xref: /linux/arch/arm64/kvm/hyp/nvhe/mem_protect.c (revision 43db1111073049220381944af4a3b8a5400eda71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_emulate.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/kvm_pkvm.h>
13 #include <asm/stage2_pgtable.h>
14 
15 #include <hyp/fault.h>
16 
17 #include <nvhe/gfp.h>
18 #include <nvhe/memory.h>
19 #include <nvhe/mem_protect.h>
20 #include <nvhe/mm.h>
21 
22 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
23 
24 struct host_mmu host_mmu;
25 
26 static struct hyp_pool host_s2_pool;
27 
28 static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm);
29 #define current_vm (*this_cpu_ptr(&__current_vm))
30 
guest_lock_component(struct pkvm_hyp_vm * vm)31 static void guest_lock_component(struct pkvm_hyp_vm *vm)
32 {
33 	hyp_spin_lock(&vm->lock);
34 	current_vm = vm;
35 }
36 
guest_unlock_component(struct pkvm_hyp_vm * vm)37 static void guest_unlock_component(struct pkvm_hyp_vm *vm)
38 {
39 	current_vm = NULL;
40 	hyp_spin_unlock(&vm->lock);
41 }
42 
host_lock_component(void)43 static void host_lock_component(void)
44 {
45 	hyp_spin_lock(&host_mmu.lock);
46 }
47 
host_unlock_component(void)48 static void host_unlock_component(void)
49 {
50 	hyp_spin_unlock(&host_mmu.lock);
51 }
52 
hyp_lock_component(void)53 static void hyp_lock_component(void)
54 {
55 	hyp_spin_lock(&pkvm_pgd_lock);
56 }
57 
hyp_unlock_component(void)58 static void hyp_unlock_component(void)
59 {
60 	hyp_spin_unlock(&pkvm_pgd_lock);
61 }
62 
63 #define for_each_hyp_page(__p, __st, __sz)				\
64 	for (struct hyp_page *__p = hyp_phys_to_page(__st),		\
65 			     *__e = __p + ((__sz) >> PAGE_SHIFT);	\
66 	     __p < __e; __p++)
67 
host_s2_zalloc_pages_exact(size_t size)68 static void *host_s2_zalloc_pages_exact(size_t size)
69 {
70 	void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
71 
72 	hyp_split_page(hyp_virt_to_page(addr));
73 
74 	/*
75 	 * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
76 	 * so there should be no need to free any of the tail pages to make the
77 	 * allocation exact.
78 	 */
79 	WARN_ON(size != (PAGE_SIZE << get_order(size)));
80 
81 	return addr;
82 }
83 
host_s2_zalloc_page(void * pool)84 static void *host_s2_zalloc_page(void *pool)
85 {
86 	return hyp_alloc_pages(pool, 0);
87 }
88 
host_s2_get_page(void * addr)89 static void host_s2_get_page(void *addr)
90 {
91 	hyp_get_page(&host_s2_pool, addr);
92 }
93 
host_s2_put_page(void * addr)94 static void host_s2_put_page(void *addr)
95 {
96 	hyp_put_page(&host_s2_pool, addr);
97 }
98 
host_s2_free_unlinked_table(void * addr,s8 level)99 static void host_s2_free_unlinked_table(void *addr, s8 level)
100 {
101 	kvm_pgtable_stage2_free_unlinked(&host_mmu.mm_ops, addr, level);
102 }
103 
prepare_s2_pool(void * pgt_pool_base)104 static int prepare_s2_pool(void *pgt_pool_base)
105 {
106 	unsigned long nr_pages, pfn;
107 	int ret;
108 
109 	pfn = hyp_virt_to_pfn(pgt_pool_base);
110 	nr_pages = host_s2_pgtable_pages();
111 	ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
112 	if (ret)
113 		return ret;
114 
115 	host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) {
116 		.zalloc_pages_exact = host_s2_zalloc_pages_exact,
117 		.zalloc_page = host_s2_zalloc_page,
118 		.free_unlinked_table = host_s2_free_unlinked_table,
119 		.phys_to_virt = hyp_phys_to_virt,
120 		.virt_to_phys = hyp_virt_to_phys,
121 		.page_count = hyp_page_count,
122 		.get_page = host_s2_get_page,
123 		.put_page = host_s2_put_page,
124 	};
125 
126 	return 0;
127 }
128 
prepare_host_vtcr(void)129 static void prepare_host_vtcr(void)
130 {
131 	u32 parange, phys_shift;
132 
133 	/* The host stage 2 is id-mapped, so use parange for T0SZ */
134 	parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
135 	phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
136 
137 	host_mmu.arch.mmu.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
138 					      id_aa64mmfr1_el1_sys_val, phys_shift);
139 }
140 
141 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
142 
kvm_host_prepare_stage2(void * pgt_pool_base)143 int kvm_host_prepare_stage2(void *pgt_pool_base)
144 {
145 	struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
146 	int ret;
147 
148 	prepare_host_vtcr();
149 	hyp_spin_lock_init(&host_mmu.lock);
150 	mmu->arch = &host_mmu.arch;
151 
152 	ret = prepare_s2_pool(pgt_pool_base);
153 	if (ret)
154 		return ret;
155 
156 	ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu,
157 					&host_mmu.mm_ops, KVM_HOST_S2_FLAGS,
158 					host_stage2_force_pte_cb);
159 	if (ret)
160 		return ret;
161 
162 	mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd);
163 	mmu->pgt = &host_mmu.pgt;
164 	atomic64_set(&mmu->vmid.id, 0);
165 
166 	return 0;
167 }
168 
guest_s2_zalloc_pages_exact(size_t size)169 static void *guest_s2_zalloc_pages_exact(size_t size)
170 {
171 	void *addr = hyp_alloc_pages(&current_vm->pool, get_order(size));
172 
173 	WARN_ON(size != (PAGE_SIZE << get_order(size)));
174 	hyp_split_page(hyp_virt_to_page(addr));
175 
176 	return addr;
177 }
178 
guest_s2_free_pages_exact(void * addr,unsigned long size)179 static void guest_s2_free_pages_exact(void *addr, unsigned long size)
180 {
181 	u8 order = get_order(size);
182 	unsigned int i;
183 
184 	for (i = 0; i < (1 << order); i++)
185 		hyp_put_page(&current_vm->pool, addr + (i * PAGE_SIZE));
186 }
187 
guest_s2_zalloc_page(void * mc)188 static void *guest_s2_zalloc_page(void *mc)
189 {
190 	struct hyp_page *p;
191 	void *addr;
192 
193 	addr = hyp_alloc_pages(&current_vm->pool, 0);
194 	if (addr)
195 		return addr;
196 
197 	addr = pop_hyp_memcache(mc, hyp_phys_to_virt);
198 	if (!addr)
199 		return addr;
200 
201 	memset(addr, 0, PAGE_SIZE);
202 	p = hyp_virt_to_page(addr);
203 	p->refcount = 1;
204 	p->order = 0;
205 
206 	return addr;
207 }
208 
guest_s2_get_page(void * addr)209 static void guest_s2_get_page(void *addr)
210 {
211 	hyp_get_page(&current_vm->pool, addr);
212 }
213 
guest_s2_put_page(void * addr)214 static void guest_s2_put_page(void *addr)
215 {
216 	hyp_put_page(&current_vm->pool, addr);
217 }
218 
__apply_guest_page(void * va,size_t size,void (* func)(void * addr,size_t size))219 static void __apply_guest_page(void *va, size_t size,
220 			       void (*func)(void *addr, size_t size))
221 {
222 	size += va - PTR_ALIGN_DOWN(va, PAGE_SIZE);
223 	va = PTR_ALIGN_DOWN(va, PAGE_SIZE);
224 	size = PAGE_ALIGN(size);
225 
226 	while (size) {
227 		size_t map_size = PAGE_SIZE;
228 		void *map;
229 
230 		if (IS_ALIGNED((unsigned long)va, PMD_SIZE) && size >= PMD_SIZE)
231 			map = hyp_fixblock_map(__hyp_pa(va), &map_size);
232 		else
233 			map = hyp_fixmap_map(__hyp_pa(va));
234 
235 		func(map, map_size);
236 
237 		if (map_size == PMD_SIZE)
238 			hyp_fixblock_unmap();
239 		else
240 			hyp_fixmap_unmap();
241 
242 		size -= map_size;
243 		va += map_size;
244 	}
245 }
246 
clean_dcache_guest_page(void * va,size_t size)247 static void clean_dcache_guest_page(void *va, size_t size)
248 {
249 	__apply_guest_page(va, size, __clean_dcache_guest_page);
250 }
251 
invalidate_icache_guest_page(void * va,size_t size)252 static void invalidate_icache_guest_page(void *va, size_t size)
253 {
254 	__apply_guest_page(va, size, __invalidate_icache_guest_page);
255 }
256 
kvm_guest_prepare_stage2(struct pkvm_hyp_vm * vm,void * pgd)257 int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd)
258 {
259 	struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu;
260 	unsigned long nr_pages;
261 	int ret;
262 
263 	nr_pages = kvm_pgtable_stage2_pgd_size(mmu->vtcr) >> PAGE_SHIFT;
264 	ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0);
265 	if (ret)
266 		return ret;
267 
268 	hyp_spin_lock_init(&vm->lock);
269 	vm->mm_ops = (struct kvm_pgtable_mm_ops) {
270 		.zalloc_pages_exact	= guest_s2_zalloc_pages_exact,
271 		.free_pages_exact	= guest_s2_free_pages_exact,
272 		.zalloc_page		= guest_s2_zalloc_page,
273 		.phys_to_virt		= hyp_phys_to_virt,
274 		.virt_to_phys		= hyp_virt_to_phys,
275 		.page_count		= hyp_page_count,
276 		.get_page		= guest_s2_get_page,
277 		.put_page		= guest_s2_put_page,
278 		.dcache_clean_inval_poc	= clean_dcache_guest_page,
279 		.icache_inval_pou	= invalidate_icache_guest_page,
280 	};
281 
282 	guest_lock_component(vm);
283 	ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0, NULL);
284 	guest_unlock_component(vm);
285 	if (ret)
286 		return ret;
287 
288 	vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd);
289 
290 	return 0;
291 }
292 
reclaim_pgtable_pages(struct pkvm_hyp_vm * vm,struct kvm_hyp_memcache * mc)293 void reclaim_pgtable_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc)
294 {
295 	struct hyp_page *page;
296 	void *addr;
297 
298 	/* Dump all pgtable pages in the hyp_pool */
299 	guest_lock_component(vm);
300 	kvm_pgtable_stage2_destroy(&vm->pgt);
301 	vm->kvm.arch.mmu.pgd_phys = 0ULL;
302 	guest_unlock_component(vm);
303 
304 	/* Drain the hyp_pool into the memcache */
305 	addr = hyp_alloc_pages(&vm->pool, 0);
306 	while (addr) {
307 		page = hyp_virt_to_page(addr);
308 		page->refcount = 0;
309 		page->order = 0;
310 		push_hyp_memcache(mc, addr, hyp_virt_to_phys);
311 		WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1));
312 		addr = hyp_alloc_pages(&vm->pool, 0);
313 	}
314 }
315 
__pkvm_prot_finalize(void)316 int __pkvm_prot_finalize(void)
317 {
318 	struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
319 	struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
320 
321 	if (params->hcr_el2 & HCR_VM)
322 		return -EPERM;
323 
324 	params->vttbr = kvm_get_vttbr(mmu);
325 	params->vtcr = mmu->vtcr;
326 	params->hcr_el2 |= HCR_VM;
327 
328 	/*
329 	 * The CMO below not only cleans the updated params to the
330 	 * PoC, but also provides the DSB that ensures ongoing
331 	 * page-table walks that have started before we trapped to EL2
332 	 * have completed.
333 	 */
334 	kvm_flush_dcache_to_poc(params, sizeof(*params));
335 
336 	write_sysreg_hcr(params->hcr_el2);
337 	__load_stage2(&host_mmu.arch.mmu, &host_mmu.arch);
338 
339 	/*
340 	 * Make sure to have an ISB before the TLB maintenance below but only
341 	 * when __load_stage2() doesn't include one already.
342 	 */
343 	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
344 
345 	/* Invalidate stale HCR bits that may be cached in TLBs */
346 	__tlbi(vmalls12e1);
347 	dsb(nsh);
348 	isb();
349 
350 	return 0;
351 }
352 
host_stage2_unmap_dev_all(void)353 static int host_stage2_unmap_dev_all(void)
354 {
355 	struct kvm_pgtable *pgt = &host_mmu.pgt;
356 	struct memblock_region *reg;
357 	u64 addr = 0;
358 	int i, ret;
359 
360 	/* Unmap all non-memory regions to recycle the pages */
361 	for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
362 		reg = &hyp_memory[i];
363 		ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
364 		if (ret)
365 			return ret;
366 	}
367 	return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
368 }
369 
370 struct kvm_mem_range {
371 	u64 start;
372 	u64 end;
373 };
374 
find_mem_range(phys_addr_t addr,struct kvm_mem_range * range)375 static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
376 {
377 	int cur, left = 0, right = hyp_memblock_nr;
378 	struct memblock_region *reg;
379 	phys_addr_t end;
380 
381 	range->start = 0;
382 	range->end = ULONG_MAX;
383 
384 	/* The list of memblock regions is sorted, binary search it */
385 	while (left < right) {
386 		cur = (left + right) >> 1;
387 		reg = &hyp_memory[cur];
388 		end = reg->base + reg->size;
389 		if (addr < reg->base) {
390 			right = cur;
391 			range->end = reg->base;
392 		} else if (addr >= end) {
393 			left = cur + 1;
394 			range->start = end;
395 		} else {
396 			range->start = reg->base;
397 			range->end = end;
398 			return reg;
399 		}
400 	}
401 
402 	return NULL;
403 }
404 
addr_is_memory(phys_addr_t phys)405 bool addr_is_memory(phys_addr_t phys)
406 {
407 	struct kvm_mem_range range;
408 
409 	return !!find_mem_range(phys, &range);
410 }
411 
is_in_mem_range(u64 addr,struct kvm_mem_range * range)412 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
413 {
414 	return range->start <= addr && addr < range->end;
415 }
416 
check_range_allowed_memory(u64 start,u64 end)417 static int check_range_allowed_memory(u64 start, u64 end)
418 {
419 	struct memblock_region *reg;
420 	struct kvm_mem_range range;
421 
422 	/*
423 	 * Callers can't check the state of a range that overlaps memory and
424 	 * MMIO regions, so ensure [start, end[ is in the same kvm_mem_range.
425 	 */
426 	reg = find_mem_range(start, &range);
427 	if (!is_in_mem_range(end - 1, &range))
428 		return -EINVAL;
429 
430 	if (!reg || reg->flags & MEMBLOCK_NOMAP)
431 		return -EPERM;
432 
433 	return 0;
434 }
435 
range_is_memory(u64 start,u64 end)436 static bool range_is_memory(u64 start, u64 end)
437 {
438 	struct kvm_mem_range r;
439 
440 	if (!find_mem_range(start, &r))
441 		return false;
442 
443 	return is_in_mem_range(end - 1, &r);
444 }
445 
__host_stage2_idmap(u64 start,u64 end,enum kvm_pgtable_prot prot)446 static inline int __host_stage2_idmap(u64 start, u64 end,
447 				      enum kvm_pgtable_prot prot)
448 {
449 	return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start,
450 				      prot, &host_s2_pool, 0);
451 }
452 
453 /*
454  * The pool has been provided with enough pages to cover all of memory with
455  * page granularity, but it is difficult to know how much of the MMIO range
456  * we will need to cover upfront, so we may need to 'recycle' the pages if we
457  * run out.
458  */
459 #define host_stage2_try(fn, ...)					\
460 	({								\
461 		int __ret;						\
462 		hyp_assert_lock_held(&host_mmu.lock);			\
463 		__ret = fn(__VA_ARGS__);				\
464 		if (__ret == -ENOMEM) {					\
465 			__ret = host_stage2_unmap_dev_all();		\
466 			if (!__ret)					\
467 				__ret = fn(__VA_ARGS__);		\
468 		}							\
469 		__ret;							\
470 	 })
471 
range_included(struct kvm_mem_range * child,struct kvm_mem_range * parent)472 static inline bool range_included(struct kvm_mem_range *child,
473 				  struct kvm_mem_range *parent)
474 {
475 	return parent->start <= child->start && child->end <= parent->end;
476 }
477 
host_stage2_adjust_range(u64 addr,struct kvm_mem_range * range)478 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
479 {
480 	struct kvm_mem_range cur;
481 	kvm_pte_t pte;
482 	s8 level;
483 	int ret;
484 
485 	hyp_assert_lock_held(&host_mmu.lock);
486 	ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level);
487 	if (ret)
488 		return ret;
489 
490 	if (kvm_pte_valid(pte))
491 		return -EAGAIN;
492 
493 	if (pte) {
494 		WARN_ON(addr_is_memory(addr) &&
495 			get_host_state(hyp_phys_to_page(addr)) != PKVM_NOPAGE);
496 		return -EPERM;
497 	}
498 
499 	do {
500 		u64 granule = kvm_granule_size(level);
501 		cur.start = ALIGN_DOWN(addr, granule);
502 		cur.end = cur.start + granule;
503 		level++;
504 	} while ((level <= KVM_PGTABLE_LAST_LEVEL) &&
505 			!(kvm_level_supports_block_mapping(level) &&
506 			  range_included(&cur, range)));
507 
508 	*range = cur;
509 
510 	return 0;
511 }
512 
host_stage2_idmap_locked(phys_addr_t addr,u64 size,enum kvm_pgtable_prot prot)513 int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
514 			     enum kvm_pgtable_prot prot)
515 {
516 	return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
517 }
518 
__host_update_page_state(phys_addr_t addr,u64 size,enum pkvm_page_state state)519 static void __host_update_page_state(phys_addr_t addr, u64 size, enum pkvm_page_state state)
520 {
521 	for_each_hyp_page(page, addr, size)
522 		set_host_state(page, state);
523 }
524 
host_stage2_set_owner_locked(phys_addr_t addr,u64 size,u8 owner_id)525 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
526 {
527 	int ret;
528 
529 	if (!range_is_memory(addr, addr + size))
530 		return -EPERM;
531 
532 	ret = host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt,
533 			      addr, size, &host_s2_pool, owner_id);
534 	if (ret)
535 		return ret;
536 
537 	/* Don't forget to update the vmemmap tracking for the host */
538 	if (owner_id == PKVM_ID_HOST)
539 		__host_update_page_state(addr, size, PKVM_PAGE_OWNED);
540 	else
541 		__host_update_page_state(addr, size, PKVM_NOPAGE);
542 
543 	return 0;
544 }
545 
host_stage2_force_pte_cb(u64 addr,u64 end,enum kvm_pgtable_prot prot)546 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
547 {
548 	/*
549 	 * Block mappings must be used with care in the host stage-2 as a
550 	 * kvm_pgtable_stage2_map() operation targeting a page in the range of
551 	 * an existing block will delete the block under the assumption that
552 	 * mappings in the rest of the block range can always be rebuilt lazily.
553 	 * That assumption is correct for the host stage-2 with RWX mappings
554 	 * targeting memory or RW mappings targeting MMIO ranges (see
555 	 * host_stage2_idmap() below which implements some of the host memory
556 	 * abort logic). However, this is not safe for any other mappings where
557 	 * the host stage-2 page-table is in fact the only place where this
558 	 * state is stored. In all those cases, it is safer to use page-level
559 	 * mappings, hence avoiding to lose the state because of side-effects in
560 	 * kvm_pgtable_stage2_map().
561 	 */
562 	if (range_is_memory(addr, end))
563 		return prot != PKVM_HOST_MEM_PROT;
564 	else
565 		return prot != PKVM_HOST_MMIO_PROT;
566 }
567 
host_stage2_idmap(u64 addr)568 static int host_stage2_idmap(u64 addr)
569 {
570 	struct kvm_mem_range range;
571 	bool is_memory = !!find_mem_range(addr, &range);
572 	enum kvm_pgtable_prot prot;
573 	int ret;
574 
575 	prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
576 
577 	host_lock_component();
578 	ret = host_stage2_adjust_range(addr, &range);
579 	if (ret)
580 		goto unlock;
581 
582 	ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
583 unlock:
584 	host_unlock_component();
585 
586 	return ret;
587 }
588 
handle_host_mem_abort(struct kvm_cpu_context * host_ctxt)589 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
590 {
591 	struct kvm_vcpu_fault_info fault;
592 	u64 esr, addr;
593 	int ret = 0;
594 
595 	esr = read_sysreg_el2(SYS_ESR);
596 	if (!__get_fault_info(esr, &fault)) {
597 		/*
598 		 * We've presumably raced with a page-table change which caused
599 		 * AT to fail, try again.
600 		 */
601 		return;
602 	}
603 
604 
605 	/*
606 	 * Yikes, we couldn't resolve the fault IPA. This should reinject an
607 	 * abort into the host when we figure out how to do that.
608 	 */
609 	BUG_ON(!(fault.hpfar_el2 & HPFAR_EL2_NS));
610 	addr = FIELD_GET(HPFAR_EL2_FIPA, fault.hpfar_el2) << 12;
611 
612 	ret = host_stage2_idmap(addr);
613 	BUG_ON(ret && ret != -EAGAIN);
614 }
615 
616 struct check_walk_data {
617 	enum pkvm_page_state	desired;
618 	enum pkvm_page_state	(*get_page_state)(kvm_pte_t pte, u64 addr);
619 };
620 
__check_page_state_visitor(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)621 static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx,
622 				      enum kvm_pgtable_walk_flags visit)
623 {
624 	struct check_walk_data *d = ctx->arg;
625 
626 	return d->get_page_state(ctx->old, ctx->addr) == d->desired ? 0 : -EPERM;
627 }
628 
check_page_state_range(struct kvm_pgtable * pgt,u64 addr,u64 size,struct check_walk_data * data)629 static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
630 				  struct check_walk_data *data)
631 {
632 	struct kvm_pgtable_walker walker = {
633 		.cb	= __check_page_state_visitor,
634 		.arg	= data,
635 		.flags	= KVM_PGTABLE_WALK_LEAF,
636 	};
637 
638 	return kvm_pgtable_walk(pgt, addr, size, &walker);
639 }
640 
__host_check_page_state_range(u64 addr,u64 size,enum pkvm_page_state state)641 static int __host_check_page_state_range(u64 addr, u64 size,
642 					 enum pkvm_page_state state)
643 {
644 	int ret;
645 
646 	ret = check_range_allowed_memory(addr, addr + size);
647 	if (ret)
648 		return ret;
649 
650 	hyp_assert_lock_held(&host_mmu.lock);
651 
652 	for_each_hyp_page(page, addr, size) {
653 		if (get_host_state(page) != state)
654 			return -EPERM;
655 	}
656 
657 	return 0;
658 }
659 
__host_set_page_state_range(u64 addr,u64 size,enum pkvm_page_state state)660 static int __host_set_page_state_range(u64 addr, u64 size,
661 				       enum pkvm_page_state state)
662 {
663 	if (get_host_state(hyp_phys_to_page(addr)) == PKVM_NOPAGE) {
664 		int ret = host_stage2_idmap_locked(addr, size, PKVM_HOST_MEM_PROT);
665 
666 		if (ret)
667 			return ret;
668 	}
669 
670 	__host_update_page_state(addr, size, state);
671 
672 	return 0;
673 }
674 
__hyp_set_page_state_range(phys_addr_t phys,u64 size,enum pkvm_page_state state)675 static void __hyp_set_page_state_range(phys_addr_t phys, u64 size, enum pkvm_page_state state)
676 {
677 	for_each_hyp_page(page, phys, size)
678 		set_hyp_state(page, state);
679 }
680 
__hyp_check_page_state_range(phys_addr_t phys,u64 size,enum pkvm_page_state state)681 static int __hyp_check_page_state_range(phys_addr_t phys, u64 size, enum pkvm_page_state state)
682 {
683 	for_each_hyp_page(page, phys, size) {
684 		if (get_hyp_state(page) != state)
685 			return -EPERM;
686 	}
687 
688 	return 0;
689 }
690 
guest_get_page_state(kvm_pte_t pte,u64 addr)691 static enum pkvm_page_state guest_get_page_state(kvm_pte_t pte, u64 addr)
692 {
693 	if (!kvm_pte_valid(pte))
694 		return PKVM_NOPAGE;
695 
696 	return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
697 }
698 
__guest_check_page_state_range(struct pkvm_hyp_vm * vm,u64 addr,u64 size,enum pkvm_page_state state)699 static int __guest_check_page_state_range(struct pkvm_hyp_vm *vm, u64 addr,
700 					  u64 size, enum pkvm_page_state state)
701 {
702 	struct check_walk_data d = {
703 		.desired	= state,
704 		.get_page_state	= guest_get_page_state,
705 	};
706 
707 	hyp_assert_lock_held(&vm->lock);
708 	return check_page_state_range(&vm->pgt, addr, size, &d);
709 }
710 
__pkvm_host_share_hyp(u64 pfn)711 int __pkvm_host_share_hyp(u64 pfn)
712 {
713 	u64 phys = hyp_pfn_to_phys(pfn);
714 	u64 size = PAGE_SIZE;
715 	int ret;
716 
717 	host_lock_component();
718 	hyp_lock_component();
719 
720 	ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
721 	if (ret)
722 		goto unlock;
723 	ret = __hyp_check_page_state_range(phys, size, PKVM_NOPAGE);
724 	if (ret)
725 		goto unlock;
726 
727 	__hyp_set_page_state_range(phys, size, PKVM_PAGE_SHARED_BORROWED);
728 	WARN_ON(__host_set_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED));
729 
730 unlock:
731 	hyp_unlock_component();
732 	host_unlock_component();
733 
734 	return ret;
735 }
736 
__pkvm_host_unshare_hyp(u64 pfn)737 int __pkvm_host_unshare_hyp(u64 pfn)
738 {
739 	u64 phys = hyp_pfn_to_phys(pfn);
740 	u64 virt = (u64)__hyp_va(phys);
741 	u64 size = PAGE_SIZE;
742 	int ret;
743 
744 	host_lock_component();
745 	hyp_lock_component();
746 
747 	ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
748 	if (ret)
749 		goto unlock;
750 	ret = __hyp_check_page_state_range(phys, size, PKVM_PAGE_SHARED_BORROWED);
751 	if (ret)
752 		goto unlock;
753 	if (hyp_page_count((void *)virt)) {
754 		ret = -EBUSY;
755 		goto unlock;
756 	}
757 
758 	__hyp_set_page_state_range(phys, size, PKVM_NOPAGE);
759 	WARN_ON(__host_set_page_state_range(phys, size, PKVM_PAGE_OWNED));
760 
761 unlock:
762 	hyp_unlock_component();
763 	host_unlock_component();
764 
765 	return ret;
766 }
767 
__pkvm_host_donate_hyp(u64 pfn,u64 nr_pages)768 int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages)
769 {
770 	u64 phys = hyp_pfn_to_phys(pfn);
771 	u64 size = PAGE_SIZE * nr_pages;
772 	void *virt = __hyp_va(phys);
773 	int ret;
774 
775 	host_lock_component();
776 	hyp_lock_component();
777 
778 	ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
779 	if (ret)
780 		goto unlock;
781 	ret = __hyp_check_page_state_range(phys, size, PKVM_NOPAGE);
782 	if (ret)
783 		goto unlock;
784 
785 	__hyp_set_page_state_range(phys, size, PKVM_PAGE_OWNED);
786 	WARN_ON(pkvm_create_mappings_locked(virt, virt + size, PAGE_HYP));
787 	WARN_ON(host_stage2_set_owner_locked(phys, size, PKVM_ID_HYP));
788 
789 unlock:
790 	hyp_unlock_component();
791 	host_unlock_component();
792 
793 	return ret;
794 }
795 
__pkvm_hyp_donate_host(u64 pfn,u64 nr_pages)796 int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages)
797 {
798 	u64 phys = hyp_pfn_to_phys(pfn);
799 	u64 size = PAGE_SIZE * nr_pages;
800 	u64 virt = (u64)__hyp_va(phys);
801 	int ret;
802 
803 	host_lock_component();
804 	hyp_lock_component();
805 
806 	ret = __hyp_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
807 	if (ret)
808 		goto unlock;
809 	ret = __host_check_page_state_range(phys, size, PKVM_NOPAGE);
810 	if (ret)
811 		goto unlock;
812 
813 	__hyp_set_page_state_range(phys, size, PKVM_NOPAGE);
814 	WARN_ON(kvm_pgtable_hyp_unmap(&pkvm_pgtable, virt, size) != size);
815 	WARN_ON(host_stage2_set_owner_locked(phys, size, PKVM_ID_HOST));
816 
817 unlock:
818 	hyp_unlock_component();
819 	host_unlock_component();
820 
821 	return ret;
822 }
823 
hyp_pin_shared_mem(void * from,void * to)824 int hyp_pin_shared_mem(void *from, void *to)
825 {
826 	u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
827 	u64 end = PAGE_ALIGN((u64)to);
828 	u64 phys = __hyp_pa(start);
829 	u64 size = end - start;
830 	struct hyp_page *p;
831 	int ret;
832 
833 	host_lock_component();
834 	hyp_lock_component();
835 
836 	ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
837 	if (ret)
838 		goto unlock;
839 
840 	ret = __hyp_check_page_state_range(phys, size, PKVM_PAGE_SHARED_BORROWED);
841 	if (ret)
842 		goto unlock;
843 
844 	for (cur = start; cur < end; cur += PAGE_SIZE) {
845 		p = hyp_virt_to_page(cur);
846 		hyp_page_ref_inc(p);
847 		if (p->refcount == 1)
848 			WARN_ON(pkvm_create_mappings_locked((void *)cur,
849 							    (void *)cur + PAGE_SIZE,
850 							    PAGE_HYP));
851 	}
852 
853 unlock:
854 	hyp_unlock_component();
855 	host_unlock_component();
856 
857 	return ret;
858 }
859 
hyp_unpin_shared_mem(void * from,void * to)860 void hyp_unpin_shared_mem(void *from, void *to)
861 {
862 	u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
863 	u64 end = PAGE_ALIGN((u64)to);
864 	struct hyp_page *p;
865 
866 	host_lock_component();
867 	hyp_lock_component();
868 
869 	for (cur = start; cur < end; cur += PAGE_SIZE) {
870 		p = hyp_virt_to_page(cur);
871 		if (p->refcount == 1)
872 			WARN_ON(kvm_pgtable_hyp_unmap(&pkvm_pgtable, cur, PAGE_SIZE) != PAGE_SIZE);
873 		hyp_page_ref_dec(p);
874 	}
875 
876 	hyp_unlock_component();
877 	host_unlock_component();
878 }
879 
__pkvm_host_share_ffa(u64 pfn,u64 nr_pages)880 int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages)
881 {
882 	u64 phys = hyp_pfn_to_phys(pfn);
883 	u64 size = PAGE_SIZE * nr_pages;
884 	int ret;
885 
886 	host_lock_component();
887 	ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
888 	if (!ret)
889 		ret = __host_set_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
890 	host_unlock_component();
891 
892 	return ret;
893 }
894 
__pkvm_host_unshare_ffa(u64 pfn,u64 nr_pages)895 int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages)
896 {
897 	u64 phys = hyp_pfn_to_phys(pfn);
898 	u64 size = PAGE_SIZE * nr_pages;
899 	int ret;
900 
901 	host_lock_component();
902 	ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
903 	if (!ret)
904 		ret = __host_set_page_state_range(phys, size, PKVM_PAGE_OWNED);
905 	host_unlock_component();
906 
907 	return ret;
908 }
909 
__guest_check_transition_size(u64 phys,u64 ipa,u64 nr_pages,u64 * size)910 static int __guest_check_transition_size(u64 phys, u64 ipa, u64 nr_pages, u64 *size)
911 {
912 	size_t block_size;
913 
914 	if (nr_pages == 1) {
915 		*size = PAGE_SIZE;
916 		return 0;
917 	}
918 
919 	/* We solely support second to last level huge mapping */
920 	block_size = kvm_granule_size(KVM_PGTABLE_LAST_LEVEL - 1);
921 
922 	if (nr_pages != block_size >> PAGE_SHIFT)
923 		return -EINVAL;
924 
925 	if (!IS_ALIGNED(phys | ipa, block_size))
926 		return -EINVAL;
927 
928 	*size = block_size;
929 	return 0;
930 }
931 
__pkvm_host_share_guest(u64 pfn,u64 gfn,u64 nr_pages,struct pkvm_hyp_vcpu * vcpu,enum kvm_pgtable_prot prot)932 int __pkvm_host_share_guest(u64 pfn, u64 gfn, u64 nr_pages, struct pkvm_hyp_vcpu *vcpu,
933 			    enum kvm_pgtable_prot prot)
934 {
935 	struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
936 	u64 phys = hyp_pfn_to_phys(pfn);
937 	u64 ipa = hyp_pfn_to_phys(gfn);
938 	u64 size;
939 	int ret;
940 
941 	if (prot & ~KVM_PGTABLE_PROT_RWX)
942 		return -EINVAL;
943 
944 	ret = __guest_check_transition_size(phys, ipa, nr_pages, &size);
945 	if (ret)
946 		return ret;
947 
948 	ret = check_range_allowed_memory(phys, phys + size);
949 	if (ret)
950 		return ret;
951 
952 	host_lock_component();
953 	guest_lock_component(vm);
954 
955 	ret = __guest_check_page_state_range(vm, ipa, size, PKVM_NOPAGE);
956 	if (ret)
957 		goto unlock;
958 
959 	for_each_hyp_page(page, phys, size) {
960 		switch (get_host_state(page)) {
961 		case PKVM_PAGE_OWNED:
962 			continue;
963 		case PKVM_PAGE_SHARED_OWNED:
964 			if (page->host_share_guest_count == U32_MAX) {
965 				ret = -EBUSY;
966 				goto unlock;
967 			}
968 
969 			/* Only host to np-guest multi-sharing is tolerated */
970 			if (page->host_share_guest_count)
971 				continue;
972 
973 			fallthrough;
974 		default:
975 			ret = -EPERM;
976 			goto unlock;
977 		}
978 	}
979 
980 	for_each_hyp_page(page, phys, size) {
981 		set_host_state(page, PKVM_PAGE_SHARED_OWNED);
982 		page->host_share_guest_count++;
983 	}
984 
985 	WARN_ON(kvm_pgtable_stage2_map(&vm->pgt, ipa, size, phys,
986 				       pkvm_mkstate(prot, PKVM_PAGE_SHARED_BORROWED),
987 				       &vcpu->vcpu.arch.pkvm_memcache, 0));
988 
989 unlock:
990 	guest_unlock_component(vm);
991 	host_unlock_component();
992 
993 	return ret;
994 }
995 
__check_host_shared_guest(struct pkvm_hyp_vm * vm,u64 * __phys,u64 ipa,u64 size)996 static int __check_host_shared_guest(struct pkvm_hyp_vm *vm, u64 *__phys, u64 ipa, u64 size)
997 {
998 	enum pkvm_page_state state;
999 	kvm_pte_t pte;
1000 	u64 phys;
1001 	s8 level;
1002 	int ret;
1003 
1004 	ret = kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, &level);
1005 	if (ret)
1006 		return ret;
1007 	if (!kvm_pte_valid(pte))
1008 		return -ENOENT;
1009 	if (kvm_granule_size(level) != size)
1010 		return -E2BIG;
1011 
1012 	state = guest_get_page_state(pte, ipa);
1013 	if (state != PKVM_PAGE_SHARED_BORROWED)
1014 		return -EPERM;
1015 
1016 	phys = kvm_pte_to_phys(pte);
1017 	ret = check_range_allowed_memory(phys, phys + size);
1018 	if (WARN_ON(ret))
1019 		return ret;
1020 
1021 	for_each_hyp_page(page, phys, size) {
1022 		if (get_host_state(page) != PKVM_PAGE_SHARED_OWNED)
1023 			return -EPERM;
1024 		if (WARN_ON(!page->host_share_guest_count))
1025 			return -EINVAL;
1026 	}
1027 
1028 	*__phys = phys;
1029 
1030 	return 0;
1031 }
1032 
__pkvm_host_unshare_guest(u64 gfn,u64 nr_pages,struct pkvm_hyp_vm * vm)1033 int __pkvm_host_unshare_guest(u64 gfn, u64 nr_pages, struct pkvm_hyp_vm *vm)
1034 {
1035 	u64 ipa = hyp_pfn_to_phys(gfn);
1036 	u64 size, phys;
1037 	int ret;
1038 
1039 	ret = __guest_check_transition_size(0, ipa, nr_pages, &size);
1040 	if (ret)
1041 		return ret;
1042 
1043 	host_lock_component();
1044 	guest_lock_component(vm);
1045 
1046 	ret = __check_host_shared_guest(vm, &phys, ipa, size);
1047 	if (ret)
1048 		goto unlock;
1049 
1050 	ret = kvm_pgtable_stage2_unmap(&vm->pgt, ipa, size);
1051 	if (ret)
1052 		goto unlock;
1053 
1054 	for_each_hyp_page(page, phys, size) {
1055 		/* __check_host_shared_guest() protects against underflow */
1056 		page->host_share_guest_count--;
1057 		if (!page->host_share_guest_count)
1058 			set_host_state(page, PKVM_PAGE_OWNED);
1059 	}
1060 
1061 unlock:
1062 	guest_unlock_component(vm);
1063 	host_unlock_component();
1064 
1065 	return ret;
1066 }
1067 
assert_host_shared_guest(struct pkvm_hyp_vm * vm,u64 ipa,u64 size)1068 static void assert_host_shared_guest(struct pkvm_hyp_vm *vm, u64 ipa, u64 size)
1069 {
1070 	u64 phys;
1071 	int ret;
1072 
1073 	if (!IS_ENABLED(CONFIG_NVHE_EL2_DEBUG))
1074 		return;
1075 
1076 	host_lock_component();
1077 	guest_lock_component(vm);
1078 
1079 	ret = __check_host_shared_guest(vm, &phys, ipa, size);
1080 
1081 	guest_unlock_component(vm);
1082 	host_unlock_component();
1083 
1084 	WARN_ON(ret && ret != -ENOENT);
1085 }
1086 
__pkvm_host_relax_perms_guest(u64 gfn,struct pkvm_hyp_vcpu * vcpu,enum kvm_pgtable_prot prot)1087 int __pkvm_host_relax_perms_guest(u64 gfn, struct pkvm_hyp_vcpu *vcpu, enum kvm_pgtable_prot prot)
1088 {
1089 	struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
1090 	u64 ipa = hyp_pfn_to_phys(gfn);
1091 	int ret;
1092 
1093 	if (pkvm_hyp_vm_is_protected(vm))
1094 		return -EPERM;
1095 
1096 	if (prot & ~KVM_PGTABLE_PROT_RWX)
1097 		return -EINVAL;
1098 
1099 	assert_host_shared_guest(vm, ipa, PAGE_SIZE);
1100 	guest_lock_component(vm);
1101 	ret = kvm_pgtable_stage2_relax_perms(&vm->pgt, ipa, prot, 0);
1102 	guest_unlock_component(vm);
1103 
1104 	return ret;
1105 }
1106 
__pkvm_host_wrprotect_guest(u64 gfn,u64 nr_pages,struct pkvm_hyp_vm * vm)1107 int __pkvm_host_wrprotect_guest(u64 gfn, u64 nr_pages, struct pkvm_hyp_vm *vm)
1108 {
1109 	u64 size, ipa = hyp_pfn_to_phys(gfn);
1110 	int ret;
1111 
1112 	if (pkvm_hyp_vm_is_protected(vm))
1113 		return -EPERM;
1114 
1115 	ret = __guest_check_transition_size(0, ipa, nr_pages, &size);
1116 	if (ret)
1117 		return ret;
1118 
1119 	assert_host_shared_guest(vm, ipa, size);
1120 	guest_lock_component(vm);
1121 	ret = kvm_pgtable_stage2_wrprotect(&vm->pgt, ipa, size);
1122 	guest_unlock_component(vm);
1123 
1124 	return ret;
1125 }
1126 
__pkvm_host_test_clear_young_guest(u64 gfn,u64 nr_pages,bool mkold,struct pkvm_hyp_vm * vm)1127 int __pkvm_host_test_clear_young_guest(u64 gfn, u64 nr_pages, bool mkold, struct pkvm_hyp_vm *vm)
1128 {
1129 	u64 size, ipa = hyp_pfn_to_phys(gfn);
1130 	int ret;
1131 
1132 	if (pkvm_hyp_vm_is_protected(vm))
1133 		return -EPERM;
1134 
1135 	ret = __guest_check_transition_size(0, ipa, nr_pages, &size);
1136 	if (ret)
1137 		return ret;
1138 
1139 	assert_host_shared_guest(vm, ipa, size);
1140 	guest_lock_component(vm);
1141 	ret = kvm_pgtable_stage2_test_clear_young(&vm->pgt, ipa, size, mkold);
1142 	guest_unlock_component(vm);
1143 
1144 	return ret;
1145 }
1146 
__pkvm_host_mkyoung_guest(u64 gfn,struct pkvm_hyp_vcpu * vcpu)1147 int __pkvm_host_mkyoung_guest(u64 gfn, struct pkvm_hyp_vcpu *vcpu)
1148 {
1149 	struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
1150 	u64 ipa = hyp_pfn_to_phys(gfn);
1151 
1152 	if (pkvm_hyp_vm_is_protected(vm))
1153 		return -EPERM;
1154 
1155 	assert_host_shared_guest(vm, ipa, PAGE_SIZE);
1156 	guest_lock_component(vm);
1157 	kvm_pgtable_stage2_mkyoung(&vm->pgt, ipa, 0);
1158 	guest_unlock_component(vm);
1159 
1160 	return 0;
1161 }
1162 
1163 #ifdef CONFIG_NVHE_EL2_DEBUG
1164 struct pkvm_expected_state {
1165 	enum pkvm_page_state host;
1166 	enum pkvm_page_state hyp;
1167 	enum pkvm_page_state guest[2]; /* [ gfn, gfn + 1 ] */
1168 };
1169 
1170 static struct pkvm_expected_state selftest_state;
1171 static struct hyp_page *selftest_page;
1172 
1173 static struct pkvm_hyp_vm selftest_vm = {
1174 	.kvm = {
1175 		.arch = {
1176 			.mmu = {
1177 				.arch = &selftest_vm.kvm.arch,
1178 				.pgt = &selftest_vm.pgt,
1179 			},
1180 		},
1181 	},
1182 };
1183 
1184 static struct pkvm_hyp_vcpu selftest_vcpu = {
1185 	.vcpu = {
1186 		.arch = {
1187 			.hw_mmu = &selftest_vm.kvm.arch.mmu,
1188 		},
1189 		.kvm = &selftest_vm.kvm,
1190 	},
1191 };
1192 
init_selftest_vm(void * virt)1193 static void init_selftest_vm(void *virt)
1194 {
1195 	struct hyp_page *p = hyp_virt_to_page(virt);
1196 	int i;
1197 
1198 	selftest_vm.kvm.arch.mmu.vtcr = host_mmu.arch.mmu.vtcr;
1199 	WARN_ON(kvm_guest_prepare_stage2(&selftest_vm, virt));
1200 
1201 	for (i = 0; i < pkvm_selftest_pages(); i++) {
1202 		if (p[i].refcount)
1203 			continue;
1204 		p[i].refcount = 1;
1205 		hyp_put_page(&selftest_vm.pool, hyp_page_to_virt(&p[i]));
1206 	}
1207 }
1208 
selftest_ipa(void)1209 static u64 selftest_ipa(void)
1210 {
1211 	return BIT(selftest_vm.pgt.ia_bits - 1);
1212 }
1213 
assert_page_state(void)1214 static void assert_page_state(void)
1215 {
1216 	void *virt = hyp_page_to_virt(selftest_page);
1217 	u64 size = PAGE_SIZE << selftest_page->order;
1218 	struct pkvm_hyp_vcpu *vcpu = &selftest_vcpu;
1219 	u64 phys = hyp_virt_to_phys(virt);
1220 	u64 ipa[2] = { selftest_ipa(), selftest_ipa() + PAGE_SIZE };
1221 	struct pkvm_hyp_vm *vm;
1222 
1223 	vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
1224 
1225 	host_lock_component();
1226 	WARN_ON(__host_check_page_state_range(phys, size, selftest_state.host));
1227 	host_unlock_component();
1228 
1229 	hyp_lock_component();
1230 	WARN_ON(__hyp_check_page_state_range(phys, size, selftest_state.hyp));
1231 	hyp_unlock_component();
1232 
1233 	guest_lock_component(&selftest_vm);
1234 	WARN_ON(__guest_check_page_state_range(vm, ipa[0], size, selftest_state.guest[0]));
1235 	WARN_ON(__guest_check_page_state_range(vm, ipa[1], size, selftest_state.guest[1]));
1236 	guest_unlock_component(&selftest_vm);
1237 }
1238 
1239 #define assert_transition_res(res, fn, ...)		\
1240 	do {						\
1241 		WARN_ON(fn(__VA_ARGS__) != res);	\
1242 		assert_page_state();			\
1243 	} while (0)
1244 
pkvm_ownership_selftest(void * base)1245 void pkvm_ownership_selftest(void *base)
1246 {
1247 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_RWX;
1248 	void *virt = hyp_alloc_pages(&host_s2_pool, 0);
1249 	struct pkvm_hyp_vcpu *vcpu = &selftest_vcpu;
1250 	struct pkvm_hyp_vm *vm = &selftest_vm;
1251 	u64 phys, size, pfn, gfn;
1252 
1253 	WARN_ON(!virt);
1254 	selftest_page = hyp_virt_to_page(virt);
1255 	selftest_page->refcount = 0;
1256 	init_selftest_vm(base);
1257 
1258 	size = PAGE_SIZE << selftest_page->order;
1259 	phys = hyp_virt_to_phys(virt);
1260 	pfn = hyp_phys_to_pfn(phys);
1261 	gfn = hyp_phys_to_pfn(selftest_ipa());
1262 
1263 	selftest_state.host = PKVM_NOPAGE;
1264 	selftest_state.hyp = PKVM_PAGE_OWNED;
1265 	selftest_state.guest[0] = selftest_state.guest[1] = PKVM_NOPAGE;
1266 	assert_page_state();
1267 	assert_transition_res(-EPERM,	__pkvm_host_donate_hyp, pfn, 1);
1268 	assert_transition_res(-EPERM,	__pkvm_host_share_hyp, pfn);
1269 	assert_transition_res(-EPERM,	__pkvm_host_unshare_hyp, pfn);
1270 	assert_transition_res(-EPERM,	__pkvm_host_share_ffa, pfn, 1);
1271 	assert_transition_res(-EPERM,	__pkvm_host_unshare_ffa, pfn, 1);
1272 	assert_transition_res(-EPERM,	hyp_pin_shared_mem, virt, virt + size);
1273 	assert_transition_res(-EPERM,	__pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1274 	assert_transition_res(-ENOENT,	__pkvm_host_unshare_guest, gfn, 1, vm);
1275 
1276 	selftest_state.host = PKVM_PAGE_OWNED;
1277 	selftest_state.hyp = PKVM_NOPAGE;
1278 	assert_transition_res(0,	__pkvm_hyp_donate_host, pfn, 1);
1279 	assert_transition_res(-EPERM,	__pkvm_hyp_donate_host, pfn, 1);
1280 	assert_transition_res(-EPERM,	__pkvm_host_unshare_hyp, pfn);
1281 	assert_transition_res(-EPERM,	__pkvm_host_unshare_ffa, pfn, 1);
1282 	assert_transition_res(-ENOENT,	__pkvm_host_unshare_guest, gfn, 1, vm);
1283 	assert_transition_res(-EPERM,	hyp_pin_shared_mem, virt, virt + size);
1284 
1285 	selftest_state.host = PKVM_PAGE_SHARED_OWNED;
1286 	selftest_state.hyp = PKVM_PAGE_SHARED_BORROWED;
1287 	assert_transition_res(0,	__pkvm_host_share_hyp, pfn);
1288 	assert_transition_res(-EPERM,	__pkvm_host_share_hyp, pfn);
1289 	assert_transition_res(-EPERM,	__pkvm_host_donate_hyp, pfn, 1);
1290 	assert_transition_res(-EPERM,	__pkvm_host_share_ffa, pfn, 1);
1291 	assert_transition_res(-EPERM,	__pkvm_hyp_donate_host, pfn, 1);
1292 	assert_transition_res(-EPERM,	__pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1293 	assert_transition_res(-ENOENT,	__pkvm_host_unshare_guest, gfn, 1, vm);
1294 
1295 	assert_transition_res(0,	hyp_pin_shared_mem, virt, virt + size);
1296 	assert_transition_res(0,	hyp_pin_shared_mem, virt, virt + size);
1297 	hyp_unpin_shared_mem(virt, virt + size);
1298 	WARN_ON(hyp_page_count(virt) != 1);
1299 	assert_transition_res(-EBUSY,	__pkvm_host_unshare_hyp, pfn);
1300 	assert_transition_res(-EPERM,	__pkvm_host_share_hyp, pfn);
1301 	assert_transition_res(-EPERM,	__pkvm_host_donate_hyp, pfn, 1);
1302 	assert_transition_res(-EPERM,	__pkvm_host_share_ffa, pfn, 1);
1303 	assert_transition_res(-EPERM,	__pkvm_hyp_donate_host, pfn, 1);
1304 	assert_transition_res(-EPERM,	__pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1305 	assert_transition_res(-ENOENT,	__pkvm_host_unshare_guest, gfn, 1, vm);
1306 
1307 	hyp_unpin_shared_mem(virt, virt + size);
1308 	assert_page_state();
1309 	WARN_ON(hyp_page_count(virt));
1310 
1311 	selftest_state.host = PKVM_PAGE_OWNED;
1312 	selftest_state.hyp = PKVM_NOPAGE;
1313 	assert_transition_res(0,	__pkvm_host_unshare_hyp, pfn);
1314 
1315 	selftest_state.host = PKVM_PAGE_SHARED_OWNED;
1316 	selftest_state.hyp = PKVM_NOPAGE;
1317 	assert_transition_res(0,	__pkvm_host_share_ffa, pfn, 1);
1318 	assert_transition_res(-EPERM,	__pkvm_host_share_ffa, pfn, 1);
1319 	assert_transition_res(-EPERM,	__pkvm_host_donate_hyp, pfn, 1);
1320 	assert_transition_res(-EPERM,	__pkvm_host_share_hyp, pfn);
1321 	assert_transition_res(-EPERM,	__pkvm_host_unshare_hyp, pfn);
1322 	assert_transition_res(-EPERM,	__pkvm_hyp_donate_host, pfn, 1);
1323 	assert_transition_res(-EPERM,	__pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1324 	assert_transition_res(-ENOENT,	__pkvm_host_unshare_guest, gfn, 1, vm);
1325 	assert_transition_res(-EPERM,	hyp_pin_shared_mem, virt, virt + size);
1326 
1327 	selftest_state.host = PKVM_PAGE_OWNED;
1328 	selftest_state.hyp = PKVM_NOPAGE;
1329 	assert_transition_res(0,	__pkvm_host_unshare_ffa, pfn, 1);
1330 	assert_transition_res(-EPERM,	__pkvm_host_unshare_ffa, pfn, 1);
1331 
1332 	selftest_state.host = PKVM_PAGE_SHARED_OWNED;
1333 	selftest_state.guest[0] = PKVM_PAGE_SHARED_BORROWED;
1334 	assert_transition_res(0,	__pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1335 	assert_transition_res(-EPERM,	__pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1336 	assert_transition_res(-EPERM,	__pkvm_host_share_ffa, pfn, 1);
1337 	assert_transition_res(-EPERM,	__pkvm_host_donate_hyp, pfn, 1);
1338 	assert_transition_res(-EPERM,	__pkvm_host_share_hyp, pfn);
1339 	assert_transition_res(-EPERM,	__pkvm_host_unshare_hyp, pfn);
1340 	assert_transition_res(-EPERM,	__pkvm_hyp_donate_host, pfn, 1);
1341 	assert_transition_res(-EPERM,	hyp_pin_shared_mem, virt, virt + size);
1342 
1343 	selftest_state.guest[1] = PKVM_PAGE_SHARED_BORROWED;
1344 	assert_transition_res(0,	__pkvm_host_share_guest, pfn, gfn + 1, 1, vcpu, prot);
1345 	WARN_ON(hyp_virt_to_page(virt)->host_share_guest_count != 2);
1346 
1347 	selftest_state.guest[0] = PKVM_NOPAGE;
1348 	assert_transition_res(0,	__pkvm_host_unshare_guest, gfn, 1, vm);
1349 
1350 	selftest_state.guest[1] = PKVM_NOPAGE;
1351 	selftest_state.host = PKVM_PAGE_OWNED;
1352 	assert_transition_res(0,	__pkvm_host_unshare_guest, gfn + 1, 1, vm);
1353 
1354 	selftest_state.host = PKVM_NOPAGE;
1355 	selftest_state.hyp = PKVM_PAGE_OWNED;
1356 	assert_transition_res(0,	__pkvm_host_donate_hyp, pfn, 1);
1357 
1358 	selftest_page->refcount = 1;
1359 	hyp_put_page(&host_s2_pool, virt);
1360 }
1361 #endif
1362