1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_emulate.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_nested.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_ptrauth.h>
42 #include <asm/sections.h>
43
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47
48 #include "sys_regs.h"
49
50 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
51
52 enum kvm_wfx_trap_policy {
53 KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */
54 KVM_WFX_NOTRAP,
55 KVM_WFX_TRAP,
56 };
57
58 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
59 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
60
61 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
62
63 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base);
64 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
65
66 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
67
68 static bool vgic_present, kvm_arm_initialised;
69
70 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
71
is_kvm_arm_initialised(void)72 bool is_kvm_arm_initialised(void)
73 {
74 return kvm_arm_initialised;
75 }
76
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)77 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
78 {
79 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
80 }
81
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)82 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
83 struct kvm_enable_cap *cap)
84 {
85 int r = -EINVAL;
86
87 if (cap->flags)
88 return -EINVAL;
89
90 if (kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(cap->cap))
91 return -EINVAL;
92
93 switch (cap->cap) {
94 case KVM_CAP_ARM_NISV_TO_USER:
95 r = 0;
96 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
97 &kvm->arch.flags);
98 break;
99 case KVM_CAP_ARM_MTE:
100 mutex_lock(&kvm->lock);
101 if (system_supports_mte() && !kvm->created_vcpus) {
102 r = 0;
103 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
104 }
105 mutex_unlock(&kvm->lock);
106 break;
107 case KVM_CAP_ARM_SYSTEM_SUSPEND:
108 r = 0;
109 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
110 break;
111 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
112 mutex_lock(&kvm->slots_lock);
113 /*
114 * To keep things simple, allow changing the chunk
115 * size only when no memory slots have been created.
116 */
117 if (kvm_are_all_memslots_empty(kvm)) {
118 u64 new_cap = cap->args[0];
119
120 if (!new_cap || kvm_is_block_size_supported(new_cap)) {
121 r = 0;
122 kvm->arch.mmu.split_page_chunk_size = new_cap;
123 }
124 }
125 mutex_unlock(&kvm->slots_lock);
126 break;
127 case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
128 mutex_lock(&kvm->lock);
129 if (!kvm->created_vcpus) {
130 r = 0;
131 set_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags);
132 }
133 mutex_unlock(&kvm->lock);
134 break;
135 case KVM_CAP_ARM_SEA_TO_USER:
136 r = 0;
137 set_bit(KVM_ARCH_FLAG_EXIT_SEA, &kvm->arch.flags);
138 break;
139 default:
140 break;
141 }
142
143 return r;
144 }
145
kvm_arm_default_max_vcpus(void)146 static int kvm_arm_default_max_vcpus(void)
147 {
148 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149 }
150
151 /**
152 * kvm_arch_init_vm - initializes a VM data structure
153 * @kvm: pointer to the KVM struct
154 * @type: kvm device type
155 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)156 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
157 {
158 int ret;
159
160 mutex_init(&kvm->arch.config_lock);
161
162 #ifdef CONFIG_LOCKDEP
163 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
164 mutex_lock(&kvm->lock);
165 mutex_lock(&kvm->arch.config_lock);
166 mutex_unlock(&kvm->arch.config_lock);
167 mutex_unlock(&kvm->lock);
168 #endif
169
170 kvm_init_nested(kvm);
171
172 ret = kvm_share_hyp(kvm, kvm + 1);
173 if (ret)
174 return ret;
175
176 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
177 ret = -ENOMEM;
178 goto err_unshare_kvm;
179 }
180 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
181
182 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
183 if (ret)
184 goto err_free_cpumask;
185
186 if (is_protected_kvm_enabled()) {
187 /*
188 * If any failures occur after this is successful, make sure to
189 * call __pkvm_unreserve_vm to unreserve the VM in hyp.
190 */
191 ret = pkvm_init_host_vm(kvm);
192 if (ret)
193 goto err_free_cpumask;
194 }
195
196 kvm_vgic_early_init(kvm);
197
198 kvm_timer_init_vm(kvm);
199
200 /* The maximum number of VCPUs is limited by the host's GIC model */
201 kvm->max_vcpus = kvm_arm_default_max_vcpus();
202
203 kvm_arm_init_hypercalls(kvm);
204
205 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
206
207 return 0;
208
209 err_free_cpumask:
210 free_cpumask_var(kvm->arch.supported_cpus);
211 err_unshare_kvm:
212 kvm_unshare_hyp(kvm, kvm + 1);
213 return ret;
214 }
215
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)216 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
217 {
218 return VM_FAULT_SIGBUS;
219 }
220
kvm_arch_create_vm_debugfs(struct kvm * kvm)221 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
222 {
223 kvm_sys_regs_create_debugfs(kvm);
224 kvm_s2_ptdump_create_debugfs(kvm);
225 }
226
kvm_destroy_mpidr_data(struct kvm * kvm)227 static void kvm_destroy_mpidr_data(struct kvm *kvm)
228 {
229 struct kvm_mpidr_data *data;
230
231 mutex_lock(&kvm->arch.config_lock);
232
233 data = rcu_dereference_protected(kvm->arch.mpidr_data,
234 lockdep_is_held(&kvm->arch.config_lock));
235 if (data) {
236 rcu_assign_pointer(kvm->arch.mpidr_data, NULL);
237 synchronize_rcu();
238 kfree(data);
239 }
240
241 mutex_unlock(&kvm->arch.config_lock);
242 }
243
244 /**
245 * kvm_arch_destroy_vm - destroy the VM data structure
246 * @kvm: pointer to the KVM struct
247 */
kvm_arch_destroy_vm(struct kvm * kvm)248 void kvm_arch_destroy_vm(struct kvm *kvm)
249 {
250 bitmap_free(kvm->arch.pmu_filter);
251 free_cpumask_var(kvm->arch.supported_cpus);
252
253 kvm_vgic_destroy(kvm);
254
255 if (is_protected_kvm_enabled())
256 pkvm_destroy_hyp_vm(kvm);
257
258 kvm_destroy_mpidr_data(kvm);
259
260 kfree(kvm->arch.sysreg_masks);
261 kvm_destroy_vcpus(kvm);
262
263 kvm_unshare_hyp(kvm, kvm + 1);
264
265 kvm_arm_teardown_hypercalls(kvm);
266 }
267
kvm_has_full_ptr_auth(void)268 static bool kvm_has_full_ptr_auth(void)
269 {
270 bool apa, gpa, api, gpi, apa3, gpa3;
271 u64 isar1, isar2, val;
272
273 /*
274 * Check that:
275 *
276 * - both Address and Generic auth are implemented for a given
277 * algorithm (Q5, IMPDEF or Q3)
278 * - only a single algorithm is implemented.
279 */
280 if (!system_has_full_ptr_auth())
281 return false;
282
283 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
284 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
285
286 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1);
287 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1);
288 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP);
289
290 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1);
291 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1);
292 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP);
293
294 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2);
295 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2);
296 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP);
297
298 return (apa == gpa && api == gpi && apa3 == gpa3 &&
299 (apa + api + apa3) == 1);
300 }
301
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)302 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
303 {
304 int r;
305
306 if (kvm && kvm_vm_is_protected(kvm) && !kvm_pvm_ext_allowed(ext))
307 return 0;
308
309 switch (ext) {
310 case KVM_CAP_IRQCHIP:
311 r = vgic_present;
312 break;
313 case KVM_CAP_IOEVENTFD:
314 case KVM_CAP_USER_MEMORY:
315 case KVM_CAP_SYNC_MMU:
316 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
317 case KVM_CAP_ONE_REG:
318 case KVM_CAP_ARM_PSCI:
319 case KVM_CAP_ARM_PSCI_0_2:
320 case KVM_CAP_READONLY_MEM:
321 case KVM_CAP_MP_STATE:
322 case KVM_CAP_IMMEDIATE_EXIT:
323 case KVM_CAP_VCPU_EVENTS:
324 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
325 case KVM_CAP_ARM_NISV_TO_USER:
326 case KVM_CAP_ARM_INJECT_EXT_DABT:
327 case KVM_CAP_SET_GUEST_DEBUG:
328 case KVM_CAP_VCPU_ATTRIBUTES:
329 case KVM_CAP_PTP_KVM:
330 case KVM_CAP_ARM_SYSTEM_SUSPEND:
331 case KVM_CAP_IRQFD_RESAMPLE:
332 case KVM_CAP_COUNTER_OFFSET:
333 case KVM_CAP_ARM_WRITABLE_IMP_ID_REGS:
334 case KVM_CAP_ARM_SEA_TO_USER:
335 r = 1;
336 break;
337 case KVM_CAP_SET_GUEST_DEBUG2:
338 return KVM_GUESTDBG_VALID_MASK;
339 case KVM_CAP_ARM_SET_DEVICE_ADDR:
340 r = 1;
341 break;
342 case KVM_CAP_NR_VCPUS:
343 /*
344 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
345 * architectures, as it does not always bound it to
346 * KVM_CAP_MAX_VCPUS. It should not matter much because
347 * this is just an advisory value.
348 */
349 r = min_t(unsigned int, num_online_cpus(),
350 kvm_arm_default_max_vcpus());
351 break;
352 case KVM_CAP_MAX_VCPUS:
353 case KVM_CAP_MAX_VCPU_ID:
354 if (kvm)
355 r = kvm->max_vcpus;
356 else
357 r = kvm_arm_default_max_vcpus();
358 break;
359 case KVM_CAP_MSI_DEVID:
360 if (!kvm)
361 r = -EINVAL;
362 else
363 r = kvm->arch.vgic.msis_require_devid;
364 break;
365 case KVM_CAP_ARM_USER_IRQ:
366 /*
367 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
368 * (bump this number if adding more devices)
369 */
370 r = 1;
371 break;
372 case KVM_CAP_ARM_MTE:
373 r = system_supports_mte();
374 break;
375 case KVM_CAP_STEAL_TIME:
376 r = kvm_arm_pvtime_supported();
377 break;
378 case KVM_CAP_ARM_EL1_32BIT:
379 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
380 break;
381 case KVM_CAP_ARM_EL2:
382 r = cpus_have_final_cap(ARM64_HAS_NESTED_VIRT);
383 break;
384 case KVM_CAP_ARM_EL2_E2H0:
385 r = cpus_have_final_cap(ARM64_HAS_HCR_NV1);
386 break;
387 case KVM_CAP_GUEST_DEBUG_HW_BPS:
388 r = get_num_brps();
389 break;
390 case KVM_CAP_GUEST_DEBUG_HW_WPS:
391 r = get_num_wrps();
392 break;
393 case KVM_CAP_ARM_PMU_V3:
394 r = kvm_supports_guest_pmuv3();
395 break;
396 case KVM_CAP_ARM_INJECT_SERROR_ESR:
397 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
398 break;
399 case KVM_CAP_ARM_VM_IPA_SIZE:
400 r = get_kvm_ipa_limit();
401 break;
402 case KVM_CAP_ARM_SVE:
403 r = system_supports_sve();
404 break;
405 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
406 case KVM_CAP_ARM_PTRAUTH_GENERIC:
407 r = kvm_has_full_ptr_auth();
408 break;
409 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
410 if (kvm)
411 r = kvm->arch.mmu.split_page_chunk_size;
412 else
413 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
414 break;
415 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
416 r = kvm_supported_block_sizes();
417 break;
418 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
419 r = BIT(0);
420 break;
421 case KVM_CAP_ARM_CACHEABLE_PFNMAP_SUPPORTED:
422 if (!kvm)
423 r = -EINVAL;
424 else
425 r = kvm_supports_cacheable_pfnmap();
426 break;
427
428 default:
429 r = 0;
430 }
431
432 return r;
433 }
434
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)435 long kvm_arch_dev_ioctl(struct file *filp,
436 unsigned int ioctl, unsigned long arg)
437 {
438 return -EINVAL;
439 }
440
kvm_arch_alloc_vm(void)441 struct kvm *kvm_arch_alloc_vm(void)
442 {
443 size_t sz = sizeof(struct kvm);
444
445 if (!has_vhe())
446 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
447
448 return kvzalloc(sz, GFP_KERNEL_ACCOUNT);
449 }
450
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)451 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
452 {
453 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
454 return -EBUSY;
455
456 if (id >= kvm->max_vcpus)
457 return -EINVAL;
458
459 return 0;
460 }
461
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)462 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
463 {
464 int err;
465
466 spin_lock_init(&vcpu->arch.mp_state_lock);
467
468 #ifdef CONFIG_LOCKDEP
469 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
470 mutex_lock(&vcpu->mutex);
471 mutex_lock(&vcpu->kvm->arch.config_lock);
472 mutex_unlock(&vcpu->kvm->arch.config_lock);
473 mutex_unlock(&vcpu->mutex);
474 #endif
475
476 /* Force users to call KVM_ARM_VCPU_INIT */
477 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
478
479 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
480
481 /* Set up the timer */
482 kvm_timer_vcpu_init(vcpu);
483
484 kvm_pmu_vcpu_init(vcpu);
485
486 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
487
488 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
489
490 /*
491 * This vCPU may have been created after mpidr_data was initialized.
492 * Throw out the pre-computed mappings if that is the case which forces
493 * KVM to fall back to iteratively searching the vCPUs.
494 */
495 kvm_destroy_mpidr_data(vcpu->kvm);
496
497 err = kvm_vgic_vcpu_init(vcpu);
498 if (err)
499 return err;
500
501 err = kvm_share_hyp(vcpu, vcpu + 1);
502 if (err)
503 kvm_vgic_vcpu_destroy(vcpu);
504
505 return err;
506 }
507
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)508 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
509 {
510 }
511
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)512 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
513 {
514 if (!is_protected_kvm_enabled())
515 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
516 else
517 free_hyp_memcache(&vcpu->arch.pkvm_memcache);
518 kvm_timer_vcpu_terminate(vcpu);
519 kvm_pmu_vcpu_destroy(vcpu);
520 kvm_vgic_vcpu_destroy(vcpu);
521 kvm_arm_vcpu_destroy(vcpu);
522 }
523
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)524 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
525 {
526
527 }
528
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)529 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
530 {
531
532 }
533
vcpu_set_pauth_traps(struct kvm_vcpu * vcpu)534 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu)
535 {
536 if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) {
537 /*
538 * Either we're running an L2 guest, and the API/APK bits come
539 * from L1's HCR_EL2, or API/APK are both set.
540 */
541 if (unlikely(is_nested_ctxt(vcpu))) {
542 u64 val;
543
544 val = __vcpu_sys_reg(vcpu, HCR_EL2);
545 val &= (HCR_API | HCR_APK);
546 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
547 vcpu->arch.hcr_el2 |= val;
548 } else {
549 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
550 }
551
552 /*
553 * Save the host keys if there is any chance for the guest
554 * to use pauth, as the entry code will reload the guest
555 * keys in that case.
556 */
557 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) {
558 struct kvm_cpu_context *ctxt;
559
560 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt);
561 ptrauth_save_keys(ctxt);
562 }
563 }
564 }
565
kvm_vcpu_should_clear_twi(struct kvm_vcpu * vcpu)566 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu)
567 {
568 if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
569 return kvm_wfi_trap_policy == KVM_WFX_NOTRAP;
570
571 return single_task_running() &&
572 vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
573 (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
574 vcpu->kvm->arch.vgic.nassgireq);
575 }
576
kvm_vcpu_should_clear_twe(struct kvm_vcpu * vcpu)577 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu)
578 {
579 if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
580 return kvm_wfe_trap_policy == KVM_WFX_NOTRAP;
581
582 return single_task_running();
583 }
584
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)585 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
586 {
587 struct kvm_s2_mmu *mmu;
588 int *last_ran;
589
590 if (is_protected_kvm_enabled())
591 goto nommu;
592
593 if (vcpu_has_nv(vcpu))
594 kvm_vcpu_load_hw_mmu(vcpu);
595
596 mmu = vcpu->arch.hw_mmu;
597 last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
598
599 /*
600 * Ensure a VMID is allocated for the MMU before programming VTTBR_EL2,
601 * which happens eagerly in VHE.
602 *
603 * Also, the VMID allocator only preserves VMIDs that are active at the
604 * time of rollover, so KVM might need to grab a new VMID for the MMU if
605 * this is called from kvm_sched_in().
606 */
607 kvm_arm_vmid_update(&mmu->vmid);
608
609 /*
610 * We guarantee that both TLBs and I-cache are private to each
611 * vcpu. If detecting that a vcpu from the same VM has
612 * previously run on the same physical CPU, call into the
613 * hypervisor code to nuke the relevant contexts.
614 *
615 * We might get preempted before the vCPU actually runs, but
616 * over-invalidation doesn't affect correctness.
617 */
618 if (*last_ran != vcpu->vcpu_idx) {
619 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
620 *last_ran = vcpu->vcpu_idx;
621 }
622
623 nommu:
624 vcpu->cpu = cpu;
625
626 /*
627 * The timer must be loaded before the vgic to correctly set up physical
628 * interrupt deactivation in nested state (e.g. timer interrupt).
629 */
630 kvm_timer_vcpu_load(vcpu);
631 kvm_vgic_load(vcpu);
632 kvm_vcpu_load_debug(vcpu);
633 kvm_vcpu_load_fgt(vcpu);
634 if (has_vhe())
635 kvm_vcpu_load_vhe(vcpu);
636 kvm_arch_vcpu_load_fp(vcpu);
637 kvm_vcpu_pmu_restore_guest(vcpu);
638 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
639 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
640
641 if (kvm_vcpu_should_clear_twe(vcpu))
642 vcpu->arch.hcr_el2 &= ~HCR_TWE;
643 else
644 vcpu->arch.hcr_el2 |= HCR_TWE;
645
646 if (kvm_vcpu_should_clear_twi(vcpu))
647 vcpu->arch.hcr_el2 &= ~HCR_TWI;
648 else
649 vcpu->arch.hcr_el2 |= HCR_TWI;
650
651 vcpu_set_pauth_traps(vcpu);
652
653 if (is_protected_kvm_enabled()) {
654 kvm_call_hyp_nvhe(__pkvm_vcpu_load,
655 vcpu->kvm->arch.pkvm.handle,
656 vcpu->vcpu_idx, vcpu->arch.hcr_el2);
657 kvm_call_hyp(__vgic_v3_restore_vmcr_aprs,
658 &vcpu->arch.vgic_cpu.vgic_v3);
659 }
660
661 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
662 vcpu_set_on_unsupported_cpu(vcpu);
663 }
664
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)665 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
666 {
667 if (is_protected_kvm_enabled()) {
668 kvm_call_hyp(__vgic_v3_save_aprs, &vcpu->arch.vgic_cpu.vgic_v3);
669 kvm_call_hyp_nvhe(__pkvm_vcpu_put);
670 }
671
672 kvm_vcpu_put_debug(vcpu);
673 kvm_arch_vcpu_put_fp(vcpu);
674 if (has_vhe())
675 kvm_vcpu_put_vhe(vcpu);
676 kvm_timer_vcpu_put(vcpu);
677 kvm_vgic_put(vcpu);
678 kvm_vcpu_pmu_restore_host(vcpu);
679 if (vcpu_has_nv(vcpu))
680 kvm_vcpu_put_hw_mmu(vcpu);
681 kvm_arm_vmid_clear_active();
682
683 vcpu_clear_on_unsupported_cpu(vcpu);
684 vcpu->cpu = -1;
685 }
686
__kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)687 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
688 {
689 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
690 kvm_make_request(KVM_REQ_SLEEP, vcpu);
691 kvm_vcpu_kick(vcpu);
692 }
693
kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)694 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
695 {
696 spin_lock(&vcpu->arch.mp_state_lock);
697 __kvm_arm_vcpu_power_off(vcpu);
698 spin_unlock(&vcpu->arch.mp_state_lock);
699 }
700
kvm_arm_vcpu_stopped(struct kvm_vcpu * vcpu)701 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
702 {
703 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
704 }
705
kvm_arm_vcpu_suspend(struct kvm_vcpu * vcpu)706 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
707 {
708 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
709 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
710 kvm_vcpu_kick(vcpu);
711 }
712
kvm_arm_vcpu_suspended(struct kvm_vcpu * vcpu)713 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
714 {
715 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
716 }
717
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)718 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
719 struct kvm_mp_state *mp_state)
720 {
721 *mp_state = READ_ONCE(vcpu->arch.mp_state);
722
723 return 0;
724 }
725
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)726 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
727 struct kvm_mp_state *mp_state)
728 {
729 int ret = 0;
730
731 spin_lock(&vcpu->arch.mp_state_lock);
732
733 switch (mp_state->mp_state) {
734 case KVM_MP_STATE_RUNNABLE:
735 WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
736 break;
737 case KVM_MP_STATE_STOPPED:
738 __kvm_arm_vcpu_power_off(vcpu);
739 break;
740 case KVM_MP_STATE_SUSPENDED:
741 kvm_arm_vcpu_suspend(vcpu);
742 break;
743 default:
744 ret = -EINVAL;
745 }
746
747 spin_unlock(&vcpu->arch.mp_state_lock);
748
749 return ret;
750 }
751
752 /**
753 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
754 * @v: The VCPU pointer
755 *
756 * If the guest CPU is not waiting for interrupts or an interrupt line is
757 * asserted, the CPU is by definition runnable.
758 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)759 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
760 {
761 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF | HCR_VSE);
762
763 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
764 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
765 }
766
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)767 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
768 {
769 return vcpu_mode_priv(vcpu);
770 }
771
772 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)773 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
774 {
775 return *vcpu_pc(vcpu);
776 }
777 #endif
778
kvm_init_mpidr_data(struct kvm * kvm)779 static void kvm_init_mpidr_data(struct kvm *kvm)
780 {
781 struct kvm_mpidr_data *data = NULL;
782 unsigned long c, mask, nr_entries;
783 u64 aff_set = 0, aff_clr = ~0UL;
784 struct kvm_vcpu *vcpu;
785
786 mutex_lock(&kvm->arch.config_lock);
787
788 if (rcu_access_pointer(kvm->arch.mpidr_data) ||
789 atomic_read(&kvm->online_vcpus) == 1)
790 goto out;
791
792 kvm_for_each_vcpu(c, vcpu, kvm) {
793 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
794 aff_set |= aff;
795 aff_clr &= aff;
796 }
797
798 /*
799 * A significant bit can be either 0 or 1, and will only appear in
800 * aff_set. Use aff_clr to weed out the useless stuff.
801 */
802 mask = aff_set ^ aff_clr;
803 nr_entries = BIT_ULL(hweight_long(mask));
804
805 /*
806 * Don't let userspace fool us. If we need more than a single page
807 * to describe the compressed MPIDR array, just fall back to the
808 * iterative method. Single vcpu VMs do not need this either.
809 */
810 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
811 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
812 GFP_KERNEL_ACCOUNT);
813
814 if (!data)
815 goto out;
816
817 data->mpidr_mask = mask;
818
819 kvm_for_each_vcpu(c, vcpu, kvm) {
820 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
821 u16 index = kvm_mpidr_index(data, aff);
822
823 data->cmpidr_to_idx[index] = c;
824 }
825
826 rcu_assign_pointer(kvm->arch.mpidr_data, data);
827 out:
828 mutex_unlock(&kvm->arch.config_lock);
829 }
830
831 /*
832 * Handle both the initialisation that is being done when the vcpu is
833 * run for the first time, as well as the updates that must be
834 * performed each time we get a new thread dealing with this vcpu.
835 */
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)836 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
837 {
838 struct kvm *kvm = vcpu->kvm;
839 int ret;
840
841 if (!kvm_vcpu_initialized(vcpu))
842 return -ENOEXEC;
843
844 if (!kvm_arm_vcpu_is_finalized(vcpu))
845 return -EPERM;
846
847 if (likely(vcpu_has_run_once(vcpu)))
848 return 0;
849
850 kvm_init_mpidr_data(kvm);
851
852 if (likely(irqchip_in_kernel(kvm))) {
853 /*
854 * Map the VGIC hardware resources before running a vcpu the
855 * first time on this VM.
856 */
857 ret = kvm_vgic_map_resources(kvm);
858 if (ret)
859 return ret;
860 }
861
862 ret = kvm_finalize_sys_regs(vcpu);
863 if (ret)
864 return ret;
865
866 if (vcpu_has_nv(vcpu)) {
867 ret = kvm_vcpu_allocate_vncr_tlb(vcpu);
868 if (ret)
869 return ret;
870
871 ret = kvm_vgic_vcpu_nv_init(vcpu);
872 if (ret)
873 return ret;
874 }
875
876 /*
877 * This needs to happen after any restriction has been applied
878 * to the feature set.
879 */
880 kvm_calculate_traps(vcpu);
881
882 ret = kvm_timer_enable(vcpu);
883 if (ret)
884 return ret;
885
886 if (kvm_vcpu_has_pmu(vcpu)) {
887 ret = kvm_arm_pmu_v3_enable(vcpu);
888 if (ret)
889 return ret;
890 }
891
892 if (is_protected_kvm_enabled()) {
893 ret = pkvm_create_hyp_vm(kvm);
894 if (ret)
895 return ret;
896
897 ret = pkvm_create_hyp_vcpu(vcpu);
898 if (ret)
899 return ret;
900 }
901
902 mutex_lock(&kvm->arch.config_lock);
903 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
904 mutex_unlock(&kvm->arch.config_lock);
905
906 return ret;
907 }
908
kvm_arch_intc_initialized(struct kvm * kvm)909 bool kvm_arch_intc_initialized(struct kvm *kvm)
910 {
911 return vgic_initialized(kvm);
912 }
913
kvm_arm_halt_guest(struct kvm * kvm)914 void kvm_arm_halt_guest(struct kvm *kvm)
915 {
916 unsigned long i;
917 struct kvm_vcpu *vcpu;
918
919 kvm_for_each_vcpu(i, vcpu, kvm)
920 vcpu->arch.pause = true;
921 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
922 }
923
kvm_arm_resume_guest(struct kvm * kvm)924 void kvm_arm_resume_guest(struct kvm *kvm)
925 {
926 unsigned long i;
927 struct kvm_vcpu *vcpu;
928
929 kvm_for_each_vcpu(i, vcpu, kvm) {
930 vcpu->arch.pause = false;
931 __kvm_vcpu_wake_up(vcpu);
932 }
933 }
934
kvm_vcpu_sleep(struct kvm_vcpu * vcpu)935 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
936 {
937 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
938
939 rcuwait_wait_event(wait,
940 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
941 TASK_INTERRUPTIBLE);
942
943 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
944 /* Awaken to handle a signal, request we sleep again later. */
945 kvm_make_request(KVM_REQ_SLEEP, vcpu);
946 }
947
948 /*
949 * Make sure we will observe a potential reset request if we've
950 * observed a change to the power state. Pairs with the smp_wmb() in
951 * kvm_psci_vcpu_on().
952 */
953 smp_rmb();
954 }
955
956 /**
957 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
958 * @vcpu: The VCPU pointer
959 *
960 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
961 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending
962 * on when a wake event arrives, e.g. there may already be a pending wake event.
963 */
kvm_vcpu_wfi(struct kvm_vcpu * vcpu)964 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
965 {
966 /*
967 * Sync back the state of the GIC CPU interface so that we have
968 * the latest PMR and group enables. This ensures that
969 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
970 * we have pending interrupts, e.g. when determining if the
971 * vCPU should block.
972 *
973 * For the same reason, we want to tell GICv4 that we need
974 * doorbells to be signalled, should an interrupt become pending.
975 */
976 preempt_disable();
977 vcpu_set_flag(vcpu, IN_WFI);
978 kvm_vgic_put(vcpu);
979 preempt_enable();
980
981 kvm_vcpu_halt(vcpu);
982 vcpu_clear_flag(vcpu, IN_WFIT);
983
984 preempt_disable();
985 vcpu_clear_flag(vcpu, IN_WFI);
986 kvm_vgic_load(vcpu);
987 preempt_enable();
988 }
989
kvm_vcpu_suspend(struct kvm_vcpu * vcpu)990 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
991 {
992 if (!kvm_arm_vcpu_suspended(vcpu))
993 return 1;
994
995 kvm_vcpu_wfi(vcpu);
996
997 /*
998 * The suspend state is sticky; we do not leave it until userspace
999 * explicitly marks the vCPU as runnable. Request that we suspend again
1000 * later.
1001 */
1002 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
1003
1004 /*
1005 * Check to make sure the vCPU is actually runnable. If so, exit to
1006 * userspace informing it of the wakeup condition.
1007 */
1008 if (kvm_arch_vcpu_runnable(vcpu)) {
1009 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
1010 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
1011 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
1012 return 0;
1013 }
1014
1015 /*
1016 * Otherwise, we were unblocked to process a different event, such as a
1017 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
1018 * process the event.
1019 */
1020 return 1;
1021 }
1022
1023 /**
1024 * check_vcpu_requests - check and handle pending vCPU requests
1025 * @vcpu: the VCPU pointer
1026 *
1027 * Return: 1 if we should enter the guest
1028 * 0 if we should exit to userspace
1029 * < 0 if we should exit to userspace, where the return value indicates
1030 * an error
1031 */
check_vcpu_requests(struct kvm_vcpu * vcpu)1032 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
1033 {
1034 if (kvm_request_pending(vcpu)) {
1035 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
1036 return -EIO;
1037
1038 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
1039 kvm_vcpu_sleep(vcpu);
1040
1041 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1042 kvm_reset_vcpu(vcpu);
1043
1044 /*
1045 * Clear IRQ_PENDING requests that were made to guarantee
1046 * that a VCPU sees new virtual interrupts.
1047 */
1048 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
1049
1050 /* Process interrupts deactivated through a trap */
1051 if (kvm_check_request(KVM_REQ_VGIC_PROCESS_UPDATE, vcpu))
1052 kvm_vgic_process_async_update(vcpu);
1053
1054 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
1055 kvm_update_stolen_time(vcpu);
1056
1057 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
1058 /* The distributor enable bits were changed */
1059 preempt_disable();
1060 vgic_v4_put(vcpu);
1061 vgic_v4_load(vcpu);
1062 preempt_enable();
1063 }
1064
1065 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
1066 kvm_vcpu_reload_pmu(vcpu);
1067
1068 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
1069 kvm_vcpu_pmu_restore_guest(vcpu);
1070
1071 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
1072 return kvm_vcpu_suspend(vcpu);
1073
1074 if (kvm_dirty_ring_check_request(vcpu))
1075 return 0;
1076
1077 check_nested_vcpu_requests(vcpu);
1078 }
1079
1080 return 1;
1081 }
1082
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)1083 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
1084 {
1085 if (likely(!vcpu_mode_is_32bit(vcpu)))
1086 return false;
1087
1088 if (vcpu_has_nv(vcpu))
1089 return true;
1090
1091 return !kvm_supports_32bit_el0();
1092 }
1093
1094 /**
1095 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
1096 * @vcpu: The VCPU pointer
1097 * @ret: Pointer to write optional return code
1098 *
1099 * Returns: true if the VCPU needs to return to a preemptible + interruptible
1100 * and skip guest entry.
1101 *
1102 * This function disambiguates between two different types of exits: exits to a
1103 * preemptible + interruptible kernel context and exits to userspace. For an
1104 * exit to userspace, this function will write the return code to ret and return
1105 * true. For an exit to preemptible + interruptible kernel context (i.e. check
1106 * for pending work and re-enter), return true without writing to ret.
1107 */
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu,int * ret)1108 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
1109 {
1110 struct kvm_run *run = vcpu->run;
1111
1112 /*
1113 * If we're using a userspace irqchip, then check if we need
1114 * to tell a userspace irqchip about timer or PMU level
1115 * changes and if so, exit to userspace (the actual level
1116 * state gets updated in kvm_timer_update_run and
1117 * kvm_pmu_update_run below).
1118 */
1119 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1120 if (kvm_timer_should_notify_user(vcpu) ||
1121 kvm_pmu_should_notify_user(vcpu)) {
1122 *ret = -EINTR;
1123 run->exit_reason = KVM_EXIT_INTR;
1124 return true;
1125 }
1126 }
1127
1128 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
1129 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1130 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
1131 run->fail_entry.cpu = smp_processor_id();
1132 *ret = 0;
1133 return true;
1134 }
1135
1136 return kvm_request_pending(vcpu) ||
1137 xfer_to_guest_mode_work_pending();
1138 }
1139
1140 /*
1141 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
1142 * the vCPU is running.
1143 *
1144 * This must be noinstr as instrumentation may make use of RCU, and this is not
1145 * safe during the EQS.
1146 */
kvm_arm_vcpu_enter_exit(struct kvm_vcpu * vcpu)1147 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
1148 {
1149 int ret;
1150
1151 guest_state_enter_irqoff();
1152 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
1153 guest_state_exit_irqoff();
1154
1155 return ret;
1156 }
1157
1158 /**
1159 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
1160 * @vcpu: The VCPU pointer
1161 *
1162 * This function is called through the VCPU_RUN ioctl called from user space. It
1163 * will execute VM code in a loop until the time slice for the process is used
1164 * or some emulation is needed from user space in which case the function will
1165 * return with return value 0 and with the kvm_run structure filled in with the
1166 * required data for the requested emulation.
1167 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)1168 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1169 {
1170 struct kvm_run *run = vcpu->run;
1171 int ret;
1172
1173 if (run->exit_reason == KVM_EXIT_MMIO) {
1174 ret = kvm_handle_mmio_return(vcpu);
1175 if (ret <= 0)
1176 return ret;
1177 }
1178
1179 vcpu_load(vcpu);
1180
1181 if (!vcpu->wants_to_run) {
1182 ret = -EINTR;
1183 goto out;
1184 }
1185
1186 kvm_sigset_activate(vcpu);
1187
1188 ret = 1;
1189 run->exit_reason = KVM_EXIT_UNKNOWN;
1190 run->flags = 0;
1191 while (ret > 0) {
1192 /*
1193 * Check conditions before entering the guest
1194 */
1195 ret = kvm_xfer_to_guest_mode_handle_work(vcpu);
1196 if (!ret)
1197 ret = 1;
1198
1199 if (ret > 0)
1200 ret = check_vcpu_requests(vcpu);
1201
1202 /*
1203 * Preparing the interrupts to be injected also
1204 * involves poking the GIC, which must be done in a
1205 * non-preemptible context.
1206 */
1207 preempt_disable();
1208
1209 kvm_nested_flush_hwstate(vcpu);
1210
1211 if (kvm_vcpu_has_pmu(vcpu))
1212 kvm_pmu_flush_hwstate(vcpu);
1213
1214 local_irq_disable();
1215
1216 kvm_vgic_flush_hwstate(vcpu);
1217
1218 kvm_pmu_update_vcpu_events(vcpu);
1219
1220 /*
1221 * Ensure we set mode to IN_GUEST_MODE after we disable
1222 * interrupts and before the final VCPU requests check.
1223 * See the comment in kvm_vcpu_exiting_guest_mode() and
1224 * Documentation/virt/kvm/vcpu-requests.rst
1225 */
1226 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1227
1228 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1229 vcpu->mode = OUTSIDE_GUEST_MODE;
1230 isb(); /* Ensure work in x_flush_hwstate is committed */
1231 if (kvm_vcpu_has_pmu(vcpu))
1232 kvm_pmu_sync_hwstate(vcpu);
1233 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1234 kvm_timer_sync_user(vcpu);
1235 kvm_vgic_sync_hwstate(vcpu);
1236 local_irq_enable();
1237 preempt_enable();
1238 continue;
1239 }
1240
1241 kvm_arch_vcpu_ctxflush_fp(vcpu);
1242
1243 /**************************************************************
1244 * Enter the guest
1245 */
1246 trace_kvm_entry(*vcpu_pc(vcpu));
1247 guest_timing_enter_irqoff();
1248
1249 ret = kvm_arm_vcpu_enter_exit(vcpu);
1250
1251 vcpu->mode = OUTSIDE_GUEST_MODE;
1252 vcpu->stat.exits++;
1253 /*
1254 * Back from guest
1255 *************************************************************/
1256
1257 /*
1258 * We must sync the PMU state before the vgic state so
1259 * that the vgic can properly sample the updated state of the
1260 * interrupt line.
1261 */
1262 if (kvm_vcpu_has_pmu(vcpu))
1263 kvm_pmu_sync_hwstate(vcpu);
1264
1265 /*
1266 * Sync the vgic state before syncing the timer state because
1267 * the timer code needs to know if the virtual timer
1268 * interrupts are active.
1269 */
1270 kvm_vgic_sync_hwstate(vcpu);
1271
1272 /*
1273 * Sync the timer hardware state before enabling interrupts as
1274 * we don't want vtimer interrupts to race with syncing the
1275 * timer virtual interrupt state.
1276 */
1277 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1278 kvm_timer_sync_user(vcpu);
1279
1280 if (is_hyp_ctxt(vcpu))
1281 kvm_timer_sync_nested(vcpu);
1282
1283 kvm_arch_vcpu_ctxsync_fp(vcpu);
1284
1285 /*
1286 * We must ensure that any pending interrupts are taken before
1287 * we exit guest timing so that timer ticks are accounted as
1288 * guest time. Transiently unmask interrupts so that any
1289 * pending interrupts are taken.
1290 *
1291 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1292 * context synchronization event) is necessary to ensure that
1293 * pending interrupts are taken.
1294 */
1295 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1296 local_irq_enable();
1297 isb();
1298 local_irq_disable();
1299 }
1300
1301 guest_timing_exit_irqoff();
1302
1303 local_irq_enable();
1304
1305 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1306
1307 /* Exit types that need handling before we can be preempted */
1308 handle_exit_early(vcpu, ret);
1309
1310 kvm_nested_sync_hwstate(vcpu);
1311
1312 preempt_enable();
1313
1314 /*
1315 * The ARMv8 architecture doesn't give the hypervisor
1316 * a mechanism to prevent a guest from dropping to AArch32 EL0
1317 * if implemented by the CPU. If we spot the guest in such
1318 * state and that we decided it wasn't supposed to do so (like
1319 * with the asymmetric AArch32 case), return to userspace with
1320 * a fatal error.
1321 */
1322 if (vcpu_mode_is_bad_32bit(vcpu)) {
1323 /*
1324 * As we have caught the guest red-handed, decide that
1325 * it isn't fit for purpose anymore by making the vcpu
1326 * invalid. The VMM can try and fix it by issuing a
1327 * KVM_ARM_VCPU_INIT if it really wants to.
1328 */
1329 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1330 ret = ARM_EXCEPTION_IL;
1331 }
1332
1333 ret = handle_exit(vcpu, ret);
1334 }
1335
1336 /* Tell userspace about in-kernel device output levels */
1337 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1338 kvm_timer_update_run(vcpu);
1339 kvm_pmu_update_run(vcpu);
1340 }
1341
1342 kvm_sigset_deactivate(vcpu);
1343
1344 out:
1345 /*
1346 * In the unlikely event that we are returning to userspace
1347 * with pending exceptions or PC adjustment, commit these
1348 * adjustments in order to give userspace a consistent view of
1349 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1350 * being preempt-safe on VHE.
1351 */
1352 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1353 vcpu_get_flag(vcpu, INCREMENT_PC)))
1354 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1355
1356 vcpu_put(vcpu);
1357 return ret;
1358 }
1359
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)1360 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1361 {
1362 int bit_index;
1363 bool set;
1364 unsigned long *hcr;
1365
1366 if (number == KVM_ARM_IRQ_CPU_IRQ)
1367 bit_index = __ffs(HCR_VI);
1368 else /* KVM_ARM_IRQ_CPU_FIQ */
1369 bit_index = __ffs(HCR_VF);
1370
1371 hcr = vcpu_hcr(vcpu);
1372 if (level)
1373 set = test_and_set_bit(bit_index, hcr);
1374 else
1375 set = test_and_clear_bit(bit_index, hcr);
1376
1377 /*
1378 * If we didn't change anything, no need to wake up or kick other CPUs
1379 */
1380 if (set == level)
1381 return 0;
1382
1383 /*
1384 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1385 * trigger a world-switch round on the running physical CPU to set the
1386 * virtual IRQ/FIQ fields in the HCR appropriately.
1387 */
1388 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1389 kvm_vcpu_kick(vcpu);
1390
1391 return 0;
1392 }
1393
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)1394 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1395 bool line_status)
1396 {
1397 u32 irq = irq_level->irq;
1398 unsigned int irq_type, vcpu_id, irq_num;
1399 struct kvm_vcpu *vcpu = NULL;
1400 bool level = irq_level->level;
1401
1402 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1403 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1404 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1405 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1406
1407 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1408
1409 switch (irq_type) {
1410 case KVM_ARM_IRQ_TYPE_CPU:
1411 if (irqchip_in_kernel(kvm))
1412 return -ENXIO;
1413
1414 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1415 if (!vcpu)
1416 return -EINVAL;
1417
1418 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1419 return -EINVAL;
1420
1421 return vcpu_interrupt_line(vcpu, irq_num, level);
1422 case KVM_ARM_IRQ_TYPE_PPI:
1423 if (!irqchip_in_kernel(kvm))
1424 return -ENXIO;
1425
1426 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1427 if (!vcpu)
1428 return -EINVAL;
1429
1430 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1431 return -EINVAL;
1432
1433 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1434 case KVM_ARM_IRQ_TYPE_SPI:
1435 if (!irqchip_in_kernel(kvm))
1436 return -ENXIO;
1437
1438 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1439 return -EINVAL;
1440
1441 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1442 }
1443
1444 return -EINVAL;
1445 }
1446
system_supported_vcpu_features(void)1447 static unsigned long system_supported_vcpu_features(void)
1448 {
1449 unsigned long features = KVM_VCPU_VALID_FEATURES;
1450
1451 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1452 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1453
1454 if (!kvm_supports_guest_pmuv3())
1455 clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1456
1457 if (!system_supports_sve())
1458 clear_bit(KVM_ARM_VCPU_SVE, &features);
1459
1460 if (!kvm_has_full_ptr_auth()) {
1461 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1462 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1463 }
1464
1465 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1466 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1467
1468 return features;
1469 }
1470
kvm_vcpu_init_check_features(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1471 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1472 const struct kvm_vcpu_init *init)
1473 {
1474 unsigned long features = init->features[0];
1475 int i;
1476
1477 if (features & ~KVM_VCPU_VALID_FEATURES)
1478 return -ENOENT;
1479
1480 for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1481 if (init->features[i])
1482 return -ENOENT;
1483 }
1484
1485 if (features & ~system_supported_vcpu_features())
1486 return -EINVAL;
1487
1488 /*
1489 * For now make sure that both address/generic pointer authentication
1490 * features are requested by the userspace together.
1491 */
1492 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1493 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1494 return -EINVAL;
1495
1496 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1497 return 0;
1498
1499 /* MTE is incompatible with AArch32 */
1500 if (kvm_has_mte(vcpu->kvm))
1501 return -EINVAL;
1502
1503 /* NV is incompatible with AArch32 */
1504 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1505 return -EINVAL;
1506
1507 return 0;
1508 }
1509
kvm_vcpu_init_changed(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1510 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1511 const struct kvm_vcpu_init *init)
1512 {
1513 unsigned long features = init->features[0];
1514
1515 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1516 KVM_VCPU_MAX_FEATURES);
1517 }
1518
kvm_setup_vcpu(struct kvm_vcpu * vcpu)1519 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1520 {
1521 struct kvm *kvm = vcpu->kvm;
1522 int ret = 0;
1523
1524 /*
1525 * When the vCPU has a PMU, but no PMU is set for the guest
1526 * yet, set the default one.
1527 */
1528 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1529 ret = kvm_arm_set_default_pmu(kvm);
1530
1531 /* Prepare for nested if required */
1532 if (!ret && vcpu_has_nv(vcpu))
1533 ret = kvm_vcpu_init_nested(vcpu);
1534
1535 return ret;
1536 }
1537
__kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1538 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1539 const struct kvm_vcpu_init *init)
1540 {
1541 unsigned long features = init->features[0];
1542 struct kvm *kvm = vcpu->kvm;
1543 int ret = -EINVAL;
1544
1545 mutex_lock(&kvm->arch.config_lock);
1546
1547 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1548 kvm_vcpu_init_changed(vcpu, init))
1549 goto out_unlock;
1550
1551 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1552
1553 ret = kvm_setup_vcpu(vcpu);
1554 if (ret)
1555 goto out_unlock;
1556
1557 /* Now we know what it is, we can reset it. */
1558 kvm_reset_vcpu(vcpu);
1559
1560 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1561 vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1562 ret = 0;
1563 out_unlock:
1564 mutex_unlock(&kvm->arch.config_lock);
1565 return ret;
1566 }
1567
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1568 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1569 const struct kvm_vcpu_init *init)
1570 {
1571 int ret;
1572
1573 if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1574 init->target != kvm_target_cpu())
1575 return -EINVAL;
1576
1577 ret = kvm_vcpu_init_check_features(vcpu, init);
1578 if (ret)
1579 return ret;
1580
1581 if (!kvm_vcpu_initialized(vcpu))
1582 return __kvm_vcpu_set_target(vcpu, init);
1583
1584 if (kvm_vcpu_init_changed(vcpu, init))
1585 return -EINVAL;
1586
1587 kvm_reset_vcpu(vcpu);
1588 return 0;
1589 }
1590
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1591 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1592 struct kvm_vcpu_init *init)
1593 {
1594 bool power_off = false;
1595 int ret;
1596
1597 /*
1598 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1599 * reflecting it in the finalized feature set, thus limiting its scope
1600 * to a single KVM_ARM_VCPU_INIT call.
1601 */
1602 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1603 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1604 power_off = true;
1605 }
1606
1607 ret = kvm_vcpu_set_target(vcpu, init);
1608 if (ret)
1609 return ret;
1610
1611 /*
1612 * Ensure a rebooted VM will fault in RAM pages and detect if the
1613 * guest MMU is turned off and flush the caches as needed.
1614 *
1615 * S2FWB enforces all memory accesses to RAM being cacheable,
1616 * ensuring that the data side is always coherent. We still
1617 * need to invalidate the I-cache though, as FWB does *not*
1618 * imply CTR_EL0.DIC.
1619 */
1620 if (vcpu_has_run_once(vcpu)) {
1621 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1622 stage2_unmap_vm(vcpu->kvm);
1623 else
1624 icache_inval_all_pou();
1625 }
1626
1627 vcpu_reset_hcr(vcpu);
1628
1629 /*
1630 * Handle the "start in power-off" case.
1631 */
1632 spin_lock(&vcpu->arch.mp_state_lock);
1633
1634 if (power_off)
1635 __kvm_arm_vcpu_power_off(vcpu);
1636 else
1637 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1638
1639 spin_unlock(&vcpu->arch.mp_state_lock);
1640
1641 return 0;
1642 }
1643
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1644 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1645 struct kvm_device_attr *attr)
1646 {
1647 int ret = -ENXIO;
1648
1649 switch (attr->group) {
1650 default:
1651 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1652 break;
1653 }
1654
1655 return ret;
1656 }
1657
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1658 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1659 struct kvm_device_attr *attr)
1660 {
1661 int ret = -ENXIO;
1662
1663 switch (attr->group) {
1664 default:
1665 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1666 break;
1667 }
1668
1669 return ret;
1670 }
1671
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1672 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1673 struct kvm_device_attr *attr)
1674 {
1675 int ret = -ENXIO;
1676
1677 switch (attr->group) {
1678 default:
1679 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1680 break;
1681 }
1682
1683 return ret;
1684 }
1685
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1686 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1687 struct kvm_vcpu_events *events)
1688 {
1689 memset(events, 0, sizeof(*events));
1690
1691 return __kvm_arm_vcpu_get_events(vcpu, events);
1692 }
1693
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1694 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1695 struct kvm_vcpu_events *events)
1696 {
1697 int i;
1698
1699 /* check whether the reserved field is zero */
1700 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1701 if (events->reserved[i])
1702 return -EINVAL;
1703
1704 /* check whether the pad field is zero */
1705 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1706 if (events->exception.pad[i])
1707 return -EINVAL;
1708
1709 return __kvm_arm_vcpu_set_events(vcpu, events);
1710 }
1711
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1712 long kvm_arch_vcpu_ioctl(struct file *filp,
1713 unsigned int ioctl, unsigned long arg)
1714 {
1715 struct kvm_vcpu *vcpu = filp->private_data;
1716 void __user *argp = (void __user *)arg;
1717 struct kvm_device_attr attr;
1718 long r;
1719
1720 switch (ioctl) {
1721 case KVM_ARM_VCPU_INIT: {
1722 struct kvm_vcpu_init init;
1723
1724 r = -EFAULT;
1725 if (copy_from_user(&init, argp, sizeof(init)))
1726 break;
1727
1728 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1729 break;
1730 }
1731 case KVM_SET_ONE_REG:
1732 case KVM_GET_ONE_REG: {
1733 struct kvm_one_reg reg;
1734
1735 r = -ENOEXEC;
1736 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1737 break;
1738
1739 r = -EFAULT;
1740 if (copy_from_user(®, argp, sizeof(reg)))
1741 break;
1742
1743 /*
1744 * We could owe a reset due to PSCI. Handle the pending reset
1745 * here to ensure userspace register accesses are ordered after
1746 * the reset.
1747 */
1748 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1749 kvm_reset_vcpu(vcpu);
1750
1751 if (ioctl == KVM_SET_ONE_REG)
1752 r = kvm_arm_set_reg(vcpu, ®);
1753 else
1754 r = kvm_arm_get_reg(vcpu, ®);
1755 break;
1756 }
1757 case KVM_GET_REG_LIST: {
1758 struct kvm_reg_list __user *user_list = argp;
1759 struct kvm_reg_list reg_list;
1760 unsigned n;
1761
1762 r = -ENOEXEC;
1763 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1764 break;
1765
1766 r = -EPERM;
1767 if (!kvm_arm_vcpu_is_finalized(vcpu))
1768 break;
1769
1770 r = -EFAULT;
1771 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1772 break;
1773 n = reg_list.n;
1774 reg_list.n = kvm_arm_num_regs(vcpu);
1775 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1776 break;
1777 r = -E2BIG;
1778 if (n < reg_list.n)
1779 break;
1780 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1781 break;
1782 }
1783 case KVM_SET_DEVICE_ATTR: {
1784 r = -EFAULT;
1785 if (copy_from_user(&attr, argp, sizeof(attr)))
1786 break;
1787 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1788 break;
1789 }
1790 case KVM_GET_DEVICE_ATTR: {
1791 r = -EFAULT;
1792 if (copy_from_user(&attr, argp, sizeof(attr)))
1793 break;
1794 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1795 break;
1796 }
1797 case KVM_HAS_DEVICE_ATTR: {
1798 r = -EFAULT;
1799 if (copy_from_user(&attr, argp, sizeof(attr)))
1800 break;
1801 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1802 break;
1803 }
1804 case KVM_GET_VCPU_EVENTS: {
1805 struct kvm_vcpu_events events;
1806
1807 if (!kvm_vcpu_initialized(vcpu))
1808 return -ENOEXEC;
1809
1810 if (kvm_arm_vcpu_get_events(vcpu, &events))
1811 return -EINVAL;
1812
1813 if (copy_to_user(argp, &events, sizeof(events)))
1814 return -EFAULT;
1815
1816 return 0;
1817 }
1818 case KVM_SET_VCPU_EVENTS: {
1819 struct kvm_vcpu_events events;
1820
1821 if (!kvm_vcpu_initialized(vcpu))
1822 return -ENOEXEC;
1823
1824 if (copy_from_user(&events, argp, sizeof(events)))
1825 return -EFAULT;
1826
1827 return kvm_arm_vcpu_set_events(vcpu, &events);
1828 }
1829 case KVM_ARM_VCPU_FINALIZE: {
1830 int what;
1831
1832 if (!kvm_vcpu_initialized(vcpu))
1833 return -ENOEXEC;
1834
1835 if (get_user(what, (const int __user *)argp))
1836 return -EFAULT;
1837
1838 return kvm_arm_vcpu_finalize(vcpu, what);
1839 }
1840 default:
1841 r = -EINVAL;
1842 }
1843
1844 return r;
1845 }
1846
kvm_arch_vcpu_unlocked_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1847 long kvm_arch_vcpu_unlocked_ioctl(struct file *filp, unsigned int ioctl,
1848 unsigned long arg)
1849 {
1850 return -ENOIOCTLCMD;
1851 }
1852
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1853 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1854 {
1855
1856 }
1857
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1858 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1859 struct kvm_arm_device_addr *dev_addr)
1860 {
1861 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1862 case KVM_ARM_DEVICE_VGIC_V2:
1863 if (!vgic_present)
1864 return -ENXIO;
1865 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1866 default:
1867 return -ENODEV;
1868 }
1869 }
1870
kvm_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)1871 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1872 {
1873 switch (attr->group) {
1874 case KVM_ARM_VM_SMCCC_CTRL:
1875 return kvm_vm_smccc_has_attr(kvm, attr);
1876 default:
1877 return -ENXIO;
1878 }
1879 }
1880
kvm_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1881 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1882 {
1883 switch (attr->group) {
1884 case KVM_ARM_VM_SMCCC_CTRL:
1885 return kvm_vm_smccc_set_attr(kvm, attr);
1886 default:
1887 return -ENXIO;
1888 }
1889 }
1890
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1891 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1892 {
1893 struct kvm *kvm = filp->private_data;
1894 void __user *argp = (void __user *)arg;
1895 struct kvm_device_attr attr;
1896
1897 switch (ioctl) {
1898 case KVM_CREATE_IRQCHIP: {
1899 int ret;
1900 if (!vgic_present)
1901 return -ENXIO;
1902 mutex_lock(&kvm->lock);
1903 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1904 mutex_unlock(&kvm->lock);
1905 return ret;
1906 }
1907 case KVM_ARM_SET_DEVICE_ADDR: {
1908 struct kvm_arm_device_addr dev_addr;
1909
1910 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1911 return -EFAULT;
1912 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1913 }
1914 case KVM_ARM_PREFERRED_TARGET: {
1915 struct kvm_vcpu_init init = {
1916 .target = KVM_ARM_TARGET_GENERIC_V8,
1917 };
1918
1919 if (copy_to_user(argp, &init, sizeof(init)))
1920 return -EFAULT;
1921
1922 return 0;
1923 }
1924 case KVM_ARM_MTE_COPY_TAGS: {
1925 struct kvm_arm_copy_mte_tags copy_tags;
1926
1927 if (copy_from_user(©_tags, argp, sizeof(copy_tags)))
1928 return -EFAULT;
1929 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags);
1930 }
1931 case KVM_ARM_SET_COUNTER_OFFSET: {
1932 struct kvm_arm_counter_offset offset;
1933
1934 if (copy_from_user(&offset, argp, sizeof(offset)))
1935 return -EFAULT;
1936 return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1937 }
1938 case KVM_HAS_DEVICE_ATTR: {
1939 if (copy_from_user(&attr, argp, sizeof(attr)))
1940 return -EFAULT;
1941
1942 return kvm_vm_has_attr(kvm, &attr);
1943 }
1944 case KVM_SET_DEVICE_ATTR: {
1945 if (copy_from_user(&attr, argp, sizeof(attr)))
1946 return -EFAULT;
1947
1948 return kvm_vm_set_attr(kvm, &attr);
1949 }
1950 case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1951 struct reg_mask_range range;
1952
1953 if (copy_from_user(&range, argp, sizeof(range)))
1954 return -EFAULT;
1955 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1956 }
1957 default:
1958 return -EINVAL;
1959 }
1960 }
1961
nvhe_percpu_size(void)1962 static unsigned long nvhe_percpu_size(void)
1963 {
1964 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1965 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1966 }
1967
nvhe_percpu_order(void)1968 static unsigned long nvhe_percpu_order(void)
1969 {
1970 unsigned long size = nvhe_percpu_size();
1971
1972 return size ? get_order(size) : 0;
1973 }
1974
pkvm_host_sve_state_order(void)1975 static size_t pkvm_host_sve_state_order(void)
1976 {
1977 return get_order(pkvm_host_sve_state_size());
1978 }
1979
1980 /* A lookup table holding the hypervisor VA for each vector slot */
1981 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1982
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)1983 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1984 {
1985 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1986 }
1987
kvm_init_vector_slots(void)1988 static int kvm_init_vector_slots(void)
1989 {
1990 int err;
1991 void *base;
1992
1993 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1994 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1995
1996 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1997 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1998
1999 if (kvm_system_needs_idmapped_vectors() &&
2000 !is_protected_kvm_enabled()) {
2001 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
2002 __BP_HARDEN_HYP_VECS_SZ, &base);
2003 if (err)
2004 return err;
2005 }
2006
2007 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
2008 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
2009 return 0;
2010 }
2011
cpu_prepare_hyp_mode(int cpu,u32 hyp_va_bits)2012 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
2013 {
2014 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2015 unsigned long tcr;
2016
2017 /*
2018 * Calculate the raw per-cpu offset without a translation from the
2019 * kernel's mapping to the linear mapping, and store it in tpidr_el2
2020 * so that we can use adr_l to access per-cpu variables in EL2.
2021 * Also drop the KASAN tag which gets in the way...
2022 */
2023 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
2024 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
2025
2026 params->mair_el2 = read_sysreg(mair_el1);
2027
2028 tcr = read_sysreg(tcr_el1);
2029 if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
2030 tcr &= ~(TCR_HD | TCR_HA | TCR_A1 | TCR_T0SZ_MASK);
2031 tcr |= TCR_EPD1_MASK;
2032 } else {
2033 unsigned long ips = FIELD_GET(TCR_IPS_MASK, tcr);
2034
2035 tcr &= TCR_EL2_MASK;
2036 tcr |= TCR_EL2_RES1 | FIELD_PREP(TCR_EL2_PS_MASK, ips);
2037 if (lpa2_is_enabled())
2038 tcr |= TCR_EL2_DS;
2039 }
2040 tcr |= TCR_T0SZ(hyp_va_bits);
2041 params->tcr_el2 = tcr;
2042
2043 params->pgd_pa = kvm_mmu_get_httbr();
2044 if (is_protected_kvm_enabled())
2045 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
2046 else
2047 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
2048 if (cpus_have_final_cap(ARM64_KVM_HVHE))
2049 params->hcr_el2 |= HCR_E2H;
2050 params->vttbr = params->vtcr = 0;
2051
2052 /*
2053 * Flush the init params from the data cache because the struct will
2054 * be read while the MMU is off.
2055 */
2056 kvm_flush_dcache_to_poc(params, sizeof(*params));
2057 }
2058
hyp_install_host_vector(void)2059 static void hyp_install_host_vector(void)
2060 {
2061 struct kvm_nvhe_init_params *params;
2062 struct arm_smccc_res res;
2063
2064 /* Switch from the HYP stub to our own HYP init vector */
2065 __hyp_set_vectors(kvm_get_idmap_vector());
2066
2067 /*
2068 * Call initialization code, and switch to the full blown HYP code.
2069 * If the cpucaps haven't been finalized yet, something has gone very
2070 * wrong, and hyp will crash and burn when it uses any
2071 * cpus_have_*_cap() wrapper.
2072 */
2073 BUG_ON(!system_capabilities_finalized());
2074 params = this_cpu_ptr_nvhe_sym(kvm_init_params);
2075 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
2076 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
2077 }
2078
cpu_init_hyp_mode(void)2079 static void cpu_init_hyp_mode(void)
2080 {
2081 hyp_install_host_vector();
2082
2083 /*
2084 * Disabling SSBD on a non-VHE system requires us to enable SSBS
2085 * at EL2.
2086 */
2087 if (this_cpu_has_cap(ARM64_SSBS) &&
2088 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
2089 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
2090 }
2091 }
2092
cpu_hyp_reset(void)2093 static void cpu_hyp_reset(void)
2094 {
2095 if (!is_kernel_in_hyp_mode())
2096 __hyp_reset_vectors();
2097 }
2098
2099 /*
2100 * EL2 vectors can be mapped and rerouted in a number of ways,
2101 * depending on the kernel configuration and CPU present:
2102 *
2103 * - If the CPU is affected by Spectre-v2, the hardening sequence is
2104 * placed in one of the vector slots, which is executed before jumping
2105 * to the real vectors.
2106 *
2107 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
2108 * containing the hardening sequence is mapped next to the idmap page,
2109 * and executed before jumping to the real vectors.
2110 *
2111 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
2112 * empty slot is selected, mapped next to the idmap page, and
2113 * executed before jumping to the real vectors.
2114 *
2115 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
2116 * VHE, as we don't have hypervisor-specific mappings. If the system
2117 * is VHE and yet selects this capability, it will be ignored.
2118 */
cpu_set_hyp_vector(void)2119 static void cpu_set_hyp_vector(void)
2120 {
2121 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
2122 void *vector = hyp_spectre_vector_selector[data->slot];
2123
2124 if (!is_protected_kvm_enabled())
2125 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
2126 else
2127 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
2128 }
2129
cpu_hyp_init_context(void)2130 static void cpu_hyp_init_context(void)
2131 {
2132 kvm_init_host_cpu_context(host_data_ptr(host_ctxt));
2133 kvm_init_host_debug_data();
2134
2135 if (!is_kernel_in_hyp_mode())
2136 cpu_init_hyp_mode();
2137 }
2138
cpu_hyp_init_features(void)2139 static void cpu_hyp_init_features(void)
2140 {
2141 cpu_set_hyp_vector();
2142
2143 if (is_kernel_in_hyp_mode()) {
2144 kvm_timer_init_vhe();
2145 kvm_debug_init_vhe();
2146 }
2147
2148 if (vgic_present)
2149 kvm_vgic_init_cpu_hardware();
2150 }
2151
cpu_hyp_reinit(void)2152 static void cpu_hyp_reinit(void)
2153 {
2154 cpu_hyp_reset();
2155 cpu_hyp_init_context();
2156 cpu_hyp_init_features();
2157 }
2158
cpu_hyp_init(void * discard)2159 static void cpu_hyp_init(void *discard)
2160 {
2161 if (!__this_cpu_read(kvm_hyp_initialized)) {
2162 cpu_hyp_reinit();
2163 __this_cpu_write(kvm_hyp_initialized, 1);
2164 }
2165 }
2166
cpu_hyp_uninit(void * discard)2167 static void cpu_hyp_uninit(void *discard)
2168 {
2169 if (!is_protected_kvm_enabled() && __this_cpu_read(kvm_hyp_initialized)) {
2170 cpu_hyp_reset();
2171 __this_cpu_write(kvm_hyp_initialized, 0);
2172 }
2173 }
2174
kvm_arch_enable_virtualization_cpu(void)2175 int kvm_arch_enable_virtualization_cpu(void)
2176 {
2177 /*
2178 * Most calls to this function are made with migration
2179 * disabled, but not with preemption disabled. The former is
2180 * enough to ensure correctness, but most of the helpers
2181 * expect the later and will throw a tantrum otherwise.
2182 */
2183 preempt_disable();
2184
2185 cpu_hyp_init(NULL);
2186
2187 kvm_vgic_cpu_up();
2188 kvm_timer_cpu_up();
2189
2190 preempt_enable();
2191
2192 return 0;
2193 }
2194
kvm_arch_disable_virtualization_cpu(void)2195 void kvm_arch_disable_virtualization_cpu(void)
2196 {
2197 kvm_timer_cpu_down();
2198 kvm_vgic_cpu_down();
2199
2200 if (!is_protected_kvm_enabled())
2201 cpu_hyp_uninit(NULL);
2202 }
2203
2204 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2205 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2206 unsigned long cmd,
2207 void *v)
2208 {
2209 /*
2210 * kvm_hyp_initialized is left with its old value over
2211 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2212 * re-enable hyp.
2213 */
2214 switch (cmd) {
2215 case CPU_PM_ENTER:
2216 if (__this_cpu_read(kvm_hyp_initialized))
2217 /*
2218 * don't update kvm_hyp_initialized here
2219 * so that the hyp will be re-enabled
2220 * when we resume. See below.
2221 */
2222 cpu_hyp_reset();
2223
2224 return NOTIFY_OK;
2225 case CPU_PM_ENTER_FAILED:
2226 case CPU_PM_EXIT:
2227 if (__this_cpu_read(kvm_hyp_initialized))
2228 /* The hyp was enabled before suspend. */
2229 cpu_hyp_reinit();
2230
2231 return NOTIFY_OK;
2232
2233 default:
2234 return NOTIFY_DONE;
2235 }
2236 }
2237
2238 static struct notifier_block hyp_init_cpu_pm_nb = {
2239 .notifier_call = hyp_init_cpu_pm_notifier,
2240 };
2241
hyp_cpu_pm_init(void)2242 static void __init hyp_cpu_pm_init(void)
2243 {
2244 if (!is_protected_kvm_enabled())
2245 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2246 }
hyp_cpu_pm_exit(void)2247 static void __init hyp_cpu_pm_exit(void)
2248 {
2249 if (!is_protected_kvm_enabled())
2250 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2251 }
2252 #else
hyp_cpu_pm_init(void)2253 static inline void __init hyp_cpu_pm_init(void)
2254 {
2255 }
hyp_cpu_pm_exit(void)2256 static inline void __init hyp_cpu_pm_exit(void)
2257 {
2258 }
2259 #endif
2260
init_cpu_logical_map(void)2261 static void __init init_cpu_logical_map(void)
2262 {
2263 unsigned int cpu;
2264
2265 /*
2266 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2267 * Only copy the set of online CPUs whose features have been checked
2268 * against the finalized system capabilities. The hypervisor will not
2269 * allow any other CPUs from the `possible` set to boot.
2270 */
2271 for_each_online_cpu(cpu)
2272 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2273 }
2274
2275 #define init_psci_0_1_impl_state(config, what) \
2276 config.psci_0_1_ ## what ## _implemented = psci_ops.what
2277
init_psci_relay(void)2278 static bool __init init_psci_relay(void)
2279 {
2280 /*
2281 * If PSCI has not been initialized, protected KVM cannot install
2282 * itself on newly booted CPUs.
2283 */
2284 if (!psci_ops.get_version) {
2285 kvm_err("Cannot initialize protected mode without PSCI\n");
2286 return false;
2287 }
2288
2289 kvm_host_psci_config.version = psci_ops.get_version();
2290 kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2291
2292 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2293 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2294 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2295 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2296 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2297 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2298 }
2299 return true;
2300 }
2301
init_subsystems(void)2302 static int __init init_subsystems(void)
2303 {
2304 int err = 0;
2305
2306 /*
2307 * Enable hardware so that subsystem initialisation can access EL2.
2308 */
2309 on_each_cpu(cpu_hyp_init, NULL, 1);
2310
2311 /*
2312 * Register CPU lower-power notifier
2313 */
2314 hyp_cpu_pm_init();
2315
2316 /*
2317 * Init HYP view of VGIC
2318 */
2319 err = kvm_vgic_hyp_init();
2320 switch (err) {
2321 case 0:
2322 vgic_present = true;
2323 break;
2324 case -ENODEV:
2325 case -ENXIO:
2326 /*
2327 * No VGIC? No pKVM for you.
2328 *
2329 * Protected mode assumes that VGICv3 is present, so no point
2330 * in trying to hobble along if vgic initialization fails.
2331 */
2332 if (is_protected_kvm_enabled())
2333 goto out;
2334
2335 /*
2336 * Otherwise, userspace could choose to implement a GIC for its
2337 * guest on non-cooperative hardware.
2338 */
2339 vgic_present = false;
2340 err = 0;
2341 break;
2342 default:
2343 goto out;
2344 }
2345
2346 if (kvm_mode == KVM_MODE_NV &&
2347 !(vgic_present && (kvm_vgic_global_state.type == VGIC_V3 ||
2348 kvm_vgic_global_state.has_gcie_v3_compat))) {
2349 kvm_err("NV support requires GICv3 or GICv5 with legacy support, giving up\n");
2350 err = -EINVAL;
2351 goto out;
2352 }
2353
2354 /*
2355 * Init HYP architected timer support
2356 */
2357 err = kvm_timer_hyp_init(vgic_present);
2358 if (err)
2359 goto out;
2360
2361 kvm_register_perf_callbacks(NULL);
2362
2363 out:
2364 if (err)
2365 hyp_cpu_pm_exit();
2366
2367 if (err || !is_protected_kvm_enabled())
2368 on_each_cpu(cpu_hyp_uninit, NULL, 1);
2369
2370 return err;
2371 }
2372
teardown_subsystems(void)2373 static void __init teardown_subsystems(void)
2374 {
2375 kvm_unregister_perf_callbacks();
2376 hyp_cpu_pm_exit();
2377 }
2378
teardown_hyp_mode(void)2379 static void __init teardown_hyp_mode(void)
2380 {
2381 bool free_sve = system_supports_sve() && is_protected_kvm_enabled();
2382 int cpu;
2383
2384 free_hyp_pgds();
2385 for_each_possible_cpu(cpu) {
2386 if (per_cpu(kvm_hyp_initialized, cpu))
2387 continue;
2388
2389 free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT);
2390
2391 if (!kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu])
2392 continue;
2393
2394 if (free_sve) {
2395 struct cpu_sve_state *sve_state;
2396
2397 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2398 free_pages((unsigned long) sve_state, pkvm_host_sve_state_order());
2399 }
2400
2401 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2402
2403 }
2404 }
2405
do_pkvm_init(u32 hyp_va_bits)2406 static int __init do_pkvm_init(u32 hyp_va_bits)
2407 {
2408 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2409 int ret;
2410
2411 preempt_disable();
2412 cpu_hyp_init_context();
2413 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2414 num_possible_cpus(), kern_hyp_va(per_cpu_base),
2415 hyp_va_bits);
2416 cpu_hyp_init_features();
2417
2418 /*
2419 * The stub hypercalls are now disabled, so set our local flag to
2420 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu().
2421 */
2422 __this_cpu_write(kvm_hyp_initialized, 1);
2423 preempt_enable();
2424
2425 return ret;
2426 }
2427
get_hyp_id_aa64pfr0_el1(void)2428 static u64 get_hyp_id_aa64pfr0_el1(void)
2429 {
2430 /*
2431 * Track whether the system isn't affected by spectre/meltdown in the
2432 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2433 * Although this is per-CPU, we make it global for simplicity, e.g., not
2434 * to have to worry about vcpu migration.
2435 *
2436 * Unlike for non-protected VMs, userspace cannot override this for
2437 * protected VMs.
2438 */
2439 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2440
2441 val &= ~(ID_AA64PFR0_EL1_CSV2 |
2442 ID_AA64PFR0_EL1_CSV3);
2443
2444 val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV2,
2445 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2446 val |= FIELD_PREP(ID_AA64PFR0_EL1_CSV3,
2447 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2448
2449 return val;
2450 }
2451
kvm_hyp_init_symbols(void)2452 static void kvm_hyp_init_symbols(void)
2453 {
2454 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2455 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2456 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2457 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2458 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2459 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2460 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2461 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2462 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2463 kvm_nvhe_sym(__icache_flags) = __icache_flags;
2464 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2465
2466 /* Propagate the FGT state to the nVHE side */
2467 kvm_nvhe_sym(hfgrtr_masks) = hfgrtr_masks;
2468 kvm_nvhe_sym(hfgwtr_masks) = hfgwtr_masks;
2469 kvm_nvhe_sym(hfgitr_masks) = hfgitr_masks;
2470 kvm_nvhe_sym(hdfgrtr_masks) = hdfgrtr_masks;
2471 kvm_nvhe_sym(hdfgwtr_masks) = hdfgwtr_masks;
2472 kvm_nvhe_sym(hafgrtr_masks) = hafgrtr_masks;
2473 kvm_nvhe_sym(hfgrtr2_masks) = hfgrtr2_masks;
2474 kvm_nvhe_sym(hfgwtr2_masks) = hfgwtr2_masks;
2475 kvm_nvhe_sym(hfgitr2_masks) = hfgitr2_masks;
2476 kvm_nvhe_sym(hdfgrtr2_masks)= hdfgrtr2_masks;
2477 kvm_nvhe_sym(hdfgwtr2_masks)= hdfgwtr2_masks;
2478
2479 /*
2480 * Flush entire BSS since part of its data containing init symbols is read
2481 * while the MMU is off.
2482 */
2483 kvm_flush_dcache_to_poc(kvm_ksym_ref(__hyp_bss_start),
2484 kvm_ksym_ref(__hyp_bss_end) - kvm_ksym_ref(__hyp_bss_start));
2485 }
2486
kvm_hyp_init_protection(u32 hyp_va_bits)2487 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2488 {
2489 void *addr = phys_to_virt(hyp_mem_base);
2490 int ret;
2491
2492 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2493 if (ret)
2494 return ret;
2495
2496 ret = do_pkvm_init(hyp_va_bits);
2497 if (ret)
2498 return ret;
2499
2500 free_hyp_pgds();
2501
2502 return 0;
2503 }
2504
init_pkvm_host_sve_state(void)2505 static int init_pkvm_host_sve_state(void)
2506 {
2507 int cpu;
2508
2509 if (!system_supports_sve())
2510 return 0;
2511
2512 /* Allocate pages for host sve state in protected mode. */
2513 for_each_possible_cpu(cpu) {
2514 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order());
2515
2516 if (!page)
2517 return -ENOMEM;
2518
2519 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page);
2520 }
2521
2522 /*
2523 * Don't map the pages in hyp since these are only used in protected
2524 * mode, which will (re)create its own mapping when initialized.
2525 */
2526
2527 return 0;
2528 }
2529
2530 /*
2531 * Finalizes the initialization of hyp mode, once everything else is initialized
2532 * and the initialziation process cannot fail.
2533 */
finalize_init_hyp_mode(void)2534 static void finalize_init_hyp_mode(void)
2535 {
2536 int cpu;
2537
2538 if (system_supports_sve() && is_protected_kvm_enabled()) {
2539 for_each_possible_cpu(cpu) {
2540 struct cpu_sve_state *sve_state;
2541
2542 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2543 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state =
2544 kern_hyp_va(sve_state);
2545 }
2546 }
2547 }
2548
pkvm_hyp_init_ptrauth(void)2549 static void pkvm_hyp_init_ptrauth(void)
2550 {
2551 struct kvm_cpu_context *hyp_ctxt;
2552 int cpu;
2553
2554 for_each_possible_cpu(cpu) {
2555 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2556 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2557 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2558 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2559 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2560 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2561 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2562 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2563 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2564 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2565 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2566 }
2567 }
2568
2569 /* Inits Hyp-mode on all online CPUs */
init_hyp_mode(void)2570 static int __init init_hyp_mode(void)
2571 {
2572 u32 hyp_va_bits;
2573 int cpu;
2574 int err = -ENOMEM;
2575
2576 /*
2577 * The protected Hyp-mode cannot be initialized if the memory pool
2578 * allocation has failed.
2579 */
2580 if (is_protected_kvm_enabled() && !hyp_mem_base)
2581 goto out_err;
2582
2583 /*
2584 * Allocate Hyp PGD and setup Hyp identity mapping
2585 */
2586 err = kvm_mmu_init(&hyp_va_bits);
2587 if (err)
2588 goto out_err;
2589
2590 /*
2591 * Allocate stack pages for Hypervisor-mode
2592 */
2593 for_each_possible_cpu(cpu) {
2594 unsigned long stack_base;
2595
2596 stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT);
2597 if (!stack_base) {
2598 err = -ENOMEM;
2599 goto out_err;
2600 }
2601
2602 per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base;
2603 }
2604
2605 /*
2606 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2607 */
2608 for_each_possible_cpu(cpu) {
2609 struct page *page;
2610 void *page_addr;
2611
2612 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2613 if (!page) {
2614 err = -ENOMEM;
2615 goto out_err;
2616 }
2617
2618 page_addr = page_address(page);
2619 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2620 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2621 }
2622
2623 /*
2624 * Map the Hyp-code called directly from the host
2625 */
2626 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2627 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2628 if (err) {
2629 kvm_err("Cannot map world-switch code\n");
2630 goto out_err;
2631 }
2632
2633 err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start),
2634 kvm_ksym_ref(__hyp_data_end), PAGE_HYP);
2635 if (err) {
2636 kvm_err("Cannot map .hyp.data section\n");
2637 goto out_err;
2638 }
2639
2640 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2641 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2642 if (err) {
2643 kvm_err("Cannot map .hyp.rodata section\n");
2644 goto out_err;
2645 }
2646
2647 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2648 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2649 if (err) {
2650 kvm_err("Cannot map rodata section\n");
2651 goto out_err;
2652 }
2653
2654 /*
2655 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2656 * section thanks to an assertion in the linker script. Map it RW and
2657 * the rest of .bss RO.
2658 */
2659 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2660 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2661 if (err) {
2662 kvm_err("Cannot map hyp bss section: %d\n", err);
2663 goto out_err;
2664 }
2665
2666 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2667 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2668 if (err) {
2669 kvm_err("Cannot map bss section\n");
2670 goto out_err;
2671 }
2672
2673 /*
2674 * Map the Hyp stack pages
2675 */
2676 for_each_possible_cpu(cpu) {
2677 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2678 char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu);
2679
2680 err = create_hyp_stack(__pa(stack_base), ¶ms->stack_hyp_va);
2681 if (err) {
2682 kvm_err("Cannot map hyp stack\n");
2683 goto out_err;
2684 }
2685
2686 /*
2687 * Save the stack PA in nvhe_init_params. This will be needed
2688 * to recreate the stack mapping in protected nVHE mode.
2689 * __hyp_pa() won't do the right thing there, since the stack
2690 * has been mapped in the flexible private VA space.
2691 */
2692 params->stack_pa = __pa(stack_base);
2693 }
2694
2695 for_each_possible_cpu(cpu) {
2696 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2697 char *percpu_end = percpu_begin + nvhe_percpu_size();
2698
2699 /* Map Hyp percpu pages */
2700 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2701 if (err) {
2702 kvm_err("Cannot map hyp percpu region\n");
2703 goto out_err;
2704 }
2705
2706 /* Prepare the CPU initialization parameters */
2707 cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2708 }
2709
2710 kvm_hyp_init_symbols();
2711
2712 if (is_protected_kvm_enabled()) {
2713 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2714 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2715 pkvm_hyp_init_ptrauth();
2716
2717 init_cpu_logical_map();
2718
2719 if (!init_psci_relay()) {
2720 err = -ENODEV;
2721 goto out_err;
2722 }
2723
2724 err = init_pkvm_host_sve_state();
2725 if (err)
2726 goto out_err;
2727
2728 err = kvm_hyp_init_protection(hyp_va_bits);
2729 if (err) {
2730 kvm_err("Failed to init hyp memory protection\n");
2731 goto out_err;
2732 }
2733 }
2734
2735 return 0;
2736
2737 out_err:
2738 teardown_hyp_mode();
2739 kvm_err("error initializing Hyp mode: %d\n", err);
2740 return err;
2741 }
2742
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)2743 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2744 {
2745 struct kvm_vcpu *vcpu = NULL;
2746 struct kvm_mpidr_data *data;
2747 unsigned long i;
2748
2749 mpidr &= MPIDR_HWID_BITMASK;
2750
2751 rcu_read_lock();
2752 data = rcu_dereference(kvm->arch.mpidr_data);
2753
2754 if (data) {
2755 u16 idx = kvm_mpidr_index(data, mpidr);
2756
2757 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]);
2758 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2759 vcpu = NULL;
2760 }
2761
2762 rcu_read_unlock();
2763
2764 if (vcpu)
2765 return vcpu;
2766
2767 kvm_for_each_vcpu(i, vcpu, kvm) {
2768 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2769 return vcpu;
2770 }
2771 return NULL;
2772 }
2773
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2774 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2775 {
2776 return irqchip_in_kernel(kvm);
2777 }
2778
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2779 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2780 struct irq_bypass_producer *prod)
2781 {
2782 struct kvm_kernel_irqfd *irqfd =
2783 container_of(cons, struct kvm_kernel_irqfd, consumer);
2784 struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2785
2786 /*
2787 * The only thing we have a chance of directly-injecting is LPIs. Maybe
2788 * one day...
2789 */
2790 if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2791 return 0;
2792
2793 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2794 &irqfd->irq_entry);
2795 }
2796
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2797 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2798 struct irq_bypass_producer *prod)
2799 {
2800 struct kvm_kernel_irqfd *irqfd =
2801 container_of(cons, struct kvm_kernel_irqfd, consumer);
2802 struct kvm_kernel_irq_routing_entry *irq_entry = &irqfd->irq_entry;
2803
2804 if (irq_entry->type != KVM_IRQ_ROUTING_MSI)
2805 return;
2806
2807 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq);
2808 }
2809
kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd * irqfd,struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)2810 void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd,
2811 struct kvm_kernel_irq_routing_entry *old,
2812 struct kvm_kernel_irq_routing_entry *new)
2813 {
2814 if (old->type == KVM_IRQ_ROUTING_MSI &&
2815 new->type == KVM_IRQ_ROUTING_MSI &&
2816 !memcmp(&old->msi, &new->msi, sizeof(new->msi)))
2817 return;
2818
2819 /*
2820 * Remapping the vLPI requires taking the its_lock mutex to resolve
2821 * the new translation. We're in spinlock land at this point, so no
2822 * chance of resolving the translation.
2823 *
2824 * Unmap the vLPI and fall back to software LPI injection.
2825 */
2826 return kvm_vgic_v4_unset_forwarding(irqfd->kvm, irqfd->producer->irq);
2827 }
2828
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2829 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2830 {
2831 struct kvm_kernel_irqfd *irqfd =
2832 container_of(cons, struct kvm_kernel_irqfd, consumer);
2833
2834 kvm_arm_halt_guest(irqfd->kvm);
2835 }
2836
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2837 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2838 {
2839 struct kvm_kernel_irqfd *irqfd =
2840 container_of(cons, struct kvm_kernel_irqfd, consumer);
2841
2842 kvm_arm_resume_guest(irqfd->kvm);
2843 }
2844
2845 /* Initialize Hyp-mode and memory mappings on all CPUs */
kvm_arm_init(void)2846 static __init int kvm_arm_init(void)
2847 {
2848 int err;
2849 bool in_hyp_mode;
2850
2851 if (!is_hyp_mode_available()) {
2852 kvm_info("HYP mode not available\n");
2853 return -ENODEV;
2854 }
2855
2856 if (kvm_get_mode() == KVM_MODE_NONE) {
2857 kvm_info("KVM disabled from command line\n");
2858 return -ENODEV;
2859 }
2860
2861 err = kvm_sys_reg_table_init();
2862 if (err) {
2863 kvm_info("Error initializing system register tables");
2864 return err;
2865 }
2866
2867 in_hyp_mode = is_kernel_in_hyp_mode();
2868
2869 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2870 cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2871 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2872 "Only trusted guests should be used on this system.\n");
2873
2874 err = kvm_set_ipa_limit();
2875 if (err)
2876 return err;
2877
2878 err = kvm_arm_init_sve();
2879 if (err)
2880 return err;
2881
2882 err = kvm_arm_vmid_alloc_init();
2883 if (err) {
2884 kvm_err("Failed to initialize VMID allocator.\n");
2885 return err;
2886 }
2887
2888 if (!in_hyp_mode) {
2889 err = init_hyp_mode();
2890 if (err)
2891 goto out_err;
2892 }
2893
2894 err = kvm_init_vector_slots();
2895 if (err) {
2896 kvm_err("Cannot initialise vector slots\n");
2897 goto out_hyp;
2898 }
2899
2900 err = init_subsystems();
2901 if (err)
2902 goto out_hyp;
2903
2904 kvm_info("%s%sVHE%s mode initialized successfully\n",
2905 in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2906 "Protected " : "Hyp "),
2907 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2908 "h" : "n"),
2909 cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) ? "+NV2": "");
2910
2911 /*
2912 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2913 * hypervisor protection is finalized.
2914 */
2915 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2916 if (err)
2917 goto out_subs;
2918
2919 /*
2920 * This should be called after initialization is done and failure isn't
2921 * possible anymore.
2922 */
2923 if (!in_hyp_mode)
2924 finalize_init_hyp_mode();
2925
2926 kvm_arm_initialised = true;
2927
2928 return 0;
2929
2930 out_subs:
2931 teardown_subsystems();
2932 out_hyp:
2933 if (!in_hyp_mode)
2934 teardown_hyp_mode();
2935 out_err:
2936 kvm_arm_vmid_alloc_free();
2937 return err;
2938 }
2939
early_kvm_mode_cfg(char * arg)2940 static int __init early_kvm_mode_cfg(char *arg)
2941 {
2942 if (!arg)
2943 return -EINVAL;
2944
2945 if (strcmp(arg, "none") == 0) {
2946 kvm_mode = KVM_MODE_NONE;
2947 return 0;
2948 }
2949
2950 if (!is_hyp_mode_available()) {
2951 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2952 return 0;
2953 }
2954
2955 if (strcmp(arg, "protected") == 0) {
2956 if (!is_kernel_in_hyp_mode())
2957 kvm_mode = KVM_MODE_PROTECTED;
2958 else
2959 pr_warn_once("Protected KVM not available with VHE\n");
2960
2961 return 0;
2962 }
2963
2964 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2965 kvm_mode = KVM_MODE_DEFAULT;
2966 return 0;
2967 }
2968
2969 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2970 kvm_mode = KVM_MODE_NV;
2971 return 0;
2972 }
2973
2974 return -EINVAL;
2975 }
2976 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2977
early_kvm_wfx_trap_policy_cfg(char * arg,enum kvm_wfx_trap_policy * p)2978 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p)
2979 {
2980 if (!arg)
2981 return -EINVAL;
2982
2983 if (strcmp(arg, "trap") == 0) {
2984 *p = KVM_WFX_TRAP;
2985 return 0;
2986 }
2987
2988 if (strcmp(arg, "notrap") == 0) {
2989 *p = KVM_WFX_NOTRAP;
2990 return 0;
2991 }
2992
2993 return -EINVAL;
2994 }
2995
early_kvm_wfi_trap_policy_cfg(char * arg)2996 static int __init early_kvm_wfi_trap_policy_cfg(char *arg)
2997 {
2998 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy);
2999 }
3000 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg);
3001
early_kvm_wfe_trap_policy_cfg(char * arg)3002 static int __init early_kvm_wfe_trap_policy_cfg(char *arg)
3003 {
3004 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy);
3005 }
3006 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg);
3007
kvm_get_mode(void)3008 enum kvm_mode kvm_get_mode(void)
3009 {
3010 return kvm_mode;
3011 }
3012
3013 module_init(kvm_arm_init);
3014