1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <linux/net/intel/libie/rx.h>
6 #include <linux/prefetch.h>
7 #include <linux/sctp.h>
8 #include <net/mpls.h>
9 #include <net/xdp.h>
10 #include "i40e_txrx_common.h"
11 #include "i40e_trace.h"
12 #include "i40e_xsk.h"
13
14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15 /**
16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
17 * @tx_ring: Tx ring to send buffer on
18 * @fdata: Flow director filter data
19 * @add: Indicate if we are adding a rule or deleting one
20 *
21 **/
i40e_fdir(struct i40e_ring * tx_ring,struct i40e_fdir_filter * fdata,bool add)22 static void i40e_fdir(struct i40e_ring *tx_ring,
23 struct i40e_fdir_filter *fdata, bool add)
24 {
25 struct i40e_filter_program_desc *fdir_desc;
26 struct i40e_pf *pf = tx_ring->vsi->back;
27 u32 flex_ptype, dtype_cmd, vsi_id;
28 u16 i;
29
30 /* grab the next descriptor */
31 i = tx_ring->next_to_use;
32 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33
34 i++;
35 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36
37 flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
38
39 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
40 fdata->flex_off);
41
42 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
43
44 /* Use LAN VSI Id if not programmed by user */
45 vsi_id = fdata->dest_vsi ? : i40e_pf_get_main_vsi(pf)->id;
46 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK, vsi_id);
47
48 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
49
50 dtype_cmd |= add ?
51 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
52 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
53 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
54 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
55
56 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
57
58 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
59 fdata->fd_status);
60
61 if (fdata->cnt_index) {
62 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
63 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
64 fdata->cnt_index);
65 }
66
67 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
68 fdir_desc->rsvd = cpu_to_le32(0);
69 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
70 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
71 }
72
73 #define I40E_FD_CLEAN_DELAY 10
74 /**
75 * i40e_program_fdir_filter - Program a Flow Director filter
76 * @fdir_data: Packet data that will be filter parameters
77 * @raw_packet: the pre-allocated packet buffer for FDir
78 * @pf: The PF pointer
79 * @add: True for add/update, False for remove
80 **/
i40e_program_fdir_filter(struct i40e_fdir_filter * fdir_data,u8 * raw_packet,struct i40e_pf * pf,bool add)81 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
82 u8 *raw_packet, struct i40e_pf *pf,
83 bool add)
84 {
85 struct i40e_tx_buffer *tx_buf, *first;
86 struct i40e_tx_desc *tx_desc;
87 struct i40e_ring *tx_ring;
88 struct i40e_vsi *vsi;
89 struct device *dev;
90 dma_addr_t dma;
91 u32 td_cmd = 0;
92 u16 i;
93
94 /* find existing FDIR VSI */
95 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
96 if (!vsi)
97 return -ENOENT;
98
99 tx_ring = vsi->tx_rings[0];
100 dev = tx_ring->dev;
101
102 /* we need two descriptors to add/del a filter and we can wait */
103 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
104 if (!i)
105 return -EAGAIN;
106 msleep_interruptible(1);
107 }
108
109 dma = dma_map_single(dev, raw_packet,
110 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
111 if (dma_mapping_error(dev, dma))
112 goto dma_fail;
113
114 /* grab the next descriptor */
115 i = tx_ring->next_to_use;
116 first = &tx_ring->tx_bi[i];
117 i40e_fdir(tx_ring, fdir_data, add);
118
119 /* Now program a dummy descriptor */
120 i = tx_ring->next_to_use;
121 tx_desc = I40E_TX_DESC(tx_ring, i);
122 tx_buf = &tx_ring->tx_bi[i];
123
124 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
125
126 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
127
128 /* record length, and DMA address */
129 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
130 dma_unmap_addr_set(tx_buf, dma, dma);
131
132 tx_desc->buffer_addr = cpu_to_le64(dma);
133 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
134
135 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
136 tx_buf->raw_buf = (void *)raw_packet;
137
138 tx_desc->cmd_type_offset_bsz =
139 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
140
141 /* Force memory writes to complete before letting h/w
142 * know there are new descriptors to fetch.
143 */
144 wmb();
145
146 /* Mark the data descriptor to be watched */
147 first->next_to_watch = tx_desc;
148
149 writel(tx_ring->next_to_use, tx_ring->tail);
150 return 0;
151
152 dma_fail:
153 return -1;
154 }
155
156 /**
157 * i40e_create_dummy_packet - Constructs dummy packet for HW
158 * @dummy_packet: preallocated space for dummy packet
159 * @ipv4: is layer 3 packet of version 4 or 6
160 * @l4proto: next level protocol used in data portion of l3
161 * @data: filter data
162 *
163 * Returns address of layer 4 protocol dummy packet.
164 **/
i40e_create_dummy_packet(u8 * dummy_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)165 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
166 struct i40e_fdir_filter *data)
167 {
168 bool is_vlan = !!data->vlan_tag;
169 struct vlan_hdr vlan = {};
170 struct ipv6hdr ipv6 = {};
171 struct ethhdr eth = {};
172 struct iphdr ip = {};
173 u8 *tmp;
174
175 if (ipv4) {
176 eth.h_proto = cpu_to_be16(ETH_P_IP);
177 ip.protocol = l4proto;
178 ip.version = 0x4;
179 ip.ihl = 0x5;
180
181 ip.daddr = data->dst_ip;
182 ip.saddr = data->src_ip;
183 } else {
184 eth.h_proto = cpu_to_be16(ETH_P_IPV6);
185 ipv6.nexthdr = l4proto;
186 ipv6.version = 0x6;
187
188 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
189 sizeof(__be32) * 4);
190 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
191 sizeof(__be32) * 4);
192 }
193
194 if (is_vlan) {
195 vlan.h_vlan_TCI = data->vlan_tag;
196 vlan.h_vlan_encapsulated_proto = eth.h_proto;
197 eth.h_proto = data->vlan_etype;
198 }
199
200 tmp = dummy_packet;
201 memcpy(tmp, ð, sizeof(eth));
202 tmp += sizeof(eth);
203
204 if (is_vlan) {
205 memcpy(tmp, &vlan, sizeof(vlan));
206 tmp += sizeof(vlan);
207 }
208
209 if (ipv4) {
210 memcpy(tmp, &ip, sizeof(ip));
211 tmp += sizeof(ip);
212 } else {
213 memcpy(tmp, &ipv6, sizeof(ipv6));
214 tmp += sizeof(ipv6);
215 }
216
217 return tmp;
218 }
219
220 /**
221 * i40e_create_dummy_udp_packet - helper function to create UDP packet
222 * @raw_packet: preallocated space for dummy packet
223 * @ipv4: is layer 3 packet of version 4 or 6
224 * @l4proto: next level protocol used in data portion of l3
225 * @data: filter data
226 *
227 * Helper function to populate udp fields.
228 **/
i40e_create_dummy_udp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)229 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
230 struct i40e_fdir_filter *data)
231 {
232 struct udphdr *udp;
233 u8 *tmp;
234
235 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
236 udp = (struct udphdr *)(tmp);
237 udp->dest = data->dst_port;
238 udp->source = data->src_port;
239 }
240
241 /**
242 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
243 * @raw_packet: preallocated space for dummy packet
244 * @ipv4: is layer 3 packet of version 4 or 6
245 * @l4proto: next level protocol used in data portion of l3
246 * @data: filter data
247 *
248 * Helper function to populate tcp fields.
249 **/
i40e_create_dummy_tcp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)250 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
251 struct i40e_fdir_filter *data)
252 {
253 struct tcphdr *tcp;
254 u8 *tmp;
255 /* Dummy tcp packet */
256 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
257 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
258
259 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
260
261 tcp = (struct tcphdr *)tmp;
262 memcpy(tcp, tcp_packet, sizeof(tcp_packet));
263 tcp->dest = data->dst_port;
264 tcp->source = data->src_port;
265 }
266
267 /**
268 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
269 * @raw_packet: preallocated space for dummy packet
270 * @ipv4: is layer 3 packet of version 4 or 6
271 * @l4proto: next level protocol used in data portion of l3
272 * @data: filter data
273 *
274 * Helper function to populate sctp fields.
275 **/
i40e_create_dummy_sctp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)276 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
277 u8 l4proto,
278 struct i40e_fdir_filter *data)
279 {
280 struct sctphdr *sctp;
281 u8 *tmp;
282
283 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
284
285 sctp = (struct sctphdr *)tmp;
286 sctp->dest = data->dst_port;
287 sctp->source = data->src_port;
288 }
289
290 /**
291 * i40e_prepare_fdir_filter - Prepare and program fdir filter
292 * @pf: physical function to attach filter to
293 * @fd_data: filter data
294 * @add: add or delete filter
295 * @packet_addr: address of dummy packet, used in filtering
296 * @payload_offset: offset from dummy packet address to user defined data
297 * @pctype: Packet type for which filter is used
298 *
299 * Helper function to offset data of dummy packet, program it and
300 * handle errors.
301 **/
i40e_prepare_fdir_filter(struct i40e_pf * pf,struct i40e_fdir_filter * fd_data,bool add,char * packet_addr,int payload_offset,u8 pctype)302 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
303 struct i40e_fdir_filter *fd_data,
304 bool add, char *packet_addr,
305 int payload_offset, u8 pctype)
306 {
307 int ret;
308
309 if (fd_data->flex_filter) {
310 u8 *payload;
311 __be16 pattern = fd_data->flex_word;
312 u16 off = fd_data->flex_offset;
313
314 payload = packet_addr + payload_offset;
315
316 /* If user provided vlan, offset payload by vlan header length */
317 if (!!fd_data->vlan_tag)
318 payload += VLAN_HLEN;
319
320 *((__force __be16 *)(payload + off)) = pattern;
321 }
322
323 fd_data->pctype = pctype;
324 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
325 if (ret) {
326 dev_info(&pf->pdev->dev,
327 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
328 fd_data->pctype, fd_data->fd_id, ret);
329 /* Free the packet buffer since it wasn't added to the ring */
330 return -EOPNOTSUPP;
331 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
332 if (add)
333 dev_info(&pf->pdev->dev,
334 "Filter OK for PCTYPE %d loc = %d\n",
335 fd_data->pctype, fd_data->fd_id);
336 else
337 dev_info(&pf->pdev->dev,
338 "Filter deleted for PCTYPE %d loc = %d\n",
339 fd_data->pctype, fd_data->fd_id);
340 }
341
342 return ret;
343 }
344
345 /**
346 * i40e_change_filter_num - Prepare and program fdir filter
347 * @ipv4: is layer 3 packet of version 4 or 6
348 * @add: add or delete filter
349 * @ipv4_filter_num: field to update
350 * @ipv6_filter_num: field to update
351 *
352 * Update filter number field for pf.
353 **/
i40e_change_filter_num(bool ipv4,bool add,u16 * ipv4_filter_num,u16 * ipv6_filter_num)354 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
355 u16 *ipv6_filter_num)
356 {
357 if (add) {
358 if (ipv4)
359 (*ipv4_filter_num)++;
360 else
361 (*ipv6_filter_num)++;
362 } else {
363 if (ipv4)
364 (*ipv4_filter_num)--;
365 else
366 (*ipv6_filter_num)--;
367 }
368 }
369
370 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
371 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62
372 /**
373 * i40e_add_del_fdir_udp - Add/Remove UDP filters
374 * @vsi: pointer to the targeted VSI
375 * @fd_data: the flow director data required for the FDir descriptor
376 * @add: true adds a filter, false removes it
377 * @ipv4: true is v4, false is v6
378 *
379 * Returns 0 if the filters were successfully added or removed
380 **/
i40e_add_del_fdir_udp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)381 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
382 struct i40e_fdir_filter *fd_data,
383 bool add,
384 bool ipv4)
385 {
386 struct i40e_pf *pf = vsi->back;
387 u8 *raw_packet;
388 int ret;
389
390 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
391 if (!raw_packet)
392 return -ENOMEM;
393
394 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
395
396 if (ipv4)
397 ret = i40e_prepare_fdir_filter
398 (pf, fd_data, add, raw_packet,
399 I40E_UDPIP_DUMMY_PACKET_LEN,
400 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
401 else
402 ret = i40e_prepare_fdir_filter
403 (pf, fd_data, add, raw_packet,
404 I40E_UDPIP6_DUMMY_PACKET_LEN,
405 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
406
407 if (ret) {
408 kfree(raw_packet);
409 return ret;
410 }
411
412 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
413 &pf->fd_udp6_filter_cnt);
414
415 return 0;
416 }
417
418 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
419 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74
420 /**
421 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
422 * @vsi: pointer to the targeted VSI
423 * @fd_data: the flow director data required for the FDir descriptor
424 * @add: true adds a filter, false removes it
425 * @ipv4: true is v4, false is v6
426 *
427 * Returns 0 if the filters were successfully added or removed
428 **/
i40e_add_del_fdir_tcp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)429 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
430 struct i40e_fdir_filter *fd_data,
431 bool add,
432 bool ipv4)
433 {
434 struct i40e_pf *pf = vsi->back;
435 u8 *raw_packet;
436 int ret;
437
438 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
439 if (!raw_packet)
440 return -ENOMEM;
441
442 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
443 if (ipv4)
444 ret = i40e_prepare_fdir_filter
445 (pf, fd_data, add, raw_packet,
446 I40E_TCPIP_DUMMY_PACKET_LEN,
447 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
448 else
449 ret = i40e_prepare_fdir_filter
450 (pf, fd_data, add, raw_packet,
451 I40E_TCPIP6_DUMMY_PACKET_LEN,
452 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
453
454 if (ret) {
455 kfree(raw_packet);
456 return ret;
457 }
458
459 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
460 &pf->fd_tcp6_filter_cnt);
461
462 if (add) {
463 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
464 I40E_DEBUG_FD & pf->hw.debug_mask)
465 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
466 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
467 }
468 return 0;
469 }
470
471 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
472 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
473 /**
474 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
475 * a specific flow spec
476 * @vsi: pointer to the targeted VSI
477 * @fd_data: the flow director data required for the FDir descriptor
478 * @add: true adds a filter, false removes it
479 * @ipv4: true is v4, false is v6
480 *
481 * Returns 0 if the filters were successfully added or removed
482 **/
i40e_add_del_fdir_sctp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)483 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
484 struct i40e_fdir_filter *fd_data,
485 bool add,
486 bool ipv4)
487 {
488 struct i40e_pf *pf = vsi->back;
489 u8 *raw_packet;
490 int ret;
491
492 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
493 if (!raw_packet)
494 return -ENOMEM;
495
496 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
497
498 if (ipv4)
499 ret = i40e_prepare_fdir_filter
500 (pf, fd_data, add, raw_packet,
501 I40E_SCTPIP_DUMMY_PACKET_LEN,
502 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
503 else
504 ret = i40e_prepare_fdir_filter
505 (pf, fd_data, add, raw_packet,
506 I40E_SCTPIP6_DUMMY_PACKET_LEN,
507 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
508
509 if (ret) {
510 kfree(raw_packet);
511 return ret;
512 }
513
514 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
515 &pf->fd_sctp6_filter_cnt);
516
517 return 0;
518 }
519
520 #define I40E_IP_DUMMY_PACKET_LEN 34
521 #define I40E_IP6_DUMMY_PACKET_LEN 54
522 /**
523 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
524 * a specific flow spec
525 * @vsi: pointer to the targeted VSI
526 * @fd_data: the flow director data required for the FDir descriptor
527 * @add: true adds a filter, false removes it
528 * @ipv4: true is v4, false is v6
529 *
530 * Returns 0 if the filters were successfully added or removed
531 **/
i40e_add_del_fdir_ip(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)532 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
533 struct i40e_fdir_filter *fd_data,
534 bool add,
535 bool ipv4)
536 {
537 struct i40e_pf *pf = vsi->back;
538 int payload_offset;
539 u8 *raw_packet;
540 int iter_start;
541 int iter_end;
542 int ret;
543 int i;
544
545 if (ipv4) {
546 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
547 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
548 } else {
549 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
550 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
551 }
552
553 for (i = iter_start; i <= iter_end; i++) {
554 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
555 if (!raw_packet)
556 return -ENOMEM;
557
558 /* IPv6 no header option differs from IPv4 */
559 (void)i40e_create_dummy_packet
560 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
561 fd_data);
562
563 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
564 I40E_IP6_DUMMY_PACKET_LEN;
565 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
566 payload_offset, i);
567 if (ret)
568 goto err;
569 }
570
571 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
572 &pf->fd_ip6_filter_cnt);
573
574 return 0;
575 err:
576 kfree(raw_packet);
577 return ret;
578 }
579
580 /**
581 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
582 * @vsi: pointer to the targeted VSI
583 * @input: filter to add or delete
584 * @add: true adds a filter, false removes it
585 *
586 **/
i40e_add_del_fdir(struct i40e_vsi * vsi,struct i40e_fdir_filter * input,bool add)587 int i40e_add_del_fdir(struct i40e_vsi *vsi,
588 struct i40e_fdir_filter *input, bool add)
589 {
590 enum ip_ver { ipv6 = 0, ipv4 = 1 };
591 struct i40e_pf *pf = vsi->back;
592 int ret;
593
594 switch (input->flow_type & ~FLOW_EXT) {
595 case TCP_V4_FLOW:
596 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
597 break;
598 case UDP_V4_FLOW:
599 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
600 break;
601 case SCTP_V4_FLOW:
602 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
603 break;
604 case TCP_V6_FLOW:
605 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
606 break;
607 case UDP_V6_FLOW:
608 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
609 break;
610 case SCTP_V6_FLOW:
611 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
612 break;
613 case IP_USER_FLOW:
614 switch (input->ipl4_proto) {
615 case IPPROTO_TCP:
616 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
617 break;
618 case IPPROTO_UDP:
619 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
620 break;
621 case IPPROTO_SCTP:
622 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
623 break;
624 case IPPROTO_IP:
625 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
626 break;
627 default:
628 /* We cannot support masking based on protocol */
629 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
630 input->ipl4_proto);
631 return -EINVAL;
632 }
633 break;
634 case IPV6_USER_FLOW:
635 switch (input->ipl4_proto) {
636 case IPPROTO_TCP:
637 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
638 break;
639 case IPPROTO_UDP:
640 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
641 break;
642 case IPPROTO_SCTP:
643 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
644 break;
645 case IPPROTO_IP:
646 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
647 break;
648 default:
649 /* We cannot support masking based on protocol */
650 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
651 input->ipl4_proto);
652 return -EINVAL;
653 }
654 break;
655 default:
656 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
657 input->flow_type);
658 return -EINVAL;
659 }
660
661 /* The buffer allocated here will be normally be freed by
662 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
663 * completion. In the event of an error adding the buffer to the FDIR
664 * ring, it will immediately be freed. It may also be freed by
665 * i40e_clean_tx_ring() when closing the VSI.
666 */
667 return ret;
668 }
669
670 /**
671 * i40e_fd_handle_status - check the Programming Status for FD
672 * @rx_ring: the Rx ring for this descriptor
673 * @qword0_raw: qword0
674 * @qword1: qword1 after le_to_cpu
675 * @prog_id: the id originally used for programming
676 *
677 * This is used to verify if the FD programming or invalidation
678 * requested by SW to the HW is successful or not and take actions accordingly.
679 **/
i40e_fd_handle_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1,u8 prog_id)680 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
681 u64 qword1, u8 prog_id)
682 {
683 struct i40e_pf *pf = rx_ring->vsi->back;
684 struct pci_dev *pdev = pf->pdev;
685 struct i40e_16b_rx_wb_qw0 *qw0;
686 u32 fcnt_prog, fcnt_avail;
687 u32 error;
688
689 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
690 error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
691
692 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
693 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
694 if (qw0->hi_dword.fd_id != 0 ||
695 (I40E_DEBUG_FD & pf->hw.debug_mask))
696 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
697 pf->fd_inv);
698
699 /* Check if the programming error is for ATR.
700 * If so, auto disable ATR and set a state for
701 * flush in progress. Next time we come here if flush is in
702 * progress do nothing, once flush is complete the state will
703 * be cleared.
704 */
705 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
706 return;
707
708 pf->fd_add_err++;
709 /* store the current atr filter count */
710 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
711
712 if (qw0->hi_dword.fd_id == 0 &&
713 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
714 /* These set_bit() calls aren't atomic with the
715 * test_bit() here, but worse case we potentially
716 * disable ATR and queue a flush right after SB
717 * support is re-enabled. That shouldn't cause an
718 * issue in practice
719 */
720 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
721 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
722 }
723
724 /* filter programming failed most likely due to table full */
725 fcnt_prog = i40e_get_global_fd_count(pf);
726 fcnt_avail = pf->fdir_pf_filter_count;
727 /* If ATR is running fcnt_prog can quickly change,
728 * if we are very close to full, it makes sense to disable
729 * FD ATR/SB and then re-enable it when there is room.
730 */
731 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
732 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
733 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
734 pf->state))
735 if (I40E_DEBUG_FD & pf->hw.debug_mask)
736 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
737 }
738 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
739 if (I40E_DEBUG_FD & pf->hw.debug_mask)
740 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
741 qw0->hi_dword.fd_id);
742 }
743 }
744
745 /**
746 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
747 * @ring: the ring that owns the buffer
748 * @tx_buffer: the buffer to free
749 **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)750 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
751 struct i40e_tx_buffer *tx_buffer)
752 {
753 if (tx_buffer->skb) {
754 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
755 kfree(tx_buffer->raw_buf);
756 else if (ring_is_xdp(ring))
757 xdp_return_frame(tx_buffer->xdpf);
758 else
759 dev_kfree_skb_any(tx_buffer->skb);
760 if (dma_unmap_len(tx_buffer, len))
761 dma_unmap_single(ring->dev,
762 dma_unmap_addr(tx_buffer, dma),
763 dma_unmap_len(tx_buffer, len),
764 DMA_TO_DEVICE);
765 } else if (dma_unmap_len(tx_buffer, len)) {
766 dma_unmap_page(ring->dev,
767 dma_unmap_addr(tx_buffer, dma),
768 dma_unmap_len(tx_buffer, len),
769 DMA_TO_DEVICE);
770 }
771
772 tx_buffer->next_to_watch = NULL;
773 tx_buffer->skb = NULL;
774 dma_unmap_len_set(tx_buffer, len, 0);
775 /* tx_buffer must be completely set up in the transmit path */
776 }
777
778 /**
779 * i40e_clean_tx_ring - Free any empty Tx buffers
780 * @tx_ring: ring to be cleaned
781 **/
i40e_clean_tx_ring(struct i40e_ring * tx_ring)782 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
783 {
784 unsigned long bi_size;
785 u16 i;
786
787 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
788 i40e_xsk_clean_tx_ring(tx_ring);
789 } else {
790 /* ring already cleared, nothing to do */
791 if (!tx_ring->tx_bi)
792 return;
793
794 /* Free all the Tx ring sk_buffs */
795 for (i = 0; i < tx_ring->count; i++)
796 i40e_unmap_and_free_tx_resource(tx_ring,
797 &tx_ring->tx_bi[i]);
798 }
799
800 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
801 memset(tx_ring->tx_bi, 0, bi_size);
802
803 /* Zero out the descriptor ring */
804 memset(tx_ring->desc, 0, tx_ring->size);
805
806 tx_ring->next_to_use = 0;
807 tx_ring->next_to_clean = 0;
808
809 if (!tx_ring->netdev)
810 return;
811
812 /* cleanup Tx queue statistics */
813 netdev_tx_reset_queue(txring_txq(tx_ring));
814 }
815
816 /**
817 * i40e_free_tx_resources - Free Tx resources per queue
818 * @tx_ring: Tx descriptor ring for a specific queue
819 *
820 * Free all transmit software resources
821 **/
i40e_free_tx_resources(struct i40e_ring * tx_ring)822 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
823 {
824 i40e_clean_tx_ring(tx_ring);
825 kfree(tx_ring->tx_bi);
826 tx_ring->tx_bi = NULL;
827
828 if (tx_ring->desc) {
829 dma_free_coherent(tx_ring->dev, tx_ring->size,
830 tx_ring->desc, tx_ring->dma);
831 tx_ring->desc = NULL;
832 }
833 }
834
835 /**
836 * i40e_get_tx_pending - how many tx descriptors not processed
837 * @ring: the ring of descriptors
838 * @in_sw: use SW variables
839 *
840 * Since there is no access to the ring head register
841 * in XL710, we need to use our local copies
842 **/
i40e_get_tx_pending(struct i40e_ring * ring,bool in_sw)843 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
844 {
845 u32 head, tail;
846
847 if (!in_sw) {
848 head = i40e_get_head(ring);
849 tail = readl(ring->tail);
850 } else {
851 head = ring->next_to_clean;
852 tail = ring->next_to_use;
853 }
854
855 if (head != tail)
856 return (head < tail) ?
857 tail - head : (tail + ring->count - head);
858
859 return 0;
860 }
861
862 /**
863 * i40e_detect_recover_hung - Function to detect and recover hung_queues
864 * @pf: pointer to PF struct
865 *
866 * LAN VSI has netdev and netdev has TX queues. This function is to check
867 * each of those TX queues if they are hung, trigger recovery by issuing
868 * SW interrupt.
869 **/
i40e_detect_recover_hung(struct i40e_pf * pf)870 void i40e_detect_recover_hung(struct i40e_pf *pf)
871 {
872 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
873 struct i40e_ring *tx_ring = NULL;
874 struct net_device *netdev;
875 unsigned int i;
876 int packets;
877
878 if (!vsi)
879 return;
880
881 if (test_bit(__I40E_VSI_DOWN, vsi->state))
882 return;
883
884 netdev = vsi->netdev;
885 if (!netdev)
886 return;
887
888 if (!netif_carrier_ok(netdev))
889 return;
890
891 for (i = 0; i < vsi->num_queue_pairs; i++) {
892 tx_ring = vsi->tx_rings[i];
893 if (tx_ring && tx_ring->desc) {
894 /* If packet counter has not changed the queue is
895 * likely stalled, so force an interrupt for this
896 * queue.
897 *
898 * prev_pkt_ctr would be negative if there was no
899 * pending work.
900 */
901 packets = tx_ring->stats.packets & INT_MAX;
902 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
903 i40e_force_wb(vsi, tx_ring->q_vector);
904 continue;
905 }
906
907 /* Memory barrier between read of packet count and call
908 * to i40e_get_tx_pending()
909 */
910 smp_rmb();
911 tx_ring->tx_stats.prev_pkt_ctr =
912 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
913 }
914 }
915 }
916
917 /**
918 * i40e_clean_tx_irq - Reclaim resources after transmit completes
919 * @vsi: the VSI we care about
920 * @tx_ring: Tx ring to clean
921 * @napi_budget: Used to determine if we are in netpoll
922 * @tx_cleaned: Out parameter set to the number of TXes cleaned
923 *
924 * Returns true if there's any budget left (e.g. the clean is finished)
925 **/
i40e_clean_tx_irq(struct i40e_vsi * vsi,struct i40e_ring * tx_ring,int napi_budget,unsigned int * tx_cleaned)926 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
927 struct i40e_ring *tx_ring, int napi_budget,
928 unsigned int *tx_cleaned)
929 {
930 int i = tx_ring->next_to_clean;
931 struct i40e_tx_buffer *tx_buf;
932 struct i40e_tx_desc *tx_head;
933 struct i40e_tx_desc *tx_desc;
934 unsigned int total_bytes = 0, total_packets = 0;
935 unsigned int budget = vsi->work_limit;
936
937 tx_buf = &tx_ring->tx_bi[i];
938 tx_desc = I40E_TX_DESC(tx_ring, i);
939 i -= tx_ring->count;
940
941 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
942
943 do {
944 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
945
946 /* if next_to_watch is not set then there is no work pending */
947 if (!eop_desc)
948 break;
949
950 /* prevent any other reads prior to eop_desc */
951 smp_rmb();
952
953 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
954 /* we have caught up to head, no work left to do */
955 if (tx_head == tx_desc)
956 break;
957
958 /* clear next_to_watch to prevent false hangs */
959 tx_buf->next_to_watch = NULL;
960
961 /* update the statistics for this packet */
962 total_bytes += tx_buf->bytecount;
963 total_packets += tx_buf->gso_segs;
964
965 /* free the skb/XDP data */
966 if (ring_is_xdp(tx_ring))
967 xdp_return_frame(tx_buf->xdpf);
968 else
969 napi_consume_skb(tx_buf->skb, napi_budget);
970
971 /* unmap skb header data */
972 dma_unmap_single(tx_ring->dev,
973 dma_unmap_addr(tx_buf, dma),
974 dma_unmap_len(tx_buf, len),
975 DMA_TO_DEVICE);
976
977 /* clear tx_buffer data */
978 tx_buf->skb = NULL;
979 dma_unmap_len_set(tx_buf, len, 0);
980
981 /* unmap remaining buffers */
982 while (tx_desc != eop_desc) {
983 i40e_trace(clean_tx_irq_unmap,
984 tx_ring, tx_desc, tx_buf);
985
986 tx_buf++;
987 tx_desc++;
988 i++;
989 if (unlikely(!i)) {
990 i -= tx_ring->count;
991 tx_buf = tx_ring->tx_bi;
992 tx_desc = I40E_TX_DESC(tx_ring, 0);
993 }
994
995 /* unmap any remaining paged data */
996 if (dma_unmap_len(tx_buf, len)) {
997 dma_unmap_page(tx_ring->dev,
998 dma_unmap_addr(tx_buf, dma),
999 dma_unmap_len(tx_buf, len),
1000 DMA_TO_DEVICE);
1001 dma_unmap_len_set(tx_buf, len, 0);
1002 }
1003 }
1004
1005 /* move us one more past the eop_desc for start of next pkt */
1006 tx_buf++;
1007 tx_desc++;
1008 i++;
1009 if (unlikely(!i)) {
1010 i -= tx_ring->count;
1011 tx_buf = tx_ring->tx_bi;
1012 tx_desc = I40E_TX_DESC(tx_ring, 0);
1013 }
1014
1015 prefetch(tx_desc);
1016
1017 /* update budget accounting */
1018 budget--;
1019 } while (likely(budget));
1020
1021 i += tx_ring->count;
1022 tx_ring->next_to_clean = i;
1023 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1024 i40e_arm_wb(tx_ring, vsi, budget);
1025
1026 if (ring_is_xdp(tx_ring))
1027 return !!budget;
1028
1029 /* notify netdev of completed buffers */
1030 netdev_tx_completed_queue(txring_txq(tx_ring),
1031 total_packets, total_bytes);
1032
1033 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1034 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1035 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1036 /* Make sure that anybody stopping the queue after this
1037 * sees the new next_to_clean.
1038 */
1039 smp_mb();
1040 if (__netif_subqueue_stopped(tx_ring->netdev,
1041 tx_ring->queue_index) &&
1042 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1043 netif_wake_subqueue(tx_ring->netdev,
1044 tx_ring->queue_index);
1045 ++tx_ring->tx_stats.restart_queue;
1046 }
1047 }
1048
1049 *tx_cleaned = total_packets;
1050 return !!budget;
1051 }
1052
1053 /**
1054 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1055 * @vsi: the VSI we care about
1056 * @q_vector: the vector on which to enable writeback
1057 *
1058 **/
i40e_enable_wb_on_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1059 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1060 struct i40e_q_vector *q_vector)
1061 {
1062 u16 flags = q_vector->tx.ring[0].flags;
1063 u32 val;
1064
1065 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1066 return;
1067
1068 if (q_vector->arm_wb_state)
1069 return;
1070
1071 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1072 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1073 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1074
1075 wr32(&vsi->back->hw,
1076 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1077 val);
1078 } else {
1079 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1080 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1081
1082 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1083 }
1084 q_vector->arm_wb_state = true;
1085 }
1086
1087 /**
1088 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1089 * @vsi: the VSI we care about
1090 * @q_vector: the vector on which to force writeback
1091 *
1092 **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1093 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1094 {
1095 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1096 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1097 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1098 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1099 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1100 /* allow 00 to be written to the index */
1101
1102 wr32(&vsi->back->hw,
1103 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1104 } else {
1105 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1106 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1107 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1108 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1109 /* allow 00 to be written to the index */
1110
1111 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1112 }
1113 }
1114
i40e_container_is_rx(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1115 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1116 struct i40e_ring_container *rc)
1117 {
1118 return &q_vector->rx == rc;
1119 }
1120
i40e_itr_divisor(struct i40e_q_vector * q_vector)1121 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1122 {
1123 unsigned int divisor;
1124
1125 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1126 case I40E_LINK_SPEED_40GB:
1127 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1128 break;
1129 case I40E_LINK_SPEED_25GB:
1130 case I40E_LINK_SPEED_20GB:
1131 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1132 break;
1133 default:
1134 case I40E_LINK_SPEED_10GB:
1135 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1136 break;
1137 case I40E_LINK_SPEED_1GB:
1138 case I40E_LINK_SPEED_100MB:
1139 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1140 break;
1141 }
1142
1143 return divisor;
1144 }
1145
1146 /**
1147 * i40e_update_itr - update the dynamic ITR value based on statistics
1148 * @q_vector: structure containing interrupt and ring information
1149 * @rc: structure containing ring performance data
1150 *
1151 * Stores a new ITR value based on packets and byte
1152 * counts during the last interrupt. The advantage of per interrupt
1153 * computation is faster updates and more accurate ITR for the current
1154 * traffic pattern. Constants in this function were computed
1155 * based on theoretical maximum wire speed and thresholds were set based
1156 * on testing data as well as attempting to minimize response time
1157 * while increasing bulk throughput.
1158 **/
i40e_update_itr(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1159 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1160 struct i40e_ring_container *rc)
1161 {
1162 unsigned int avg_wire_size, packets, bytes, itr;
1163 unsigned long next_update = jiffies;
1164
1165 /* If we don't have any rings just leave ourselves set for maximum
1166 * possible latency so we take ourselves out of the equation.
1167 */
1168 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1169 return;
1170
1171 /* For Rx we want to push the delay up and default to low latency.
1172 * for Tx we want to pull the delay down and default to high latency.
1173 */
1174 itr = i40e_container_is_rx(q_vector, rc) ?
1175 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1176 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1177
1178 /* If we didn't update within up to 1 - 2 jiffies we can assume
1179 * that either packets are coming in so slow there hasn't been
1180 * any work, or that there is so much work that NAPI is dealing
1181 * with interrupt moderation and we don't need to do anything.
1182 */
1183 if (time_after(next_update, rc->next_update))
1184 goto clear_counts;
1185
1186 /* If itr_countdown is set it means we programmed an ITR within
1187 * the last 4 interrupt cycles. This has a side effect of us
1188 * potentially firing an early interrupt. In order to work around
1189 * this we need to throw out any data received for a few
1190 * interrupts following the update.
1191 */
1192 if (q_vector->itr_countdown) {
1193 itr = rc->target_itr;
1194 goto clear_counts;
1195 }
1196
1197 packets = rc->total_packets;
1198 bytes = rc->total_bytes;
1199
1200 if (i40e_container_is_rx(q_vector, rc)) {
1201 /* If Rx there are 1 to 4 packets and bytes are less than
1202 * 9000 assume insufficient data to use bulk rate limiting
1203 * approach unless Tx is already in bulk rate limiting. We
1204 * are likely latency driven.
1205 */
1206 if (packets && packets < 4 && bytes < 9000 &&
1207 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1208 itr = I40E_ITR_ADAPTIVE_LATENCY;
1209 goto adjust_by_size;
1210 }
1211 } else if (packets < 4) {
1212 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1213 * bulk mode and we are receiving 4 or fewer packets just
1214 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1215 * that the Rx can relax.
1216 */
1217 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1218 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1219 I40E_ITR_ADAPTIVE_MAX_USECS)
1220 goto clear_counts;
1221 } else if (packets > 32) {
1222 /* If we have processed over 32 packets in a single interrupt
1223 * for Tx assume we need to switch over to "bulk" mode.
1224 */
1225 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1226 }
1227
1228 /* We have no packets to actually measure against. This means
1229 * either one of the other queues on this vector is active or
1230 * we are a Tx queue doing TSO with too high of an interrupt rate.
1231 *
1232 * Between 4 and 56 we can assume that our current interrupt delay
1233 * is only slightly too low. As such we should increase it by a small
1234 * fixed amount.
1235 */
1236 if (packets < 56) {
1237 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1238 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1239 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1240 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1241 }
1242 goto clear_counts;
1243 }
1244
1245 if (packets <= 256) {
1246 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1247 itr &= I40E_ITR_MASK;
1248
1249 /* Between 56 and 112 is our "goldilocks" zone where we are
1250 * working out "just right". Just report that our current
1251 * ITR is good for us.
1252 */
1253 if (packets <= 112)
1254 goto clear_counts;
1255
1256 /* If packet count is 128 or greater we are likely looking
1257 * at a slight overrun of the delay we want. Try halving
1258 * our delay to see if that will cut the number of packets
1259 * in half per interrupt.
1260 */
1261 itr /= 2;
1262 itr &= I40E_ITR_MASK;
1263 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1264 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1265
1266 goto clear_counts;
1267 }
1268
1269 /* The paths below assume we are dealing with a bulk ITR since
1270 * number of packets is greater than 256. We are just going to have
1271 * to compute a value and try to bring the count under control,
1272 * though for smaller packet sizes there isn't much we can do as
1273 * NAPI polling will likely be kicking in sooner rather than later.
1274 */
1275 itr = I40E_ITR_ADAPTIVE_BULK;
1276
1277 adjust_by_size:
1278 /* If packet counts are 256 or greater we can assume we have a gross
1279 * overestimation of what the rate should be. Instead of trying to fine
1280 * tune it just use the formula below to try and dial in an exact value
1281 * give the current packet size of the frame.
1282 */
1283 avg_wire_size = bytes / packets;
1284
1285 /* The following is a crude approximation of:
1286 * wmem_default / (size + overhead) = desired_pkts_per_int
1287 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1288 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1289 *
1290 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1291 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1292 * formula down to
1293 *
1294 * (170 * (size + 24)) / (size + 640) = ITR
1295 *
1296 * We first do some math on the packet size and then finally bitshift
1297 * by 8 after rounding up. We also have to account for PCIe link speed
1298 * difference as ITR scales based on this.
1299 */
1300 if (avg_wire_size <= 60) {
1301 /* Start at 250k ints/sec */
1302 avg_wire_size = 4096;
1303 } else if (avg_wire_size <= 380) {
1304 /* 250K ints/sec to 60K ints/sec */
1305 avg_wire_size *= 40;
1306 avg_wire_size += 1696;
1307 } else if (avg_wire_size <= 1084) {
1308 /* 60K ints/sec to 36K ints/sec */
1309 avg_wire_size *= 15;
1310 avg_wire_size += 11452;
1311 } else if (avg_wire_size <= 1980) {
1312 /* 36K ints/sec to 30K ints/sec */
1313 avg_wire_size *= 5;
1314 avg_wire_size += 22420;
1315 } else {
1316 /* plateau at a limit of 30K ints/sec */
1317 avg_wire_size = 32256;
1318 }
1319
1320 /* If we are in low latency mode halve our delay which doubles the
1321 * rate to somewhere between 100K to 16K ints/sec
1322 */
1323 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1324 avg_wire_size /= 2;
1325
1326 /* Resultant value is 256 times larger than it needs to be. This
1327 * gives us room to adjust the value as needed to either increase
1328 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1329 *
1330 * Use addition as we have already recorded the new latency flag
1331 * for the ITR value.
1332 */
1333 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1334 I40E_ITR_ADAPTIVE_MIN_INC;
1335
1336 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1337 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1338 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1339 }
1340
1341 clear_counts:
1342 /* write back value */
1343 rc->target_itr = itr;
1344
1345 /* next update should occur within next jiffy */
1346 rc->next_update = next_update + 1;
1347
1348 rc->total_bytes = 0;
1349 rc->total_packets = 0;
1350 }
1351
i40e_rx_bi(struct i40e_ring * rx_ring,u32 idx)1352 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1353 {
1354 return &rx_ring->rx_bi[idx];
1355 }
1356
1357 /**
1358 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1359 * @rx_ring: rx descriptor ring to store buffers on
1360 * @old_buff: donor buffer to have page reused
1361 *
1362 * Synchronizes page for reuse by the adapter
1363 **/
i40e_reuse_rx_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * old_buff)1364 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1365 struct i40e_rx_buffer *old_buff)
1366 {
1367 struct i40e_rx_buffer *new_buff;
1368 u16 nta = rx_ring->next_to_alloc;
1369
1370 new_buff = i40e_rx_bi(rx_ring, nta);
1371
1372 /* update, and store next to alloc */
1373 nta++;
1374 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1375
1376 /* transfer page from old buffer to new buffer */
1377 new_buff->dma = old_buff->dma;
1378 new_buff->page = old_buff->page;
1379 new_buff->page_offset = old_buff->page_offset;
1380 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1381
1382 /* clear contents of buffer_info */
1383 old_buff->page = NULL;
1384 }
1385
1386 /**
1387 * i40e_clean_programming_status - clean the programming status descriptor
1388 * @rx_ring: the rx ring that has this descriptor
1389 * @qword0_raw: qword0
1390 * @qword1: qword1 representing status_error_len in CPU ordering
1391 *
1392 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1393 * status being successful or not and take actions accordingly. FCoE should
1394 * handle its context/filter programming/invalidation status and take actions.
1395 *
1396 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1397 **/
i40e_clean_programming_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1)1398 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1399 u64 qword1)
1400 {
1401 u8 id;
1402
1403 id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
1404
1405 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1406 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1407 }
1408
1409 /**
1410 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1411 * @tx_ring: the tx ring to set up
1412 *
1413 * Return 0 on success, negative on error
1414 **/
i40e_setup_tx_descriptors(struct i40e_ring * tx_ring)1415 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1416 {
1417 struct device *dev = tx_ring->dev;
1418 int bi_size;
1419
1420 if (!dev)
1421 return -ENOMEM;
1422
1423 /* warn if we are about to overwrite the pointer */
1424 WARN_ON(tx_ring->tx_bi);
1425 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1426 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1427 if (!tx_ring->tx_bi)
1428 goto err;
1429
1430 u64_stats_init(&tx_ring->syncp);
1431
1432 /* round up to nearest 4K */
1433 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1434 /* add u32 for head writeback, align after this takes care of
1435 * guaranteeing this is at least one cache line in size
1436 */
1437 tx_ring->size += sizeof(u32);
1438 tx_ring->size = ALIGN(tx_ring->size, 4096);
1439 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1440 &tx_ring->dma, GFP_KERNEL);
1441 if (!tx_ring->desc) {
1442 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1443 tx_ring->size);
1444 goto err;
1445 }
1446
1447 tx_ring->next_to_use = 0;
1448 tx_ring->next_to_clean = 0;
1449 tx_ring->tx_stats.prev_pkt_ctr = -1;
1450 return 0;
1451
1452 err:
1453 kfree(tx_ring->tx_bi);
1454 tx_ring->tx_bi = NULL;
1455 return -ENOMEM;
1456 }
1457
i40e_clear_rx_bi(struct i40e_ring * rx_ring)1458 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1459 {
1460 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1461 }
1462
1463 /**
1464 * i40e_clean_rx_ring - Free Rx buffers
1465 * @rx_ring: ring to be cleaned
1466 **/
i40e_clean_rx_ring(struct i40e_ring * rx_ring)1467 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1468 {
1469 u16 i;
1470
1471 /* ring already cleared, nothing to do */
1472 if (!rx_ring->rx_bi)
1473 return;
1474
1475 if (rx_ring->xsk_pool) {
1476 i40e_xsk_clean_rx_ring(rx_ring);
1477 goto skip_free;
1478 }
1479
1480 /* Free all the Rx ring sk_buffs */
1481 for (i = 0; i < rx_ring->count; i++) {
1482 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1483
1484 if (!rx_bi->page)
1485 continue;
1486
1487 /* Invalidate cache lines that may have been written to by
1488 * device so that we avoid corrupting memory.
1489 */
1490 dma_sync_single_range_for_cpu(rx_ring->dev,
1491 rx_bi->dma,
1492 rx_bi->page_offset,
1493 rx_ring->rx_buf_len,
1494 DMA_FROM_DEVICE);
1495
1496 /* free resources associated with mapping */
1497 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1498 i40e_rx_pg_size(rx_ring),
1499 DMA_FROM_DEVICE,
1500 I40E_RX_DMA_ATTR);
1501
1502 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1503
1504 rx_bi->page = NULL;
1505 rx_bi->page_offset = 0;
1506 }
1507
1508 skip_free:
1509 if (rx_ring->xsk_pool)
1510 i40e_clear_rx_bi_zc(rx_ring);
1511 else
1512 i40e_clear_rx_bi(rx_ring);
1513
1514 /* Zero out the descriptor ring */
1515 memset(rx_ring->desc, 0, rx_ring->size);
1516
1517 rx_ring->next_to_alloc = 0;
1518 rx_ring->next_to_clean = 0;
1519 rx_ring->next_to_process = 0;
1520 rx_ring->next_to_use = 0;
1521 }
1522
1523 /**
1524 * i40e_free_rx_resources - Free Rx resources
1525 * @rx_ring: ring to clean the resources from
1526 *
1527 * Free all receive software resources
1528 **/
i40e_free_rx_resources(struct i40e_ring * rx_ring)1529 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1530 {
1531 i40e_clean_rx_ring(rx_ring);
1532 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1533 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1534 rx_ring->xdp_prog = NULL;
1535 kfree(rx_ring->rx_bi);
1536 rx_ring->rx_bi = NULL;
1537
1538 if (rx_ring->desc) {
1539 dma_free_coherent(rx_ring->dev, rx_ring->size,
1540 rx_ring->desc, rx_ring->dma);
1541 rx_ring->desc = NULL;
1542 }
1543 }
1544
1545 /**
1546 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1547 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1548 *
1549 * Returns 0 on success, negative on failure
1550 **/
i40e_setup_rx_descriptors(struct i40e_ring * rx_ring)1551 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1552 {
1553 struct device *dev = rx_ring->dev;
1554
1555 u64_stats_init(&rx_ring->syncp);
1556
1557 /* Round up to nearest 4K */
1558 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1559 rx_ring->size = ALIGN(rx_ring->size, 4096);
1560 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1561 &rx_ring->dma, GFP_KERNEL);
1562
1563 if (!rx_ring->desc) {
1564 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1565 rx_ring->size);
1566 return -ENOMEM;
1567 }
1568
1569 rx_ring->next_to_alloc = 0;
1570 rx_ring->next_to_clean = 0;
1571 rx_ring->next_to_process = 0;
1572 rx_ring->next_to_use = 0;
1573
1574 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1575
1576 rx_ring->rx_bi =
1577 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1578 if (!rx_ring->rx_bi)
1579 return -ENOMEM;
1580
1581 return 0;
1582 }
1583
1584 /**
1585 * i40e_release_rx_desc - Store the new tail and head values
1586 * @rx_ring: ring to bump
1587 * @val: new head index
1588 **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)1589 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1590 {
1591 rx_ring->next_to_use = val;
1592
1593 /* update next to alloc since we have filled the ring */
1594 rx_ring->next_to_alloc = val;
1595
1596 /* Force memory writes to complete before letting h/w
1597 * know there are new descriptors to fetch. (Only
1598 * applicable for weak-ordered memory model archs,
1599 * such as IA-64).
1600 */
1601 wmb();
1602 writel(val, rx_ring->tail);
1603 }
1604
1605 #if (PAGE_SIZE >= 8192)
i40e_rx_frame_truesize(struct i40e_ring * rx_ring,unsigned int size)1606 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1607 unsigned int size)
1608 {
1609 unsigned int truesize;
1610
1611 truesize = rx_ring->rx_offset ?
1612 SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1613 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1614 SKB_DATA_ALIGN(size);
1615 return truesize;
1616 }
1617 #endif
1618
1619 /**
1620 * i40e_alloc_mapped_page - recycle or make a new page
1621 * @rx_ring: ring to use
1622 * @bi: rx_buffer struct to modify
1623 *
1624 * Returns true if the page was successfully allocated or
1625 * reused.
1626 **/
i40e_alloc_mapped_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * bi)1627 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1628 struct i40e_rx_buffer *bi)
1629 {
1630 struct page *page = bi->page;
1631 dma_addr_t dma;
1632
1633 /* since we are recycling buffers we should seldom need to alloc */
1634 if (likely(page)) {
1635 rx_ring->rx_stats.page_reuse_count++;
1636 return true;
1637 }
1638
1639 /* alloc new page for storage */
1640 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1641 if (unlikely(!page)) {
1642 rx_ring->rx_stats.alloc_page_failed++;
1643 return false;
1644 }
1645
1646 rx_ring->rx_stats.page_alloc_count++;
1647
1648 /* map page for use */
1649 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1650 i40e_rx_pg_size(rx_ring),
1651 DMA_FROM_DEVICE,
1652 I40E_RX_DMA_ATTR);
1653
1654 /* if mapping failed free memory back to system since
1655 * there isn't much point in holding memory we can't use
1656 */
1657 if (dma_mapping_error(rx_ring->dev, dma)) {
1658 __free_pages(page, i40e_rx_pg_order(rx_ring));
1659 rx_ring->rx_stats.alloc_page_failed++;
1660 return false;
1661 }
1662
1663 bi->dma = dma;
1664 bi->page = page;
1665 bi->page_offset = rx_ring->rx_offset;
1666 page_ref_add(page, USHRT_MAX - 1);
1667 bi->pagecnt_bias = USHRT_MAX;
1668
1669 return true;
1670 }
1671
1672 /**
1673 * i40e_alloc_rx_buffers - Replace used receive buffers
1674 * @rx_ring: ring to place buffers on
1675 * @cleaned_count: number of buffers to replace
1676 *
1677 * Returns false if all allocations were successful, true if any fail
1678 **/
i40e_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)1679 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1680 {
1681 u16 ntu = rx_ring->next_to_use;
1682 union i40e_rx_desc *rx_desc;
1683 struct i40e_rx_buffer *bi;
1684
1685 /* do nothing if no valid netdev defined */
1686 if (!rx_ring->netdev || !cleaned_count)
1687 return false;
1688
1689 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1690 bi = i40e_rx_bi(rx_ring, ntu);
1691
1692 do {
1693 if (!i40e_alloc_mapped_page(rx_ring, bi))
1694 goto no_buffers;
1695
1696 /* sync the buffer for use by the device */
1697 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1698 bi->page_offset,
1699 rx_ring->rx_buf_len,
1700 DMA_FROM_DEVICE);
1701
1702 /* Refresh the desc even if buffer_addrs didn't change
1703 * because each write-back erases this info.
1704 */
1705 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1706
1707 rx_desc++;
1708 bi++;
1709 ntu++;
1710 if (unlikely(ntu == rx_ring->count)) {
1711 rx_desc = I40E_RX_DESC(rx_ring, 0);
1712 bi = i40e_rx_bi(rx_ring, 0);
1713 ntu = 0;
1714 }
1715
1716 /* clear the status bits for the next_to_use descriptor */
1717 rx_desc->wb.qword1.status_error_len = 0;
1718
1719 cleaned_count--;
1720 } while (cleaned_count);
1721
1722 if (rx_ring->next_to_use != ntu)
1723 i40e_release_rx_desc(rx_ring, ntu);
1724
1725 return false;
1726
1727 no_buffers:
1728 if (rx_ring->next_to_use != ntu)
1729 i40e_release_rx_desc(rx_ring, ntu);
1730
1731 /* make sure to come back via polling to try again after
1732 * allocation failure
1733 */
1734 return true;
1735 }
1736
1737 /**
1738 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1739 * @vsi: the VSI we care about
1740 * @skb: skb currently being received and modified
1741 * @rx_desc: the receive descriptor
1742 **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1743 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1744 struct sk_buff *skb,
1745 union i40e_rx_desc *rx_desc)
1746 {
1747 struct libeth_rx_pt decoded;
1748 u32 rx_error, rx_status;
1749 bool ipv4, ipv6;
1750 u8 ptype;
1751 u64 qword;
1752
1753 skb->ip_summed = CHECKSUM_NONE;
1754
1755 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1756 ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1757
1758 decoded = libie_rx_pt_parse(ptype);
1759 if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
1760 return;
1761
1762 rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1763 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1764
1765 /* did the hardware decode the packet and checksum? */
1766 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1767 return;
1768
1769 ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
1770 ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
1771
1772 if (ipv4 &&
1773 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1774 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1775 goto checksum_fail;
1776
1777 /* likely incorrect csum if alternate IP extension headers found */
1778 if (ipv6 &&
1779 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1780 /* don't increment checksum err here, non-fatal err */
1781 return;
1782
1783 /* there was some L4 error, count error and punt packet to the stack */
1784 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1785 goto checksum_fail;
1786
1787 /* handle packets that were not able to be checksummed due
1788 * to arrival speed, in this case the stack can compute
1789 * the csum.
1790 */
1791 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1792 return;
1793
1794 /* If there is an outer header present that might contain a checksum
1795 * we need to bump the checksum level by 1 to reflect the fact that
1796 * we are indicating we validated the inner checksum.
1797 */
1798 if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
1799 skb->csum_level = 1;
1800
1801 skb->ip_summed = CHECKSUM_UNNECESSARY;
1802 return;
1803
1804 checksum_fail:
1805 vsi->back->hw_csum_rx_error++;
1806 }
1807
1808 /**
1809 * i40e_rx_hash - set the hash value in the skb
1810 * @ring: descriptor ring
1811 * @rx_desc: specific descriptor
1812 * @skb: skb currently being received and modified
1813 * @rx_ptype: Rx packet type
1814 **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1815 static inline void i40e_rx_hash(struct i40e_ring *ring,
1816 union i40e_rx_desc *rx_desc,
1817 struct sk_buff *skb,
1818 u8 rx_ptype)
1819 {
1820 struct libeth_rx_pt decoded;
1821 u32 hash;
1822 const __le64 rss_mask =
1823 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1824 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1825
1826 decoded = libie_rx_pt_parse(rx_ptype);
1827 if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
1828 return;
1829
1830 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1831 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1832 libeth_rx_pt_set_hash(skb, hash, decoded);
1833 }
1834 }
1835
1836 /**
1837 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1838 * @rx_ring: rx descriptor ring packet is being transacted on
1839 * @rx_desc: pointer to the EOP Rx descriptor
1840 * @skb: pointer to current skb being populated
1841 *
1842 * This function checks the ring, descriptor, and packet information in
1843 * order to populate the hash, checksum, VLAN, protocol, and
1844 * other fields within the skb.
1845 **/
i40e_process_skb_fields(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)1846 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1847 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1848 {
1849 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1850 u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1851 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1852 u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1853 u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1854
1855 if (unlikely(tsynvalid))
1856 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1857
1858 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1859
1860 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1861
1862 skb_record_rx_queue(skb, rx_ring->queue_index);
1863
1864 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1865 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1866
1867 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1868 le16_to_cpu(vlan_tag));
1869 }
1870
1871 /* modifies the skb - consumes the enet header */
1872 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1873 }
1874
1875 /**
1876 * i40e_cleanup_headers - Correct empty headers
1877 * @rx_ring: rx descriptor ring packet is being transacted on
1878 * @skb: pointer to current skb being fixed
1879 * @rx_desc: pointer to the EOP Rx descriptor
1880 *
1881 * In addition if skb is not at least 60 bytes we need to pad it so that
1882 * it is large enough to qualify as a valid Ethernet frame.
1883 *
1884 * Returns true if an error was encountered and skb was freed.
1885 **/
i40e_cleanup_headers(struct i40e_ring * rx_ring,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1886 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1887 union i40e_rx_desc *rx_desc)
1888
1889 {
1890 /* ERR_MASK will only have valid bits if EOP set, and
1891 * what we are doing here is actually checking
1892 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1893 * the error field
1894 */
1895 if (unlikely(i40e_test_staterr(rx_desc,
1896 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1897 dev_kfree_skb_any(skb);
1898 return true;
1899 }
1900
1901 /* if eth_skb_pad returns an error the skb was freed */
1902 if (eth_skb_pad(skb))
1903 return true;
1904
1905 return false;
1906 }
1907
1908 /**
1909 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1910 * @rx_buffer: buffer containing the page
1911 * @rx_stats: rx stats structure for the rx ring
1912 *
1913 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1914 * which will assign the current buffer to the buffer that next_to_alloc is
1915 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1916 * page freed.
1917 *
1918 * rx_stats will be updated to indicate whether the page was waived
1919 * or busy if it could not be reused.
1920 */
i40e_can_reuse_rx_page(struct i40e_rx_buffer * rx_buffer,struct i40e_rx_queue_stats * rx_stats)1921 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1922 struct i40e_rx_queue_stats *rx_stats)
1923 {
1924 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1925 struct page *page = rx_buffer->page;
1926
1927 /* Is any reuse possible? */
1928 if (!dev_page_is_reusable(page)) {
1929 rx_stats->page_waive_count++;
1930 return false;
1931 }
1932
1933 #if (PAGE_SIZE < 8192)
1934 /* if we are only owner of page we can reuse it */
1935 if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1936 rx_stats->page_busy_count++;
1937 return false;
1938 }
1939 #else
1940 #define I40E_LAST_OFFSET \
1941 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1942 if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1943 rx_stats->page_busy_count++;
1944 return false;
1945 }
1946 #endif
1947
1948 /* If we have drained the page fragment pool we need to update
1949 * the pagecnt_bias and page count so that we fully restock the
1950 * number of references the driver holds.
1951 */
1952 if (unlikely(pagecnt_bias == 1)) {
1953 page_ref_add(page, USHRT_MAX - 1);
1954 rx_buffer->pagecnt_bias = USHRT_MAX;
1955 }
1956
1957 return true;
1958 }
1959
1960 /**
1961 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1962 * @rx_buffer: Rx buffer to adjust
1963 * @truesize: Size of adjustment
1964 **/
i40e_rx_buffer_flip(struct i40e_rx_buffer * rx_buffer,unsigned int truesize)1965 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
1966 unsigned int truesize)
1967 {
1968 #if (PAGE_SIZE < 8192)
1969 rx_buffer->page_offset ^= truesize;
1970 #else
1971 rx_buffer->page_offset += truesize;
1972 #endif
1973 }
1974
1975 /**
1976 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1977 * @rx_ring: rx descriptor ring to transact packets on
1978 * @size: size of buffer to add to skb
1979 *
1980 * This function will pull an Rx buffer from the ring and synchronize it
1981 * for use by the CPU.
1982 */
i40e_get_rx_buffer(struct i40e_ring * rx_ring,const unsigned int size)1983 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1984 const unsigned int size)
1985 {
1986 struct i40e_rx_buffer *rx_buffer;
1987
1988 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
1989 rx_buffer->page_count =
1990 #if (PAGE_SIZE < 8192)
1991 page_count(rx_buffer->page);
1992 #else
1993 0;
1994 #endif
1995 prefetch_page_address(rx_buffer->page);
1996
1997 /* we are reusing so sync this buffer for CPU use */
1998 dma_sync_single_range_for_cpu(rx_ring->dev,
1999 rx_buffer->dma,
2000 rx_buffer->page_offset,
2001 size,
2002 DMA_FROM_DEVICE);
2003
2004 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2005 rx_buffer->pagecnt_bias--;
2006
2007 return rx_buffer;
2008 }
2009
2010 /**
2011 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2012 * @rx_ring: rx descriptor ring to transact packets on
2013 * @rx_buffer: rx buffer to pull data from
2014 *
2015 * This function will clean up the contents of the rx_buffer. It will
2016 * either recycle the buffer or unmap it and free the associated resources.
2017 */
i40e_put_rx_buffer(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer)2018 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2019 struct i40e_rx_buffer *rx_buffer)
2020 {
2021 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2022 /* hand second half of page back to the ring */
2023 i40e_reuse_rx_page(rx_ring, rx_buffer);
2024 } else {
2025 /* we are not reusing the buffer so unmap it */
2026 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2027 i40e_rx_pg_size(rx_ring),
2028 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2029 __page_frag_cache_drain(rx_buffer->page,
2030 rx_buffer->pagecnt_bias);
2031 /* clear contents of buffer_info */
2032 rx_buffer->page = NULL;
2033 }
2034 }
2035
2036 /**
2037 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2038 * @rx_ring: Rx descriptor ring to transact packets on
2039 * @xdp_res: Result of the XDP program
2040 * @xdp: xdp_buff pointing to the data
2041 **/
i40e_process_rx_buffs(struct i40e_ring * rx_ring,int xdp_res,struct xdp_buff * xdp)2042 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2043 struct xdp_buff *xdp)
2044 {
2045 u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2046 u32 next = rx_ring->next_to_clean, i = 0;
2047 struct i40e_rx_buffer *rx_buffer;
2048
2049 xdp->flags = 0;
2050
2051 while (1) {
2052 rx_buffer = i40e_rx_bi(rx_ring, next);
2053 if (++next == rx_ring->count)
2054 next = 0;
2055
2056 if (!rx_buffer->page)
2057 continue;
2058
2059 if (xdp_res != I40E_XDP_CONSUMED)
2060 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2061 else if (i++ <= nr_frags)
2062 rx_buffer->pagecnt_bias++;
2063
2064 /* EOP buffer will be put in i40e_clean_rx_irq() */
2065 if (next == rx_ring->next_to_process)
2066 return;
2067
2068 i40e_put_rx_buffer(rx_ring, rx_buffer);
2069 }
2070 }
2071
2072 /**
2073 * i40e_construct_skb - Allocate skb and populate it
2074 * @rx_ring: rx descriptor ring to transact packets on
2075 * @xdp: xdp_buff pointing to the data
2076 *
2077 * This function allocates an skb. It then populates it with the page
2078 * data from the current receive descriptor, taking care to set up the
2079 * skb correctly.
2080 */
i40e_construct_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2081 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2082 struct xdp_buff *xdp)
2083 {
2084 unsigned int size = xdp->data_end - xdp->data;
2085 struct i40e_rx_buffer *rx_buffer;
2086 struct skb_shared_info *sinfo;
2087 unsigned int headlen;
2088 struct sk_buff *skb;
2089 u32 nr_frags = 0;
2090
2091 /* prefetch first cache line of first page */
2092 net_prefetch(xdp->data);
2093
2094 /* Note, we get here by enabling legacy-rx via:
2095 *
2096 * ethtool --set-priv-flags <dev> legacy-rx on
2097 *
2098 * In this mode, we currently get 0 extra XDP headroom as
2099 * opposed to having legacy-rx off, where we process XDP
2100 * packets going to stack via i40e_build_skb(). The latter
2101 * provides us currently with 192 bytes of headroom.
2102 *
2103 * For i40e_construct_skb() mode it means that the
2104 * xdp->data_meta will always point to xdp->data, since
2105 * the helper cannot expand the head. Should this ever
2106 * change in future for legacy-rx mode on, then lets also
2107 * add xdp->data_meta handling here.
2108 */
2109
2110 /* allocate a skb to store the frags */
2111 skb = napi_alloc_skb(&rx_ring->q_vector->napi, I40E_RX_HDR_SIZE);
2112 if (unlikely(!skb))
2113 return NULL;
2114
2115 /* Determine available headroom for copy */
2116 headlen = size;
2117 if (headlen > I40E_RX_HDR_SIZE)
2118 headlen = eth_get_headlen(skb->dev, xdp->data,
2119 I40E_RX_HDR_SIZE);
2120
2121 /* align pull length to size of long to optimize memcpy performance */
2122 memcpy(__skb_put(skb, headlen), xdp->data,
2123 ALIGN(headlen, sizeof(long)));
2124
2125 if (unlikely(xdp_buff_has_frags(xdp))) {
2126 sinfo = xdp_get_shared_info_from_buff(xdp);
2127 nr_frags = sinfo->nr_frags;
2128 }
2129 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2130 /* update all of the pointers */
2131 size -= headlen;
2132 if (size) {
2133 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2134 dev_kfree_skb(skb);
2135 return NULL;
2136 }
2137 skb_add_rx_frag(skb, 0, rx_buffer->page,
2138 rx_buffer->page_offset + headlen,
2139 size, xdp->frame_sz);
2140 /* buffer is used by skb, update page_offset */
2141 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2142 } else {
2143 /* buffer is unused, reset bias back to rx_buffer */
2144 rx_buffer->pagecnt_bias++;
2145 }
2146
2147 if (unlikely(xdp_buff_has_frags(xdp))) {
2148 struct skb_shared_info *skinfo = skb_shinfo(skb);
2149
2150 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2151 sizeof(skb_frag_t) * nr_frags);
2152
2153 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2154 sinfo->xdp_frags_size,
2155 nr_frags * xdp->frame_sz,
2156 xdp_buff_is_frag_pfmemalloc(xdp));
2157
2158 /* First buffer has already been processed, so bump ntc */
2159 if (++rx_ring->next_to_clean == rx_ring->count)
2160 rx_ring->next_to_clean = 0;
2161
2162 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2163 }
2164
2165 return skb;
2166 }
2167
2168 /**
2169 * i40e_build_skb - Build skb around an existing buffer
2170 * @rx_ring: Rx descriptor ring to transact packets on
2171 * @xdp: xdp_buff pointing to the data
2172 *
2173 * This function builds an skb around an existing Rx buffer, taking care
2174 * to set up the skb correctly and avoid any memcpy overhead.
2175 */
i40e_build_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2176 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2177 struct xdp_buff *xdp)
2178 {
2179 unsigned int metasize = xdp->data - xdp->data_meta;
2180 struct skb_shared_info *sinfo;
2181 struct sk_buff *skb;
2182 u32 nr_frags;
2183
2184 /* Prefetch first cache line of first page. If xdp->data_meta
2185 * is unused, this points exactly as xdp->data, otherwise we
2186 * likely have a consumer accessing first few bytes of meta
2187 * data, and then actual data.
2188 */
2189 net_prefetch(xdp->data_meta);
2190
2191 if (unlikely(xdp_buff_has_frags(xdp))) {
2192 sinfo = xdp_get_shared_info_from_buff(xdp);
2193 nr_frags = sinfo->nr_frags;
2194 }
2195
2196 /* build an skb around the page buffer */
2197 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2198 if (unlikely(!skb))
2199 return NULL;
2200
2201 /* update pointers within the skb to store the data */
2202 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2203 __skb_put(skb, xdp->data_end - xdp->data);
2204 if (metasize)
2205 skb_metadata_set(skb, metasize);
2206
2207 if (unlikely(xdp_buff_has_frags(xdp))) {
2208 xdp_update_skb_shared_info(skb, nr_frags,
2209 sinfo->xdp_frags_size,
2210 nr_frags * xdp->frame_sz,
2211 xdp_buff_is_frag_pfmemalloc(xdp));
2212
2213 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2214 } else {
2215 struct i40e_rx_buffer *rx_buffer;
2216
2217 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2218 /* buffer is used by skb, update page_offset */
2219 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2220 }
2221
2222 return skb;
2223 }
2224
2225 /**
2226 * i40e_is_non_eop - process handling of non-EOP buffers
2227 * @rx_ring: Rx ring being processed
2228 * @rx_desc: Rx descriptor for current buffer
2229 *
2230 * If the buffer is an EOP buffer, this function exits returning false,
2231 * otherwise return true indicating that this is in fact a non-EOP buffer.
2232 */
i40e_is_non_eop(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc)2233 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2234 union i40e_rx_desc *rx_desc)
2235 {
2236 /* if we are the last buffer then there is nothing else to do */
2237 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2238 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2239 return false;
2240
2241 rx_ring->rx_stats.non_eop_descs++;
2242
2243 return true;
2244 }
2245
2246 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2247 struct i40e_ring *xdp_ring);
2248
i40e_xmit_xdp_tx_ring(struct xdp_buff * xdp,struct i40e_ring * xdp_ring)2249 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2250 {
2251 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2252
2253 if (unlikely(!xdpf))
2254 return I40E_XDP_CONSUMED;
2255
2256 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2257 }
2258
2259 /**
2260 * i40e_run_xdp - run an XDP program
2261 * @rx_ring: Rx ring being processed
2262 * @xdp: XDP buffer containing the frame
2263 * @xdp_prog: XDP program to run
2264 **/
i40e_run_xdp(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)2265 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2266 {
2267 int err, result = I40E_XDP_PASS;
2268 struct i40e_ring *xdp_ring;
2269 u32 act;
2270
2271 if (!xdp_prog)
2272 goto xdp_out;
2273
2274 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2275
2276 act = bpf_prog_run_xdp(xdp_prog, xdp);
2277 switch (act) {
2278 case XDP_PASS:
2279 break;
2280 case XDP_TX:
2281 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2282 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2283 if (result == I40E_XDP_CONSUMED)
2284 goto out_failure;
2285 break;
2286 case XDP_REDIRECT:
2287 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2288 if (err)
2289 goto out_failure;
2290 result = I40E_XDP_REDIR;
2291 break;
2292 default:
2293 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2294 fallthrough;
2295 case XDP_ABORTED:
2296 out_failure:
2297 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2298 fallthrough; /* handle aborts by dropping packet */
2299 case XDP_DROP:
2300 result = I40E_XDP_CONSUMED;
2301 break;
2302 }
2303 xdp_out:
2304 return result;
2305 }
2306
2307 /**
2308 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2309 * @xdp_ring: XDP Tx ring
2310 *
2311 * This function updates the XDP Tx ring tail register.
2312 **/
i40e_xdp_ring_update_tail(struct i40e_ring * xdp_ring)2313 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2314 {
2315 /* Force memory writes to complete before letting h/w
2316 * know there are new descriptors to fetch.
2317 */
2318 wmb();
2319 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2320 }
2321
2322 /**
2323 * i40e_update_rx_stats - Update Rx ring statistics
2324 * @rx_ring: rx descriptor ring
2325 * @total_rx_bytes: number of bytes received
2326 * @total_rx_packets: number of packets received
2327 *
2328 * This function updates the Rx ring statistics.
2329 **/
i40e_update_rx_stats(struct i40e_ring * rx_ring,unsigned int total_rx_bytes,unsigned int total_rx_packets)2330 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2331 unsigned int total_rx_bytes,
2332 unsigned int total_rx_packets)
2333 {
2334 u64_stats_update_begin(&rx_ring->syncp);
2335 rx_ring->stats.packets += total_rx_packets;
2336 rx_ring->stats.bytes += total_rx_bytes;
2337 u64_stats_update_end(&rx_ring->syncp);
2338 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2339 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2340 }
2341
2342 /**
2343 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2344 * @rx_ring: Rx ring
2345 * @xdp_res: Result of the receive batch
2346 *
2347 * This function bumps XDP Tx tail and/or flush redirect map, and
2348 * should be called when a batch of packets has been processed in the
2349 * napi loop.
2350 **/
i40e_finalize_xdp_rx(struct i40e_ring * rx_ring,unsigned int xdp_res)2351 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2352 {
2353 if (xdp_res & I40E_XDP_REDIR)
2354 xdp_do_flush();
2355
2356 if (xdp_res & I40E_XDP_TX) {
2357 struct i40e_ring *xdp_ring =
2358 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2359
2360 i40e_xdp_ring_update_tail(xdp_ring);
2361 }
2362 }
2363
2364 /**
2365 * i40e_inc_ntp: Advance the next_to_process index
2366 * @rx_ring: Rx ring
2367 **/
i40e_inc_ntp(struct i40e_ring * rx_ring)2368 static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2369 {
2370 u32 ntp = rx_ring->next_to_process + 1;
2371
2372 ntp = (ntp < rx_ring->count) ? ntp : 0;
2373 rx_ring->next_to_process = ntp;
2374 prefetch(I40E_RX_DESC(rx_ring, ntp));
2375 }
2376
2377 /**
2378 * i40e_add_xdp_frag: Add a frag to xdp_buff
2379 * @xdp: xdp_buff pointing to the data
2380 * @nr_frags: return number of buffers for the packet
2381 * @rx_buffer: rx_buffer holding data of the current frag
2382 * @size: size of data of current frag
2383 */
i40e_add_xdp_frag(struct xdp_buff * xdp,u32 * nr_frags,struct i40e_rx_buffer * rx_buffer,u32 size)2384 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2385 struct i40e_rx_buffer *rx_buffer, u32 size)
2386 {
2387 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2388
2389 if (!xdp_buff_has_frags(xdp)) {
2390 sinfo->nr_frags = 0;
2391 sinfo->xdp_frags_size = 0;
2392 xdp_buff_set_frags_flag(xdp);
2393 } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2394 /* Overflowing packet: All frags need to be dropped */
2395 return -ENOMEM;
2396 }
2397
2398 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2399 rx_buffer->page_offset, size);
2400
2401 sinfo->xdp_frags_size += size;
2402
2403 if (page_is_pfmemalloc(rx_buffer->page))
2404 xdp_buff_set_frag_pfmemalloc(xdp);
2405 *nr_frags = sinfo->nr_frags;
2406
2407 return 0;
2408 }
2409
2410 /**
2411 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2412 * @rx_ring: rx descriptor ring to transact packets on
2413 * @xdp: xdp_buff pointing to the data
2414 * @rx_buffer: rx_buffer of eop desc
2415 */
i40e_consume_xdp_buff(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct i40e_rx_buffer * rx_buffer)2416 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2417 struct xdp_buff *xdp,
2418 struct i40e_rx_buffer *rx_buffer)
2419 {
2420 i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2421 i40e_put_rx_buffer(rx_ring, rx_buffer);
2422 rx_ring->next_to_clean = rx_ring->next_to_process;
2423 xdp->data = NULL;
2424 }
2425
2426 /**
2427 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2428 * @rx_ring: rx descriptor ring to transact packets on
2429 * @budget: Total limit on number of packets to process
2430 * @rx_cleaned: Out parameter of the number of packets processed
2431 *
2432 * This function provides a "bounce buffer" approach to Rx interrupt
2433 * processing. The advantage to this is that on systems that have
2434 * expensive overhead for IOMMU access this provides a means of avoiding
2435 * it by maintaining the mapping of the page to the system.
2436 *
2437 * Returns amount of work completed
2438 **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget,unsigned int * rx_cleaned)2439 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2440 unsigned int *rx_cleaned)
2441 {
2442 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2443 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2444 u16 clean_threshold = rx_ring->count / 2;
2445 unsigned int offset = rx_ring->rx_offset;
2446 struct xdp_buff *xdp = &rx_ring->xdp;
2447 unsigned int xdp_xmit = 0;
2448 struct bpf_prog *xdp_prog;
2449 bool failure = false;
2450 int xdp_res = 0;
2451
2452 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2453
2454 while (likely(total_rx_packets < (unsigned int)budget)) {
2455 u16 ntp = rx_ring->next_to_process;
2456 struct i40e_rx_buffer *rx_buffer;
2457 union i40e_rx_desc *rx_desc;
2458 struct sk_buff *skb;
2459 unsigned int size;
2460 u32 nfrags = 0;
2461 bool neop;
2462 u64 qword;
2463
2464 /* return some buffers to hardware, one at a time is too slow */
2465 if (cleaned_count >= clean_threshold) {
2466 failure = failure ||
2467 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2468 cleaned_count = 0;
2469 }
2470
2471 rx_desc = I40E_RX_DESC(rx_ring, ntp);
2472
2473 /* status_error_len will always be zero for unused descriptors
2474 * because it's cleared in cleanup, and overlaps with hdr_addr
2475 * which is always zero because packet split isn't used, if the
2476 * hardware wrote DD then the length will be non-zero
2477 */
2478 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2479
2480 /* This memory barrier is needed to keep us from reading
2481 * any other fields out of the rx_desc until we have
2482 * verified the descriptor has been written back.
2483 */
2484 dma_rmb();
2485
2486 if (i40e_rx_is_programming_status(qword)) {
2487 i40e_clean_programming_status(rx_ring,
2488 rx_desc->raw.qword[0],
2489 qword);
2490 rx_buffer = i40e_rx_bi(rx_ring, ntp);
2491 i40e_inc_ntp(rx_ring);
2492 i40e_reuse_rx_page(rx_ring, rx_buffer);
2493 /* Update ntc and bump cleaned count if not in the
2494 * middle of mb packet.
2495 */
2496 if (rx_ring->next_to_clean == ntp) {
2497 rx_ring->next_to_clean =
2498 rx_ring->next_to_process;
2499 cleaned_count++;
2500 }
2501 continue;
2502 }
2503
2504 size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2505 if (!size)
2506 break;
2507
2508 i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2509 /* retrieve a buffer from the ring */
2510 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2511
2512 neop = i40e_is_non_eop(rx_ring, rx_desc);
2513 i40e_inc_ntp(rx_ring);
2514
2515 if (!xdp->data) {
2516 unsigned char *hard_start;
2517
2518 hard_start = page_address(rx_buffer->page) +
2519 rx_buffer->page_offset - offset;
2520 xdp_prepare_buff(xdp, hard_start, offset, size, true);
2521 #if (PAGE_SIZE > 4096)
2522 /* At larger PAGE_SIZE, frame_sz depend on len size */
2523 xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2524 #endif
2525 } else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2526 !neop) {
2527 /* Overflowing packet: Drop all frags on EOP */
2528 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2529 break;
2530 }
2531
2532 if (neop)
2533 continue;
2534
2535 xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2536
2537 if (xdp_res) {
2538 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2539
2540 if (unlikely(xdp_buff_has_frags(xdp))) {
2541 i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2542 size = xdp_get_buff_len(xdp);
2543 } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2544 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2545 } else {
2546 rx_buffer->pagecnt_bias++;
2547 }
2548 total_rx_bytes += size;
2549 } else {
2550 if (ring_uses_build_skb(rx_ring))
2551 skb = i40e_build_skb(rx_ring, xdp);
2552 else
2553 skb = i40e_construct_skb(rx_ring, xdp);
2554
2555 /* drop if we failed to retrieve a buffer */
2556 if (!skb) {
2557 rx_ring->rx_stats.alloc_buff_failed++;
2558 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2559 break;
2560 }
2561
2562 if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2563 goto process_next;
2564
2565 /* probably a little skewed due to removing CRC */
2566 total_rx_bytes += skb->len;
2567
2568 /* populate checksum, VLAN, and protocol */
2569 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2570
2571 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2572 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2573 }
2574
2575 /* update budget accounting */
2576 total_rx_packets++;
2577 process_next:
2578 cleaned_count += nfrags + 1;
2579 i40e_put_rx_buffer(rx_ring, rx_buffer);
2580 rx_ring->next_to_clean = rx_ring->next_to_process;
2581
2582 xdp->data = NULL;
2583 }
2584
2585 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2586
2587 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2588
2589 *rx_cleaned = total_rx_packets;
2590
2591 /* guarantee a trip back through this routine if there was a failure */
2592 return failure ? budget : (int)total_rx_packets;
2593 }
2594
2595 /**
2596 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2597 * @itr_idx: interrupt throttling index
2598 * @interval: interrupt throttling interval value in usecs
2599 * @force_swint: force software interrupt
2600 *
2601 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2602 * is used to update interrupt throttling interval for specified ITR index
2603 * and optionally enforces a software interrupt. If the @itr_idx is equal
2604 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2605 * parameter is taken into account. If the interval change and enforced
2606 * software interrupt are not requested then the built value just enables
2607 * appropriate vector interrupt.
2608 **/
i40e_buildreg_itr(enum i40e_dyn_idx itr_idx,u16 interval,bool force_swint)2609 static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2610 bool force_swint)
2611 {
2612 u32 val;
2613
2614 /* We don't bother with setting the CLEARPBA bit as the data sheet
2615 * points out doing so is "meaningless since it was already
2616 * auto-cleared". The auto-clearing happens when the interrupt is
2617 * asserted.
2618 *
2619 * Hardware errata 28 for also indicates that writing to a
2620 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2621 * an event in the PBA anyway so we need to rely on the automask
2622 * to hold pending events for us until the interrupt is re-enabled
2623 *
2624 * We have to shift the given value as it is reported in microseconds
2625 * and the register value is recorded in 2 microsecond units.
2626 */
2627 interval >>= 1;
2628
2629 /* 1. Enable vector interrupt
2630 * 2. Update the interval for the specified ITR index
2631 * (I40E_ITR_NONE in the register is used to indicate that
2632 * no interval update is requested)
2633 */
2634 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2635 FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2636 FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2637
2638 /* 3. Enforce software interrupt trigger if requested
2639 * (These software interrupts rate is limited by ITR2 that is
2640 * set to 20K interrupts per second)
2641 */
2642 if (force_swint)
2643 val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2644 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2645 FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2646 I40E_SW_ITR);
2647
2648 return val;
2649 }
2650
2651 /* The act of updating the ITR will cause it to immediately trigger. In order
2652 * to prevent this from throwing off adaptive update statistics we defer the
2653 * update so that it can only happen so often. So after either Tx or Rx are
2654 * updated we make the adaptive scheme wait until either the ITR completely
2655 * expires via the next_update expiration or we have been through at least
2656 * 3 interrupts.
2657 */
2658 #define ITR_COUNTDOWN_START 3
2659
2660 /**
2661 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2662 * @vsi: the VSI we care about
2663 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2664 *
2665 **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)2666 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2667 struct i40e_q_vector *q_vector)
2668 {
2669 enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2670 struct i40e_hw *hw = &vsi->back->hw;
2671 u16 interval = 0;
2672 u32 itr_val;
2673
2674 /* If we don't have MSIX, then we only need to re-enable icr0 */
2675 if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2676 i40e_irq_dynamic_enable_icr0(vsi->back);
2677 return;
2678 }
2679
2680 /* These will do nothing if dynamic updates are not enabled */
2681 i40e_update_itr(q_vector, &q_vector->tx);
2682 i40e_update_itr(q_vector, &q_vector->rx);
2683
2684 /* This block of logic allows us to get away with only updating
2685 * one ITR value with each interrupt. The idea is to perform a
2686 * pseudo-lazy update with the following criteria.
2687 *
2688 * 1. Rx is given higher priority than Tx if both are in same state
2689 * 2. If we must reduce an ITR that is given highest priority.
2690 * 3. We then give priority to increasing ITR based on amount.
2691 */
2692 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2693 /* Rx ITR needs to be reduced, this is highest priority */
2694 itr_idx = I40E_RX_ITR;
2695 interval = q_vector->rx.target_itr;
2696 q_vector->rx.current_itr = q_vector->rx.target_itr;
2697 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2698 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2699 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2700 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2701 /* Tx ITR needs to be reduced, this is second priority
2702 * Tx ITR needs to be increased more than Rx, fourth priority
2703 */
2704 itr_idx = I40E_TX_ITR;
2705 interval = q_vector->tx.target_itr;
2706 q_vector->tx.current_itr = q_vector->tx.target_itr;
2707 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2708 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2709 /* Rx ITR needs to be increased, third priority */
2710 itr_idx = I40E_RX_ITR;
2711 interval = q_vector->rx.target_itr;
2712 q_vector->rx.current_itr = q_vector->rx.target_itr;
2713 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2714 } else {
2715 /* No ITR update, lowest priority */
2716 if (q_vector->itr_countdown)
2717 q_vector->itr_countdown--;
2718 }
2719
2720 /* Do not update interrupt control register if VSI is down */
2721 if (test_bit(__I40E_VSI_DOWN, vsi->state))
2722 return;
2723
2724 /* Update ITR interval if necessary and enforce software interrupt
2725 * if we are exiting busy poll.
2726 */
2727 if (q_vector->in_busy_poll) {
2728 itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2729 q_vector->in_busy_poll = false;
2730 } else {
2731 itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2732 }
2733 wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2734 }
2735
2736 /**
2737 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738 * @napi: napi struct with our devices info in it
2739 * @budget: amount of work driver is allowed to do this pass, in packets
2740 *
2741 * This function will clean all queues associated with a q_vector.
2742 *
2743 * Returns the amount of work done
2744 **/
i40e_napi_poll(struct napi_struct * napi,int budget)2745 int i40e_napi_poll(struct napi_struct *napi, int budget)
2746 {
2747 struct i40e_q_vector *q_vector =
2748 container_of(napi, struct i40e_q_vector, napi);
2749 struct i40e_vsi *vsi = q_vector->vsi;
2750 struct i40e_ring *ring;
2751 bool tx_clean_complete = true;
2752 bool rx_clean_complete = true;
2753 unsigned int tx_cleaned = 0;
2754 unsigned int rx_cleaned = 0;
2755 bool clean_complete = true;
2756 bool arm_wb = false;
2757 int budget_per_ring;
2758 int work_done = 0;
2759
2760 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761 napi_complete(napi);
2762 return 0;
2763 }
2764
2765 /* Since the actual Tx work is minimal, we can give the Tx a larger
2766 * budget and be more aggressive about cleaning up the Tx descriptors.
2767 */
2768 i40e_for_each_ring(ring, q_vector->tx) {
2769 bool wd = ring->xsk_pool ?
2770 i40e_clean_xdp_tx_irq(vsi, ring) :
2771 i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772
2773 if (!wd) {
2774 clean_complete = tx_clean_complete = false;
2775 continue;
2776 }
2777 arm_wb |= ring->arm_wb;
2778 ring->arm_wb = false;
2779 }
2780
2781 /* Handle case where we are called by netpoll with a budget of 0 */
2782 if (budget <= 0)
2783 goto tx_only;
2784
2785 /* normally we have 1 Rx ring per q_vector */
2786 if (unlikely(q_vector->num_ringpairs > 1))
2787 /* We attempt to distribute budget to each Rx queue fairly, but
2788 * don't allow the budget to go below 1 because that would exit
2789 * polling early.
2790 */
2791 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792 else
2793 /* Max of 1 Rx ring in this q_vector so give it the budget */
2794 budget_per_ring = budget;
2795
2796 i40e_for_each_ring(ring, q_vector->rx) {
2797 int cleaned = ring->xsk_pool ?
2798 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799 i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2800
2801 work_done += cleaned;
2802 /* if we clean as many as budgeted, we must not be done */
2803 if (cleaned >= budget_per_ring)
2804 clean_complete = rx_clean_complete = false;
2805 }
2806
2807 if (!i40e_enabled_xdp_vsi(vsi))
2808 trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809 tx_cleaned, rx_clean_complete, tx_clean_complete);
2810
2811 /* If work not completed, return budget and polling will return */
2812 if (!clean_complete) {
2813 int cpu_id = smp_processor_id();
2814
2815 /* It is possible that the interrupt affinity has changed but,
2816 * if the cpu is pegged at 100%, polling will never exit while
2817 * traffic continues and the interrupt will be stuck on this
2818 * cpu. We check to make sure affinity is correct before we
2819 * continue to poll, otherwise we must stop polling so the
2820 * interrupt can move to the correct cpu.
2821 */
2822 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823 /* Tell napi that we are done polling */
2824 napi_complete_done(napi, work_done);
2825
2826 /* Force an interrupt */
2827 i40e_force_wb(vsi, q_vector);
2828
2829 /* Return budget-1 so that polling stops */
2830 return budget - 1;
2831 }
2832 tx_only:
2833 if (arm_wb) {
2834 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835 i40e_enable_wb_on_itr(vsi, q_vector);
2836 }
2837 return budget;
2838 }
2839
2840 if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841 q_vector->arm_wb_state = false;
2842
2843 /* Exit the polling mode, but don't re-enable interrupts if stack might
2844 * poll us due to busy-polling
2845 */
2846 if (likely(napi_complete_done(napi, work_done)))
2847 i40e_update_enable_itr(vsi, q_vector);
2848 else
2849 q_vector->in_busy_poll = true;
2850
2851 return min(work_done, budget - 1);
2852 }
2853
2854 /**
2855 * i40e_atr - Add a Flow Director ATR filter
2856 * @tx_ring: ring to add programming descriptor to
2857 * @skb: send buffer
2858 * @tx_flags: send tx flags
2859 **/
i40e_atr(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)2860 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2861 u32 tx_flags)
2862 {
2863 struct i40e_filter_program_desc *fdir_desc;
2864 struct i40e_pf *pf = tx_ring->vsi->back;
2865 union {
2866 unsigned char *network;
2867 struct iphdr *ipv4;
2868 struct ipv6hdr *ipv6;
2869 } hdr;
2870 struct tcphdr *th;
2871 unsigned int hlen;
2872 u32 flex_ptype, dtype_cmd;
2873 int l4_proto;
2874 u16 i;
2875
2876 /* make sure ATR is enabled */
2877 if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2878 return;
2879
2880 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2881 return;
2882
2883 /* if sampling is disabled do nothing */
2884 if (!tx_ring->atr_sample_rate)
2885 return;
2886
2887 /* Currently only IPv4/IPv6 with TCP is supported */
2888 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2889 return;
2890
2891 /* snag network header to get L4 type and address */
2892 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2893 skb_inner_network_header(skb) : skb_network_header(skb);
2894
2895 /* Note: tx_flags gets modified to reflect inner protocols in
2896 * tx_enable_csum function if encap is enabled.
2897 */
2898 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2899 /* access ihl as u8 to avoid unaligned access on ia64 */
2900 hlen = (hdr.network[0] & 0x0F) << 2;
2901 l4_proto = hdr.ipv4->protocol;
2902 } else {
2903 /* find the start of the innermost ipv6 header */
2904 unsigned int inner_hlen = hdr.network - skb->data;
2905 unsigned int h_offset = inner_hlen;
2906
2907 /* this function updates h_offset to the end of the header */
2908 l4_proto =
2909 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2910 /* hlen will contain our best estimate of the tcp header */
2911 hlen = h_offset - inner_hlen;
2912 }
2913
2914 if (l4_proto != IPPROTO_TCP)
2915 return;
2916
2917 th = (struct tcphdr *)(hdr.network + hlen);
2918
2919 /* Due to lack of space, no more new filters can be programmed */
2920 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2921 return;
2922 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2923 /* HW ATR eviction will take care of removing filters on FIN
2924 * and RST packets.
2925 */
2926 if (th->fin || th->rst)
2927 return;
2928 }
2929
2930 tx_ring->atr_count++;
2931
2932 /* sample on all syn/fin/rst packets or once every atr sample rate */
2933 if (!th->fin &&
2934 !th->syn &&
2935 !th->rst &&
2936 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2937 return;
2938
2939 tx_ring->atr_count = 0;
2940
2941 /* grab the next descriptor */
2942 i = tx_ring->next_to_use;
2943 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2944
2945 i++;
2946 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2947
2948 flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2949 tx_ring->queue_index);
2950 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2951 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2952 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2953 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2954 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2955
2956 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2957
2958 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2959
2960 dtype_cmd |= (th->fin || th->rst) ?
2961 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2962 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2963 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2964 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2965
2966 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2967 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2968
2969 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2970 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2971
2972 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2973 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2974 dtype_cmd |=
2975 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2976 I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
2977 else
2978 dtype_cmd |=
2979 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2980 I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
2981
2982 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2983 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2984
2985 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2986 fdir_desc->rsvd = cpu_to_le32(0);
2987 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2988 fdir_desc->fd_id = cpu_to_le32(0);
2989 }
2990
2991 /**
2992 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2993 * @skb: send buffer
2994 * @tx_ring: ring to send buffer on
2995 * @flags: the tx flags to be set
2996 *
2997 * Checks the skb and set up correspondingly several generic transmit flags
2998 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2999 *
3000 * Returns error code indicate the frame should be dropped upon error and the
3001 * otherwise returns 0 to indicate the flags has been set properly.
3002 **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)3003 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3004 struct i40e_ring *tx_ring,
3005 u32 *flags)
3006 {
3007 __be16 protocol = skb->protocol;
3008 u32 tx_flags = 0;
3009
3010 if (protocol == htons(ETH_P_8021Q) &&
3011 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3012 /* When HW VLAN acceleration is turned off by the user the
3013 * stack sets the protocol to 8021q so that the driver
3014 * can take any steps required to support the SW only
3015 * VLAN handling. In our case the driver doesn't need
3016 * to take any further steps so just set the protocol
3017 * to the encapsulated ethertype.
3018 */
3019 skb->protocol = vlan_get_protocol(skb);
3020 goto out;
3021 }
3022
3023 /* if we have a HW VLAN tag being added, default to the HW one */
3024 if (skb_vlan_tag_present(skb)) {
3025 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3026 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3027 /* else if it is a SW VLAN, check the next protocol and store the tag */
3028 } else if (protocol == htons(ETH_P_8021Q)) {
3029 struct vlan_hdr *vhdr, _vhdr;
3030
3031 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3032 if (!vhdr)
3033 return -EINVAL;
3034
3035 protocol = vhdr->h_vlan_encapsulated_proto;
3036 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3037 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3038 }
3039
3040 if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3041 goto out;
3042
3043 /* Insert 802.1p priority into VLAN header */
3044 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3045 (skb->priority != TC_PRIO_CONTROL)) {
3046 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3047 tx_flags |= (skb->priority & 0x7) <<
3048 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3049 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3050 struct vlan_ethhdr *vhdr;
3051 int rc;
3052
3053 rc = skb_cow_head(skb, 0);
3054 if (rc < 0)
3055 return rc;
3056 vhdr = skb_vlan_eth_hdr(skb);
3057 vhdr->h_vlan_TCI = htons(tx_flags >>
3058 I40E_TX_FLAGS_VLAN_SHIFT);
3059 } else {
3060 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3061 }
3062 }
3063
3064 out:
3065 *flags = tx_flags;
3066 return 0;
3067 }
3068
3069 /**
3070 * i40e_tso - set up the tso context descriptor
3071 * @first: pointer to first Tx buffer for xmit
3072 * @hdr_len: ptr to the size of the packet header
3073 * @cd_type_cmd_tso_mss: Quad Word 1
3074 *
3075 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3076 **/
i40e_tso(struct i40e_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)3077 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3078 u64 *cd_type_cmd_tso_mss)
3079 {
3080 struct sk_buff *skb = first->skb;
3081 u64 cd_cmd, cd_tso_len, cd_mss;
3082 __be16 protocol;
3083 union {
3084 struct iphdr *v4;
3085 struct ipv6hdr *v6;
3086 unsigned char *hdr;
3087 } ip;
3088 union {
3089 struct tcphdr *tcp;
3090 struct udphdr *udp;
3091 unsigned char *hdr;
3092 } l4;
3093 u32 paylen, l4_offset;
3094 u16 gso_size;
3095 int err;
3096
3097 if (skb->ip_summed != CHECKSUM_PARTIAL)
3098 return 0;
3099
3100 if (!skb_is_gso(skb))
3101 return 0;
3102
3103 err = skb_cow_head(skb, 0);
3104 if (err < 0)
3105 return err;
3106
3107 protocol = vlan_get_protocol(skb);
3108
3109 if (eth_p_mpls(protocol))
3110 ip.hdr = skb_inner_network_header(skb);
3111 else
3112 ip.hdr = skb_network_header(skb);
3113 l4.hdr = skb_checksum_start(skb);
3114
3115 /* initialize outer IP header fields */
3116 if (ip.v4->version == 4) {
3117 ip.v4->tot_len = 0;
3118 ip.v4->check = 0;
3119
3120 first->tx_flags |= I40E_TX_FLAGS_TSO;
3121 } else {
3122 ip.v6->payload_len = 0;
3123 first->tx_flags |= I40E_TX_FLAGS_TSO;
3124 }
3125
3126 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3127 SKB_GSO_GRE_CSUM |
3128 SKB_GSO_IPXIP4 |
3129 SKB_GSO_IPXIP6 |
3130 SKB_GSO_UDP_TUNNEL |
3131 SKB_GSO_UDP_TUNNEL_CSUM)) {
3132 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3133 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3134 l4.udp->len = 0;
3135
3136 /* determine offset of outer transport header */
3137 l4_offset = l4.hdr - skb->data;
3138
3139 /* remove payload length from outer checksum */
3140 paylen = skb->len - l4_offset;
3141 csum_replace_by_diff(&l4.udp->check,
3142 (__force __wsum)htonl(paylen));
3143 }
3144
3145 /* reset pointers to inner headers */
3146 ip.hdr = skb_inner_network_header(skb);
3147 l4.hdr = skb_inner_transport_header(skb);
3148
3149 /* initialize inner IP header fields */
3150 if (ip.v4->version == 4) {
3151 ip.v4->tot_len = 0;
3152 ip.v4->check = 0;
3153 } else {
3154 ip.v6->payload_len = 0;
3155 }
3156 }
3157
3158 /* determine offset of inner transport header */
3159 l4_offset = l4.hdr - skb->data;
3160
3161 /* remove payload length from inner checksum */
3162 paylen = skb->len - l4_offset;
3163
3164 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3165 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3166 /* compute length of segmentation header */
3167 *hdr_len = sizeof(*l4.udp) + l4_offset;
3168 } else {
3169 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3170 /* compute length of segmentation header */
3171 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3172 }
3173
3174 /* pull values out of skb_shinfo */
3175 gso_size = skb_shinfo(skb)->gso_size;
3176
3177 /* update GSO size and bytecount with header size */
3178 first->gso_segs = skb_shinfo(skb)->gso_segs;
3179 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3180
3181 /* find the field values */
3182 cd_cmd = I40E_TX_CTX_DESC_TSO;
3183 cd_tso_len = skb->len - *hdr_len;
3184 cd_mss = gso_size;
3185 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3186 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3187 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3188 return 1;
3189 }
3190
3191 /**
3192 * i40e_tsyn - set up the tsyn context descriptor
3193 * @tx_ring: ptr to the ring to send
3194 * @skb: ptr to the skb we're sending
3195 * @tx_flags: the collected send information
3196 * @cd_type_cmd_tso_mss: Quad Word 1
3197 *
3198 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3199 **/
i40e_tsyn(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u64 * cd_type_cmd_tso_mss)3200 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3201 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3202 {
3203 struct i40e_pf *pf;
3204
3205 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3206 return 0;
3207
3208 /* Tx timestamps cannot be sampled when doing TSO */
3209 if (tx_flags & I40E_TX_FLAGS_TSO)
3210 return 0;
3211
3212 /* only timestamp the outbound packet if the user has requested it and
3213 * we are not already transmitting a packet to be timestamped
3214 */
3215 pf = i40e_netdev_to_pf(tx_ring->netdev);
3216 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3217 return 0;
3218
3219 if (pf->ptp_tx &&
3220 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3221 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3222 pf->ptp_tx_start = jiffies;
3223 pf->ptp_tx_skb = skb_get(skb);
3224 } else {
3225 pf->tx_hwtstamp_skipped++;
3226 return 0;
3227 }
3228
3229 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3230 I40E_TXD_CTX_QW1_CMD_SHIFT;
3231
3232 return 1;
3233 }
3234
3235 /**
3236 * i40e_tx_enable_csum - Enable Tx checksum offloads
3237 * @skb: send buffer
3238 * @tx_flags: pointer to Tx flags currently set
3239 * @td_cmd: Tx descriptor command bits to set
3240 * @td_offset: Tx descriptor header offsets to set
3241 * @tx_ring: Tx descriptor ring
3242 * @cd_tunneling: ptr to context desc bits
3243 **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)3244 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3245 u32 *td_cmd, u32 *td_offset,
3246 struct i40e_ring *tx_ring,
3247 u32 *cd_tunneling)
3248 {
3249 union {
3250 struct iphdr *v4;
3251 struct ipv6hdr *v6;
3252 unsigned char *hdr;
3253 } ip;
3254 union {
3255 struct tcphdr *tcp;
3256 struct udphdr *udp;
3257 unsigned char *hdr;
3258 } l4;
3259 unsigned char *exthdr;
3260 u32 offset, cmd = 0;
3261 __be16 frag_off;
3262 __be16 protocol;
3263 u8 l4_proto = 0;
3264
3265 if (skb->ip_summed != CHECKSUM_PARTIAL)
3266 return 0;
3267
3268 protocol = vlan_get_protocol(skb);
3269
3270 if (eth_p_mpls(protocol)) {
3271 ip.hdr = skb_inner_network_header(skb);
3272 l4.hdr = skb_checksum_start(skb);
3273 } else {
3274 ip.hdr = skb_network_header(skb);
3275 l4.hdr = skb_transport_header(skb);
3276 }
3277
3278 /* set the tx_flags to indicate the IP protocol type. this is
3279 * required so that checksum header computation below is accurate.
3280 */
3281 if (ip.v4->version == 4)
3282 *tx_flags |= I40E_TX_FLAGS_IPV4;
3283 else
3284 *tx_flags |= I40E_TX_FLAGS_IPV6;
3285
3286 /* compute outer L2 header size */
3287 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3288
3289 if (skb->encapsulation) {
3290 u32 tunnel = 0;
3291 /* define outer network header type */
3292 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3293 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3294 I40E_TX_CTX_EXT_IP_IPV4 :
3295 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3296
3297 l4_proto = ip.v4->protocol;
3298 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3299 int ret;
3300
3301 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3302
3303 exthdr = ip.hdr + sizeof(*ip.v6);
3304 l4_proto = ip.v6->nexthdr;
3305 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3306 &l4_proto, &frag_off);
3307 if (ret < 0)
3308 return -1;
3309 }
3310
3311 /* define outer transport */
3312 switch (l4_proto) {
3313 case IPPROTO_UDP:
3314 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3315 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3316 break;
3317 case IPPROTO_GRE:
3318 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3319 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3320 break;
3321 case IPPROTO_IPIP:
3322 case IPPROTO_IPV6:
3323 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3324 l4.hdr = skb_inner_network_header(skb);
3325 break;
3326 default:
3327 if (*tx_flags & I40E_TX_FLAGS_TSO)
3328 return -1;
3329
3330 skb_checksum_help(skb);
3331 return 0;
3332 }
3333
3334 /* compute outer L3 header size */
3335 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3336 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3337
3338 /* switch IP header pointer from outer to inner header */
3339 ip.hdr = skb_inner_network_header(skb);
3340
3341 /* compute tunnel header size */
3342 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3343 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3344
3345 /* indicate if we need to offload outer UDP header */
3346 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3347 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3348 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3349 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3350
3351 /* record tunnel offload values */
3352 *cd_tunneling |= tunnel;
3353
3354 /* switch L4 header pointer from outer to inner */
3355 l4.hdr = skb_inner_transport_header(skb);
3356 l4_proto = 0;
3357
3358 /* reset type as we transition from outer to inner headers */
3359 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3360 if (ip.v4->version == 4)
3361 *tx_flags |= I40E_TX_FLAGS_IPV4;
3362 if (ip.v6->version == 6)
3363 *tx_flags |= I40E_TX_FLAGS_IPV6;
3364 }
3365
3366 /* Enable IP checksum offloads */
3367 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3368 l4_proto = ip.v4->protocol;
3369 /* the stack computes the IP header already, the only time we
3370 * need the hardware to recompute it is in the case of TSO.
3371 */
3372 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3373 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3374 I40E_TX_DESC_CMD_IIPT_IPV4;
3375 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3376 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3377
3378 exthdr = ip.hdr + sizeof(*ip.v6);
3379 l4_proto = ip.v6->nexthdr;
3380 if (l4.hdr != exthdr)
3381 ipv6_skip_exthdr(skb, exthdr - skb->data,
3382 &l4_proto, &frag_off);
3383 }
3384
3385 /* compute inner L3 header size */
3386 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3387
3388 /* Enable L4 checksum offloads */
3389 switch (l4_proto) {
3390 case IPPROTO_TCP:
3391 /* enable checksum offloads */
3392 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3393 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3394 break;
3395 case IPPROTO_SCTP:
3396 /* enable SCTP checksum offload */
3397 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3398 offset |= (sizeof(struct sctphdr) >> 2) <<
3399 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3400 break;
3401 case IPPROTO_UDP:
3402 /* enable UDP checksum offload */
3403 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3404 offset |= (sizeof(struct udphdr) >> 2) <<
3405 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3406 break;
3407 default:
3408 if (*tx_flags & I40E_TX_FLAGS_TSO)
3409 return -1;
3410 skb_checksum_help(skb);
3411 return 0;
3412 }
3413
3414 *td_cmd |= cmd;
3415 *td_offset |= offset;
3416
3417 return 1;
3418 }
3419
3420 /**
3421 * i40e_create_tx_ctx - Build the Tx context descriptor
3422 * @tx_ring: ring to create the descriptor on
3423 * @cd_type_cmd_tso_mss: Quad Word 1
3424 * @cd_tunneling: Quad Word 0 - bits 0-31
3425 * @cd_l2tag2: Quad Word 0 - bits 32-63
3426 **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)3427 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3428 const u64 cd_type_cmd_tso_mss,
3429 const u32 cd_tunneling, const u32 cd_l2tag2)
3430 {
3431 struct i40e_tx_context_desc *context_desc;
3432 int i = tx_ring->next_to_use;
3433
3434 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3435 !cd_tunneling && !cd_l2tag2)
3436 return;
3437
3438 /* grab the next descriptor */
3439 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3440
3441 i++;
3442 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3443
3444 /* cpu_to_le32 and assign to struct fields */
3445 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3446 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3447 context_desc->rsvd = cpu_to_le16(0);
3448 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3449 }
3450
3451 /**
3452 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3453 * @tx_ring: the ring to be checked
3454 * @size: the size buffer we want to assure is available
3455 *
3456 * Returns -EBUSY if a stop is needed, else 0
3457 **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)3458 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3459 {
3460 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3461 /* Memory barrier before checking head and tail */
3462 smp_mb();
3463
3464 ++tx_ring->tx_stats.tx_stopped;
3465
3466 /* Check again in a case another CPU has just made room available. */
3467 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3468 return -EBUSY;
3469
3470 /* A reprieve! - use start_queue because it doesn't call schedule */
3471 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3472 ++tx_ring->tx_stats.restart_queue;
3473 return 0;
3474 }
3475
3476 /**
3477 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3478 * @skb: send buffer
3479 *
3480 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3481 * and so we need to figure out the cases where we need to linearize the skb.
3482 *
3483 * For TSO we need to count the TSO header and segment payload separately.
3484 * As such we need to check cases where we have 7 fragments or more as we
3485 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3486 * the segment payload in the first descriptor, and another 7 for the
3487 * fragments.
3488 **/
__i40e_chk_linearize(struct sk_buff * skb)3489 bool __i40e_chk_linearize(struct sk_buff *skb)
3490 {
3491 const skb_frag_t *frag, *stale;
3492 int nr_frags, sum;
3493
3494 /* no need to check if number of frags is less than 7 */
3495 nr_frags = skb_shinfo(skb)->nr_frags;
3496 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3497 return false;
3498
3499 /* We need to walk through the list and validate that each group
3500 * of 6 fragments totals at least gso_size.
3501 */
3502 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3503 frag = &skb_shinfo(skb)->frags[0];
3504
3505 /* Initialize size to the negative value of gso_size minus 1. We
3506 * use this as the worst case scenerio in which the frag ahead
3507 * of us only provides one byte which is why we are limited to 6
3508 * descriptors for a single transmit as the header and previous
3509 * fragment are already consuming 2 descriptors.
3510 */
3511 sum = 1 - skb_shinfo(skb)->gso_size;
3512
3513 /* Add size of frags 0 through 4 to create our initial sum */
3514 sum += skb_frag_size(frag++);
3515 sum += skb_frag_size(frag++);
3516 sum += skb_frag_size(frag++);
3517 sum += skb_frag_size(frag++);
3518 sum += skb_frag_size(frag++);
3519
3520 /* Walk through fragments adding latest fragment, testing it, and
3521 * then removing stale fragments from the sum.
3522 */
3523 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3524 int stale_size = skb_frag_size(stale);
3525
3526 sum += skb_frag_size(frag++);
3527
3528 /* The stale fragment may present us with a smaller
3529 * descriptor than the actual fragment size. To account
3530 * for that we need to remove all the data on the front and
3531 * figure out what the remainder would be in the last
3532 * descriptor associated with the fragment.
3533 */
3534 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3535 int align_pad = -(skb_frag_off(stale)) &
3536 (I40E_MAX_READ_REQ_SIZE - 1);
3537
3538 sum -= align_pad;
3539 stale_size -= align_pad;
3540
3541 do {
3542 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3543 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3544 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3545 }
3546
3547 /* if sum is negative we failed to make sufficient progress */
3548 if (sum < 0)
3549 return true;
3550
3551 if (!nr_frags--)
3552 break;
3553
3554 sum -= stale_size;
3555 }
3556
3557 return false;
3558 }
3559
3560 /**
3561 * i40e_tx_map - Build the Tx descriptor
3562 * @tx_ring: ring to send buffer on
3563 * @skb: send buffer
3564 * @first: first buffer info buffer to use
3565 * @tx_flags: collected send information
3566 * @hdr_len: size of the packet header
3567 * @td_cmd: the command field in the descriptor
3568 * @td_offset: offset for checksum or crc
3569 *
3570 * Returns 0 on success, -1 on failure to DMA
3571 **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)3572 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3573 struct i40e_tx_buffer *first, u32 tx_flags,
3574 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3575 {
3576 unsigned int data_len = skb->data_len;
3577 unsigned int size = skb_headlen(skb);
3578 skb_frag_t *frag;
3579 struct i40e_tx_buffer *tx_bi;
3580 struct i40e_tx_desc *tx_desc;
3581 u16 i = tx_ring->next_to_use;
3582 u32 td_tag = 0;
3583 dma_addr_t dma;
3584 u16 desc_count = 1;
3585
3586 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3587 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3588 td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
3589 }
3590
3591 first->tx_flags = tx_flags;
3592
3593 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3594
3595 tx_desc = I40E_TX_DESC(tx_ring, i);
3596 tx_bi = first;
3597
3598 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3599 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3600
3601 if (dma_mapping_error(tx_ring->dev, dma))
3602 goto dma_error;
3603
3604 /* record length, and DMA address */
3605 dma_unmap_len_set(tx_bi, len, size);
3606 dma_unmap_addr_set(tx_bi, dma, dma);
3607
3608 /* align size to end of page */
3609 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3610 tx_desc->buffer_addr = cpu_to_le64(dma);
3611
3612 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3613 tx_desc->cmd_type_offset_bsz =
3614 build_ctob(td_cmd, td_offset,
3615 max_data, td_tag);
3616
3617 tx_desc++;
3618 i++;
3619 desc_count++;
3620
3621 if (i == tx_ring->count) {
3622 tx_desc = I40E_TX_DESC(tx_ring, 0);
3623 i = 0;
3624 }
3625
3626 dma += max_data;
3627 size -= max_data;
3628
3629 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3630 tx_desc->buffer_addr = cpu_to_le64(dma);
3631 }
3632
3633 if (likely(!data_len))
3634 break;
3635
3636 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3637 size, td_tag);
3638
3639 tx_desc++;
3640 i++;
3641 desc_count++;
3642
3643 if (i == tx_ring->count) {
3644 tx_desc = I40E_TX_DESC(tx_ring, 0);
3645 i = 0;
3646 }
3647
3648 size = skb_frag_size(frag);
3649 data_len -= size;
3650
3651 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3652 DMA_TO_DEVICE);
3653
3654 tx_bi = &tx_ring->tx_bi[i];
3655 }
3656
3657 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3658
3659 i++;
3660 if (i == tx_ring->count)
3661 i = 0;
3662
3663 tx_ring->next_to_use = i;
3664
3665 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3666
3667 /* write last descriptor with EOP bit */
3668 td_cmd |= I40E_TX_DESC_CMD_EOP;
3669
3670 /* We OR these values together to check both against 4 (WB_STRIDE)
3671 * below. This is safe since we don't re-use desc_count afterwards.
3672 */
3673 desc_count |= ++tx_ring->packet_stride;
3674
3675 if (desc_count >= WB_STRIDE) {
3676 /* write last descriptor with RS bit set */
3677 td_cmd |= I40E_TX_DESC_CMD_RS;
3678 tx_ring->packet_stride = 0;
3679 }
3680
3681 tx_desc->cmd_type_offset_bsz =
3682 build_ctob(td_cmd, td_offset, size, td_tag);
3683
3684 skb_tx_timestamp(skb);
3685
3686 /* Force memory writes to complete before letting h/w know there
3687 * are new descriptors to fetch.
3688 *
3689 * We also use this memory barrier to make certain all of the
3690 * status bits have been updated before next_to_watch is written.
3691 */
3692 wmb();
3693
3694 /* set next_to_watch value indicating a packet is present */
3695 first->next_to_watch = tx_desc;
3696
3697 /* notify HW of packet */
3698 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3699 writel(i, tx_ring->tail);
3700 }
3701
3702 return 0;
3703
3704 dma_error:
3705 dev_info(tx_ring->dev, "TX DMA map failed\n");
3706
3707 /* clear dma mappings for failed tx_bi map */
3708 for (;;) {
3709 tx_bi = &tx_ring->tx_bi[i];
3710 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3711 if (tx_bi == first)
3712 break;
3713 if (i == 0)
3714 i = tx_ring->count;
3715 i--;
3716 }
3717
3718 tx_ring->next_to_use = i;
3719
3720 return -1;
3721 }
3722
i40e_swdcb_skb_tx_hash(struct net_device * dev,const struct sk_buff * skb,u16 num_tx_queues)3723 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3724 const struct sk_buff *skb,
3725 u16 num_tx_queues)
3726 {
3727 u32 jhash_initval_salt = 0xd631614b;
3728 u32 hash;
3729
3730 if (skb->sk && skb->sk->sk_hash)
3731 hash = skb->sk->sk_hash;
3732 else
3733 hash = (__force u16)skb->protocol ^ skb->hash;
3734
3735 hash = jhash_1word(hash, jhash_initval_salt);
3736
3737 return (u16)(((u64)hash * num_tx_queues) >> 32);
3738 }
3739
i40e_lan_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device __always_unused * sb_dev)3740 u16 i40e_lan_select_queue(struct net_device *netdev,
3741 struct sk_buff *skb,
3742 struct net_device __always_unused *sb_dev)
3743 {
3744 struct i40e_netdev_priv *np = netdev_priv(netdev);
3745 struct i40e_vsi *vsi = np->vsi;
3746 struct i40e_hw *hw;
3747 u16 qoffset;
3748 u16 qcount;
3749 u8 tclass;
3750 u16 hash;
3751 u8 prio;
3752
3753 /* is DCB enabled at all? */
3754 if (vsi->tc_config.numtc == 1 ||
3755 i40e_is_tc_mqprio_enabled(vsi->back))
3756 return netdev_pick_tx(netdev, skb, sb_dev);
3757
3758 prio = skb->priority;
3759 hw = &vsi->back->hw;
3760 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3761 /* sanity check */
3762 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3763 tclass = 0;
3764
3765 /* select a queue assigned for the given TC */
3766 qcount = vsi->tc_config.tc_info[tclass].qcount;
3767 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3768
3769 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3770 return qoffset + hash;
3771 }
3772
3773 /**
3774 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3775 * @xdpf: data to transmit
3776 * @xdp_ring: XDP Tx ring
3777 **/
i40e_xmit_xdp_ring(struct xdp_frame * xdpf,struct i40e_ring * xdp_ring)3778 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3779 struct i40e_ring *xdp_ring)
3780 {
3781 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3782 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3783 u16 i = 0, index = xdp_ring->next_to_use;
3784 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3785 struct i40e_tx_buffer *tx_bi = tx_head;
3786 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3787 void *data = xdpf->data;
3788 u32 size = xdpf->len;
3789
3790 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3791 xdp_ring->tx_stats.tx_busy++;
3792 return I40E_XDP_CONSUMED;
3793 }
3794
3795 tx_head->bytecount = xdp_get_frame_len(xdpf);
3796 tx_head->gso_segs = 1;
3797 tx_head->xdpf = xdpf;
3798
3799 for (;;) {
3800 dma_addr_t dma;
3801
3802 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3803 if (dma_mapping_error(xdp_ring->dev, dma))
3804 goto unmap;
3805
3806 /* record length, and DMA address */
3807 dma_unmap_len_set(tx_bi, len, size);
3808 dma_unmap_addr_set(tx_bi, dma, dma);
3809
3810 tx_desc->buffer_addr = cpu_to_le64(dma);
3811 tx_desc->cmd_type_offset_bsz =
3812 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3813
3814 if (++index == xdp_ring->count)
3815 index = 0;
3816
3817 if (i == nr_frags)
3818 break;
3819
3820 tx_bi = &xdp_ring->tx_bi[index];
3821 tx_desc = I40E_TX_DESC(xdp_ring, index);
3822
3823 data = skb_frag_address(&sinfo->frags[i]);
3824 size = skb_frag_size(&sinfo->frags[i]);
3825 i++;
3826 }
3827
3828 tx_desc->cmd_type_offset_bsz |=
3829 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3830
3831 /* Make certain all of the status bits have been updated
3832 * before next_to_watch is written.
3833 */
3834 smp_wmb();
3835
3836 xdp_ring->xdp_tx_active++;
3837
3838 tx_head->next_to_watch = tx_desc;
3839 xdp_ring->next_to_use = index;
3840
3841 return I40E_XDP_TX;
3842
3843 unmap:
3844 for (;;) {
3845 tx_bi = &xdp_ring->tx_bi[index];
3846 if (dma_unmap_len(tx_bi, len))
3847 dma_unmap_page(xdp_ring->dev,
3848 dma_unmap_addr(tx_bi, dma),
3849 dma_unmap_len(tx_bi, len),
3850 DMA_TO_DEVICE);
3851 dma_unmap_len_set(tx_bi, len, 0);
3852 if (tx_bi == tx_head)
3853 break;
3854
3855 if (!index)
3856 index += xdp_ring->count;
3857 index--;
3858 }
3859
3860 return I40E_XDP_CONSUMED;
3861 }
3862
3863 /**
3864 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3865 * @skb: send buffer
3866 * @tx_ring: ring to send buffer on
3867 *
3868 * Returns NETDEV_TX_OK if sent, else an error code
3869 **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)3870 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3871 struct i40e_ring *tx_ring)
3872 {
3873 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3874 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3875 struct i40e_tx_buffer *first;
3876 u32 td_offset = 0;
3877 u32 tx_flags = 0;
3878 u32 td_cmd = 0;
3879 u8 hdr_len = 0;
3880 int tso, count;
3881 int tsyn;
3882
3883 /* prefetch the data, we'll need it later */
3884 prefetch(skb->data);
3885
3886 i40e_trace(xmit_frame_ring, skb, tx_ring);
3887
3888 count = i40e_xmit_descriptor_count(skb);
3889 if (i40e_chk_linearize(skb, count)) {
3890 if (__skb_linearize(skb)) {
3891 dev_kfree_skb_any(skb);
3892 return NETDEV_TX_OK;
3893 }
3894 count = i40e_txd_use_count(skb->len);
3895 tx_ring->tx_stats.tx_linearize++;
3896 }
3897
3898 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3899 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3900 * + 4 desc gap to avoid the cache line where head is,
3901 * + 1 desc for context descriptor,
3902 * otherwise try next time
3903 */
3904 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3905 tx_ring->tx_stats.tx_busy++;
3906 return NETDEV_TX_BUSY;
3907 }
3908
3909 /* record the location of the first descriptor for this packet */
3910 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3911 first->skb = skb;
3912 first->bytecount = skb->len;
3913 first->gso_segs = 1;
3914
3915 /* prepare the xmit flags */
3916 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3917 goto out_drop;
3918
3919 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3920
3921 if (tso < 0)
3922 goto out_drop;
3923 else if (tso)
3924 tx_flags |= I40E_TX_FLAGS_TSO;
3925
3926 /* Always offload the checksum, since it's in the data descriptor */
3927 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3928 tx_ring, &cd_tunneling);
3929 if (tso < 0)
3930 goto out_drop;
3931
3932 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3933
3934 if (tsyn)
3935 tx_flags |= I40E_TX_FLAGS_TSYN;
3936
3937 /* always enable CRC insertion offload */
3938 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3939
3940 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3941 cd_tunneling, cd_l2tag2);
3942
3943 /* Add Flow Director ATR if it's enabled.
3944 *
3945 * NOTE: this must always be directly before the data descriptor.
3946 */
3947 i40e_atr(tx_ring, skb, tx_flags);
3948
3949 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3950 td_cmd, td_offset))
3951 goto cleanup_tx_tstamp;
3952
3953 return NETDEV_TX_OK;
3954
3955 out_drop:
3956 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3957 dev_kfree_skb_any(first->skb);
3958 first->skb = NULL;
3959 cleanup_tx_tstamp:
3960 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3961 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3962
3963 dev_kfree_skb_any(pf->ptp_tx_skb);
3964 pf->ptp_tx_skb = NULL;
3965 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3966 }
3967
3968 return NETDEV_TX_OK;
3969 }
3970
3971 /**
3972 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3973 * @skb: send buffer
3974 * @netdev: network interface device structure
3975 *
3976 * Returns NETDEV_TX_OK if sent, else an error code
3977 **/
i40e_lan_xmit_frame(struct sk_buff * skb,struct net_device * netdev)3978 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3979 {
3980 struct i40e_netdev_priv *np = netdev_priv(netdev);
3981 struct i40e_vsi *vsi = np->vsi;
3982 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3983
3984 /* hardware can't handle really short frames, hardware padding works
3985 * beyond this point
3986 */
3987 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3988 return NETDEV_TX_OK;
3989
3990 return i40e_xmit_frame_ring(skb, tx_ring);
3991 }
3992
3993 /**
3994 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3995 * @dev: netdev
3996 * @n: number of frames
3997 * @frames: array of XDP buffer pointers
3998 * @flags: XDP extra info
3999 *
4000 * Returns number of frames successfully sent. Failed frames
4001 * will be free'ed by XDP core.
4002 *
4003 * For error cases, a negative errno code is returned and no-frames
4004 * are transmitted (caller must handle freeing frames).
4005 **/
i40e_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)4006 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4007 u32 flags)
4008 {
4009 struct i40e_netdev_priv *np = netdev_priv(dev);
4010 unsigned int queue_index = smp_processor_id();
4011 struct i40e_vsi *vsi = np->vsi;
4012 struct i40e_pf *pf = vsi->back;
4013 struct i40e_ring *xdp_ring;
4014 int nxmit = 0;
4015 int i;
4016
4017 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4018 return -ENETDOWN;
4019
4020 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4021 test_bit(__I40E_CONFIG_BUSY, pf->state))
4022 return -ENXIO;
4023
4024 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4025 return -EINVAL;
4026
4027 xdp_ring = vsi->xdp_rings[queue_index];
4028
4029 for (i = 0; i < n; i++) {
4030 struct xdp_frame *xdpf = frames[i];
4031 int err;
4032
4033 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4034 if (err != I40E_XDP_TX)
4035 break;
4036 nxmit++;
4037 }
4038
4039 if (unlikely(flags & XDP_XMIT_FLUSH))
4040 i40e_xdp_ring_update_tail(xdp_ring);
4041
4042 return nxmit;
4043 }
4044