xref: /linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <linux/net/intel/libie/pctype.h>
6 #include <linux/net/intel/libie/rx.h>
7 #include <linux/prefetch.h>
8 #include <linux/sctp.h>
9 #include <net/mpls.h>
10 #include <net/xdp.h>
11 #include "i40e_txrx_common.h"
12 #include "i40e_trace.h"
13 #include "i40e_xsk.h"
14 
15 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
16 /**
17  * i40e_fdir - Generate a Flow Director descriptor based on fdata
18  * @tx_ring: Tx ring to send buffer on
19  * @fdata: Flow director filter data
20  * @add: Indicate if we are adding a rule or deleting one
21  *
22  **/
i40e_fdir(struct i40e_ring * tx_ring,struct i40e_fdir_filter * fdata,bool add)23 static void i40e_fdir(struct i40e_ring *tx_ring,
24 		      struct i40e_fdir_filter *fdata, bool add)
25 {
26 	struct i40e_filter_program_desc *fdir_desc;
27 	struct i40e_pf *pf = tx_ring->vsi->back;
28 	u32 flex_ptype, dtype_cmd, vsi_id;
29 	u16 i;
30 
31 	/* grab the next descriptor */
32 	i = tx_ring->next_to_use;
33 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
34 
35 	i++;
36 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
37 
38 	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
39 
40 	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
41 				 fdata->flex_off);
42 
43 	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
44 
45 	/* Use LAN VSI Id if not programmed by user */
46 	vsi_id = fdata->dest_vsi ? : i40e_pf_get_main_vsi(pf)->id;
47 	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, vsi_id);
48 
49 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
50 
51 	dtype_cmd |= add ?
52 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
53 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
54 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
55 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
56 
57 	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
58 
59 	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
60 				fdata->fd_status);
61 
62 	if (fdata->cnt_index) {
63 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
64 		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
65 					fdata->cnt_index);
66 	}
67 
68 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
69 	fdir_desc->rsvd = cpu_to_le32(0);
70 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
71 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
72 }
73 
74 #define I40E_FD_CLEAN_DELAY 10
75 /**
76  * i40e_program_fdir_filter - Program a Flow Director filter
77  * @fdir_data: Packet data that will be filter parameters
78  * @raw_packet: the pre-allocated packet buffer for FDir
79  * @pf: The PF pointer
80  * @add: True for add/update, False for remove
81  **/
i40e_program_fdir_filter(struct i40e_fdir_filter * fdir_data,u8 * raw_packet,struct i40e_pf * pf,bool add)82 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
83 				    u8 *raw_packet, struct i40e_pf *pf,
84 				    bool add)
85 {
86 	struct i40e_tx_buffer *tx_buf, *first;
87 	struct i40e_tx_desc *tx_desc;
88 	struct i40e_ring *tx_ring;
89 	struct i40e_vsi *vsi;
90 	struct device *dev;
91 	dma_addr_t dma;
92 	u32 td_cmd = 0;
93 	u16 i;
94 
95 	/* find existing FDIR VSI */
96 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
97 	if (!vsi)
98 		return -ENOENT;
99 
100 	tx_ring = vsi->tx_rings[0];
101 	dev = tx_ring->dev;
102 
103 	/* we need two descriptors to add/del a filter and we can wait */
104 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
105 		if (!i)
106 			return -EAGAIN;
107 		msleep_interruptible(1);
108 	}
109 
110 	dma = dma_map_single(dev, raw_packet,
111 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
112 	if (dma_mapping_error(dev, dma))
113 		goto dma_fail;
114 
115 	/* grab the next descriptor */
116 	i = tx_ring->next_to_use;
117 	first = &tx_ring->tx_bi[i];
118 	i40e_fdir(tx_ring, fdir_data, add);
119 
120 	/* Now program a dummy descriptor */
121 	i = tx_ring->next_to_use;
122 	tx_desc = I40E_TX_DESC(tx_ring, i);
123 	tx_buf = &tx_ring->tx_bi[i];
124 
125 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
126 
127 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
128 
129 	/* record length, and DMA address */
130 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
131 	dma_unmap_addr_set(tx_buf, dma, dma);
132 
133 	tx_desc->buffer_addr = cpu_to_le64(dma);
134 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
135 
136 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
137 	tx_buf->raw_buf = (void *)raw_packet;
138 
139 	tx_desc->cmd_type_offset_bsz =
140 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
141 
142 	/* Force memory writes to complete before letting h/w
143 	 * know there are new descriptors to fetch.
144 	 */
145 	wmb();
146 
147 	/* Mark the data descriptor to be watched */
148 	first->next_to_watch = tx_desc;
149 
150 	writel(tx_ring->next_to_use, tx_ring->tail);
151 	return 0;
152 
153 dma_fail:
154 	return -1;
155 }
156 
157 /**
158  * i40e_create_dummy_packet - Constructs dummy packet for HW
159  * @dummy_packet: preallocated space for dummy packet
160  * @ipv4: is layer 3 packet of version 4 or 6
161  * @l4proto: next level protocol used in data portion of l3
162  * @data: filter data
163  *
164  * Returns address of layer 4 protocol dummy packet.
165  **/
i40e_create_dummy_packet(u8 * dummy_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)166 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
167 				      struct i40e_fdir_filter *data)
168 {
169 	bool is_vlan = !!data->vlan_tag;
170 	struct vlan_hdr vlan = {};
171 	struct ipv6hdr ipv6 = {};
172 	struct ethhdr eth = {};
173 	struct iphdr ip = {};
174 	u8 *tmp;
175 
176 	if (ipv4) {
177 		eth.h_proto = cpu_to_be16(ETH_P_IP);
178 		ip.protocol = l4proto;
179 		ip.version = 0x4;
180 		ip.ihl = 0x5;
181 
182 		ip.daddr = data->dst_ip;
183 		ip.saddr = data->src_ip;
184 	} else {
185 		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
186 		ipv6.nexthdr = l4proto;
187 		ipv6.version = 0x6;
188 
189 		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
190 		       sizeof(__be32) * 4);
191 		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
192 		       sizeof(__be32) * 4);
193 	}
194 
195 	if (is_vlan) {
196 		vlan.h_vlan_TCI = data->vlan_tag;
197 		vlan.h_vlan_encapsulated_proto = eth.h_proto;
198 		eth.h_proto = data->vlan_etype;
199 	}
200 
201 	tmp = dummy_packet;
202 	memcpy(tmp, &eth, sizeof(eth));
203 	tmp += sizeof(eth);
204 
205 	if (is_vlan) {
206 		memcpy(tmp, &vlan, sizeof(vlan));
207 		tmp += sizeof(vlan);
208 	}
209 
210 	if (ipv4) {
211 		memcpy(tmp, &ip, sizeof(ip));
212 		tmp += sizeof(ip);
213 	} else {
214 		memcpy(tmp, &ipv6, sizeof(ipv6));
215 		tmp += sizeof(ipv6);
216 	}
217 
218 	return tmp;
219 }
220 
221 /**
222  * i40e_create_dummy_udp_packet - helper function to create UDP packet
223  * @raw_packet: preallocated space for dummy packet
224  * @ipv4: is layer 3 packet of version 4 or 6
225  * @l4proto: next level protocol used in data portion of l3
226  * @data: filter data
227  *
228  * Helper function to populate udp fields.
229  **/
i40e_create_dummy_udp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)230 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
231 					 struct i40e_fdir_filter *data)
232 {
233 	struct udphdr *udp;
234 	u8 *tmp;
235 
236 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
237 	udp = (struct udphdr *)(tmp);
238 	udp->dest = data->dst_port;
239 	udp->source = data->src_port;
240 }
241 
242 /**
243  * i40e_create_dummy_tcp_packet - helper function to create TCP packet
244  * @raw_packet: preallocated space for dummy packet
245  * @ipv4: is layer 3 packet of version 4 or 6
246  * @l4proto: next level protocol used in data portion of l3
247  * @data: filter data
248  *
249  * Helper function to populate tcp fields.
250  **/
i40e_create_dummy_tcp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)251 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
252 					 struct i40e_fdir_filter *data)
253 {
254 	struct tcphdr *tcp;
255 	u8 *tmp;
256 	/* Dummy tcp packet */
257 	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
258 		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
259 
260 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
261 
262 	tcp = (struct tcphdr *)tmp;
263 	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
264 	tcp->dest = data->dst_port;
265 	tcp->source = data->src_port;
266 }
267 
268 /**
269  * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
270  * @raw_packet: preallocated space for dummy packet
271  * @ipv4: is layer 3 packet of version 4 or 6
272  * @l4proto: next level protocol used in data portion of l3
273  * @data: filter data
274  *
275  * Helper function to populate sctp fields.
276  **/
i40e_create_dummy_sctp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)277 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
278 					  u8 l4proto,
279 					  struct i40e_fdir_filter *data)
280 {
281 	struct sctphdr *sctp;
282 	u8 *tmp;
283 
284 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
285 
286 	sctp = (struct sctphdr *)tmp;
287 	sctp->dest = data->dst_port;
288 	sctp->source = data->src_port;
289 }
290 
291 /**
292  * i40e_prepare_fdir_filter - Prepare and program fdir filter
293  * @pf: physical function to attach filter to
294  * @fd_data: filter data
295  * @add: add or delete filter
296  * @packet_addr: address of dummy packet, used in filtering
297  * @payload_offset: offset from dummy packet address to user defined data
298  * @pctype: Packet type for which filter is used
299  *
300  * Helper function to offset data of dummy packet, program it and
301  * handle errors.
302  **/
i40e_prepare_fdir_filter(struct i40e_pf * pf,struct i40e_fdir_filter * fd_data,bool add,char * packet_addr,int payload_offset,u8 pctype)303 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
304 				    struct i40e_fdir_filter *fd_data,
305 				    bool add, char *packet_addr,
306 				    int payload_offset, u8 pctype)
307 {
308 	int ret;
309 
310 	if (fd_data->flex_filter) {
311 		u8 *payload;
312 		__be16 pattern = fd_data->flex_word;
313 		u16 off = fd_data->flex_offset;
314 
315 		payload = packet_addr + payload_offset;
316 
317 		/* If user provided vlan, offset payload by vlan header length */
318 		if (!!fd_data->vlan_tag)
319 			payload += VLAN_HLEN;
320 
321 		*((__force __be16 *)(payload + off)) = pattern;
322 	}
323 
324 	fd_data->pctype = pctype;
325 	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
326 	if (ret) {
327 		dev_info(&pf->pdev->dev,
328 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
329 			 fd_data->pctype, fd_data->fd_id, ret);
330 		/* Free the packet buffer since it wasn't added to the ring */
331 		return -EOPNOTSUPP;
332 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
333 		if (add)
334 			dev_info(&pf->pdev->dev,
335 				 "Filter OK for PCTYPE %d loc = %d\n",
336 				 fd_data->pctype, fd_data->fd_id);
337 		else
338 			dev_info(&pf->pdev->dev,
339 				 "Filter deleted for PCTYPE %d loc = %d\n",
340 				 fd_data->pctype, fd_data->fd_id);
341 	}
342 
343 	return ret;
344 }
345 
346 /**
347  * i40e_change_filter_num - Prepare and program fdir filter
348  * @ipv4: is layer 3 packet of version 4 or 6
349  * @add: add or delete filter
350  * @ipv4_filter_num: field to update
351  * @ipv6_filter_num: field to update
352  *
353  * Update filter number field for pf.
354  **/
i40e_change_filter_num(bool ipv4,bool add,u16 * ipv4_filter_num,u16 * ipv6_filter_num)355 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
356 				   u16 *ipv6_filter_num)
357 {
358 	if (add) {
359 		if (ipv4)
360 			(*ipv4_filter_num)++;
361 		else
362 			(*ipv6_filter_num)++;
363 	} else {
364 		if (ipv4)
365 			(*ipv4_filter_num)--;
366 		else
367 			(*ipv6_filter_num)--;
368 	}
369 }
370 
371 #define I40E_UDPIP_DUMMY_PACKET_LEN	42
372 #define I40E_UDPIP6_DUMMY_PACKET_LEN	62
373 /**
374  * i40e_add_del_fdir_udp - Add/Remove UDP filters
375  * @vsi: pointer to the targeted VSI
376  * @fd_data: the flow director data required for the FDir descriptor
377  * @add: true adds a filter, false removes it
378  * @ipv4: true is v4, false is v6
379  *
380  * Returns 0 if the filters were successfully added or removed
381  **/
i40e_add_del_fdir_udp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)382 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
383 				 struct i40e_fdir_filter *fd_data,
384 				 bool add,
385 				 bool ipv4)
386 {
387 	struct i40e_pf *pf = vsi->back;
388 	u8 *raw_packet;
389 	int ret;
390 
391 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
392 	if (!raw_packet)
393 		return -ENOMEM;
394 
395 	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
396 
397 	if (ipv4)
398 		ret = i40e_prepare_fdir_filter
399 			(pf, fd_data, add, raw_packet,
400 			 I40E_UDPIP_DUMMY_PACKET_LEN,
401 			 LIBIE_FILTER_PCTYPE_NONF_IPV4_UDP);
402 	else
403 		ret = i40e_prepare_fdir_filter
404 			(pf, fd_data, add, raw_packet,
405 			 I40E_UDPIP6_DUMMY_PACKET_LEN,
406 			 LIBIE_FILTER_PCTYPE_NONF_IPV6_UDP);
407 
408 	if (ret) {
409 		kfree(raw_packet);
410 		return ret;
411 	}
412 
413 	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
414 			       &pf->fd_udp6_filter_cnt);
415 
416 	return 0;
417 }
418 
419 #define I40E_TCPIP_DUMMY_PACKET_LEN	54
420 #define I40E_TCPIP6_DUMMY_PACKET_LEN	74
421 /**
422  * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
423  * @vsi: pointer to the targeted VSI
424  * @fd_data: the flow director data required for the FDir descriptor
425  * @add: true adds a filter, false removes it
426  * @ipv4: true is v4, false is v6
427  *
428  * Returns 0 if the filters were successfully added or removed
429  **/
i40e_add_del_fdir_tcp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)430 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
431 				 struct i40e_fdir_filter *fd_data,
432 				 bool add,
433 				 bool ipv4)
434 {
435 	struct i40e_pf *pf = vsi->back;
436 	u8 *raw_packet;
437 	int ret;
438 
439 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
440 	if (!raw_packet)
441 		return -ENOMEM;
442 
443 	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
444 	if (ipv4)
445 		ret = i40e_prepare_fdir_filter
446 			(pf, fd_data, add, raw_packet,
447 			 I40E_TCPIP_DUMMY_PACKET_LEN,
448 			 LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP);
449 	else
450 		ret = i40e_prepare_fdir_filter
451 			(pf, fd_data, add, raw_packet,
452 			 I40E_TCPIP6_DUMMY_PACKET_LEN,
453 			 LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP);
454 
455 	if (ret) {
456 		kfree(raw_packet);
457 		return ret;
458 	}
459 
460 	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
461 			       &pf->fd_tcp6_filter_cnt);
462 
463 	if (add) {
464 		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
465 		    I40E_DEBUG_FD & pf->hw.debug_mask)
466 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
467 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
468 	}
469 	return 0;
470 }
471 
472 #define I40E_SCTPIP_DUMMY_PACKET_LEN	46
473 #define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
474 /**
475  * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
476  * a specific flow spec
477  * @vsi: pointer to the targeted VSI
478  * @fd_data: the flow director data required for the FDir descriptor
479  * @add: true adds a filter, false removes it
480  * @ipv4: true is v4, false is v6
481  *
482  * Returns 0 if the filters were successfully added or removed
483  **/
i40e_add_del_fdir_sctp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)484 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
485 				  struct i40e_fdir_filter *fd_data,
486 				  bool add,
487 				  bool ipv4)
488 {
489 	struct i40e_pf *pf = vsi->back;
490 	u8 *raw_packet;
491 	int ret;
492 
493 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
494 	if (!raw_packet)
495 		return -ENOMEM;
496 
497 	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
498 
499 	if (ipv4)
500 		ret = i40e_prepare_fdir_filter
501 			(pf, fd_data, add, raw_packet,
502 			 I40E_SCTPIP_DUMMY_PACKET_LEN,
503 			 LIBIE_FILTER_PCTYPE_NONF_IPV4_SCTP);
504 	else
505 		ret = i40e_prepare_fdir_filter
506 			(pf, fd_data, add, raw_packet,
507 			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
508 			 LIBIE_FILTER_PCTYPE_NONF_IPV6_SCTP);
509 
510 	if (ret) {
511 		kfree(raw_packet);
512 		return ret;
513 	}
514 
515 	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
516 			       &pf->fd_sctp6_filter_cnt);
517 
518 	return 0;
519 }
520 
521 #define I40E_IP_DUMMY_PACKET_LEN	34
522 #define I40E_IP6_DUMMY_PACKET_LEN	54
523 /**
524  * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
525  * a specific flow spec
526  * @vsi: pointer to the targeted VSI
527  * @fd_data: the flow director data required for the FDir descriptor
528  * @add: true adds a filter, false removes it
529  * @ipv4: true is v4, false is v6
530  *
531  * Returns 0 if the filters were successfully added or removed
532  **/
i40e_add_del_fdir_ip(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)533 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
534 				struct i40e_fdir_filter *fd_data,
535 				bool add,
536 				bool ipv4)
537 {
538 	struct i40e_pf *pf = vsi->back;
539 	int payload_offset;
540 	u8 *raw_packet;
541 	int iter_start;
542 	int iter_end;
543 	int ret;
544 	int i;
545 
546 	if (ipv4) {
547 		iter_start = LIBIE_FILTER_PCTYPE_NONF_IPV4_OTHER;
548 		iter_end = LIBIE_FILTER_PCTYPE_FRAG_IPV4;
549 	} else {
550 		iter_start = LIBIE_FILTER_PCTYPE_NONF_IPV6_OTHER;
551 		iter_end = LIBIE_FILTER_PCTYPE_FRAG_IPV6;
552 	}
553 
554 	for (i = iter_start; i <= iter_end; i++) {
555 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
556 		if (!raw_packet)
557 			return -ENOMEM;
558 
559 		/* IPv6 no header option differs from IPv4 */
560 		(void)i40e_create_dummy_packet
561 			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
562 			 fd_data);
563 
564 		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
565 			I40E_IP6_DUMMY_PACKET_LEN;
566 		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
567 					       payload_offset, i);
568 		if (ret)
569 			goto err;
570 	}
571 
572 	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
573 			       &pf->fd_ip6_filter_cnt);
574 
575 	return 0;
576 err:
577 	kfree(raw_packet);
578 	return ret;
579 }
580 
581 /**
582  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
583  * @vsi: pointer to the targeted VSI
584  * @input: filter to add or delete
585  * @add: true adds a filter, false removes it
586  *
587  **/
i40e_add_del_fdir(struct i40e_vsi * vsi,struct i40e_fdir_filter * input,bool add)588 int i40e_add_del_fdir(struct i40e_vsi *vsi,
589 		      struct i40e_fdir_filter *input, bool add)
590 {
591 	enum ip_ver { ipv6 = 0, ipv4 = 1 };
592 	struct i40e_pf *pf = vsi->back;
593 	int ret;
594 
595 	switch (input->flow_type & ~FLOW_EXT) {
596 	case TCP_V4_FLOW:
597 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
598 		break;
599 	case UDP_V4_FLOW:
600 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
601 		break;
602 	case SCTP_V4_FLOW:
603 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
604 		break;
605 	case TCP_V6_FLOW:
606 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
607 		break;
608 	case UDP_V6_FLOW:
609 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
610 		break;
611 	case SCTP_V6_FLOW:
612 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
613 		break;
614 	case IP_USER_FLOW:
615 		switch (input->ipl4_proto) {
616 		case IPPROTO_TCP:
617 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
618 			break;
619 		case IPPROTO_UDP:
620 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
621 			break;
622 		case IPPROTO_SCTP:
623 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
624 			break;
625 		case IPPROTO_IP:
626 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
627 			break;
628 		default:
629 			/* We cannot support masking based on protocol */
630 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
631 				 input->ipl4_proto);
632 			return -EINVAL;
633 		}
634 		break;
635 	case IPV6_USER_FLOW:
636 		switch (input->ipl4_proto) {
637 		case IPPROTO_TCP:
638 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
639 			break;
640 		case IPPROTO_UDP:
641 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
642 			break;
643 		case IPPROTO_SCTP:
644 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
645 			break;
646 		case IPPROTO_IP:
647 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
648 			break;
649 		default:
650 			/* We cannot support masking based on protocol */
651 			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
652 				 input->ipl4_proto);
653 			return -EINVAL;
654 		}
655 		break;
656 	default:
657 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
658 			 input->flow_type);
659 		return -EINVAL;
660 	}
661 
662 	/* The buffer allocated here will be normally be freed by
663 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
664 	 * completion. In the event of an error adding the buffer to the FDIR
665 	 * ring, it will immediately be freed. It may also be freed by
666 	 * i40e_clean_tx_ring() when closing the VSI.
667 	 */
668 	return ret;
669 }
670 
671 /**
672  * i40e_fd_handle_status - check the Programming Status for FD
673  * @rx_ring: the Rx ring for this descriptor
674  * @qword0_raw: qword0
675  * @qword1: qword1 after le_to_cpu
676  * @prog_id: the id originally used for programming
677  *
678  * This is used to verify if the FD programming or invalidation
679  * requested by SW to the HW is successful or not and take actions accordingly.
680  **/
i40e_fd_handle_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1,u8 prog_id)681 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
682 				  u64 qword1, u8 prog_id)
683 {
684 	struct i40e_pf *pf = rx_ring->vsi->back;
685 	struct pci_dev *pdev = pf->pdev;
686 	struct i40e_16b_rx_wb_qw0 *qw0;
687 	u32 fcnt_prog, fcnt_avail;
688 	u32 error;
689 
690 	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
691 	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
692 
693 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
694 		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
695 		if (qw0->hi_dword.fd_id != 0 ||
696 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
697 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
698 				 pf->fd_inv);
699 
700 		/* Check if the programming error is for ATR.
701 		 * If so, auto disable ATR and set a state for
702 		 * flush in progress. Next time we come here if flush is in
703 		 * progress do nothing, once flush is complete the state will
704 		 * be cleared.
705 		 */
706 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
707 			return;
708 
709 		pf->fd_add_err++;
710 		/* store the current atr filter count */
711 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
712 
713 		if (qw0->hi_dword.fd_id == 0 &&
714 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
715 			/* These set_bit() calls aren't atomic with the
716 			 * test_bit() here, but worse case we potentially
717 			 * disable ATR and queue a flush right after SB
718 			 * support is re-enabled. That shouldn't cause an
719 			 * issue in practice
720 			 */
721 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
722 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
723 		}
724 
725 		/* filter programming failed most likely due to table full */
726 		fcnt_prog = i40e_get_global_fd_count(pf);
727 		fcnt_avail = pf->fdir_pf_filter_count;
728 		/* If ATR is running fcnt_prog can quickly change,
729 		 * if we are very close to full, it makes sense to disable
730 		 * FD ATR/SB and then re-enable it when there is room.
731 		 */
732 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
733 			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
734 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
735 					      pf->state))
736 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
737 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
738 		}
739 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
740 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
741 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
742 				 qw0->hi_dword.fd_id);
743 	}
744 }
745 
746 /**
747  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
748  * @ring:      the ring that owns the buffer
749  * @tx_buffer: the buffer to free
750  **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)751 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
752 					    struct i40e_tx_buffer *tx_buffer)
753 {
754 	if (tx_buffer->skb) {
755 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
756 			kfree(tx_buffer->raw_buf);
757 		else if (ring_is_xdp(ring))
758 			xdp_return_frame(tx_buffer->xdpf);
759 		else
760 			dev_kfree_skb_any(tx_buffer->skb);
761 		if (dma_unmap_len(tx_buffer, len))
762 			dma_unmap_single(ring->dev,
763 					 dma_unmap_addr(tx_buffer, dma),
764 					 dma_unmap_len(tx_buffer, len),
765 					 DMA_TO_DEVICE);
766 	} else if (dma_unmap_len(tx_buffer, len)) {
767 		dma_unmap_page(ring->dev,
768 			       dma_unmap_addr(tx_buffer, dma),
769 			       dma_unmap_len(tx_buffer, len),
770 			       DMA_TO_DEVICE);
771 	}
772 
773 	tx_buffer->next_to_watch = NULL;
774 	tx_buffer->skb = NULL;
775 	dma_unmap_len_set(tx_buffer, len, 0);
776 	/* tx_buffer must be completely set up in the transmit path */
777 }
778 
779 /**
780  * i40e_clean_tx_ring - Free any empty Tx buffers
781  * @tx_ring: ring to be cleaned
782  **/
i40e_clean_tx_ring(struct i40e_ring * tx_ring)783 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
784 {
785 	unsigned long bi_size;
786 	u16 i;
787 
788 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
789 		i40e_xsk_clean_tx_ring(tx_ring);
790 	} else {
791 		/* ring already cleared, nothing to do */
792 		if (!tx_ring->tx_bi)
793 			return;
794 
795 		/* Free all the Tx ring sk_buffs */
796 		for (i = 0; i < tx_ring->count; i++)
797 			i40e_unmap_and_free_tx_resource(tx_ring,
798 							&tx_ring->tx_bi[i]);
799 	}
800 
801 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
802 	memset(tx_ring->tx_bi, 0, bi_size);
803 
804 	/* Zero out the descriptor ring */
805 	memset(tx_ring->desc, 0, tx_ring->size);
806 
807 	tx_ring->next_to_use = 0;
808 	tx_ring->next_to_clean = 0;
809 
810 	if (!tx_ring->netdev)
811 		return;
812 
813 	/* cleanup Tx queue statistics */
814 	netdev_tx_reset_queue(txring_txq(tx_ring));
815 }
816 
817 /**
818  * i40e_free_tx_resources - Free Tx resources per queue
819  * @tx_ring: Tx descriptor ring for a specific queue
820  *
821  * Free all transmit software resources
822  **/
i40e_free_tx_resources(struct i40e_ring * tx_ring)823 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
824 {
825 	i40e_clean_tx_ring(tx_ring);
826 	kfree(tx_ring->tx_bi);
827 	tx_ring->tx_bi = NULL;
828 
829 	if (tx_ring->desc) {
830 		dma_free_coherent(tx_ring->dev, tx_ring->size,
831 				  tx_ring->desc, tx_ring->dma);
832 		tx_ring->desc = NULL;
833 	}
834 }
835 
836 /**
837  * i40e_get_tx_pending - how many tx descriptors not processed
838  * @ring: the ring of descriptors
839  * @in_sw: use SW variables
840  *
841  * Since there is no access to the ring head register
842  * in XL710, we need to use our local copies
843  **/
i40e_get_tx_pending(struct i40e_ring * ring,bool in_sw)844 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
845 {
846 	u32 head, tail;
847 
848 	if (!in_sw) {
849 		head = i40e_get_head(ring);
850 		tail = readl(ring->tail);
851 	} else {
852 		head = ring->next_to_clean;
853 		tail = ring->next_to_use;
854 	}
855 
856 	if (head != tail)
857 		return (head < tail) ?
858 			tail - head : (tail + ring->count - head);
859 
860 	return 0;
861 }
862 
863 /**
864  * i40e_detect_recover_hung - Function to detect and recover hung_queues
865  * @pf: pointer to PF struct
866  *
867  * LAN VSI has netdev and netdev has TX queues. This function is to check
868  * each of those TX queues if they are hung, trigger recovery by issuing
869  * SW interrupt.
870  **/
i40e_detect_recover_hung(struct i40e_pf * pf)871 void i40e_detect_recover_hung(struct i40e_pf *pf)
872 {
873 	struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
874 	struct i40e_ring *tx_ring = NULL;
875 	struct net_device *netdev;
876 	unsigned int i;
877 	int packets;
878 
879 	if (!vsi)
880 		return;
881 
882 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
883 		return;
884 
885 	netdev = vsi->netdev;
886 	if (!netdev)
887 		return;
888 
889 	if (!netif_carrier_ok(netdev))
890 		return;
891 
892 	for (i = 0; i < vsi->num_queue_pairs; i++) {
893 		tx_ring = vsi->tx_rings[i];
894 		if (tx_ring && tx_ring->desc) {
895 			/* If packet counter has not changed the queue is
896 			 * likely stalled, so force an interrupt for this
897 			 * queue.
898 			 *
899 			 * prev_pkt_ctr would be negative if there was no
900 			 * pending work.
901 			 */
902 			packets = tx_ring->stats.packets & INT_MAX;
903 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
904 				i40e_force_wb(vsi, tx_ring->q_vector);
905 				continue;
906 			}
907 
908 			/* Memory barrier between read of packet count and call
909 			 * to i40e_get_tx_pending()
910 			 */
911 			smp_rmb();
912 			tx_ring->tx_stats.prev_pkt_ctr =
913 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
914 		}
915 	}
916 }
917 
918 /**
919  * i40e_clean_tx_irq - Reclaim resources after transmit completes
920  * @vsi: the VSI we care about
921  * @tx_ring: Tx ring to clean
922  * @napi_budget: Used to determine if we are in netpoll
923  * @tx_cleaned: Out parameter set to the number of TXes cleaned
924  *
925  * Returns true if there's any budget left (e.g. the clean is finished)
926  **/
i40e_clean_tx_irq(struct i40e_vsi * vsi,struct i40e_ring * tx_ring,int napi_budget,unsigned int * tx_cleaned)927 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
928 			      struct i40e_ring *tx_ring, int napi_budget,
929 			      unsigned int *tx_cleaned)
930 {
931 	int i = tx_ring->next_to_clean;
932 	struct i40e_tx_buffer *tx_buf;
933 	struct i40e_tx_desc *tx_head;
934 	struct i40e_tx_desc *tx_desc;
935 	unsigned int total_bytes = 0, total_packets = 0;
936 	unsigned int budget = vsi->work_limit;
937 
938 	tx_buf = &tx_ring->tx_bi[i];
939 	tx_desc = I40E_TX_DESC(tx_ring, i);
940 	i -= tx_ring->count;
941 
942 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
943 
944 	do {
945 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
946 
947 		/* if next_to_watch is not set then there is no work pending */
948 		if (!eop_desc)
949 			break;
950 
951 		/* prevent any other reads prior to eop_desc */
952 		smp_rmb();
953 
954 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
955 		/* we have caught up to head, no work left to do */
956 		if (tx_head == tx_desc)
957 			break;
958 
959 		/* clear next_to_watch to prevent false hangs */
960 		tx_buf->next_to_watch = NULL;
961 
962 		/* update the statistics for this packet */
963 		total_bytes += tx_buf->bytecount;
964 		total_packets += tx_buf->gso_segs;
965 
966 		/* free the skb/XDP data */
967 		if (ring_is_xdp(tx_ring))
968 			xdp_return_frame(tx_buf->xdpf);
969 		else
970 			napi_consume_skb(tx_buf->skb, napi_budget);
971 
972 		/* unmap skb header data */
973 		dma_unmap_single(tx_ring->dev,
974 				 dma_unmap_addr(tx_buf, dma),
975 				 dma_unmap_len(tx_buf, len),
976 				 DMA_TO_DEVICE);
977 
978 		/* clear tx_buffer data */
979 		tx_buf->skb = NULL;
980 		dma_unmap_len_set(tx_buf, len, 0);
981 
982 		/* unmap remaining buffers */
983 		while (tx_desc != eop_desc) {
984 			i40e_trace(clean_tx_irq_unmap,
985 				   tx_ring, tx_desc, tx_buf);
986 
987 			tx_buf++;
988 			tx_desc++;
989 			i++;
990 			if (unlikely(!i)) {
991 				i -= tx_ring->count;
992 				tx_buf = tx_ring->tx_bi;
993 				tx_desc = I40E_TX_DESC(tx_ring, 0);
994 			}
995 
996 			/* unmap any remaining paged data */
997 			if (dma_unmap_len(tx_buf, len)) {
998 				dma_unmap_page(tx_ring->dev,
999 					       dma_unmap_addr(tx_buf, dma),
1000 					       dma_unmap_len(tx_buf, len),
1001 					       DMA_TO_DEVICE);
1002 				dma_unmap_len_set(tx_buf, len, 0);
1003 			}
1004 		}
1005 
1006 		/* move us one more past the eop_desc for start of next pkt */
1007 		tx_buf++;
1008 		tx_desc++;
1009 		i++;
1010 		if (unlikely(!i)) {
1011 			i -= tx_ring->count;
1012 			tx_buf = tx_ring->tx_bi;
1013 			tx_desc = I40E_TX_DESC(tx_ring, 0);
1014 		}
1015 
1016 		prefetch(tx_desc);
1017 
1018 		/* update budget accounting */
1019 		budget--;
1020 	} while (likely(budget));
1021 
1022 	i += tx_ring->count;
1023 	tx_ring->next_to_clean = i;
1024 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1025 	i40e_arm_wb(tx_ring, vsi, budget);
1026 
1027 	if (ring_is_xdp(tx_ring))
1028 		return !!budget;
1029 
1030 	/* notify netdev of completed buffers */
1031 	netdev_tx_completed_queue(txring_txq(tx_ring),
1032 				  total_packets, total_bytes);
1033 
1034 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1035 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1036 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1037 		/* Make sure that anybody stopping the queue after this
1038 		 * sees the new next_to_clean.
1039 		 */
1040 		smp_mb();
1041 		if (__netif_subqueue_stopped(tx_ring->netdev,
1042 					     tx_ring->queue_index) &&
1043 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1044 			netif_wake_subqueue(tx_ring->netdev,
1045 					    tx_ring->queue_index);
1046 			++tx_ring->tx_stats.restart_queue;
1047 		}
1048 	}
1049 
1050 	*tx_cleaned = total_packets;
1051 	return !!budget;
1052 }
1053 
1054 /**
1055  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1056  * @vsi: the VSI we care about
1057  * @q_vector: the vector on which to enable writeback
1058  *
1059  **/
i40e_enable_wb_on_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1060 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1061 				  struct i40e_q_vector *q_vector)
1062 {
1063 	u16 flags = q_vector->tx.ring[0].flags;
1064 	u32 val;
1065 
1066 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1067 		return;
1068 
1069 	if (q_vector->arm_wb_state)
1070 		return;
1071 
1072 	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1073 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1074 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1075 
1076 		wr32(&vsi->back->hw,
1077 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1078 		     val);
1079 	} else {
1080 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1081 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1082 
1083 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1084 	}
1085 	q_vector->arm_wb_state = true;
1086 }
1087 
1088 /**
1089  * i40e_force_wb - Issue SW Interrupt so HW does a wb
1090  * @vsi: the VSI we care about
1091  * @q_vector: the vector  on which to force writeback
1092  *
1093  **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1094 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1095 {
1096 	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1097 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1098 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1099 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1100 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1101 			  /* allow 00 to be written to the index */
1102 
1103 		wr32(&vsi->back->hw,
1104 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1105 	} else {
1106 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1107 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1108 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1109 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1110 			/* allow 00 to be written to the index */
1111 
1112 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1113 	}
1114 }
1115 
i40e_container_is_rx(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1116 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1117 					struct i40e_ring_container *rc)
1118 {
1119 	return &q_vector->rx == rc;
1120 }
1121 
i40e_itr_divisor(struct i40e_q_vector * q_vector)1122 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1123 {
1124 	unsigned int divisor;
1125 
1126 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1127 	case I40E_LINK_SPEED_40GB:
1128 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1129 		break;
1130 	case I40E_LINK_SPEED_25GB:
1131 	case I40E_LINK_SPEED_20GB:
1132 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1133 		break;
1134 	default:
1135 	case I40E_LINK_SPEED_10GB:
1136 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1137 		break;
1138 	case I40E_LINK_SPEED_1GB:
1139 	case I40E_LINK_SPEED_100MB:
1140 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1141 		break;
1142 	}
1143 
1144 	return divisor;
1145 }
1146 
1147 /**
1148  * i40e_update_itr - update the dynamic ITR value based on statistics
1149  * @q_vector: structure containing interrupt and ring information
1150  * @rc: structure containing ring performance data
1151  *
1152  * Stores a new ITR value based on packets and byte
1153  * counts during the last interrupt.  The advantage of per interrupt
1154  * computation is faster updates and more accurate ITR for the current
1155  * traffic pattern.  Constants in this function were computed
1156  * based on theoretical maximum wire speed and thresholds were set based
1157  * on testing data as well as attempting to minimize response time
1158  * while increasing bulk throughput.
1159  **/
i40e_update_itr(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1160 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1161 			    struct i40e_ring_container *rc)
1162 {
1163 	unsigned int avg_wire_size, packets, bytes, itr;
1164 	unsigned long next_update = jiffies;
1165 
1166 	/* If we don't have any rings just leave ourselves set for maximum
1167 	 * possible latency so we take ourselves out of the equation.
1168 	 */
1169 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1170 		return;
1171 
1172 	/* For Rx we want to push the delay up and default to low latency.
1173 	 * for Tx we want to pull the delay down and default to high latency.
1174 	 */
1175 	itr = i40e_container_is_rx(q_vector, rc) ?
1176 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1177 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1178 
1179 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1180 	 * that either packets are coming in so slow there hasn't been
1181 	 * any work, or that there is so much work that NAPI is dealing
1182 	 * with interrupt moderation and we don't need to do anything.
1183 	 */
1184 	if (time_after(next_update, rc->next_update))
1185 		goto clear_counts;
1186 
1187 	/* If itr_countdown is set it means we programmed an ITR within
1188 	 * the last 4 interrupt cycles. This has a side effect of us
1189 	 * potentially firing an early interrupt. In order to work around
1190 	 * this we need to throw out any data received for a few
1191 	 * interrupts following the update.
1192 	 */
1193 	if (q_vector->itr_countdown) {
1194 		itr = rc->target_itr;
1195 		goto clear_counts;
1196 	}
1197 
1198 	packets = rc->total_packets;
1199 	bytes = rc->total_bytes;
1200 
1201 	if (i40e_container_is_rx(q_vector, rc)) {
1202 		/* If Rx there are 1 to 4 packets and bytes are less than
1203 		 * 9000 assume insufficient data to use bulk rate limiting
1204 		 * approach unless Tx is already in bulk rate limiting. We
1205 		 * are likely latency driven.
1206 		 */
1207 		if (packets && packets < 4 && bytes < 9000 &&
1208 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1209 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1210 			goto adjust_by_size;
1211 		}
1212 	} else if (packets < 4) {
1213 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1214 		 * bulk mode and we are receiving 4 or fewer packets just
1215 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1216 		 * that the Rx can relax.
1217 		 */
1218 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1219 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1220 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1221 			goto clear_counts;
1222 	} else if (packets > 32) {
1223 		/* If we have processed over 32 packets in a single interrupt
1224 		 * for Tx assume we need to switch over to "bulk" mode.
1225 		 */
1226 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1227 	}
1228 
1229 	/* We have no packets to actually measure against. This means
1230 	 * either one of the other queues on this vector is active or
1231 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1232 	 *
1233 	 * Between 4 and 56 we can assume that our current interrupt delay
1234 	 * is only slightly too low. As such we should increase it by a small
1235 	 * fixed amount.
1236 	 */
1237 	if (packets < 56) {
1238 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1239 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1240 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1241 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1242 		}
1243 		goto clear_counts;
1244 	}
1245 
1246 	if (packets <= 256) {
1247 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1248 		itr &= I40E_ITR_MASK;
1249 
1250 		/* Between 56 and 112 is our "goldilocks" zone where we are
1251 		 * working out "just right". Just report that our current
1252 		 * ITR is good for us.
1253 		 */
1254 		if (packets <= 112)
1255 			goto clear_counts;
1256 
1257 		/* If packet count is 128 or greater we are likely looking
1258 		 * at a slight overrun of the delay we want. Try halving
1259 		 * our delay to see if that will cut the number of packets
1260 		 * in half per interrupt.
1261 		 */
1262 		itr /= 2;
1263 		itr &= I40E_ITR_MASK;
1264 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1265 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1266 
1267 		goto clear_counts;
1268 	}
1269 
1270 	/* The paths below assume we are dealing with a bulk ITR since
1271 	 * number of packets is greater than 256. We are just going to have
1272 	 * to compute a value and try to bring the count under control,
1273 	 * though for smaller packet sizes there isn't much we can do as
1274 	 * NAPI polling will likely be kicking in sooner rather than later.
1275 	 */
1276 	itr = I40E_ITR_ADAPTIVE_BULK;
1277 
1278 adjust_by_size:
1279 	/* If packet counts are 256 or greater we can assume we have a gross
1280 	 * overestimation of what the rate should be. Instead of trying to fine
1281 	 * tune it just use the formula below to try and dial in an exact value
1282 	 * give the current packet size of the frame.
1283 	 */
1284 	avg_wire_size = bytes / packets;
1285 
1286 	/* The following is a crude approximation of:
1287 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1288 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1289 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1290 	 *
1291 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1292 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1293 	 * formula down to
1294 	 *
1295 	 *  (170 * (size + 24)) / (size + 640) = ITR
1296 	 *
1297 	 * We first do some math on the packet size and then finally bitshift
1298 	 * by 8 after rounding up. We also have to account for PCIe link speed
1299 	 * difference as ITR scales based on this.
1300 	 */
1301 	if (avg_wire_size <= 60) {
1302 		/* Start at 250k ints/sec */
1303 		avg_wire_size = 4096;
1304 	} else if (avg_wire_size <= 380) {
1305 		/* 250K ints/sec to 60K ints/sec */
1306 		avg_wire_size *= 40;
1307 		avg_wire_size += 1696;
1308 	} else if (avg_wire_size <= 1084) {
1309 		/* 60K ints/sec to 36K ints/sec */
1310 		avg_wire_size *= 15;
1311 		avg_wire_size += 11452;
1312 	} else if (avg_wire_size <= 1980) {
1313 		/* 36K ints/sec to 30K ints/sec */
1314 		avg_wire_size *= 5;
1315 		avg_wire_size += 22420;
1316 	} else {
1317 		/* plateau at a limit of 30K ints/sec */
1318 		avg_wire_size = 32256;
1319 	}
1320 
1321 	/* If we are in low latency mode halve our delay which doubles the
1322 	 * rate to somewhere between 100K to 16K ints/sec
1323 	 */
1324 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1325 		avg_wire_size /= 2;
1326 
1327 	/* Resultant value is 256 times larger than it needs to be. This
1328 	 * gives us room to adjust the value as needed to either increase
1329 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1330 	 *
1331 	 * Use addition as we have already recorded the new latency flag
1332 	 * for the ITR value.
1333 	 */
1334 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1335 	       I40E_ITR_ADAPTIVE_MIN_INC;
1336 
1337 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1338 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1339 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1340 	}
1341 
1342 clear_counts:
1343 	/* write back value */
1344 	rc->target_itr = itr;
1345 
1346 	/* next update should occur within next jiffy */
1347 	rc->next_update = next_update + 1;
1348 
1349 	rc->total_bytes = 0;
1350 	rc->total_packets = 0;
1351 }
1352 
i40e_rx_bi(struct i40e_ring * rx_ring,u32 idx)1353 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1354 {
1355 	return &rx_ring->rx_bi[idx];
1356 }
1357 
1358 /**
1359  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1360  * @rx_ring: rx descriptor ring to store buffers on
1361  * @old_buff: donor buffer to have page reused
1362  *
1363  * Synchronizes page for reuse by the adapter
1364  **/
i40e_reuse_rx_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * old_buff)1365 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1366 			       struct i40e_rx_buffer *old_buff)
1367 {
1368 	struct i40e_rx_buffer *new_buff;
1369 	u16 nta = rx_ring->next_to_alloc;
1370 
1371 	new_buff = i40e_rx_bi(rx_ring, nta);
1372 
1373 	/* update, and store next to alloc */
1374 	nta++;
1375 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1376 
1377 	/* transfer page from old buffer to new buffer */
1378 	new_buff->dma		= old_buff->dma;
1379 	new_buff->page		= old_buff->page;
1380 	new_buff->page_offset	= old_buff->page_offset;
1381 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1382 
1383 	/* clear contents of buffer_info */
1384 	old_buff->page = NULL;
1385 }
1386 
1387 /**
1388  * i40e_clean_programming_status - clean the programming status descriptor
1389  * @rx_ring: the rx ring that has this descriptor
1390  * @qword0_raw: qword0
1391  * @qword1: qword1 representing status_error_len in CPU ordering
1392  *
1393  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1394  * status being successful or not and take actions accordingly. FCoE should
1395  * handle its context/filter programming/invalidation status and take actions.
1396  *
1397  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1398  **/
i40e_clean_programming_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1)1399 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1400 				   u64 qword1)
1401 {
1402 	u8 id;
1403 
1404 	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
1405 
1406 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1407 		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1408 }
1409 
1410 /**
1411  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1412  * @tx_ring: the tx ring to set up
1413  *
1414  * Return 0 on success, negative on error
1415  **/
i40e_setup_tx_descriptors(struct i40e_ring * tx_ring)1416 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1417 {
1418 	struct device *dev = tx_ring->dev;
1419 	int bi_size;
1420 
1421 	if (!dev)
1422 		return -ENOMEM;
1423 
1424 	/* warn if we are about to overwrite the pointer */
1425 	WARN_ON(tx_ring->tx_bi);
1426 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1427 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1428 	if (!tx_ring->tx_bi)
1429 		goto err;
1430 
1431 	u64_stats_init(&tx_ring->syncp);
1432 
1433 	/* round up to nearest 4K */
1434 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1435 	/* add u32 for head writeback, align after this takes care of
1436 	 * guaranteeing this is at least one cache line in size
1437 	 */
1438 	tx_ring->size += sizeof(u32);
1439 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1440 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1441 					   &tx_ring->dma, GFP_KERNEL);
1442 	if (!tx_ring->desc) {
1443 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1444 			 tx_ring->size);
1445 		goto err;
1446 	}
1447 
1448 	tx_ring->next_to_use = 0;
1449 	tx_ring->next_to_clean = 0;
1450 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1451 	return 0;
1452 
1453 err:
1454 	kfree(tx_ring->tx_bi);
1455 	tx_ring->tx_bi = NULL;
1456 	return -ENOMEM;
1457 }
1458 
i40e_clear_rx_bi(struct i40e_ring * rx_ring)1459 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1460 {
1461 	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1462 }
1463 
1464 /**
1465  * i40e_clean_rx_ring - Free Rx buffers
1466  * @rx_ring: ring to be cleaned
1467  **/
i40e_clean_rx_ring(struct i40e_ring * rx_ring)1468 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1469 {
1470 	u16 i;
1471 
1472 	/* ring already cleared, nothing to do */
1473 	if (!rx_ring->rx_bi)
1474 		return;
1475 
1476 	if (rx_ring->xsk_pool) {
1477 		i40e_xsk_clean_rx_ring(rx_ring);
1478 		goto skip_free;
1479 	}
1480 
1481 	/* Free all the Rx ring sk_buffs */
1482 	for (i = 0; i < rx_ring->count; i++) {
1483 		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1484 
1485 		if (!rx_bi->page)
1486 			continue;
1487 
1488 		/* Invalidate cache lines that may have been written to by
1489 		 * device so that we avoid corrupting memory.
1490 		 */
1491 		dma_sync_single_range_for_cpu(rx_ring->dev,
1492 					      rx_bi->dma,
1493 					      rx_bi->page_offset,
1494 					      rx_ring->rx_buf_len,
1495 					      DMA_FROM_DEVICE);
1496 
1497 		/* free resources associated with mapping */
1498 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1499 				     i40e_rx_pg_size(rx_ring),
1500 				     DMA_FROM_DEVICE,
1501 				     I40E_RX_DMA_ATTR);
1502 
1503 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1504 
1505 		rx_bi->page = NULL;
1506 		rx_bi->page_offset = 0;
1507 	}
1508 
1509 skip_free:
1510 	if (rx_ring->xsk_pool)
1511 		i40e_clear_rx_bi_zc(rx_ring);
1512 	else
1513 		i40e_clear_rx_bi(rx_ring);
1514 
1515 	/* Zero out the descriptor ring */
1516 	memset(rx_ring->desc, 0, rx_ring->size);
1517 
1518 	rx_ring->next_to_alloc = 0;
1519 	rx_ring->next_to_clean = 0;
1520 	rx_ring->next_to_process = 0;
1521 	rx_ring->next_to_use = 0;
1522 }
1523 
1524 /**
1525  * i40e_free_rx_resources - Free Rx resources
1526  * @rx_ring: ring to clean the resources from
1527  *
1528  * Free all receive software resources
1529  **/
i40e_free_rx_resources(struct i40e_ring * rx_ring)1530 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1531 {
1532 	i40e_clean_rx_ring(rx_ring);
1533 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1534 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1535 	rx_ring->xdp_prog = NULL;
1536 	kfree(rx_ring->rx_bi);
1537 	rx_ring->rx_bi = NULL;
1538 
1539 	if (rx_ring->desc) {
1540 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1541 				  rx_ring->desc, rx_ring->dma);
1542 		rx_ring->desc = NULL;
1543 	}
1544 }
1545 
1546 /**
1547  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1548  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1549  *
1550  * Returns 0 on success, negative on failure
1551  **/
i40e_setup_rx_descriptors(struct i40e_ring * rx_ring)1552 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1553 {
1554 	struct device *dev = rx_ring->dev;
1555 
1556 	u64_stats_init(&rx_ring->syncp);
1557 
1558 	/* Round up to nearest 4K */
1559 	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1560 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1561 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1562 					   &rx_ring->dma, GFP_KERNEL);
1563 
1564 	if (!rx_ring->desc) {
1565 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1566 			 rx_ring->size);
1567 		return -ENOMEM;
1568 	}
1569 
1570 	rx_ring->next_to_alloc = 0;
1571 	rx_ring->next_to_clean = 0;
1572 	rx_ring->next_to_process = 0;
1573 	rx_ring->next_to_use = 0;
1574 
1575 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1576 
1577 	rx_ring->rx_bi =
1578 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1579 	if (!rx_ring->rx_bi)
1580 		return -ENOMEM;
1581 
1582 	return 0;
1583 }
1584 
1585 /**
1586  * i40e_release_rx_desc - Store the new tail and head values
1587  * @rx_ring: ring to bump
1588  * @val: new head index
1589  **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)1590 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1591 {
1592 	rx_ring->next_to_use = val;
1593 
1594 	/* update next to alloc since we have filled the ring */
1595 	rx_ring->next_to_alloc = val;
1596 
1597 	/* Force memory writes to complete before letting h/w
1598 	 * know there are new descriptors to fetch.  (Only
1599 	 * applicable for weak-ordered memory model archs,
1600 	 * such as IA-64).
1601 	 */
1602 	wmb();
1603 	writel(val, rx_ring->tail);
1604 }
1605 
1606 #if (PAGE_SIZE >= 8192)
i40e_rx_frame_truesize(struct i40e_ring * rx_ring,unsigned int size)1607 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1608 					   unsigned int size)
1609 {
1610 	unsigned int truesize;
1611 
1612 	truesize = rx_ring->rx_offset ?
1613 		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1614 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1615 		SKB_DATA_ALIGN(size);
1616 	return truesize;
1617 }
1618 #endif
1619 
1620 /**
1621  * i40e_alloc_mapped_page - recycle or make a new page
1622  * @rx_ring: ring to use
1623  * @bi: rx_buffer struct to modify
1624  *
1625  * Returns true if the page was successfully allocated or
1626  * reused.
1627  **/
i40e_alloc_mapped_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * bi)1628 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1629 				   struct i40e_rx_buffer *bi)
1630 {
1631 	struct page *page = bi->page;
1632 	dma_addr_t dma;
1633 
1634 	/* since we are recycling buffers we should seldom need to alloc */
1635 	if (likely(page)) {
1636 		rx_ring->rx_stats.page_reuse_count++;
1637 		return true;
1638 	}
1639 
1640 	/* alloc new page for storage */
1641 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1642 	if (unlikely(!page)) {
1643 		rx_ring->rx_stats.alloc_page_failed++;
1644 		return false;
1645 	}
1646 
1647 	rx_ring->rx_stats.page_alloc_count++;
1648 
1649 	/* map page for use */
1650 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1651 				 i40e_rx_pg_size(rx_ring),
1652 				 DMA_FROM_DEVICE,
1653 				 I40E_RX_DMA_ATTR);
1654 
1655 	/* if mapping failed free memory back to system since
1656 	 * there isn't much point in holding memory we can't use
1657 	 */
1658 	if (dma_mapping_error(rx_ring->dev, dma)) {
1659 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1660 		rx_ring->rx_stats.alloc_page_failed++;
1661 		return false;
1662 	}
1663 
1664 	bi->dma = dma;
1665 	bi->page = page;
1666 	bi->page_offset = rx_ring->rx_offset;
1667 	page_ref_add(page, USHRT_MAX - 1);
1668 	bi->pagecnt_bias = USHRT_MAX;
1669 
1670 	return true;
1671 }
1672 
1673 /**
1674  * i40e_alloc_rx_buffers - Replace used receive buffers
1675  * @rx_ring: ring to place buffers on
1676  * @cleaned_count: number of buffers to replace
1677  *
1678  * Returns false if all allocations were successful, true if any fail
1679  **/
i40e_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)1680 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1681 {
1682 	u16 ntu = rx_ring->next_to_use;
1683 	union i40e_rx_desc *rx_desc;
1684 	struct i40e_rx_buffer *bi;
1685 
1686 	/* do nothing if no valid netdev defined */
1687 	if (!rx_ring->netdev || !cleaned_count)
1688 		return false;
1689 
1690 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1691 	bi = i40e_rx_bi(rx_ring, ntu);
1692 
1693 	do {
1694 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1695 			goto no_buffers;
1696 
1697 		/* sync the buffer for use by the device */
1698 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1699 						 bi->page_offset,
1700 						 rx_ring->rx_buf_len,
1701 						 DMA_FROM_DEVICE);
1702 
1703 		/* Refresh the desc even if buffer_addrs didn't change
1704 		 * because each write-back erases this info.
1705 		 */
1706 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1707 
1708 		rx_desc++;
1709 		bi++;
1710 		ntu++;
1711 		if (unlikely(ntu == rx_ring->count)) {
1712 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1713 			bi = i40e_rx_bi(rx_ring, 0);
1714 			ntu = 0;
1715 		}
1716 
1717 		/* clear the status bits for the next_to_use descriptor */
1718 		rx_desc->wb.qword1.status_error_len = 0;
1719 
1720 		cleaned_count--;
1721 	} while (cleaned_count);
1722 
1723 	if (rx_ring->next_to_use != ntu)
1724 		i40e_release_rx_desc(rx_ring, ntu);
1725 
1726 	return false;
1727 
1728 no_buffers:
1729 	if (rx_ring->next_to_use != ntu)
1730 		i40e_release_rx_desc(rx_ring, ntu);
1731 
1732 	/* make sure to come back via polling to try again after
1733 	 * allocation failure
1734 	 */
1735 	return true;
1736 }
1737 
1738 /**
1739  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1740  * @vsi: the VSI we care about
1741  * @skb: skb currently being received and modified
1742  * @rx_desc: the receive descriptor
1743  **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1744 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1745 				    struct sk_buff *skb,
1746 				    union i40e_rx_desc *rx_desc)
1747 {
1748 	struct libeth_rx_pt decoded;
1749 	u32 rx_error, rx_status;
1750 	bool ipv4, ipv6;
1751 	u8 ptype;
1752 	u64 qword;
1753 
1754 	skb->ip_summed = CHECKSUM_NONE;
1755 
1756 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1757 	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1758 
1759 	decoded = libie_rx_pt_parse(ptype);
1760 	if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
1761 		return;
1762 
1763 	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1764 	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1765 
1766 	/* did the hardware decode the packet and checksum? */
1767 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1768 		return;
1769 
1770 	ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
1771 	ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
1772 
1773 	if (ipv4 &&
1774 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1775 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1776 		goto checksum_fail;
1777 
1778 	/* likely incorrect csum if alternate IP extension headers found */
1779 	if (ipv6 &&
1780 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1781 		/* don't increment checksum err here, non-fatal err */
1782 		return;
1783 
1784 	/* there was some L4 error, count error and punt packet to the stack */
1785 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1786 		goto checksum_fail;
1787 
1788 	/* handle packets that were not able to be checksummed due
1789 	 * to arrival speed, in this case the stack can compute
1790 	 * the csum.
1791 	 */
1792 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1793 		return;
1794 
1795 	/* If there is an outer header present that might contain a checksum
1796 	 * we need to bump the checksum level by 1 to reflect the fact that
1797 	 * we are indicating we validated the inner checksum.
1798 	 */
1799 	if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
1800 		skb->csum_level = 1;
1801 
1802 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1803 	return;
1804 
1805 checksum_fail:
1806 	vsi->back->hw_csum_rx_error++;
1807 }
1808 
1809 /**
1810  * i40e_rx_hash - set the hash value in the skb
1811  * @ring: descriptor ring
1812  * @rx_desc: specific descriptor
1813  * @skb: skb currently being received and modified
1814  * @rx_ptype: Rx packet type
1815  **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1816 static inline void i40e_rx_hash(struct i40e_ring *ring,
1817 				union i40e_rx_desc *rx_desc,
1818 				struct sk_buff *skb,
1819 				u8 rx_ptype)
1820 {
1821 	struct libeth_rx_pt decoded;
1822 	u32 hash;
1823 	const __le64 rss_mask =
1824 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1825 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1826 
1827 	decoded = libie_rx_pt_parse(rx_ptype);
1828 	if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
1829 		return;
1830 
1831 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1832 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1833 		libeth_rx_pt_set_hash(skb, hash, decoded);
1834 	}
1835 }
1836 
1837 /**
1838  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1839  * @rx_ring: rx descriptor ring packet is being transacted on
1840  * @rx_desc: pointer to the EOP Rx descriptor
1841  * @skb: pointer to current skb being populated
1842  *
1843  * This function checks the ring, descriptor, and packet information in
1844  * order to populate the hash, checksum, VLAN, protocol, and
1845  * other fields within the skb.
1846  **/
i40e_process_skb_fields(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)1847 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1848 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1849 {
1850 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1851 	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1852 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1853 	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1854 	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1855 
1856 	if (unlikely(tsynvalid))
1857 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1858 
1859 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1860 
1861 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1862 
1863 	skb_record_rx_queue(skb, rx_ring->queue_index);
1864 
1865 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1866 		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1867 
1868 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1869 				       le16_to_cpu(vlan_tag));
1870 	}
1871 
1872 	/* modifies the skb - consumes the enet header */
1873 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1874 }
1875 
1876 /**
1877  * i40e_cleanup_headers - Correct empty headers
1878  * @rx_ring: rx descriptor ring packet is being transacted on
1879  * @skb: pointer to current skb being fixed
1880  * @rx_desc: pointer to the EOP Rx descriptor
1881  *
1882  * In addition if skb is not at least 60 bytes we need to pad it so that
1883  * it is large enough to qualify as a valid Ethernet frame.
1884  *
1885  * Returns true if an error was encountered and skb was freed.
1886  **/
i40e_cleanup_headers(struct i40e_ring * rx_ring,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1887 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1888 				 union i40e_rx_desc *rx_desc)
1889 
1890 {
1891 	/* ERR_MASK will only have valid bits if EOP set, and
1892 	 * what we are doing here is actually checking
1893 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1894 	 * the error field
1895 	 */
1896 	if (unlikely(i40e_test_staterr(rx_desc,
1897 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1898 		dev_kfree_skb_any(skb);
1899 		return true;
1900 	}
1901 
1902 	/* if eth_skb_pad returns an error the skb was freed */
1903 	if (eth_skb_pad(skb))
1904 		return true;
1905 
1906 	return false;
1907 }
1908 
1909 /**
1910  * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1911  * @rx_buffer: buffer containing the page
1912  * @rx_stats: rx stats structure for the rx ring
1913  *
1914  * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1915  * which will assign the current buffer to the buffer that next_to_alloc is
1916  * pointing to; otherwise, the DMA mapping needs to be destroyed and
1917  * page freed.
1918  *
1919  * rx_stats will be updated to indicate whether the page was waived
1920  * or busy if it could not be reused.
1921  */
i40e_can_reuse_rx_page(struct i40e_rx_buffer * rx_buffer,struct i40e_rx_queue_stats * rx_stats)1922 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1923 				   struct i40e_rx_queue_stats *rx_stats)
1924 {
1925 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1926 	struct page *page = rx_buffer->page;
1927 
1928 	/* Is any reuse possible? */
1929 	if (!dev_page_is_reusable(page)) {
1930 		rx_stats->page_waive_count++;
1931 		return false;
1932 	}
1933 
1934 #if (PAGE_SIZE < 8192)
1935 	/* if we are only owner of page we can reuse it */
1936 	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1937 		rx_stats->page_busy_count++;
1938 		return false;
1939 	}
1940 #else
1941 #define I40E_LAST_OFFSET \
1942 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1943 	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1944 		rx_stats->page_busy_count++;
1945 		return false;
1946 	}
1947 #endif
1948 
1949 	/* If we have drained the page fragment pool we need to update
1950 	 * the pagecnt_bias and page count so that we fully restock the
1951 	 * number of references the driver holds.
1952 	 */
1953 	if (unlikely(pagecnt_bias == 1)) {
1954 		page_ref_add(page, USHRT_MAX - 1);
1955 		rx_buffer->pagecnt_bias = USHRT_MAX;
1956 	}
1957 
1958 	return true;
1959 }
1960 
1961 /**
1962  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1963  * @rx_buffer: Rx buffer to adjust
1964  * @truesize: Size of adjustment
1965  **/
i40e_rx_buffer_flip(struct i40e_rx_buffer * rx_buffer,unsigned int truesize)1966 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
1967 				unsigned int truesize)
1968 {
1969 #if (PAGE_SIZE < 8192)
1970 	rx_buffer->page_offset ^= truesize;
1971 #else
1972 	rx_buffer->page_offset += truesize;
1973 #endif
1974 }
1975 
1976 /**
1977  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1978  * @rx_ring: rx descriptor ring to transact packets on
1979  * @size: size of buffer to add to skb
1980  *
1981  * This function will pull an Rx buffer from the ring and synchronize it
1982  * for use by the CPU.
1983  */
i40e_get_rx_buffer(struct i40e_ring * rx_ring,const unsigned int size)1984 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1985 						 const unsigned int size)
1986 {
1987 	struct i40e_rx_buffer *rx_buffer;
1988 
1989 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
1990 	rx_buffer->page_count =
1991 #if (PAGE_SIZE < 8192)
1992 		page_count(rx_buffer->page);
1993 #else
1994 		0;
1995 #endif
1996 	prefetch_page_address(rx_buffer->page);
1997 
1998 	/* we are reusing so sync this buffer for CPU use */
1999 	dma_sync_single_range_for_cpu(rx_ring->dev,
2000 				      rx_buffer->dma,
2001 				      rx_buffer->page_offset,
2002 				      size,
2003 				      DMA_FROM_DEVICE);
2004 
2005 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2006 	rx_buffer->pagecnt_bias--;
2007 
2008 	return rx_buffer;
2009 }
2010 
2011 /**
2012  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2013  * @rx_ring: rx descriptor ring to transact packets on
2014  * @rx_buffer: rx buffer to pull data from
2015  *
2016  * This function will clean up the contents of the rx_buffer.  It will
2017  * either recycle the buffer or unmap it and free the associated resources.
2018  */
i40e_put_rx_buffer(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer)2019 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2020 			       struct i40e_rx_buffer *rx_buffer)
2021 {
2022 	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2023 		/* hand second half of page back to the ring */
2024 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2025 	} else {
2026 		/* we are not reusing the buffer so unmap it */
2027 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2028 				     i40e_rx_pg_size(rx_ring),
2029 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2030 		__page_frag_cache_drain(rx_buffer->page,
2031 					rx_buffer->pagecnt_bias);
2032 		/* clear contents of buffer_info */
2033 		rx_buffer->page = NULL;
2034 	}
2035 }
2036 
2037 /**
2038  * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2039  * @rx_ring: Rx descriptor ring to transact packets on
2040  * @xdp_res: Result of the XDP program
2041  * @xdp: xdp_buff pointing to the data
2042  **/
i40e_process_rx_buffs(struct i40e_ring * rx_ring,int xdp_res,struct xdp_buff * xdp)2043 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2044 				  struct xdp_buff *xdp)
2045 {
2046 	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2047 	u32 next = rx_ring->next_to_clean, i = 0;
2048 	struct i40e_rx_buffer *rx_buffer;
2049 
2050 	xdp->flags = 0;
2051 
2052 	while (1) {
2053 		rx_buffer = i40e_rx_bi(rx_ring, next);
2054 		if (++next == rx_ring->count)
2055 			next = 0;
2056 
2057 		if (!rx_buffer->page)
2058 			continue;
2059 
2060 		if (xdp_res != I40E_XDP_CONSUMED)
2061 			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2062 		else if (i++ <= nr_frags)
2063 			rx_buffer->pagecnt_bias++;
2064 
2065 		/* EOP buffer will be put in i40e_clean_rx_irq() */
2066 		if (next == rx_ring->next_to_process)
2067 			return;
2068 
2069 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2070 	}
2071 }
2072 
2073 /**
2074  * i40e_construct_skb - Allocate skb and populate it
2075  * @rx_ring: rx descriptor ring to transact packets on
2076  * @xdp: xdp_buff pointing to the data
2077  *
2078  * This function allocates an skb.  It then populates it with the page
2079  * data from the current receive descriptor, taking care to set up the
2080  * skb correctly.
2081  */
i40e_construct_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2082 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2083 					  struct xdp_buff *xdp)
2084 {
2085 	unsigned int size = xdp->data_end - xdp->data;
2086 	struct i40e_rx_buffer *rx_buffer;
2087 	struct skb_shared_info *sinfo;
2088 	unsigned int headlen;
2089 	struct sk_buff *skb;
2090 	u32 nr_frags = 0;
2091 
2092 	/* prefetch first cache line of first page */
2093 	net_prefetch(xdp->data);
2094 
2095 	/* Note, we get here by enabling legacy-rx via:
2096 	 *
2097 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2098 	 *
2099 	 * In this mode, we currently get 0 extra XDP headroom as
2100 	 * opposed to having legacy-rx off, where we process XDP
2101 	 * packets going to stack via i40e_build_skb(). The latter
2102 	 * provides us currently with 192 bytes of headroom.
2103 	 *
2104 	 * For i40e_construct_skb() mode it means that the
2105 	 * xdp->data_meta will always point to xdp->data, since
2106 	 * the helper cannot expand the head. Should this ever
2107 	 * change in future for legacy-rx mode on, then lets also
2108 	 * add xdp->data_meta handling here.
2109 	 */
2110 
2111 	/* allocate a skb to store the frags */
2112 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, I40E_RX_HDR_SIZE);
2113 	if (unlikely(!skb))
2114 		return NULL;
2115 
2116 	/* Determine available headroom for copy */
2117 	headlen = size;
2118 	if (headlen > I40E_RX_HDR_SIZE)
2119 		headlen = eth_get_headlen(skb->dev, xdp->data,
2120 					  I40E_RX_HDR_SIZE);
2121 
2122 	/* align pull length to size of long to optimize memcpy performance */
2123 	memcpy(__skb_put(skb, headlen), xdp->data,
2124 	       ALIGN(headlen, sizeof(long)));
2125 
2126 	if (unlikely(xdp_buff_has_frags(xdp))) {
2127 		sinfo = xdp_get_shared_info_from_buff(xdp);
2128 		nr_frags = sinfo->nr_frags;
2129 	}
2130 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2131 	/* update all of the pointers */
2132 	size -= headlen;
2133 	if (size) {
2134 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2135 			dev_kfree_skb(skb);
2136 			return NULL;
2137 		}
2138 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2139 				rx_buffer->page_offset + headlen,
2140 				size, xdp->frame_sz);
2141 		/* buffer is used by skb, update page_offset */
2142 		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2143 	} else {
2144 		/* buffer is unused, reset bias back to rx_buffer */
2145 		rx_buffer->pagecnt_bias++;
2146 	}
2147 
2148 	if (unlikely(xdp_buff_has_frags(xdp))) {
2149 		struct skb_shared_info *skinfo = skb_shinfo(skb);
2150 
2151 		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2152 		       sizeof(skb_frag_t) * nr_frags);
2153 
2154 		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2155 					   sinfo->xdp_frags_size,
2156 					   nr_frags * xdp->frame_sz,
2157 					   xdp_buff_is_frag_pfmemalloc(xdp));
2158 
2159 		/* First buffer has already been processed, so bump ntc */
2160 		if (++rx_ring->next_to_clean == rx_ring->count)
2161 			rx_ring->next_to_clean = 0;
2162 
2163 		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2164 	}
2165 
2166 	return skb;
2167 }
2168 
2169 /**
2170  * i40e_build_skb - Build skb around an existing buffer
2171  * @rx_ring: Rx descriptor ring to transact packets on
2172  * @xdp: xdp_buff pointing to the data
2173  *
2174  * This function builds an skb around an existing Rx buffer, taking care
2175  * to set up the skb correctly and avoid any memcpy overhead.
2176  */
i40e_build_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2177 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2178 				      struct xdp_buff *xdp)
2179 {
2180 	unsigned int metasize = xdp->data - xdp->data_meta;
2181 	struct skb_shared_info *sinfo;
2182 	struct sk_buff *skb;
2183 	u32 nr_frags;
2184 
2185 	/* Prefetch first cache line of first page. If xdp->data_meta
2186 	 * is unused, this points exactly as xdp->data, otherwise we
2187 	 * likely have a consumer accessing first few bytes of meta
2188 	 * data, and then actual data.
2189 	 */
2190 	net_prefetch(xdp->data_meta);
2191 
2192 	if (unlikely(xdp_buff_has_frags(xdp))) {
2193 		sinfo = xdp_get_shared_info_from_buff(xdp);
2194 		nr_frags = sinfo->nr_frags;
2195 	}
2196 
2197 	/* build an skb around the page buffer */
2198 	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2199 	if (unlikely(!skb))
2200 		return NULL;
2201 
2202 	/* update pointers within the skb to store the data */
2203 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2204 	__skb_put(skb, xdp->data_end - xdp->data);
2205 	if (metasize)
2206 		skb_metadata_set(skb, metasize);
2207 
2208 	if (unlikely(xdp_buff_has_frags(xdp))) {
2209 		xdp_update_skb_shared_info(skb, nr_frags,
2210 					   sinfo->xdp_frags_size,
2211 					   nr_frags * xdp->frame_sz,
2212 					   xdp_buff_is_frag_pfmemalloc(xdp));
2213 
2214 		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2215 	} else {
2216 		struct i40e_rx_buffer *rx_buffer;
2217 
2218 		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2219 		/* buffer is used by skb, update page_offset */
2220 		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2221 	}
2222 
2223 	return skb;
2224 }
2225 
2226 /**
2227  * i40e_is_non_eop - process handling of non-EOP buffers
2228  * @rx_ring: Rx ring being processed
2229  * @rx_desc: Rx descriptor for current buffer
2230  *
2231  * If the buffer is an EOP buffer, this function exits returning false,
2232  * otherwise return true indicating that this is in fact a non-EOP buffer.
2233  */
i40e_is_non_eop(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc)2234 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2235 		     union i40e_rx_desc *rx_desc)
2236 {
2237 	/* if we are the last buffer then there is nothing else to do */
2238 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2239 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2240 		return false;
2241 
2242 	rx_ring->rx_stats.non_eop_descs++;
2243 
2244 	return true;
2245 }
2246 
2247 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2248 			      struct i40e_ring *xdp_ring);
2249 
i40e_xmit_xdp_tx_ring(struct xdp_buff * xdp,struct i40e_ring * xdp_ring)2250 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2251 {
2252 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2253 
2254 	if (unlikely(!xdpf))
2255 		return I40E_XDP_CONSUMED;
2256 
2257 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2258 }
2259 
2260 /**
2261  * i40e_run_xdp - run an XDP program
2262  * @rx_ring: Rx ring being processed
2263  * @xdp: XDP buffer containing the frame
2264  * @xdp_prog: XDP program to run
2265  **/
i40e_run_xdp(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)2266 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2267 {
2268 	int err, result = I40E_XDP_PASS;
2269 	struct i40e_ring *xdp_ring;
2270 	u32 act;
2271 
2272 	if (!xdp_prog)
2273 		goto xdp_out;
2274 
2275 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2276 
2277 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2278 	switch (act) {
2279 	case XDP_PASS:
2280 		break;
2281 	case XDP_TX:
2282 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2283 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2284 		if (result == I40E_XDP_CONSUMED)
2285 			goto out_failure;
2286 		break;
2287 	case XDP_REDIRECT:
2288 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2289 		if (err)
2290 			goto out_failure;
2291 		result = I40E_XDP_REDIR;
2292 		break;
2293 	default:
2294 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2295 		fallthrough;
2296 	case XDP_ABORTED:
2297 out_failure:
2298 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2299 		fallthrough; /* handle aborts by dropping packet */
2300 	case XDP_DROP:
2301 		result = I40E_XDP_CONSUMED;
2302 		break;
2303 	}
2304 xdp_out:
2305 	return result;
2306 }
2307 
2308 /**
2309  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2310  * @xdp_ring: XDP Tx ring
2311  *
2312  * This function updates the XDP Tx ring tail register.
2313  **/
i40e_xdp_ring_update_tail(struct i40e_ring * xdp_ring)2314 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2315 {
2316 	/* Force memory writes to complete before letting h/w
2317 	 * know there are new descriptors to fetch.
2318 	 */
2319 	wmb();
2320 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2321 }
2322 
2323 /**
2324  * i40e_update_rx_stats - Update Rx ring statistics
2325  * @rx_ring: rx descriptor ring
2326  * @total_rx_bytes: number of bytes received
2327  * @total_rx_packets: number of packets received
2328  *
2329  * This function updates the Rx ring statistics.
2330  **/
i40e_update_rx_stats(struct i40e_ring * rx_ring,unsigned int total_rx_bytes,unsigned int total_rx_packets)2331 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2332 			  unsigned int total_rx_bytes,
2333 			  unsigned int total_rx_packets)
2334 {
2335 	u64_stats_update_begin(&rx_ring->syncp);
2336 	rx_ring->stats.packets += total_rx_packets;
2337 	rx_ring->stats.bytes += total_rx_bytes;
2338 	u64_stats_update_end(&rx_ring->syncp);
2339 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2340 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2341 }
2342 
2343 /**
2344  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2345  * @rx_ring: Rx ring
2346  * @xdp_res: Result of the receive batch
2347  *
2348  * This function bumps XDP Tx tail and/or flush redirect map, and
2349  * should be called when a batch of packets has been processed in the
2350  * napi loop.
2351  **/
i40e_finalize_xdp_rx(struct i40e_ring * rx_ring,unsigned int xdp_res)2352 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2353 {
2354 	if (xdp_res & I40E_XDP_REDIR)
2355 		xdp_do_flush();
2356 
2357 	if (xdp_res & I40E_XDP_TX) {
2358 		struct i40e_ring *xdp_ring =
2359 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2360 
2361 		i40e_xdp_ring_update_tail(xdp_ring);
2362 	}
2363 }
2364 
2365 /**
2366  * i40e_inc_ntp: Advance the next_to_process index
2367  * @rx_ring: Rx ring
2368  **/
i40e_inc_ntp(struct i40e_ring * rx_ring)2369 static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2370 {
2371 	u32 ntp = rx_ring->next_to_process + 1;
2372 
2373 	ntp = (ntp < rx_ring->count) ? ntp : 0;
2374 	rx_ring->next_to_process = ntp;
2375 	prefetch(I40E_RX_DESC(rx_ring, ntp));
2376 }
2377 
2378 /**
2379  * i40e_add_xdp_frag: Add a frag to xdp_buff
2380  * @xdp: xdp_buff pointing to the data
2381  * @nr_frags: return number of buffers for the packet
2382  * @rx_buffer: rx_buffer holding data of the current frag
2383  * @size: size of data of current frag
2384  */
i40e_add_xdp_frag(struct xdp_buff * xdp,u32 * nr_frags,struct i40e_rx_buffer * rx_buffer,u32 size)2385 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2386 			     struct i40e_rx_buffer *rx_buffer, u32 size)
2387 {
2388 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2389 
2390 	if (!xdp_buff_has_frags(xdp)) {
2391 		sinfo->nr_frags = 0;
2392 		sinfo->xdp_frags_size = 0;
2393 		xdp_buff_set_frags_flag(xdp);
2394 	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2395 		/* Overflowing packet: All frags need to be dropped */
2396 		return -ENOMEM;
2397 	}
2398 
2399 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2400 				   rx_buffer->page_offset, size);
2401 
2402 	sinfo->xdp_frags_size += size;
2403 
2404 	if (page_is_pfmemalloc(rx_buffer->page))
2405 		xdp_buff_set_frag_pfmemalloc(xdp);
2406 	*nr_frags = sinfo->nr_frags;
2407 
2408 	return 0;
2409 }
2410 
2411 /**
2412  * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2413  * @rx_ring: rx descriptor ring to transact packets on
2414  * @xdp: xdp_buff pointing to the data
2415  * @rx_buffer: rx_buffer of eop desc
2416  */
i40e_consume_xdp_buff(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct i40e_rx_buffer * rx_buffer)2417 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2418 				  struct xdp_buff *xdp,
2419 				  struct i40e_rx_buffer *rx_buffer)
2420 {
2421 	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2422 	i40e_put_rx_buffer(rx_ring, rx_buffer);
2423 	rx_ring->next_to_clean = rx_ring->next_to_process;
2424 	xdp->data = NULL;
2425 }
2426 
2427 /**
2428  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2429  * @rx_ring: rx descriptor ring to transact packets on
2430  * @budget: Total limit on number of packets to process
2431  * @rx_cleaned: Out parameter of the number of packets processed
2432  *
2433  * This function provides a "bounce buffer" approach to Rx interrupt
2434  * processing.  The advantage to this is that on systems that have
2435  * expensive overhead for IOMMU access this provides a means of avoiding
2436  * it by maintaining the mapping of the page to the system.
2437  *
2438  * Returns amount of work completed
2439  **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget,unsigned int * rx_cleaned)2440 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2441 			     unsigned int *rx_cleaned)
2442 {
2443 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2444 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2445 	u16 clean_threshold = rx_ring->count / 2;
2446 	unsigned int offset = rx_ring->rx_offset;
2447 	struct xdp_buff *xdp = &rx_ring->xdp;
2448 	unsigned int xdp_xmit = 0;
2449 	struct bpf_prog *xdp_prog;
2450 	bool failure = false;
2451 	int xdp_res = 0;
2452 
2453 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2454 
2455 	while (likely(total_rx_packets < (unsigned int)budget)) {
2456 		u16 ntp = rx_ring->next_to_process;
2457 		struct i40e_rx_buffer *rx_buffer;
2458 		union i40e_rx_desc *rx_desc;
2459 		struct sk_buff *skb;
2460 		unsigned int size;
2461 		u32 nfrags = 0;
2462 		bool neop;
2463 		u64 qword;
2464 
2465 		/* return some buffers to hardware, one at a time is too slow */
2466 		if (cleaned_count >= clean_threshold) {
2467 			failure = failure ||
2468 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2469 			cleaned_count = 0;
2470 		}
2471 
2472 		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2473 
2474 		/* status_error_len will always be zero for unused descriptors
2475 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2476 		 * which is always zero because packet split isn't used, if the
2477 		 * hardware wrote DD then the length will be non-zero
2478 		 */
2479 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2480 
2481 		/* This memory barrier is needed to keep us from reading
2482 		 * any other fields out of the rx_desc until we have
2483 		 * verified the descriptor has been written back.
2484 		 */
2485 		dma_rmb();
2486 
2487 		if (i40e_rx_is_programming_status(qword)) {
2488 			i40e_clean_programming_status(rx_ring,
2489 						      rx_desc->raw.qword[0],
2490 						      qword);
2491 			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2492 			i40e_inc_ntp(rx_ring);
2493 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2494 			/* Update ntc and bump cleaned count if not in the
2495 			 * middle of mb packet.
2496 			 */
2497 			if (rx_ring->next_to_clean == ntp) {
2498 				rx_ring->next_to_clean =
2499 					rx_ring->next_to_process;
2500 				cleaned_count++;
2501 			}
2502 			continue;
2503 		}
2504 
2505 		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2506 		if (!size)
2507 			break;
2508 
2509 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2510 		/* retrieve a buffer from the ring */
2511 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2512 
2513 		neop = i40e_is_non_eop(rx_ring, rx_desc);
2514 		i40e_inc_ntp(rx_ring);
2515 
2516 		if (!xdp->data) {
2517 			unsigned char *hard_start;
2518 
2519 			hard_start = page_address(rx_buffer->page) +
2520 				     rx_buffer->page_offset - offset;
2521 			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2522 #if (PAGE_SIZE > 4096)
2523 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2524 			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2525 #endif
2526 		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2527 			   !neop) {
2528 			/* Overflowing packet: Drop all frags on EOP */
2529 			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2530 			break;
2531 		}
2532 
2533 		if (neop)
2534 			continue;
2535 
2536 		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2537 
2538 		if (xdp_res) {
2539 			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2540 
2541 			if (unlikely(xdp_buff_has_frags(xdp))) {
2542 				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2543 				size = xdp_get_buff_len(xdp);
2544 			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2545 				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2546 			} else {
2547 				rx_buffer->pagecnt_bias++;
2548 			}
2549 			total_rx_bytes += size;
2550 		} else {
2551 			if (ring_uses_build_skb(rx_ring))
2552 				skb = i40e_build_skb(rx_ring, xdp);
2553 			else
2554 				skb = i40e_construct_skb(rx_ring, xdp);
2555 
2556 			/* drop if we failed to retrieve a buffer */
2557 			if (!skb) {
2558 				rx_ring->rx_stats.alloc_buff_failed++;
2559 				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2560 				break;
2561 			}
2562 
2563 			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2564 				goto process_next;
2565 
2566 			/* probably a little skewed due to removing CRC */
2567 			total_rx_bytes += skb->len;
2568 
2569 			/* populate checksum, VLAN, and protocol */
2570 			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2571 
2572 			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2573 			napi_gro_receive(&rx_ring->q_vector->napi, skb);
2574 		}
2575 
2576 		/* update budget accounting */
2577 		total_rx_packets++;
2578 process_next:
2579 		cleaned_count += nfrags + 1;
2580 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2581 		rx_ring->next_to_clean = rx_ring->next_to_process;
2582 
2583 		xdp->data = NULL;
2584 	}
2585 
2586 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2587 
2588 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2589 
2590 	*rx_cleaned = total_rx_packets;
2591 
2592 	/* guarantee a trip back through this routine if there was a failure */
2593 	return failure ? budget : (int)total_rx_packets;
2594 }
2595 
2596 /**
2597  * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2598  * @itr_idx: interrupt throttling index
2599  * @interval: interrupt throttling interval value in usecs
2600  * @force_swint: force software interrupt
2601  *
2602  * The function builds a value for I40E_PFINT_DYN_CTLN register that
2603  * is used to update interrupt throttling interval for specified ITR index
2604  * and optionally enforces a software interrupt. If the @itr_idx is equal
2605  * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2606  * parameter is taken into account. If the interval change and enforced
2607  * software interrupt are not requested then the built value just enables
2608  * appropriate vector interrupt.
2609  **/
i40e_buildreg_itr(enum i40e_dyn_idx itr_idx,u16 interval,bool force_swint)2610 static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2611 			     bool force_swint)
2612 {
2613 	u32 val;
2614 
2615 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2616 	 * points out doing so is "meaningless since it was already
2617 	 * auto-cleared". The auto-clearing happens when the interrupt is
2618 	 * asserted.
2619 	 *
2620 	 * Hardware errata 28 for also indicates that writing to a
2621 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2622 	 * an event in the PBA anyway so we need to rely on the automask
2623 	 * to hold pending events for us until the interrupt is re-enabled
2624 	 *
2625 	 * We have to shift the given value as it is reported in microseconds
2626 	 * and the register value is recorded in 2 microsecond units.
2627 	 */
2628 	interval >>= 1;
2629 
2630 	/* 1. Enable vector interrupt
2631 	 * 2. Update the interval for the specified ITR index
2632 	 *    (I40E_ITR_NONE in the register is used to indicate that
2633 	 *     no interval update is requested)
2634 	 */
2635 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2636 	      FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2637 	      FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2638 
2639 	/* 3. Enforce software interrupt trigger if requested
2640 	 *    (These software interrupts rate is limited by ITR2 that is
2641 	 *     set to 20K interrupts per second)
2642 	 */
2643 	if (force_swint)
2644 		val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2645 		       I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2646 		       FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2647 				  I40E_SW_ITR);
2648 
2649 	return val;
2650 }
2651 
2652 /* The act of updating the ITR will cause it to immediately trigger. In order
2653  * to prevent this from throwing off adaptive update statistics we defer the
2654  * update so that it can only happen so often. So after either Tx or Rx are
2655  * updated we make the adaptive scheme wait until either the ITR completely
2656  * expires via the next_update expiration or we have been through at least
2657  * 3 interrupts.
2658  */
2659 #define ITR_COUNTDOWN_START 3
2660 
2661 /**
2662  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2663  * @vsi: the VSI we care about
2664  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2665  *
2666  **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)2667 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2668 					  struct i40e_q_vector *q_vector)
2669 {
2670 	enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2671 	struct i40e_hw *hw = &vsi->back->hw;
2672 	u16 interval = 0;
2673 	u32 itr_val;
2674 
2675 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2676 	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2677 		i40e_irq_dynamic_enable_icr0(vsi->back);
2678 		return;
2679 	}
2680 
2681 	/* These will do nothing if dynamic updates are not enabled */
2682 	i40e_update_itr(q_vector, &q_vector->tx);
2683 	i40e_update_itr(q_vector, &q_vector->rx);
2684 
2685 	/* This block of logic allows us to get away with only updating
2686 	 * one ITR value with each interrupt. The idea is to perform a
2687 	 * pseudo-lazy update with the following criteria.
2688 	 *
2689 	 * 1. Rx is given higher priority than Tx if both are in same state
2690 	 * 2. If we must reduce an ITR that is given highest priority.
2691 	 * 3. We then give priority to increasing ITR based on amount.
2692 	 */
2693 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2694 		/* Rx ITR needs to be reduced, this is highest priority */
2695 		itr_idx = I40E_RX_ITR;
2696 		interval = q_vector->rx.target_itr;
2697 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2698 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2699 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2700 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2701 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2702 		/* Tx ITR needs to be reduced, this is second priority
2703 		 * Tx ITR needs to be increased more than Rx, fourth priority
2704 		 */
2705 		itr_idx = I40E_TX_ITR;
2706 		interval = q_vector->tx.target_itr;
2707 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2708 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2709 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2710 		/* Rx ITR needs to be increased, third priority */
2711 		itr_idx = I40E_RX_ITR;
2712 		interval = q_vector->rx.target_itr;
2713 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2714 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2715 	} else {
2716 		/* No ITR update, lowest priority */
2717 		if (q_vector->itr_countdown)
2718 			q_vector->itr_countdown--;
2719 	}
2720 
2721 	/* Do not update interrupt control register if VSI is down */
2722 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
2723 		return;
2724 
2725 	/* Update ITR interval if necessary and enforce software interrupt
2726 	 * if we are exiting busy poll.
2727 	 */
2728 	if (q_vector->in_busy_poll) {
2729 		itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2730 		q_vector->in_busy_poll = false;
2731 	} else {
2732 		itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2733 	}
2734 	wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2735 }
2736 
2737 /**
2738  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2739  * @napi: napi struct with our devices info in it
2740  * @budget: amount of work driver is allowed to do this pass, in packets
2741  *
2742  * This function will clean all queues associated with a q_vector.
2743  *
2744  * Returns the amount of work done
2745  **/
i40e_napi_poll(struct napi_struct * napi,int budget)2746 int i40e_napi_poll(struct napi_struct *napi, int budget)
2747 {
2748 	struct i40e_q_vector *q_vector =
2749 			       container_of(napi, struct i40e_q_vector, napi);
2750 	struct i40e_vsi *vsi = q_vector->vsi;
2751 	struct i40e_ring *ring;
2752 	bool tx_clean_complete = true;
2753 	bool rx_clean_complete = true;
2754 	unsigned int tx_cleaned = 0;
2755 	unsigned int rx_cleaned = 0;
2756 	bool clean_complete = true;
2757 	bool arm_wb = false;
2758 	int budget_per_ring;
2759 	int work_done = 0;
2760 
2761 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2762 		napi_complete(napi);
2763 		return 0;
2764 	}
2765 
2766 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2767 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2768 	 */
2769 	i40e_for_each_ring(ring, q_vector->tx) {
2770 		bool wd = ring->xsk_pool ?
2771 			  i40e_clean_xdp_tx_irq(vsi, ring) :
2772 			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2773 
2774 		if (!wd) {
2775 			clean_complete = tx_clean_complete = false;
2776 			continue;
2777 		}
2778 		arm_wb |= ring->arm_wb;
2779 		ring->arm_wb = false;
2780 	}
2781 
2782 	/* Handle case where we are called by netpoll with a budget of 0 */
2783 	if (budget <= 0)
2784 		goto tx_only;
2785 
2786 	/* normally we have 1 Rx ring per q_vector */
2787 	if (unlikely(q_vector->num_ringpairs > 1))
2788 		/* We attempt to distribute budget to each Rx queue fairly, but
2789 		 * don't allow the budget to go below 1 because that would exit
2790 		 * polling early.
2791 		 */
2792 		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2793 	else
2794 		/* Max of 1 Rx ring in this q_vector so give it the budget */
2795 		budget_per_ring = budget;
2796 
2797 	i40e_for_each_ring(ring, q_vector->rx) {
2798 		int cleaned = ring->xsk_pool ?
2799 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2800 			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2801 
2802 		work_done += cleaned;
2803 		/* if we clean as many as budgeted, we must not be done */
2804 		if (cleaned >= budget_per_ring)
2805 			clean_complete = rx_clean_complete = false;
2806 	}
2807 
2808 	if (!i40e_enabled_xdp_vsi(vsi))
2809 		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2810 				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2811 
2812 	/* If work not completed, return budget and polling will return */
2813 	if (!clean_complete) {
2814 		int cpu_id = smp_processor_id();
2815 
2816 		/* It is possible that the interrupt affinity has changed but,
2817 		 * if the cpu is pegged at 100%, polling will never exit while
2818 		 * traffic continues and the interrupt will be stuck on this
2819 		 * cpu.  We check to make sure affinity is correct before we
2820 		 * continue to poll, otherwise we must stop polling so the
2821 		 * interrupt can move to the correct cpu.
2822 		 */
2823 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2824 			/* Tell napi that we are done polling */
2825 			napi_complete_done(napi, work_done);
2826 
2827 			/* Force an interrupt */
2828 			i40e_force_wb(vsi, q_vector);
2829 
2830 			/* Return budget-1 so that polling stops */
2831 			return budget - 1;
2832 		}
2833 tx_only:
2834 		if (arm_wb) {
2835 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2836 			i40e_enable_wb_on_itr(vsi, q_vector);
2837 		}
2838 		return budget;
2839 	}
2840 
2841 	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2842 		q_vector->arm_wb_state = false;
2843 
2844 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2845 	 * poll us due to busy-polling
2846 	 */
2847 	if (likely(napi_complete_done(napi, work_done)))
2848 		i40e_update_enable_itr(vsi, q_vector);
2849 	else
2850 		q_vector->in_busy_poll = true;
2851 
2852 	return min(work_done, budget - 1);
2853 }
2854 
2855 /**
2856  * i40e_atr - Add a Flow Director ATR filter
2857  * @tx_ring:  ring to add programming descriptor to
2858  * @skb:      send buffer
2859  * @tx_flags: send tx flags
2860  **/
i40e_atr(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)2861 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2862 		     u32 tx_flags)
2863 {
2864 	struct i40e_filter_program_desc *fdir_desc;
2865 	struct i40e_pf *pf = tx_ring->vsi->back;
2866 	union {
2867 		unsigned char *network;
2868 		struct iphdr *ipv4;
2869 		struct ipv6hdr *ipv6;
2870 	} hdr;
2871 	struct tcphdr *th;
2872 	unsigned int hlen;
2873 	u32 flex_ptype, dtype_cmd;
2874 	int l4_proto;
2875 	u16 i;
2876 
2877 	/* make sure ATR is enabled */
2878 	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2879 		return;
2880 
2881 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2882 		return;
2883 
2884 	/* if sampling is disabled do nothing */
2885 	if (!tx_ring->atr_sample_rate)
2886 		return;
2887 
2888 	/* Currently only IPv4/IPv6 with TCP is supported */
2889 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2890 		return;
2891 
2892 	/* snag network header to get L4 type and address */
2893 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2894 		      skb_inner_network_header(skb) : skb_network_header(skb);
2895 
2896 	/* Note: tx_flags gets modified to reflect inner protocols in
2897 	 * tx_enable_csum function if encap is enabled.
2898 	 */
2899 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2900 		/* access ihl as u8 to avoid unaligned access on ia64 */
2901 		hlen = (hdr.network[0] & 0x0F) << 2;
2902 		l4_proto = hdr.ipv4->protocol;
2903 	} else {
2904 		/* find the start of the innermost ipv6 header */
2905 		unsigned int inner_hlen = hdr.network - skb->data;
2906 		unsigned int h_offset = inner_hlen;
2907 
2908 		/* this function updates h_offset to the end of the header */
2909 		l4_proto =
2910 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2911 		/* hlen will contain our best estimate of the tcp header */
2912 		hlen = h_offset - inner_hlen;
2913 	}
2914 
2915 	if (l4_proto != IPPROTO_TCP)
2916 		return;
2917 
2918 	th = (struct tcphdr *)(hdr.network + hlen);
2919 
2920 	/* Due to lack of space, no more new filters can be programmed */
2921 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2922 		return;
2923 	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2924 		/* HW ATR eviction will take care of removing filters on FIN
2925 		 * and RST packets.
2926 		 */
2927 		if (th->fin || th->rst)
2928 			return;
2929 	}
2930 
2931 	tx_ring->atr_count++;
2932 
2933 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2934 	if (!th->fin &&
2935 	    !th->syn &&
2936 	    !th->rst &&
2937 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2938 		return;
2939 
2940 	tx_ring->atr_count = 0;
2941 
2942 	/* grab the next descriptor */
2943 	i = tx_ring->next_to_use;
2944 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2945 
2946 	i++;
2947 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2948 
2949 	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2950 				tx_ring->queue_index);
2951 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2952 		      (LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP <<
2953 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2954 		      (LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP <<
2955 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2956 
2957 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2958 
2959 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2960 
2961 	dtype_cmd |= (th->fin || th->rst) ?
2962 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2963 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2964 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2965 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2966 
2967 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2968 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2969 
2970 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2971 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2972 
2973 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2974 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2975 		dtype_cmd |=
2976 			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2977 				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
2978 	else
2979 		dtype_cmd |=
2980 			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2981 				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
2982 
2983 	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2984 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2985 
2986 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2987 	fdir_desc->rsvd = cpu_to_le32(0);
2988 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2989 	fdir_desc->fd_id = cpu_to_le32(0);
2990 }
2991 
2992 /**
2993  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2994  * @skb:     send buffer
2995  * @tx_ring: ring to send buffer on
2996  * @flags:   the tx flags to be set
2997  *
2998  * Checks the skb and set up correspondingly several generic transmit flags
2999  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3000  *
3001  * Returns error code indicate the frame should be dropped upon error and the
3002  * otherwise  returns 0 to indicate the flags has been set properly.
3003  **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)3004 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3005 					     struct i40e_ring *tx_ring,
3006 					     u32 *flags)
3007 {
3008 	__be16 protocol = skb->protocol;
3009 	u32  tx_flags = 0;
3010 
3011 	if (protocol == htons(ETH_P_8021Q) &&
3012 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3013 		/* When HW VLAN acceleration is turned off by the user the
3014 		 * stack sets the protocol to 8021q so that the driver
3015 		 * can take any steps required to support the SW only
3016 		 * VLAN handling.  In our case the driver doesn't need
3017 		 * to take any further steps so just set the protocol
3018 		 * to the encapsulated ethertype.
3019 		 */
3020 		skb->protocol = vlan_get_protocol(skb);
3021 		goto out;
3022 	}
3023 
3024 	/* if we have a HW VLAN tag being added, default to the HW one */
3025 	if (skb_vlan_tag_present(skb)) {
3026 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3027 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3028 	/* else if it is a SW VLAN, check the next protocol and store the tag */
3029 	} else if (protocol == htons(ETH_P_8021Q)) {
3030 		struct vlan_hdr *vhdr, _vhdr;
3031 
3032 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3033 		if (!vhdr)
3034 			return -EINVAL;
3035 
3036 		protocol = vhdr->h_vlan_encapsulated_proto;
3037 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3038 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3039 	}
3040 
3041 	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3042 		goto out;
3043 
3044 	/* Insert 802.1p priority into VLAN header */
3045 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3046 	    (skb->priority != TC_PRIO_CONTROL)) {
3047 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3048 		tx_flags |= (skb->priority & 0x7) <<
3049 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3050 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3051 			struct vlan_ethhdr *vhdr;
3052 			int rc;
3053 
3054 			rc = skb_cow_head(skb, 0);
3055 			if (rc < 0)
3056 				return rc;
3057 			vhdr = skb_vlan_eth_hdr(skb);
3058 			vhdr->h_vlan_TCI = htons(tx_flags >>
3059 						 I40E_TX_FLAGS_VLAN_SHIFT);
3060 		} else {
3061 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3062 		}
3063 	}
3064 
3065 out:
3066 	*flags = tx_flags;
3067 	return 0;
3068 }
3069 
3070 /**
3071  * i40e_tso - set up the tso context descriptor
3072  * @first:    pointer to first Tx buffer for xmit
3073  * @hdr_len:  ptr to the size of the packet header
3074  * @cd_type_cmd_tso_mss: Quad Word 1
3075  *
3076  * Returns 0 if no TSO can happen, 1 if tso is going, or error
3077  **/
i40e_tso(struct i40e_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)3078 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3079 		    u64 *cd_type_cmd_tso_mss)
3080 {
3081 	struct sk_buff *skb = first->skb;
3082 	u64 cd_cmd, cd_tso_len, cd_mss;
3083 	__be16 protocol;
3084 	union {
3085 		struct iphdr *v4;
3086 		struct ipv6hdr *v6;
3087 		unsigned char *hdr;
3088 	} ip;
3089 	union {
3090 		struct tcphdr *tcp;
3091 		struct udphdr *udp;
3092 		unsigned char *hdr;
3093 	} l4;
3094 	u32 paylen, l4_offset;
3095 	u16 gso_size;
3096 	int err;
3097 
3098 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3099 		return 0;
3100 
3101 	if (!skb_is_gso(skb))
3102 		return 0;
3103 
3104 	err = skb_cow_head(skb, 0);
3105 	if (err < 0)
3106 		return err;
3107 
3108 	protocol = vlan_get_protocol(skb);
3109 
3110 	if (eth_p_mpls(protocol))
3111 		ip.hdr = skb_inner_network_header(skb);
3112 	else
3113 		ip.hdr = skb_network_header(skb);
3114 	l4.hdr = skb_checksum_start(skb);
3115 
3116 	/* initialize outer IP header fields */
3117 	if (ip.v4->version == 4) {
3118 		ip.v4->tot_len = 0;
3119 		ip.v4->check = 0;
3120 
3121 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3122 	} else {
3123 		ip.v6->payload_len = 0;
3124 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3125 	}
3126 
3127 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3128 					 SKB_GSO_GRE_CSUM |
3129 					 SKB_GSO_IPXIP4 |
3130 					 SKB_GSO_IPXIP6 |
3131 					 SKB_GSO_UDP_TUNNEL |
3132 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3133 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3134 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3135 			l4.udp->len = 0;
3136 
3137 			/* determine offset of outer transport header */
3138 			l4_offset = l4.hdr - skb->data;
3139 
3140 			/* remove payload length from outer checksum */
3141 			paylen = skb->len - l4_offset;
3142 			csum_replace_by_diff(&l4.udp->check,
3143 					     (__force __wsum)htonl(paylen));
3144 		}
3145 
3146 		/* reset pointers to inner headers */
3147 		ip.hdr = skb_inner_network_header(skb);
3148 		l4.hdr = skb_inner_transport_header(skb);
3149 
3150 		/* initialize inner IP header fields */
3151 		if (ip.v4->version == 4) {
3152 			ip.v4->tot_len = 0;
3153 			ip.v4->check = 0;
3154 		} else {
3155 			ip.v6->payload_len = 0;
3156 		}
3157 	}
3158 
3159 	/* determine offset of inner transport header */
3160 	l4_offset = l4.hdr - skb->data;
3161 
3162 	/* remove payload length from inner checksum */
3163 	paylen = skb->len - l4_offset;
3164 
3165 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3166 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3167 		/* compute length of segmentation header */
3168 		*hdr_len = sizeof(*l4.udp) + l4_offset;
3169 	} else {
3170 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3171 		/* compute length of segmentation header */
3172 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3173 	}
3174 
3175 	/* pull values out of skb_shinfo */
3176 	gso_size = skb_shinfo(skb)->gso_size;
3177 
3178 	/* update GSO size and bytecount with header size */
3179 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3180 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3181 
3182 	/* find the field values */
3183 	cd_cmd = I40E_TX_CTX_DESC_TSO;
3184 	cd_tso_len = skb->len - *hdr_len;
3185 	cd_mss = gso_size;
3186 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3187 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3188 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3189 	return 1;
3190 }
3191 
3192 /**
3193  * i40e_tsyn - set up the tsyn context descriptor
3194  * @tx_ring:  ptr to the ring to send
3195  * @skb:      ptr to the skb we're sending
3196  * @tx_flags: the collected send information
3197  * @cd_type_cmd_tso_mss: Quad Word 1
3198  *
3199  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3200  **/
i40e_tsyn(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u64 * cd_type_cmd_tso_mss)3201 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3202 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3203 {
3204 	struct i40e_pf *pf;
3205 
3206 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3207 		return 0;
3208 
3209 	/* Tx timestamps cannot be sampled when doing TSO */
3210 	if (tx_flags & I40E_TX_FLAGS_TSO)
3211 		return 0;
3212 
3213 	/* only timestamp the outbound packet if the user has requested it and
3214 	 * we are not already transmitting a packet to be timestamped
3215 	 */
3216 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3217 	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3218 		return 0;
3219 
3220 	if (pf->ptp_tx &&
3221 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3222 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3223 		pf->ptp_tx_start = jiffies;
3224 		pf->ptp_tx_skb = skb_get(skb);
3225 	} else {
3226 		pf->tx_hwtstamp_skipped++;
3227 		return 0;
3228 	}
3229 
3230 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3231 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3232 
3233 	return 1;
3234 }
3235 
3236 /**
3237  * i40e_tx_enable_csum - Enable Tx checksum offloads
3238  * @skb: send buffer
3239  * @tx_flags: pointer to Tx flags currently set
3240  * @td_cmd: Tx descriptor command bits to set
3241  * @td_offset: Tx descriptor header offsets to set
3242  * @tx_ring: Tx descriptor ring
3243  * @cd_tunneling: ptr to context desc bits
3244  **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)3245 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3246 			       u32 *td_cmd, u32 *td_offset,
3247 			       struct i40e_ring *tx_ring,
3248 			       u32 *cd_tunneling)
3249 {
3250 	union {
3251 		struct iphdr *v4;
3252 		struct ipv6hdr *v6;
3253 		unsigned char *hdr;
3254 	} ip;
3255 	union {
3256 		struct tcphdr *tcp;
3257 		struct udphdr *udp;
3258 		unsigned char *hdr;
3259 	} l4;
3260 	unsigned char *exthdr;
3261 	u32 offset, cmd = 0;
3262 	__be16 frag_off;
3263 	__be16 protocol;
3264 	u8 l4_proto = 0;
3265 
3266 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3267 		return 0;
3268 
3269 	protocol = vlan_get_protocol(skb);
3270 
3271 	if (eth_p_mpls(protocol)) {
3272 		ip.hdr = skb_inner_network_header(skb);
3273 		l4.hdr = skb_checksum_start(skb);
3274 	} else {
3275 		ip.hdr = skb_network_header(skb);
3276 		l4.hdr = skb_transport_header(skb);
3277 	}
3278 
3279 	/* set the tx_flags to indicate the IP protocol type. this is
3280 	 * required so that checksum header computation below is accurate.
3281 	 */
3282 	if (ip.v4->version == 4)
3283 		*tx_flags |= I40E_TX_FLAGS_IPV4;
3284 	else
3285 		*tx_flags |= I40E_TX_FLAGS_IPV6;
3286 
3287 	/* compute outer L2 header size */
3288 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3289 
3290 	if (skb->encapsulation) {
3291 		u32 tunnel = 0;
3292 		/* define outer network header type */
3293 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3294 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3295 				  I40E_TX_CTX_EXT_IP_IPV4 :
3296 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3297 
3298 			l4_proto = ip.v4->protocol;
3299 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3300 			int ret;
3301 
3302 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3303 
3304 			exthdr = ip.hdr + sizeof(*ip.v6);
3305 			l4_proto = ip.v6->nexthdr;
3306 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3307 					       &l4_proto, &frag_off);
3308 			if (ret < 0)
3309 				return -1;
3310 		}
3311 
3312 		/* define outer transport */
3313 		switch (l4_proto) {
3314 		case IPPROTO_UDP:
3315 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3316 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3317 			break;
3318 		case IPPROTO_GRE:
3319 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3320 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3321 			break;
3322 		case IPPROTO_IPIP:
3323 		case IPPROTO_IPV6:
3324 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3325 			l4.hdr = skb_inner_network_header(skb);
3326 			break;
3327 		default:
3328 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3329 				return -1;
3330 
3331 			skb_checksum_help(skb);
3332 			return 0;
3333 		}
3334 
3335 		/* compute outer L3 header size */
3336 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3337 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3338 
3339 		/* switch IP header pointer from outer to inner header */
3340 		ip.hdr = skb_inner_network_header(skb);
3341 
3342 		/* compute tunnel header size */
3343 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3344 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3345 
3346 		/* indicate if we need to offload outer UDP header */
3347 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3348 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3349 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3350 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3351 
3352 		/* record tunnel offload values */
3353 		*cd_tunneling |= tunnel;
3354 
3355 		/* switch L4 header pointer from outer to inner */
3356 		l4.hdr = skb_inner_transport_header(skb);
3357 		l4_proto = 0;
3358 
3359 		/* reset type as we transition from outer to inner headers */
3360 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3361 		if (ip.v4->version == 4)
3362 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3363 		if (ip.v6->version == 6)
3364 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3365 	}
3366 
3367 	/* Enable IP checksum offloads */
3368 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3369 		l4_proto = ip.v4->protocol;
3370 		/* the stack computes the IP header already, the only time we
3371 		 * need the hardware to recompute it is in the case of TSO.
3372 		 */
3373 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3374 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3375 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3376 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3377 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3378 
3379 		exthdr = ip.hdr + sizeof(*ip.v6);
3380 		l4_proto = ip.v6->nexthdr;
3381 		if (l4.hdr != exthdr)
3382 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3383 					 &l4_proto, &frag_off);
3384 	}
3385 
3386 	/* compute inner L3 header size */
3387 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3388 
3389 	/* Enable L4 checksum offloads */
3390 	switch (l4_proto) {
3391 	case IPPROTO_TCP:
3392 		/* enable checksum offloads */
3393 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3394 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3395 		break;
3396 	case IPPROTO_SCTP:
3397 		/* enable SCTP checksum offload */
3398 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3399 		offset |= (sizeof(struct sctphdr) >> 2) <<
3400 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3401 		break;
3402 	case IPPROTO_UDP:
3403 		/* enable UDP checksum offload */
3404 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3405 		offset |= (sizeof(struct udphdr) >> 2) <<
3406 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3407 		break;
3408 	default:
3409 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3410 			return -1;
3411 		skb_checksum_help(skb);
3412 		return 0;
3413 	}
3414 
3415 	*td_cmd |= cmd;
3416 	*td_offset |= offset;
3417 
3418 	return 1;
3419 }
3420 
3421 /**
3422  * i40e_create_tx_ctx - Build the Tx context descriptor
3423  * @tx_ring:  ring to create the descriptor on
3424  * @cd_type_cmd_tso_mss: Quad Word 1
3425  * @cd_tunneling: Quad Word 0 - bits 0-31
3426  * @cd_l2tag2: Quad Word 0 - bits 32-63
3427  **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)3428 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3429 			       const u64 cd_type_cmd_tso_mss,
3430 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3431 {
3432 	struct i40e_tx_context_desc *context_desc;
3433 	int i = tx_ring->next_to_use;
3434 
3435 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3436 	    !cd_tunneling && !cd_l2tag2)
3437 		return;
3438 
3439 	/* grab the next descriptor */
3440 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3441 
3442 	i++;
3443 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3444 
3445 	/* cpu_to_le32 and assign to struct fields */
3446 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3447 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3448 	context_desc->rsvd = cpu_to_le16(0);
3449 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3450 }
3451 
3452 /**
3453  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3454  * @tx_ring: the ring to be checked
3455  * @size:    the size buffer we want to assure is available
3456  *
3457  * Returns -EBUSY if a stop is needed, else 0
3458  **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)3459 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3460 {
3461 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3462 	/* Memory barrier before checking head and tail */
3463 	smp_mb();
3464 
3465 	++tx_ring->tx_stats.tx_stopped;
3466 
3467 	/* Check again in a case another CPU has just made room available. */
3468 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3469 		return -EBUSY;
3470 
3471 	/* A reprieve! - use start_queue because it doesn't call schedule */
3472 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3473 	++tx_ring->tx_stats.restart_queue;
3474 	return 0;
3475 }
3476 
3477 /**
3478  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3479  * @skb:      send buffer
3480  *
3481  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3482  * and so we need to figure out the cases where we need to linearize the skb.
3483  *
3484  * For TSO we need to count the TSO header and segment payload separately.
3485  * As such we need to check cases where we have 7 fragments or more as we
3486  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3487  * the segment payload in the first descriptor, and another 7 for the
3488  * fragments.
3489  **/
__i40e_chk_linearize(struct sk_buff * skb)3490 bool __i40e_chk_linearize(struct sk_buff *skb)
3491 {
3492 	const skb_frag_t *frag, *stale;
3493 	int nr_frags, sum;
3494 
3495 	/* no need to check if number of frags is less than 7 */
3496 	nr_frags = skb_shinfo(skb)->nr_frags;
3497 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3498 		return false;
3499 
3500 	/* We need to walk through the list and validate that each group
3501 	 * of 6 fragments totals at least gso_size.
3502 	 */
3503 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3504 	frag = &skb_shinfo(skb)->frags[0];
3505 
3506 	/* Initialize size to the negative value of gso_size minus 1.  We
3507 	 * use this as the worst case scenerio in which the frag ahead
3508 	 * of us only provides one byte which is why we are limited to 6
3509 	 * descriptors for a single transmit as the header and previous
3510 	 * fragment are already consuming 2 descriptors.
3511 	 */
3512 	sum = 1 - skb_shinfo(skb)->gso_size;
3513 
3514 	/* Add size of frags 0 through 4 to create our initial sum */
3515 	sum += skb_frag_size(frag++);
3516 	sum += skb_frag_size(frag++);
3517 	sum += skb_frag_size(frag++);
3518 	sum += skb_frag_size(frag++);
3519 	sum += skb_frag_size(frag++);
3520 
3521 	/* Walk through fragments adding latest fragment, testing it, and
3522 	 * then removing stale fragments from the sum.
3523 	 */
3524 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3525 		int stale_size = skb_frag_size(stale);
3526 
3527 		sum += skb_frag_size(frag++);
3528 
3529 		/* The stale fragment may present us with a smaller
3530 		 * descriptor than the actual fragment size. To account
3531 		 * for that we need to remove all the data on the front and
3532 		 * figure out what the remainder would be in the last
3533 		 * descriptor associated with the fragment.
3534 		 */
3535 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3536 			int align_pad = -(skb_frag_off(stale)) &
3537 					(I40E_MAX_READ_REQ_SIZE - 1);
3538 
3539 			sum -= align_pad;
3540 			stale_size -= align_pad;
3541 
3542 			do {
3543 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3544 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3545 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3546 		}
3547 
3548 		/* if sum is negative we failed to make sufficient progress */
3549 		if (sum < 0)
3550 			return true;
3551 
3552 		if (!nr_frags--)
3553 			break;
3554 
3555 		sum -= stale_size;
3556 	}
3557 
3558 	return false;
3559 }
3560 
3561 /**
3562  * i40e_tx_map - Build the Tx descriptor
3563  * @tx_ring:  ring to send buffer on
3564  * @skb:      send buffer
3565  * @first:    first buffer info buffer to use
3566  * @tx_flags: collected send information
3567  * @hdr_len:  size of the packet header
3568  * @td_cmd:   the command field in the descriptor
3569  * @td_offset: offset for checksum or crc
3570  *
3571  * Returns 0 on success, -1 on failure to DMA
3572  **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)3573 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3574 			      struct i40e_tx_buffer *first, u32 tx_flags,
3575 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3576 {
3577 	unsigned int data_len = skb->data_len;
3578 	unsigned int size = skb_headlen(skb);
3579 	skb_frag_t *frag;
3580 	struct i40e_tx_buffer *tx_bi;
3581 	struct i40e_tx_desc *tx_desc;
3582 	u16 i = tx_ring->next_to_use;
3583 	u32 td_tag = 0;
3584 	dma_addr_t dma;
3585 	u16 desc_count = 1;
3586 
3587 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3588 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3589 		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
3590 	}
3591 
3592 	first->tx_flags = tx_flags;
3593 
3594 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3595 
3596 	tx_desc = I40E_TX_DESC(tx_ring, i);
3597 	tx_bi = first;
3598 
3599 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3600 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3601 
3602 		if (dma_mapping_error(tx_ring->dev, dma))
3603 			goto dma_error;
3604 
3605 		/* record length, and DMA address */
3606 		dma_unmap_len_set(tx_bi, len, size);
3607 		dma_unmap_addr_set(tx_bi, dma, dma);
3608 
3609 		/* align size to end of page */
3610 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3611 		tx_desc->buffer_addr = cpu_to_le64(dma);
3612 
3613 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3614 			tx_desc->cmd_type_offset_bsz =
3615 				build_ctob(td_cmd, td_offset,
3616 					   max_data, td_tag);
3617 
3618 			tx_desc++;
3619 			i++;
3620 			desc_count++;
3621 
3622 			if (i == tx_ring->count) {
3623 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3624 				i = 0;
3625 			}
3626 
3627 			dma += max_data;
3628 			size -= max_data;
3629 
3630 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3631 			tx_desc->buffer_addr = cpu_to_le64(dma);
3632 		}
3633 
3634 		if (likely(!data_len))
3635 			break;
3636 
3637 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3638 							  size, td_tag);
3639 
3640 		tx_desc++;
3641 		i++;
3642 		desc_count++;
3643 
3644 		if (i == tx_ring->count) {
3645 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3646 			i = 0;
3647 		}
3648 
3649 		size = skb_frag_size(frag);
3650 		data_len -= size;
3651 
3652 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3653 				       DMA_TO_DEVICE);
3654 
3655 		tx_bi = &tx_ring->tx_bi[i];
3656 	}
3657 
3658 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3659 
3660 	i++;
3661 	if (i == tx_ring->count)
3662 		i = 0;
3663 
3664 	tx_ring->next_to_use = i;
3665 
3666 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3667 
3668 	/* write last descriptor with EOP bit */
3669 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3670 
3671 	/* We OR these values together to check both against 4 (WB_STRIDE)
3672 	 * below. This is safe since we don't re-use desc_count afterwards.
3673 	 */
3674 	desc_count |= ++tx_ring->packet_stride;
3675 
3676 	if (desc_count >= WB_STRIDE) {
3677 		/* write last descriptor with RS bit set */
3678 		td_cmd |= I40E_TX_DESC_CMD_RS;
3679 		tx_ring->packet_stride = 0;
3680 	}
3681 
3682 	tx_desc->cmd_type_offset_bsz =
3683 			build_ctob(td_cmd, td_offset, size, td_tag);
3684 
3685 	skb_tx_timestamp(skb);
3686 
3687 	/* Force memory writes to complete before letting h/w know there
3688 	 * are new descriptors to fetch.
3689 	 *
3690 	 * We also use this memory barrier to make certain all of the
3691 	 * status bits have been updated before next_to_watch is written.
3692 	 */
3693 	wmb();
3694 
3695 	/* set next_to_watch value indicating a packet is present */
3696 	first->next_to_watch = tx_desc;
3697 
3698 	/* notify HW of packet */
3699 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3700 		writel(i, tx_ring->tail);
3701 	}
3702 
3703 	return 0;
3704 
3705 dma_error:
3706 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3707 
3708 	/* clear dma mappings for failed tx_bi map */
3709 	for (;;) {
3710 		tx_bi = &tx_ring->tx_bi[i];
3711 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3712 		if (tx_bi == first)
3713 			break;
3714 		if (i == 0)
3715 			i = tx_ring->count;
3716 		i--;
3717 	}
3718 
3719 	tx_ring->next_to_use = i;
3720 
3721 	return -1;
3722 }
3723 
i40e_swdcb_skb_tx_hash(struct net_device * dev,const struct sk_buff * skb,u16 num_tx_queues)3724 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3725 				  const struct sk_buff *skb,
3726 				  u16 num_tx_queues)
3727 {
3728 	u32 jhash_initval_salt = 0xd631614b;
3729 	u32 hash;
3730 
3731 	if (skb->sk && skb->sk->sk_hash)
3732 		hash = skb->sk->sk_hash;
3733 	else
3734 		hash = (__force u16)skb->protocol ^ skb->hash;
3735 
3736 	hash = jhash_1word(hash, jhash_initval_salt);
3737 
3738 	return (u16)(((u64)hash * num_tx_queues) >> 32);
3739 }
3740 
i40e_lan_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device __always_unused * sb_dev)3741 u16 i40e_lan_select_queue(struct net_device *netdev,
3742 			  struct sk_buff *skb,
3743 			  struct net_device __always_unused *sb_dev)
3744 {
3745 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3746 	struct i40e_vsi *vsi = np->vsi;
3747 	struct i40e_hw *hw;
3748 	u16 qoffset;
3749 	u16 qcount;
3750 	u8 tclass;
3751 	u16 hash;
3752 	u8 prio;
3753 
3754 	/* is DCB enabled at all? */
3755 	if (vsi->tc_config.numtc == 1 ||
3756 	    i40e_is_tc_mqprio_enabled(vsi->back))
3757 		return netdev_pick_tx(netdev, skb, sb_dev);
3758 
3759 	prio = skb->priority;
3760 	hw = &vsi->back->hw;
3761 	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3762 	/* sanity check */
3763 	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3764 		tclass = 0;
3765 
3766 	/* select a queue assigned for the given TC */
3767 	qcount = vsi->tc_config.tc_info[tclass].qcount;
3768 	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3769 
3770 	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3771 	return qoffset + hash;
3772 }
3773 
3774 /**
3775  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3776  * @xdpf: data to transmit
3777  * @xdp_ring: XDP Tx ring
3778  **/
i40e_xmit_xdp_ring(struct xdp_frame * xdpf,struct i40e_ring * xdp_ring)3779 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3780 			      struct i40e_ring *xdp_ring)
3781 {
3782 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3783 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3784 	u16 i = 0, index = xdp_ring->next_to_use;
3785 	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3786 	struct i40e_tx_buffer *tx_bi = tx_head;
3787 	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3788 	void *data = xdpf->data;
3789 	u32 size = xdpf->len;
3790 
3791 	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3792 		xdp_ring->tx_stats.tx_busy++;
3793 		return I40E_XDP_CONSUMED;
3794 	}
3795 
3796 	tx_head->bytecount = xdp_get_frame_len(xdpf);
3797 	tx_head->gso_segs = 1;
3798 	tx_head->xdpf = xdpf;
3799 
3800 	for (;;) {
3801 		dma_addr_t dma;
3802 
3803 		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3804 		if (dma_mapping_error(xdp_ring->dev, dma))
3805 			goto unmap;
3806 
3807 		/* record length, and DMA address */
3808 		dma_unmap_len_set(tx_bi, len, size);
3809 		dma_unmap_addr_set(tx_bi, dma, dma);
3810 
3811 		tx_desc->buffer_addr = cpu_to_le64(dma);
3812 		tx_desc->cmd_type_offset_bsz =
3813 			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3814 
3815 		if (++index == xdp_ring->count)
3816 			index = 0;
3817 
3818 		if (i == nr_frags)
3819 			break;
3820 
3821 		tx_bi = &xdp_ring->tx_bi[index];
3822 		tx_desc = I40E_TX_DESC(xdp_ring, index);
3823 
3824 		data = skb_frag_address(&sinfo->frags[i]);
3825 		size = skb_frag_size(&sinfo->frags[i]);
3826 		i++;
3827 	}
3828 
3829 	tx_desc->cmd_type_offset_bsz |=
3830 		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3831 
3832 	/* Make certain all of the status bits have been updated
3833 	 * before next_to_watch is written.
3834 	 */
3835 	smp_wmb();
3836 
3837 	xdp_ring->xdp_tx_active++;
3838 
3839 	tx_head->next_to_watch = tx_desc;
3840 	xdp_ring->next_to_use = index;
3841 
3842 	return I40E_XDP_TX;
3843 
3844 unmap:
3845 	for (;;) {
3846 		tx_bi = &xdp_ring->tx_bi[index];
3847 		if (dma_unmap_len(tx_bi, len))
3848 			dma_unmap_page(xdp_ring->dev,
3849 				       dma_unmap_addr(tx_bi, dma),
3850 				       dma_unmap_len(tx_bi, len),
3851 				       DMA_TO_DEVICE);
3852 		dma_unmap_len_set(tx_bi, len, 0);
3853 		if (tx_bi == tx_head)
3854 			break;
3855 
3856 		if (!index)
3857 			index += xdp_ring->count;
3858 		index--;
3859 	}
3860 
3861 	return I40E_XDP_CONSUMED;
3862 }
3863 
3864 /**
3865  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3866  * @skb:     send buffer
3867  * @tx_ring: ring to send buffer on
3868  *
3869  * Returns NETDEV_TX_OK if sent, else an error code
3870  **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)3871 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3872 					struct i40e_ring *tx_ring)
3873 {
3874 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3875 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3876 	struct i40e_tx_buffer *first;
3877 	u32 td_offset = 0;
3878 	u32 tx_flags = 0;
3879 	u32 td_cmd = 0;
3880 	u8 hdr_len = 0;
3881 	int tso, count;
3882 	int tsyn;
3883 
3884 	/* prefetch the data, we'll need it later */
3885 	prefetch(skb->data);
3886 
3887 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3888 
3889 	count = i40e_xmit_descriptor_count(skb);
3890 	if (i40e_chk_linearize(skb, count)) {
3891 		if (__skb_linearize(skb)) {
3892 			dev_kfree_skb_any(skb);
3893 			return NETDEV_TX_OK;
3894 		}
3895 		count = i40e_txd_use_count(skb->len);
3896 		tx_ring->tx_stats.tx_linearize++;
3897 	}
3898 
3899 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3900 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3901 	 *       + 4 desc gap to avoid the cache line where head is,
3902 	 *       + 1 desc for context descriptor,
3903 	 * otherwise try next time
3904 	 */
3905 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3906 		tx_ring->tx_stats.tx_busy++;
3907 		return NETDEV_TX_BUSY;
3908 	}
3909 
3910 	/* record the location of the first descriptor for this packet */
3911 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3912 	first->skb = skb;
3913 	first->bytecount = skb->len;
3914 	first->gso_segs = 1;
3915 
3916 	/* prepare the xmit flags */
3917 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3918 		goto out_drop;
3919 
3920 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3921 
3922 	if (tso < 0)
3923 		goto out_drop;
3924 	else if (tso)
3925 		tx_flags |= I40E_TX_FLAGS_TSO;
3926 
3927 	/* Always offload the checksum, since it's in the data descriptor */
3928 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3929 				  tx_ring, &cd_tunneling);
3930 	if (tso < 0)
3931 		goto out_drop;
3932 
3933 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3934 
3935 	if (tsyn)
3936 		tx_flags |= I40E_TX_FLAGS_TSYN;
3937 
3938 	/* always enable CRC insertion offload */
3939 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3940 
3941 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3942 			   cd_tunneling, cd_l2tag2);
3943 
3944 	/* Add Flow Director ATR if it's enabled.
3945 	 *
3946 	 * NOTE: this must always be directly before the data descriptor.
3947 	 */
3948 	i40e_atr(tx_ring, skb, tx_flags);
3949 
3950 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3951 			td_cmd, td_offset))
3952 		goto cleanup_tx_tstamp;
3953 
3954 	return NETDEV_TX_OK;
3955 
3956 out_drop:
3957 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3958 	dev_kfree_skb_any(first->skb);
3959 	first->skb = NULL;
3960 cleanup_tx_tstamp:
3961 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3962 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3963 
3964 		dev_kfree_skb_any(pf->ptp_tx_skb);
3965 		pf->ptp_tx_skb = NULL;
3966 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3967 	}
3968 
3969 	return NETDEV_TX_OK;
3970 }
3971 
3972 /**
3973  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3974  * @skb:    send buffer
3975  * @netdev: network interface device structure
3976  *
3977  * Returns NETDEV_TX_OK if sent, else an error code
3978  **/
i40e_lan_xmit_frame(struct sk_buff * skb,struct net_device * netdev)3979 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3980 {
3981 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3982 	struct i40e_vsi *vsi = np->vsi;
3983 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3984 
3985 	/* hardware can't handle really short frames, hardware padding works
3986 	 * beyond this point
3987 	 */
3988 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3989 		return NETDEV_TX_OK;
3990 
3991 	return i40e_xmit_frame_ring(skb, tx_ring);
3992 }
3993 
3994 /**
3995  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3996  * @dev: netdev
3997  * @n: number of frames
3998  * @frames: array of XDP buffer pointers
3999  * @flags: XDP extra info
4000  *
4001  * Returns number of frames successfully sent. Failed frames
4002  * will be free'ed by XDP core.
4003  *
4004  * For error cases, a negative errno code is returned and no-frames
4005  * are transmitted (caller must handle freeing frames).
4006  **/
i40e_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)4007 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4008 		  u32 flags)
4009 {
4010 	struct i40e_netdev_priv *np = netdev_priv(dev);
4011 	unsigned int queue_index = smp_processor_id();
4012 	struct i40e_vsi *vsi = np->vsi;
4013 	struct i40e_pf *pf = vsi->back;
4014 	struct i40e_ring *xdp_ring;
4015 	int nxmit = 0;
4016 	int i;
4017 
4018 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4019 		return -ENETDOWN;
4020 
4021 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4022 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4023 		return -ENXIO;
4024 
4025 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4026 		return -EINVAL;
4027 
4028 	xdp_ring = vsi->xdp_rings[queue_index];
4029 
4030 	for (i = 0; i < n; i++) {
4031 		struct xdp_frame *xdpf = frames[i];
4032 		int err;
4033 
4034 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4035 		if (err != I40E_XDP_TX)
4036 			break;
4037 		nxmit++;
4038 	}
4039 
4040 	if (unlikely(flags & XDP_XMIT_FLUSH))
4041 		i40e_xdp_ring_update_tail(xdp_ring);
4042 
4043 	return nxmit;
4044 }
4045