1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <linux/net/intel/libie/pctype.h>
6 #include <linux/net/intel/libie/rx.h>
7 #include <linux/prefetch.h>
8 #include <linux/sctp.h>
9 #include <net/mpls.h>
10 #include <net/xdp.h>
11 #include "i40e_txrx_common.h"
12 #include "i40e_trace.h"
13 #include "i40e_xsk.h"
14
15 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
16 /**
17 * i40e_fdir - Generate a Flow Director descriptor based on fdata
18 * @tx_ring: Tx ring to send buffer on
19 * @fdata: Flow director filter data
20 * @add: Indicate if we are adding a rule or deleting one
21 *
22 **/
i40e_fdir(struct i40e_ring * tx_ring,struct i40e_fdir_filter * fdata,bool add)23 static void i40e_fdir(struct i40e_ring *tx_ring,
24 struct i40e_fdir_filter *fdata, bool add)
25 {
26 struct i40e_filter_program_desc *fdir_desc;
27 struct i40e_pf *pf = tx_ring->vsi->back;
28 u32 flex_ptype, dtype_cmd, vsi_id;
29 u16 i;
30
31 /* grab the next descriptor */
32 i = tx_ring->next_to_use;
33 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
34
35 i++;
36 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
37
38 flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
39
40 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
41 fdata->flex_off);
42
43 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
44
45 /* Use LAN VSI Id if not programmed by user */
46 vsi_id = fdata->dest_vsi ? : i40e_pf_get_main_vsi(pf)->id;
47 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, vsi_id);
48
49 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
50
51 dtype_cmd |= add ?
52 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
53 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
54 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
55 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
56
57 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
58
59 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
60 fdata->fd_status);
61
62 if (fdata->cnt_index) {
63 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
64 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
65 fdata->cnt_index);
66 }
67
68 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
69 fdir_desc->rsvd = cpu_to_le32(0);
70 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
71 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
72 }
73
74 #define I40E_FD_CLEAN_DELAY 10
75 /**
76 * i40e_program_fdir_filter - Program a Flow Director filter
77 * @fdir_data: Packet data that will be filter parameters
78 * @raw_packet: the pre-allocated packet buffer for FDir
79 * @pf: The PF pointer
80 * @add: True for add/update, False for remove
81 **/
i40e_program_fdir_filter(struct i40e_fdir_filter * fdir_data,u8 * raw_packet,struct i40e_pf * pf,bool add)82 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
83 u8 *raw_packet, struct i40e_pf *pf,
84 bool add)
85 {
86 struct i40e_tx_buffer *tx_buf, *first;
87 struct i40e_tx_desc *tx_desc;
88 struct i40e_ring *tx_ring;
89 struct i40e_vsi *vsi;
90 struct device *dev;
91 dma_addr_t dma;
92 u32 td_cmd = 0;
93 u16 i;
94
95 /* find existing FDIR VSI */
96 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
97 if (!vsi)
98 return -ENOENT;
99
100 tx_ring = vsi->tx_rings[0];
101 dev = tx_ring->dev;
102
103 /* we need two descriptors to add/del a filter and we can wait */
104 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
105 if (!i)
106 return -EAGAIN;
107 msleep_interruptible(1);
108 }
109
110 dma = dma_map_single(dev, raw_packet,
111 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
112 if (dma_mapping_error(dev, dma))
113 goto dma_fail;
114
115 /* grab the next descriptor */
116 i = tx_ring->next_to_use;
117 first = &tx_ring->tx_bi[i];
118 i40e_fdir(tx_ring, fdir_data, add);
119
120 /* Now program a dummy descriptor */
121 i = tx_ring->next_to_use;
122 tx_desc = I40E_TX_DESC(tx_ring, i);
123 tx_buf = &tx_ring->tx_bi[i];
124
125 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
126
127 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
128
129 /* record length, and DMA address */
130 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
131 dma_unmap_addr_set(tx_buf, dma, dma);
132
133 tx_desc->buffer_addr = cpu_to_le64(dma);
134 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
135
136 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
137 tx_buf->raw_buf = (void *)raw_packet;
138
139 tx_desc->cmd_type_offset_bsz =
140 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
141
142 /* Force memory writes to complete before letting h/w
143 * know there are new descriptors to fetch.
144 */
145 wmb();
146
147 /* Mark the data descriptor to be watched */
148 first->next_to_watch = tx_desc;
149
150 writel(tx_ring->next_to_use, tx_ring->tail);
151 return 0;
152
153 dma_fail:
154 return -1;
155 }
156
157 /**
158 * i40e_create_dummy_packet - Constructs dummy packet for HW
159 * @dummy_packet: preallocated space for dummy packet
160 * @ipv4: is layer 3 packet of version 4 or 6
161 * @l4proto: next level protocol used in data portion of l3
162 * @data: filter data
163 *
164 * Returns address of layer 4 protocol dummy packet.
165 **/
i40e_create_dummy_packet(u8 * dummy_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)166 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
167 struct i40e_fdir_filter *data)
168 {
169 bool is_vlan = !!data->vlan_tag;
170 struct vlan_hdr vlan = {};
171 struct ipv6hdr ipv6 = {};
172 struct ethhdr eth = {};
173 struct iphdr ip = {};
174 u8 *tmp;
175
176 if (ipv4) {
177 eth.h_proto = cpu_to_be16(ETH_P_IP);
178 ip.protocol = l4proto;
179 ip.version = 0x4;
180 ip.ihl = 0x5;
181
182 ip.daddr = data->dst_ip;
183 ip.saddr = data->src_ip;
184 } else {
185 eth.h_proto = cpu_to_be16(ETH_P_IPV6);
186 ipv6.nexthdr = l4proto;
187 ipv6.version = 0x6;
188
189 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
190 sizeof(__be32) * 4);
191 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
192 sizeof(__be32) * 4);
193 }
194
195 if (is_vlan) {
196 vlan.h_vlan_TCI = data->vlan_tag;
197 vlan.h_vlan_encapsulated_proto = eth.h_proto;
198 eth.h_proto = data->vlan_etype;
199 }
200
201 tmp = dummy_packet;
202 memcpy(tmp, ð, sizeof(eth));
203 tmp += sizeof(eth);
204
205 if (is_vlan) {
206 memcpy(tmp, &vlan, sizeof(vlan));
207 tmp += sizeof(vlan);
208 }
209
210 if (ipv4) {
211 memcpy(tmp, &ip, sizeof(ip));
212 tmp += sizeof(ip);
213 } else {
214 memcpy(tmp, &ipv6, sizeof(ipv6));
215 tmp += sizeof(ipv6);
216 }
217
218 return tmp;
219 }
220
221 /**
222 * i40e_create_dummy_udp_packet - helper function to create UDP packet
223 * @raw_packet: preallocated space for dummy packet
224 * @ipv4: is layer 3 packet of version 4 or 6
225 * @l4proto: next level protocol used in data portion of l3
226 * @data: filter data
227 *
228 * Helper function to populate udp fields.
229 **/
i40e_create_dummy_udp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)230 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
231 struct i40e_fdir_filter *data)
232 {
233 struct udphdr *udp;
234 u8 *tmp;
235
236 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
237 udp = (struct udphdr *)(tmp);
238 udp->dest = data->dst_port;
239 udp->source = data->src_port;
240 }
241
242 /**
243 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
244 * @raw_packet: preallocated space for dummy packet
245 * @ipv4: is layer 3 packet of version 4 or 6
246 * @l4proto: next level protocol used in data portion of l3
247 * @data: filter data
248 *
249 * Helper function to populate tcp fields.
250 **/
i40e_create_dummy_tcp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)251 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
252 struct i40e_fdir_filter *data)
253 {
254 struct tcphdr *tcp;
255 u8 *tmp;
256 /* Dummy tcp packet */
257 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
258 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
259
260 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
261
262 tcp = (struct tcphdr *)tmp;
263 memcpy(tcp, tcp_packet, sizeof(tcp_packet));
264 tcp->dest = data->dst_port;
265 tcp->source = data->src_port;
266 }
267
268 /**
269 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
270 * @raw_packet: preallocated space for dummy packet
271 * @ipv4: is layer 3 packet of version 4 or 6
272 * @l4proto: next level protocol used in data portion of l3
273 * @data: filter data
274 *
275 * Helper function to populate sctp fields.
276 **/
i40e_create_dummy_sctp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)277 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
278 u8 l4proto,
279 struct i40e_fdir_filter *data)
280 {
281 struct sctphdr *sctp;
282 u8 *tmp;
283
284 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
285
286 sctp = (struct sctphdr *)tmp;
287 sctp->dest = data->dst_port;
288 sctp->source = data->src_port;
289 }
290
291 /**
292 * i40e_prepare_fdir_filter - Prepare and program fdir filter
293 * @pf: physical function to attach filter to
294 * @fd_data: filter data
295 * @add: add or delete filter
296 * @packet_addr: address of dummy packet, used in filtering
297 * @payload_offset: offset from dummy packet address to user defined data
298 * @pctype: Packet type for which filter is used
299 *
300 * Helper function to offset data of dummy packet, program it and
301 * handle errors.
302 **/
i40e_prepare_fdir_filter(struct i40e_pf * pf,struct i40e_fdir_filter * fd_data,bool add,char * packet_addr,int payload_offset,u8 pctype)303 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
304 struct i40e_fdir_filter *fd_data,
305 bool add, char *packet_addr,
306 int payload_offset, u8 pctype)
307 {
308 int ret;
309
310 if (fd_data->flex_filter) {
311 u8 *payload;
312 __be16 pattern = fd_data->flex_word;
313 u16 off = fd_data->flex_offset;
314
315 payload = packet_addr + payload_offset;
316
317 /* If user provided vlan, offset payload by vlan header length */
318 if (!!fd_data->vlan_tag)
319 payload += VLAN_HLEN;
320
321 *((__force __be16 *)(payload + off)) = pattern;
322 }
323
324 fd_data->pctype = pctype;
325 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
326 if (ret) {
327 dev_info(&pf->pdev->dev,
328 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
329 fd_data->pctype, fd_data->fd_id, ret);
330 /* Free the packet buffer since it wasn't added to the ring */
331 return -EOPNOTSUPP;
332 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
333 if (add)
334 dev_info(&pf->pdev->dev,
335 "Filter OK for PCTYPE %d loc = %d\n",
336 fd_data->pctype, fd_data->fd_id);
337 else
338 dev_info(&pf->pdev->dev,
339 "Filter deleted for PCTYPE %d loc = %d\n",
340 fd_data->pctype, fd_data->fd_id);
341 }
342
343 return ret;
344 }
345
346 /**
347 * i40e_change_filter_num - Prepare and program fdir filter
348 * @ipv4: is layer 3 packet of version 4 or 6
349 * @add: add or delete filter
350 * @ipv4_filter_num: field to update
351 * @ipv6_filter_num: field to update
352 *
353 * Update filter number field for pf.
354 **/
i40e_change_filter_num(bool ipv4,bool add,u16 * ipv4_filter_num,u16 * ipv6_filter_num)355 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
356 u16 *ipv6_filter_num)
357 {
358 if (add) {
359 if (ipv4)
360 (*ipv4_filter_num)++;
361 else
362 (*ipv6_filter_num)++;
363 } else {
364 if (ipv4)
365 (*ipv4_filter_num)--;
366 else
367 (*ipv6_filter_num)--;
368 }
369 }
370
371 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
372 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62
373 /**
374 * i40e_add_del_fdir_udp - Add/Remove UDP filters
375 * @vsi: pointer to the targeted VSI
376 * @fd_data: the flow director data required for the FDir descriptor
377 * @add: true adds a filter, false removes it
378 * @ipv4: true is v4, false is v6
379 *
380 * Returns 0 if the filters were successfully added or removed
381 **/
i40e_add_del_fdir_udp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)382 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
383 struct i40e_fdir_filter *fd_data,
384 bool add,
385 bool ipv4)
386 {
387 struct i40e_pf *pf = vsi->back;
388 u8 *raw_packet;
389 int ret;
390
391 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
392 if (!raw_packet)
393 return -ENOMEM;
394
395 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
396
397 if (ipv4)
398 ret = i40e_prepare_fdir_filter
399 (pf, fd_data, add, raw_packet,
400 I40E_UDPIP_DUMMY_PACKET_LEN,
401 LIBIE_FILTER_PCTYPE_NONF_IPV4_UDP);
402 else
403 ret = i40e_prepare_fdir_filter
404 (pf, fd_data, add, raw_packet,
405 I40E_UDPIP6_DUMMY_PACKET_LEN,
406 LIBIE_FILTER_PCTYPE_NONF_IPV6_UDP);
407
408 if (ret) {
409 kfree(raw_packet);
410 return ret;
411 }
412
413 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
414 &pf->fd_udp6_filter_cnt);
415
416 return 0;
417 }
418
419 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
420 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74
421 /**
422 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
423 * @vsi: pointer to the targeted VSI
424 * @fd_data: the flow director data required for the FDir descriptor
425 * @add: true adds a filter, false removes it
426 * @ipv4: true is v4, false is v6
427 *
428 * Returns 0 if the filters were successfully added or removed
429 **/
i40e_add_del_fdir_tcp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)430 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
431 struct i40e_fdir_filter *fd_data,
432 bool add,
433 bool ipv4)
434 {
435 struct i40e_pf *pf = vsi->back;
436 u8 *raw_packet;
437 int ret;
438
439 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
440 if (!raw_packet)
441 return -ENOMEM;
442
443 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
444 if (ipv4)
445 ret = i40e_prepare_fdir_filter
446 (pf, fd_data, add, raw_packet,
447 I40E_TCPIP_DUMMY_PACKET_LEN,
448 LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP);
449 else
450 ret = i40e_prepare_fdir_filter
451 (pf, fd_data, add, raw_packet,
452 I40E_TCPIP6_DUMMY_PACKET_LEN,
453 LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP);
454
455 if (ret) {
456 kfree(raw_packet);
457 return ret;
458 }
459
460 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
461 &pf->fd_tcp6_filter_cnt);
462
463 if (add) {
464 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
465 I40E_DEBUG_FD & pf->hw.debug_mask)
466 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
467 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
468 }
469 return 0;
470 }
471
472 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
473 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
474 /**
475 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
476 * a specific flow spec
477 * @vsi: pointer to the targeted VSI
478 * @fd_data: the flow director data required for the FDir descriptor
479 * @add: true adds a filter, false removes it
480 * @ipv4: true is v4, false is v6
481 *
482 * Returns 0 if the filters were successfully added or removed
483 **/
i40e_add_del_fdir_sctp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)484 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
485 struct i40e_fdir_filter *fd_data,
486 bool add,
487 bool ipv4)
488 {
489 struct i40e_pf *pf = vsi->back;
490 u8 *raw_packet;
491 int ret;
492
493 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
494 if (!raw_packet)
495 return -ENOMEM;
496
497 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
498
499 if (ipv4)
500 ret = i40e_prepare_fdir_filter
501 (pf, fd_data, add, raw_packet,
502 I40E_SCTPIP_DUMMY_PACKET_LEN,
503 LIBIE_FILTER_PCTYPE_NONF_IPV4_SCTP);
504 else
505 ret = i40e_prepare_fdir_filter
506 (pf, fd_data, add, raw_packet,
507 I40E_SCTPIP6_DUMMY_PACKET_LEN,
508 LIBIE_FILTER_PCTYPE_NONF_IPV6_SCTP);
509
510 if (ret) {
511 kfree(raw_packet);
512 return ret;
513 }
514
515 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
516 &pf->fd_sctp6_filter_cnt);
517
518 return 0;
519 }
520
521 #define I40E_IP_DUMMY_PACKET_LEN 34
522 #define I40E_IP6_DUMMY_PACKET_LEN 54
523 /**
524 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
525 * a specific flow spec
526 * @vsi: pointer to the targeted VSI
527 * @fd_data: the flow director data required for the FDir descriptor
528 * @add: true adds a filter, false removes it
529 * @ipv4: true is v4, false is v6
530 *
531 * Returns 0 if the filters were successfully added or removed
532 **/
i40e_add_del_fdir_ip(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)533 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
534 struct i40e_fdir_filter *fd_data,
535 bool add,
536 bool ipv4)
537 {
538 struct i40e_pf *pf = vsi->back;
539 int payload_offset;
540 u8 *raw_packet;
541 int iter_start;
542 int iter_end;
543 int ret;
544 int i;
545
546 if (ipv4) {
547 iter_start = LIBIE_FILTER_PCTYPE_NONF_IPV4_OTHER;
548 iter_end = LIBIE_FILTER_PCTYPE_FRAG_IPV4;
549 } else {
550 iter_start = LIBIE_FILTER_PCTYPE_NONF_IPV6_OTHER;
551 iter_end = LIBIE_FILTER_PCTYPE_FRAG_IPV6;
552 }
553
554 for (i = iter_start; i <= iter_end; i++) {
555 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
556 if (!raw_packet)
557 return -ENOMEM;
558
559 /* IPv6 no header option differs from IPv4 */
560 (void)i40e_create_dummy_packet
561 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
562 fd_data);
563
564 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
565 I40E_IP6_DUMMY_PACKET_LEN;
566 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
567 payload_offset, i);
568 if (ret)
569 goto err;
570 }
571
572 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
573 &pf->fd_ip6_filter_cnt);
574
575 return 0;
576 err:
577 kfree(raw_packet);
578 return ret;
579 }
580
581 /**
582 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
583 * @vsi: pointer to the targeted VSI
584 * @input: filter to add or delete
585 * @add: true adds a filter, false removes it
586 *
587 **/
i40e_add_del_fdir(struct i40e_vsi * vsi,struct i40e_fdir_filter * input,bool add)588 int i40e_add_del_fdir(struct i40e_vsi *vsi,
589 struct i40e_fdir_filter *input, bool add)
590 {
591 enum ip_ver { ipv6 = 0, ipv4 = 1 };
592 struct i40e_pf *pf = vsi->back;
593 int ret;
594
595 switch (input->flow_type & ~FLOW_EXT) {
596 case TCP_V4_FLOW:
597 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
598 break;
599 case UDP_V4_FLOW:
600 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
601 break;
602 case SCTP_V4_FLOW:
603 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
604 break;
605 case TCP_V6_FLOW:
606 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
607 break;
608 case UDP_V6_FLOW:
609 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
610 break;
611 case SCTP_V6_FLOW:
612 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
613 break;
614 case IP_USER_FLOW:
615 switch (input->ipl4_proto) {
616 case IPPROTO_TCP:
617 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
618 break;
619 case IPPROTO_UDP:
620 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
621 break;
622 case IPPROTO_SCTP:
623 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
624 break;
625 case IPPROTO_IP:
626 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
627 break;
628 default:
629 /* We cannot support masking based on protocol */
630 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
631 input->ipl4_proto);
632 return -EINVAL;
633 }
634 break;
635 case IPV6_USER_FLOW:
636 switch (input->ipl4_proto) {
637 case IPPROTO_TCP:
638 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
639 break;
640 case IPPROTO_UDP:
641 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
642 break;
643 case IPPROTO_SCTP:
644 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
645 break;
646 case IPPROTO_IP:
647 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
648 break;
649 default:
650 /* We cannot support masking based on protocol */
651 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
652 input->ipl4_proto);
653 return -EINVAL;
654 }
655 break;
656 default:
657 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
658 input->flow_type);
659 return -EINVAL;
660 }
661
662 /* The buffer allocated here will be normally be freed by
663 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
664 * completion. In the event of an error adding the buffer to the FDIR
665 * ring, it will immediately be freed. It may also be freed by
666 * i40e_clean_tx_ring() when closing the VSI.
667 */
668 return ret;
669 }
670
671 /**
672 * i40e_fd_handle_status - check the Programming Status for FD
673 * @rx_ring: the Rx ring for this descriptor
674 * @qword0_raw: qword0
675 * @qword1: qword1 after le_to_cpu
676 * @prog_id: the id originally used for programming
677 *
678 * This is used to verify if the FD programming or invalidation
679 * requested by SW to the HW is successful or not and take actions accordingly.
680 **/
i40e_fd_handle_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1,u8 prog_id)681 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
682 u64 qword1, u8 prog_id)
683 {
684 struct i40e_pf *pf = rx_ring->vsi->back;
685 struct pci_dev *pdev = pf->pdev;
686 struct i40e_16b_rx_wb_qw0 *qw0;
687 u32 fcnt_prog, fcnt_avail;
688 u32 error;
689
690 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
691 error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
692
693 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
694 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
695 if (qw0->hi_dword.fd_id != 0 ||
696 (I40E_DEBUG_FD & pf->hw.debug_mask))
697 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
698 pf->fd_inv);
699
700 /* Check if the programming error is for ATR.
701 * If so, auto disable ATR and set a state for
702 * flush in progress. Next time we come here if flush is in
703 * progress do nothing, once flush is complete the state will
704 * be cleared.
705 */
706 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
707 return;
708
709 pf->fd_add_err++;
710 /* store the current atr filter count */
711 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
712
713 if (qw0->hi_dword.fd_id == 0 &&
714 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
715 /* These set_bit() calls aren't atomic with the
716 * test_bit() here, but worse case we potentially
717 * disable ATR and queue a flush right after SB
718 * support is re-enabled. That shouldn't cause an
719 * issue in practice
720 */
721 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
722 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
723 }
724
725 /* filter programming failed most likely due to table full */
726 fcnt_prog = i40e_get_global_fd_count(pf);
727 fcnt_avail = pf->fdir_pf_filter_count;
728 /* If ATR is running fcnt_prog can quickly change,
729 * if we are very close to full, it makes sense to disable
730 * FD ATR/SB and then re-enable it when there is room.
731 */
732 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
733 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
734 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
735 pf->state))
736 if (I40E_DEBUG_FD & pf->hw.debug_mask)
737 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
738 }
739 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
740 if (I40E_DEBUG_FD & pf->hw.debug_mask)
741 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
742 qw0->hi_dword.fd_id);
743 }
744 }
745
746 /**
747 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
748 * @ring: the ring that owns the buffer
749 * @tx_buffer: the buffer to free
750 **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)751 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
752 struct i40e_tx_buffer *tx_buffer)
753 {
754 if (tx_buffer->skb) {
755 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
756 kfree(tx_buffer->raw_buf);
757 else if (ring_is_xdp(ring))
758 xdp_return_frame(tx_buffer->xdpf);
759 else
760 dev_kfree_skb_any(tx_buffer->skb);
761 if (dma_unmap_len(tx_buffer, len))
762 dma_unmap_single(ring->dev,
763 dma_unmap_addr(tx_buffer, dma),
764 dma_unmap_len(tx_buffer, len),
765 DMA_TO_DEVICE);
766 } else if (dma_unmap_len(tx_buffer, len)) {
767 dma_unmap_page(ring->dev,
768 dma_unmap_addr(tx_buffer, dma),
769 dma_unmap_len(tx_buffer, len),
770 DMA_TO_DEVICE);
771 }
772
773 tx_buffer->next_to_watch = NULL;
774 tx_buffer->skb = NULL;
775 dma_unmap_len_set(tx_buffer, len, 0);
776 /* tx_buffer must be completely set up in the transmit path */
777 }
778
779 /**
780 * i40e_clean_tx_ring - Free any empty Tx buffers
781 * @tx_ring: ring to be cleaned
782 **/
i40e_clean_tx_ring(struct i40e_ring * tx_ring)783 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
784 {
785 unsigned long bi_size;
786 u16 i;
787
788 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
789 i40e_xsk_clean_tx_ring(tx_ring);
790 } else {
791 /* ring already cleared, nothing to do */
792 if (!tx_ring->tx_bi)
793 return;
794
795 /* Free all the Tx ring sk_buffs */
796 for (i = 0; i < tx_ring->count; i++)
797 i40e_unmap_and_free_tx_resource(tx_ring,
798 &tx_ring->tx_bi[i]);
799 }
800
801 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
802 memset(tx_ring->tx_bi, 0, bi_size);
803
804 /* Zero out the descriptor ring */
805 memset(tx_ring->desc, 0, tx_ring->size);
806
807 tx_ring->next_to_use = 0;
808 tx_ring->next_to_clean = 0;
809
810 if (!tx_ring->netdev)
811 return;
812
813 /* cleanup Tx queue statistics */
814 netdev_tx_reset_queue(txring_txq(tx_ring));
815 }
816
817 /**
818 * i40e_free_tx_resources - Free Tx resources per queue
819 * @tx_ring: Tx descriptor ring for a specific queue
820 *
821 * Free all transmit software resources
822 **/
i40e_free_tx_resources(struct i40e_ring * tx_ring)823 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
824 {
825 i40e_clean_tx_ring(tx_ring);
826 kfree(tx_ring->tx_bi);
827 tx_ring->tx_bi = NULL;
828
829 if (tx_ring->desc) {
830 dma_free_coherent(tx_ring->dev, tx_ring->size,
831 tx_ring->desc, tx_ring->dma);
832 tx_ring->desc = NULL;
833 }
834 }
835
836 /**
837 * i40e_get_tx_pending - how many tx descriptors not processed
838 * @ring: the ring of descriptors
839 * @in_sw: use SW variables
840 *
841 * Since there is no access to the ring head register
842 * in XL710, we need to use our local copies
843 **/
i40e_get_tx_pending(struct i40e_ring * ring,bool in_sw)844 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
845 {
846 u32 head, tail;
847
848 if (!in_sw) {
849 head = i40e_get_head(ring);
850 tail = readl(ring->tail);
851 } else {
852 head = ring->next_to_clean;
853 tail = ring->next_to_use;
854 }
855
856 if (head != tail)
857 return (head < tail) ?
858 tail - head : (tail + ring->count - head);
859
860 return 0;
861 }
862
863 /**
864 * i40e_detect_recover_hung - Function to detect and recover hung_queues
865 * @pf: pointer to PF struct
866 *
867 * LAN VSI has netdev and netdev has TX queues. This function is to check
868 * each of those TX queues if they are hung, trigger recovery by issuing
869 * SW interrupt.
870 **/
i40e_detect_recover_hung(struct i40e_pf * pf)871 void i40e_detect_recover_hung(struct i40e_pf *pf)
872 {
873 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
874 struct i40e_ring *tx_ring = NULL;
875 struct net_device *netdev;
876 unsigned int i;
877 int packets;
878
879 if (!vsi)
880 return;
881
882 if (test_bit(__I40E_VSI_DOWN, vsi->state))
883 return;
884
885 netdev = vsi->netdev;
886 if (!netdev)
887 return;
888
889 if (!netif_carrier_ok(netdev))
890 return;
891
892 for (i = 0; i < vsi->num_queue_pairs; i++) {
893 tx_ring = vsi->tx_rings[i];
894 if (tx_ring && tx_ring->desc) {
895 /* If packet counter has not changed the queue is
896 * likely stalled, so force an interrupt for this
897 * queue.
898 *
899 * prev_pkt_ctr would be negative if there was no
900 * pending work.
901 */
902 packets = tx_ring->stats.packets & INT_MAX;
903 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
904 i40e_force_wb(vsi, tx_ring->q_vector);
905 continue;
906 }
907
908 /* Memory barrier between read of packet count and call
909 * to i40e_get_tx_pending()
910 */
911 smp_rmb();
912 tx_ring->tx_stats.prev_pkt_ctr =
913 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
914 }
915 }
916 }
917
918 /**
919 * i40e_clean_tx_irq - Reclaim resources after transmit completes
920 * @vsi: the VSI we care about
921 * @tx_ring: Tx ring to clean
922 * @napi_budget: Used to determine if we are in netpoll
923 * @tx_cleaned: Out parameter set to the number of TXes cleaned
924 *
925 * Returns true if there's any budget left (e.g. the clean is finished)
926 **/
i40e_clean_tx_irq(struct i40e_vsi * vsi,struct i40e_ring * tx_ring,int napi_budget,unsigned int * tx_cleaned)927 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
928 struct i40e_ring *tx_ring, int napi_budget,
929 unsigned int *tx_cleaned)
930 {
931 int i = tx_ring->next_to_clean;
932 struct i40e_tx_buffer *tx_buf;
933 struct i40e_tx_desc *tx_head;
934 struct i40e_tx_desc *tx_desc;
935 unsigned int total_bytes = 0, total_packets = 0;
936 unsigned int budget = vsi->work_limit;
937
938 tx_buf = &tx_ring->tx_bi[i];
939 tx_desc = I40E_TX_DESC(tx_ring, i);
940 i -= tx_ring->count;
941
942 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
943
944 do {
945 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
946
947 /* if next_to_watch is not set then there is no work pending */
948 if (!eop_desc)
949 break;
950
951 /* prevent any other reads prior to eop_desc */
952 smp_rmb();
953
954 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
955 /* we have caught up to head, no work left to do */
956 if (tx_head == tx_desc)
957 break;
958
959 /* clear next_to_watch to prevent false hangs */
960 tx_buf->next_to_watch = NULL;
961
962 /* update the statistics for this packet */
963 total_bytes += tx_buf->bytecount;
964 total_packets += tx_buf->gso_segs;
965
966 /* free the skb/XDP data */
967 if (ring_is_xdp(tx_ring))
968 xdp_return_frame(tx_buf->xdpf);
969 else
970 napi_consume_skb(tx_buf->skb, napi_budget);
971
972 /* unmap skb header data */
973 dma_unmap_single(tx_ring->dev,
974 dma_unmap_addr(tx_buf, dma),
975 dma_unmap_len(tx_buf, len),
976 DMA_TO_DEVICE);
977
978 /* clear tx_buffer data */
979 tx_buf->skb = NULL;
980 dma_unmap_len_set(tx_buf, len, 0);
981
982 /* unmap remaining buffers */
983 while (tx_desc != eop_desc) {
984 i40e_trace(clean_tx_irq_unmap,
985 tx_ring, tx_desc, tx_buf);
986
987 tx_buf++;
988 tx_desc++;
989 i++;
990 if (unlikely(!i)) {
991 i -= tx_ring->count;
992 tx_buf = tx_ring->tx_bi;
993 tx_desc = I40E_TX_DESC(tx_ring, 0);
994 }
995
996 /* unmap any remaining paged data */
997 if (dma_unmap_len(tx_buf, len)) {
998 dma_unmap_page(tx_ring->dev,
999 dma_unmap_addr(tx_buf, dma),
1000 dma_unmap_len(tx_buf, len),
1001 DMA_TO_DEVICE);
1002 dma_unmap_len_set(tx_buf, len, 0);
1003 }
1004 }
1005
1006 /* move us one more past the eop_desc for start of next pkt */
1007 tx_buf++;
1008 tx_desc++;
1009 i++;
1010 if (unlikely(!i)) {
1011 i -= tx_ring->count;
1012 tx_buf = tx_ring->tx_bi;
1013 tx_desc = I40E_TX_DESC(tx_ring, 0);
1014 }
1015
1016 prefetch(tx_desc);
1017
1018 /* update budget accounting */
1019 budget--;
1020 } while (likely(budget));
1021
1022 i += tx_ring->count;
1023 tx_ring->next_to_clean = i;
1024 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1025 i40e_arm_wb(tx_ring, vsi, budget);
1026
1027 if (ring_is_xdp(tx_ring))
1028 return !!budget;
1029
1030 /* notify netdev of completed buffers */
1031 netdev_tx_completed_queue(txring_txq(tx_ring),
1032 total_packets, total_bytes);
1033
1034 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1035 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1036 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1037 /* Make sure that anybody stopping the queue after this
1038 * sees the new next_to_clean.
1039 */
1040 smp_mb();
1041 if (__netif_subqueue_stopped(tx_ring->netdev,
1042 tx_ring->queue_index) &&
1043 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1044 netif_wake_subqueue(tx_ring->netdev,
1045 tx_ring->queue_index);
1046 ++tx_ring->tx_stats.restart_queue;
1047 }
1048 }
1049
1050 *tx_cleaned = total_packets;
1051 return !!budget;
1052 }
1053
1054 /**
1055 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1056 * @vsi: the VSI we care about
1057 * @q_vector: the vector on which to enable writeback
1058 *
1059 **/
i40e_enable_wb_on_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1060 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1061 struct i40e_q_vector *q_vector)
1062 {
1063 u16 flags = q_vector->tx.ring[0].flags;
1064 u32 val;
1065
1066 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1067 return;
1068
1069 if (q_vector->arm_wb_state)
1070 return;
1071
1072 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1073 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1074 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1075
1076 wr32(&vsi->back->hw,
1077 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1078 val);
1079 } else {
1080 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1081 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1082
1083 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1084 }
1085 q_vector->arm_wb_state = true;
1086 }
1087
1088 /**
1089 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1090 * @vsi: the VSI we care about
1091 * @q_vector: the vector on which to force writeback
1092 *
1093 **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1094 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1095 {
1096 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1097 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1098 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1099 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1100 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1101 /* allow 00 to be written to the index */
1102
1103 wr32(&vsi->back->hw,
1104 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1105 } else {
1106 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1107 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1108 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1109 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1110 /* allow 00 to be written to the index */
1111
1112 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1113 }
1114 }
1115
i40e_container_is_rx(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1116 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1117 struct i40e_ring_container *rc)
1118 {
1119 return &q_vector->rx == rc;
1120 }
1121
i40e_itr_divisor(struct i40e_q_vector * q_vector)1122 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1123 {
1124 unsigned int divisor;
1125
1126 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1127 case I40E_LINK_SPEED_40GB:
1128 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1129 break;
1130 case I40E_LINK_SPEED_25GB:
1131 case I40E_LINK_SPEED_20GB:
1132 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1133 break;
1134 default:
1135 case I40E_LINK_SPEED_10GB:
1136 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1137 break;
1138 case I40E_LINK_SPEED_1GB:
1139 case I40E_LINK_SPEED_100MB:
1140 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1141 break;
1142 }
1143
1144 return divisor;
1145 }
1146
1147 /**
1148 * i40e_update_itr - update the dynamic ITR value based on statistics
1149 * @q_vector: structure containing interrupt and ring information
1150 * @rc: structure containing ring performance data
1151 *
1152 * Stores a new ITR value based on packets and byte
1153 * counts during the last interrupt. The advantage of per interrupt
1154 * computation is faster updates and more accurate ITR for the current
1155 * traffic pattern. Constants in this function were computed
1156 * based on theoretical maximum wire speed and thresholds were set based
1157 * on testing data as well as attempting to minimize response time
1158 * while increasing bulk throughput.
1159 **/
i40e_update_itr(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1160 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1161 struct i40e_ring_container *rc)
1162 {
1163 unsigned int avg_wire_size, packets, bytes, itr;
1164 unsigned long next_update = jiffies;
1165
1166 /* If we don't have any rings just leave ourselves set for maximum
1167 * possible latency so we take ourselves out of the equation.
1168 */
1169 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1170 return;
1171
1172 /* For Rx we want to push the delay up and default to low latency.
1173 * for Tx we want to pull the delay down and default to high latency.
1174 */
1175 itr = i40e_container_is_rx(q_vector, rc) ?
1176 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1177 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1178
1179 /* If we didn't update within up to 1 - 2 jiffies we can assume
1180 * that either packets are coming in so slow there hasn't been
1181 * any work, or that there is so much work that NAPI is dealing
1182 * with interrupt moderation and we don't need to do anything.
1183 */
1184 if (time_after(next_update, rc->next_update))
1185 goto clear_counts;
1186
1187 /* If itr_countdown is set it means we programmed an ITR within
1188 * the last 4 interrupt cycles. This has a side effect of us
1189 * potentially firing an early interrupt. In order to work around
1190 * this we need to throw out any data received for a few
1191 * interrupts following the update.
1192 */
1193 if (q_vector->itr_countdown) {
1194 itr = rc->target_itr;
1195 goto clear_counts;
1196 }
1197
1198 packets = rc->total_packets;
1199 bytes = rc->total_bytes;
1200
1201 if (i40e_container_is_rx(q_vector, rc)) {
1202 /* If Rx there are 1 to 4 packets and bytes are less than
1203 * 9000 assume insufficient data to use bulk rate limiting
1204 * approach unless Tx is already in bulk rate limiting. We
1205 * are likely latency driven.
1206 */
1207 if (packets && packets < 4 && bytes < 9000 &&
1208 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1209 itr = I40E_ITR_ADAPTIVE_LATENCY;
1210 goto adjust_by_size;
1211 }
1212 } else if (packets < 4) {
1213 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1214 * bulk mode and we are receiving 4 or fewer packets just
1215 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1216 * that the Rx can relax.
1217 */
1218 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1219 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1220 I40E_ITR_ADAPTIVE_MAX_USECS)
1221 goto clear_counts;
1222 } else if (packets > 32) {
1223 /* If we have processed over 32 packets in a single interrupt
1224 * for Tx assume we need to switch over to "bulk" mode.
1225 */
1226 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1227 }
1228
1229 /* We have no packets to actually measure against. This means
1230 * either one of the other queues on this vector is active or
1231 * we are a Tx queue doing TSO with too high of an interrupt rate.
1232 *
1233 * Between 4 and 56 we can assume that our current interrupt delay
1234 * is only slightly too low. As such we should increase it by a small
1235 * fixed amount.
1236 */
1237 if (packets < 56) {
1238 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1239 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1240 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1241 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1242 }
1243 goto clear_counts;
1244 }
1245
1246 if (packets <= 256) {
1247 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1248 itr &= I40E_ITR_MASK;
1249
1250 /* Between 56 and 112 is our "goldilocks" zone where we are
1251 * working out "just right". Just report that our current
1252 * ITR is good for us.
1253 */
1254 if (packets <= 112)
1255 goto clear_counts;
1256
1257 /* If packet count is 128 or greater we are likely looking
1258 * at a slight overrun of the delay we want. Try halving
1259 * our delay to see if that will cut the number of packets
1260 * in half per interrupt.
1261 */
1262 itr /= 2;
1263 itr &= I40E_ITR_MASK;
1264 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1265 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1266
1267 goto clear_counts;
1268 }
1269
1270 /* The paths below assume we are dealing with a bulk ITR since
1271 * number of packets is greater than 256. We are just going to have
1272 * to compute a value and try to bring the count under control,
1273 * though for smaller packet sizes there isn't much we can do as
1274 * NAPI polling will likely be kicking in sooner rather than later.
1275 */
1276 itr = I40E_ITR_ADAPTIVE_BULK;
1277
1278 adjust_by_size:
1279 /* If packet counts are 256 or greater we can assume we have a gross
1280 * overestimation of what the rate should be. Instead of trying to fine
1281 * tune it just use the formula below to try and dial in an exact value
1282 * give the current packet size of the frame.
1283 */
1284 avg_wire_size = bytes / packets;
1285
1286 /* The following is a crude approximation of:
1287 * wmem_default / (size + overhead) = desired_pkts_per_int
1288 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1289 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1290 *
1291 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1292 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1293 * formula down to
1294 *
1295 * (170 * (size + 24)) / (size + 640) = ITR
1296 *
1297 * We first do some math on the packet size and then finally bitshift
1298 * by 8 after rounding up. We also have to account for PCIe link speed
1299 * difference as ITR scales based on this.
1300 */
1301 if (avg_wire_size <= 60) {
1302 /* Start at 250k ints/sec */
1303 avg_wire_size = 4096;
1304 } else if (avg_wire_size <= 380) {
1305 /* 250K ints/sec to 60K ints/sec */
1306 avg_wire_size *= 40;
1307 avg_wire_size += 1696;
1308 } else if (avg_wire_size <= 1084) {
1309 /* 60K ints/sec to 36K ints/sec */
1310 avg_wire_size *= 15;
1311 avg_wire_size += 11452;
1312 } else if (avg_wire_size <= 1980) {
1313 /* 36K ints/sec to 30K ints/sec */
1314 avg_wire_size *= 5;
1315 avg_wire_size += 22420;
1316 } else {
1317 /* plateau at a limit of 30K ints/sec */
1318 avg_wire_size = 32256;
1319 }
1320
1321 /* If we are in low latency mode halve our delay which doubles the
1322 * rate to somewhere between 100K to 16K ints/sec
1323 */
1324 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1325 avg_wire_size /= 2;
1326
1327 /* Resultant value is 256 times larger than it needs to be. This
1328 * gives us room to adjust the value as needed to either increase
1329 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1330 *
1331 * Use addition as we have already recorded the new latency flag
1332 * for the ITR value.
1333 */
1334 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1335 I40E_ITR_ADAPTIVE_MIN_INC;
1336
1337 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1338 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1339 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1340 }
1341
1342 clear_counts:
1343 /* write back value */
1344 rc->target_itr = itr;
1345
1346 /* next update should occur within next jiffy */
1347 rc->next_update = next_update + 1;
1348
1349 rc->total_bytes = 0;
1350 rc->total_packets = 0;
1351 }
1352
i40e_rx_bi(struct i40e_ring * rx_ring,u32 idx)1353 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1354 {
1355 return &rx_ring->rx_bi[idx];
1356 }
1357
1358 /**
1359 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1360 * @rx_ring: rx descriptor ring to store buffers on
1361 * @old_buff: donor buffer to have page reused
1362 *
1363 * Synchronizes page for reuse by the adapter
1364 **/
i40e_reuse_rx_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * old_buff)1365 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1366 struct i40e_rx_buffer *old_buff)
1367 {
1368 struct i40e_rx_buffer *new_buff;
1369 u16 nta = rx_ring->next_to_alloc;
1370
1371 new_buff = i40e_rx_bi(rx_ring, nta);
1372
1373 /* update, and store next to alloc */
1374 nta++;
1375 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1376
1377 /* transfer page from old buffer to new buffer */
1378 new_buff->dma = old_buff->dma;
1379 new_buff->page = old_buff->page;
1380 new_buff->page_offset = old_buff->page_offset;
1381 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1382
1383 /* clear contents of buffer_info */
1384 old_buff->page = NULL;
1385 }
1386
1387 /**
1388 * i40e_clean_programming_status - clean the programming status descriptor
1389 * @rx_ring: the rx ring that has this descriptor
1390 * @qword0_raw: qword0
1391 * @qword1: qword1 representing status_error_len in CPU ordering
1392 *
1393 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1394 * status being successful or not and take actions accordingly. FCoE should
1395 * handle its context/filter programming/invalidation status and take actions.
1396 *
1397 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1398 **/
i40e_clean_programming_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1)1399 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1400 u64 qword1)
1401 {
1402 u8 id;
1403
1404 id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
1405
1406 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1407 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1408 }
1409
1410 /**
1411 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1412 * @tx_ring: the tx ring to set up
1413 *
1414 * Return 0 on success, negative on error
1415 **/
i40e_setup_tx_descriptors(struct i40e_ring * tx_ring)1416 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1417 {
1418 struct device *dev = tx_ring->dev;
1419 int bi_size;
1420
1421 if (!dev)
1422 return -ENOMEM;
1423
1424 /* warn if we are about to overwrite the pointer */
1425 WARN_ON(tx_ring->tx_bi);
1426 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1427 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1428 if (!tx_ring->tx_bi)
1429 goto err;
1430
1431 u64_stats_init(&tx_ring->syncp);
1432
1433 /* round up to nearest 4K */
1434 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1435 /* add u32 for head writeback, align after this takes care of
1436 * guaranteeing this is at least one cache line in size
1437 */
1438 tx_ring->size += sizeof(u32);
1439 tx_ring->size = ALIGN(tx_ring->size, 4096);
1440 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1441 &tx_ring->dma, GFP_KERNEL);
1442 if (!tx_ring->desc) {
1443 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1444 tx_ring->size);
1445 goto err;
1446 }
1447
1448 tx_ring->next_to_use = 0;
1449 tx_ring->next_to_clean = 0;
1450 tx_ring->tx_stats.prev_pkt_ctr = -1;
1451 return 0;
1452
1453 err:
1454 kfree(tx_ring->tx_bi);
1455 tx_ring->tx_bi = NULL;
1456 return -ENOMEM;
1457 }
1458
i40e_clear_rx_bi(struct i40e_ring * rx_ring)1459 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1460 {
1461 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1462 }
1463
1464 /**
1465 * i40e_clean_rx_ring - Free Rx buffers
1466 * @rx_ring: ring to be cleaned
1467 **/
i40e_clean_rx_ring(struct i40e_ring * rx_ring)1468 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1469 {
1470 u16 i;
1471
1472 /* ring already cleared, nothing to do */
1473 if (!rx_ring->rx_bi)
1474 return;
1475
1476 if (rx_ring->xsk_pool) {
1477 i40e_xsk_clean_rx_ring(rx_ring);
1478 goto skip_free;
1479 }
1480
1481 /* Free all the Rx ring sk_buffs */
1482 for (i = 0; i < rx_ring->count; i++) {
1483 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1484
1485 if (!rx_bi->page)
1486 continue;
1487
1488 /* Invalidate cache lines that may have been written to by
1489 * device so that we avoid corrupting memory.
1490 */
1491 dma_sync_single_range_for_cpu(rx_ring->dev,
1492 rx_bi->dma,
1493 rx_bi->page_offset,
1494 rx_ring->rx_buf_len,
1495 DMA_FROM_DEVICE);
1496
1497 /* free resources associated with mapping */
1498 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1499 i40e_rx_pg_size(rx_ring),
1500 DMA_FROM_DEVICE,
1501 I40E_RX_DMA_ATTR);
1502
1503 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1504
1505 rx_bi->page = NULL;
1506 rx_bi->page_offset = 0;
1507 }
1508
1509 skip_free:
1510 if (rx_ring->xsk_pool)
1511 i40e_clear_rx_bi_zc(rx_ring);
1512 else
1513 i40e_clear_rx_bi(rx_ring);
1514
1515 /* Zero out the descriptor ring */
1516 memset(rx_ring->desc, 0, rx_ring->size);
1517
1518 rx_ring->next_to_alloc = 0;
1519 rx_ring->next_to_clean = 0;
1520 rx_ring->next_to_process = 0;
1521 rx_ring->next_to_use = 0;
1522 }
1523
1524 /**
1525 * i40e_free_rx_resources - Free Rx resources
1526 * @rx_ring: ring to clean the resources from
1527 *
1528 * Free all receive software resources
1529 **/
i40e_free_rx_resources(struct i40e_ring * rx_ring)1530 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1531 {
1532 i40e_clean_rx_ring(rx_ring);
1533 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1534 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1535 rx_ring->xdp_prog = NULL;
1536 kfree(rx_ring->rx_bi);
1537 rx_ring->rx_bi = NULL;
1538
1539 if (rx_ring->desc) {
1540 dma_free_coherent(rx_ring->dev, rx_ring->size,
1541 rx_ring->desc, rx_ring->dma);
1542 rx_ring->desc = NULL;
1543 }
1544 }
1545
1546 /**
1547 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1548 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1549 *
1550 * Returns 0 on success, negative on failure
1551 **/
i40e_setup_rx_descriptors(struct i40e_ring * rx_ring)1552 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1553 {
1554 struct device *dev = rx_ring->dev;
1555
1556 u64_stats_init(&rx_ring->syncp);
1557
1558 /* Round up to nearest 4K */
1559 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1560 rx_ring->size = ALIGN(rx_ring->size, 4096);
1561 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1562 &rx_ring->dma, GFP_KERNEL);
1563
1564 if (!rx_ring->desc) {
1565 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1566 rx_ring->size);
1567 return -ENOMEM;
1568 }
1569
1570 rx_ring->next_to_alloc = 0;
1571 rx_ring->next_to_clean = 0;
1572 rx_ring->next_to_process = 0;
1573 rx_ring->next_to_use = 0;
1574
1575 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1576
1577 rx_ring->rx_bi =
1578 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1579 if (!rx_ring->rx_bi)
1580 return -ENOMEM;
1581
1582 return 0;
1583 }
1584
1585 /**
1586 * i40e_release_rx_desc - Store the new tail and head values
1587 * @rx_ring: ring to bump
1588 * @val: new head index
1589 **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)1590 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1591 {
1592 rx_ring->next_to_use = val;
1593
1594 /* update next to alloc since we have filled the ring */
1595 rx_ring->next_to_alloc = val;
1596
1597 /* Force memory writes to complete before letting h/w
1598 * know there are new descriptors to fetch. (Only
1599 * applicable for weak-ordered memory model archs,
1600 * such as IA-64).
1601 */
1602 wmb();
1603 writel(val, rx_ring->tail);
1604 }
1605
1606 #if (PAGE_SIZE >= 8192)
i40e_rx_frame_truesize(struct i40e_ring * rx_ring,unsigned int size)1607 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1608 unsigned int size)
1609 {
1610 unsigned int truesize;
1611
1612 truesize = rx_ring->rx_offset ?
1613 SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1614 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1615 SKB_DATA_ALIGN(size);
1616 return truesize;
1617 }
1618 #endif
1619
1620 /**
1621 * i40e_alloc_mapped_page - recycle or make a new page
1622 * @rx_ring: ring to use
1623 * @bi: rx_buffer struct to modify
1624 *
1625 * Returns true if the page was successfully allocated or
1626 * reused.
1627 **/
i40e_alloc_mapped_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * bi)1628 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1629 struct i40e_rx_buffer *bi)
1630 {
1631 struct page *page = bi->page;
1632 dma_addr_t dma;
1633
1634 /* since we are recycling buffers we should seldom need to alloc */
1635 if (likely(page)) {
1636 rx_ring->rx_stats.page_reuse_count++;
1637 return true;
1638 }
1639
1640 /* alloc new page for storage */
1641 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1642 if (unlikely(!page)) {
1643 rx_ring->rx_stats.alloc_page_failed++;
1644 return false;
1645 }
1646
1647 rx_ring->rx_stats.page_alloc_count++;
1648
1649 /* map page for use */
1650 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1651 i40e_rx_pg_size(rx_ring),
1652 DMA_FROM_DEVICE,
1653 I40E_RX_DMA_ATTR);
1654
1655 /* if mapping failed free memory back to system since
1656 * there isn't much point in holding memory we can't use
1657 */
1658 if (dma_mapping_error(rx_ring->dev, dma)) {
1659 __free_pages(page, i40e_rx_pg_order(rx_ring));
1660 rx_ring->rx_stats.alloc_page_failed++;
1661 return false;
1662 }
1663
1664 bi->dma = dma;
1665 bi->page = page;
1666 bi->page_offset = rx_ring->rx_offset;
1667 page_ref_add(page, USHRT_MAX - 1);
1668 bi->pagecnt_bias = USHRT_MAX;
1669
1670 return true;
1671 }
1672
1673 /**
1674 * i40e_alloc_rx_buffers - Replace used receive buffers
1675 * @rx_ring: ring to place buffers on
1676 * @cleaned_count: number of buffers to replace
1677 *
1678 * Returns false if all allocations were successful, true if any fail
1679 **/
i40e_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)1680 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1681 {
1682 u16 ntu = rx_ring->next_to_use;
1683 union i40e_rx_desc *rx_desc;
1684 struct i40e_rx_buffer *bi;
1685
1686 /* do nothing if no valid netdev defined */
1687 if (!rx_ring->netdev || !cleaned_count)
1688 return false;
1689
1690 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1691 bi = i40e_rx_bi(rx_ring, ntu);
1692
1693 do {
1694 if (!i40e_alloc_mapped_page(rx_ring, bi))
1695 goto no_buffers;
1696
1697 /* sync the buffer for use by the device */
1698 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1699 bi->page_offset,
1700 rx_ring->rx_buf_len,
1701 DMA_FROM_DEVICE);
1702
1703 /* Refresh the desc even if buffer_addrs didn't change
1704 * because each write-back erases this info.
1705 */
1706 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1707
1708 rx_desc++;
1709 bi++;
1710 ntu++;
1711 if (unlikely(ntu == rx_ring->count)) {
1712 rx_desc = I40E_RX_DESC(rx_ring, 0);
1713 bi = i40e_rx_bi(rx_ring, 0);
1714 ntu = 0;
1715 }
1716
1717 /* clear the status bits for the next_to_use descriptor */
1718 rx_desc->wb.qword1.status_error_len = 0;
1719
1720 cleaned_count--;
1721 } while (cleaned_count);
1722
1723 if (rx_ring->next_to_use != ntu)
1724 i40e_release_rx_desc(rx_ring, ntu);
1725
1726 return false;
1727
1728 no_buffers:
1729 if (rx_ring->next_to_use != ntu)
1730 i40e_release_rx_desc(rx_ring, ntu);
1731
1732 /* make sure to come back via polling to try again after
1733 * allocation failure
1734 */
1735 return true;
1736 }
1737
1738 /**
1739 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1740 * @vsi: the VSI we care about
1741 * @skb: skb currently being received and modified
1742 * @rx_desc: the receive descriptor
1743 **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1744 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1745 struct sk_buff *skb,
1746 union i40e_rx_desc *rx_desc)
1747 {
1748 struct libeth_rx_pt decoded;
1749 u32 rx_error, rx_status;
1750 bool ipv4, ipv6;
1751 u8 ptype;
1752 u64 qword;
1753
1754 skb->ip_summed = CHECKSUM_NONE;
1755
1756 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1757 ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1758
1759 decoded = libie_rx_pt_parse(ptype);
1760 if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
1761 return;
1762
1763 rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1764 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1765
1766 /* did the hardware decode the packet and checksum? */
1767 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1768 return;
1769
1770 ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
1771 ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
1772
1773 if (ipv4 &&
1774 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1775 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1776 goto checksum_fail;
1777
1778 /* likely incorrect csum if alternate IP extension headers found */
1779 if (ipv6 &&
1780 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1781 /* don't increment checksum err here, non-fatal err */
1782 return;
1783
1784 /* there was some L4 error, count error and punt packet to the stack */
1785 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1786 goto checksum_fail;
1787
1788 /* handle packets that were not able to be checksummed due
1789 * to arrival speed, in this case the stack can compute
1790 * the csum.
1791 */
1792 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1793 return;
1794
1795 /* If there is an outer header present that might contain a checksum
1796 * we need to bump the checksum level by 1 to reflect the fact that
1797 * we are indicating we validated the inner checksum.
1798 */
1799 if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
1800 skb->csum_level = 1;
1801
1802 skb->ip_summed = CHECKSUM_UNNECESSARY;
1803 return;
1804
1805 checksum_fail:
1806 vsi->back->hw_csum_rx_error++;
1807 }
1808
1809 /**
1810 * i40e_rx_hash - set the hash value in the skb
1811 * @ring: descriptor ring
1812 * @rx_desc: specific descriptor
1813 * @skb: skb currently being received and modified
1814 * @rx_ptype: Rx packet type
1815 **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1816 static inline void i40e_rx_hash(struct i40e_ring *ring,
1817 union i40e_rx_desc *rx_desc,
1818 struct sk_buff *skb,
1819 u8 rx_ptype)
1820 {
1821 struct libeth_rx_pt decoded;
1822 u32 hash;
1823 const __le64 rss_mask =
1824 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1825 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1826
1827 decoded = libie_rx_pt_parse(rx_ptype);
1828 if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
1829 return;
1830
1831 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1832 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1833 libeth_rx_pt_set_hash(skb, hash, decoded);
1834 }
1835 }
1836
1837 /**
1838 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1839 * @rx_ring: rx descriptor ring packet is being transacted on
1840 * @rx_desc: pointer to the EOP Rx descriptor
1841 * @skb: pointer to current skb being populated
1842 *
1843 * This function checks the ring, descriptor, and packet information in
1844 * order to populate the hash, checksum, VLAN, protocol, and
1845 * other fields within the skb.
1846 **/
i40e_process_skb_fields(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)1847 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1848 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1849 {
1850 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1851 u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1852 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1853 u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1854 u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1855
1856 if (unlikely(tsynvalid))
1857 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1858
1859 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1860
1861 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1862
1863 skb_record_rx_queue(skb, rx_ring->queue_index);
1864
1865 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1866 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1867
1868 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1869 le16_to_cpu(vlan_tag));
1870 }
1871
1872 /* modifies the skb - consumes the enet header */
1873 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1874 }
1875
1876 /**
1877 * i40e_cleanup_headers - Correct empty headers
1878 * @rx_ring: rx descriptor ring packet is being transacted on
1879 * @skb: pointer to current skb being fixed
1880 * @rx_desc: pointer to the EOP Rx descriptor
1881 *
1882 * In addition if skb is not at least 60 bytes we need to pad it so that
1883 * it is large enough to qualify as a valid Ethernet frame.
1884 *
1885 * Returns true if an error was encountered and skb was freed.
1886 **/
i40e_cleanup_headers(struct i40e_ring * rx_ring,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1887 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1888 union i40e_rx_desc *rx_desc)
1889
1890 {
1891 /* ERR_MASK will only have valid bits if EOP set, and
1892 * what we are doing here is actually checking
1893 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1894 * the error field
1895 */
1896 if (unlikely(i40e_test_staterr(rx_desc,
1897 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1898 dev_kfree_skb_any(skb);
1899 return true;
1900 }
1901
1902 /* if eth_skb_pad returns an error the skb was freed */
1903 if (eth_skb_pad(skb))
1904 return true;
1905
1906 return false;
1907 }
1908
1909 /**
1910 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1911 * @rx_buffer: buffer containing the page
1912 * @rx_stats: rx stats structure for the rx ring
1913 *
1914 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1915 * which will assign the current buffer to the buffer that next_to_alloc is
1916 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1917 * page freed.
1918 *
1919 * rx_stats will be updated to indicate whether the page was waived
1920 * or busy if it could not be reused.
1921 */
i40e_can_reuse_rx_page(struct i40e_rx_buffer * rx_buffer,struct i40e_rx_queue_stats * rx_stats)1922 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1923 struct i40e_rx_queue_stats *rx_stats)
1924 {
1925 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1926 struct page *page = rx_buffer->page;
1927
1928 /* Is any reuse possible? */
1929 if (!dev_page_is_reusable(page)) {
1930 rx_stats->page_waive_count++;
1931 return false;
1932 }
1933
1934 #if (PAGE_SIZE < 8192)
1935 /* if we are only owner of page we can reuse it */
1936 if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1937 rx_stats->page_busy_count++;
1938 return false;
1939 }
1940 #else
1941 #define I40E_LAST_OFFSET \
1942 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1943 if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1944 rx_stats->page_busy_count++;
1945 return false;
1946 }
1947 #endif
1948
1949 /* If we have drained the page fragment pool we need to update
1950 * the pagecnt_bias and page count so that we fully restock the
1951 * number of references the driver holds.
1952 */
1953 if (unlikely(pagecnt_bias == 1)) {
1954 page_ref_add(page, USHRT_MAX - 1);
1955 rx_buffer->pagecnt_bias = USHRT_MAX;
1956 }
1957
1958 return true;
1959 }
1960
1961 /**
1962 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1963 * @rx_buffer: Rx buffer to adjust
1964 * @truesize: Size of adjustment
1965 **/
i40e_rx_buffer_flip(struct i40e_rx_buffer * rx_buffer,unsigned int truesize)1966 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
1967 unsigned int truesize)
1968 {
1969 #if (PAGE_SIZE < 8192)
1970 rx_buffer->page_offset ^= truesize;
1971 #else
1972 rx_buffer->page_offset += truesize;
1973 #endif
1974 }
1975
1976 /**
1977 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1978 * @rx_ring: rx descriptor ring to transact packets on
1979 * @size: size of buffer to add to skb
1980 *
1981 * This function will pull an Rx buffer from the ring and synchronize it
1982 * for use by the CPU.
1983 */
i40e_get_rx_buffer(struct i40e_ring * rx_ring,const unsigned int size)1984 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1985 const unsigned int size)
1986 {
1987 struct i40e_rx_buffer *rx_buffer;
1988
1989 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
1990 rx_buffer->page_count =
1991 #if (PAGE_SIZE < 8192)
1992 page_count(rx_buffer->page);
1993 #else
1994 0;
1995 #endif
1996 prefetch_page_address(rx_buffer->page);
1997
1998 /* we are reusing so sync this buffer for CPU use */
1999 dma_sync_single_range_for_cpu(rx_ring->dev,
2000 rx_buffer->dma,
2001 rx_buffer->page_offset,
2002 size,
2003 DMA_FROM_DEVICE);
2004
2005 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2006 rx_buffer->pagecnt_bias--;
2007
2008 return rx_buffer;
2009 }
2010
2011 /**
2012 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2013 * @rx_ring: rx descriptor ring to transact packets on
2014 * @rx_buffer: rx buffer to pull data from
2015 *
2016 * This function will clean up the contents of the rx_buffer. It will
2017 * either recycle the buffer or unmap it and free the associated resources.
2018 */
i40e_put_rx_buffer(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer)2019 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2020 struct i40e_rx_buffer *rx_buffer)
2021 {
2022 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2023 /* hand second half of page back to the ring */
2024 i40e_reuse_rx_page(rx_ring, rx_buffer);
2025 } else {
2026 /* we are not reusing the buffer so unmap it */
2027 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2028 i40e_rx_pg_size(rx_ring),
2029 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2030 __page_frag_cache_drain(rx_buffer->page,
2031 rx_buffer->pagecnt_bias);
2032 /* clear contents of buffer_info */
2033 rx_buffer->page = NULL;
2034 }
2035 }
2036
2037 /**
2038 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2039 * @rx_ring: Rx descriptor ring to transact packets on
2040 * @xdp_res: Result of the XDP program
2041 * @xdp: xdp_buff pointing to the data
2042 **/
i40e_process_rx_buffs(struct i40e_ring * rx_ring,int xdp_res,struct xdp_buff * xdp)2043 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2044 struct xdp_buff *xdp)
2045 {
2046 u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2047 u32 next = rx_ring->next_to_clean, i = 0;
2048 struct i40e_rx_buffer *rx_buffer;
2049
2050 xdp->flags = 0;
2051
2052 while (1) {
2053 rx_buffer = i40e_rx_bi(rx_ring, next);
2054 if (++next == rx_ring->count)
2055 next = 0;
2056
2057 if (!rx_buffer->page)
2058 continue;
2059
2060 if (xdp_res != I40E_XDP_CONSUMED)
2061 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2062 else if (i++ <= nr_frags)
2063 rx_buffer->pagecnt_bias++;
2064
2065 /* EOP buffer will be put in i40e_clean_rx_irq() */
2066 if (next == rx_ring->next_to_process)
2067 return;
2068
2069 i40e_put_rx_buffer(rx_ring, rx_buffer);
2070 }
2071 }
2072
2073 /**
2074 * i40e_construct_skb - Allocate skb and populate it
2075 * @rx_ring: rx descriptor ring to transact packets on
2076 * @xdp: xdp_buff pointing to the data
2077 *
2078 * This function allocates an skb. It then populates it with the page
2079 * data from the current receive descriptor, taking care to set up the
2080 * skb correctly.
2081 */
i40e_construct_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2082 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2083 struct xdp_buff *xdp)
2084 {
2085 unsigned int size = xdp->data_end - xdp->data;
2086 struct i40e_rx_buffer *rx_buffer;
2087 struct skb_shared_info *sinfo;
2088 unsigned int headlen;
2089 struct sk_buff *skb;
2090 u32 nr_frags = 0;
2091
2092 /* prefetch first cache line of first page */
2093 net_prefetch(xdp->data);
2094
2095 /* Note, we get here by enabling legacy-rx via:
2096 *
2097 * ethtool --set-priv-flags <dev> legacy-rx on
2098 *
2099 * In this mode, we currently get 0 extra XDP headroom as
2100 * opposed to having legacy-rx off, where we process XDP
2101 * packets going to stack via i40e_build_skb(). The latter
2102 * provides us currently with 192 bytes of headroom.
2103 *
2104 * For i40e_construct_skb() mode it means that the
2105 * xdp->data_meta will always point to xdp->data, since
2106 * the helper cannot expand the head. Should this ever
2107 * change in future for legacy-rx mode on, then lets also
2108 * add xdp->data_meta handling here.
2109 */
2110
2111 /* allocate a skb to store the frags */
2112 skb = napi_alloc_skb(&rx_ring->q_vector->napi, I40E_RX_HDR_SIZE);
2113 if (unlikely(!skb))
2114 return NULL;
2115
2116 /* Determine available headroom for copy */
2117 headlen = size;
2118 if (headlen > I40E_RX_HDR_SIZE)
2119 headlen = eth_get_headlen(skb->dev, xdp->data,
2120 I40E_RX_HDR_SIZE);
2121
2122 /* align pull length to size of long to optimize memcpy performance */
2123 memcpy(__skb_put(skb, headlen), xdp->data,
2124 ALIGN(headlen, sizeof(long)));
2125
2126 if (unlikely(xdp_buff_has_frags(xdp))) {
2127 sinfo = xdp_get_shared_info_from_buff(xdp);
2128 nr_frags = sinfo->nr_frags;
2129 }
2130 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2131 /* update all of the pointers */
2132 size -= headlen;
2133 if (size) {
2134 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2135 dev_kfree_skb(skb);
2136 return NULL;
2137 }
2138 skb_add_rx_frag(skb, 0, rx_buffer->page,
2139 rx_buffer->page_offset + headlen,
2140 size, xdp->frame_sz);
2141 /* buffer is used by skb, update page_offset */
2142 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2143 } else {
2144 /* buffer is unused, reset bias back to rx_buffer */
2145 rx_buffer->pagecnt_bias++;
2146 }
2147
2148 if (unlikely(xdp_buff_has_frags(xdp))) {
2149 struct skb_shared_info *skinfo = skb_shinfo(skb);
2150
2151 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2152 sizeof(skb_frag_t) * nr_frags);
2153
2154 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2155 sinfo->xdp_frags_size,
2156 nr_frags * xdp->frame_sz,
2157 xdp_buff_is_frag_pfmemalloc(xdp));
2158
2159 /* First buffer has already been processed, so bump ntc */
2160 if (++rx_ring->next_to_clean == rx_ring->count)
2161 rx_ring->next_to_clean = 0;
2162
2163 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2164 }
2165
2166 return skb;
2167 }
2168
2169 /**
2170 * i40e_build_skb - Build skb around an existing buffer
2171 * @rx_ring: Rx descriptor ring to transact packets on
2172 * @xdp: xdp_buff pointing to the data
2173 *
2174 * This function builds an skb around an existing Rx buffer, taking care
2175 * to set up the skb correctly and avoid any memcpy overhead.
2176 */
i40e_build_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2177 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2178 struct xdp_buff *xdp)
2179 {
2180 unsigned int metasize = xdp->data - xdp->data_meta;
2181 struct skb_shared_info *sinfo;
2182 struct sk_buff *skb;
2183 u32 nr_frags;
2184
2185 /* Prefetch first cache line of first page. If xdp->data_meta
2186 * is unused, this points exactly as xdp->data, otherwise we
2187 * likely have a consumer accessing first few bytes of meta
2188 * data, and then actual data.
2189 */
2190 net_prefetch(xdp->data_meta);
2191
2192 if (unlikely(xdp_buff_has_frags(xdp))) {
2193 sinfo = xdp_get_shared_info_from_buff(xdp);
2194 nr_frags = sinfo->nr_frags;
2195 }
2196
2197 /* build an skb around the page buffer */
2198 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2199 if (unlikely(!skb))
2200 return NULL;
2201
2202 /* update pointers within the skb to store the data */
2203 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2204 __skb_put(skb, xdp->data_end - xdp->data);
2205 if (metasize)
2206 skb_metadata_set(skb, metasize);
2207
2208 if (unlikely(xdp_buff_has_frags(xdp))) {
2209 xdp_update_skb_shared_info(skb, nr_frags,
2210 sinfo->xdp_frags_size,
2211 nr_frags * xdp->frame_sz,
2212 xdp_buff_is_frag_pfmemalloc(xdp));
2213
2214 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2215 } else {
2216 struct i40e_rx_buffer *rx_buffer;
2217
2218 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2219 /* buffer is used by skb, update page_offset */
2220 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2221 }
2222
2223 return skb;
2224 }
2225
2226 /**
2227 * i40e_is_non_eop - process handling of non-EOP buffers
2228 * @rx_ring: Rx ring being processed
2229 * @rx_desc: Rx descriptor for current buffer
2230 *
2231 * If the buffer is an EOP buffer, this function exits returning false,
2232 * otherwise return true indicating that this is in fact a non-EOP buffer.
2233 */
i40e_is_non_eop(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc)2234 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2235 union i40e_rx_desc *rx_desc)
2236 {
2237 /* if we are the last buffer then there is nothing else to do */
2238 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2239 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2240 return false;
2241
2242 rx_ring->rx_stats.non_eop_descs++;
2243
2244 return true;
2245 }
2246
2247 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2248 struct i40e_ring *xdp_ring);
2249
i40e_xmit_xdp_tx_ring(struct xdp_buff * xdp,struct i40e_ring * xdp_ring)2250 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2251 {
2252 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2253
2254 if (unlikely(!xdpf))
2255 return I40E_XDP_CONSUMED;
2256
2257 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2258 }
2259
2260 /**
2261 * i40e_run_xdp - run an XDP program
2262 * @rx_ring: Rx ring being processed
2263 * @xdp: XDP buffer containing the frame
2264 * @xdp_prog: XDP program to run
2265 **/
i40e_run_xdp(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)2266 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2267 {
2268 int err, result = I40E_XDP_PASS;
2269 struct i40e_ring *xdp_ring;
2270 u32 act;
2271
2272 if (!xdp_prog)
2273 goto xdp_out;
2274
2275 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2276
2277 act = bpf_prog_run_xdp(xdp_prog, xdp);
2278 switch (act) {
2279 case XDP_PASS:
2280 break;
2281 case XDP_TX:
2282 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2283 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2284 if (result == I40E_XDP_CONSUMED)
2285 goto out_failure;
2286 break;
2287 case XDP_REDIRECT:
2288 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2289 if (err)
2290 goto out_failure;
2291 result = I40E_XDP_REDIR;
2292 break;
2293 default:
2294 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2295 fallthrough;
2296 case XDP_ABORTED:
2297 out_failure:
2298 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2299 fallthrough; /* handle aborts by dropping packet */
2300 case XDP_DROP:
2301 result = I40E_XDP_CONSUMED;
2302 break;
2303 }
2304 xdp_out:
2305 return result;
2306 }
2307
2308 /**
2309 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2310 * @xdp_ring: XDP Tx ring
2311 *
2312 * This function updates the XDP Tx ring tail register.
2313 **/
i40e_xdp_ring_update_tail(struct i40e_ring * xdp_ring)2314 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2315 {
2316 /* Force memory writes to complete before letting h/w
2317 * know there are new descriptors to fetch.
2318 */
2319 wmb();
2320 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2321 }
2322
2323 /**
2324 * i40e_update_rx_stats - Update Rx ring statistics
2325 * @rx_ring: rx descriptor ring
2326 * @total_rx_bytes: number of bytes received
2327 * @total_rx_packets: number of packets received
2328 *
2329 * This function updates the Rx ring statistics.
2330 **/
i40e_update_rx_stats(struct i40e_ring * rx_ring,unsigned int total_rx_bytes,unsigned int total_rx_packets)2331 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2332 unsigned int total_rx_bytes,
2333 unsigned int total_rx_packets)
2334 {
2335 u64_stats_update_begin(&rx_ring->syncp);
2336 rx_ring->stats.packets += total_rx_packets;
2337 rx_ring->stats.bytes += total_rx_bytes;
2338 u64_stats_update_end(&rx_ring->syncp);
2339 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2340 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2341 }
2342
2343 /**
2344 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2345 * @rx_ring: Rx ring
2346 * @xdp_res: Result of the receive batch
2347 *
2348 * This function bumps XDP Tx tail and/or flush redirect map, and
2349 * should be called when a batch of packets has been processed in the
2350 * napi loop.
2351 **/
i40e_finalize_xdp_rx(struct i40e_ring * rx_ring,unsigned int xdp_res)2352 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2353 {
2354 if (xdp_res & I40E_XDP_REDIR)
2355 xdp_do_flush();
2356
2357 if (xdp_res & I40E_XDP_TX) {
2358 struct i40e_ring *xdp_ring =
2359 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2360
2361 i40e_xdp_ring_update_tail(xdp_ring);
2362 }
2363 }
2364
2365 /**
2366 * i40e_inc_ntp: Advance the next_to_process index
2367 * @rx_ring: Rx ring
2368 **/
i40e_inc_ntp(struct i40e_ring * rx_ring)2369 static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2370 {
2371 u32 ntp = rx_ring->next_to_process + 1;
2372
2373 ntp = (ntp < rx_ring->count) ? ntp : 0;
2374 rx_ring->next_to_process = ntp;
2375 prefetch(I40E_RX_DESC(rx_ring, ntp));
2376 }
2377
2378 /**
2379 * i40e_add_xdp_frag: Add a frag to xdp_buff
2380 * @xdp: xdp_buff pointing to the data
2381 * @nr_frags: return number of buffers for the packet
2382 * @rx_buffer: rx_buffer holding data of the current frag
2383 * @size: size of data of current frag
2384 */
i40e_add_xdp_frag(struct xdp_buff * xdp,u32 * nr_frags,struct i40e_rx_buffer * rx_buffer,u32 size)2385 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2386 struct i40e_rx_buffer *rx_buffer, u32 size)
2387 {
2388 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2389
2390 if (!xdp_buff_has_frags(xdp)) {
2391 sinfo->nr_frags = 0;
2392 sinfo->xdp_frags_size = 0;
2393 xdp_buff_set_frags_flag(xdp);
2394 } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2395 /* Overflowing packet: All frags need to be dropped */
2396 return -ENOMEM;
2397 }
2398
2399 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2400 rx_buffer->page_offset, size);
2401
2402 sinfo->xdp_frags_size += size;
2403
2404 if (page_is_pfmemalloc(rx_buffer->page))
2405 xdp_buff_set_frag_pfmemalloc(xdp);
2406 *nr_frags = sinfo->nr_frags;
2407
2408 return 0;
2409 }
2410
2411 /**
2412 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2413 * @rx_ring: rx descriptor ring to transact packets on
2414 * @xdp: xdp_buff pointing to the data
2415 * @rx_buffer: rx_buffer of eop desc
2416 */
i40e_consume_xdp_buff(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct i40e_rx_buffer * rx_buffer)2417 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2418 struct xdp_buff *xdp,
2419 struct i40e_rx_buffer *rx_buffer)
2420 {
2421 i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2422 i40e_put_rx_buffer(rx_ring, rx_buffer);
2423 rx_ring->next_to_clean = rx_ring->next_to_process;
2424 xdp->data = NULL;
2425 }
2426
2427 /**
2428 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2429 * @rx_ring: rx descriptor ring to transact packets on
2430 * @budget: Total limit on number of packets to process
2431 * @rx_cleaned: Out parameter of the number of packets processed
2432 *
2433 * This function provides a "bounce buffer" approach to Rx interrupt
2434 * processing. The advantage to this is that on systems that have
2435 * expensive overhead for IOMMU access this provides a means of avoiding
2436 * it by maintaining the mapping of the page to the system.
2437 *
2438 * Returns amount of work completed
2439 **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget,unsigned int * rx_cleaned)2440 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2441 unsigned int *rx_cleaned)
2442 {
2443 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2444 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2445 u16 clean_threshold = rx_ring->count / 2;
2446 unsigned int offset = rx_ring->rx_offset;
2447 struct xdp_buff *xdp = &rx_ring->xdp;
2448 unsigned int xdp_xmit = 0;
2449 struct bpf_prog *xdp_prog;
2450 bool failure = false;
2451 int xdp_res = 0;
2452
2453 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2454
2455 while (likely(total_rx_packets < (unsigned int)budget)) {
2456 u16 ntp = rx_ring->next_to_process;
2457 struct i40e_rx_buffer *rx_buffer;
2458 union i40e_rx_desc *rx_desc;
2459 struct sk_buff *skb;
2460 unsigned int size;
2461 u32 nfrags = 0;
2462 bool neop;
2463 u64 qword;
2464
2465 /* return some buffers to hardware, one at a time is too slow */
2466 if (cleaned_count >= clean_threshold) {
2467 failure = failure ||
2468 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2469 cleaned_count = 0;
2470 }
2471
2472 rx_desc = I40E_RX_DESC(rx_ring, ntp);
2473
2474 /* status_error_len will always be zero for unused descriptors
2475 * because it's cleared in cleanup, and overlaps with hdr_addr
2476 * which is always zero because packet split isn't used, if the
2477 * hardware wrote DD then the length will be non-zero
2478 */
2479 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2480
2481 /* This memory barrier is needed to keep us from reading
2482 * any other fields out of the rx_desc until we have
2483 * verified the descriptor has been written back.
2484 */
2485 dma_rmb();
2486
2487 if (i40e_rx_is_programming_status(qword)) {
2488 i40e_clean_programming_status(rx_ring,
2489 rx_desc->raw.qword[0],
2490 qword);
2491 rx_buffer = i40e_rx_bi(rx_ring, ntp);
2492 i40e_inc_ntp(rx_ring);
2493 i40e_reuse_rx_page(rx_ring, rx_buffer);
2494 /* Update ntc and bump cleaned count if not in the
2495 * middle of mb packet.
2496 */
2497 if (rx_ring->next_to_clean == ntp) {
2498 rx_ring->next_to_clean =
2499 rx_ring->next_to_process;
2500 cleaned_count++;
2501 }
2502 continue;
2503 }
2504
2505 size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2506 if (!size)
2507 break;
2508
2509 i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2510 /* retrieve a buffer from the ring */
2511 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2512
2513 neop = i40e_is_non_eop(rx_ring, rx_desc);
2514 i40e_inc_ntp(rx_ring);
2515
2516 if (!xdp->data) {
2517 unsigned char *hard_start;
2518
2519 hard_start = page_address(rx_buffer->page) +
2520 rx_buffer->page_offset - offset;
2521 xdp_prepare_buff(xdp, hard_start, offset, size, true);
2522 #if (PAGE_SIZE > 4096)
2523 /* At larger PAGE_SIZE, frame_sz depend on len size */
2524 xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2525 #endif
2526 } else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2527 !neop) {
2528 /* Overflowing packet: Drop all frags on EOP */
2529 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2530 break;
2531 }
2532
2533 if (neop)
2534 continue;
2535
2536 xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2537
2538 if (xdp_res) {
2539 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2540
2541 if (unlikely(xdp_buff_has_frags(xdp))) {
2542 i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2543 size = xdp_get_buff_len(xdp);
2544 } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2545 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2546 } else {
2547 rx_buffer->pagecnt_bias++;
2548 }
2549 total_rx_bytes += size;
2550 } else {
2551 if (ring_uses_build_skb(rx_ring))
2552 skb = i40e_build_skb(rx_ring, xdp);
2553 else
2554 skb = i40e_construct_skb(rx_ring, xdp);
2555
2556 /* drop if we failed to retrieve a buffer */
2557 if (!skb) {
2558 rx_ring->rx_stats.alloc_buff_failed++;
2559 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2560 break;
2561 }
2562
2563 if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2564 goto process_next;
2565
2566 /* probably a little skewed due to removing CRC */
2567 total_rx_bytes += skb->len;
2568
2569 /* populate checksum, VLAN, and protocol */
2570 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2571
2572 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2573 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2574 }
2575
2576 /* update budget accounting */
2577 total_rx_packets++;
2578 process_next:
2579 cleaned_count += nfrags + 1;
2580 i40e_put_rx_buffer(rx_ring, rx_buffer);
2581 rx_ring->next_to_clean = rx_ring->next_to_process;
2582
2583 xdp->data = NULL;
2584 }
2585
2586 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2587
2588 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2589
2590 *rx_cleaned = total_rx_packets;
2591
2592 /* guarantee a trip back through this routine if there was a failure */
2593 return failure ? budget : (int)total_rx_packets;
2594 }
2595
2596 /**
2597 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2598 * @itr_idx: interrupt throttling index
2599 * @interval: interrupt throttling interval value in usecs
2600 * @force_swint: force software interrupt
2601 *
2602 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2603 * is used to update interrupt throttling interval for specified ITR index
2604 * and optionally enforces a software interrupt. If the @itr_idx is equal
2605 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2606 * parameter is taken into account. If the interval change and enforced
2607 * software interrupt are not requested then the built value just enables
2608 * appropriate vector interrupt.
2609 **/
i40e_buildreg_itr(enum i40e_dyn_idx itr_idx,u16 interval,bool force_swint)2610 static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2611 bool force_swint)
2612 {
2613 u32 val;
2614
2615 /* We don't bother with setting the CLEARPBA bit as the data sheet
2616 * points out doing so is "meaningless since it was already
2617 * auto-cleared". The auto-clearing happens when the interrupt is
2618 * asserted.
2619 *
2620 * Hardware errata 28 for also indicates that writing to a
2621 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2622 * an event in the PBA anyway so we need to rely on the automask
2623 * to hold pending events for us until the interrupt is re-enabled
2624 *
2625 * We have to shift the given value as it is reported in microseconds
2626 * and the register value is recorded in 2 microsecond units.
2627 */
2628 interval >>= 1;
2629
2630 /* 1. Enable vector interrupt
2631 * 2. Update the interval for the specified ITR index
2632 * (I40E_ITR_NONE in the register is used to indicate that
2633 * no interval update is requested)
2634 */
2635 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2636 FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2637 FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2638
2639 /* 3. Enforce software interrupt trigger if requested
2640 * (These software interrupts rate is limited by ITR2 that is
2641 * set to 20K interrupts per second)
2642 */
2643 if (force_swint)
2644 val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2645 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2646 FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2647 I40E_SW_ITR);
2648
2649 return val;
2650 }
2651
2652 /* The act of updating the ITR will cause it to immediately trigger. In order
2653 * to prevent this from throwing off adaptive update statistics we defer the
2654 * update so that it can only happen so often. So after either Tx or Rx are
2655 * updated we make the adaptive scheme wait until either the ITR completely
2656 * expires via the next_update expiration or we have been through at least
2657 * 3 interrupts.
2658 */
2659 #define ITR_COUNTDOWN_START 3
2660
2661 /**
2662 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2663 * @vsi: the VSI we care about
2664 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2665 *
2666 **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)2667 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2668 struct i40e_q_vector *q_vector)
2669 {
2670 enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2671 struct i40e_hw *hw = &vsi->back->hw;
2672 u16 interval = 0;
2673 u32 itr_val;
2674
2675 /* If we don't have MSIX, then we only need to re-enable icr0 */
2676 if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2677 i40e_irq_dynamic_enable_icr0(vsi->back);
2678 return;
2679 }
2680
2681 /* These will do nothing if dynamic updates are not enabled */
2682 i40e_update_itr(q_vector, &q_vector->tx);
2683 i40e_update_itr(q_vector, &q_vector->rx);
2684
2685 /* This block of logic allows us to get away with only updating
2686 * one ITR value with each interrupt. The idea is to perform a
2687 * pseudo-lazy update with the following criteria.
2688 *
2689 * 1. Rx is given higher priority than Tx if both are in same state
2690 * 2. If we must reduce an ITR that is given highest priority.
2691 * 3. We then give priority to increasing ITR based on amount.
2692 */
2693 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2694 /* Rx ITR needs to be reduced, this is highest priority */
2695 itr_idx = I40E_RX_ITR;
2696 interval = q_vector->rx.target_itr;
2697 q_vector->rx.current_itr = q_vector->rx.target_itr;
2698 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2699 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2700 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2701 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2702 /* Tx ITR needs to be reduced, this is second priority
2703 * Tx ITR needs to be increased more than Rx, fourth priority
2704 */
2705 itr_idx = I40E_TX_ITR;
2706 interval = q_vector->tx.target_itr;
2707 q_vector->tx.current_itr = q_vector->tx.target_itr;
2708 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2709 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2710 /* Rx ITR needs to be increased, third priority */
2711 itr_idx = I40E_RX_ITR;
2712 interval = q_vector->rx.target_itr;
2713 q_vector->rx.current_itr = q_vector->rx.target_itr;
2714 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2715 } else {
2716 /* No ITR update, lowest priority */
2717 if (q_vector->itr_countdown)
2718 q_vector->itr_countdown--;
2719 }
2720
2721 /* Do not update interrupt control register if VSI is down */
2722 if (test_bit(__I40E_VSI_DOWN, vsi->state))
2723 return;
2724
2725 /* Update ITR interval if necessary and enforce software interrupt
2726 * if we are exiting busy poll.
2727 */
2728 if (q_vector->in_busy_poll) {
2729 itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2730 q_vector->in_busy_poll = false;
2731 } else {
2732 itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2733 }
2734 wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2735 }
2736
2737 /**
2738 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2739 * @napi: napi struct with our devices info in it
2740 * @budget: amount of work driver is allowed to do this pass, in packets
2741 *
2742 * This function will clean all queues associated with a q_vector.
2743 *
2744 * Returns the amount of work done
2745 **/
i40e_napi_poll(struct napi_struct * napi,int budget)2746 int i40e_napi_poll(struct napi_struct *napi, int budget)
2747 {
2748 struct i40e_q_vector *q_vector =
2749 container_of(napi, struct i40e_q_vector, napi);
2750 struct i40e_vsi *vsi = q_vector->vsi;
2751 struct i40e_ring *ring;
2752 bool tx_clean_complete = true;
2753 bool rx_clean_complete = true;
2754 unsigned int tx_cleaned = 0;
2755 unsigned int rx_cleaned = 0;
2756 bool clean_complete = true;
2757 bool arm_wb = false;
2758 int budget_per_ring;
2759 int work_done = 0;
2760
2761 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2762 napi_complete(napi);
2763 return 0;
2764 }
2765
2766 /* Since the actual Tx work is minimal, we can give the Tx a larger
2767 * budget and be more aggressive about cleaning up the Tx descriptors.
2768 */
2769 i40e_for_each_ring(ring, q_vector->tx) {
2770 bool wd = ring->xsk_pool ?
2771 i40e_clean_xdp_tx_irq(vsi, ring) :
2772 i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2773
2774 if (!wd) {
2775 clean_complete = tx_clean_complete = false;
2776 continue;
2777 }
2778 arm_wb |= ring->arm_wb;
2779 ring->arm_wb = false;
2780 }
2781
2782 /* Handle case where we are called by netpoll with a budget of 0 */
2783 if (budget <= 0)
2784 goto tx_only;
2785
2786 /* normally we have 1 Rx ring per q_vector */
2787 if (unlikely(q_vector->num_ringpairs > 1))
2788 /* We attempt to distribute budget to each Rx queue fairly, but
2789 * don't allow the budget to go below 1 because that would exit
2790 * polling early.
2791 */
2792 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2793 else
2794 /* Max of 1 Rx ring in this q_vector so give it the budget */
2795 budget_per_ring = budget;
2796
2797 i40e_for_each_ring(ring, q_vector->rx) {
2798 int cleaned = ring->xsk_pool ?
2799 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2800 i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2801
2802 work_done += cleaned;
2803 /* if we clean as many as budgeted, we must not be done */
2804 if (cleaned >= budget_per_ring)
2805 clean_complete = rx_clean_complete = false;
2806 }
2807
2808 if (!i40e_enabled_xdp_vsi(vsi))
2809 trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2810 tx_cleaned, rx_clean_complete, tx_clean_complete);
2811
2812 /* If work not completed, return budget and polling will return */
2813 if (!clean_complete) {
2814 int cpu_id = smp_processor_id();
2815
2816 /* It is possible that the interrupt affinity has changed but,
2817 * if the cpu is pegged at 100%, polling will never exit while
2818 * traffic continues and the interrupt will be stuck on this
2819 * cpu. We check to make sure affinity is correct before we
2820 * continue to poll, otherwise we must stop polling so the
2821 * interrupt can move to the correct cpu.
2822 */
2823 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2824 /* Tell napi that we are done polling */
2825 napi_complete_done(napi, work_done);
2826
2827 /* Force an interrupt */
2828 i40e_force_wb(vsi, q_vector);
2829
2830 /* Return budget-1 so that polling stops */
2831 return budget - 1;
2832 }
2833 tx_only:
2834 if (arm_wb) {
2835 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2836 i40e_enable_wb_on_itr(vsi, q_vector);
2837 }
2838 return budget;
2839 }
2840
2841 if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2842 q_vector->arm_wb_state = false;
2843
2844 /* Exit the polling mode, but don't re-enable interrupts if stack might
2845 * poll us due to busy-polling
2846 */
2847 if (likely(napi_complete_done(napi, work_done)))
2848 i40e_update_enable_itr(vsi, q_vector);
2849 else
2850 q_vector->in_busy_poll = true;
2851
2852 return min(work_done, budget - 1);
2853 }
2854
2855 /**
2856 * i40e_atr - Add a Flow Director ATR filter
2857 * @tx_ring: ring to add programming descriptor to
2858 * @skb: send buffer
2859 * @tx_flags: send tx flags
2860 **/
i40e_atr(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)2861 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2862 u32 tx_flags)
2863 {
2864 struct i40e_filter_program_desc *fdir_desc;
2865 struct i40e_pf *pf = tx_ring->vsi->back;
2866 union {
2867 unsigned char *network;
2868 struct iphdr *ipv4;
2869 struct ipv6hdr *ipv6;
2870 } hdr;
2871 struct tcphdr *th;
2872 unsigned int hlen;
2873 u32 flex_ptype, dtype_cmd;
2874 int l4_proto;
2875 u16 i;
2876
2877 /* make sure ATR is enabled */
2878 if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2879 return;
2880
2881 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2882 return;
2883
2884 /* if sampling is disabled do nothing */
2885 if (!tx_ring->atr_sample_rate)
2886 return;
2887
2888 /* Currently only IPv4/IPv6 with TCP is supported */
2889 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2890 return;
2891
2892 /* snag network header to get L4 type and address */
2893 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2894 skb_inner_network_header(skb) : skb_network_header(skb);
2895
2896 /* Note: tx_flags gets modified to reflect inner protocols in
2897 * tx_enable_csum function if encap is enabled.
2898 */
2899 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2900 /* access ihl as u8 to avoid unaligned access on ia64 */
2901 hlen = (hdr.network[0] & 0x0F) << 2;
2902 l4_proto = hdr.ipv4->protocol;
2903 } else {
2904 /* find the start of the innermost ipv6 header */
2905 unsigned int inner_hlen = hdr.network - skb->data;
2906 unsigned int h_offset = inner_hlen;
2907
2908 /* this function updates h_offset to the end of the header */
2909 l4_proto =
2910 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2911 /* hlen will contain our best estimate of the tcp header */
2912 hlen = h_offset - inner_hlen;
2913 }
2914
2915 if (l4_proto != IPPROTO_TCP)
2916 return;
2917
2918 th = (struct tcphdr *)(hdr.network + hlen);
2919
2920 /* Due to lack of space, no more new filters can be programmed */
2921 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2922 return;
2923 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2924 /* HW ATR eviction will take care of removing filters on FIN
2925 * and RST packets.
2926 */
2927 if (th->fin || th->rst)
2928 return;
2929 }
2930
2931 tx_ring->atr_count++;
2932
2933 /* sample on all syn/fin/rst packets or once every atr sample rate */
2934 if (!th->fin &&
2935 !th->syn &&
2936 !th->rst &&
2937 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2938 return;
2939
2940 tx_ring->atr_count = 0;
2941
2942 /* grab the next descriptor */
2943 i = tx_ring->next_to_use;
2944 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2945
2946 i++;
2947 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2948
2949 flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2950 tx_ring->queue_index);
2951 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2952 (LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP <<
2953 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2954 (LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP <<
2955 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2956
2957 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2958
2959 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2960
2961 dtype_cmd |= (th->fin || th->rst) ?
2962 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2963 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2964 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2965 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2966
2967 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2968 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2969
2970 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2971 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2972
2973 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2974 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2975 dtype_cmd |=
2976 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2977 I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
2978 else
2979 dtype_cmd |=
2980 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2981 I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
2982
2983 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2984 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2985
2986 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2987 fdir_desc->rsvd = cpu_to_le32(0);
2988 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2989 fdir_desc->fd_id = cpu_to_le32(0);
2990 }
2991
2992 /**
2993 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2994 * @skb: send buffer
2995 * @tx_ring: ring to send buffer on
2996 * @flags: the tx flags to be set
2997 *
2998 * Checks the skb and set up correspondingly several generic transmit flags
2999 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3000 *
3001 * Returns error code indicate the frame should be dropped upon error and the
3002 * otherwise returns 0 to indicate the flags has been set properly.
3003 **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)3004 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3005 struct i40e_ring *tx_ring,
3006 u32 *flags)
3007 {
3008 __be16 protocol = skb->protocol;
3009 u32 tx_flags = 0;
3010
3011 if (protocol == htons(ETH_P_8021Q) &&
3012 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3013 /* When HW VLAN acceleration is turned off by the user the
3014 * stack sets the protocol to 8021q so that the driver
3015 * can take any steps required to support the SW only
3016 * VLAN handling. In our case the driver doesn't need
3017 * to take any further steps so just set the protocol
3018 * to the encapsulated ethertype.
3019 */
3020 skb->protocol = vlan_get_protocol(skb);
3021 goto out;
3022 }
3023
3024 /* if we have a HW VLAN tag being added, default to the HW one */
3025 if (skb_vlan_tag_present(skb)) {
3026 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3027 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3028 /* else if it is a SW VLAN, check the next protocol and store the tag */
3029 } else if (protocol == htons(ETH_P_8021Q)) {
3030 struct vlan_hdr *vhdr, _vhdr;
3031
3032 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3033 if (!vhdr)
3034 return -EINVAL;
3035
3036 protocol = vhdr->h_vlan_encapsulated_proto;
3037 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3038 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3039 }
3040
3041 if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3042 goto out;
3043
3044 /* Insert 802.1p priority into VLAN header */
3045 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3046 (skb->priority != TC_PRIO_CONTROL)) {
3047 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3048 tx_flags |= (skb->priority & 0x7) <<
3049 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3050 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3051 struct vlan_ethhdr *vhdr;
3052 int rc;
3053
3054 rc = skb_cow_head(skb, 0);
3055 if (rc < 0)
3056 return rc;
3057 vhdr = skb_vlan_eth_hdr(skb);
3058 vhdr->h_vlan_TCI = htons(tx_flags >>
3059 I40E_TX_FLAGS_VLAN_SHIFT);
3060 } else {
3061 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3062 }
3063 }
3064
3065 out:
3066 *flags = tx_flags;
3067 return 0;
3068 }
3069
3070 /**
3071 * i40e_tso - set up the tso context descriptor
3072 * @first: pointer to first Tx buffer for xmit
3073 * @hdr_len: ptr to the size of the packet header
3074 * @cd_type_cmd_tso_mss: Quad Word 1
3075 *
3076 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3077 **/
i40e_tso(struct i40e_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)3078 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3079 u64 *cd_type_cmd_tso_mss)
3080 {
3081 struct sk_buff *skb = first->skb;
3082 u64 cd_cmd, cd_tso_len, cd_mss;
3083 __be16 protocol;
3084 union {
3085 struct iphdr *v4;
3086 struct ipv6hdr *v6;
3087 unsigned char *hdr;
3088 } ip;
3089 union {
3090 struct tcphdr *tcp;
3091 struct udphdr *udp;
3092 unsigned char *hdr;
3093 } l4;
3094 u32 paylen, l4_offset;
3095 u16 gso_size;
3096 int err;
3097
3098 if (skb->ip_summed != CHECKSUM_PARTIAL)
3099 return 0;
3100
3101 if (!skb_is_gso(skb))
3102 return 0;
3103
3104 err = skb_cow_head(skb, 0);
3105 if (err < 0)
3106 return err;
3107
3108 protocol = vlan_get_protocol(skb);
3109
3110 if (eth_p_mpls(protocol))
3111 ip.hdr = skb_inner_network_header(skb);
3112 else
3113 ip.hdr = skb_network_header(skb);
3114 l4.hdr = skb_checksum_start(skb);
3115
3116 /* initialize outer IP header fields */
3117 if (ip.v4->version == 4) {
3118 ip.v4->tot_len = 0;
3119 ip.v4->check = 0;
3120
3121 first->tx_flags |= I40E_TX_FLAGS_TSO;
3122 } else {
3123 ip.v6->payload_len = 0;
3124 first->tx_flags |= I40E_TX_FLAGS_TSO;
3125 }
3126
3127 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3128 SKB_GSO_GRE_CSUM |
3129 SKB_GSO_IPXIP4 |
3130 SKB_GSO_IPXIP6 |
3131 SKB_GSO_UDP_TUNNEL |
3132 SKB_GSO_UDP_TUNNEL_CSUM)) {
3133 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3134 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3135 l4.udp->len = 0;
3136
3137 /* determine offset of outer transport header */
3138 l4_offset = l4.hdr - skb->data;
3139
3140 /* remove payload length from outer checksum */
3141 paylen = skb->len - l4_offset;
3142 csum_replace_by_diff(&l4.udp->check,
3143 (__force __wsum)htonl(paylen));
3144 }
3145
3146 /* reset pointers to inner headers */
3147 ip.hdr = skb_inner_network_header(skb);
3148 l4.hdr = skb_inner_transport_header(skb);
3149
3150 /* initialize inner IP header fields */
3151 if (ip.v4->version == 4) {
3152 ip.v4->tot_len = 0;
3153 ip.v4->check = 0;
3154 } else {
3155 ip.v6->payload_len = 0;
3156 }
3157 }
3158
3159 /* determine offset of inner transport header */
3160 l4_offset = l4.hdr - skb->data;
3161
3162 /* remove payload length from inner checksum */
3163 paylen = skb->len - l4_offset;
3164
3165 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3166 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3167 /* compute length of segmentation header */
3168 *hdr_len = sizeof(*l4.udp) + l4_offset;
3169 } else {
3170 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3171 /* compute length of segmentation header */
3172 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3173 }
3174
3175 /* pull values out of skb_shinfo */
3176 gso_size = skb_shinfo(skb)->gso_size;
3177
3178 /* update GSO size and bytecount with header size */
3179 first->gso_segs = skb_shinfo(skb)->gso_segs;
3180 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3181
3182 /* find the field values */
3183 cd_cmd = I40E_TX_CTX_DESC_TSO;
3184 cd_tso_len = skb->len - *hdr_len;
3185 cd_mss = gso_size;
3186 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3187 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3188 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3189 return 1;
3190 }
3191
3192 /**
3193 * i40e_tsyn - set up the tsyn context descriptor
3194 * @tx_ring: ptr to the ring to send
3195 * @skb: ptr to the skb we're sending
3196 * @tx_flags: the collected send information
3197 * @cd_type_cmd_tso_mss: Quad Word 1
3198 *
3199 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3200 **/
i40e_tsyn(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u64 * cd_type_cmd_tso_mss)3201 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3202 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3203 {
3204 struct i40e_pf *pf;
3205
3206 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3207 return 0;
3208
3209 /* Tx timestamps cannot be sampled when doing TSO */
3210 if (tx_flags & I40E_TX_FLAGS_TSO)
3211 return 0;
3212
3213 /* only timestamp the outbound packet if the user has requested it and
3214 * we are not already transmitting a packet to be timestamped
3215 */
3216 pf = i40e_netdev_to_pf(tx_ring->netdev);
3217 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3218 return 0;
3219
3220 if (pf->ptp_tx &&
3221 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3222 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3223 pf->ptp_tx_start = jiffies;
3224 pf->ptp_tx_skb = skb_get(skb);
3225 } else {
3226 pf->tx_hwtstamp_skipped++;
3227 return 0;
3228 }
3229
3230 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3231 I40E_TXD_CTX_QW1_CMD_SHIFT;
3232
3233 return 1;
3234 }
3235
3236 /**
3237 * i40e_tx_enable_csum - Enable Tx checksum offloads
3238 * @skb: send buffer
3239 * @tx_flags: pointer to Tx flags currently set
3240 * @td_cmd: Tx descriptor command bits to set
3241 * @td_offset: Tx descriptor header offsets to set
3242 * @tx_ring: Tx descriptor ring
3243 * @cd_tunneling: ptr to context desc bits
3244 **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)3245 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3246 u32 *td_cmd, u32 *td_offset,
3247 struct i40e_ring *tx_ring,
3248 u32 *cd_tunneling)
3249 {
3250 union {
3251 struct iphdr *v4;
3252 struct ipv6hdr *v6;
3253 unsigned char *hdr;
3254 } ip;
3255 union {
3256 struct tcphdr *tcp;
3257 struct udphdr *udp;
3258 unsigned char *hdr;
3259 } l4;
3260 unsigned char *exthdr;
3261 u32 offset, cmd = 0;
3262 __be16 frag_off;
3263 __be16 protocol;
3264 u8 l4_proto = 0;
3265
3266 if (skb->ip_summed != CHECKSUM_PARTIAL)
3267 return 0;
3268
3269 protocol = vlan_get_protocol(skb);
3270
3271 if (eth_p_mpls(protocol)) {
3272 ip.hdr = skb_inner_network_header(skb);
3273 l4.hdr = skb_checksum_start(skb);
3274 } else {
3275 ip.hdr = skb_network_header(skb);
3276 l4.hdr = skb_transport_header(skb);
3277 }
3278
3279 /* set the tx_flags to indicate the IP protocol type. this is
3280 * required so that checksum header computation below is accurate.
3281 */
3282 if (ip.v4->version == 4)
3283 *tx_flags |= I40E_TX_FLAGS_IPV4;
3284 else
3285 *tx_flags |= I40E_TX_FLAGS_IPV6;
3286
3287 /* compute outer L2 header size */
3288 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3289
3290 if (skb->encapsulation) {
3291 u32 tunnel = 0;
3292 /* define outer network header type */
3293 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3294 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3295 I40E_TX_CTX_EXT_IP_IPV4 :
3296 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3297
3298 l4_proto = ip.v4->protocol;
3299 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3300 int ret;
3301
3302 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3303
3304 exthdr = ip.hdr + sizeof(*ip.v6);
3305 l4_proto = ip.v6->nexthdr;
3306 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3307 &l4_proto, &frag_off);
3308 if (ret < 0)
3309 return -1;
3310 }
3311
3312 /* define outer transport */
3313 switch (l4_proto) {
3314 case IPPROTO_UDP:
3315 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3316 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3317 break;
3318 case IPPROTO_GRE:
3319 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3320 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3321 break;
3322 case IPPROTO_IPIP:
3323 case IPPROTO_IPV6:
3324 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3325 l4.hdr = skb_inner_network_header(skb);
3326 break;
3327 default:
3328 if (*tx_flags & I40E_TX_FLAGS_TSO)
3329 return -1;
3330
3331 skb_checksum_help(skb);
3332 return 0;
3333 }
3334
3335 /* compute outer L3 header size */
3336 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3337 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3338
3339 /* switch IP header pointer from outer to inner header */
3340 ip.hdr = skb_inner_network_header(skb);
3341
3342 /* compute tunnel header size */
3343 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3344 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3345
3346 /* indicate if we need to offload outer UDP header */
3347 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3348 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3349 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3350 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3351
3352 /* record tunnel offload values */
3353 *cd_tunneling |= tunnel;
3354
3355 /* switch L4 header pointer from outer to inner */
3356 l4.hdr = skb_inner_transport_header(skb);
3357 l4_proto = 0;
3358
3359 /* reset type as we transition from outer to inner headers */
3360 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3361 if (ip.v4->version == 4)
3362 *tx_flags |= I40E_TX_FLAGS_IPV4;
3363 if (ip.v6->version == 6)
3364 *tx_flags |= I40E_TX_FLAGS_IPV6;
3365 }
3366
3367 /* Enable IP checksum offloads */
3368 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3369 l4_proto = ip.v4->protocol;
3370 /* the stack computes the IP header already, the only time we
3371 * need the hardware to recompute it is in the case of TSO.
3372 */
3373 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3374 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3375 I40E_TX_DESC_CMD_IIPT_IPV4;
3376 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3377 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3378
3379 exthdr = ip.hdr + sizeof(*ip.v6);
3380 l4_proto = ip.v6->nexthdr;
3381 if (l4.hdr != exthdr)
3382 ipv6_skip_exthdr(skb, exthdr - skb->data,
3383 &l4_proto, &frag_off);
3384 }
3385
3386 /* compute inner L3 header size */
3387 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3388
3389 /* Enable L4 checksum offloads */
3390 switch (l4_proto) {
3391 case IPPROTO_TCP:
3392 /* enable checksum offloads */
3393 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3394 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3395 break;
3396 case IPPROTO_SCTP:
3397 /* enable SCTP checksum offload */
3398 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3399 offset |= (sizeof(struct sctphdr) >> 2) <<
3400 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3401 break;
3402 case IPPROTO_UDP:
3403 /* enable UDP checksum offload */
3404 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3405 offset |= (sizeof(struct udphdr) >> 2) <<
3406 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3407 break;
3408 default:
3409 if (*tx_flags & I40E_TX_FLAGS_TSO)
3410 return -1;
3411 skb_checksum_help(skb);
3412 return 0;
3413 }
3414
3415 *td_cmd |= cmd;
3416 *td_offset |= offset;
3417
3418 return 1;
3419 }
3420
3421 /**
3422 * i40e_create_tx_ctx - Build the Tx context descriptor
3423 * @tx_ring: ring to create the descriptor on
3424 * @cd_type_cmd_tso_mss: Quad Word 1
3425 * @cd_tunneling: Quad Word 0 - bits 0-31
3426 * @cd_l2tag2: Quad Word 0 - bits 32-63
3427 **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)3428 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3429 const u64 cd_type_cmd_tso_mss,
3430 const u32 cd_tunneling, const u32 cd_l2tag2)
3431 {
3432 struct i40e_tx_context_desc *context_desc;
3433 int i = tx_ring->next_to_use;
3434
3435 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3436 !cd_tunneling && !cd_l2tag2)
3437 return;
3438
3439 /* grab the next descriptor */
3440 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3441
3442 i++;
3443 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3444
3445 /* cpu_to_le32 and assign to struct fields */
3446 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3447 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3448 context_desc->rsvd = cpu_to_le16(0);
3449 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3450 }
3451
3452 /**
3453 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3454 * @tx_ring: the ring to be checked
3455 * @size: the size buffer we want to assure is available
3456 *
3457 * Returns -EBUSY if a stop is needed, else 0
3458 **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)3459 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3460 {
3461 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3462 /* Memory barrier before checking head and tail */
3463 smp_mb();
3464
3465 ++tx_ring->tx_stats.tx_stopped;
3466
3467 /* Check again in a case another CPU has just made room available. */
3468 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3469 return -EBUSY;
3470
3471 /* A reprieve! - use start_queue because it doesn't call schedule */
3472 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3473 ++tx_ring->tx_stats.restart_queue;
3474 return 0;
3475 }
3476
3477 /**
3478 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3479 * @skb: send buffer
3480 *
3481 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3482 * and so we need to figure out the cases where we need to linearize the skb.
3483 *
3484 * For TSO we need to count the TSO header and segment payload separately.
3485 * As such we need to check cases where we have 7 fragments or more as we
3486 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3487 * the segment payload in the first descriptor, and another 7 for the
3488 * fragments.
3489 **/
__i40e_chk_linearize(struct sk_buff * skb)3490 bool __i40e_chk_linearize(struct sk_buff *skb)
3491 {
3492 const skb_frag_t *frag, *stale;
3493 int nr_frags, sum;
3494
3495 /* no need to check if number of frags is less than 7 */
3496 nr_frags = skb_shinfo(skb)->nr_frags;
3497 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3498 return false;
3499
3500 /* We need to walk through the list and validate that each group
3501 * of 6 fragments totals at least gso_size.
3502 */
3503 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3504 frag = &skb_shinfo(skb)->frags[0];
3505
3506 /* Initialize size to the negative value of gso_size minus 1. We
3507 * use this as the worst case scenerio in which the frag ahead
3508 * of us only provides one byte which is why we are limited to 6
3509 * descriptors for a single transmit as the header and previous
3510 * fragment are already consuming 2 descriptors.
3511 */
3512 sum = 1 - skb_shinfo(skb)->gso_size;
3513
3514 /* Add size of frags 0 through 4 to create our initial sum */
3515 sum += skb_frag_size(frag++);
3516 sum += skb_frag_size(frag++);
3517 sum += skb_frag_size(frag++);
3518 sum += skb_frag_size(frag++);
3519 sum += skb_frag_size(frag++);
3520
3521 /* Walk through fragments adding latest fragment, testing it, and
3522 * then removing stale fragments from the sum.
3523 */
3524 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3525 int stale_size = skb_frag_size(stale);
3526
3527 sum += skb_frag_size(frag++);
3528
3529 /* The stale fragment may present us with a smaller
3530 * descriptor than the actual fragment size. To account
3531 * for that we need to remove all the data on the front and
3532 * figure out what the remainder would be in the last
3533 * descriptor associated with the fragment.
3534 */
3535 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3536 int align_pad = -(skb_frag_off(stale)) &
3537 (I40E_MAX_READ_REQ_SIZE - 1);
3538
3539 sum -= align_pad;
3540 stale_size -= align_pad;
3541
3542 do {
3543 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3544 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3545 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3546 }
3547
3548 /* if sum is negative we failed to make sufficient progress */
3549 if (sum < 0)
3550 return true;
3551
3552 if (!nr_frags--)
3553 break;
3554
3555 sum -= stale_size;
3556 }
3557
3558 return false;
3559 }
3560
3561 /**
3562 * i40e_tx_map - Build the Tx descriptor
3563 * @tx_ring: ring to send buffer on
3564 * @skb: send buffer
3565 * @first: first buffer info buffer to use
3566 * @tx_flags: collected send information
3567 * @hdr_len: size of the packet header
3568 * @td_cmd: the command field in the descriptor
3569 * @td_offset: offset for checksum or crc
3570 *
3571 * Returns 0 on success, -1 on failure to DMA
3572 **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)3573 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3574 struct i40e_tx_buffer *first, u32 tx_flags,
3575 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3576 {
3577 unsigned int data_len = skb->data_len;
3578 unsigned int size = skb_headlen(skb);
3579 skb_frag_t *frag;
3580 struct i40e_tx_buffer *tx_bi;
3581 struct i40e_tx_desc *tx_desc;
3582 u16 i = tx_ring->next_to_use;
3583 u32 td_tag = 0;
3584 dma_addr_t dma;
3585 u16 desc_count = 1;
3586
3587 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3588 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3589 td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
3590 }
3591
3592 first->tx_flags = tx_flags;
3593
3594 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3595
3596 tx_desc = I40E_TX_DESC(tx_ring, i);
3597 tx_bi = first;
3598
3599 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3600 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3601
3602 if (dma_mapping_error(tx_ring->dev, dma))
3603 goto dma_error;
3604
3605 /* record length, and DMA address */
3606 dma_unmap_len_set(tx_bi, len, size);
3607 dma_unmap_addr_set(tx_bi, dma, dma);
3608
3609 /* align size to end of page */
3610 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3611 tx_desc->buffer_addr = cpu_to_le64(dma);
3612
3613 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3614 tx_desc->cmd_type_offset_bsz =
3615 build_ctob(td_cmd, td_offset,
3616 max_data, td_tag);
3617
3618 tx_desc++;
3619 i++;
3620 desc_count++;
3621
3622 if (i == tx_ring->count) {
3623 tx_desc = I40E_TX_DESC(tx_ring, 0);
3624 i = 0;
3625 }
3626
3627 dma += max_data;
3628 size -= max_data;
3629
3630 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3631 tx_desc->buffer_addr = cpu_to_le64(dma);
3632 }
3633
3634 if (likely(!data_len))
3635 break;
3636
3637 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3638 size, td_tag);
3639
3640 tx_desc++;
3641 i++;
3642 desc_count++;
3643
3644 if (i == tx_ring->count) {
3645 tx_desc = I40E_TX_DESC(tx_ring, 0);
3646 i = 0;
3647 }
3648
3649 size = skb_frag_size(frag);
3650 data_len -= size;
3651
3652 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3653 DMA_TO_DEVICE);
3654
3655 tx_bi = &tx_ring->tx_bi[i];
3656 }
3657
3658 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3659
3660 i++;
3661 if (i == tx_ring->count)
3662 i = 0;
3663
3664 tx_ring->next_to_use = i;
3665
3666 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3667
3668 /* write last descriptor with EOP bit */
3669 td_cmd |= I40E_TX_DESC_CMD_EOP;
3670
3671 /* We OR these values together to check both against 4 (WB_STRIDE)
3672 * below. This is safe since we don't re-use desc_count afterwards.
3673 */
3674 desc_count |= ++tx_ring->packet_stride;
3675
3676 if (desc_count >= WB_STRIDE) {
3677 /* write last descriptor with RS bit set */
3678 td_cmd |= I40E_TX_DESC_CMD_RS;
3679 tx_ring->packet_stride = 0;
3680 }
3681
3682 tx_desc->cmd_type_offset_bsz =
3683 build_ctob(td_cmd, td_offset, size, td_tag);
3684
3685 skb_tx_timestamp(skb);
3686
3687 /* Force memory writes to complete before letting h/w know there
3688 * are new descriptors to fetch.
3689 *
3690 * We also use this memory barrier to make certain all of the
3691 * status bits have been updated before next_to_watch is written.
3692 */
3693 wmb();
3694
3695 /* set next_to_watch value indicating a packet is present */
3696 first->next_to_watch = tx_desc;
3697
3698 /* notify HW of packet */
3699 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3700 writel(i, tx_ring->tail);
3701 }
3702
3703 return 0;
3704
3705 dma_error:
3706 dev_info(tx_ring->dev, "TX DMA map failed\n");
3707
3708 /* clear dma mappings for failed tx_bi map */
3709 for (;;) {
3710 tx_bi = &tx_ring->tx_bi[i];
3711 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3712 if (tx_bi == first)
3713 break;
3714 if (i == 0)
3715 i = tx_ring->count;
3716 i--;
3717 }
3718
3719 tx_ring->next_to_use = i;
3720
3721 return -1;
3722 }
3723
i40e_swdcb_skb_tx_hash(struct net_device * dev,const struct sk_buff * skb,u16 num_tx_queues)3724 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3725 const struct sk_buff *skb,
3726 u16 num_tx_queues)
3727 {
3728 u32 jhash_initval_salt = 0xd631614b;
3729 u32 hash;
3730
3731 if (skb->sk && skb->sk->sk_hash)
3732 hash = skb->sk->sk_hash;
3733 else
3734 hash = (__force u16)skb->protocol ^ skb->hash;
3735
3736 hash = jhash_1word(hash, jhash_initval_salt);
3737
3738 return (u16)(((u64)hash * num_tx_queues) >> 32);
3739 }
3740
i40e_lan_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device __always_unused * sb_dev)3741 u16 i40e_lan_select_queue(struct net_device *netdev,
3742 struct sk_buff *skb,
3743 struct net_device __always_unused *sb_dev)
3744 {
3745 struct i40e_netdev_priv *np = netdev_priv(netdev);
3746 struct i40e_vsi *vsi = np->vsi;
3747 struct i40e_hw *hw;
3748 u16 qoffset;
3749 u16 qcount;
3750 u8 tclass;
3751 u16 hash;
3752 u8 prio;
3753
3754 /* is DCB enabled at all? */
3755 if (vsi->tc_config.numtc == 1 ||
3756 i40e_is_tc_mqprio_enabled(vsi->back))
3757 return netdev_pick_tx(netdev, skb, sb_dev);
3758
3759 prio = skb->priority;
3760 hw = &vsi->back->hw;
3761 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3762 /* sanity check */
3763 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3764 tclass = 0;
3765
3766 /* select a queue assigned for the given TC */
3767 qcount = vsi->tc_config.tc_info[tclass].qcount;
3768 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3769
3770 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3771 return qoffset + hash;
3772 }
3773
3774 /**
3775 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3776 * @xdpf: data to transmit
3777 * @xdp_ring: XDP Tx ring
3778 **/
i40e_xmit_xdp_ring(struct xdp_frame * xdpf,struct i40e_ring * xdp_ring)3779 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3780 struct i40e_ring *xdp_ring)
3781 {
3782 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3783 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3784 u16 i = 0, index = xdp_ring->next_to_use;
3785 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3786 struct i40e_tx_buffer *tx_bi = tx_head;
3787 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3788 void *data = xdpf->data;
3789 u32 size = xdpf->len;
3790
3791 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3792 xdp_ring->tx_stats.tx_busy++;
3793 return I40E_XDP_CONSUMED;
3794 }
3795
3796 tx_head->bytecount = xdp_get_frame_len(xdpf);
3797 tx_head->gso_segs = 1;
3798 tx_head->xdpf = xdpf;
3799
3800 for (;;) {
3801 dma_addr_t dma;
3802
3803 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3804 if (dma_mapping_error(xdp_ring->dev, dma))
3805 goto unmap;
3806
3807 /* record length, and DMA address */
3808 dma_unmap_len_set(tx_bi, len, size);
3809 dma_unmap_addr_set(tx_bi, dma, dma);
3810
3811 tx_desc->buffer_addr = cpu_to_le64(dma);
3812 tx_desc->cmd_type_offset_bsz =
3813 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3814
3815 if (++index == xdp_ring->count)
3816 index = 0;
3817
3818 if (i == nr_frags)
3819 break;
3820
3821 tx_bi = &xdp_ring->tx_bi[index];
3822 tx_desc = I40E_TX_DESC(xdp_ring, index);
3823
3824 data = skb_frag_address(&sinfo->frags[i]);
3825 size = skb_frag_size(&sinfo->frags[i]);
3826 i++;
3827 }
3828
3829 tx_desc->cmd_type_offset_bsz |=
3830 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3831
3832 /* Make certain all of the status bits have been updated
3833 * before next_to_watch is written.
3834 */
3835 smp_wmb();
3836
3837 xdp_ring->xdp_tx_active++;
3838
3839 tx_head->next_to_watch = tx_desc;
3840 xdp_ring->next_to_use = index;
3841
3842 return I40E_XDP_TX;
3843
3844 unmap:
3845 for (;;) {
3846 tx_bi = &xdp_ring->tx_bi[index];
3847 if (dma_unmap_len(tx_bi, len))
3848 dma_unmap_page(xdp_ring->dev,
3849 dma_unmap_addr(tx_bi, dma),
3850 dma_unmap_len(tx_bi, len),
3851 DMA_TO_DEVICE);
3852 dma_unmap_len_set(tx_bi, len, 0);
3853 if (tx_bi == tx_head)
3854 break;
3855
3856 if (!index)
3857 index += xdp_ring->count;
3858 index--;
3859 }
3860
3861 return I40E_XDP_CONSUMED;
3862 }
3863
3864 /**
3865 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3866 * @skb: send buffer
3867 * @tx_ring: ring to send buffer on
3868 *
3869 * Returns NETDEV_TX_OK if sent, else an error code
3870 **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)3871 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3872 struct i40e_ring *tx_ring)
3873 {
3874 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3875 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3876 struct i40e_tx_buffer *first;
3877 u32 td_offset = 0;
3878 u32 tx_flags = 0;
3879 u32 td_cmd = 0;
3880 u8 hdr_len = 0;
3881 int tso, count;
3882 int tsyn;
3883
3884 /* prefetch the data, we'll need it later */
3885 prefetch(skb->data);
3886
3887 i40e_trace(xmit_frame_ring, skb, tx_ring);
3888
3889 count = i40e_xmit_descriptor_count(skb);
3890 if (i40e_chk_linearize(skb, count)) {
3891 if (__skb_linearize(skb)) {
3892 dev_kfree_skb_any(skb);
3893 return NETDEV_TX_OK;
3894 }
3895 count = i40e_txd_use_count(skb->len);
3896 tx_ring->tx_stats.tx_linearize++;
3897 }
3898
3899 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3900 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3901 * + 4 desc gap to avoid the cache line where head is,
3902 * + 1 desc for context descriptor,
3903 * otherwise try next time
3904 */
3905 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3906 tx_ring->tx_stats.tx_busy++;
3907 return NETDEV_TX_BUSY;
3908 }
3909
3910 /* record the location of the first descriptor for this packet */
3911 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3912 first->skb = skb;
3913 first->bytecount = skb->len;
3914 first->gso_segs = 1;
3915
3916 /* prepare the xmit flags */
3917 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3918 goto out_drop;
3919
3920 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3921
3922 if (tso < 0)
3923 goto out_drop;
3924 else if (tso)
3925 tx_flags |= I40E_TX_FLAGS_TSO;
3926
3927 /* Always offload the checksum, since it's in the data descriptor */
3928 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3929 tx_ring, &cd_tunneling);
3930 if (tso < 0)
3931 goto out_drop;
3932
3933 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3934
3935 if (tsyn)
3936 tx_flags |= I40E_TX_FLAGS_TSYN;
3937
3938 /* always enable CRC insertion offload */
3939 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3940
3941 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3942 cd_tunneling, cd_l2tag2);
3943
3944 /* Add Flow Director ATR if it's enabled.
3945 *
3946 * NOTE: this must always be directly before the data descriptor.
3947 */
3948 i40e_atr(tx_ring, skb, tx_flags);
3949
3950 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3951 td_cmd, td_offset))
3952 goto cleanup_tx_tstamp;
3953
3954 return NETDEV_TX_OK;
3955
3956 out_drop:
3957 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3958 dev_kfree_skb_any(first->skb);
3959 first->skb = NULL;
3960 cleanup_tx_tstamp:
3961 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3962 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3963
3964 dev_kfree_skb_any(pf->ptp_tx_skb);
3965 pf->ptp_tx_skb = NULL;
3966 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3967 }
3968
3969 return NETDEV_TX_OK;
3970 }
3971
3972 /**
3973 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3974 * @skb: send buffer
3975 * @netdev: network interface device structure
3976 *
3977 * Returns NETDEV_TX_OK if sent, else an error code
3978 **/
i40e_lan_xmit_frame(struct sk_buff * skb,struct net_device * netdev)3979 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3980 {
3981 struct i40e_netdev_priv *np = netdev_priv(netdev);
3982 struct i40e_vsi *vsi = np->vsi;
3983 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3984
3985 /* hardware can't handle really short frames, hardware padding works
3986 * beyond this point
3987 */
3988 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3989 return NETDEV_TX_OK;
3990
3991 return i40e_xmit_frame_ring(skb, tx_ring);
3992 }
3993
3994 /**
3995 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3996 * @dev: netdev
3997 * @n: number of frames
3998 * @frames: array of XDP buffer pointers
3999 * @flags: XDP extra info
4000 *
4001 * Returns number of frames successfully sent. Failed frames
4002 * will be free'ed by XDP core.
4003 *
4004 * For error cases, a negative errno code is returned and no-frames
4005 * are transmitted (caller must handle freeing frames).
4006 **/
i40e_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)4007 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4008 u32 flags)
4009 {
4010 struct i40e_netdev_priv *np = netdev_priv(dev);
4011 unsigned int queue_index = smp_processor_id();
4012 struct i40e_vsi *vsi = np->vsi;
4013 struct i40e_pf *pf = vsi->back;
4014 struct i40e_ring *xdp_ring;
4015 int nxmit = 0;
4016 int i;
4017
4018 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4019 return -ENETDOWN;
4020
4021 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4022 test_bit(__I40E_CONFIG_BUSY, pf->state))
4023 return -ENXIO;
4024
4025 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4026 return -EINVAL;
4027
4028 xdp_ring = vsi->xdp_rings[queue_index];
4029
4030 for (i = 0; i < n; i++) {
4031 struct xdp_frame *xdpf = frames[i];
4032 int err;
4033
4034 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4035 if (err != I40E_XDP_TX)
4036 break;
4037 nxmit++;
4038 }
4039
4040 if (unlikely(flags & XDP_XMIT_FLUSH))
4041 i40e_xdp_ring_update_tail(xdp_ring);
4042
4043 return nxmit;
4044 }
4045