1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Silvaco dual-role I3C master driver
4 *
5 * Copyright (C) 2020 Silvaco
6 * Author: Miquel RAYNAL <miquel.raynal@bootlin.com>
7 * Based on a work from: Conor Culhane <conor.culhane@silvaco.com>
8 */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/errno.h>
14 #include <linux/i3c/master.h>
15 #include <linux/interrupt.h>
16 #include <linux/iopoll.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/pinctrl/consumer.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23
24 /* Master Mode Registers */
25 #define SVC_I3C_MCONFIG 0x000
26 #define SVC_I3C_MCONFIG_MASTER_EN BIT(0)
27 #define SVC_I3C_MCONFIG_DISTO(x) FIELD_PREP(BIT(3), (x))
28 #define SVC_I3C_MCONFIG_HKEEP(x) FIELD_PREP(GENMASK(5, 4), (x))
29 #define SVC_I3C_MCONFIG_ODSTOP(x) FIELD_PREP(BIT(6), (x))
30 #define SVC_I3C_MCONFIG_PPBAUD(x) FIELD_PREP(GENMASK(11, 8), (x))
31 #define SVC_I3C_MCONFIG_PPLOW(x) FIELD_PREP(GENMASK(15, 12), (x))
32 #define SVC_I3C_MCONFIG_ODBAUD(x) FIELD_PREP(GENMASK(23, 16), (x))
33 #define SVC_I3C_MCONFIG_ODHPP(x) FIELD_PREP(BIT(24), (x))
34 #define SVC_I3C_MCONFIG_SKEW(x) FIELD_PREP(GENMASK(27, 25), (x))
35 #define SVC_I3C_MCONFIG_I2CBAUD(x) FIELD_PREP(GENMASK(31, 28), (x))
36
37 #define SVC_I3C_MCTRL 0x084
38 #define SVC_I3C_MCTRL_REQUEST_MASK GENMASK(2, 0)
39 #define SVC_I3C_MCTRL_REQUEST_NONE 0
40 #define SVC_I3C_MCTRL_REQUEST_START_ADDR 1
41 #define SVC_I3C_MCTRL_REQUEST_STOP 2
42 #define SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK 3
43 #define SVC_I3C_MCTRL_REQUEST_PROC_DAA 4
44 #define SVC_I3C_MCTRL_REQUEST_AUTO_IBI 7
45 #define SVC_I3C_MCTRL_TYPE_I3C 0
46 #define SVC_I3C_MCTRL_TYPE_I2C BIT(4)
47 #define SVC_I3C_MCTRL_IBIRESP_AUTO 0
48 #define SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE 0
49 #define SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE BIT(7)
50 #define SVC_I3C_MCTRL_IBIRESP_NACK BIT(6)
51 #define SVC_I3C_MCTRL_IBIRESP_MANUAL GENMASK(7, 6)
52 #define SVC_I3C_MCTRL_DIR(x) FIELD_PREP(BIT(8), (x))
53 #define SVC_I3C_MCTRL_DIR_WRITE 0
54 #define SVC_I3C_MCTRL_DIR_READ 1
55 #define SVC_I3C_MCTRL_ADDR(x) FIELD_PREP(GENMASK(15, 9), (x))
56 #define SVC_I3C_MCTRL_RDTERM(x) FIELD_PREP(GENMASK(23, 16), (x))
57
58 #define SVC_I3C_MSTATUS 0x088
59 #define SVC_I3C_MSTATUS_STATE(x) FIELD_GET(GENMASK(2, 0), (x))
60 #define SVC_I3C_MSTATUS_STATE_DAA(x) (SVC_I3C_MSTATUS_STATE(x) == 5)
61 #define SVC_I3C_MSTATUS_STATE_IDLE(x) (SVC_I3C_MSTATUS_STATE(x) == 0)
62 #define SVC_I3C_MSTATUS_BETWEEN(x) FIELD_GET(BIT(4), (x))
63 #define SVC_I3C_MSTATUS_NACKED(x) FIELD_GET(BIT(5), (x))
64 #define SVC_I3C_MSTATUS_IBITYPE(x) FIELD_GET(GENMASK(7, 6), (x))
65 #define SVC_I3C_MSTATUS_IBITYPE_IBI 1
66 #define SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST 2
67 #define SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN 3
68 #define SVC_I3C_MINT_SLVSTART BIT(8)
69 #define SVC_I3C_MINT_MCTRLDONE BIT(9)
70 #define SVC_I3C_MINT_COMPLETE BIT(10)
71 #define SVC_I3C_MINT_RXPEND BIT(11)
72 #define SVC_I3C_MINT_TXNOTFULL BIT(12)
73 #define SVC_I3C_MINT_IBIWON BIT(13)
74 #define SVC_I3C_MINT_ERRWARN BIT(15)
75 #define SVC_I3C_MSTATUS_SLVSTART(x) FIELD_GET(SVC_I3C_MINT_SLVSTART, (x))
76 #define SVC_I3C_MSTATUS_MCTRLDONE(x) FIELD_GET(SVC_I3C_MINT_MCTRLDONE, (x))
77 #define SVC_I3C_MSTATUS_COMPLETE(x) FIELD_GET(SVC_I3C_MINT_COMPLETE, (x))
78 #define SVC_I3C_MSTATUS_RXPEND(x) FIELD_GET(SVC_I3C_MINT_RXPEND, (x))
79 #define SVC_I3C_MSTATUS_TXNOTFULL(x) FIELD_GET(SVC_I3C_MINT_TXNOTFULL, (x))
80 #define SVC_I3C_MSTATUS_IBIWON(x) FIELD_GET(SVC_I3C_MINT_IBIWON, (x))
81 #define SVC_I3C_MSTATUS_ERRWARN(x) FIELD_GET(SVC_I3C_MINT_ERRWARN, (x))
82 #define SVC_I3C_MSTATUS_IBIADDR(x) FIELD_GET(GENMASK(30, 24), (x))
83
84 #define SVC_I3C_IBIRULES 0x08C
85 #define SVC_I3C_IBIRULES_ADDR(slot, addr) FIELD_PREP(GENMASK(29, 0), \
86 ((addr) & 0x3F) << ((slot) * 6))
87 #define SVC_I3C_IBIRULES_ADDRS 5
88 #define SVC_I3C_IBIRULES_MSB0 BIT(30)
89 #define SVC_I3C_IBIRULES_NOBYTE BIT(31)
90 #define SVC_I3C_IBIRULES_MANDBYTE 0
91 #define SVC_I3C_MINTSET 0x090
92 #define SVC_I3C_MINTCLR 0x094
93 #define SVC_I3C_MINTMASKED 0x098
94 #define SVC_I3C_MERRWARN 0x09C
95 #define SVC_I3C_MERRWARN_NACK BIT(2)
96 #define SVC_I3C_MERRWARN_TIMEOUT BIT(20)
97 #define SVC_I3C_MDMACTRL 0x0A0
98 #define SVC_I3C_MDATACTRL 0x0AC
99 #define SVC_I3C_MDATACTRL_FLUSHTB BIT(0)
100 #define SVC_I3C_MDATACTRL_FLUSHRB BIT(1)
101 #define SVC_I3C_MDATACTRL_UNLOCK_TRIG BIT(3)
102 #define SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL GENMASK(5, 4)
103 #define SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY 0
104 #define SVC_I3C_MDATACTRL_RXCOUNT(x) FIELD_GET(GENMASK(28, 24), (x))
105 #define SVC_I3C_MDATACTRL_TXFULL BIT(30)
106 #define SVC_I3C_MDATACTRL_RXEMPTY BIT(31)
107
108 #define SVC_I3C_MWDATAB 0x0B0
109 #define SVC_I3C_MWDATAB_END BIT(8)
110
111 #define SVC_I3C_MWDATABE 0x0B4
112 #define SVC_I3C_MWDATAH 0x0B8
113 #define SVC_I3C_MWDATAHE 0x0BC
114 #define SVC_I3C_MRDATAB 0x0C0
115 #define SVC_I3C_MRDATAH 0x0C8
116 #define SVC_I3C_MWMSG_SDR 0x0D0
117 #define SVC_I3C_MRMSG_SDR 0x0D4
118 #define SVC_I3C_MWMSG_DDR 0x0D8
119 #define SVC_I3C_MRMSG_DDR 0x0DC
120
121 #define SVC_I3C_MDYNADDR 0x0E4
122 #define SVC_MDYNADDR_VALID BIT(0)
123 #define SVC_MDYNADDR_ADDR(x) FIELD_PREP(GENMASK(7, 1), (x))
124
125 #define SVC_I3C_MAX_DEVS 32
126 #define SVC_I3C_PM_TIMEOUT_MS 1000
127
128 /* This parameter depends on the implementation and may be tuned */
129 #define SVC_I3C_FIFO_SIZE 16
130 #define SVC_I3C_PPBAUD_MAX 15
131 #define SVC_I3C_QUICK_I2C_CLK 4170000
132
133 #define SVC_I3C_EVENT_IBI GENMASK(7, 0)
134 #define SVC_I3C_EVENT_HOTJOIN BIT(31)
135
136 struct svc_i3c_cmd {
137 u8 addr;
138 bool rnw;
139 u8 *in;
140 const void *out;
141 unsigned int len;
142 unsigned int actual_len;
143 struct i3c_priv_xfer *xfer;
144 bool continued;
145 };
146
147 struct svc_i3c_xfer {
148 struct list_head node;
149 struct completion comp;
150 int ret;
151 unsigned int type;
152 unsigned int ncmds;
153 struct svc_i3c_cmd cmds[] __counted_by(ncmds);
154 };
155
156 struct svc_i3c_regs_save {
157 u32 mconfig;
158 u32 mdynaddr;
159 };
160
161 /**
162 * struct svc_i3c_master - Silvaco I3C Master structure
163 * @base: I3C master controller
164 * @dev: Corresponding device
165 * @regs: Memory mapping
166 * @saved_regs: Volatile values for PM operations
167 * @free_slots: Bit array of available slots
168 * @addrs: Array containing the dynamic addresses of each attached device
169 * @descs: Array of descriptors, one per attached device
170 * @hj_work: Hot-join work
171 * @ibi_work: IBI work
172 * @irq: Main interrupt
173 * @pclk: System clock
174 * @fclk: Fast clock (bus)
175 * @sclk: Slow clock (other events)
176 * @xferqueue: Transfer queue structure
177 * @xferqueue.list: List member
178 * @xferqueue.cur: Current ongoing transfer
179 * @xferqueue.lock: Queue lock
180 * @ibi: IBI structure
181 * @ibi.num_slots: Number of slots available in @ibi.slots
182 * @ibi.slots: Available IBI slots
183 * @ibi.tbq_slot: To be queued IBI slot
184 * @ibi.lock: IBI lock
185 * @lock: Transfer lock, protect between IBI work thread and callbacks from master
186 * @enabled_events: Bit masks for enable events (IBI, HotJoin).
187 * @mctrl_config: Configuration value in SVC_I3C_MCTRL for setting speed back.
188 */
189 struct svc_i3c_master {
190 struct i3c_master_controller base;
191 struct device *dev;
192 void __iomem *regs;
193 struct svc_i3c_regs_save saved_regs;
194 u32 free_slots;
195 u8 addrs[SVC_I3C_MAX_DEVS];
196 struct i3c_dev_desc *descs[SVC_I3C_MAX_DEVS];
197 struct work_struct hj_work;
198 struct work_struct ibi_work;
199 int irq;
200 struct clk *pclk;
201 struct clk *fclk;
202 struct clk *sclk;
203 struct {
204 struct list_head list;
205 struct svc_i3c_xfer *cur;
206 /* Prevent races between transfers */
207 spinlock_t lock;
208 } xferqueue;
209 struct {
210 unsigned int num_slots;
211 struct i3c_dev_desc **slots;
212 struct i3c_ibi_slot *tbq_slot;
213 /* Prevent races within IBI handlers */
214 spinlock_t lock;
215 } ibi;
216 struct mutex lock;
217 u32 enabled_events;
218 u32 mctrl_config;
219 };
220
221 /**
222 * struct svc_i3c_i2c_dev_data - Device specific data
223 * @index: Index in the master tables corresponding to this device
224 * @ibi: IBI slot index in the master structure
225 * @ibi_pool: IBI pool associated to this device
226 */
227 struct svc_i3c_i2c_dev_data {
228 u8 index;
229 int ibi;
230 struct i3c_generic_ibi_pool *ibi_pool;
231 };
232
is_events_enabled(struct svc_i3c_master * master,u32 mask)233 static inline bool is_events_enabled(struct svc_i3c_master *master, u32 mask)
234 {
235 return !!(master->enabled_events & mask);
236 }
237
svc_i3c_master_error(struct svc_i3c_master * master)238 static bool svc_i3c_master_error(struct svc_i3c_master *master)
239 {
240 u32 mstatus, merrwarn;
241
242 mstatus = readl(master->regs + SVC_I3C_MSTATUS);
243 if (SVC_I3C_MSTATUS_ERRWARN(mstatus)) {
244 merrwarn = readl(master->regs + SVC_I3C_MERRWARN);
245 writel(merrwarn, master->regs + SVC_I3C_MERRWARN);
246
247 /* Ignore timeout error */
248 if (merrwarn & SVC_I3C_MERRWARN_TIMEOUT) {
249 dev_dbg(master->dev, "Warning condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
250 mstatus, merrwarn);
251 return false;
252 }
253
254 dev_err(master->dev,
255 "Error condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n",
256 mstatus, merrwarn);
257
258 return true;
259 }
260
261 return false;
262 }
263
svc_i3c_master_enable_interrupts(struct svc_i3c_master * master,u32 mask)264 static void svc_i3c_master_enable_interrupts(struct svc_i3c_master *master, u32 mask)
265 {
266 writel(mask, master->regs + SVC_I3C_MINTSET);
267 }
268
svc_i3c_master_disable_interrupts(struct svc_i3c_master * master)269 static void svc_i3c_master_disable_interrupts(struct svc_i3c_master *master)
270 {
271 u32 mask = readl(master->regs + SVC_I3C_MINTSET);
272
273 writel(mask, master->regs + SVC_I3C_MINTCLR);
274 }
275
svc_i3c_master_clear_merrwarn(struct svc_i3c_master * master)276 static void svc_i3c_master_clear_merrwarn(struct svc_i3c_master *master)
277 {
278 /* Clear pending warnings */
279 writel(readl(master->regs + SVC_I3C_MERRWARN),
280 master->regs + SVC_I3C_MERRWARN);
281 }
282
svc_i3c_master_flush_fifo(struct svc_i3c_master * master)283 static void svc_i3c_master_flush_fifo(struct svc_i3c_master *master)
284 {
285 /* Flush FIFOs */
286 writel(SVC_I3C_MDATACTRL_FLUSHTB | SVC_I3C_MDATACTRL_FLUSHRB,
287 master->regs + SVC_I3C_MDATACTRL);
288 }
289
svc_i3c_master_reset_fifo_trigger(struct svc_i3c_master * master)290 static void svc_i3c_master_reset_fifo_trigger(struct svc_i3c_master *master)
291 {
292 u32 reg;
293
294 /* Set RX and TX tigger levels, flush FIFOs */
295 reg = SVC_I3C_MDATACTRL_FLUSHTB |
296 SVC_I3C_MDATACTRL_FLUSHRB |
297 SVC_I3C_MDATACTRL_UNLOCK_TRIG |
298 SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL |
299 SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY;
300 writel(reg, master->regs + SVC_I3C_MDATACTRL);
301 }
302
svc_i3c_master_reset(struct svc_i3c_master * master)303 static void svc_i3c_master_reset(struct svc_i3c_master *master)
304 {
305 svc_i3c_master_clear_merrwarn(master);
306 svc_i3c_master_reset_fifo_trigger(master);
307 svc_i3c_master_disable_interrupts(master);
308 }
309
310 static inline struct svc_i3c_master *
to_svc_i3c_master(struct i3c_master_controller * master)311 to_svc_i3c_master(struct i3c_master_controller *master)
312 {
313 return container_of(master, struct svc_i3c_master, base);
314 }
315
svc_i3c_master_hj_work(struct work_struct * work)316 static void svc_i3c_master_hj_work(struct work_struct *work)
317 {
318 struct svc_i3c_master *master;
319
320 master = container_of(work, struct svc_i3c_master, hj_work);
321 i3c_master_do_daa(&master->base);
322 }
323
324 static struct i3c_dev_desc *
svc_i3c_master_dev_from_addr(struct svc_i3c_master * master,unsigned int ibiaddr)325 svc_i3c_master_dev_from_addr(struct svc_i3c_master *master,
326 unsigned int ibiaddr)
327 {
328 int i;
329
330 for (i = 0; i < SVC_I3C_MAX_DEVS; i++)
331 if (master->addrs[i] == ibiaddr)
332 break;
333
334 if (i == SVC_I3C_MAX_DEVS)
335 return NULL;
336
337 return master->descs[i];
338 }
339
svc_i3c_master_emit_stop(struct svc_i3c_master * master)340 static void svc_i3c_master_emit_stop(struct svc_i3c_master *master)
341 {
342 writel(SVC_I3C_MCTRL_REQUEST_STOP, master->regs + SVC_I3C_MCTRL);
343
344 /*
345 * This delay is necessary after the emission of a stop, otherwise eg.
346 * repeating IBIs do not get detected. There is a note in the manual
347 * about it, stating that the stop condition might not be settled
348 * correctly if a start condition follows too rapidly.
349 */
350 udelay(1);
351 }
352
svc_i3c_master_handle_ibi(struct svc_i3c_master * master,struct i3c_dev_desc * dev)353 static int svc_i3c_master_handle_ibi(struct svc_i3c_master *master,
354 struct i3c_dev_desc *dev)
355 {
356 struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
357 struct i3c_ibi_slot *slot;
358 unsigned int count;
359 u32 mdatactrl;
360 int ret, val;
361 u8 *buf;
362
363 slot = i3c_generic_ibi_get_free_slot(data->ibi_pool);
364 if (!slot)
365 return -ENOSPC;
366
367 slot->len = 0;
368 buf = slot->data;
369
370 ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val,
371 SVC_I3C_MSTATUS_COMPLETE(val), 0, 1000);
372 if (ret) {
373 dev_err(master->dev, "Timeout when polling for COMPLETE\n");
374 return ret;
375 }
376
377 while (SVC_I3C_MSTATUS_RXPEND(readl(master->regs + SVC_I3C_MSTATUS)) &&
378 slot->len < SVC_I3C_FIFO_SIZE) {
379 mdatactrl = readl(master->regs + SVC_I3C_MDATACTRL);
380 count = SVC_I3C_MDATACTRL_RXCOUNT(mdatactrl);
381 readsl(master->regs + SVC_I3C_MRDATAB, buf, count);
382 slot->len += count;
383 buf += count;
384 }
385
386 master->ibi.tbq_slot = slot;
387
388 return 0;
389 }
390
svc_i3c_master_ack_ibi(struct svc_i3c_master * master,bool mandatory_byte)391 static int svc_i3c_master_ack_ibi(struct svc_i3c_master *master,
392 bool mandatory_byte)
393 {
394 unsigned int ibi_ack_nack;
395 u32 reg;
396
397 ibi_ack_nack = SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK;
398 if (mandatory_byte)
399 ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE;
400 else
401 ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE;
402
403 writel(ibi_ack_nack, master->regs + SVC_I3C_MCTRL);
404
405 return readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg,
406 SVC_I3C_MSTATUS_MCTRLDONE(reg), 1, 1000);
407
408 }
409
svc_i3c_master_nack_ibi(struct svc_i3c_master * master)410 static int svc_i3c_master_nack_ibi(struct svc_i3c_master *master)
411 {
412 int ret;
413 u32 reg;
414
415 writel(SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK |
416 SVC_I3C_MCTRL_IBIRESP_NACK,
417 master->regs + SVC_I3C_MCTRL);
418
419 ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg,
420 SVC_I3C_MSTATUS_MCTRLDONE(reg), 1, 1000);
421 return ret;
422 }
423
svc_i3c_master_handle_ibi_won(struct svc_i3c_master * master,u32 mstatus)424 static int svc_i3c_master_handle_ibi_won(struct svc_i3c_master *master, u32 mstatus)
425 {
426 u32 ibitype;
427 int ret = 0;
428
429 ibitype = SVC_I3C_MSTATUS_IBITYPE(mstatus);
430
431 writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
432
433 /* Hardware can't auto emit NACK for hot join and master request */
434 switch (ibitype) {
435 case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
436 case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
437 ret = svc_i3c_master_nack_ibi(master);
438 }
439
440 return ret;
441 }
442
svc_i3c_master_ibi_work(struct work_struct * work)443 static void svc_i3c_master_ibi_work(struct work_struct *work)
444 {
445 struct svc_i3c_master *master = container_of(work, struct svc_i3c_master, ibi_work);
446 struct svc_i3c_i2c_dev_data *data;
447 unsigned int ibitype, ibiaddr;
448 struct i3c_dev_desc *dev;
449 u32 status, val;
450 int ret;
451
452 /*
453 * According to I3C spec ver 1.1, 09-Jun-2021, section 5.1.2.5:
454 *
455 * The I3C Controller shall hold SCL low while the Bus is in ACK/NACK Phase of I3C/I2C
456 * transfer. But maximum stall time is 100us. The IRQs have to be disabled to prevent
457 * schedule during the whole I3C transaction, otherwise, the I3C bus timeout may happen if
458 * any irq or schedule happen during transaction.
459 */
460 guard(spinlock_irqsave)(&master->xferqueue.lock);
461
462 /*
463 * IBIWON may be set before SVC_I3C_MCTRL_REQUEST_AUTO_IBI, causing
464 * readl_relaxed_poll_timeout() to return immediately. Consequently,
465 * ibitype will be 0 since it was last updated only after the 8th SCL
466 * cycle, leading to missed client IBI handlers.
467 *
468 * A typical scenario is when IBIWON occurs and bus arbitration is lost
469 * at svc_i3c_master_priv_xfers().
470 *
471 * Clear SVC_I3C_MINT_IBIWON before sending SVC_I3C_MCTRL_REQUEST_AUTO_IBI.
472 */
473 writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
474
475 /* Acknowledge the incoming interrupt with the AUTOIBI mechanism */
476 writel(SVC_I3C_MCTRL_REQUEST_AUTO_IBI |
477 SVC_I3C_MCTRL_IBIRESP_AUTO,
478 master->regs + SVC_I3C_MCTRL);
479
480 /* Wait for IBIWON, should take approximately 100us */
481 ret = readl_relaxed_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, val,
482 SVC_I3C_MSTATUS_IBIWON(val), 0, 100);
483 if (ret) {
484 dev_err(master->dev, "Timeout when polling for IBIWON\n");
485 svc_i3c_master_emit_stop(master);
486 goto reenable_ibis;
487 }
488
489 status = readl(master->regs + SVC_I3C_MSTATUS);
490 ibitype = SVC_I3C_MSTATUS_IBITYPE(status);
491 ibiaddr = SVC_I3C_MSTATUS_IBIADDR(status);
492
493 /* Handle the critical responses to IBI's */
494 switch (ibitype) {
495 case SVC_I3C_MSTATUS_IBITYPE_IBI:
496 dev = svc_i3c_master_dev_from_addr(master, ibiaddr);
497 if (!dev || !is_events_enabled(master, SVC_I3C_EVENT_IBI))
498 svc_i3c_master_nack_ibi(master);
499 else
500 svc_i3c_master_handle_ibi(master, dev);
501 break;
502 case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
503 if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
504 svc_i3c_master_ack_ibi(master, false);
505 else
506 svc_i3c_master_nack_ibi(master);
507 break;
508 case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
509 svc_i3c_master_nack_ibi(master);
510 break;
511 default:
512 break;
513 }
514
515 /*
516 * If an error happened, we probably got interrupted and the exchange
517 * timedout. In this case we just drop everything, emit a stop and wait
518 * for the slave to interrupt again.
519 */
520 if (svc_i3c_master_error(master)) {
521 if (master->ibi.tbq_slot) {
522 data = i3c_dev_get_master_data(dev);
523 i3c_generic_ibi_recycle_slot(data->ibi_pool,
524 master->ibi.tbq_slot);
525 master->ibi.tbq_slot = NULL;
526 }
527
528 svc_i3c_master_emit_stop(master);
529
530 goto reenable_ibis;
531 }
532
533 /* Handle the non critical tasks */
534 switch (ibitype) {
535 case SVC_I3C_MSTATUS_IBITYPE_IBI:
536 if (dev) {
537 i3c_master_queue_ibi(dev, master->ibi.tbq_slot);
538 master->ibi.tbq_slot = NULL;
539 }
540 svc_i3c_master_emit_stop(master);
541 break;
542 case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN:
543 svc_i3c_master_emit_stop(master);
544 if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN))
545 queue_work(master->base.wq, &master->hj_work);
546 break;
547 case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST:
548 default:
549 break;
550 }
551
552 reenable_ibis:
553 svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
554 }
555
svc_i3c_master_irq_handler(int irq,void * dev_id)556 static irqreturn_t svc_i3c_master_irq_handler(int irq, void *dev_id)
557 {
558 struct svc_i3c_master *master = (struct svc_i3c_master *)dev_id;
559 u32 active = readl(master->regs + SVC_I3C_MSTATUS);
560
561 if (!SVC_I3C_MSTATUS_SLVSTART(active))
562 return IRQ_NONE;
563
564 /* Clear the interrupt status */
565 writel(SVC_I3C_MINT_SLVSTART, master->regs + SVC_I3C_MSTATUS);
566
567 svc_i3c_master_disable_interrupts(master);
568
569 /* Handle the interrupt in a non atomic context */
570 queue_work(master->base.wq, &master->ibi_work);
571
572 return IRQ_HANDLED;
573 }
574
svc_i3c_master_set_speed(struct i3c_master_controller * m,enum i3c_open_drain_speed speed)575 static int svc_i3c_master_set_speed(struct i3c_master_controller *m,
576 enum i3c_open_drain_speed speed)
577 {
578 struct svc_i3c_master *master = to_svc_i3c_master(m);
579 struct i3c_bus *bus = i3c_master_get_bus(&master->base);
580 u32 ppbaud, odbaud, odhpp, mconfig;
581 unsigned long fclk_rate;
582 int ret;
583
584 ret = pm_runtime_resume_and_get(master->dev);
585 if (ret < 0) {
586 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
587 return ret;
588 }
589
590 switch (speed) {
591 case I3C_OPEN_DRAIN_SLOW_SPEED:
592 fclk_rate = clk_get_rate(master->fclk);
593 if (!fclk_rate) {
594 ret = -EINVAL;
595 goto rpm_out;
596 }
597 /*
598 * Set 50% duty-cycle I2C speed to I3C OPEN-DRAIN mode, so the first
599 * broadcast address is visible to all I2C/I3C devices on the I3C bus.
600 * I3C device working as a I2C device will turn off its 50ns Spike
601 * Filter to change to I3C mode.
602 */
603 mconfig = master->mctrl_config;
604 ppbaud = FIELD_GET(GENMASK(11, 8), mconfig);
605 odhpp = 0;
606 odbaud = DIV_ROUND_UP(fclk_rate, bus->scl_rate.i2c * (2 + 2 * ppbaud)) - 1;
607 mconfig &= ~GENMASK(24, 16);
608 mconfig |= SVC_I3C_MCONFIG_ODBAUD(odbaud) | SVC_I3C_MCONFIG_ODHPP(odhpp);
609 writel(mconfig, master->regs + SVC_I3C_MCONFIG);
610 break;
611 case I3C_OPEN_DRAIN_NORMAL_SPEED:
612 writel(master->mctrl_config, master->regs + SVC_I3C_MCONFIG);
613 break;
614 }
615
616 rpm_out:
617 pm_runtime_mark_last_busy(master->dev);
618 pm_runtime_put_autosuspend(master->dev);
619
620 return ret;
621 }
622
svc_i3c_master_bus_init(struct i3c_master_controller * m)623 static int svc_i3c_master_bus_init(struct i3c_master_controller *m)
624 {
625 struct svc_i3c_master *master = to_svc_i3c_master(m);
626 struct i3c_bus *bus = i3c_master_get_bus(m);
627 struct i3c_device_info info = {};
628 unsigned long fclk_rate, fclk_period_ns;
629 unsigned long i2c_period_ns, i2c_scl_rate, i3c_scl_rate;
630 unsigned int high_period_ns, od_low_period_ns;
631 u32 ppbaud, pplow, odhpp, odbaud, odstop, i2cbaud, reg;
632 int ret;
633
634 ret = pm_runtime_resume_and_get(master->dev);
635 if (ret < 0) {
636 dev_err(master->dev,
637 "<%s> cannot resume i3c bus master, err: %d\n",
638 __func__, ret);
639 return ret;
640 }
641
642 /* Timings derivation */
643 fclk_rate = clk_get_rate(master->fclk);
644 if (!fclk_rate) {
645 ret = -EINVAL;
646 goto rpm_out;
647 }
648
649 fclk_period_ns = DIV_ROUND_UP(1000000000, fclk_rate);
650 i2c_period_ns = DIV_ROUND_UP(1000000000, bus->scl_rate.i2c);
651 i2c_scl_rate = bus->scl_rate.i2c;
652 i3c_scl_rate = bus->scl_rate.i3c;
653
654 /*
655 * Using I3C Push-Pull mode, target is 12.5MHz/80ns period.
656 * Simplest configuration is using a 50% duty-cycle of 40ns.
657 */
658 ppbaud = DIV_ROUND_UP(fclk_rate / 2, i3c_scl_rate) - 1;
659 pplow = 0;
660
661 /*
662 * Using I3C Open-Drain mode, target is 4.17MHz/240ns with a
663 * duty-cycle tuned so that high levels are filetered out by
664 * the 50ns filter (target being 40ns).
665 */
666 odhpp = 1;
667 high_period_ns = (ppbaud + 1) * fclk_period_ns;
668 odbaud = DIV_ROUND_UP(fclk_rate, SVC_I3C_QUICK_I2C_CLK * (1 + ppbaud)) - 2;
669 od_low_period_ns = (odbaud + 1) * high_period_ns;
670
671 switch (bus->mode) {
672 case I3C_BUS_MODE_PURE:
673 i2cbaud = 0;
674 odstop = 0;
675 break;
676 case I3C_BUS_MODE_MIXED_FAST:
677 /*
678 * Using I2C Fm+ mode, target is 1MHz/1000ns, the difference
679 * between the high and low period does not really matter.
680 */
681 i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2;
682 odstop = 1;
683 break;
684 case I3C_BUS_MODE_MIXED_LIMITED:
685 case I3C_BUS_MODE_MIXED_SLOW:
686 /* I3C PP + I3C OP + I2C OP both use i2c clk rate */
687 if (ppbaud > SVC_I3C_PPBAUD_MAX) {
688 ppbaud = SVC_I3C_PPBAUD_MAX;
689 pplow = DIV_ROUND_UP(fclk_rate, i3c_scl_rate) - (2 + 2 * ppbaud);
690 }
691
692 high_period_ns = (ppbaud + 1) * fclk_period_ns;
693 odhpp = 0;
694 odbaud = DIV_ROUND_UP(fclk_rate, i2c_scl_rate * (2 + 2 * ppbaud)) - 1;
695
696 od_low_period_ns = (odbaud + 1) * high_period_ns;
697 i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2;
698 odstop = 1;
699 break;
700 default:
701 goto rpm_out;
702 }
703
704 reg = SVC_I3C_MCONFIG_MASTER_EN |
705 SVC_I3C_MCONFIG_DISTO(0) |
706 SVC_I3C_MCONFIG_HKEEP(0) |
707 SVC_I3C_MCONFIG_ODSTOP(odstop) |
708 SVC_I3C_MCONFIG_PPBAUD(ppbaud) |
709 SVC_I3C_MCONFIG_PPLOW(pplow) |
710 SVC_I3C_MCONFIG_ODBAUD(odbaud) |
711 SVC_I3C_MCONFIG_ODHPP(odhpp) |
712 SVC_I3C_MCONFIG_SKEW(0) |
713 SVC_I3C_MCONFIG_I2CBAUD(i2cbaud);
714 writel(reg, master->regs + SVC_I3C_MCONFIG);
715
716 master->mctrl_config = reg;
717 /* Master core's registration */
718 ret = i3c_master_get_free_addr(m, 0);
719 if (ret < 0)
720 goto rpm_out;
721
722 info.dyn_addr = ret;
723
724 writel(SVC_MDYNADDR_VALID | SVC_MDYNADDR_ADDR(info.dyn_addr),
725 master->regs + SVC_I3C_MDYNADDR);
726
727 ret = i3c_master_set_info(&master->base, &info);
728 if (ret)
729 goto rpm_out;
730
731 rpm_out:
732 pm_runtime_mark_last_busy(master->dev);
733 pm_runtime_put_autosuspend(master->dev);
734
735 return ret;
736 }
737
svc_i3c_master_bus_cleanup(struct i3c_master_controller * m)738 static void svc_i3c_master_bus_cleanup(struct i3c_master_controller *m)
739 {
740 struct svc_i3c_master *master = to_svc_i3c_master(m);
741 int ret;
742
743 ret = pm_runtime_resume_and_get(master->dev);
744 if (ret < 0) {
745 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
746 return;
747 }
748
749 svc_i3c_master_disable_interrupts(master);
750
751 /* Disable master */
752 writel(0, master->regs + SVC_I3C_MCONFIG);
753
754 pm_runtime_mark_last_busy(master->dev);
755 pm_runtime_put_autosuspend(master->dev);
756 }
757
svc_i3c_master_reserve_slot(struct svc_i3c_master * master)758 static int svc_i3c_master_reserve_slot(struct svc_i3c_master *master)
759 {
760 unsigned int slot;
761
762 if (!(master->free_slots & GENMASK(SVC_I3C_MAX_DEVS - 1, 0)))
763 return -ENOSPC;
764
765 slot = ffs(master->free_slots) - 1;
766
767 master->free_slots &= ~BIT(slot);
768
769 return slot;
770 }
771
svc_i3c_master_release_slot(struct svc_i3c_master * master,unsigned int slot)772 static void svc_i3c_master_release_slot(struct svc_i3c_master *master,
773 unsigned int slot)
774 {
775 master->free_slots |= BIT(slot);
776 }
777
svc_i3c_master_attach_i3c_dev(struct i3c_dev_desc * dev)778 static int svc_i3c_master_attach_i3c_dev(struct i3c_dev_desc *dev)
779 {
780 struct i3c_master_controller *m = i3c_dev_get_master(dev);
781 struct svc_i3c_master *master = to_svc_i3c_master(m);
782 struct svc_i3c_i2c_dev_data *data;
783 int slot;
784
785 slot = svc_i3c_master_reserve_slot(master);
786 if (slot < 0)
787 return slot;
788
789 data = kzalloc(sizeof(*data), GFP_KERNEL);
790 if (!data) {
791 svc_i3c_master_release_slot(master, slot);
792 return -ENOMEM;
793 }
794
795 data->ibi = -1;
796 data->index = slot;
797 master->addrs[slot] = dev->info.dyn_addr ? dev->info.dyn_addr :
798 dev->info.static_addr;
799 master->descs[slot] = dev;
800
801 i3c_dev_set_master_data(dev, data);
802
803 return 0;
804 }
805
svc_i3c_master_reattach_i3c_dev(struct i3c_dev_desc * dev,u8 old_dyn_addr)806 static int svc_i3c_master_reattach_i3c_dev(struct i3c_dev_desc *dev,
807 u8 old_dyn_addr)
808 {
809 struct i3c_master_controller *m = i3c_dev_get_master(dev);
810 struct svc_i3c_master *master = to_svc_i3c_master(m);
811 struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
812
813 master->addrs[data->index] = dev->info.dyn_addr ? dev->info.dyn_addr :
814 dev->info.static_addr;
815
816 return 0;
817 }
818
svc_i3c_master_detach_i3c_dev(struct i3c_dev_desc * dev)819 static void svc_i3c_master_detach_i3c_dev(struct i3c_dev_desc *dev)
820 {
821 struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
822 struct i3c_master_controller *m = i3c_dev_get_master(dev);
823 struct svc_i3c_master *master = to_svc_i3c_master(m);
824
825 master->addrs[data->index] = 0;
826 svc_i3c_master_release_slot(master, data->index);
827
828 kfree(data);
829 }
830
svc_i3c_master_attach_i2c_dev(struct i2c_dev_desc * dev)831 static int svc_i3c_master_attach_i2c_dev(struct i2c_dev_desc *dev)
832 {
833 struct i3c_master_controller *m = i2c_dev_get_master(dev);
834 struct svc_i3c_master *master = to_svc_i3c_master(m);
835 struct svc_i3c_i2c_dev_data *data;
836 int slot;
837
838 slot = svc_i3c_master_reserve_slot(master);
839 if (slot < 0)
840 return slot;
841
842 data = kzalloc(sizeof(*data), GFP_KERNEL);
843 if (!data) {
844 svc_i3c_master_release_slot(master, slot);
845 return -ENOMEM;
846 }
847
848 data->index = slot;
849 master->addrs[slot] = dev->addr;
850
851 i2c_dev_set_master_data(dev, data);
852
853 return 0;
854 }
855
svc_i3c_master_detach_i2c_dev(struct i2c_dev_desc * dev)856 static void svc_i3c_master_detach_i2c_dev(struct i2c_dev_desc *dev)
857 {
858 struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
859 struct i3c_master_controller *m = i2c_dev_get_master(dev);
860 struct svc_i3c_master *master = to_svc_i3c_master(m);
861
862 svc_i3c_master_release_slot(master, data->index);
863
864 kfree(data);
865 }
866
svc_i3c_master_readb(struct svc_i3c_master * master,u8 * dst,unsigned int len)867 static int svc_i3c_master_readb(struct svc_i3c_master *master, u8 *dst,
868 unsigned int len)
869 {
870 int ret, i;
871 u32 reg;
872
873 for (i = 0; i < len; i++) {
874 ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
875 reg,
876 SVC_I3C_MSTATUS_RXPEND(reg),
877 0, 1000);
878 if (ret)
879 return ret;
880
881 dst[i] = readl(master->regs + SVC_I3C_MRDATAB);
882 }
883
884 return 0;
885 }
886
svc_i3c_master_do_daa_locked(struct svc_i3c_master * master,u8 * addrs,unsigned int * count)887 static int svc_i3c_master_do_daa_locked(struct svc_i3c_master *master,
888 u8 *addrs, unsigned int *count)
889 {
890 u64 prov_id[SVC_I3C_MAX_DEVS] = {}, nacking_prov_id = 0;
891 unsigned int dev_nb = 0, last_addr = 0;
892 u32 reg;
893 int ret, i;
894
895 while (true) {
896 /* clean SVC_I3C_MINT_IBIWON w1c bits */
897 writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
898
899 /* SVC_I3C_MCTRL_REQUEST_PROC_DAA have two mode, ENTER DAA or PROCESS DAA.
900 *
901 * ENTER DAA:
902 * 1 will issue START, 7E, ENTDAA, and then emits 7E/R to process first target.
903 * 2 Stops just before the new Dynamic Address (DA) is to be emitted.
904 *
905 * PROCESS DAA:
906 * 1 The DA is written using MWDATAB or ADDR bits 6:0.
907 * 2 ProcessDAA is requested again to write the new address, and then starts the
908 * next (START, 7E, ENTDAA) unless marked to STOP; an MSTATUS indicating NACK
909 * means DA was not accepted (e.g. parity error). If PROCESSDAA is NACKed on the
910 * 7E/R, which means no more Slaves need a DA, then a COMPLETE will be signaled
911 * (along with DONE), and a STOP issued automatically.
912 */
913 writel(SVC_I3C_MCTRL_REQUEST_PROC_DAA |
914 SVC_I3C_MCTRL_TYPE_I3C |
915 SVC_I3C_MCTRL_IBIRESP_NACK |
916 SVC_I3C_MCTRL_DIR(SVC_I3C_MCTRL_DIR_WRITE),
917 master->regs + SVC_I3C_MCTRL);
918
919 /*
920 * Either one slave will send its ID, or the assignment process
921 * is done.
922 */
923 ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
924 reg,
925 SVC_I3C_MSTATUS_RXPEND(reg) |
926 SVC_I3C_MSTATUS_MCTRLDONE(reg),
927 1, 1000);
928 if (ret)
929 break;
930
931 if (SVC_I3C_MSTATUS_RXPEND(reg)) {
932 u8 data[6];
933
934 /*
935 * We only care about the 48-bit provisioned ID yet to
936 * be sure a device does not nack an address twice.
937 * Otherwise, we would just need to flush the RX FIFO.
938 */
939 ret = svc_i3c_master_readb(master, data, 6);
940 if (ret)
941 break;
942
943 for (i = 0; i < 6; i++)
944 prov_id[dev_nb] |= (u64)(data[i]) << (8 * (5 - i));
945
946 /* We do not care about the BCR and DCR yet */
947 ret = svc_i3c_master_readb(master, data, 2);
948 if (ret)
949 break;
950 } else if (SVC_I3C_MSTATUS_IBIWON(reg)) {
951 ret = svc_i3c_master_handle_ibi_won(master, reg);
952 if (ret)
953 break;
954 continue;
955 } else if (SVC_I3C_MSTATUS_MCTRLDONE(reg)) {
956 if (SVC_I3C_MSTATUS_STATE_IDLE(reg) &&
957 SVC_I3C_MSTATUS_COMPLETE(reg)) {
958 /*
959 * All devices received and acked they dynamic
960 * address, this is the natural end of the DAA
961 * procedure.
962 *
963 * Hardware will auto emit STOP at this case.
964 */
965 *count = dev_nb;
966 return 0;
967
968 } else if (SVC_I3C_MSTATUS_NACKED(reg)) {
969 /* No I3C devices attached */
970 if (dev_nb == 0) {
971 /*
972 * Hardware can't treat first NACK for ENTAA as normal
973 * COMPLETE. So need manual emit STOP.
974 */
975 ret = 0;
976 *count = 0;
977 break;
978 }
979
980 /*
981 * A slave device nacked the address, this is
982 * allowed only once, DAA will be stopped and
983 * then resumed. The same device is supposed to
984 * answer again immediately and shall ack the
985 * address this time.
986 */
987 if (prov_id[dev_nb] == nacking_prov_id) {
988 ret = -EIO;
989 break;
990 }
991
992 dev_nb--;
993 nacking_prov_id = prov_id[dev_nb];
994 svc_i3c_master_emit_stop(master);
995
996 continue;
997 } else {
998 break;
999 }
1000 }
1001
1002 /* Wait for the slave to be ready to receive its address */
1003 ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS,
1004 reg,
1005 SVC_I3C_MSTATUS_MCTRLDONE(reg) &&
1006 SVC_I3C_MSTATUS_STATE_DAA(reg) &&
1007 SVC_I3C_MSTATUS_BETWEEN(reg),
1008 0, 1000);
1009 if (ret)
1010 break;
1011
1012 /* Give the slave device a suitable dynamic address */
1013 ret = i3c_master_get_free_addr(&master->base, last_addr + 1);
1014 if (ret < 0)
1015 break;
1016
1017 addrs[dev_nb] = ret;
1018 dev_dbg(master->dev, "DAA: device %d assigned to 0x%02x\n",
1019 dev_nb, addrs[dev_nb]);
1020
1021 writel(addrs[dev_nb], master->regs + SVC_I3C_MWDATAB);
1022 last_addr = addrs[dev_nb++];
1023 }
1024
1025 /* Need manual issue STOP except for Complete condition */
1026 svc_i3c_master_emit_stop(master);
1027 return ret;
1028 }
1029
svc_i3c_update_ibirules(struct svc_i3c_master * master)1030 static int svc_i3c_update_ibirules(struct svc_i3c_master *master)
1031 {
1032 struct i3c_dev_desc *dev;
1033 u32 reg_mbyte = 0, reg_nobyte = SVC_I3C_IBIRULES_NOBYTE;
1034 unsigned int mbyte_addr_ok = 0, mbyte_addr_ko = 0, nobyte_addr_ok = 0,
1035 nobyte_addr_ko = 0;
1036 bool list_mbyte = false, list_nobyte = false;
1037
1038 /* Create the IBIRULES register for both cases */
1039 i3c_bus_for_each_i3cdev(&master->base.bus, dev) {
1040 if (I3C_BCR_DEVICE_ROLE(dev->info.bcr) == I3C_BCR_I3C_MASTER)
1041 continue;
1042
1043 if (dev->info.bcr & I3C_BCR_IBI_PAYLOAD) {
1044 reg_mbyte |= SVC_I3C_IBIRULES_ADDR(mbyte_addr_ok,
1045 dev->info.dyn_addr);
1046
1047 /* IBI rules cannot be applied to devices with MSb=1 */
1048 if (dev->info.dyn_addr & BIT(7))
1049 mbyte_addr_ko++;
1050 else
1051 mbyte_addr_ok++;
1052 } else {
1053 reg_nobyte |= SVC_I3C_IBIRULES_ADDR(nobyte_addr_ok,
1054 dev->info.dyn_addr);
1055
1056 /* IBI rules cannot be applied to devices with MSb=1 */
1057 if (dev->info.dyn_addr & BIT(7))
1058 nobyte_addr_ko++;
1059 else
1060 nobyte_addr_ok++;
1061 }
1062 }
1063
1064 /* Device list cannot be handled by hardware */
1065 if (!mbyte_addr_ko && mbyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
1066 list_mbyte = true;
1067
1068 if (!nobyte_addr_ko && nobyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS)
1069 list_nobyte = true;
1070
1071 /* No list can be properly handled, return an error */
1072 if (!list_mbyte && !list_nobyte)
1073 return -ERANGE;
1074
1075 /* Pick the first list that can be handled by hardware, randomly */
1076 if (list_mbyte)
1077 writel(reg_mbyte, master->regs + SVC_I3C_IBIRULES);
1078 else
1079 writel(reg_nobyte, master->regs + SVC_I3C_IBIRULES);
1080
1081 return 0;
1082 }
1083
svc_i3c_master_do_daa(struct i3c_master_controller * m)1084 static int svc_i3c_master_do_daa(struct i3c_master_controller *m)
1085 {
1086 struct svc_i3c_master *master = to_svc_i3c_master(m);
1087 u8 addrs[SVC_I3C_MAX_DEVS];
1088 unsigned long flags;
1089 unsigned int dev_nb;
1090 int ret, i;
1091
1092 ret = pm_runtime_resume_and_get(master->dev);
1093 if (ret < 0) {
1094 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1095 return ret;
1096 }
1097
1098 spin_lock_irqsave(&master->xferqueue.lock, flags);
1099 ret = svc_i3c_master_do_daa_locked(master, addrs, &dev_nb);
1100 spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1101
1102 svc_i3c_master_clear_merrwarn(master);
1103 if (ret)
1104 goto rpm_out;
1105
1106 /*
1107 * Register all devices who participated to the core
1108 *
1109 * If two devices (A and B) are detected in DAA and address 0xa is assigned to
1110 * device A and 0xb to device B, a failure in i3c_master_add_i3c_dev_locked()
1111 * for device A (addr: 0xa) could prevent device B (addr: 0xb) from being
1112 * registered on the bus. The I3C stack might still consider 0xb a free
1113 * address. If a subsequent Hotjoin occurs, 0xb might be assigned to Device A,
1114 * causing both devices A and B to use the same address 0xb, violating the I3C
1115 * specification.
1116 *
1117 * The return value for i3c_master_add_i3c_dev_locked() should not be checked
1118 * because subsequent steps will scan the entire I3C bus, independent of
1119 * whether i3c_master_add_i3c_dev_locked() returns success.
1120 *
1121 * If device A registration fails, there is still a chance to register device
1122 * B. i3c_master_add_i3c_dev_locked() can reset DAA if a failure occurs while
1123 * retrieving device information.
1124 */
1125 for (i = 0; i < dev_nb; i++)
1126 i3c_master_add_i3c_dev_locked(m, addrs[i]);
1127
1128 /* Configure IBI auto-rules */
1129 ret = svc_i3c_update_ibirules(master);
1130 if (ret)
1131 dev_err(master->dev, "Cannot handle such a list of devices");
1132
1133 rpm_out:
1134 pm_runtime_mark_last_busy(master->dev);
1135 pm_runtime_put_autosuspend(master->dev);
1136
1137 return ret;
1138 }
1139
svc_i3c_master_read(struct svc_i3c_master * master,u8 * in,unsigned int len)1140 static int svc_i3c_master_read(struct svc_i3c_master *master,
1141 u8 *in, unsigned int len)
1142 {
1143 int offset = 0, i;
1144 u32 mdctrl, mstatus;
1145 bool completed = false;
1146 unsigned int count;
1147 unsigned long start = jiffies;
1148
1149 while (!completed) {
1150 mstatus = readl(master->regs + SVC_I3C_MSTATUS);
1151 if (SVC_I3C_MSTATUS_COMPLETE(mstatus) != 0)
1152 completed = true;
1153
1154 if (time_after(jiffies, start + msecs_to_jiffies(1000))) {
1155 dev_dbg(master->dev, "I3C read timeout\n");
1156 return -ETIMEDOUT;
1157 }
1158
1159 mdctrl = readl(master->regs + SVC_I3C_MDATACTRL);
1160 count = SVC_I3C_MDATACTRL_RXCOUNT(mdctrl);
1161 if (offset + count > len) {
1162 dev_err(master->dev, "I3C receive length too long!\n");
1163 return -EINVAL;
1164 }
1165 for (i = 0; i < count; i++)
1166 in[offset + i] = readl(master->regs + SVC_I3C_MRDATAB);
1167
1168 offset += count;
1169 }
1170
1171 return offset;
1172 }
1173
svc_i3c_master_write(struct svc_i3c_master * master,const u8 * out,unsigned int len)1174 static int svc_i3c_master_write(struct svc_i3c_master *master,
1175 const u8 *out, unsigned int len)
1176 {
1177 int offset = 0, ret;
1178 u32 mdctrl;
1179
1180 while (offset < len) {
1181 ret = readl_poll_timeout(master->regs + SVC_I3C_MDATACTRL,
1182 mdctrl,
1183 !(mdctrl & SVC_I3C_MDATACTRL_TXFULL),
1184 0, 1000);
1185 if (ret)
1186 return ret;
1187
1188 /*
1189 * The last byte to be sent over the bus must either have the
1190 * "end" bit set or be written in MWDATABE.
1191 */
1192 if (likely(offset < (len - 1)))
1193 writel(out[offset++], master->regs + SVC_I3C_MWDATAB);
1194 else
1195 writel(out[offset++], master->regs + SVC_I3C_MWDATABE);
1196 }
1197
1198 return 0;
1199 }
1200
svc_i3c_master_xfer(struct svc_i3c_master * master,bool rnw,unsigned int xfer_type,u8 addr,u8 * in,const u8 * out,unsigned int xfer_len,unsigned int * actual_len,bool continued)1201 static int svc_i3c_master_xfer(struct svc_i3c_master *master,
1202 bool rnw, unsigned int xfer_type, u8 addr,
1203 u8 *in, const u8 *out, unsigned int xfer_len,
1204 unsigned int *actual_len, bool continued)
1205 {
1206 int retry = 2;
1207 u32 reg;
1208 int ret;
1209
1210 /* clean SVC_I3C_MINT_IBIWON w1c bits */
1211 writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS);
1212
1213
1214 while (retry--) {
1215 writel(SVC_I3C_MCTRL_REQUEST_START_ADDR |
1216 xfer_type |
1217 SVC_I3C_MCTRL_IBIRESP_NACK |
1218 SVC_I3C_MCTRL_DIR(rnw) |
1219 SVC_I3C_MCTRL_ADDR(addr) |
1220 SVC_I3C_MCTRL_RDTERM(*actual_len),
1221 master->regs + SVC_I3C_MCTRL);
1222
1223 ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1224 SVC_I3C_MSTATUS_MCTRLDONE(reg), 0, 1000);
1225 if (ret)
1226 goto emit_stop;
1227
1228 /*
1229 * According to I3C spec ver 1.1.1, 5.1.2.2.3 Consequence of Controller Starting a
1230 * Frame with I3C Target Address.
1231 *
1232 * The I3C Controller normally should start a Frame, the Address may be arbitrated,
1233 * and so the Controller shall monitor to see whether an In-Band Interrupt request,
1234 * a Controller Role Request (i.e., Secondary Controller requests to become the
1235 * Active Controller), or a Hot-Join Request has been made.
1236 *
1237 * If missed IBIWON check, the wrong data will be return. When IBIWON happen, issue
1238 * repeat start. Address arbitrate only happen at START, never happen at REPEAT
1239 * start.
1240 */
1241 if (SVC_I3C_MSTATUS_IBIWON(reg)) {
1242 ret = svc_i3c_master_handle_ibi_won(master, reg);
1243 if (ret)
1244 goto emit_stop;
1245 continue;
1246 }
1247
1248 if (readl(master->regs + SVC_I3C_MERRWARN) & SVC_I3C_MERRWARN_NACK) {
1249 /*
1250 * According to I3C Spec 1.1.1, 11-Jun-2021, section: 5.1.2.2.3.
1251 * If the Controller chooses to start an I3C Message with an I3C Dynamic
1252 * Address, then special provisions shall be made because that same I3C
1253 * Target may be initiating an IBI or a Controller Role Request. So, one of
1254 * three things may happen: (skip 1, 2)
1255 *
1256 * 3. The Addresses match and the RnW bits also match, and so neither
1257 * Controller nor Target will ACK since both are expecting the other side to
1258 * provide ACK. As a result, each side might think it had "won" arbitration,
1259 * but neither side would continue, as each would subsequently see that the
1260 * other did not provide ACK.
1261 * ...
1262 * For either value of RnW: Due to the NACK, the Controller shall defer the
1263 * Private Write or Private Read, and should typically transmit the Target
1264 * Address again after a Repeated START (i.e., the next one or any one prior
1265 * to a STOP in the Frame). Since the Address Header following a Repeated
1266 * START is not arbitrated, the Controller will always win (see Section
1267 * 5.1.2.2.4).
1268 */
1269 if (retry && addr != 0x7e) {
1270 writel(SVC_I3C_MERRWARN_NACK, master->regs + SVC_I3C_MERRWARN);
1271 } else {
1272 ret = -ENXIO;
1273 *actual_len = 0;
1274 goto emit_stop;
1275 }
1276 } else {
1277 break;
1278 }
1279 }
1280
1281 if (rnw)
1282 ret = svc_i3c_master_read(master, in, xfer_len);
1283 else
1284 ret = svc_i3c_master_write(master, out, xfer_len);
1285 if (ret < 0)
1286 goto emit_stop;
1287
1288 if (rnw)
1289 *actual_len = ret;
1290
1291 ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1292 SVC_I3C_MSTATUS_COMPLETE(reg), 0, 1000);
1293 if (ret)
1294 goto emit_stop;
1295
1296 writel(SVC_I3C_MINT_COMPLETE, master->regs + SVC_I3C_MSTATUS);
1297
1298 if (!continued) {
1299 svc_i3c_master_emit_stop(master);
1300
1301 /* Wait idle if stop is sent. */
1302 readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg,
1303 SVC_I3C_MSTATUS_STATE_IDLE(reg), 0, 1000);
1304 }
1305
1306 return 0;
1307
1308 emit_stop:
1309 svc_i3c_master_emit_stop(master);
1310 svc_i3c_master_clear_merrwarn(master);
1311
1312 return ret;
1313 }
1314
1315 static struct svc_i3c_xfer *
svc_i3c_master_alloc_xfer(struct svc_i3c_master * master,unsigned int ncmds)1316 svc_i3c_master_alloc_xfer(struct svc_i3c_master *master, unsigned int ncmds)
1317 {
1318 struct svc_i3c_xfer *xfer;
1319
1320 xfer = kzalloc(struct_size(xfer, cmds, ncmds), GFP_KERNEL);
1321 if (!xfer)
1322 return NULL;
1323
1324 INIT_LIST_HEAD(&xfer->node);
1325 xfer->ncmds = ncmds;
1326 xfer->ret = -ETIMEDOUT;
1327
1328 return xfer;
1329 }
1330
svc_i3c_master_free_xfer(struct svc_i3c_xfer * xfer)1331 static void svc_i3c_master_free_xfer(struct svc_i3c_xfer *xfer)
1332 {
1333 kfree(xfer);
1334 }
1335
svc_i3c_master_dequeue_xfer_locked(struct svc_i3c_master * master,struct svc_i3c_xfer * xfer)1336 static void svc_i3c_master_dequeue_xfer_locked(struct svc_i3c_master *master,
1337 struct svc_i3c_xfer *xfer)
1338 {
1339 if (master->xferqueue.cur == xfer)
1340 master->xferqueue.cur = NULL;
1341 else
1342 list_del_init(&xfer->node);
1343 }
1344
svc_i3c_master_dequeue_xfer(struct svc_i3c_master * master,struct svc_i3c_xfer * xfer)1345 static void svc_i3c_master_dequeue_xfer(struct svc_i3c_master *master,
1346 struct svc_i3c_xfer *xfer)
1347 {
1348 unsigned long flags;
1349
1350 spin_lock_irqsave(&master->xferqueue.lock, flags);
1351 svc_i3c_master_dequeue_xfer_locked(master, xfer);
1352 spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1353 }
1354
svc_i3c_master_start_xfer_locked(struct svc_i3c_master * master)1355 static void svc_i3c_master_start_xfer_locked(struct svc_i3c_master *master)
1356 {
1357 struct svc_i3c_xfer *xfer = master->xferqueue.cur;
1358 int ret, i;
1359
1360 if (!xfer)
1361 return;
1362
1363 svc_i3c_master_clear_merrwarn(master);
1364 svc_i3c_master_flush_fifo(master);
1365
1366 for (i = 0; i < xfer->ncmds; i++) {
1367 struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1368
1369 ret = svc_i3c_master_xfer(master, cmd->rnw, xfer->type,
1370 cmd->addr, cmd->in, cmd->out,
1371 cmd->len, &cmd->actual_len,
1372 cmd->continued);
1373 /* cmd->xfer is NULL if I2C or CCC transfer */
1374 if (cmd->xfer)
1375 cmd->xfer->actual_len = cmd->actual_len;
1376
1377 if (ret)
1378 break;
1379 }
1380
1381 xfer->ret = ret;
1382 complete(&xfer->comp);
1383
1384 if (ret < 0)
1385 svc_i3c_master_dequeue_xfer_locked(master, xfer);
1386
1387 xfer = list_first_entry_or_null(&master->xferqueue.list,
1388 struct svc_i3c_xfer,
1389 node);
1390 if (xfer)
1391 list_del_init(&xfer->node);
1392
1393 master->xferqueue.cur = xfer;
1394 svc_i3c_master_start_xfer_locked(master);
1395 }
1396
svc_i3c_master_enqueue_xfer(struct svc_i3c_master * master,struct svc_i3c_xfer * xfer)1397 static void svc_i3c_master_enqueue_xfer(struct svc_i3c_master *master,
1398 struct svc_i3c_xfer *xfer)
1399 {
1400 unsigned long flags;
1401 int ret;
1402
1403 ret = pm_runtime_resume_and_get(master->dev);
1404 if (ret < 0) {
1405 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1406 return;
1407 }
1408
1409 init_completion(&xfer->comp);
1410 spin_lock_irqsave(&master->xferqueue.lock, flags);
1411 if (master->xferqueue.cur) {
1412 list_add_tail(&xfer->node, &master->xferqueue.list);
1413 } else {
1414 master->xferqueue.cur = xfer;
1415 svc_i3c_master_start_xfer_locked(master);
1416 }
1417 spin_unlock_irqrestore(&master->xferqueue.lock, flags);
1418
1419 pm_runtime_mark_last_busy(master->dev);
1420 pm_runtime_put_autosuspend(master->dev);
1421 }
1422
1423 static bool
svc_i3c_master_supports_ccc_cmd(struct i3c_master_controller * master,const struct i3c_ccc_cmd * cmd)1424 svc_i3c_master_supports_ccc_cmd(struct i3c_master_controller *master,
1425 const struct i3c_ccc_cmd *cmd)
1426 {
1427 /* No software support for CCC commands targeting more than one slave */
1428 return (cmd->ndests == 1);
1429 }
1430
svc_i3c_master_send_bdcast_ccc_cmd(struct svc_i3c_master * master,struct i3c_ccc_cmd * ccc)1431 static int svc_i3c_master_send_bdcast_ccc_cmd(struct svc_i3c_master *master,
1432 struct i3c_ccc_cmd *ccc)
1433 {
1434 unsigned int xfer_len = ccc->dests[0].payload.len + 1;
1435 struct svc_i3c_xfer *xfer;
1436 struct svc_i3c_cmd *cmd;
1437 u8 *buf;
1438 int ret;
1439
1440 xfer = svc_i3c_master_alloc_xfer(master, 1);
1441 if (!xfer)
1442 return -ENOMEM;
1443
1444 buf = kmalloc(xfer_len, GFP_KERNEL);
1445 if (!buf) {
1446 svc_i3c_master_free_xfer(xfer);
1447 return -ENOMEM;
1448 }
1449
1450 buf[0] = ccc->id;
1451 memcpy(&buf[1], ccc->dests[0].payload.data, ccc->dests[0].payload.len);
1452
1453 xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1454
1455 cmd = &xfer->cmds[0];
1456 cmd->addr = ccc->dests[0].addr;
1457 cmd->rnw = ccc->rnw;
1458 cmd->in = NULL;
1459 cmd->out = buf;
1460 cmd->len = xfer_len;
1461 cmd->actual_len = 0;
1462 cmd->continued = false;
1463
1464 mutex_lock(&master->lock);
1465 svc_i3c_master_enqueue_xfer(master, xfer);
1466 if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1467 svc_i3c_master_dequeue_xfer(master, xfer);
1468 mutex_unlock(&master->lock);
1469
1470 ret = xfer->ret;
1471 kfree(buf);
1472 svc_i3c_master_free_xfer(xfer);
1473
1474 return ret;
1475 }
1476
svc_i3c_master_send_direct_ccc_cmd(struct svc_i3c_master * master,struct i3c_ccc_cmd * ccc)1477 static int svc_i3c_master_send_direct_ccc_cmd(struct svc_i3c_master *master,
1478 struct i3c_ccc_cmd *ccc)
1479 {
1480 unsigned int xfer_len = ccc->dests[0].payload.len;
1481 unsigned int actual_len = ccc->rnw ? xfer_len : 0;
1482 struct svc_i3c_xfer *xfer;
1483 struct svc_i3c_cmd *cmd;
1484 int ret;
1485
1486 xfer = svc_i3c_master_alloc_xfer(master, 2);
1487 if (!xfer)
1488 return -ENOMEM;
1489
1490 xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1491
1492 /* Broadcasted message */
1493 cmd = &xfer->cmds[0];
1494 cmd->addr = I3C_BROADCAST_ADDR;
1495 cmd->rnw = 0;
1496 cmd->in = NULL;
1497 cmd->out = &ccc->id;
1498 cmd->len = 1;
1499 cmd->actual_len = 0;
1500 cmd->continued = true;
1501
1502 /* Directed message */
1503 cmd = &xfer->cmds[1];
1504 cmd->addr = ccc->dests[0].addr;
1505 cmd->rnw = ccc->rnw;
1506 cmd->in = ccc->rnw ? ccc->dests[0].payload.data : NULL;
1507 cmd->out = ccc->rnw ? NULL : ccc->dests[0].payload.data;
1508 cmd->len = xfer_len;
1509 cmd->actual_len = actual_len;
1510 cmd->continued = false;
1511
1512 mutex_lock(&master->lock);
1513 svc_i3c_master_enqueue_xfer(master, xfer);
1514 if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1515 svc_i3c_master_dequeue_xfer(master, xfer);
1516 mutex_unlock(&master->lock);
1517
1518 if (cmd->actual_len != xfer_len)
1519 ccc->dests[0].payload.len = cmd->actual_len;
1520
1521 ret = xfer->ret;
1522 svc_i3c_master_free_xfer(xfer);
1523
1524 return ret;
1525 }
1526
svc_i3c_master_send_ccc_cmd(struct i3c_master_controller * m,struct i3c_ccc_cmd * cmd)1527 static int svc_i3c_master_send_ccc_cmd(struct i3c_master_controller *m,
1528 struct i3c_ccc_cmd *cmd)
1529 {
1530 struct svc_i3c_master *master = to_svc_i3c_master(m);
1531 bool broadcast = cmd->id < 0x80;
1532 int ret;
1533
1534 if (broadcast)
1535 ret = svc_i3c_master_send_bdcast_ccc_cmd(master, cmd);
1536 else
1537 ret = svc_i3c_master_send_direct_ccc_cmd(master, cmd);
1538
1539 if (ret)
1540 cmd->err = I3C_ERROR_M2;
1541
1542 return ret;
1543 }
1544
svc_i3c_master_priv_xfers(struct i3c_dev_desc * dev,struct i3c_priv_xfer * xfers,int nxfers)1545 static int svc_i3c_master_priv_xfers(struct i3c_dev_desc *dev,
1546 struct i3c_priv_xfer *xfers,
1547 int nxfers)
1548 {
1549 struct i3c_master_controller *m = i3c_dev_get_master(dev);
1550 struct svc_i3c_master *master = to_svc_i3c_master(m);
1551 struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1552 struct svc_i3c_xfer *xfer;
1553 int ret, i;
1554
1555 xfer = svc_i3c_master_alloc_xfer(master, nxfers);
1556 if (!xfer)
1557 return -ENOMEM;
1558
1559 xfer->type = SVC_I3C_MCTRL_TYPE_I3C;
1560
1561 for (i = 0; i < nxfers; i++) {
1562 struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1563
1564 cmd->xfer = &xfers[i];
1565 cmd->addr = master->addrs[data->index];
1566 cmd->rnw = xfers[i].rnw;
1567 cmd->in = xfers[i].rnw ? xfers[i].data.in : NULL;
1568 cmd->out = xfers[i].rnw ? NULL : xfers[i].data.out;
1569 cmd->len = xfers[i].len;
1570 cmd->actual_len = xfers[i].rnw ? xfers[i].len : 0;
1571 cmd->continued = (i + 1) < nxfers;
1572 }
1573
1574 mutex_lock(&master->lock);
1575 svc_i3c_master_enqueue_xfer(master, xfer);
1576 if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1577 svc_i3c_master_dequeue_xfer(master, xfer);
1578 mutex_unlock(&master->lock);
1579
1580 ret = xfer->ret;
1581 svc_i3c_master_free_xfer(xfer);
1582
1583 return ret;
1584 }
1585
svc_i3c_master_i2c_xfers(struct i2c_dev_desc * dev,const struct i2c_msg * xfers,int nxfers)1586 static int svc_i3c_master_i2c_xfers(struct i2c_dev_desc *dev,
1587 const struct i2c_msg *xfers,
1588 int nxfers)
1589 {
1590 struct i3c_master_controller *m = i2c_dev_get_master(dev);
1591 struct svc_i3c_master *master = to_svc_i3c_master(m);
1592 struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev);
1593 struct svc_i3c_xfer *xfer;
1594 int ret, i;
1595
1596 xfer = svc_i3c_master_alloc_xfer(master, nxfers);
1597 if (!xfer)
1598 return -ENOMEM;
1599
1600 xfer->type = SVC_I3C_MCTRL_TYPE_I2C;
1601
1602 for (i = 0; i < nxfers; i++) {
1603 struct svc_i3c_cmd *cmd = &xfer->cmds[i];
1604
1605 cmd->addr = master->addrs[data->index];
1606 cmd->rnw = xfers[i].flags & I2C_M_RD;
1607 cmd->in = cmd->rnw ? xfers[i].buf : NULL;
1608 cmd->out = cmd->rnw ? NULL : xfers[i].buf;
1609 cmd->len = xfers[i].len;
1610 cmd->actual_len = cmd->rnw ? xfers[i].len : 0;
1611 cmd->continued = (i + 1 < nxfers);
1612 }
1613
1614 mutex_lock(&master->lock);
1615 svc_i3c_master_enqueue_xfer(master, xfer);
1616 if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000)))
1617 svc_i3c_master_dequeue_xfer(master, xfer);
1618 mutex_unlock(&master->lock);
1619
1620 ret = xfer->ret;
1621 svc_i3c_master_free_xfer(xfer);
1622
1623 return ret;
1624 }
1625
svc_i3c_master_request_ibi(struct i3c_dev_desc * dev,const struct i3c_ibi_setup * req)1626 static int svc_i3c_master_request_ibi(struct i3c_dev_desc *dev,
1627 const struct i3c_ibi_setup *req)
1628 {
1629 struct i3c_master_controller *m = i3c_dev_get_master(dev);
1630 struct svc_i3c_master *master = to_svc_i3c_master(m);
1631 struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1632 unsigned long flags;
1633 unsigned int i;
1634
1635 if (dev->ibi->max_payload_len > SVC_I3C_FIFO_SIZE) {
1636 dev_err(master->dev, "IBI max payload %d should be < %d\n",
1637 dev->ibi->max_payload_len, SVC_I3C_FIFO_SIZE);
1638 return -ERANGE;
1639 }
1640
1641 data->ibi_pool = i3c_generic_ibi_alloc_pool(dev, req);
1642 if (IS_ERR(data->ibi_pool))
1643 return PTR_ERR(data->ibi_pool);
1644
1645 spin_lock_irqsave(&master->ibi.lock, flags);
1646 for (i = 0; i < master->ibi.num_slots; i++) {
1647 if (!master->ibi.slots[i]) {
1648 data->ibi = i;
1649 master->ibi.slots[i] = dev;
1650 break;
1651 }
1652 }
1653 spin_unlock_irqrestore(&master->ibi.lock, flags);
1654
1655 if (i < master->ibi.num_slots)
1656 return 0;
1657
1658 i3c_generic_ibi_free_pool(data->ibi_pool);
1659 data->ibi_pool = NULL;
1660
1661 return -ENOSPC;
1662 }
1663
svc_i3c_master_free_ibi(struct i3c_dev_desc * dev)1664 static void svc_i3c_master_free_ibi(struct i3c_dev_desc *dev)
1665 {
1666 struct i3c_master_controller *m = i3c_dev_get_master(dev);
1667 struct svc_i3c_master *master = to_svc_i3c_master(m);
1668 struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1669 unsigned long flags;
1670
1671 spin_lock_irqsave(&master->ibi.lock, flags);
1672 master->ibi.slots[data->ibi] = NULL;
1673 data->ibi = -1;
1674 spin_unlock_irqrestore(&master->ibi.lock, flags);
1675
1676 i3c_generic_ibi_free_pool(data->ibi_pool);
1677 }
1678
svc_i3c_master_enable_ibi(struct i3c_dev_desc * dev)1679 static int svc_i3c_master_enable_ibi(struct i3c_dev_desc *dev)
1680 {
1681 struct i3c_master_controller *m = i3c_dev_get_master(dev);
1682 struct svc_i3c_master *master = to_svc_i3c_master(m);
1683 int ret;
1684
1685 ret = pm_runtime_resume_and_get(master->dev);
1686 if (ret < 0) {
1687 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1688 return ret;
1689 }
1690
1691 master->enabled_events++;
1692 svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
1693
1694 return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
1695 }
1696
svc_i3c_master_disable_ibi(struct i3c_dev_desc * dev)1697 static int svc_i3c_master_disable_ibi(struct i3c_dev_desc *dev)
1698 {
1699 struct i3c_master_controller *m = i3c_dev_get_master(dev);
1700 struct svc_i3c_master *master = to_svc_i3c_master(m);
1701 int ret;
1702
1703 master->enabled_events--;
1704 if (!master->enabled_events)
1705 svc_i3c_master_disable_interrupts(master);
1706
1707 ret = i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
1708
1709 pm_runtime_mark_last_busy(master->dev);
1710 pm_runtime_put_autosuspend(master->dev);
1711
1712 return ret;
1713 }
1714
svc_i3c_master_enable_hotjoin(struct i3c_master_controller * m)1715 static int svc_i3c_master_enable_hotjoin(struct i3c_master_controller *m)
1716 {
1717 struct svc_i3c_master *master = to_svc_i3c_master(m);
1718 int ret;
1719
1720 ret = pm_runtime_resume_and_get(master->dev);
1721 if (ret < 0) {
1722 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__);
1723 return ret;
1724 }
1725
1726 master->enabled_events |= SVC_I3C_EVENT_HOTJOIN;
1727
1728 svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART);
1729
1730 return 0;
1731 }
1732
svc_i3c_master_disable_hotjoin(struct i3c_master_controller * m)1733 static int svc_i3c_master_disable_hotjoin(struct i3c_master_controller *m)
1734 {
1735 struct svc_i3c_master *master = to_svc_i3c_master(m);
1736
1737 master->enabled_events &= ~SVC_I3C_EVENT_HOTJOIN;
1738
1739 if (!master->enabled_events)
1740 svc_i3c_master_disable_interrupts(master);
1741
1742 pm_runtime_mark_last_busy(master->dev);
1743 pm_runtime_put_autosuspend(master->dev);
1744
1745 return 0;
1746 }
1747
svc_i3c_master_recycle_ibi_slot(struct i3c_dev_desc * dev,struct i3c_ibi_slot * slot)1748 static void svc_i3c_master_recycle_ibi_slot(struct i3c_dev_desc *dev,
1749 struct i3c_ibi_slot *slot)
1750 {
1751 struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev);
1752
1753 i3c_generic_ibi_recycle_slot(data->ibi_pool, slot);
1754 }
1755
1756 static const struct i3c_master_controller_ops svc_i3c_master_ops = {
1757 .bus_init = svc_i3c_master_bus_init,
1758 .bus_cleanup = svc_i3c_master_bus_cleanup,
1759 .attach_i3c_dev = svc_i3c_master_attach_i3c_dev,
1760 .detach_i3c_dev = svc_i3c_master_detach_i3c_dev,
1761 .reattach_i3c_dev = svc_i3c_master_reattach_i3c_dev,
1762 .attach_i2c_dev = svc_i3c_master_attach_i2c_dev,
1763 .detach_i2c_dev = svc_i3c_master_detach_i2c_dev,
1764 .do_daa = svc_i3c_master_do_daa,
1765 .supports_ccc_cmd = svc_i3c_master_supports_ccc_cmd,
1766 .send_ccc_cmd = svc_i3c_master_send_ccc_cmd,
1767 .priv_xfers = svc_i3c_master_priv_xfers,
1768 .i2c_xfers = svc_i3c_master_i2c_xfers,
1769 .request_ibi = svc_i3c_master_request_ibi,
1770 .free_ibi = svc_i3c_master_free_ibi,
1771 .recycle_ibi_slot = svc_i3c_master_recycle_ibi_slot,
1772 .enable_ibi = svc_i3c_master_enable_ibi,
1773 .disable_ibi = svc_i3c_master_disable_ibi,
1774 .enable_hotjoin = svc_i3c_master_enable_hotjoin,
1775 .disable_hotjoin = svc_i3c_master_disable_hotjoin,
1776 .set_speed = svc_i3c_master_set_speed,
1777 };
1778
svc_i3c_master_prepare_clks(struct svc_i3c_master * master)1779 static int svc_i3c_master_prepare_clks(struct svc_i3c_master *master)
1780 {
1781 int ret = 0;
1782
1783 ret = clk_prepare_enable(master->pclk);
1784 if (ret)
1785 return ret;
1786
1787 ret = clk_prepare_enable(master->fclk);
1788 if (ret) {
1789 clk_disable_unprepare(master->pclk);
1790 return ret;
1791 }
1792
1793 ret = clk_prepare_enable(master->sclk);
1794 if (ret) {
1795 clk_disable_unprepare(master->pclk);
1796 clk_disable_unprepare(master->fclk);
1797 return ret;
1798 }
1799
1800 return 0;
1801 }
1802
svc_i3c_master_unprepare_clks(struct svc_i3c_master * master)1803 static void svc_i3c_master_unprepare_clks(struct svc_i3c_master *master)
1804 {
1805 clk_disable_unprepare(master->pclk);
1806 clk_disable_unprepare(master->fclk);
1807 clk_disable_unprepare(master->sclk);
1808 }
1809
svc_i3c_master_probe(struct platform_device * pdev)1810 static int svc_i3c_master_probe(struct platform_device *pdev)
1811 {
1812 struct device *dev = &pdev->dev;
1813 struct svc_i3c_master *master;
1814 int ret;
1815
1816 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
1817 if (!master)
1818 return -ENOMEM;
1819
1820 master->regs = devm_platform_ioremap_resource(pdev, 0);
1821 if (IS_ERR(master->regs))
1822 return PTR_ERR(master->regs);
1823
1824 master->pclk = devm_clk_get(dev, "pclk");
1825 if (IS_ERR(master->pclk))
1826 return PTR_ERR(master->pclk);
1827
1828 master->fclk = devm_clk_get(dev, "fast_clk");
1829 if (IS_ERR(master->fclk))
1830 return PTR_ERR(master->fclk);
1831
1832 master->sclk = devm_clk_get(dev, "slow_clk");
1833 if (IS_ERR(master->sclk))
1834 return PTR_ERR(master->sclk);
1835
1836 master->irq = platform_get_irq(pdev, 0);
1837 if (master->irq < 0)
1838 return master->irq;
1839
1840 master->dev = dev;
1841
1842 ret = svc_i3c_master_prepare_clks(master);
1843 if (ret)
1844 return ret;
1845
1846 INIT_WORK(&master->hj_work, svc_i3c_master_hj_work);
1847 INIT_WORK(&master->ibi_work, svc_i3c_master_ibi_work);
1848 mutex_init(&master->lock);
1849
1850 ret = devm_request_irq(dev, master->irq, svc_i3c_master_irq_handler,
1851 IRQF_NO_SUSPEND, "svc-i3c-irq", master);
1852 if (ret)
1853 goto err_disable_clks;
1854
1855 master->free_slots = GENMASK(SVC_I3C_MAX_DEVS - 1, 0);
1856
1857 spin_lock_init(&master->xferqueue.lock);
1858 INIT_LIST_HEAD(&master->xferqueue.list);
1859
1860 spin_lock_init(&master->ibi.lock);
1861 master->ibi.num_slots = SVC_I3C_MAX_DEVS;
1862 master->ibi.slots = devm_kcalloc(&pdev->dev, master->ibi.num_slots,
1863 sizeof(*master->ibi.slots),
1864 GFP_KERNEL);
1865 if (!master->ibi.slots) {
1866 ret = -ENOMEM;
1867 goto err_disable_clks;
1868 }
1869
1870 platform_set_drvdata(pdev, master);
1871
1872 pm_runtime_set_autosuspend_delay(&pdev->dev, SVC_I3C_PM_TIMEOUT_MS);
1873 pm_runtime_use_autosuspend(&pdev->dev);
1874 pm_runtime_get_noresume(&pdev->dev);
1875 pm_runtime_set_active(&pdev->dev);
1876 pm_runtime_enable(&pdev->dev);
1877
1878 svc_i3c_master_reset(master);
1879
1880 /* Register the master */
1881 ret = i3c_master_register(&master->base, &pdev->dev,
1882 &svc_i3c_master_ops, false);
1883 if (ret)
1884 goto rpm_disable;
1885
1886 pm_runtime_mark_last_busy(&pdev->dev);
1887 pm_runtime_put_autosuspend(&pdev->dev);
1888
1889 return 0;
1890
1891 rpm_disable:
1892 pm_runtime_dont_use_autosuspend(&pdev->dev);
1893 pm_runtime_put_noidle(&pdev->dev);
1894 pm_runtime_disable(&pdev->dev);
1895 pm_runtime_set_suspended(&pdev->dev);
1896
1897 err_disable_clks:
1898 svc_i3c_master_unprepare_clks(master);
1899
1900 return ret;
1901 }
1902
svc_i3c_master_remove(struct platform_device * pdev)1903 static void svc_i3c_master_remove(struct platform_device *pdev)
1904 {
1905 struct svc_i3c_master *master = platform_get_drvdata(pdev);
1906
1907 cancel_work_sync(&master->hj_work);
1908 i3c_master_unregister(&master->base);
1909
1910 pm_runtime_dont_use_autosuspend(&pdev->dev);
1911 pm_runtime_disable(&pdev->dev);
1912 }
1913
svc_i3c_save_regs(struct svc_i3c_master * master)1914 static void svc_i3c_save_regs(struct svc_i3c_master *master)
1915 {
1916 master->saved_regs.mconfig = readl(master->regs + SVC_I3C_MCONFIG);
1917 master->saved_regs.mdynaddr = readl(master->regs + SVC_I3C_MDYNADDR);
1918 }
1919
svc_i3c_restore_regs(struct svc_i3c_master * master)1920 static void svc_i3c_restore_regs(struct svc_i3c_master *master)
1921 {
1922 if (readl(master->regs + SVC_I3C_MDYNADDR) !=
1923 master->saved_regs.mdynaddr) {
1924 writel(master->saved_regs.mconfig,
1925 master->regs + SVC_I3C_MCONFIG);
1926 writel(master->saved_regs.mdynaddr,
1927 master->regs + SVC_I3C_MDYNADDR);
1928 }
1929 }
1930
svc_i3c_runtime_suspend(struct device * dev)1931 static int __maybe_unused svc_i3c_runtime_suspend(struct device *dev)
1932 {
1933 struct svc_i3c_master *master = dev_get_drvdata(dev);
1934
1935 svc_i3c_save_regs(master);
1936 svc_i3c_master_unprepare_clks(master);
1937 pinctrl_pm_select_sleep_state(dev);
1938
1939 return 0;
1940 }
1941
svc_i3c_runtime_resume(struct device * dev)1942 static int __maybe_unused svc_i3c_runtime_resume(struct device *dev)
1943 {
1944 struct svc_i3c_master *master = dev_get_drvdata(dev);
1945
1946 pinctrl_pm_select_default_state(dev);
1947 svc_i3c_master_prepare_clks(master);
1948
1949 svc_i3c_restore_regs(master);
1950
1951 return 0;
1952 }
1953
1954 static const struct dev_pm_ops svc_i3c_pm_ops = {
1955 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1956 pm_runtime_force_resume)
1957 SET_RUNTIME_PM_OPS(svc_i3c_runtime_suspend,
1958 svc_i3c_runtime_resume, NULL)
1959 };
1960
1961 static const struct of_device_id svc_i3c_master_of_match_tbl[] = {
1962 { .compatible = "silvaco,i3c-master-v1"},
1963 { /* sentinel */ },
1964 };
1965 MODULE_DEVICE_TABLE(of, svc_i3c_master_of_match_tbl);
1966
1967 static struct platform_driver svc_i3c_master = {
1968 .probe = svc_i3c_master_probe,
1969 .remove = svc_i3c_master_remove,
1970 .driver = {
1971 .name = "silvaco-i3c-master",
1972 .of_match_table = svc_i3c_master_of_match_tbl,
1973 .pm = &svc_i3c_pm_ops,
1974 },
1975 };
1976 module_platform_driver(svc_i3c_master);
1977
1978 MODULE_AUTHOR("Conor Culhane <conor.culhane@silvaco.com>");
1979 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1980 MODULE_DESCRIPTION("Silvaco dual-role I3C master driver");
1981 MODULE_LICENSE("GPL v2");
1982