xref: /linux/arch/arm64/kvm/hyp/nvhe/mm.c (revision 43db1111073049220381944af4a3b8a5400eda71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_hyp.h>
9 #include <asm/kvm_mmu.h>
10 #include <asm/kvm_pgtable.h>
11 #include <asm/kvm_pkvm.h>
12 #include <asm/spectre.h>
13 
14 #include <nvhe/early_alloc.h>
15 #include <nvhe/gfp.h>
16 #include <nvhe/memory.h>
17 #include <nvhe/mem_protect.h>
18 #include <nvhe/mm.h>
19 #include <nvhe/spinlock.h>
20 
21 struct kvm_pgtable pkvm_pgtable;
22 hyp_spinlock_t pkvm_pgd_lock;
23 
24 struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS];
25 unsigned int hyp_memblock_nr;
26 
27 static u64 __io_map_base;
28 
29 struct hyp_fixmap_slot {
30 	u64 addr;
31 	kvm_pte_t *ptep;
32 };
33 static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots);
34 
__pkvm_create_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)35 static int __pkvm_create_mappings(unsigned long start, unsigned long size,
36 				  unsigned long phys, enum kvm_pgtable_prot prot)
37 {
38 	int err;
39 
40 	hyp_spin_lock(&pkvm_pgd_lock);
41 	err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot);
42 	hyp_spin_unlock(&pkvm_pgd_lock);
43 
44 	return err;
45 }
46 
__pkvm_alloc_private_va_range(unsigned long start,size_t size)47 static int __pkvm_alloc_private_va_range(unsigned long start, size_t size)
48 {
49 	unsigned long cur;
50 
51 	hyp_assert_lock_held(&pkvm_pgd_lock);
52 
53 	if (!start || start < __io_map_base)
54 		return -EINVAL;
55 
56 	/* The allocated size is always a multiple of PAGE_SIZE */
57 	cur = start + PAGE_ALIGN(size);
58 
59 	/* Are we overflowing on the vmemmap ? */
60 	if (cur > __hyp_vmemmap)
61 		return -ENOMEM;
62 
63 	__io_map_base = cur;
64 
65 	return 0;
66 }
67 
68 /**
69  * pkvm_alloc_private_va_range - Allocates a private VA range.
70  * @size:	The size of the VA range to reserve.
71  * @haddr:	The hypervisor virtual start address of the allocation.
72  *
73  * The private virtual address (VA) range is allocated above __io_map_base
74  * and aligned based on the order of @size.
75  *
76  * Return: 0 on success or negative error code on failure.
77  */
pkvm_alloc_private_va_range(size_t size,unsigned long * haddr)78 int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr)
79 {
80 	unsigned long addr;
81 	int ret;
82 
83 	hyp_spin_lock(&pkvm_pgd_lock);
84 	addr = __io_map_base;
85 	ret = __pkvm_alloc_private_va_range(addr, size);
86 	hyp_spin_unlock(&pkvm_pgd_lock);
87 
88 	*haddr = addr;
89 
90 	return ret;
91 }
92 
__pkvm_create_private_mapping(phys_addr_t phys,size_t size,enum kvm_pgtable_prot prot,unsigned long * haddr)93 int __pkvm_create_private_mapping(phys_addr_t phys, size_t size,
94 				  enum kvm_pgtable_prot prot,
95 				  unsigned long *haddr)
96 {
97 	unsigned long addr;
98 	int err;
99 
100 	size = PAGE_ALIGN(size + offset_in_page(phys));
101 	err = pkvm_alloc_private_va_range(size, &addr);
102 	if (err)
103 		return err;
104 
105 	err = __pkvm_create_mappings(addr, size, phys, prot);
106 	if (err)
107 		return err;
108 
109 	*haddr = addr + offset_in_page(phys);
110 	return err;
111 }
112 
pkvm_create_mappings_locked(void * from,void * to,enum kvm_pgtable_prot prot)113 int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot)
114 {
115 	unsigned long start = (unsigned long)from;
116 	unsigned long end = (unsigned long)to;
117 	unsigned long virt_addr;
118 	phys_addr_t phys;
119 
120 	hyp_assert_lock_held(&pkvm_pgd_lock);
121 
122 	start = start & PAGE_MASK;
123 	end = PAGE_ALIGN(end);
124 
125 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
126 		int err;
127 
128 		phys = hyp_virt_to_phys((void *)virt_addr);
129 		err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE,
130 					  phys, prot);
131 		if (err)
132 			return err;
133 	}
134 
135 	return 0;
136 }
137 
pkvm_create_mappings(void * from,void * to,enum kvm_pgtable_prot prot)138 int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
139 {
140 	int ret;
141 
142 	hyp_spin_lock(&pkvm_pgd_lock);
143 	ret = pkvm_create_mappings_locked(from, to, prot);
144 	hyp_spin_unlock(&pkvm_pgd_lock);
145 
146 	return ret;
147 }
148 
hyp_back_vmemmap(phys_addr_t back)149 int hyp_back_vmemmap(phys_addr_t back)
150 {
151 	unsigned long i, start, size, end = 0;
152 	int ret;
153 
154 	for (i = 0; i < hyp_memblock_nr; i++) {
155 		start = hyp_memory[i].base;
156 		start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE);
157 		/*
158 		 * The beginning of the hyp_vmemmap region for the current
159 		 * memblock may already be backed by the page backing the end
160 		 * the previous region, so avoid mapping it twice.
161 		 */
162 		start = max(start, end);
163 
164 		end = hyp_memory[i].base + hyp_memory[i].size;
165 		end = PAGE_ALIGN((u64)hyp_phys_to_page(end));
166 		if (start >= end)
167 			continue;
168 
169 		size = end - start;
170 		ret = __pkvm_create_mappings(start, size, back, PAGE_HYP);
171 		if (ret)
172 			return ret;
173 
174 		memset(hyp_phys_to_virt(back), 0, size);
175 		back += size;
176 	}
177 
178 	return 0;
179 }
180 
181 static void *__hyp_bp_vect_base;
pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot)182 int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot)
183 {
184 	void *vector;
185 
186 	switch (slot) {
187 	case HYP_VECTOR_DIRECT: {
188 		vector = __kvm_hyp_vector;
189 		break;
190 	}
191 	case HYP_VECTOR_SPECTRE_DIRECT: {
192 		vector = __bp_harden_hyp_vecs;
193 		break;
194 	}
195 	case HYP_VECTOR_INDIRECT:
196 	case HYP_VECTOR_SPECTRE_INDIRECT: {
197 		vector = (void *)__hyp_bp_vect_base;
198 		break;
199 	}
200 	default:
201 		return -EINVAL;
202 	}
203 
204 	vector = __kvm_vector_slot2addr(vector, slot);
205 	*this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector;
206 
207 	return 0;
208 }
209 
hyp_map_vectors(void)210 int hyp_map_vectors(void)
211 {
212 	phys_addr_t phys;
213 	unsigned long bp_base;
214 	int ret;
215 
216 	if (!kvm_system_needs_idmapped_vectors()) {
217 		__hyp_bp_vect_base = __bp_harden_hyp_vecs;
218 		return 0;
219 	}
220 
221 	phys = __hyp_pa(__bp_harden_hyp_vecs);
222 	ret = __pkvm_create_private_mapping(phys, __BP_HARDEN_HYP_VECS_SZ,
223 					    PAGE_HYP_EXEC, &bp_base);
224 	if (ret)
225 		return ret;
226 
227 	__hyp_bp_vect_base = (void *)bp_base;
228 
229 	return 0;
230 }
231 
fixmap_map_slot(struct hyp_fixmap_slot * slot,phys_addr_t phys)232 static void *fixmap_map_slot(struct hyp_fixmap_slot *slot, phys_addr_t phys)
233 {
234 	kvm_pte_t pte, *ptep = slot->ptep;
235 
236 	pte = *ptep;
237 	pte &= ~kvm_phys_to_pte(KVM_PHYS_INVALID);
238 	pte |= kvm_phys_to_pte(phys) | KVM_PTE_VALID;
239 	WRITE_ONCE(*ptep, pte);
240 	dsb(ishst);
241 
242 	return (void *)slot->addr;
243 }
244 
hyp_fixmap_map(phys_addr_t phys)245 void *hyp_fixmap_map(phys_addr_t phys)
246 {
247 	return fixmap_map_slot(this_cpu_ptr(&fixmap_slots), phys);
248 }
249 
fixmap_clear_slot(struct hyp_fixmap_slot * slot)250 static void fixmap_clear_slot(struct hyp_fixmap_slot *slot)
251 {
252 	kvm_pte_t *ptep = slot->ptep;
253 	u64 addr = slot->addr;
254 	u32 level;
255 
256 	if (FIELD_GET(KVM_PTE_TYPE, *ptep) == KVM_PTE_TYPE_PAGE)
257 		level = KVM_PGTABLE_LAST_LEVEL;
258 	else
259 		level = KVM_PGTABLE_LAST_LEVEL - 1; /* create_fixblock() guarantees PMD level */
260 
261 	WRITE_ONCE(*ptep, *ptep & ~KVM_PTE_VALID);
262 
263 	/*
264 	 * Irritatingly, the architecture requires that we use inner-shareable
265 	 * broadcast TLB invalidation here in case another CPU speculates
266 	 * through our fixmap and decides to create an "amalagamation of the
267 	 * values held in the TLB" due to the apparent lack of a
268 	 * break-before-make sequence.
269 	 *
270 	 * https://lore.kernel.org/kvm/20221017115209.2099-1-will@kernel.org/T/#mf10dfbaf1eaef9274c581b81c53758918c1d0f03
271 	 */
272 	dsb(ishst);
273 	__tlbi_level(vale2is, __TLBI_VADDR(addr, 0), level);
274 	dsb(ish);
275 	isb();
276 }
277 
hyp_fixmap_unmap(void)278 void hyp_fixmap_unmap(void)
279 {
280 	fixmap_clear_slot(this_cpu_ptr(&fixmap_slots));
281 }
282 
__create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)283 static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx,
284 				   enum kvm_pgtable_walk_flags visit)
285 {
286 	struct hyp_fixmap_slot *slot = (struct hyp_fixmap_slot *)ctx->arg;
287 
288 	if (!kvm_pte_valid(ctx->old) || (ctx->end - ctx->start) != kvm_granule_size(ctx->level))
289 		return -EINVAL;
290 
291 	slot->addr = ctx->addr;
292 	slot->ptep = ctx->ptep;
293 
294 	/*
295 	 * Clear the PTE, but keep the page-table page refcount elevated to
296 	 * prevent it from ever being freed. This lets us manipulate the PTEs
297 	 * by hand safely without ever needing to allocate memory.
298 	 */
299 	fixmap_clear_slot(slot);
300 
301 	return 0;
302 }
303 
create_fixmap_slot(u64 addr,u64 cpu)304 static int create_fixmap_slot(u64 addr, u64 cpu)
305 {
306 	struct kvm_pgtable_walker walker = {
307 		.cb	= __create_fixmap_slot_cb,
308 		.flags	= KVM_PGTABLE_WALK_LEAF,
309 		.arg	= per_cpu_ptr(&fixmap_slots, cpu),
310 	};
311 
312 	return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker);
313 }
314 
315 #if PAGE_SHIFT < 16
316 #define HAS_FIXBLOCK
317 static struct hyp_fixmap_slot hyp_fixblock_slot;
318 static DEFINE_HYP_SPINLOCK(hyp_fixblock_lock);
319 #endif
320 
create_fixblock(void)321 static int create_fixblock(void)
322 {
323 #ifdef HAS_FIXBLOCK
324 	struct kvm_pgtable_walker walker = {
325 		.cb	= __create_fixmap_slot_cb,
326 		.flags	= KVM_PGTABLE_WALK_LEAF,
327 		.arg	= &hyp_fixblock_slot,
328 	};
329 	unsigned long addr;
330 	phys_addr_t phys;
331 	int ret, i;
332 
333 	/* Find a RAM phys address, PMD aligned */
334 	for (i = 0; i < hyp_memblock_nr; i++) {
335 		phys = ALIGN(hyp_memory[i].base, PMD_SIZE);
336 		if (phys + PMD_SIZE < (hyp_memory[i].base + hyp_memory[i].size))
337 			break;
338 	}
339 
340 	if (i >= hyp_memblock_nr)
341 		return -EINVAL;
342 
343 	hyp_spin_lock(&pkvm_pgd_lock);
344 	addr = ALIGN(__io_map_base, PMD_SIZE);
345 	ret = __pkvm_alloc_private_va_range(addr, PMD_SIZE);
346 	if (ret)
347 		goto unlock;
348 
349 	ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PMD_SIZE, phys, PAGE_HYP);
350 	if (ret)
351 		goto unlock;
352 
353 	ret = kvm_pgtable_walk(&pkvm_pgtable, addr, PMD_SIZE, &walker);
354 
355 unlock:
356 	hyp_spin_unlock(&pkvm_pgd_lock);
357 
358 	return ret;
359 #else
360 	return 0;
361 #endif
362 }
363 
hyp_fixblock_map(phys_addr_t phys,size_t * size)364 void *hyp_fixblock_map(phys_addr_t phys, size_t *size)
365 {
366 #ifdef HAS_FIXBLOCK
367 	*size = PMD_SIZE;
368 	hyp_spin_lock(&hyp_fixblock_lock);
369 	return fixmap_map_slot(&hyp_fixblock_slot, phys);
370 #else
371 	*size = PAGE_SIZE;
372 	return hyp_fixmap_map(phys);
373 #endif
374 }
375 
hyp_fixblock_unmap(void)376 void hyp_fixblock_unmap(void)
377 {
378 #ifdef HAS_FIXBLOCK
379 	fixmap_clear_slot(&hyp_fixblock_slot);
380 	hyp_spin_unlock(&hyp_fixblock_lock);
381 #else
382 	hyp_fixmap_unmap();
383 #endif
384 }
385 
hyp_create_fixmap(void)386 int hyp_create_fixmap(void)
387 {
388 	unsigned long addr, i;
389 	int ret;
390 
391 	for (i = 0; i < hyp_nr_cpus; i++) {
392 		ret = pkvm_alloc_private_va_range(PAGE_SIZE, &addr);
393 		if (ret)
394 			return ret;
395 
396 		ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE,
397 					  __hyp_pa(__hyp_bss_start), PAGE_HYP);
398 		if (ret)
399 			return ret;
400 
401 		ret = create_fixmap_slot(addr, i);
402 		if (ret)
403 			return ret;
404 	}
405 
406 	return create_fixblock();
407 }
408 
hyp_create_idmap(u32 hyp_va_bits)409 int hyp_create_idmap(u32 hyp_va_bits)
410 {
411 	unsigned long start, end;
412 
413 	start = hyp_virt_to_phys((void *)__hyp_idmap_text_start);
414 	start = ALIGN_DOWN(start, PAGE_SIZE);
415 
416 	end = hyp_virt_to_phys((void *)__hyp_idmap_text_end);
417 	end = ALIGN(end, PAGE_SIZE);
418 
419 	/*
420 	 * One half of the VA space is reserved to linearly map portions of
421 	 * memory -- see va_layout.c for more details. The other half of the VA
422 	 * space contains the trampoline page, and needs some care. Split that
423 	 * second half in two and find the quarter of VA space not conflicting
424 	 * with the idmap to place the IOs and the vmemmap. IOs use the lower
425 	 * half of the quarter and the vmemmap the upper half.
426 	 */
427 	__io_map_base = start & BIT(hyp_va_bits - 2);
428 	__io_map_base ^= BIT(hyp_va_bits - 2);
429 	__hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3);
430 
431 	return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC);
432 }
433 
pkvm_create_stack(phys_addr_t phys,unsigned long * haddr)434 int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr)
435 {
436 	unsigned long addr, prev_base;
437 	size_t size;
438 	int ret;
439 
440 	hyp_spin_lock(&pkvm_pgd_lock);
441 
442 	prev_base = __io_map_base;
443 	/*
444 	 * Efficient stack verification using the NVHE_STACK_SHIFT bit implies
445 	 * an alignment of our allocation on the order of the size.
446 	 */
447 	size = NVHE_STACK_SIZE * 2;
448 	addr = ALIGN(__io_map_base, size);
449 
450 	ret = __pkvm_alloc_private_va_range(addr, size);
451 	if (!ret) {
452 		/*
453 		 * Since the stack grows downwards, map the stack to the page
454 		 * at the higher address and leave the lower guard page
455 		 * unbacked.
456 		 *
457 		 * Any valid stack address now has the NVHE_STACK_SHIFT bit as 1
458 		 * and addresses corresponding to the guard page have the
459 		 * NVHE_STACK_SHIFT bit as 0 - this is used for overflow detection.
460 		 */
461 		ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr + NVHE_STACK_SIZE,
462 					  NVHE_STACK_SIZE, phys, PAGE_HYP);
463 		if (ret)
464 			__io_map_base = prev_base;
465 	}
466 	hyp_spin_unlock(&pkvm_pgd_lock);
467 
468 	*haddr = addr + size;
469 
470 	return ret;
471 }
472 
admit_host_page(void * arg)473 static void *admit_host_page(void *arg)
474 {
475 	struct kvm_hyp_memcache *host_mc = arg;
476 
477 	if (!host_mc->nr_pages)
478 		return NULL;
479 
480 	/*
481 	 * The host still owns the pages in its memcache, so we need to go
482 	 * through a full host-to-hyp donation cycle to change it. Fortunately,
483 	 * __pkvm_host_donate_hyp() takes care of races for us, so if it
484 	 * succeeds we're good to go.
485 	 */
486 	if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(host_mc->head), 1))
487 		return NULL;
488 
489 	return pop_hyp_memcache(host_mc, hyp_phys_to_virt);
490 }
491 
492 /* Refill our local memcache by popping pages from the one provided by the host. */
refill_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages,struct kvm_hyp_memcache * host_mc)493 int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages,
494 		    struct kvm_hyp_memcache *host_mc)
495 {
496 	struct kvm_hyp_memcache tmp = *host_mc;
497 	int ret;
498 
499 	ret =  __topup_hyp_memcache(mc, min_pages, admit_host_page,
500 				    hyp_virt_to_phys, &tmp);
501 	*host_mc = tmp;
502 
503 	return ret;
504 }
505