return;
1801
1802 checksum_fail:
1803 vsi->back->hw_csum_rx_error++;
1804 }
1805
1806 /**
1807 * i40e_rx_hash - set the hash value in the skb
1808 * @ring: descriptor ring
1809 * @rx_desc: specific descriptor
1810 * @skb: skb currently being received and modified
1811 * @rx_ptype: Rx packet type
1812 **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1813 static inline void i40e_rx_hash(struct i40e_ring *ring,
1814 union i40e_rx_desc *rx_desc,
1815 struct sk_buff *skb,
1816 u8 rx_ptype)
1817 {
1818 struct libeth_rx_pt decoded;
1819 u32 hash;
1820 const __le64 rss_mask =
1821 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1822 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1823
1824 decoded = libie_rx_pt_parse(rx_ptype);
1825 if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
1826 return;
1827
1828 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1829 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1830 libeth_rx_pt_set_hash(skb, hash, decoded);
1831 }
1832 }
1833
1834 /**
1835 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1836 * @rx_ring: rx descriptor ring packet is being transacted on
1837 * @rx_desc: pointer to the EOP Rx descriptor
1838 * @skb: pointer to current skb being populated
1839 *
1840 * This function checks the ring, descriptor, and packet information in
1841 * order to populate the hash, checksum, VLAN, protocol, and
1842 * other fields within the skb.
1843 **/
i40e_process_skb_fields(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)1844 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1845 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1846 {
1847 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1848 u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1849 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1850 u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1851 u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1852
1853 if (unlikely(tsynvalid))
1854 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1855
1856 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1857
1858 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1859
1860 skb_record_rx_queue(skb, rx_ring->queue_index);
1861
1862 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1863 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1864
1865 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1866 le16_to_cpu(vlan_tag));
1867 }
1868
1869 /* modifies the skb - consumes the enet header */
1870 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1871 }
1872
1873 /**
1874 * i40e_cleanup_headers - Correct empty headers
1875 * @rx_ring: rx descriptor ring packet is being transacted on
1876 * @skb: pointer to current skb being fixed
1877 * @rx_desc: pointer to the EOP Rx descriptor
1878 *
1879 * In addition if skb is not at least 60 bytes we need to pad it so that
1880 * it is large enough to qualify as a valid Ethernet frame.
1881 *
1882 * Returns true if an error was encountered and skb was freed.
1883 **/
i40e_cleanup_headers(struct i40e_ring * rx_ring,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1884 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1885 union i40e_rx_desc *rx_desc)
1886
1887 {
1888 /* ERR_MASK will only have valid bits if EOP set, and
1889 * what we are doing here is actually checking
1890 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1891 * the error field
1892 */
1893 if (unlikely(i40e_test_staterr(rx_desc,
1894 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1895 dev_kfree_skb_any(skb);
1896 return true;
1897 }
1898
1899 /* if eth_skb_pad returns an error the skb was freed */
1900 if (eth_skb_pad(skb))
1901 return true;
1902
1903 return false;
1904 }
1905
1906 /**
1907 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1908 * @rx_buffer: buffer containing the page
1909 * @rx_stats: rx stats structure for the rx ring
1910 *
1911 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1912 * which will assign the current buffer to the buffer that next_to_alloc is
1913 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1914 * page freed.
1915 *
1916 * rx_stats will be updated to indicate whether the page was waived
1917 * or busy if it could not be reused.
1918 */
i40e_can_reuse_rx_page(struct i40e_rx_buffer * rx_buffer,struct i40e_rx_queue_stats * rx_stats)1919 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1920 struct i40e_rx_queue_stats *rx_stats)
1921 {
1922 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1923 struct page *page = rx_buffer->page;
1924
1925 /* Is any reuse possible? */
1926 if (!dev_page_is_reusable(page)) {
1927 rx_stats->page_waive_count++;
1928 return false;
1929 }
1930
1931 #if (PAGE_SIZE < 8192)
1932 /* if we are only owner of page we can reuse it */
1933 if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1934 rx_stats->page_busy_count++;
1935 return false;
1936 }
1937 #else
1938 #define I40E_LAST_OFFSET \
1939 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1940 if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1941 rx_stats->page_busy_count++;
1942 return false;
1943 }
1944 #endif
1945
1946 /* If we have drained the page fragment pool we need to update
1947 * the pagecnt_bias and page count so that we fully restock the
1948 * number of references the driver holds.
1949 */
1950 if (unlikely(pagecnt_bias == 1)) {
1951 page_ref_add(page, USHRT_MAX - 1);
1952 rx_buffer->pagecnt_bias = USHRT_MAX;
1953 }
1954
1955 return true;
1956 }
1957
1958 /**
1959 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1960 * @rx_buffer: Rx buffer to adjust
1961 * @truesize: Size of adjustment
1962 **/
i40e_rx_buffer_flip(struct i40e_rx_buffer * rx_buffer,unsigned int truesize)1963 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
1964 unsigned int truesize)
1965 {
1966 #if (PAGE_SIZE < 8192)
1967 rx_buffer->page_offset ^= truesize;
1968 #else
1969 rx_buffer->page_offset += truesize;
1970 #endif
1971 }
1972
1973 /**
1974 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1975 * @rx_ring: rx descriptor ring to transact packets on
1976 * @size: size of buffer to add to skb
1977 *
1978 * This function will pull an Rx buffer from the ring and synchronize it
1979 * for use by the CPU.
1980 */
i40e_get_rx_buffer(struct i40e_ring * rx_ring,const unsigned int size)1981 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1982 const unsigned int size)
1983 {
1984 struct i40e_rx_buffer *rx_buffer;
1985
1986 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
1987 rx_buffer->page_count =
1988 #if (PAGE_SIZE < 8192)
1989 page_count(rx_buffer->page);
1990 #else
1991 0;
1992 #endif
1993 prefetch_page_address(rx_buffer->page);
1994
1995 /* we are reusing so sync this buffer for CPU use */
1996 dma_sync_single_range_for_cpu(rx_ring->dev,
1997 rx_buffer->dma,
1998 rx_buffer->page_offset,
1999 size,
2000 DMA_FROM_DEVICE);
2001
2002 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2003 rx_buffer->pagecnt_bias--;
2004
2005 return rx_buffer;
2006 }
2007
2008 /**
2009 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2010 * @rx_ring: rx descriptor ring to transact packets on
2011 * @rx_buffer: rx buffer to pull data from
2012 *
2013 * This function will clean up the contents of the rx_buffer. It will
2014 * either recycle the buffer or unmap it and free the associated resources.
2015 */
i40e_put_rx_buffer(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer)2016 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2017 struct i40e_rx_buffer *rx_buffer)
2018 {
2019 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2020 /* hand second half of page back to the ring */
2021 i40e_reuse_rx_page(rx_ring, rx_buffer);
2022 } else {
2023 /* we are not reusing the buffer so unmap it */
2024 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2025 i40e_rx_pg_size(rx_ring),
2026 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2027 __page_frag_cache_drain(rx_buffer->page,
2028 rx_buffer->pagecnt_bias);
2029 /* clear contents of buffer_info */
2030 rx_buffer->page = NULL;
2031 }
2032 }
2033
2034 /**
2035 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2036 * @rx_ring: Rx descriptor ring to transact packets on
2037 * @xdp_res: Result of the XDP program
2038 * @xdp: xdp_buff pointing to the data
2039 **/
i40e_process_rx_buffs(struct i40e_ring * rx_ring,int xdp_res,struct xdp_buff * xdp)2040 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2041 struct xdp_buff *xdp)
2042 {
2043 u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2044 u32 next = rx_ring->next_to_clean, i = 0;
2045 struct i40e_rx_buffer *rx_buffer;
2046
2047 xdp->flags = 0;
2048
2049 while (1) {
2050 rx_buffer = i40e_rx_bi(rx_ring, next);
2051 if (++next == rx_ring->count)
2052 next = 0;
2053
2054 if (!rx_buffer->page)
2055 continue;
2056
2057 if (xdp_res != I40E_XDP_CONSUMED)
2058 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2059 else if (i++ <= nr_frags)
2060 rx_buffer->pagecnt_bias++;
2061
2062 /* EOP buffer will be put in i40e_clean_rx_irq() */
2063 if (next == rx_ring->next_to_process)
2064 return;
2065
2066 i40e_put_rx_buffer(rx_ring, rx_buffer);
2067 }
2068 }
2069
2070 /**
2071 * i40e_construct_skb - Allocate skb and populate it
2072 * @rx_ring: rx descriptor ring to transact packets on
2073 * @xdp: xdp_buff pointing to the data
2074 *
2075 * This function allocates an skb. It then populates it with the page
2076 * data from the current receive descriptor, taking care to set up the
2077 * skb correctly.
2078 */
i40e_construct_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2079 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2080 struct xdp_buff *xdp)
2081 {
2082 unsigned int size = xdp->data_end - xdp->data;
2083 struct i40e_rx_buffer *rx_buffer;
2084 struct skb_shared_info *sinfo;
2085 unsigned int headlen;
2086 struct sk_buff *skb;
2087 u32 nr_frags = 0;
2088
2089 /* prefetch first cache line of first page */
2090 net_prefetch(xdp->data);
2091
2092 /* Note, we get here by enabling legacy-rx via:
2093 *
2094 * ethtool --set-priv-flags <dev> legacy-rx on
2095 *
2096 * In this mode, we currently get 0 extra XDP headroom as
2097 * opposed to having legacy-rx off, where we process XDP
2098 * packets going to stack via i40e_build_skb(). The latter
2099 * provides us currently with 192 bytes of headroom.
2100 *
2101 * For i40e_construct_skb() mode it means that the
2102 * xdp->data_meta will always point to xdp->data, since
2103 * the helper cannot expand the head. Should this ever
2104 * change in future for legacy-rx mode on, then lets also
2105 * add xdp->data_meta handling here.
2106 */
2107
2108 /* allocate a skb to store the frags */
2109 skb = napi_alloc_skb(&rx_ring->q_vector->napi, I40E_RX_HDR_SIZE);
2110 if (unlikely(!skb))
2111 return NULL;
2112
2113 /* Determine available headroom for copy */
2114 headlen = size;
2115 if (headlen > I40E_RX_HDR_SIZE)
2116 headlen = eth_get_headlen(skb->dev, xdp->data,
2117 I40E_RX_HDR_SIZE);
2118
2119 /* align pull length to size of long to optimize memcpy performance */
2120 memcpy(__skb_put(skb, headlen), xdp->data,
2121 ALIGN(headlen, sizeof(long)));
2122
2123 if (unlikely(xdp_buff_has_frags(xdp))) {
2124 sinfo = xdp_get_shared_info_from_buff(xdp);
2125 nr_frags = sinfo->nr_frags;
2126 }
2127 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2128 /* update all of the pointers */
2129 size -= headlen;
2130 if (size) {
2131 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2132 dev_kfree_skb(skb);
2133 return NULL;
2134 }
2135 skb_add_rx_frag(skb, 0, rx_buffer->page,
2136 rx_buffer->page_offset + headlen,
2137 size, xdp->frame_sz);
2138 /* buffer is used by skb, update page_offset */
2139 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2140 } else {
2141 /* buffer is unused, reset bias back to rx_buffer */
2142 rx_buffer->pagecnt_bias++;
2143 }
2144
2145 if (unlikely(xdp_buff_has_frags(xdp))) {
2146 struct skb_shared_info *skinfo = skb_shinfo(skb);
2147
2148 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2149 sizeof(skb_frag_t) * nr_frags);
2150
2151 xdp_update_skb_frags_info(skb, skinfo->nr_frags + nr_frags,
2152 sinfo->xdp_frags_size,
2153 nr_frags * xdp->frame_sz,
2154 xdp_buff_get_skb_flags(xdp));
2155
2156 /* First buffer has already been processed, so bump ntc */
2157 if (++rx_ring->next_to_clean == rx_ring->count)
2158 rx_ring->next_to_clean = 0;
2159
2160 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2161 }
2162
2163 return skb;
2164 }
2165
2166 /**
2167 * i40e_build_skb - Build skb around an existing buffer
2168 * @rx_ring: Rx descriptor ring to transact packets on
2169 * @xdp: xdp_buff pointing to the data
2170 *
2171 * This function builds an skb around an existing Rx buffer, taking care
2172 * to set up the skb correctly and avoid any memcpy overhead.
2173 */
i40e_build_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2174 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2175 struct xdp_buff *xdp)
2176 {
2177 unsigned int metasize = xdp->data - xdp->data_meta;
2178 struct skb_shared_info *sinfo;
2179 struct sk_buff *skb;
2180 u32 nr_frags;
2181
2182 /* Prefetch first cache line of first page. If xdp->data_meta
2183 * is unused, this points exactly as xdp->data, otherwise we
2184 * likely have a consumer accessing first few bytes of meta
2185 * data, and then actual data.
2186 */
2187 net_prefetch(xdp->data_meta);
2188
2189 if (unlikely(xdp_buff_has_frags(xdp))) {
2190 sinfo = xdp_get_shared_info_from_buff(xdp);
2191 nr_frags = sinfo->nr_frags;
2192 }
2193
2194 /* build an skb around the page buffer */
2195 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2196 if (unlikely(!skb))
2197 return NULL;
2198
2199 /* update pointers within the skb to store the data */
2200 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2201 __skb_put(skb, xdp->data_end - xdp->data);
2202 if (metasize)
2203 skb_metadata_set(skb, metasize);
2204
2205 if (unlikely(xdp_buff_has_frags(xdp))) {
2206 xdp_update_skb_frags_info(skb, nr_frags, sinfo->xdp_frags_size,
2207 nr_frags * xdp->frame_sz,
2208 xdp_buff_get_skb_flags(xdp));
2209
2210 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2211 } else {
2212 struct i40e_rx_buffer *rx_buffer;
2213
2214 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2215 /* buffer is used by skb, update page_offset */
2216 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2217 }
2218
2219 return skb;
2220 }
2221
2222 /**
2223 * i40e_is_non_eop - process handling of non-EOP buffers
2224 * @rx_ring: Rx ring being processed
2225 * @rx_desc: Rx descriptor for current buffer
2226 *
2227 * If the buffer is an EOP buffer, this function exits returning false,
2228 * otherwise return true indicating that this is in fact a non-EOP buffer.
2229 */
i40e_is_non_eop(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc)2230 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2231 union i40e_rx_desc *rx_desc)
2232 {
2233 /* if we are the last buffer then there is nothing else to do */
2234 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2235 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2236 return false;
2237
2238 rx_ring->rx_stats.non_eop_descs++;
2239
2240 return true;
2241 }
2242
2243 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2244 struct i40e_ring *xdp_ring);
2245
i40e_xmit_xdp_tx_ring(struct xdp_buff * xdp,struct i40e_ring * xdp_ring)2246 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2247 {
2248 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2249
2250 if (unlikely(!xdpf))
2251 return I40E_XDP_CONSUMED;
2252
2253 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2254 }
2255
2256 /**
2257 * i40e_run_xdp - run an XDP program
2258 * @rx_ring: Rx ring being processed
2259 * @xdp: XDP buffer containing the frame
2260 * @xdp_prog: XDP program to run
2261 **/
i40e_run_xdp(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)2262 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2263 {
2264 int err, result = I40E_XDP_PASS;
2265 struct i40e_ring *xdp_ring;
2266 u32 act;
2267
2268 if (!xdp_prog)
2269 goto xdp_out;
2270
2271 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2272
2273 act = bpf_prog_run_xdp(xdp_prog, xdp);
2274 switch (act) {
2275 case XDP_PASS:
2276 break;
2277 case XDP_TX:
2278 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2279 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2280 if (result == I40E_XDP_CONSUMED)
2281 goto out_failure;
2282 break;
2283 case XDP_REDIRECT:
2284 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2285 if (err)
2286 goto out_failure;
2287 result = I40E_XDP_REDIR;
2288 break;
2289 default:
2290 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2291 fallthrough;
2292 case XDP_ABORTED:
2293 out_failure:
2294 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2295 fallthrough; /* handle aborts by dropping packet */
2296 case XDP_DROP:
2297 result = I40E_XDP_CONSUMED;
2298 break;
2299 }
2300 xdp_out:
2301 return result;
2302 }
2303
2304 /**
2305 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2306 * @xdp_ring: XDP Tx ring
2307 *
2308 * This function updates the XDP Tx ring tail register.
2309 **/
i40e_xdp_ring_update_tail(struct i40e_ring * xdp_ring)2310 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2311 {
2312 /* Force memory writes to complete before letting h/w
2313 * know there are new descriptors to fetch.
2314 */
2315 wmb();
2316 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2317 }
2318
2319 /**
2320 * i40e_update_rx_stats - Update Rx ring statistics
2321 * @rx_ring: rx descriptor ring
2322 * @total_rx_bytes: number of bytes received
2323 * @total_rx_packets: number of packets received
2324 *
2325 * This function updates the Rx ring statistics.
2326 **/
i40e_update_rx_stats(struct i40e_ring * rx_ring,unsigned int total_rx_bytes,unsigned int total_rx_packets)2327 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2328 unsigned int total_rx_bytes,
2329 unsigned int total_rx_packets)
2330 {
2331 u64_stats_update_begin(&rx_ring->syncp);
2332 rx_ring->stats.packets += total_rx_packets;
2333 rx_ring->stats.bytes += total_rx_bytes;
2334 u64_stats_update_end(&rx_ring->syncp);
2335 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2336 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2337 }
2338
2339 /**
2340 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2341 * @rx_ring: Rx ring
2342 * @xdp_res: Result of the receive batch
2343 *
2344 * This function bumps XDP Tx tail and/or flush redirect map, and
2345 * should be called when a batch of packets has been processed in the
2346 * napi loop.
2347 **/
i40e_finalize_xdp_rx(struct i40e_ring * rx_ring,unsigned int xdp_res)2348 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2349 {
2350 if (xdp_res & I40E_XDP_REDIR)
2351 xdp_do_flush();
2352
2353 if (xdp_res & I40E_XDP_TX) {
2354 struct i40e_ring *xdp_ring =
2355 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2356
2357 i40e_xdp_ring_update_tail(xdp_ring);
2358 }
2359 }
2360
2361 /**
2362 * i40e_inc_ntp: Advance the next_to_process index
2363 * @rx_ring: Rx ring
2364 **/
i40e_inc_ntp(struct i40e_ring * rx_ring)2365 static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2366 {
2367 u32 ntp = rx_ring->next_to_process + 1;
2368
2369 ntp = (ntp < rx_ring->count) ? ntp : 0;
2370 rx_ring->next_to_process = ntp;
2371 prefetch(I40E_RX_DESC(rx_ring, ntp));
2372 }
2373
2374 /**
2375 * i40e_add_xdp_frag: Add a frag to xdp_buff
2376 * @xdp: xdp_buff pointing to the data
2377 * @nr_frags: return number of buffers for the packet
2378 * @rx_buffer: rx_buffer holding data of the current frag
2379 * @size: size of data of current frag
2380 */
i40e_add_xdp_frag(struct xdp_buff * xdp,u32 * nr_frags,struct i40e_rx_buffer * rx_buffer,u32 size)2381 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2382 struct i40e_rx_buffer *rx_buffer, u32 size)
2383 {
2384 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2385
2386 if (!xdp_buff_has_frags(xdp)) {
2387 sinfo->nr_frags = 0;
2388 sinfo->xdp_frags_size = 0;
2389 xdp_buff_set_frags_flag(xdp);
2390 } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2391 /* Overflowing packet: All frags need to be dropped */
2392 return -ENOMEM;
2393 }
2394
2395 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2396 rx_buffer->page_offset, size);
2397
2398 sinfo->xdp_frags_size += size;
2399
2400 if (page_is_pfmemalloc(rx_buffer->page))
2401 xdp_buff_set_frag_pfmemalloc(xdp);
2402 *nr_frags = sinfo->nr_frags;
2403
2404 return 0;
2405 }
2406
2407 /**
2408 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2409 * @rx_ring: rx descriptor ring to transact packets on
2410 * @xdp: xdp_buff pointing to the data
2411 * @rx_buffer: rx_buffer of eop desc
2412 */
i40e_consume_xdp_buff(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct i40e_rx_buffer * rx_buffer)2413 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2414 struct xdp_buff *xdp,
2415 struct i40e_rx_buffer *rx_buffer)
2416 {
2417 i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2418 i40e_put_rx_buffer(rx_ring, rx_buffer);
2419 rx_ring->next_to_clean = rx_ring->next_to_process;
2420 xdp->data = NULL;
2421 }
2422
2423 /**
2424 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2425 * @rx_ring: rx descriptor ring to transact packets on
2426 * @budget: Total limit on number of packets to process
2427 * @rx_cleaned: Out parameter of the number of packets processed
2428 *
2429 * This function provides a "bounce buffer" approach to Rx interrupt
2430 * processing. The advantage to this is that on systems that have
2431 * expensive overhead for IOMMU access this provides a means of avoiding
2432 * it by maintaining the mapping of the page to the system.
2433 *
2434 * Returns amount of work completed
2435 **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget,unsigned int * rx_cleaned)2436 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2437 unsigned int *rx_cleaned)
2438 {
2439 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2440 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2441 u16 clean_threshold = rx_ring->count / 2;
2442 unsigned int offset = rx_ring->rx_offset;
2443 struct xdp_buff *xdp = &rx_ring->xdp;
2444 unsigned int xdp_xmit = 0;
2445 struct bpf_prog *xdp_prog;
2446 bool failure = false;
2447 int xdp_res = 0;
2448
2449 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2450
2451 while (likely(total_rx_packets < (unsigned int)budget)) {
2452 u16 ntp = rx_ring->next_to_process;
2453 struct i40e_rx_buffer *rx_buffer;
2454 union i40e_rx_desc *rx_desc;
2455 struct sk_buff *skb;
2456 unsigned int size;
2457 u32 nfrags = 0;
2458 bool neop;
2459 u64 qword;
2460
2461 /* return some buffers to hardware, one at a time is too slow */
2462 if (cleaned_count >= clean_threshold) {
2463 failure = failure ||
2464 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2465 cleaned_count = 0;
2466 }
2467
2468 rx_desc = I40E_RX_DESC(rx_ring, ntp);
2469
2470 /* status_error_len will always be zero for unused descriptors
2471 * because it's cleared in cleanup, and overlaps with hdr_addr
2472 * which is always zero because packet split isn't used, if the
2473 * hardware wrote DD then the length will be non-zero
2474 */
2475 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2476
2477 /* This memory barrier is needed to keep us from reading
2478 * any other fields out of the rx_desc until we have
2479 * verified the descriptor has been written back.
2480 */
2481 dma_rmb();
2482
2483 if (i40e_rx_is_programming_status(qword)) {
2484 i40e_clean_programming_status(rx_ring,
2485 rx_desc->raw.qword[0],
2486 qword);
2487 rx_buffer = i40e_rx_bi(rx_ring, ntp);
2488 i40e_inc_ntp(rx_ring);
2489 i40e_reuse_rx_page(rx_ring, rx_buffer);
2490 /* Update ntc and bump cleaned count if not in the
2491 * middle of mb packet.
2492 */
2493 if (rx_ring->next_to_clean == ntp) {
2494 rx_ring->next_to_clean =
2495 rx_ring->next_to_process;
2496 cleaned_count++;
2497 }
2498 continue;
2499 }
2500
2501 size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2502 if (!size)
2503 break;
2504
2505 i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2506 /* retrieve a buffer from the ring */
2507 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2508
2509 neop = i40e_is_non_eop(rx_ring, rx_desc);
2510 i40e_inc_ntp(rx_ring);
2511
2512 if (!xdp->data) {
2513 unsigned char *hard_start;
2514
2515 hard_start = page_address(rx_buffer->page) +
2516 rx_buffer->page_offset - offset;
2517 xdp_prepare_buff(xdp, hard_start, offset, size, true);
2518 #if (PAGE_SIZE > 4096)
2519 /* At larger PAGE_SIZE, frame_sz depend on len size */
2520 xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2521 #endif
2522 } else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2523 !neop) {
2524 /* Overflowing packet: Drop all frags on EOP */
2525 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2526 break;
2527 }
2528
2529 if (neop)
2530 continue;
2531
2532 xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2533
2534 if (xdp_res) {
2535 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2536
2537 if (unlikely(xdp_buff_has_frags(xdp))) {
2538 i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2539 size = xdp_get_buff_len(xdp);
2540 } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2541 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2542 } else {
2543 rx_buffer->pagecnt_bias++;
2544 }
2545 total_rx_bytes += size;
2546 } else {
2547 if (ring_uses_build_skb(rx_ring))
2548 skb = i40e_build_skb(rx_ring, xdp);
2549 else
2550 skb = i40e_construct_skb(rx_ring, xdp);
2551
2552 /* drop if we failed to retrieve a buffer */
2553 if (!skb) {
2554 rx_ring->rx_stats.alloc_buff_failed++;
2555 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2556 break;
2557 }
2558
2559 if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2560 goto process_next;
2561
2562 /* probably a little skewed due to removing CRC */
2563 total_rx_bytes += skb->len;
2564
2565 /* populate checksum, VLAN, and protocol */
2566 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2567
2568 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2569 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2570 }
2571
2572 /* update budget accounting */
2573 total_rx_packets++;
2574 process_next:
2575 cleaned_count += nfrags + 1;
2576 i40e_put_rx_buffer(rx_ring, rx_buffer);
2577 rx_ring->next_to_clean = rx_ring->next_to_process;
2578
2579 xdp->data = NULL;
2580 }
2581
2582 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2583
2584 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2585
2586 *rx_cleaned = total_rx_packets;
2587
2588 /* guarantee a trip back through this routine if there was a failure */
2589 return failure ? budget : (int)total_rx_packets;
2590 }
2591
2592 /**
2593 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2594 * @itr_idx: interrupt throttling index
2595 * @interval: interrupt throttling interval value in usecs
2596 * @force_swint: force software interrupt
2597 *
2598 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2599 * is used to update interrupt throttling interval for specified ITR index
2600 * and optionally enforces a software interrupt. If the @itr_idx is equal
2601 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2602 * parameter is taken into account. If the interval change and enforced
2603 * software interrupt are not requested then the built value just enables
2604 * appropriate vector interrupt.
2605 **/
i40e_buildreg_itr(enum i40e_dyn_idx itr_idx,u16 interval,bool force_swint)2606 static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2607 bool force_swint)
2608 {
2609 u32 val;
2610
2611 /* We don't bother with setting the CLEARPBA bit as the data sheet
2612 * points out doing so is "meaningless since it was already
2613 * auto-cleared". The auto-clearing happens when the interrupt is
2614 * asserted.
2615 *
2616 * Hardware errata 28 for also indicates that writing to a
2617 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2618 * an event in the PBA anyway so we need to rely on the automask
2619 * to hold pending events for us until the interrupt is re-enabled
2620 *
2621 * We have to shift the given value as it is reported in microseconds
2622 * and the register value is recorded in 2 microsecond units.
2623 */
2624 interval >>= 1;
2625
2626 /* 1. Enable vector interrupt
2627 * 2. Update the interval for the specified ITR index
2628 * (I40E_ITR_NONE in the register is used to indicate that
2629 * no interval update is requested)
2630 */
2631 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2632 FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2633 FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2634
2635 /* 3. Enforce software interrupt trigger if requested
2636 * (These software interrupts rate is limited by ITR2 that is
2637 * set to 20K interrupts per second)
2638 */
2639 if (force_swint)
2640 val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2641 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2642 FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2643 I40E_SW_ITR);
2644
2645 return val;
2646 }
2647
2648 /* The act of updating the ITR will cause it to immediately trigger. In order
2649 * to prevent this from throwing off adaptive update statistics we defer the
2650 * update so that it can only happen so often. So after either Tx or Rx are
2651 * updated we make the adaptive scheme wait until either the ITR completely
2652 * expires via the next_update expiration or we have been through at least
2653 * 3 interrupts.
2654 */
2655 #define ITR_COUNTDOWN_START 3
2656
2657 /**
2658 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2659 * @vsi: the VSI we care about
2660 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2661 *
2662 **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)2663 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2664 struct i40e_q_vector *q_vector)
2665 {
2666 enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2667 struct i40e_hw *hw = &vsi->back->hw;
2668 u16 interval = 0;
2669 u32 itr_val;
2670
2671 /* If we don't have MSIX, then we only need to re-enable icr0 */
2672 if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2673 i40e_irq_dynamic_enable_icr0(vsi->back);
2674 return;
2675 }
2676
2677 /* These will do nothing if dynamic updates are not enabled */
2678 i40e_update_itr(q_vector, &q_vector->tx);
2679 i40e_update_itr(q_vector, &q_vector->rx);
2680
2681 /* This block of logic allows us to get away with only updating
2682 * one ITR value with each interrupt. The idea is to perform a
2683 * pseudo-lazy update with the following criteria.
2684 *
2685 * 1. Rx is given higher priority than Tx if both are in same state
2686 * 2. If we must reduce an ITR that is given highest priority.
2687 * 3. We then give priority to increasing ITR based on amount.
2688 */
2689 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2690 /* Rx ITR needs to be reduced, this is highest priority */
2691 itr_idx = I40E_RX_ITR;
2692 interval = q_vector->rx.target_itr;
2693 q_vector->rx.current_itr = q_vector->rx.target_itr;
2694 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2695 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2696 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2697 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2698 /* Tx ITR needs to be reduced, this is second priority
2699 * Tx ITR needs to be increased more than Rx, fourth priority
2700 */
2701 itr_idx = I40E_TX_ITR;
2702 interval = q_vector->tx.target_itr;
2703 q_vector->tx.current_itr = q_vector->tx.target_itr;
2704 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2705 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2706 /* Rx ITR needs to be increased, third priority */
2707 itr_idx = I40E_RX_ITR;
2708 interval = q_vector->rx.target_itr;
2709 q_vector->rx.current_itr = q_vector->rx.target_itr;
2710 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2711 } else {
2712 /* No ITR update, lowest priority */
2713 if (q_vector->itr_countdown)
2714 q_vector->itr_countdown--;
2715 }
2716
2717 /* Do not update interrupt control register if VSI is down */
2718 if (test_bit(__I40E_VSI_DOWN, vsi->state))
2719 return;
2720
2721 /* Update ITR interval if necessary and enforce software interrupt
2722 * if we are exiting busy poll.
2723 */
2724 if (q_vector->in_busy_poll) {
2725 itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2726 q_vector->in_busy_poll = false;
2727 } else {
2728 itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2729 }
2730 wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2731 }
2732
2733 /**
2734 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2735 * @napi: napi struct with our devices info in it
2736 * @budget: amount of work driver is allowed to do this pass, in packets
2737 *
2738 * This function will clean all queues associated with a q_vector.
2739 *
2740 * Returns the amount of work done
2741 **/
i40e_napi_poll(struct napi_struct * napi,int budget)2742 int i40e_napi_poll(struct napi_struct *napi, int budget)
2743 {
2744 struct i40e_q_vector *q_vector =
2745 container_of(napi, struct i40e_q_vector, napi);
2746 struct i40e_vsi *vsi = q_vector->vsi;
2747 struct i40e_ring *ring;
2748 bool tx_clean_complete = true;
2749 bool rx_clean_complete = true;
2750 unsigned int tx_cleaned = 0;
2751 unsigned int rx_cleaned = 0;
2752 bool clean_complete = true;
2753 bool arm_wb = false;
2754 int budget_per_ring;
2755 int work_done = 0;
2756
2757 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2758 napi_complete(napi);
2759 return 0;
2760 }
2761
2762 /* Since the actual Tx work is minimal, we can give the Tx a larger
2763 * budget and be more aggressive about cleaning up the Tx descriptors.
2764 */
2765 i40e_for_each_ring(ring, q_vector->tx) {
2766 bool wd = ring->xsk_pool ?
2767 i40e_clean_xdp_tx_irq(vsi, ring) :
2768 i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2769
2770 if (!wd) {
2771 clean_complete = tx_clean_complete = false;
2772 continue;
2773 }
2774 arm_wb |= ring->arm_wb;
2775 ring->arm_wb = false;
2776 }
2777
2778 /* Handle case where we are called by netpoll with a budget of 0 */
2779 if (budget <= 0)
2780 goto tx_only;
2781
2782 /* normally we have 1 Rx ring per q_vector */
2783 if (unlikely(q_vector->num_ringpairs > 1))
2784 /* We attempt to distribute budget to each Rx queue fairly, but
2785 * don't allow the budget to go below 1 because that would exit
2786 * polling early.
2787 */
2788 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2789 else
2790 /* Max of 1 Rx ring in this q_vector so give it the budget */
2791 budget_per_ring = budget;
2792
2793 i40e_for_each_ring(ring, q_vector->rx) {
2794 int cleaned = ring->xsk_pool ?
2795 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2796 i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2797
2798 work_done += cleaned;
2799 /* if we clean as many as budgeted, we must not be done */
2800 if (cleaned >= budget_per_ring)
2801 clean_complete = rx_clean_complete = false;
2802 }
2803
2804 if (!i40e_enabled_xdp_vsi(vsi))
2805 trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2806 tx_cleaned, rx_clean_complete, tx_clean_complete);
2807
2808 /* If work not completed, return budget and polling will return */
2809 if (!clean_complete) {
2810 int cpu_id = smp_processor_id();
2811
2812 /* It is possible that the interrupt affinity has changed but,
2813 * if the cpu is pegged at 100%, polling will never exit while
2814 * traffic continues and the interrupt will be stuck on this
2815 * cpu. We check to make sure affinity is correct before we
2816 * continue to poll, otherwise we must stop polling so the
2817 * interrupt can move to the correct cpu.
2818 */
2819 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2820 /* Tell napi that we are done polling */
2821 napi_complete_done(napi, work_done);
2822
2823 /* Force an interrupt */
2824 i40e_force_wb(vsi, q_vector);
2825
2826 /* Return budget-1 so that polling stops */
2827 return budget - 1;
2828 }
2829 tx_only:
2830 if (arm_wb) {
2831 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2832 i40e_enable_wb_on_itr(vsi, q_vector);
2833 }
2834 return budget;
2835 }
2836
2837 if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2838 q_vector->arm_wb_state = false;
2839
2840 /* Exit the polling mode, but don't re-enable interrupts if stack might
2841 * poll us due to busy-polling
2842 */
2843 if (likely(napi_complete_done(napi, work_done)))
2844 i40e_update_enable_itr(vsi, q_vector);
2845 else
2846 q_vector->in_busy_poll = true;
2847
2848 return min(work_done, budget - 1);
2849 }
2850
2851 /**
2852 * i40e_atr - Add a Flow Director ATR filter
2853 * @tx_ring: ring to add programming descriptor to
2854 * @skb: send buffer
2855 * @tx_flags: send tx flags
2856 **/
i40e_atr(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)2857 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2858 u32 tx_flags)
2859 {
2860 struct i40e_filter_program_desc *fdir_desc;
2861 struct i40e_pf *pf = tx_ring->vsi->back;
2862 union {
2863 unsigned char *network;
2864 struct iphdr *ipv4;
2865 struct ipv6hdr *ipv6;
2866 } hdr;
2867 struct tcphdr *th;
2868 unsigned int hlen;
2869 u32 flex_ptype, dtype_cmd;
2870 int l4_proto;
2871 u16 i;
2872
2873 /* make sure ATR is enabled */
2874 if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2875 return;
2876
2877 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2878 return;
2879
2880 /* if sampling is disabled do nothing */
2881 if (!tx_ring->atr_sample_rate)
2882 return;
2883
2884 /* Currently only IPv4/IPv6 with TCP is supported */
2885 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2886 return;
2887
2888 /* snag network header to get L4 type and address */
2889 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2890 skb_inner_network_header(skb) : skb_network_header(skb);
2891
2892 /* Note: tx_flags gets modified to reflect inner protocols in
2893 * tx_enable_csum function if encap is enabled.
2894 */
2895 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2896 /* access ihl as u8 to avoid unaligned access on ia64 */
2897 hlen = (hdr.network[0] & 0x0F) << 2;
2898 l4_proto = hdr.ipv4->protocol;
2899 } else {
2900 /* find the start of the innermost ipv6 header */
2901 unsigned int inner_hlen = hdr.network - skb->data;
2902 unsigned int h_offset = inner_hlen;
2903
2904 /* this function updates h_offset to the end of the header */
2905 l4_proto =
2906 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2907 /* hlen will contain our best estimate of the tcp header */
2908 hlen = h_offset - inner_hlen;
2909 }
2910
2911 if (l4_proto != IPPROTO_TCP)
2912 return;
2913
2914 th = (struct tcphdr *)(hdr.network + hlen);
2915
2916 /* Due to lack of space, no more new filters can be programmed */
2917 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2918 return;
2919 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2920 /* HW ATR eviction will take care of removing filters on FIN
2921 * and RST packets.
2922 */
2923 if (th->fin || th->rst)
2924 return;
2925 }
2926
2927 tx_ring->atr_count++;
2928
2929 /* sample on all syn/fin/rst packets or once every atr sample rate */
2930 if (!th->fin &&
2931 !th->syn &&
2932 !th->rst &&
2933 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2934 return;
2935
2936 tx_ring->atr_count = 0;
2937
2938 /* grab the next descriptor */
2939 i = tx_ring->next_to_use;
2940 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2941
2942 i++;
2943 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2944
2945 flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2946 tx_ring->queue_index);
2947 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2948 (LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP <<
2949 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2950 (LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP <<
2951 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2952
2953 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2954
2955 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2956
2957 dtype_cmd |= (th->fin || th->rst) ?
2958 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2959 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2960 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2961 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2962
2963 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2964 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2965
2966 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2967 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2968
2969 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2970 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2971 dtype_cmd |=
2972 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2973 I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
2974 else
2975 dtype_cmd |=
2976 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2977 I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
2978
2979 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2980 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2981
2982 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2983 fdir_desc->rsvd = cpu_to_le32(0);
2984 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2985 fdir_desc->fd_id = cpu_to_le32(0);
2986 }
2987
2988 /**
2989 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2990 * @skb: send buffer
2991 * @tx_ring: ring to send buffer on
2992 * @flags: the tx flags to be set
2993 *
2994 * Checks the skb and set up correspondingly several generic transmit flags
2995 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2996 *
2997 * Returns error code indicate the frame should be dropped upon error and the
2998 * otherwise returns 0 to indicate the flags has been set properly.
2999 **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)3000 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3001 struct i40e_ring *tx_ring,
3002 u32 *flags)
3003 {
3004 __be16 protocol = skb->protocol;
3005 u32 tx_flags = 0;
3006
3007 if (protocol == htons(ETH_P_8021Q) &&
3008 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3009 /* When HW VLAN acceleration is turned off by the user the
3010 * stack sets the protocol to 8021q so that the driver
3011 * can take any steps required to support the SW only
3012 * VLAN handling. In our case the driver doesn't need
3013 * to take any further steps so just set the protocol
3014 * to the encapsulated ethertype.
3015 */
3016 skb->protocol = vlan_get_protocol(skb);
3017 goto out;
3018 }
3019
3020 /* if we have a HW VLAN tag being added, default to the HW one */
3021 if (skb_vlan_tag_present(skb)) {
3022 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3023 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3024 /* else if it is a SW VLAN, check the next protocol and store the tag */
3025 } else if (protocol == htons(ETH_P_8021Q)) {
3026 struct vlan_hdr *vhdr, _vhdr;
3027
3028 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3029 if (!vhdr)
3030 return -EINVAL;
3031
3032 protocol = vhdr->h_vlan_encapsulated_proto;
3033 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3034 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3035 }
3036
3037 if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3038 goto out;
3039
3040 /* Insert 802.1p priority into VLAN header */
3041 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3042 (skb->priority != TC_PRIO_CONTROL)) {
3043 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3044 tx_flags |= (skb->priority & 0x7) <<
3045 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3046 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3047 struct vlan_ethhdr *vhdr;
3048 int rc;
3049
3050 rc = skb_cow_head(skb, 0);
3051 if (rc < 0)
3052 return rc;
3053 vhdr = skb_vlan_eth_hdr(skb);
3054 vhdr->h_vlan_TCI = htons(tx_flags >>
3055 I40E_TX_FLAGS_VLAN_SHIFT);
3056 } else {
3057 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3058 }
3059 }
3060
3061 out:
3062 *flags = tx_flags;
3063 return 0;
3064 }
3065
3066 /**
3067 * i40e_tso - set up the tso context descriptor
3068 * @first: pointer to first Tx buffer for xmit
3069 * @hdr_len: ptr to the size of the packet header
3070 * @cd_type_cmd_tso_mss: Quad Word 1
3071 *
3072 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3073 **/
i40e_tso(struct i40e_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)3074 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3075 u64 *cd_type_cmd_tso_mss)
3076 {
3077 struct sk_buff *skb = first->skb;
3078 u64 cd_cmd, cd_tso_len, cd_mss;
3079 __be16 protocol;
3080 union {
3081 struct iphdr *v4;
3082 struct ipv6hdr *v6;
3083 unsigned char *hdr;
3084 } ip;
3085 union {
3086 struct tcphdr *tcp;
3087 struct udphdr *udp;
3088 unsigned char *hdr;
3089 } l4;
3090 u32 paylen, l4_offset;
3091 u16 gso_size;
3092 int err;
3093
3094 if (skb->ip_summed != CHECKSUM_PARTIAL)
3095 return 0;
3096
3097 if (!skb_is_gso(skb))
3098 return 0;
3099
3100 err = skb_cow_head(skb, 0);
3101 if (err < 0)
3102 return err;
3103
3104 protocol = vlan_get_protocol(skb);
3105
3106 if (eth_p_mpls(protocol))
3107 ip.hdr = skb_inner_network_header(skb);
3108 else
3109 ip.hdr = skb_network_header(skb);
3110 l4.hdr = skb_checksum_start(skb);
3111
3112 /* initialize outer IP header fields */
3113 if (ip.v4->version == 4) {
3114 ip.v4->tot_len = 0;
3115 ip.v4->check = 0;
3116
3117 first->tx_flags |= I40E_TX_FLAGS_TSO;
3118 } else {
3119 ip.v6->payload_len = 0;
3120 first->tx_flags |= I40E_TX_FLAGS_TSO;
3121 }
3122
3123 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3124 SKB_GSO_GRE_CSUM |
3125 SKB_GSO_IPXIP4 |
3126 SKB_GSO_IPXIP6 |
3127 SKB_GSO_UDP_TUNNEL |
3128 SKB_GSO_UDP_TUNNEL_CSUM)) {
3129 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3130 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3131 l4.udp->len = 0;
3132
3133 /* determine offset of outer transport header */
3134 l4_offset = l4.hdr - skb->data;
3135
3136 /* remove payload length from outer checksum */
3137 paylen = skb->len - l4_offset;
3138 csum_replace_by_diff(&l4.udp->check,
3139 (__force __wsum)htonl(paylen));
3140 }
3141
3142 /* reset pointers to inner headers */
3143 ip.hdr = skb_inner_network_header(skb);
3144 l4.hdr = skb_inner_transport_header(skb);
3145
3146 /* initialize inner IP header fields */
3147 if (ip.v4->version == 4) {
3148 ip.v4->tot_len = 0;
3149 ip.v4->check = 0;
3150 } else {
3151 ip.v6->payload_len = 0;
3152 }
3153 }
3154
3155 /* determine offset of inner transport header */
3156 l4_offset = l4.hdr - skb->data;
3157
3158 /* remove payload length from inner checksum */
3159 paylen = skb->len - l4_offset;
3160
3161 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3162 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3163 /* compute length of segmentation header */
3164 *hdr_len = sizeof(*l4.udp) + l4_offset;
3165 } else {
3166 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3167 /* compute length of segmentation header */
3168 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3169 }
3170
3171 /* pull values out of skb_shinfo */
3172 gso_size = skb_shinfo(skb)->gso_size;
3173
3174 /* update GSO size and bytecount with header size */
3175 first->gso_segs = skb_shinfo(skb)->gso_segs;
3176 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3177
3178 /* find the field values */
3179 cd_cmd = I40E_TX_CTX_DESC_TSO;
3180 cd_tso_len = skb->len - *hdr_len;
3181 cd_mss = gso_size;
3182 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3183 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3184 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3185 return 1;
3186 }
3187
3188 /**
3189 * i40e_tsyn - set up the tsyn context descriptor
3190 * @tx_ring: ptr to the ring to send
3191 * @skb: ptr to the skb we're sending
3192 * @tx_flags: the collected send information
3193 * @cd_type_cmd_tso_mss: Quad Word 1
3194 *
3195 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3196 **/
i40e_tsyn(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u64 * cd_type_cmd_tso_mss)3197 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3198 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3199 {
3200 struct i40e_pf *pf;
3201
3202 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3203 return 0;
3204
3205 /* Tx timestamps cannot be sampled when doing TSO */
3206 if (tx_flags & I40E_TX_FLAGS_TSO)
3207 return 0;
3208
3209 /* only timestamp the outbound packet if the user has requested it and
3210 * we are not already transmitting a packet to be timestamped
3211 */
3212 pf = i40e_netdev_to_pf(tx_ring->netdev);
3213 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3214 return 0;
3215
3216 if (pf->ptp_tx &&
3217 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3218 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3219 pf->ptp_tx_start = jiffies;
3220 pf->ptp_tx_skb = skb_get(skb);
3221 } else {
3222 pf->tx_hwtstamp_skipped++;
3223 return 0;
3224 }
3225
3226 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3227 I40E_TXD_CTX_QW1_CMD_SHIFT;
3228
3229 return 1;
3230 }
3231
3232 /**
3233 * i40e_tx_enable_csum - Enable Tx checksum offloads
3234 * @skb: send buffer
3235 * @tx_flags: pointer to Tx flags currently set
3236 * @td_cmd: Tx descriptor command bits to set
3237 * @td_offset: Tx descriptor header offsets to set
3238 * @tx_ring: Tx descriptor ring
3239 * @cd_tunneling: ptr to context desc bits
3240 **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)3241 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3242 u32 *td_cmd, u32 *td_offset,
3243 struct i40e_ring *tx_ring,
3244 u32 *cd_tunneling)
3245 {
3246 union {
3247 struct iphdr *v4;
3248 struct ipv6hdr *v6;
3249 unsigned char *hdr;
3250 } ip;
3251 union {
3252 struct tcphdr *tcp;
3253 struct udphdr *udp;
3254 unsigned char *hdr;
3255 } l4;
3256 unsigned char *exthdr;
3257 u32 offset, cmd = 0;
3258 __be16 frag_off;
3259 __be16 protocol;
3260 u8 l4_proto = 0;
3261
3262 if (skb->ip_summed != CHECKSUM_PARTIAL)
3263 return 0;
3264
3265 protocol = vlan_get_protocol(skb);
3266
3267 if (eth_p_mpls(protocol)) {
3268 ip.hdr = skb_inner_network_header(skb);
3269 l4.hdr = skb_checksum_start(skb);
3270 } else {
3271 ip.hdr = skb_network_header(skb);
3272 l4.hdr = skb_transport_header(skb);
3273 }
3274
3275 /* set the tx_flags to indicate the IP protocol type. this is
3276 * required so that checksum header computation below is accurate.
3277 */
3278 if (ip.v4->version == 4)
3279 *tx_flags |= I40E_TX_FLAGS_IPV4;
3280 else
3281 *tx_flags |= I40E_TX_FLAGS_IPV6;
3282
3283 /* compute outer L2 header size */
3284 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3285
3286 if (skb->encapsulation) {
3287 u32 tunnel = 0;
3288 /* define outer network header type */
3289 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3290 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3291 I40E_TX_CTX_EXT_IP_IPV4 :
3292 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3293
3294 l4_proto = ip.v4->protocol;
3295 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3296 int ret;
3297
3298 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3299
3300 exthdr = ip.hdr + sizeof(*ip.v6);
3301 l4_proto = ip.v6->nexthdr;
3302 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3303 &l4_proto, &frag_off);
3304 if (ret < 0)
3305 return -1;
3306 }
3307
3308 /* define outer transport */
3309 switch (l4_proto) {
3310 case IPPROTO_UDP:
3311 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3312 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3313 break;
3314 case IPPROTO_GRE:
3315 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3316 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3317 break;
3318 case IPPROTO_IPIP:
3319 case IPPROTO_IPV6:
3320 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3321 l4.hdr = skb_inner_network_header(skb);
3322 break;
3323 default:
3324 if (*tx_flags & I40E_TX_FLAGS_TSO)
3325 return -1;
3326
3327 skb_checksum_help(skb);
3328 return 0;
3329 }
3330
3331 /* compute outer L3 header size */
3332 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3333 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3334
3335 /* switch IP header pointer from outer to inner header */
3336 ip.hdr = skb_inner_network_header(skb);
3337
3338 /* compute tunnel header size */
3339 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3340 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3341
3342 /* indicate if we need to offload outer UDP header */
3343 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3344 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3345 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3346 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3347
3348 /* record tunnel offload values */
3349 *cd_tunneling |= tunnel;
3350
3351 /* switch L4 header pointer from outer to inner */
3352 l4.hdr = skb_inner_transport_header(skb);
3353 l4_proto = 0;
3354
3355 /* reset type as we transition from outer to inner headers */
3356 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3357 if (ip.v4->version == 4)
3358 *tx_flags |= I40E_TX_FLAGS_IPV4;
3359 if (ip.v6->version == 6)
3360 *tx_flags |= I40E_TX_FLAGS_IPV6;
3361 }
3362
3363 /* Enable IP checksum offloads */
3364 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3365 l4_proto = ip.v4->protocol;
3366 /* the stack computes the IP header already, the only time we
3367 * need the hardware to recompute it is in the case of TSO.
3368 */
3369 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3370 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3371 I40E_TX_DESC_CMD_IIPT_IPV4;
3372 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3373 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3374
3375 exthdr = ip.hdr + sizeof(*ip.v6);
3376 l4_proto = ip.v6->nexthdr;
3377 if (l4.hdr != exthdr)
3378 ipv6_skip_exthdr(skb, exthdr - skb->data,
3379 &l4_proto, &frag_off);
3380 }
3381
3382 /* compute inner L3 header size */
3383 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3384
3385 /* Enable L4 checksum offloads */
3386 switch (l4_proto) {
3387 case IPPROTO_TCP:
3388 /* enable checksum offloads */
3389 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3390 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3391 break;
3392 case IPPROTO_SCTP:
3393 /* enable SCTP checksum offload */
3394 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3395 offset |= (sizeof(struct sctphdr) >> 2) <<
3396 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3397 break;
3398 case IPPROTO_UDP:
3399 /* enable UDP checksum offload */
3400 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3401 offset |= (sizeof(struct udphdr) >> 2) <<
3402 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3403 break;
3404 default:
3405 if (*tx_flags & I40E_TX_FLAGS_TSO)
3406 return -1;
3407 skb_checksum_help(skb);
3408 return 0;
3409 }
3410
3411 *td_cmd |= cmd;
3412 *td_offset |= offset;
3413
3414 return 1;
3415 }
3416
3417 /**
3418 * i40e_create_tx_ctx - Build the Tx context descriptor
3419 * @tx_ring: ring to create the descriptor on
3420 * @cd_type_cmd_tso_mss: Quad Word 1
3421 * @cd_tunneling: Quad Word 0 - bits 0-31
3422 * @cd_l2tag2: Quad Word 0 - bits 32-63
3423 **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)3424 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3425 const u64 cd_type_cmd_tso_mss,
3426 const u32 cd_tunneling, const u32 cd_l2tag2)
3427 {
3428 struct i40e_tx_context_desc *context_desc;
3429 int i = tx_ring->next_to_use;
3430
3431 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3432 !cd_tunneling && !cd_l2tag2)
3433 return;
3434
3435 /* grab the next descriptor */
3436 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3437
3438 i++;
3439 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3440
3441 /* cpu_to_le32 and assign to struct fields */
3442 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3443 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3444 context_desc->rsvd = cpu_to_le16(0);
3445 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3446 }
3447
3448 /**
3449 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3450 * @tx_ring: the ring to be checked
3451 * @size: the size buffer we want to assure is available
3452 *
3453 * Returns -EBUSY if a stop is needed, else 0
3454 **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)3455 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3456 {
3457 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3458 /* Memory barrier before checking head and tail */
3459 smp_mb();
3460
3461 ++tx_ring->tx_stats.tx_stopped;
3462
3463 /* Check again in a case another CPU has just made room available. */
3464 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3465 return -EBUSY;
3466
3467 /* A reprieve! - use start_queue because it doesn't call schedule */
3468 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3469 ++tx_ring->tx_stats.restart_queue;
3470 return 0;
3471 }
3472
3473 /**
3474 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3475 * @skb: send buffer
3476 *
3477 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3478 * and so we need to figure out the cases where we need to linearize the skb.
3479 *
3480 * For TSO we need to count the TSO header and segment payload separately.
3481 * As such we need to check cases where we have 7 fragments or more as we
3482 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3483 * the segment payload in the first descriptor, and another 7 for the
3484 * fragments.
3485 **/
__i40e_chk_linearize(struct sk_buff * skb)3486 bool __i40e_chk_linearize(struct sk_buff *skb)
3487 {
3488 const skb_frag_t *frag, *stale;
3489 int nr_frags, sum;
3490
3491 /* no need to check if number of frags is less than 7 */
3492 nr_frags = skb_shinfo(skb)->nr_frags;
3493 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3494 return false;
3495
3496 /* We need to walk through the list and validate that each group
3497 * of 6 fragments totals at least gso_size.
3498 */
3499 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3500 frag = &skb_shinfo(skb)->frags[0];
3501
3502 /* Initialize size to the negative value of gso_size minus 1. We
3503 * use this as the worst case scenerio in which the frag ahead
3504 * of us only provides one byte which is why we are limited to 6
3505 * descriptors for a single transmit as the header and previous
3506 * fragment are already consuming 2 descriptors.
3507 */
3508 sum = 1 - skb_shinfo(skb)->gso_size;
3509
3510 /* Add size of frags 0 through 4 to create our initial sum */
3511 sum += skb_frag_size(frag++);
3512 sum += skb_frag_size(frag++);
3513 sum += skb_frag_size(frag++);
3514 sum += skb_frag_size(frag++);
3515 sum += skb_frag_size(frag++);
3516
3517 /* Walk through fragments adding latest fragment, testing it, and
3518 * then removing stale fragments from the sum.
3519 */
3520 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3521 int stale_size = skb_frag_size(stale);
3522
3523 sum += skb_frag_size(frag++);
3524
3525 /* The stale fragment may present us with a smaller
3526 * descriptor than the actual fragment size. To account
3527 * for that we need to remove all the data on the front and
3528 * figure out what the remainder would be in the last
3529 * descriptor associated with the fragment.
3530 */
3531 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3532 int align_pad = -(skb_frag_off(stale)) &
3533 (I40E_MAX_READ_REQ_SIZE - 1);
3534
3535 sum -= align_pad;
3536 stale_size -= align_pad;
3537
3538 do {
3539 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3540 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3541 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3542 }
3543
3544 /* if sum is negative we failed to make sufficient progress */
3545 if (sum < 0)
3546 return true;
3547
3548 if (!nr_frags--)
3549 break;
3550
3551 sum -= stale_size;
3552 }
3553
3554 return false;
3555 }
3556
3557 /**
3558 * i40e_tx_map - Build the Tx descriptor
3559 * @tx_ring: ring to send buffer on
3560 * @skb: send buffer
3561 * @first: first buffer info buffer to use
3562 * @tx_flags: collected send information
3563 * @hdr_len: size of the packet header
3564 * @td_cmd: the command field in the descriptor
3565 * @td_offset: offset for checksum or crc
3566 *
3567 * Returns 0 on success, -1 on failure to DMA
3568 **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)3569 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3570 struct i40e_tx_buffer *first, u32 tx_flags,
3571 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3572 {
3573 unsigned int data_len = skb->data_len;
3574 unsigned int size = skb_headlen(skb);
3575 skb_frag_t *frag;
3576 struct i40e_tx_buffer *tx_bi;
3577 struct i40e_tx_desc *tx_desc;
3578 u16 i = tx_ring->next_to_use;
3579 u32 td_tag = 0;
3580 dma_addr_t dma;
3581 u16 desc_count = 1;
3582
3583 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3584 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3585 td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
3586 }
3587
3588 first->tx_flags = tx_flags;
3589
3590 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3591
3592 tx_desc = I40E_TX_DESC(tx_ring, i);
3593 tx_bi = first;
3594
3595 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3596 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3597
3598 if (dma_mapping_error(tx_ring->dev, dma))
3599 goto dma_error;
3600
3601 /* record length, and DMA address */
3602 dma_unmap_len_set(tx_bi, len, size);
3603 dma_unmap_addr_set(tx_bi, dma, dma);
3604
3605 /* align size to end of page */
3606 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3607 tx_desc->buffer_addr = cpu_to_le64(dma);
3608
3609 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3610 tx_desc->cmd_type_offset_bsz =
3611 build_ctob(td_cmd, td_offset,
3612 max_data, td_tag);
3613
3614 tx_desc++;
3615 i++;
3616 desc_count++;
3617
3618 if (i == tx_ring->count) {
3619 tx_desc = I40E_TX_DESC(tx_ring, 0);
3620 i = 0;
3621 }
3622
3623 dma += max_data;
3624 size -= max_data;
3625
3626 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3627 tx_desc->buffer_addr = cpu_to_le64(dma);
3628 }
3629
3630 if (likely(!data_len))
3631 break;
3632
3633 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3634 size, td_tag);
3635
3636 tx_desc++;
3637 i++;
3638 desc_count++;
3639
3640 if (i == tx_ring->count) {
3641 tx_desc = I40E_TX_DESC(tx_ring, 0);
3642 i = 0;
3643 }
3644
3645 size = skb_frag_size(frag);
3646 data_len -= size;
3647
3648 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3649 DMA_TO_DEVICE);
3650
3651 tx_bi = &tx_ring->tx_bi[i];
3652 }
3653
3654 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3655
3656 i++;
3657 if (i == tx_ring->count)
3658 i = 0;
3659
3660 tx_ring->next_to_use = i;
3661
3662 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3663
3664 /* write last descriptor with EOP bit */
3665 td_cmd |= I40E_TX_DESC_CMD_EOP;
3666
3667 /* We OR these values together to check both against 4 (WB_STRIDE)
3668 * below. This is safe since we don't re-use desc_count afterwards.
3669 */
3670 desc_count |= ++tx_ring->packet_stride;
3671
3672 if (desc_count >= WB_STRIDE) {
3673 /* write last descriptor with RS bit set */
3674 td_cmd |= I40E_TX_DESC_CMD_RS;
3675 tx_ring->packet_stride = 0;
3676 }
3677
3678 tx_desc->cmd_type_offset_bsz =
3679 build_ctob(td_cmd, td_offset, size, td_tag);
3680
3681 skb_tx_timestamp(skb);
3682
3683 /* Force memory writes to complete before letting h/w know there
3684 * are new descriptors to fetch.
3685 *
3686 * We also use this memory barrier to make certain all of the
3687 * status bits have been updated before next_to_watch is written.
3688 */
3689 wmb();
3690
3691 /* set next_to_watch value indicating a packet is present */
3692 first->next_to_watch = tx_desc;
3693
3694 /* notify HW of packet */
3695 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3696 writel(i, tx_ring->tail);
3697 }
3698
3699 return 0;
3700
3701 dma_error:
3702 dev_info(tx_ring->dev, "TX DMA map failed\n");
3703
3704 /* clear dma mappings for failed tx_bi map */
3705 for (;;) {
3706 tx_bi = &tx_ring->tx_bi[i];
3707 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3708 if (tx_bi == first)
3709 break;
3710 if (i == 0)
3711 i = tx_ring->count;
3712 i--;
3713 }
3714
3715 tx_ring->next_to_use = i;
3716
3717 return -1;
3718 }
3719
i40e_swdcb_skb_tx_hash(struct net_device * dev,const struct sk_buff * skb,u16 num_tx_queues)3720 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3721 const struct sk_buff *skb,
3722 u16 num_tx_queues)
3723 {
3724 u32 jhash_initval_salt = 0xd631614b;
3725 u32 hash;
3726
3727 if (skb->sk && skb->sk->sk_hash)
3728 hash = skb->sk->sk_hash;
3729 else
3730 hash = (__force u16)skb->protocol ^ skb->hash;
3731
3732 hash = jhash_1word(hash, jhash_initval_salt);
3733
3734 return (u16)(((u64)hash * num_tx_queues) >> 32);
3735 }
3736
i40e_lan_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device __always_unused * sb_dev)3737 u16 i40e_lan_select_queue(struct net_device *netdev,
3738 struct sk_buff *skb,
3739 struct net_device __always_unused *sb_dev)
3740 {
3741 struct i40e_netdev_priv *np = netdev_priv(netdev);
3742 struct i40e_vsi *vsi = np->vsi;
3743 struct i40e_hw *hw;
3744 u16 qoffset;
3745 u16 qcount;
3746 u8 tclass;
3747 u16 hash;
3748 u8 prio;
3749
3750 /* is DCB enabled at all? */
3751 if (vsi->tc_config.numtc == 1 ||
3752 i40e_is_tc_mqprio_enabled(vsi->back))
3753 return netdev_pick_tx(netdev, skb, sb_dev);
3754
3755 prio = skb->priority;
3756 hw = &vsi->back->hw;
3757 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3758 /* sanity check */
3759 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3760 tclass = 0;
3761
3762 /* select a queue assigned for the given TC */
3763 qcount = vsi->tc_config.tc_info[tclass].qcount;
3764 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3765
3766 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3767 return qoffset + hash;
3768 }
3769
3770 /**
3771 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3772 * @xdpf: data to transmit
3773 * @xdp_ring: XDP Tx ring
3774 **/
i40e_xmit_xdp_ring(struct xdp_frame * xdpf,struct i40e_ring * xdp_ring)3775 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3776 struct i40e_ring *xdp_ring)
3777 {
3778 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3779 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3780 u16 i = 0, index = xdp_ring->next_to_use;
3781 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3782 struct i40e_tx_buffer *tx_bi = tx_head;
3783 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3784 void *data = xdpf->data;
3785 u32 size = xdpf->len;
3786
3787 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3788 xdp_ring->tx_stats.tx_busy++;
3789 return I40E_XDP_CONSUMED;
3790 }
3791
3792 tx_head->bytecount = xdp_get_frame_len(xdpf);
3793 tx_head->gso_segs = 1;
3794 tx_head->xdpf = xdpf;
3795
3796 for (;;) {
3797 dma_addr_t dma;
3798
3799 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3800 if (dma_mapping_error(xdp_ring->dev, dma))
3801 goto unmap;
3802
3803 /* record length, and DMA address */
3804 dma_unmap_len_set(tx_bi, len, size);
3805 dma_unmap_addr_set(tx_bi, dma, dma);
3806
3807 tx_desc->buffer_addr = cpu_to_le64(dma);
3808 tx_desc->cmd_type_offset_bsz =
3809 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3810
3811 if (++index == xdp_ring->count)
3812 index = 0;
3813
3814 if (i == nr_frags)
3815 break;
3816
3817 tx_bi = &xdp_ring->tx_bi[index];
3818 tx_desc = I40E_TX_DESC(xdp_ring, index);
3819
3820 data = skb_frag_address(&sinfo->frags[i]);
3821 size = skb_frag_size(&sinfo->frags[i]);
3822 i++;
3823 }
3824
3825 tx_desc->cmd_type_offset_bsz |=
3826 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3827
3828 /* Make certain all of the status bits have been updated
3829 * before next_to_watch is written.
3830 */
3831 smp_wmb();
3832
3833 xdp_ring->xdp_tx_active++;
3834
3835 tx_head->next_to_watch = tx_desc;
3836 xdp_ring->next_to_use = index;
3837
3838 return I40E_XDP_TX;
3839
3840 unmap:
3841 for (;;) {
3842 tx_bi = &xdp_ring->tx_bi[index];
3843 if (dma_unmap_len(tx_bi, len))
3844 dma_unmap_page(xdp_ring->dev,
3845 dma_unmap_addr(tx_bi, dma),
3846 dma_unmap_len(tx_bi, len),
3847 DMA_TO_DEVICE);
3848 dma_unmap_len_set(tx_bi, len, 0);
3849 if (tx_bi == tx_head)
3850 break;
3851
3852 if (!index)
3853 index += xdp_ring->count;
3854 index--;
3855 }
3856
3857 return I40E_XDP_CONSUMED;
3858 }
3859
3860 /**
3861 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3862 * @skb: send buffer
3863 * @tx_ring: ring to send buffer on
3864 *
3865 * Returns NETDEV_TX_OK if sent, else an error code
3866 **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)3867 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3868 struct i40e_ring *tx_ring)
3869 {
3870 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3871 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3872 struct i40e_tx_buffer *first;
3873 u32 td_offset = 0;
3874 u32 tx_flags = 0;
3875 u32 td_cmd = 0;
3876 u8 hdr_len = 0;
3877 int tso, count;
3878 int tsyn;
3879
3880 /* prefetch the data, we'll need it later */
3881 prefetch(skb->data);
3882
3883 i40e_trace(xmit_frame_ring, skb, tx_ring);
3884
3885 count = i40e_xmit_descriptor_count(skb);
3886 if (i40e_chk_linearize(skb, count)) {
3887 if (__skb_linearize(skb)) {
3888 dev_kfree_skb_any(skb);
3889 return NETDEV_TX_OK;
3890 }
3891 count = i40e_txd_use_count(skb->len);
3892 tx_ring->tx_stats.tx_linearize++;
3893 }
3894
3895 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3896 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3897 * + 4 desc gap to avoid the cache line where head is,
3898 * + 1 desc for context descriptor,
3899 * otherwise try next time
3900 */
3901 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3902 tx_ring->tx_stats.tx_busy++;
3903 return NETDEV_TX_BUSY;
3904 }
3905
3906 /* record the location of the first descriptor for this packet */
3907 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3908 first->skb = skb;
3909 first->bytecount = skb->len;
3910 first->gso_segs = 1;
3911
3912 /* prepare the xmit flags */
3913 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3914 goto out_drop;
3915
3916 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3917
3918 if (tso < 0)
3919 goto out_drop;
3920 else if (tso)
3921 tx_flags |= I40E_TX_FLAGS_TSO;
3922
3923 /* Always offload the checksum, since it's in the data descriptor */
3924 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3925 tx_ring, &cd_tunneling);
3926 if (tso < 0)
3927 goto out_drop;
3928
3929 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3930
3931 if (tsyn)
3932 tx_flags |= I40E_TX_FLAGS_TSYN;
3933
3934 /* always enable CRC insertion offload */
3935 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3936
3937 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3938 cd_tunneling, cd_l2tag2);
3939
3940 /* Add Flow Director ATR if it's enabled.
3941 *
3942 * NOTE: this must always be directly before the data descriptor.
3943 */
3944 i40e_atr(tx_ring, skb, tx_flags);
3945
3946 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3947 td_cmd, td_offset))
3948 goto cleanup_tx_tstamp;
3949
3950 return NETDEV_TX_OK;
3951
3952 out_drop:
3953 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3954 dev_kfree_skb_any(first->skb);
3955 first->skb = NULL;
3956 cleanup_tx_tstamp:
3957 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3958 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3959
3960 dev_kfree_skb_any(pf->ptp_tx_skb);
3961 pf->ptp_tx_skb = NULL;
3962 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3963 }
3964
3965 return NETDEV_TX_OK;
3966 }
3967
3968 /**
3969 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3970 * @skb: send buffer
3971 * @netdev: network interface device structure
3972 *
3973 * Returns NETDEV_TX_OK if sent, else an error code
3974 **/
i40e_lan_xmit_frame(struct sk_buff * skb,struct net_device * netdev)3975 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3976 {
3977 struct i40e_netdev_priv *np = netdev_priv(netdev);
3978 struct i40e_vsi *vsi = np->vsi;
3979 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3980
3981 /* hardware can't handle really short frames, hardware padding works
3982 * beyond this point
3983 */
3984 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3985 return NETDEV_TX_OK;
3986
3987 return i40e_xmit_frame_ring(skb, tx_ring);
3988 }
3989
3990 /**
3991 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3992 * @dev: netdev
3993 * @n: number of frames
3994 * @frames: array of XDP buffer pointers
3995 * @flags: XDP extra info
3996 *
3997 * Returns number of frames successfully sent. Failed frames
3998 * will be free'ed by XDP core.
3999 *
4000 * For error cases, a negative errno code is returned and no-frames
4001 * are transmitted (caller must handle freeing frames).
4002 **/
i40e_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)4003 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4004 u32 flags)
4005 {
4006 struct i40e_netdev_priv *np = netdev_priv(dev);
4007 unsigned int queue_index = smp_processor_id();
4008 struct i40e_vsi *vsi = np->vsi;
4009 struct i40e_pf *pf = vsi->back;
4010 struct i40e_ring *xdp_ring;
4011 int nxmit = 0;
4012 int i;
4013
4014 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4015 return -ENETDOWN;
4016
4017 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4018 test_bit(__I40E_CONFIG_BUSY, pf->state))
4019 return -ENXIO;
4020
4021 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4022 return -EINVAL;
4023
4024 xdp_ring = vsi->xdp_rings[queue_index];
4025
4026 for (i = 0; i < n; i++) {
4027 struct xdp_frame *xdpf = frames[i];
4028 int err;
4029
4030 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4031 if (err != I40E_XDP_TX)
4032 break;
4033 nxmit++;
4034 }
4035
4036 if (unlikely(flags & XDP_XMIT_FLUSH))
4037 i40e_xdp_ring_update_tail(xdp_ring);
4038
4039 return nxmit;
4040 }
4041