1 /*
2 * http://www.cascoda.com/products/ca-821x/
3 * Copyright (c) 2016, Cascoda, Ltd.
4 * All rights reserved.
5 *
6 * This code is dual-licensed under both GPLv2 and 3-clause BSD. What follows is
7 * the license notice for both respectively.
8 *
9 *******************************************************************************
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version 2
14 * of the License, or (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 *******************************************************************************
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions are met:
25 *
26 * 1. Redistributions of source code must retain the above copyright notice,
27 * this list of conditions and the following disclaimer.
28 *
29 * 2. Redistributions in binary form must reproduce the above copyright notice,
30 * this list of conditions and the following disclaimer in the documentation
31 * and/or other materials provided with the distribution.
32 *
33 * 3. Neither the name of the copyright holder nor the names of its contributors
34 * may be used to endorse or promote products derived from this software without
35 * specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
38 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
41 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
42 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
43 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
44 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
45 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
47 * POSSIBILITY OF SUCH DAMAGE.
48 */
49
50 #include <linux/cdev.h>
51 #include <linux/clk-provider.h>
52 #include <linux/debugfs.h>
53 #include <linux/delay.h>
54 #include <linux/gpio/consumer.h>
55 #include <linux/gpio.h>
56 #include <linux/ieee802154.h>
57 #include <linux/io.h>
58 #include <linux/kfifo.h>
59 #include <linux/of.h>
60 #include <linux/of_gpio.h>
61 #include <linux/module.h>
62 #include <linux/mutex.h>
63 #include <linux/poll.h>
64 #include <linux/skbuff.h>
65 #include <linux/slab.h>
66 #include <linux/spi/spi.h>
67 #include <linux/spinlock.h>
68 #include <linux/string.h>
69 #include <linux/workqueue.h>
70 #include <linux/interrupt.h>
71
72 #include <net/ieee802154_netdev.h>
73 #include <net/mac802154.h>
74
75 #define DRIVER_NAME "ca8210"
76
77 /* external clock frequencies */
78 #define ONE_MHZ 1000000
79 #define TWO_MHZ (2 * ONE_MHZ)
80 #define FOUR_MHZ (4 * ONE_MHZ)
81 #define EIGHT_MHZ (8 * ONE_MHZ)
82 #define SIXTEEN_MHZ (16 * ONE_MHZ)
83
84 /* spi constants */
85 #define CA8210_SPI_BUF_SIZE 256
86 #define CA8210_SYNC_TIMEOUT 1000 /* Timeout for synchronous commands [ms] */
87
88 /* test interface constants */
89 #define CA8210_TEST_INT_FILE_NAME "ca8210_test"
90 #define CA8210_TEST_INT_FIFO_SIZE 256
91
92 /* HWME attribute IDs */
93 #define HWME_EDTHRESHOLD (0x04)
94 #define HWME_EDVALUE (0x06)
95 #define HWME_SYSCLKOUT (0x0F)
96 #define HWME_LQILIMIT (0x11)
97
98 /* TDME attribute IDs */
99 #define TDME_CHANNEL (0x00)
100 #define TDME_ATM_CONFIG (0x06)
101
102 #define MAX_HWME_ATTRIBUTE_SIZE 16
103 #define MAX_TDME_ATTRIBUTE_SIZE 2
104
105 /* PHY/MAC PIB Attribute Enumerations */
106 #define PHY_CURRENT_CHANNEL (0x00)
107 #define PHY_TRANSMIT_POWER (0x02)
108 #define PHY_CCA_MODE (0x03)
109 #define MAC_ASSOCIATION_PERMIT (0x41)
110 #define MAC_AUTO_REQUEST (0x42)
111 #define MAC_BATT_LIFE_EXT (0x43)
112 #define MAC_BATT_LIFE_EXT_PERIODS (0x44)
113 #define MAC_BEACON_PAYLOAD (0x45)
114 #define MAC_BEACON_PAYLOAD_LENGTH (0x46)
115 #define MAC_BEACON_ORDER (0x47)
116 #define MAC_GTS_PERMIT (0x4d)
117 #define MAC_MAX_CSMA_BACKOFFS (0x4e)
118 #define MAC_MIN_BE (0x4f)
119 #define MAC_PAN_ID (0x50)
120 #define MAC_PROMISCUOUS_MODE (0x51)
121 #define MAC_RX_ON_WHEN_IDLE (0x52)
122 #define MAC_SHORT_ADDRESS (0x53)
123 #define MAC_SUPERFRAME_ORDER (0x54)
124 #define MAC_ASSOCIATED_PAN_COORD (0x56)
125 #define MAC_MAX_BE (0x57)
126 #define MAC_MAX_FRAME_RETRIES (0x59)
127 #define MAC_RESPONSE_WAIT_TIME (0x5A)
128 #define MAC_SECURITY_ENABLED (0x5D)
129
130 #define MAC_AUTO_REQUEST_SECURITY_LEVEL (0x78)
131 #define MAC_AUTO_REQUEST_KEY_ID_MODE (0x79)
132
133 #define NS_IEEE_ADDRESS (0xFF) /* Non-standard IEEE address */
134
135 /* MAC Address Mode Definitions */
136 #define MAC_MODE_NO_ADDR (0x00)
137 #define MAC_MODE_SHORT_ADDR (0x02)
138 #define MAC_MODE_LONG_ADDR (0x03)
139
140 /* MAC constants */
141 #define MAX_BEACON_OVERHEAD (75)
142 #define MAX_BEACON_PAYLOAD_LENGTH (IEEE802154_MTU - MAX_BEACON_OVERHEAD)
143
144 #define MAX_ATTRIBUTE_SIZE (122)
145 #define MAX_DATA_SIZE (114)
146
147 #define CA8210_VALID_CHANNELS (0x07FFF800)
148
149 /* MAC workarounds for V1.1 and MPW silicon (V0.x) */
150 #define CA8210_MAC_WORKAROUNDS (0)
151 #define CA8210_MAC_MPW (0)
152
153 /* memory manipulation macros */
154 #define LS_BYTE(x) ((u8)((x) & 0xFF))
155 #define MS_BYTE(x) ((u8)(((x) >> 8) & 0xFF))
156
157 /* message ID codes in SPI commands */
158 /* downstream */
159 #define MCPS_DATA_REQUEST (0x00)
160 #define MLME_ASSOCIATE_REQUEST (0x02)
161 #define MLME_ASSOCIATE_RESPONSE (0x03)
162 #define MLME_DISASSOCIATE_REQUEST (0x04)
163 #define MLME_GET_REQUEST (0x05)
164 #define MLME_ORPHAN_RESPONSE (0x06)
165 #define MLME_RESET_REQUEST (0x07)
166 #define MLME_RX_ENABLE_REQUEST (0x08)
167 #define MLME_SCAN_REQUEST (0x09)
168 #define MLME_SET_REQUEST (0x0A)
169 #define MLME_START_REQUEST (0x0B)
170 #define MLME_POLL_REQUEST (0x0D)
171 #define HWME_SET_REQUEST (0x0E)
172 #define HWME_GET_REQUEST (0x0F)
173 #define TDME_SETSFR_REQUEST (0x11)
174 #define TDME_GETSFR_REQUEST (0x12)
175 #define TDME_SET_REQUEST (0x14)
176 /* upstream */
177 #define MCPS_DATA_INDICATION (0x00)
178 #define MCPS_DATA_CONFIRM (0x01)
179 #define MLME_RESET_CONFIRM (0x0A)
180 #define MLME_SET_CONFIRM (0x0E)
181 #define MLME_START_CONFIRM (0x0F)
182 #define HWME_SET_CONFIRM (0x12)
183 #define HWME_GET_CONFIRM (0x13)
184 #define HWME_WAKEUP_INDICATION (0x15)
185 #define TDME_SETSFR_CONFIRM (0x17)
186
187 /* SPI command IDs */
188 /* bit indicating a confirm or indication from slave to master */
189 #define SPI_S2M (0x20)
190 /* bit indicating a synchronous message */
191 #define SPI_SYN (0x40)
192
193 /* SPI command definitions */
194 #define SPI_IDLE (0xFF)
195 #define SPI_NACK (0xF0)
196
197 #define SPI_MCPS_DATA_REQUEST (MCPS_DATA_REQUEST)
198 #define SPI_MCPS_DATA_INDICATION (MCPS_DATA_INDICATION + SPI_S2M)
199 #define SPI_MCPS_DATA_CONFIRM (MCPS_DATA_CONFIRM + SPI_S2M)
200
201 #define SPI_MLME_ASSOCIATE_REQUEST (MLME_ASSOCIATE_REQUEST)
202 #define SPI_MLME_RESET_REQUEST (MLME_RESET_REQUEST + SPI_SYN)
203 #define SPI_MLME_SET_REQUEST (MLME_SET_REQUEST + SPI_SYN)
204 #define SPI_MLME_START_REQUEST (MLME_START_REQUEST + SPI_SYN)
205 #define SPI_MLME_RESET_CONFIRM (MLME_RESET_CONFIRM + SPI_S2M + SPI_SYN)
206 #define SPI_MLME_SET_CONFIRM (MLME_SET_CONFIRM + SPI_S2M + SPI_SYN)
207 #define SPI_MLME_START_CONFIRM (MLME_START_CONFIRM + SPI_S2M + SPI_SYN)
208
209 #define SPI_HWME_SET_REQUEST (HWME_SET_REQUEST + SPI_SYN)
210 #define SPI_HWME_GET_REQUEST (HWME_GET_REQUEST + SPI_SYN)
211 #define SPI_HWME_SET_CONFIRM (HWME_SET_CONFIRM + SPI_S2M + SPI_SYN)
212 #define SPI_HWME_GET_CONFIRM (HWME_GET_CONFIRM + SPI_S2M + SPI_SYN)
213 #define SPI_HWME_WAKEUP_INDICATION (HWME_WAKEUP_INDICATION + SPI_S2M)
214
215 #define SPI_TDME_SETSFR_REQUEST (TDME_SETSFR_REQUEST + SPI_SYN)
216 #define SPI_TDME_SET_REQUEST (TDME_SET_REQUEST + SPI_SYN)
217 #define SPI_TDME_SETSFR_CONFIRM (TDME_SETSFR_CONFIRM + SPI_S2M + SPI_SYN)
218
219 /* TDME SFR addresses */
220 /* Page 0 */
221 #define CA8210_SFR_PACFG (0xB1)
222 #define CA8210_SFR_MACCON (0xD8)
223 #define CA8210_SFR_PACFGIB (0xFE)
224 /* Page 1 */
225 #define CA8210_SFR_LOTXCAL (0xBF)
226 #define CA8210_SFR_PTHRH (0xD1)
227 #define CA8210_SFR_PRECFG (0xD3)
228 #define CA8210_SFR_LNAGX40 (0xE1)
229 #define CA8210_SFR_LNAGX41 (0xE2)
230 #define CA8210_SFR_LNAGX42 (0xE3)
231 #define CA8210_SFR_LNAGX43 (0xE4)
232 #define CA8210_SFR_LNAGX44 (0xE5)
233 #define CA8210_SFR_LNAGX45 (0xE6)
234 #define CA8210_SFR_LNAGX46 (0xE7)
235 #define CA8210_SFR_LNAGX47 (0xE9)
236
237 #define PACFGIB_DEFAULT_CURRENT (0x3F)
238 #define PTHRH_DEFAULT_THRESHOLD (0x5A)
239 #define LNAGX40_DEFAULT_GAIN (0x29) /* 10dB */
240 #define LNAGX41_DEFAULT_GAIN (0x54) /* 21dB */
241 #define LNAGX42_DEFAULT_GAIN (0x6C) /* 27dB */
242 #define LNAGX43_DEFAULT_GAIN (0x7A) /* 30dB */
243 #define LNAGX44_DEFAULT_GAIN (0x84) /* 33dB */
244 #define LNAGX45_DEFAULT_GAIN (0x8B) /* 34dB */
245 #define LNAGX46_DEFAULT_GAIN (0x92) /* 36dB */
246 #define LNAGX47_DEFAULT_GAIN (0x96) /* 37dB */
247
248 #define CA8210_IOCTL_HARD_RESET (0x00)
249
250 /* Structs/Enums */
251
252 /**
253 * struct cas_control - spi transfer structure
254 * @msg: spi_message for each exchange
255 * @transfer: spi_transfer for each exchange
256 * @tx_buf: source array for transmission
257 * @tx_in_buf: array storing bytes received during transmission
258 * @priv: pointer to private data
259 *
260 * This structure stores all the necessary data passed around during a single
261 * spi exchange.
262 */
263 struct cas_control {
264 struct spi_message msg;
265 struct spi_transfer transfer;
266
267 u8 tx_buf[CA8210_SPI_BUF_SIZE];
268 u8 tx_in_buf[CA8210_SPI_BUF_SIZE];
269
270 struct ca8210_priv *priv;
271 };
272
273 /**
274 * struct ca8210_test - ca8210 test interface structure
275 * @ca8210_dfs_spi_int: pointer to the entry in the debug fs for this device
276 * @up_fifo: fifo for upstream messages
277 * @readq: read wait queue
278 *
279 * This structure stores all the data pertaining to the debug interface
280 */
281 struct ca8210_test {
282 struct dentry *ca8210_dfs_spi_int;
283 struct kfifo up_fifo;
284 wait_queue_head_t readq;
285 };
286
287 /**
288 * struct ca8210_priv - ca8210 private data structure
289 * @spi: pointer to the ca8210 spi device object
290 * @hw: pointer to the ca8210 ieee802154_hw object
291 * @hw_registered: true if hw has been registered with ieee802154
292 * @lock: spinlock protecting the private data area
293 * @mlme_workqueue: workqueue for triggering MLME Reset
294 * @irq_workqueue: workqueue for irq processing
295 * @tx_skb: current socket buffer to transmit
296 * @nextmsduhandle: msdu handle to pass to the 15.4 MAC layer for the
297 * next transmission
298 * @clk: external clock provided by the ca8210
299 * @last_dsn: sequence number of last data packet received, for
300 * resend detection
301 * @test: test interface data section for this instance
302 * @async_tx_pending: true if an asynchronous transmission was started and
303 * is not complete
304 * @sync_command_response: pointer to buffer to fill with sync response
305 * @ca8210_is_awake: nonzero if ca8210 is initialised, ready for comms
306 * @sync_down: counts number of downstream synchronous commands
307 * @sync_up: counts number of upstream synchronous commands
308 * @spi_transfer_complete: completion object for a single spi_transfer
309 * @sync_exchange_complete: completion object for a complete synchronous API
310 * exchange
311 * @promiscuous: whether the ca8210 is in promiscuous mode or not
312 * @retries: records how many times the current pending spi
313 * transfer has been retried
314 */
315 struct ca8210_priv {
316 struct spi_device *spi;
317 struct ieee802154_hw *hw;
318 bool hw_registered;
319 spinlock_t lock;
320 struct workqueue_struct *mlme_workqueue;
321 struct workqueue_struct *irq_workqueue;
322 struct sk_buff *tx_skb;
323 u8 nextmsduhandle;
324 struct clk *clk;
325 int last_dsn;
326 struct ca8210_test test;
327 bool async_tx_pending;
328 u8 *sync_command_response;
329 struct completion ca8210_is_awake;
330 int sync_down, sync_up;
331 struct completion spi_transfer_complete, sync_exchange_complete;
332 bool promiscuous;
333 int retries;
334 };
335
336 /**
337 * struct work_priv_container - link between a work object and the relevant
338 * device's private data
339 * @work: work object being executed
340 * @priv: device's private data section
341 *
342 */
343 struct work_priv_container {
344 struct work_struct work;
345 struct ca8210_priv *priv;
346 };
347
348 /**
349 * struct ca8210_platform_data - ca8210 platform data structure
350 * @extclockenable: true if the external clock is to be enabled
351 * @extclockfreq: frequency of the external clock
352 * @extclockgpio: ca8210 output gpio of the external clock
353 * @gpio_reset: gpio number of ca8210 reset line
354 * @gpio_irq: gpio number of ca8210 interrupt line
355 * @irq_id: identifier for the ca8210 irq
356 *
357 */
358 struct ca8210_platform_data {
359 bool extclockenable;
360 unsigned int extclockfreq;
361 unsigned int extclockgpio;
362 int gpio_reset;
363 int gpio_irq;
364 int irq_id;
365 };
366
367 /**
368 * struct fulladdr - full MAC addressing information structure
369 * @mode: address mode (none, short, extended)
370 * @pan_id: 16-bit LE pan id
371 * @address: LE address, variable length as specified by mode
372 *
373 */
374 struct fulladdr {
375 u8 mode;
376 u8 pan_id[2];
377 u8 address[8];
378 };
379
380 /**
381 * union macaddr: generic MAC address container
382 * @short_address: 16-bit short address
383 * @ieee_address: 64-bit extended address as LE byte array
384 *
385 */
386 union macaddr {
387 u16 short_address;
388 u8 ieee_address[8];
389 };
390
391 /**
392 * struct secspec: security specification for SAP commands
393 * @security_level: 0-7, controls level of authentication & encryption
394 * @key_id_mode: 0-3, specifies how to obtain key
395 * @key_source: extended key retrieval data
396 * @key_index: single-byte key identifier
397 *
398 */
399 struct secspec {
400 u8 security_level;
401 u8 key_id_mode;
402 u8 key_source[8];
403 u8 key_index;
404 };
405
406 /* downlink functions parameter set definitions */
407 struct mcps_data_request_pset {
408 u8 src_addr_mode;
409 struct fulladdr dst;
410 u8 msdu_length;
411 u8 msdu_handle;
412 u8 tx_options;
413 u8 msdu[MAX_DATA_SIZE];
414 };
415
416 struct mlme_set_request_pset {
417 u8 pib_attribute;
418 u8 pib_attribute_index;
419 u8 pib_attribute_length;
420 u8 pib_attribute_value[MAX_ATTRIBUTE_SIZE];
421 };
422
423 struct hwme_set_request_pset {
424 u8 hw_attribute;
425 u8 hw_attribute_length;
426 u8 hw_attribute_value[MAX_HWME_ATTRIBUTE_SIZE];
427 };
428
429 struct hwme_get_request_pset {
430 u8 hw_attribute;
431 };
432
433 struct tdme_setsfr_request_pset {
434 u8 sfr_page;
435 u8 sfr_address;
436 u8 sfr_value;
437 };
438
439 /* uplink functions parameter set definitions */
440 struct hwme_set_confirm_pset {
441 u8 status;
442 u8 hw_attribute;
443 };
444
445 struct hwme_get_confirm_pset {
446 u8 status;
447 u8 hw_attribute;
448 u8 hw_attribute_length;
449 u8 hw_attribute_value[MAX_HWME_ATTRIBUTE_SIZE];
450 };
451
452 struct tdme_setsfr_confirm_pset {
453 u8 status;
454 u8 sfr_page;
455 u8 sfr_address;
456 };
457
458 struct mac_message {
459 u8 command_id;
460 u8 length;
461 union {
462 struct mcps_data_request_pset data_req;
463 struct mlme_set_request_pset set_req;
464 struct hwme_set_request_pset hwme_set_req;
465 struct hwme_get_request_pset hwme_get_req;
466 struct tdme_setsfr_request_pset tdme_set_sfr_req;
467 struct hwme_set_confirm_pset hwme_set_cnf;
468 struct hwme_get_confirm_pset hwme_get_cnf;
469 struct tdme_setsfr_confirm_pset tdme_set_sfr_cnf;
470 u8 u8param;
471 u8 status;
472 u8 payload[148];
473 } pdata;
474 };
475
476 union pa_cfg_sfr {
477 struct {
478 u8 bias_current_trim : 3;
479 u8 /* reserved */ : 1;
480 u8 buffer_capacitor_trim : 3;
481 u8 boost : 1;
482 };
483 u8 paib;
484 };
485
486 struct preamble_cfg_sfr {
487 u8 timeout_symbols : 3;
488 u8 acquisition_symbols : 3;
489 u8 search_symbols : 2;
490 };
491
492 static int (*cascoda_api_upstream)(
493 const u8 *buf,
494 size_t len,
495 void *device_ref
496 );
497
498 /**
499 * link_to_linux_err() - Translates an 802.15.4 return code into the closest
500 * linux error
501 * @link_status: 802.15.4 status code
502 *
503 * Return: 0 or Linux error code
504 */
link_to_linux_err(int link_status)505 static int link_to_linux_err(int link_status)
506 {
507 if (link_status < 0) {
508 /* status is already a Linux code */
509 return link_status;
510 }
511 switch (link_status) {
512 case IEEE802154_SUCCESS:
513 case IEEE802154_REALIGNMENT:
514 return 0;
515 case IEEE802154_IMPROPER_KEY_TYPE:
516 return -EKEYREJECTED;
517 case IEEE802154_IMPROPER_SECURITY_LEVEL:
518 case IEEE802154_UNSUPPORTED_LEGACY:
519 case IEEE802154_DENIED:
520 return -EACCES;
521 case IEEE802154_BEACON_LOST:
522 case IEEE802154_NO_ACK:
523 case IEEE802154_NO_BEACON:
524 return -ENETUNREACH;
525 case IEEE802154_CHANNEL_ACCESS_FAILURE:
526 case IEEE802154_TX_ACTIVE:
527 case IEEE802154_SCAN_IN_PROGRESS:
528 return -EBUSY;
529 case IEEE802154_DISABLE_TRX_FAILURE:
530 case IEEE802154_OUT_OF_CAP:
531 return -EAGAIN;
532 case IEEE802154_FRAME_TOO_LONG:
533 return -EMSGSIZE;
534 case IEEE802154_INVALID_GTS:
535 case IEEE802154_PAST_TIME:
536 return -EBADSLT;
537 case IEEE802154_INVALID_HANDLE:
538 return -EBADMSG;
539 case IEEE802154_INVALID_PARAMETER:
540 case IEEE802154_UNSUPPORTED_ATTRIBUTE:
541 case IEEE802154_ON_TIME_TOO_LONG:
542 case IEEE802154_INVALID_INDEX:
543 return -EINVAL;
544 case IEEE802154_NO_DATA:
545 return -ENODATA;
546 case IEEE802154_NO_SHORT_ADDRESS:
547 return -EFAULT;
548 case IEEE802154_PAN_ID_CONFLICT:
549 return -EADDRINUSE;
550 case IEEE802154_TRANSACTION_EXPIRED:
551 return -ETIME;
552 case IEEE802154_TRANSACTION_OVERFLOW:
553 return -ENOBUFS;
554 case IEEE802154_UNAVAILABLE_KEY:
555 return -ENOKEY;
556 case IEEE802154_INVALID_ADDRESS:
557 return -ENXIO;
558 case IEEE802154_TRACKING_OFF:
559 case IEEE802154_SUPERFRAME_OVERLAP:
560 return -EREMOTEIO;
561 case IEEE802154_LIMIT_REACHED:
562 return -EDQUOT;
563 case IEEE802154_READ_ONLY:
564 return -EROFS;
565 default:
566 return -EPROTO;
567 }
568 }
569
570 /**
571 * ca8210_test_int_driver_write() - Writes a message to the test interface to be
572 * read by the userspace
573 * @buf: Buffer containing upstream message
574 * @len: length of message to write
575 * @spi: SPI device of message originator
576 *
577 * Return: 0 or linux error code
578 */
ca8210_test_int_driver_write(const u8 * buf,size_t len,void * spi)579 static int ca8210_test_int_driver_write(
580 const u8 *buf,
581 size_t len,
582 void *spi
583 )
584 {
585 struct ca8210_priv *priv = spi_get_drvdata(spi);
586 struct ca8210_test *test = &priv->test;
587 char *fifo_buffer;
588 int i;
589
590 dev_dbg(
591 &priv->spi->dev,
592 "test_interface: Buffering upstream message:\n"
593 );
594 for (i = 0; i < len; i++)
595 dev_dbg(&priv->spi->dev, "%#03x\n", buf[i]);
596
597 fifo_buffer = kmemdup(buf, len, GFP_KERNEL);
598 if (!fifo_buffer)
599 return -ENOMEM;
600 kfifo_in(&test->up_fifo, &fifo_buffer, 4);
601 wake_up_interruptible(&priv->test.readq);
602
603 return 0;
604 }
605
606 /* SPI Operation */
607
608 static int ca8210_net_rx(
609 struct ieee802154_hw *hw,
610 u8 *command,
611 size_t len
612 );
613 static u8 mlme_reset_request_sync(
614 u8 set_default_pib,
615 void *device_ref
616 );
617 static int ca8210_spi_transfer(
618 struct spi_device *spi,
619 const u8 *buf,
620 size_t len
621 );
622
623 /**
624 * ca8210_reset_send() - Hard resets the ca8210 for a given time
625 * @spi: Pointer to target ca8210 spi device
626 * @ms: Milliseconds to hold the reset line low for
627 */
ca8210_reset_send(struct spi_device * spi,unsigned int ms)628 static void ca8210_reset_send(struct spi_device *spi, unsigned int ms)
629 {
630 struct ca8210_platform_data *pdata = spi->dev.platform_data;
631 struct ca8210_priv *priv = spi_get_drvdata(spi);
632 long status;
633
634 gpio_set_value(pdata->gpio_reset, 0);
635 reinit_completion(&priv->ca8210_is_awake);
636 msleep(ms);
637 gpio_set_value(pdata->gpio_reset, 1);
638 priv->promiscuous = false;
639
640 /* Wait until wakeup indication seen */
641 status = wait_for_completion_interruptible_timeout(
642 &priv->ca8210_is_awake,
643 msecs_to_jiffies(CA8210_SYNC_TIMEOUT)
644 );
645 if (status == 0) {
646 dev_crit(
647 &spi->dev,
648 "Fatal: No wakeup from ca8210 after reset!\n"
649 );
650 }
651
652 dev_dbg(&spi->dev, "Reset the device\n");
653 }
654
655 /**
656 * ca8210_mlme_reset_worker() - Resets the MLME, Called when the MAC OVERFLOW
657 * condition happens.
658 * @work: Pointer to work being executed
659 */
ca8210_mlme_reset_worker(struct work_struct * work)660 static void ca8210_mlme_reset_worker(struct work_struct *work)
661 {
662 struct work_priv_container *wpc = container_of(
663 work,
664 struct work_priv_container,
665 work
666 );
667 struct ca8210_priv *priv = wpc->priv;
668
669 mlme_reset_request_sync(0, priv->spi);
670 kfree(wpc);
671 }
672
673 /**
674 * ca8210_rx_done() - Calls various message dispatches responding to a received
675 * command
676 * @cas_ctl: Pointer to the cas_control object for the relevant spi transfer
677 *
678 * Presents a received SAP command from the ca8210 to the Cascoda EVBME, test
679 * interface and network driver.
680 */
ca8210_rx_done(struct cas_control * cas_ctl)681 static void ca8210_rx_done(struct cas_control *cas_ctl)
682 {
683 u8 *buf;
684 unsigned int len;
685 struct work_priv_container *mlme_reset_wpc;
686 struct ca8210_priv *priv = cas_ctl->priv;
687
688 buf = cas_ctl->tx_in_buf;
689 len = buf[1] + 2;
690 if (len > CA8210_SPI_BUF_SIZE) {
691 dev_crit(
692 &priv->spi->dev,
693 "Received packet len (%u) erroneously long\n",
694 len
695 );
696 goto finish;
697 }
698
699 if (buf[0] & SPI_SYN) {
700 if (priv->sync_command_response) {
701 memcpy(priv->sync_command_response, buf, len);
702 complete(&priv->sync_exchange_complete);
703 } else {
704 if (cascoda_api_upstream)
705 cascoda_api_upstream(buf, len, priv->spi);
706 priv->sync_up++;
707 }
708 } else {
709 if (cascoda_api_upstream)
710 cascoda_api_upstream(buf, len, priv->spi);
711 }
712
713 ca8210_net_rx(priv->hw, buf, len);
714 if (buf[0] == SPI_MCPS_DATA_CONFIRM) {
715 if (buf[3] == IEEE802154_TRANSACTION_OVERFLOW) {
716 dev_info(
717 &priv->spi->dev,
718 "Waiting for transaction overflow to stabilise...\n");
719 msleep(2000);
720 dev_info(
721 &priv->spi->dev,
722 "Resetting MAC...\n");
723
724 mlme_reset_wpc = kmalloc(sizeof(*mlme_reset_wpc),
725 GFP_KERNEL);
726 if (!mlme_reset_wpc)
727 goto finish;
728 INIT_WORK(
729 &mlme_reset_wpc->work,
730 ca8210_mlme_reset_worker
731 );
732 mlme_reset_wpc->priv = priv;
733 queue_work(priv->mlme_workqueue, &mlme_reset_wpc->work);
734 }
735 } else if (buf[0] == SPI_HWME_WAKEUP_INDICATION) {
736 dev_notice(
737 &priv->spi->dev,
738 "Wakeup indication received, reason:\n"
739 );
740 switch (buf[2]) {
741 case 0:
742 dev_notice(
743 &priv->spi->dev,
744 "Transceiver woken up from Power Up / System Reset\n"
745 );
746 break;
747 case 1:
748 dev_notice(
749 &priv->spi->dev,
750 "Watchdog Timer Time-Out\n"
751 );
752 break;
753 case 2:
754 dev_notice(
755 &priv->spi->dev,
756 "Transceiver woken up from Power-Off by Sleep Timer Time-Out\n");
757 break;
758 case 3:
759 dev_notice(
760 &priv->spi->dev,
761 "Transceiver woken up from Power-Off by GPIO Activity\n"
762 );
763 break;
764 case 4:
765 dev_notice(
766 &priv->spi->dev,
767 "Transceiver woken up from Standby by Sleep Timer Time-Out\n"
768 );
769 break;
770 case 5:
771 dev_notice(
772 &priv->spi->dev,
773 "Transceiver woken up from Standby by GPIO Activity\n"
774 );
775 break;
776 case 6:
777 dev_notice(
778 &priv->spi->dev,
779 "Sleep-Timer Time-Out in Active Mode\n"
780 );
781 break;
782 default:
783 dev_warn(&priv->spi->dev, "Wakeup reason unknown\n");
784 break;
785 }
786 complete(&priv->ca8210_is_awake);
787 }
788
789 finish:;
790 }
791
792 static void ca8210_remove(struct spi_device *spi_device);
793
794 /**
795 * ca8210_spi_transfer_complete() - Called when a single spi transfer has
796 * completed
797 * @context: Pointer to the cas_control object for the finished transfer
798 */
ca8210_spi_transfer_complete(void * context)799 static void ca8210_spi_transfer_complete(void *context)
800 {
801 struct cas_control *cas_ctl = context;
802 struct ca8210_priv *priv = cas_ctl->priv;
803 bool duplex_rx = false;
804 int i;
805 u8 retry_buffer[CA8210_SPI_BUF_SIZE];
806
807 if (
808 cas_ctl->tx_in_buf[0] == SPI_NACK ||
809 (cas_ctl->tx_in_buf[0] == SPI_IDLE &&
810 cas_ctl->tx_in_buf[1] == SPI_NACK)
811 ) {
812 /* ca8210 is busy */
813 dev_info(&priv->spi->dev, "ca8210 was busy during attempted write\n");
814 if (cas_ctl->tx_buf[0] == SPI_IDLE) {
815 dev_warn(
816 &priv->spi->dev,
817 "IRQ servicing NACKd, dropping transfer\n"
818 );
819 kfree(cas_ctl);
820 return;
821 }
822 if (priv->retries > 3) {
823 dev_err(&priv->spi->dev, "too many retries!\n");
824 kfree(cas_ctl);
825 ca8210_remove(priv->spi);
826 return;
827 }
828 memcpy(retry_buffer, cas_ctl->tx_buf, CA8210_SPI_BUF_SIZE);
829 kfree(cas_ctl);
830 ca8210_spi_transfer(
831 priv->spi,
832 retry_buffer,
833 CA8210_SPI_BUF_SIZE
834 );
835 priv->retries++;
836 dev_info(&priv->spi->dev, "retried spi write\n");
837 return;
838 } else if (
839 cas_ctl->tx_in_buf[0] != SPI_IDLE &&
840 cas_ctl->tx_in_buf[0] != SPI_NACK
841 ) {
842 duplex_rx = true;
843 }
844
845 if (duplex_rx) {
846 dev_dbg(&priv->spi->dev, "READ CMD DURING TX\n");
847 for (i = 0; i < cas_ctl->tx_in_buf[1] + 2; i++)
848 dev_dbg(
849 &priv->spi->dev,
850 "%#03x\n",
851 cas_ctl->tx_in_buf[i]
852 );
853 ca8210_rx_done(cas_ctl);
854 }
855 complete(&priv->spi_transfer_complete);
856 kfree(cas_ctl);
857 priv->retries = 0;
858 }
859
860 /**
861 * ca8210_spi_transfer() - Initiate duplex spi transfer with ca8210
862 * @spi: Pointer to spi device for transfer
863 * @buf: Octet array to send
864 * @len: length of the buffer being sent
865 *
866 * Return: 0 or linux error code
867 */
ca8210_spi_transfer(struct spi_device * spi,const u8 * buf,size_t len)868 static int ca8210_spi_transfer(
869 struct spi_device *spi,
870 const u8 *buf,
871 size_t len
872 )
873 {
874 int i, status = 0;
875 struct ca8210_priv *priv;
876 struct cas_control *cas_ctl;
877
878 if (!spi) {
879 pr_crit("NULL spi device passed to %s\n", __func__);
880 return -ENODEV;
881 }
882
883 priv = spi_get_drvdata(spi);
884 reinit_completion(&priv->spi_transfer_complete);
885
886 dev_dbg(&spi->dev, "%s called\n", __func__);
887
888 cas_ctl = kzalloc(sizeof(*cas_ctl), GFP_ATOMIC);
889 if (!cas_ctl)
890 return -ENOMEM;
891
892 cas_ctl->priv = priv;
893 memset(cas_ctl->tx_buf, SPI_IDLE, CA8210_SPI_BUF_SIZE);
894 memset(cas_ctl->tx_in_buf, SPI_IDLE, CA8210_SPI_BUF_SIZE);
895 memcpy(cas_ctl->tx_buf, buf, len);
896
897 for (i = 0; i < len; i++)
898 dev_dbg(&spi->dev, "%#03x\n", cas_ctl->tx_buf[i]);
899
900 spi_message_init(&cas_ctl->msg);
901
902 cas_ctl->transfer.tx_nbits = 1; /* 1 MOSI line */
903 cas_ctl->transfer.rx_nbits = 1; /* 1 MISO line */
904 cas_ctl->transfer.speed_hz = 0; /* Use device setting */
905 cas_ctl->transfer.bits_per_word = 0; /* Use device setting */
906 cas_ctl->transfer.tx_buf = cas_ctl->tx_buf;
907 cas_ctl->transfer.rx_buf = cas_ctl->tx_in_buf;
908 cas_ctl->transfer.delay.value = 0;
909 cas_ctl->transfer.delay.unit = SPI_DELAY_UNIT_USECS;
910 cas_ctl->transfer.cs_change = 0;
911 cas_ctl->transfer.len = sizeof(struct mac_message);
912 cas_ctl->msg.complete = ca8210_spi_transfer_complete;
913 cas_ctl->msg.context = cas_ctl;
914
915 spi_message_add_tail(
916 &cas_ctl->transfer,
917 &cas_ctl->msg
918 );
919
920 status = spi_async(spi, &cas_ctl->msg);
921 if (status < 0) {
922 dev_crit(
923 &spi->dev,
924 "status %d from spi_sync in write\n",
925 status
926 );
927 }
928
929 return status;
930 }
931
932 /**
933 * ca8210_spi_exchange() - Exchange API/SAP commands with the radio
934 * @buf: Octet array of command being sent downstream
935 * @len: length of buf
936 * @response: buffer for storing synchronous response
937 * @device_ref: spi_device pointer for ca8210
938 *
939 * Effectively calls ca8210_spi_transfer to write buf[] to the spi, then for
940 * synchronous commands waits for the corresponding response to be read from
941 * the spi before returning. The response is written to the response parameter.
942 *
943 * Return: 0 or linux error code
944 */
ca8210_spi_exchange(const u8 * buf,size_t len,u8 * response,void * device_ref)945 static int ca8210_spi_exchange(
946 const u8 *buf,
947 size_t len,
948 u8 *response,
949 void *device_ref
950 )
951 {
952 int status = 0;
953 struct spi_device *spi = device_ref;
954 struct ca8210_priv *priv = spi->dev.driver_data;
955 long wait_remaining;
956
957 if ((buf[0] & SPI_SYN) && response) { /* if sync wait for confirm */
958 reinit_completion(&priv->sync_exchange_complete);
959 priv->sync_command_response = response;
960 }
961
962 do {
963 reinit_completion(&priv->spi_transfer_complete);
964 status = ca8210_spi_transfer(priv->spi, buf, len);
965 if (status) {
966 dev_warn(
967 &spi->dev,
968 "spi write failed, returned %d\n",
969 status
970 );
971 if (status == -EBUSY)
972 continue;
973 if (((buf[0] & SPI_SYN) && response))
974 complete(&priv->sync_exchange_complete);
975 goto cleanup;
976 }
977
978 wait_remaining = wait_for_completion_interruptible_timeout(
979 &priv->spi_transfer_complete,
980 msecs_to_jiffies(1000)
981 );
982 if (wait_remaining == -ERESTARTSYS) {
983 status = -ERESTARTSYS;
984 } else if (wait_remaining == 0) {
985 dev_err(
986 &spi->dev,
987 "SPI downstream transfer timed out!\n"
988 );
989 status = -ETIME;
990 goto cleanup;
991 }
992 } while (status < 0);
993
994 if (!((buf[0] & SPI_SYN) && response))
995 goto cleanup;
996
997 wait_remaining = wait_for_completion_interruptible_timeout(
998 &priv->sync_exchange_complete,
999 msecs_to_jiffies(CA8210_SYNC_TIMEOUT)
1000 );
1001 if (wait_remaining == -ERESTARTSYS) {
1002 status = -ERESTARTSYS;
1003 } else if (wait_remaining == 0) {
1004 dev_err(
1005 &spi->dev,
1006 "Synchronous confirm timeout\n"
1007 );
1008 status = -ETIME;
1009 }
1010
1011 cleanup:
1012 priv->sync_command_response = NULL;
1013 return status;
1014 }
1015
1016 /**
1017 * ca8210_interrupt_handler() - Called when an irq is received from the ca8210
1018 * @irq: Id of the irq being handled
1019 * @dev_id: Pointer passed by the system, pointing to the ca8210's private data
1020 *
1021 * This function is called when the irq line from the ca8210 is asserted,
1022 * signifying that the ca8210 has a message to send upstream to us. Starts the
1023 * asynchronous spi read.
1024 *
1025 * Return: irq return code
1026 */
ca8210_interrupt_handler(int irq,void * dev_id)1027 static irqreturn_t ca8210_interrupt_handler(int irq, void *dev_id)
1028 {
1029 struct ca8210_priv *priv = dev_id;
1030 int status;
1031
1032 dev_dbg(&priv->spi->dev, "irq: Interrupt occurred\n");
1033 do {
1034 status = ca8210_spi_transfer(priv->spi, NULL, 0);
1035 if (status && (status != -EBUSY)) {
1036 dev_warn(
1037 &priv->spi->dev,
1038 "spi read failed, returned %d\n",
1039 status
1040 );
1041 }
1042 } while (status == -EBUSY);
1043 return IRQ_HANDLED;
1044 }
1045
1046 static int (*cascoda_api_downstream)(
1047 const u8 *buf,
1048 size_t len,
1049 u8 *response,
1050 void *device_ref
1051 ) = ca8210_spi_exchange;
1052
1053 /* Cascoda API / 15.4 SAP Primitives */
1054
1055 /**
1056 * tdme_setsfr_request_sync() - TDME_SETSFR_request/confirm according to API
1057 * @sfr_page: SFR Page
1058 * @sfr_address: SFR Address
1059 * @sfr_value: SFR Value
1060 * @device_ref: Nondescript pointer to target device
1061 *
1062 * Return: 802.15.4 status code of TDME-SETSFR.confirm
1063 */
tdme_setsfr_request_sync(u8 sfr_page,u8 sfr_address,u8 sfr_value,void * device_ref)1064 static u8 tdme_setsfr_request_sync(
1065 u8 sfr_page,
1066 u8 sfr_address,
1067 u8 sfr_value,
1068 void *device_ref
1069 )
1070 {
1071 int ret;
1072 struct mac_message command, response;
1073 struct spi_device *spi = device_ref;
1074
1075 command.command_id = SPI_TDME_SETSFR_REQUEST;
1076 command.length = 3;
1077 command.pdata.tdme_set_sfr_req.sfr_page = sfr_page;
1078 command.pdata.tdme_set_sfr_req.sfr_address = sfr_address;
1079 command.pdata.tdme_set_sfr_req.sfr_value = sfr_value;
1080 response.command_id = SPI_IDLE;
1081 ret = cascoda_api_downstream(
1082 &command.command_id,
1083 command.length + 2,
1084 &response.command_id,
1085 device_ref
1086 );
1087 if (ret) {
1088 dev_crit(&spi->dev, "cascoda_api_downstream returned %d", ret);
1089 return IEEE802154_SYSTEM_ERROR;
1090 }
1091
1092 if (response.command_id != SPI_TDME_SETSFR_CONFIRM) {
1093 dev_crit(
1094 &spi->dev,
1095 "sync response to SPI_TDME_SETSFR_REQUEST was not SPI_TDME_SETSFR_CONFIRM, it was %d\n",
1096 response.command_id
1097 );
1098 return IEEE802154_SYSTEM_ERROR;
1099 }
1100
1101 return response.pdata.tdme_set_sfr_cnf.status;
1102 }
1103
1104 /**
1105 * tdme_chipinit() - TDME Chip Register Default Initialisation Macro
1106 * @device_ref: Nondescript pointer to target device
1107 *
1108 * Return: 802.15.4 status code of API calls
1109 */
tdme_chipinit(void * device_ref)1110 static u8 tdme_chipinit(void *device_ref)
1111 {
1112 u8 status = IEEE802154_SUCCESS;
1113 u8 sfr_address;
1114 struct spi_device *spi = device_ref;
1115 struct preamble_cfg_sfr pre_cfg_value = {
1116 .timeout_symbols = 3,
1117 .acquisition_symbols = 3,
1118 .search_symbols = 1,
1119 };
1120 /* LNA Gain Settings */
1121 status = tdme_setsfr_request_sync(
1122 1, (sfr_address = CA8210_SFR_LNAGX40),
1123 LNAGX40_DEFAULT_GAIN, device_ref);
1124 if (status)
1125 goto finish;
1126 status = tdme_setsfr_request_sync(
1127 1, (sfr_address = CA8210_SFR_LNAGX41),
1128 LNAGX41_DEFAULT_GAIN, device_ref);
1129 if (status)
1130 goto finish;
1131 status = tdme_setsfr_request_sync(
1132 1, (sfr_address = CA8210_SFR_LNAGX42),
1133 LNAGX42_DEFAULT_GAIN, device_ref);
1134 if (status)
1135 goto finish;
1136 status = tdme_setsfr_request_sync(
1137 1, (sfr_address = CA8210_SFR_LNAGX43),
1138 LNAGX43_DEFAULT_GAIN, device_ref);
1139 if (status)
1140 goto finish;
1141 status = tdme_setsfr_request_sync(
1142 1, (sfr_address = CA8210_SFR_LNAGX44),
1143 LNAGX44_DEFAULT_GAIN, device_ref);
1144 if (status)
1145 goto finish;
1146 status = tdme_setsfr_request_sync(
1147 1, (sfr_address = CA8210_SFR_LNAGX45),
1148 LNAGX45_DEFAULT_GAIN, device_ref);
1149 if (status)
1150 goto finish;
1151 status = tdme_setsfr_request_sync(
1152 1, (sfr_address = CA8210_SFR_LNAGX46),
1153 LNAGX46_DEFAULT_GAIN, device_ref);
1154 if (status)
1155 goto finish;
1156 status = tdme_setsfr_request_sync(
1157 1, (sfr_address = CA8210_SFR_LNAGX47),
1158 LNAGX47_DEFAULT_GAIN, device_ref);
1159 if (status)
1160 goto finish;
1161 /* Preamble Timing Config */
1162 status = tdme_setsfr_request_sync(
1163 1, (sfr_address = CA8210_SFR_PRECFG),
1164 *((u8 *)&pre_cfg_value), device_ref);
1165 if (status)
1166 goto finish;
1167 /* Preamble Threshold High */
1168 status = tdme_setsfr_request_sync(
1169 1, (sfr_address = CA8210_SFR_PTHRH),
1170 PTHRH_DEFAULT_THRESHOLD, device_ref);
1171 if (status)
1172 goto finish;
1173 /* Tx Output Power 8 dBm */
1174 status = tdme_setsfr_request_sync(
1175 0, (sfr_address = CA8210_SFR_PACFGIB),
1176 PACFGIB_DEFAULT_CURRENT, device_ref);
1177 if (status)
1178 goto finish;
1179
1180 finish:
1181 if (status != IEEE802154_SUCCESS) {
1182 dev_err(
1183 &spi->dev,
1184 "failed to set sfr at %#03x, status = %#03x\n",
1185 sfr_address,
1186 status
1187 );
1188 }
1189 return status;
1190 }
1191
1192 /**
1193 * tdme_channelinit() - TDME Channel Register Default Initialisation Macro (Tx)
1194 * @channel: 802.15.4 channel to initialise chip for
1195 * @device_ref: Nondescript pointer to target device
1196 *
1197 * Return: 802.15.4 status code of API calls
1198 */
tdme_channelinit(u8 channel,void * device_ref)1199 static u8 tdme_channelinit(u8 channel, void *device_ref)
1200 {
1201 /* Transceiver front-end local oscillator tx two-point calibration
1202 * value. Tuned for the hardware.
1203 */
1204 u8 txcalval;
1205
1206 if (channel >= 25)
1207 txcalval = 0xA7;
1208 else if (channel >= 23)
1209 txcalval = 0xA8;
1210 else if (channel >= 22)
1211 txcalval = 0xA9;
1212 else if (channel >= 20)
1213 txcalval = 0xAA;
1214 else if (channel >= 17)
1215 txcalval = 0xAB;
1216 else if (channel >= 16)
1217 txcalval = 0xAC;
1218 else if (channel >= 14)
1219 txcalval = 0xAD;
1220 else if (channel >= 12)
1221 txcalval = 0xAE;
1222 else
1223 txcalval = 0xAF;
1224
1225 return tdme_setsfr_request_sync(
1226 1,
1227 CA8210_SFR_LOTXCAL,
1228 txcalval,
1229 device_ref
1230 ); /* LO Tx Cal */
1231 }
1232
1233 /**
1234 * tdme_checkpibattribute() - Checks Attribute Values that are not checked in
1235 * MAC
1236 * @pib_attribute: Attribute Number
1237 * @pib_attribute_length: Attribute length
1238 * @pib_attribute_value: Pointer to Attribute Value
1239 *
1240 * Return: 802.15.4 status code of checks
1241 */
tdme_checkpibattribute(u8 pib_attribute,u8 pib_attribute_length,const void * pib_attribute_value)1242 static u8 tdme_checkpibattribute(
1243 u8 pib_attribute,
1244 u8 pib_attribute_length,
1245 const void *pib_attribute_value
1246 )
1247 {
1248 u8 status = IEEE802154_SUCCESS;
1249 u8 value;
1250
1251 value = *((u8 *)pib_attribute_value);
1252
1253 switch (pib_attribute) {
1254 /* PHY */
1255 case PHY_TRANSMIT_POWER:
1256 if (value > 0x3F)
1257 status = IEEE802154_INVALID_PARAMETER;
1258 break;
1259 case PHY_CCA_MODE:
1260 if (value > 0x03)
1261 status = IEEE802154_INVALID_PARAMETER;
1262 break;
1263 /* MAC */
1264 case MAC_BATT_LIFE_EXT_PERIODS:
1265 if (value < 6 || value > 41)
1266 status = IEEE802154_INVALID_PARAMETER;
1267 break;
1268 case MAC_BEACON_PAYLOAD:
1269 if (pib_attribute_length > MAX_BEACON_PAYLOAD_LENGTH)
1270 status = IEEE802154_INVALID_PARAMETER;
1271 break;
1272 case MAC_BEACON_PAYLOAD_LENGTH:
1273 if (value > MAX_BEACON_PAYLOAD_LENGTH)
1274 status = IEEE802154_INVALID_PARAMETER;
1275 break;
1276 case MAC_BEACON_ORDER:
1277 if (value > 15)
1278 status = IEEE802154_INVALID_PARAMETER;
1279 break;
1280 case MAC_MAX_BE:
1281 if (value < 3 || value > 8)
1282 status = IEEE802154_INVALID_PARAMETER;
1283 break;
1284 case MAC_MAX_CSMA_BACKOFFS:
1285 if (value > 5)
1286 status = IEEE802154_INVALID_PARAMETER;
1287 break;
1288 case MAC_MAX_FRAME_RETRIES:
1289 if (value > 7)
1290 status = IEEE802154_INVALID_PARAMETER;
1291 break;
1292 case MAC_MIN_BE:
1293 if (value > 8)
1294 status = IEEE802154_INVALID_PARAMETER;
1295 break;
1296 case MAC_RESPONSE_WAIT_TIME:
1297 if (value < 2 || value > 64)
1298 status = IEEE802154_INVALID_PARAMETER;
1299 break;
1300 case MAC_SUPERFRAME_ORDER:
1301 if (value > 15)
1302 status = IEEE802154_INVALID_PARAMETER;
1303 break;
1304 /* boolean */
1305 case MAC_ASSOCIATED_PAN_COORD:
1306 case MAC_ASSOCIATION_PERMIT:
1307 case MAC_AUTO_REQUEST:
1308 case MAC_BATT_LIFE_EXT:
1309 case MAC_GTS_PERMIT:
1310 case MAC_PROMISCUOUS_MODE:
1311 case MAC_RX_ON_WHEN_IDLE:
1312 case MAC_SECURITY_ENABLED:
1313 if (value > 1)
1314 status = IEEE802154_INVALID_PARAMETER;
1315 break;
1316 /* MAC SEC */
1317 case MAC_AUTO_REQUEST_SECURITY_LEVEL:
1318 if (value > 7)
1319 status = IEEE802154_INVALID_PARAMETER;
1320 break;
1321 case MAC_AUTO_REQUEST_KEY_ID_MODE:
1322 if (value > 3)
1323 status = IEEE802154_INVALID_PARAMETER;
1324 break;
1325 default:
1326 break;
1327 }
1328
1329 return status;
1330 }
1331
1332 /**
1333 * tdme_settxpower() - Sets the tx power for MLME_SET phyTransmitPower
1334 * @txp: Transmit Power
1335 * @device_ref: Nondescript pointer to target device
1336 *
1337 * Normalised to 802.15.4 Definition (6-bit, signed):
1338 * Bit 7-6: not used
1339 * Bit 5-0: tx power (-32 - +31 dB)
1340 *
1341 * Return: 802.15.4 status code of api calls
1342 */
tdme_settxpower(u8 txp,void * device_ref)1343 static u8 tdme_settxpower(u8 txp, void *device_ref)
1344 {
1345 u8 status;
1346 s8 txp_val;
1347 u8 txp_ext;
1348 union pa_cfg_sfr pa_cfg_val;
1349
1350 /* extend from 6 to 8 bit */
1351 txp_ext = 0x3F & txp;
1352 if (txp_ext & 0x20)
1353 txp_ext += 0xC0;
1354 txp_val = (s8)txp_ext;
1355
1356 if (CA8210_MAC_MPW) {
1357 if (txp_val > 0) {
1358 /* 8 dBm: ptrim = 5, itrim = +3 => +4 dBm */
1359 pa_cfg_val.bias_current_trim = 3;
1360 pa_cfg_val.buffer_capacitor_trim = 5;
1361 pa_cfg_val.boost = 1;
1362 } else {
1363 /* 0 dBm: ptrim = 7, itrim = +3 => -6 dBm */
1364 pa_cfg_val.bias_current_trim = 3;
1365 pa_cfg_val.buffer_capacitor_trim = 7;
1366 pa_cfg_val.boost = 0;
1367 }
1368 /* write PACFG */
1369 status = tdme_setsfr_request_sync(
1370 0,
1371 CA8210_SFR_PACFG,
1372 pa_cfg_val.paib,
1373 device_ref
1374 );
1375 } else {
1376 /* Look-Up Table for Setting Current and Frequency Trim values
1377 * for desired Output Power
1378 */
1379 if (txp_val > 8) {
1380 pa_cfg_val.paib = 0x3F;
1381 } else if (txp_val == 8) {
1382 pa_cfg_val.paib = 0x32;
1383 } else if (txp_val == 7) {
1384 pa_cfg_val.paib = 0x22;
1385 } else if (txp_val == 6) {
1386 pa_cfg_val.paib = 0x18;
1387 } else if (txp_val == 5) {
1388 pa_cfg_val.paib = 0x10;
1389 } else if (txp_val == 4) {
1390 pa_cfg_val.paib = 0x0C;
1391 } else if (txp_val == 3) {
1392 pa_cfg_val.paib = 0x08;
1393 } else if (txp_val == 2) {
1394 pa_cfg_val.paib = 0x05;
1395 } else if (txp_val == 1) {
1396 pa_cfg_val.paib = 0x03;
1397 } else if (txp_val == 0) {
1398 pa_cfg_val.paib = 0x01;
1399 } else { /* < 0 */
1400 pa_cfg_val.paib = 0x00;
1401 }
1402 /* write PACFGIB */
1403 status = tdme_setsfr_request_sync(
1404 0,
1405 CA8210_SFR_PACFGIB,
1406 pa_cfg_val.paib,
1407 device_ref
1408 );
1409 }
1410
1411 return status;
1412 }
1413
1414 /**
1415 * mcps_data_request() - mcps_data_request (Send Data) according to API Spec
1416 * @src_addr_mode: Source Addressing Mode
1417 * @dst_address_mode: Destination Addressing Mode
1418 * @dst_pan_id: Destination PAN ID
1419 * @dst_addr: Pointer to Destination Address
1420 * @msdu_length: length of Data
1421 * @msdu: Pointer to Data
1422 * @msdu_handle: Handle of Data
1423 * @tx_options: Tx Options Bit Field
1424 * @security: Pointer to Security Structure or NULL
1425 * @device_ref: Nondescript pointer to target device
1426 *
1427 * Return: 802.15.4 status code of action
1428 */
mcps_data_request(u8 src_addr_mode,u8 dst_address_mode,u16 dst_pan_id,union macaddr * dst_addr,u8 msdu_length,u8 * msdu,u8 msdu_handle,u8 tx_options,struct secspec * security,void * device_ref)1429 static u8 mcps_data_request(
1430 u8 src_addr_mode,
1431 u8 dst_address_mode,
1432 u16 dst_pan_id,
1433 union macaddr *dst_addr,
1434 u8 msdu_length,
1435 u8 *msdu,
1436 u8 msdu_handle,
1437 u8 tx_options,
1438 struct secspec *security,
1439 void *device_ref
1440 )
1441 {
1442 struct secspec *psec;
1443 struct mac_message command;
1444
1445 command.command_id = SPI_MCPS_DATA_REQUEST;
1446 command.pdata.data_req.src_addr_mode = src_addr_mode;
1447 command.pdata.data_req.dst.mode = dst_address_mode;
1448 if (dst_address_mode != MAC_MODE_NO_ADDR) {
1449 command.pdata.data_req.dst.pan_id[0] = LS_BYTE(dst_pan_id);
1450 command.pdata.data_req.dst.pan_id[1] = MS_BYTE(dst_pan_id);
1451 if (dst_address_mode == MAC_MODE_SHORT_ADDR) {
1452 command.pdata.data_req.dst.address[0] = LS_BYTE(
1453 dst_addr->short_address
1454 );
1455 command.pdata.data_req.dst.address[1] = MS_BYTE(
1456 dst_addr->short_address
1457 );
1458 } else { /* MAC_MODE_LONG_ADDR*/
1459 memcpy(
1460 command.pdata.data_req.dst.address,
1461 dst_addr->ieee_address,
1462 8
1463 );
1464 }
1465 }
1466 command.pdata.data_req.msdu_length = msdu_length;
1467 command.pdata.data_req.msdu_handle = msdu_handle;
1468 command.pdata.data_req.tx_options = tx_options;
1469 memcpy(command.pdata.data_req.msdu, msdu, msdu_length);
1470 psec = (struct secspec *)(command.pdata.data_req.msdu + msdu_length);
1471 command.length = sizeof(struct mcps_data_request_pset) -
1472 MAX_DATA_SIZE + msdu_length;
1473 if (!security || security->security_level == 0) {
1474 psec->security_level = 0;
1475 command.length += 1;
1476 } else {
1477 *psec = *security;
1478 command.length += sizeof(struct secspec);
1479 }
1480
1481 if (ca8210_spi_transfer(device_ref, &command.command_id,
1482 command.length + 2))
1483 return IEEE802154_SYSTEM_ERROR;
1484
1485 return IEEE802154_SUCCESS;
1486 }
1487
1488 /**
1489 * mlme_reset_request_sync() - MLME_RESET_request/confirm according to API Spec
1490 * @set_default_pib: Set defaults in PIB
1491 * @device_ref: Nondescript pointer to target device
1492 *
1493 * Return: 802.15.4 status code of MLME-RESET.confirm
1494 */
mlme_reset_request_sync(u8 set_default_pib,void * device_ref)1495 static u8 mlme_reset_request_sync(
1496 u8 set_default_pib,
1497 void *device_ref
1498 )
1499 {
1500 u8 status;
1501 struct mac_message command, response;
1502 struct spi_device *spi = device_ref;
1503
1504 command.command_id = SPI_MLME_RESET_REQUEST;
1505 command.length = 1;
1506 command.pdata.u8param = set_default_pib;
1507
1508 if (cascoda_api_downstream(
1509 &command.command_id,
1510 command.length + 2,
1511 &response.command_id,
1512 device_ref)) {
1513 dev_err(&spi->dev, "cascoda_api_downstream failed\n");
1514 return IEEE802154_SYSTEM_ERROR;
1515 }
1516
1517 if (response.command_id != SPI_MLME_RESET_CONFIRM)
1518 return IEEE802154_SYSTEM_ERROR;
1519
1520 status = response.pdata.status;
1521
1522 /* reset COORD Bit for Channel Filtering as Coordinator */
1523 if (CA8210_MAC_WORKAROUNDS && set_default_pib && !status) {
1524 status = tdme_setsfr_request_sync(
1525 0,
1526 CA8210_SFR_MACCON,
1527 0,
1528 device_ref
1529 );
1530 }
1531
1532 return status;
1533 }
1534
1535 /**
1536 * mlme_set_request_sync() - MLME_SET_request/confirm according to API Spec
1537 * @pib_attribute: Attribute Number
1538 * @pib_attribute_index: Index within Attribute if an Array
1539 * @pib_attribute_length: Attribute length
1540 * @pib_attribute_value: Pointer to Attribute Value
1541 * @device_ref: Nondescript pointer to target device
1542 *
1543 * Return: 802.15.4 status code of MLME-SET.confirm
1544 */
mlme_set_request_sync(u8 pib_attribute,u8 pib_attribute_index,u8 pib_attribute_length,const void * pib_attribute_value,void * device_ref)1545 static u8 mlme_set_request_sync(
1546 u8 pib_attribute,
1547 u8 pib_attribute_index,
1548 u8 pib_attribute_length,
1549 const void *pib_attribute_value,
1550 void *device_ref
1551 )
1552 {
1553 u8 status;
1554 struct mac_message command, response;
1555
1556 /* pre-check the validity of pib_attribute values that are not checked
1557 * in MAC
1558 */
1559 if (tdme_checkpibattribute(
1560 pib_attribute, pib_attribute_length, pib_attribute_value)) {
1561 return IEEE802154_INVALID_PARAMETER;
1562 }
1563
1564 if (pib_attribute == PHY_CURRENT_CHANNEL) {
1565 status = tdme_channelinit(
1566 *((u8 *)pib_attribute_value),
1567 device_ref
1568 );
1569 if (status)
1570 return status;
1571 }
1572
1573 if (pib_attribute == PHY_TRANSMIT_POWER) {
1574 return tdme_settxpower(
1575 *((u8 *)pib_attribute_value),
1576 device_ref
1577 );
1578 }
1579
1580 command.command_id = SPI_MLME_SET_REQUEST;
1581 command.length = sizeof(struct mlme_set_request_pset) -
1582 MAX_ATTRIBUTE_SIZE + pib_attribute_length;
1583 command.pdata.set_req.pib_attribute = pib_attribute;
1584 command.pdata.set_req.pib_attribute_index = pib_attribute_index;
1585 command.pdata.set_req.pib_attribute_length = pib_attribute_length;
1586 memcpy(
1587 command.pdata.set_req.pib_attribute_value,
1588 pib_attribute_value,
1589 pib_attribute_length
1590 );
1591
1592 if (cascoda_api_downstream(
1593 &command.command_id,
1594 command.length + 2,
1595 &response.command_id,
1596 device_ref)) {
1597 return IEEE802154_SYSTEM_ERROR;
1598 }
1599
1600 if (response.command_id != SPI_MLME_SET_CONFIRM)
1601 return IEEE802154_SYSTEM_ERROR;
1602
1603 return response.pdata.status;
1604 }
1605
1606 /**
1607 * hwme_set_request_sync() - HWME_SET_request/confirm according to API Spec
1608 * @hw_attribute: Attribute Number
1609 * @hw_attribute_length: Attribute length
1610 * @hw_attribute_value: Pointer to Attribute Value
1611 * @device_ref: Nondescript pointer to target device
1612 *
1613 * Return: 802.15.4 status code of HWME-SET.confirm
1614 */
hwme_set_request_sync(u8 hw_attribute,u8 hw_attribute_length,u8 * hw_attribute_value,void * device_ref)1615 static u8 hwme_set_request_sync(
1616 u8 hw_attribute,
1617 u8 hw_attribute_length,
1618 u8 *hw_attribute_value,
1619 void *device_ref
1620 )
1621 {
1622 struct mac_message command, response;
1623
1624 command.command_id = SPI_HWME_SET_REQUEST;
1625 command.length = 2 + hw_attribute_length;
1626 command.pdata.hwme_set_req.hw_attribute = hw_attribute;
1627 command.pdata.hwme_set_req.hw_attribute_length = hw_attribute_length;
1628 memcpy(
1629 command.pdata.hwme_set_req.hw_attribute_value,
1630 hw_attribute_value,
1631 hw_attribute_length
1632 );
1633
1634 if (cascoda_api_downstream(
1635 &command.command_id,
1636 command.length + 2,
1637 &response.command_id,
1638 device_ref)) {
1639 return IEEE802154_SYSTEM_ERROR;
1640 }
1641
1642 if (response.command_id != SPI_HWME_SET_CONFIRM)
1643 return IEEE802154_SYSTEM_ERROR;
1644
1645 return response.pdata.hwme_set_cnf.status;
1646 }
1647
1648 /**
1649 * hwme_get_request_sync() - HWME_GET_request/confirm according to API Spec
1650 * @hw_attribute: Attribute Number
1651 * @hw_attribute_length: Attribute length
1652 * @hw_attribute_value: Pointer to Attribute Value
1653 * @device_ref: Nondescript pointer to target device
1654 *
1655 * Return: 802.15.4 status code of HWME-GET.confirm
1656 */
hwme_get_request_sync(u8 hw_attribute,u8 * hw_attribute_length,u8 * hw_attribute_value,void * device_ref)1657 static u8 hwme_get_request_sync(
1658 u8 hw_attribute,
1659 u8 *hw_attribute_length,
1660 u8 *hw_attribute_value,
1661 void *device_ref
1662 )
1663 {
1664 struct mac_message command, response;
1665
1666 command.command_id = SPI_HWME_GET_REQUEST;
1667 command.length = 1;
1668 command.pdata.hwme_get_req.hw_attribute = hw_attribute;
1669
1670 if (cascoda_api_downstream(
1671 &command.command_id,
1672 command.length + 2,
1673 &response.command_id,
1674 device_ref)) {
1675 return IEEE802154_SYSTEM_ERROR;
1676 }
1677
1678 if (response.command_id != SPI_HWME_GET_CONFIRM)
1679 return IEEE802154_SYSTEM_ERROR;
1680
1681 if (response.pdata.hwme_get_cnf.status == IEEE802154_SUCCESS) {
1682 *hw_attribute_length =
1683 response.pdata.hwme_get_cnf.hw_attribute_length;
1684 memcpy(
1685 hw_attribute_value,
1686 response.pdata.hwme_get_cnf.hw_attribute_value,
1687 *hw_attribute_length
1688 );
1689 }
1690
1691 return response.pdata.hwme_get_cnf.status;
1692 }
1693
1694 /* Network driver operation */
1695
1696 /**
1697 * ca8210_async_xmit_complete() - Called to announce that an asynchronous
1698 * transmission has finished
1699 * @hw: ieee802154_hw of ca8210 that has finished exchange
1700 * @msduhandle: Identifier of transmission that has completed
1701 * @status: Returned 802.15.4 status code of the transmission
1702 *
1703 * Return: 0 or linux error code
1704 */
ca8210_async_xmit_complete(struct ieee802154_hw * hw,u8 msduhandle,u8 status)1705 static int ca8210_async_xmit_complete(
1706 struct ieee802154_hw *hw,
1707 u8 msduhandle,
1708 u8 status)
1709 {
1710 struct ca8210_priv *priv = hw->priv;
1711
1712 if (priv->nextmsduhandle != msduhandle) {
1713 dev_err(
1714 &priv->spi->dev,
1715 "Unexpected msdu_handle on data confirm, Expected %d, got %d\n",
1716 priv->nextmsduhandle,
1717 msduhandle
1718 );
1719 return -EIO;
1720 }
1721
1722 priv->async_tx_pending = false;
1723 priv->nextmsduhandle++;
1724
1725 if (status) {
1726 dev_err(
1727 &priv->spi->dev,
1728 "Link transmission unsuccessful, status = %d\n",
1729 status
1730 );
1731 if (status != IEEE802154_TRANSACTION_OVERFLOW) {
1732 ieee802154_xmit_error(priv->hw, priv->tx_skb, status);
1733 return 0;
1734 }
1735 }
1736 ieee802154_xmit_complete(priv->hw, priv->tx_skb, true);
1737
1738 return 0;
1739 }
1740
1741 /**
1742 * ca8210_skb_rx() - Contructs a properly framed socket buffer from a received
1743 * MCPS_DATA_indication
1744 * @hw: ieee802154_hw that MCPS_DATA_indication was received by
1745 * @len: length of MCPS_DATA_indication
1746 * @data_ind: Octet array of MCPS_DATA_indication
1747 *
1748 * Called by the spi driver whenever a SAP command is received, this function
1749 * will ascertain whether the command is of interest to the network driver and
1750 * take necessary action.
1751 *
1752 * Return: 0 or linux error code
1753 */
ca8210_skb_rx(struct ieee802154_hw * hw,size_t len,u8 * data_ind)1754 static int ca8210_skb_rx(
1755 struct ieee802154_hw *hw,
1756 size_t len,
1757 u8 *data_ind
1758 )
1759 {
1760 struct ieee802154_hdr hdr;
1761 int msdulen;
1762 int hlen;
1763 u8 mpdulinkquality = data_ind[23];
1764 struct sk_buff *skb;
1765 struct ca8210_priv *priv = hw->priv;
1766
1767 /* Allocate mtu size buffer for every rx packet */
1768 skb = dev_alloc_skb(IEEE802154_MTU + sizeof(hdr));
1769 if (!skb)
1770 return -ENOMEM;
1771
1772 skb_reserve(skb, sizeof(hdr));
1773
1774 msdulen = data_ind[22]; /* msdu_length */
1775 if (msdulen > IEEE802154_MTU) {
1776 dev_err(
1777 &priv->spi->dev,
1778 "received erroneously large msdu length!\n"
1779 );
1780 kfree_skb(skb);
1781 return -EMSGSIZE;
1782 }
1783 dev_dbg(&priv->spi->dev, "skb buffer length = %d\n", msdulen);
1784
1785 if (priv->promiscuous)
1786 goto copy_payload;
1787
1788 /* Populate hdr */
1789 hdr.sec.level = data_ind[29 + msdulen];
1790 dev_dbg(&priv->spi->dev, "security level: %#03x\n", hdr.sec.level);
1791 if (hdr.sec.level > 0) {
1792 hdr.sec.key_id_mode = data_ind[30 + msdulen];
1793 memcpy(&hdr.sec.extended_src, &data_ind[31 + msdulen], 8);
1794 hdr.sec.key_id = data_ind[39 + msdulen];
1795 }
1796 hdr.source.mode = data_ind[0];
1797 dev_dbg(&priv->spi->dev, "srcAddrMode: %#03x\n", hdr.source.mode);
1798 hdr.source.pan_id = *(u16 *)&data_ind[1];
1799 dev_dbg(&priv->spi->dev, "srcPanId: %#06x\n", hdr.source.pan_id);
1800 memcpy(&hdr.source.extended_addr, &data_ind[3], 8);
1801 hdr.dest.mode = data_ind[11];
1802 dev_dbg(&priv->spi->dev, "dstAddrMode: %#03x\n", hdr.dest.mode);
1803 hdr.dest.pan_id = *(u16 *)&data_ind[12];
1804 dev_dbg(&priv->spi->dev, "dstPanId: %#06x\n", hdr.dest.pan_id);
1805 memcpy(&hdr.dest.extended_addr, &data_ind[14], 8);
1806
1807 /* Fill in FC implicitly */
1808 hdr.fc.type = 1; /* Data frame */
1809 if (hdr.sec.level)
1810 hdr.fc.security_enabled = 1;
1811 else
1812 hdr.fc.security_enabled = 0;
1813 if (data_ind[1] != data_ind[12] || data_ind[2] != data_ind[13])
1814 hdr.fc.intra_pan = 1;
1815 else
1816 hdr.fc.intra_pan = 0;
1817 hdr.fc.dest_addr_mode = hdr.dest.mode;
1818 hdr.fc.source_addr_mode = hdr.source.mode;
1819
1820 /* Add hdr to front of buffer */
1821 hlen = ieee802154_hdr_push(skb, &hdr);
1822
1823 if (hlen < 0) {
1824 dev_crit(&priv->spi->dev, "failed to push mac hdr onto skb!\n");
1825 kfree_skb(skb);
1826 return hlen;
1827 }
1828
1829 skb_reset_mac_header(skb);
1830 skb->mac_len = hlen;
1831
1832 copy_payload:
1833 /* Add <msdulen> bytes of space to the back of the buffer */
1834 /* Copy msdu to skb */
1835 skb_put_data(skb, &data_ind[29], msdulen);
1836
1837 ieee802154_rx_irqsafe(hw, skb, mpdulinkquality);
1838 return 0;
1839 }
1840
1841 /**
1842 * ca8210_net_rx() - Acts upon received SAP commands relevant to the network
1843 * driver
1844 * @hw: ieee802154_hw that command was received by
1845 * @command: Octet array of received command
1846 * @len: length of the received command
1847 *
1848 * Called by the spi driver whenever a SAP command is received, this function
1849 * will ascertain whether the command is of interest to the network driver and
1850 * take necessary action.
1851 *
1852 * Return: 0 or linux error code
1853 */
ca8210_net_rx(struct ieee802154_hw * hw,u8 * command,size_t len)1854 static int ca8210_net_rx(struct ieee802154_hw *hw, u8 *command, size_t len)
1855 {
1856 struct ca8210_priv *priv = hw->priv;
1857 unsigned long flags;
1858 u8 status;
1859
1860 dev_dbg(&priv->spi->dev, "%s: CmdID = %d\n", __func__, command[0]);
1861
1862 if (command[0] == SPI_MCPS_DATA_INDICATION) {
1863 /* Received data */
1864 spin_lock_irqsave(&priv->lock, flags);
1865 if (command[26] == priv->last_dsn) {
1866 dev_dbg(
1867 &priv->spi->dev,
1868 "DSN %d resend received, ignoring...\n",
1869 command[26]
1870 );
1871 spin_unlock_irqrestore(&priv->lock, flags);
1872 return 0;
1873 }
1874 priv->last_dsn = command[26];
1875 spin_unlock_irqrestore(&priv->lock, flags);
1876 return ca8210_skb_rx(hw, len - 2, command + 2);
1877 } else if (command[0] == SPI_MCPS_DATA_CONFIRM) {
1878 status = command[3];
1879 if (priv->async_tx_pending) {
1880 return ca8210_async_xmit_complete(
1881 hw,
1882 command[2],
1883 status
1884 );
1885 }
1886 }
1887
1888 return 0;
1889 }
1890
1891 /**
1892 * ca8210_skb_tx() - Transmits a given socket buffer using the ca8210
1893 * @skb: Socket buffer to transmit
1894 * @msduhandle: Data identifier to pass to the 802.15.4 MAC
1895 * @priv: Pointer to private data section of target ca8210
1896 *
1897 * Return: 0 or linux error code
1898 */
ca8210_skb_tx(struct sk_buff * skb,u8 msduhandle,struct ca8210_priv * priv)1899 static int ca8210_skb_tx(
1900 struct sk_buff *skb,
1901 u8 msduhandle,
1902 struct ca8210_priv *priv
1903 )
1904 {
1905 struct ieee802154_hdr header = { };
1906 struct secspec secspec;
1907 int mac_len, status;
1908
1909 dev_dbg(&priv->spi->dev, "%s called\n", __func__);
1910
1911 /* Get addressing info from skb - ieee802154 layer creates a full
1912 * packet
1913 */
1914 mac_len = ieee802154_hdr_peek_addrs(skb, &header);
1915 if (mac_len < 0)
1916 return mac_len;
1917
1918 secspec.security_level = header.sec.level;
1919 secspec.key_id_mode = header.sec.key_id_mode;
1920 if (secspec.key_id_mode == 2)
1921 memcpy(secspec.key_source, &header.sec.short_src, 4);
1922 else if (secspec.key_id_mode == 3)
1923 memcpy(secspec.key_source, &header.sec.extended_src, 8);
1924 secspec.key_index = header.sec.key_id;
1925
1926 /* Pass to Cascoda API */
1927 status = mcps_data_request(
1928 header.source.mode,
1929 header.dest.mode,
1930 header.dest.pan_id,
1931 (union macaddr *)&header.dest.extended_addr,
1932 skb->len - mac_len,
1933 &skb->data[mac_len],
1934 msduhandle,
1935 header.fc.ack_request,
1936 &secspec,
1937 priv->spi
1938 );
1939 return link_to_linux_err(status);
1940 }
1941
1942 /**
1943 * ca8210_start() - Starts the network driver
1944 * @hw: ieee802154_hw of ca8210 being started
1945 *
1946 * Return: 0 or linux error code
1947 */
ca8210_start(struct ieee802154_hw * hw)1948 static int ca8210_start(struct ieee802154_hw *hw)
1949 {
1950 int status;
1951 u8 rx_on_when_idle;
1952 u8 lqi_threshold = 0;
1953 struct ca8210_priv *priv = hw->priv;
1954
1955 priv->last_dsn = -1;
1956 /* Turn receiver on when idle for now just to test rx */
1957 rx_on_when_idle = 1;
1958 status = mlme_set_request_sync(
1959 MAC_RX_ON_WHEN_IDLE,
1960 0,
1961 1,
1962 &rx_on_when_idle,
1963 priv->spi
1964 );
1965 if (status) {
1966 dev_crit(
1967 &priv->spi->dev,
1968 "Setting rx_on_when_idle failed, status = %d\n",
1969 status
1970 );
1971 return link_to_linux_err(status);
1972 }
1973 status = hwme_set_request_sync(
1974 HWME_LQILIMIT,
1975 1,
1976 &lqi_threshold,
1977 priv->spi
1978 );
1979 if (status) {
1980 dev_crit(
1981 &priv->spi->dev,
1982 "Setting lqilimit failed, status = %d\n",
1983 status
1984 );
1985 return link_to_linux_err(status);
1986 }
1987
1988 return 0;
1989 }
1990
1991 /**
1992 * ca8210_stop() - Stops the network driver
1993 * @hw: ieee802154_hw of ca8210 being stopped
1994 *
1995 * Return: 0 or linux error code
1996 */
ca8210_stop(struct ieee802154_hw * hw)1997 static void ca8210_stop(struct ieee802154_hw *hw)
1998 {
1999 }
2000
2001 /**
2002 * ca8210_xmit_async() - Asynchronously transmits a given socket buffer using
2003 * the ca8210
2004 * @hw: ieee802154_hw of ca8210 to transmit from
2005 * @skb: Socket buffer to transmit
2006 *
2007 * Return: 0 or linux error code
2008 */
ca8210_xmit_async(struct ieee802154_hw * hw,struct sk_buff * skb)2009 static int ca8210_xmit_async(struct ieee802154_hw *hw, struct sk_buff *skb)
2010 {
2011 struct ca8210_priv *priv = hw->priv;
2012 int status;
2013
2014 dev_dbg(&priv->spi->dev, "calling %s\n", __func__);
2015
2016 priv->tx_skb = skb;
2017 priv->async_tx_pending = true;
2018 status = ca8210_skb_tx(skb, priv->nextmsduhandle, priv);
2019 return status;
2020 }
2021
2022 /**
2023 * ca8210_get_ed() - Returns the measured energy on the current channel at this
2024 * instant in time
2025 * @hw: ieee802154_hw of target ca8210
2026 * @level: Measured Energy Detect level
2027 *
2028 * Return: 0 or linux error code
2029 */
ca8210_get_ed(struct ieee802154_hw * hw,u8 * level)2030 static int ca8210_get_ed(struct ieee802154_hw *hw, u8 *level)
2031 {
2032 u8 lenvar;
2033 struct ca8210_priv *priv = hw->priv;
2034
2035 return link_to_linux_err(
2036 hwme_get_request_sync(HWME_EDVALUE, &lenvar, level, priv->spi)
2037 );
2038 }
2039
2040 /**
2041 * ca8210_set_channel() - Sets the current operating 802.15.4 channel of the
2042 * ca8210
2043 * @hw: ieee802154_hw of target ca8210
2044 * @page: Channel page to set
2045 * @channel: Channel number to set
2046 *
2047 * Return: 0 or linux error code
2048 */
ca8210_set_channel(struct ieee802154_hw * hw,u8 page,u8 channel)2049 static int ca8210_set_channel(
2050 struct ieee802154_hw *hw,
2051 u8 page,
2052 u8 channel
2053 )
2054 {
2055 u8 status;
2056 struct ca8210_priv *priv = hw->priv;
2057
2058 status = mlme_set_request_sync(
2059 PHY_CURRENT_CHANNEL,
2060 0,
2061 1,
2062 &channel,
2063 priv->spi
2064 );
2065 if (status) {
2066 dev_err(
2067 &priv->spi->dev,
2068 "error setting channel, MLME-SET.confirm status = %d\n",
2069 status
2070 );
2071 }
2072 return link_to_linux_err(status);
2073 }
2074
2075 /**
2076 * ca8210_set_hw_addr_filt() - Sets the address filtering parameters of the
2077 * ca8210
2078 * @hw: ieee802154_hw of target ca8210
2079 * @filt: Filtering parameters
2080 * @changed: Bitmap representing which parameters to change
2081 *
2082 * Effectively just sets the actual addressing information identifying this node
2083 * as all filtering is performed by the ca8210 as detailed in the IEEE 802.15.4
2084 * 2006 specification.
2085 *
2086 * Return: 0 or linux error code
2087 */
ca8210_set_hw_addr_filt(struct ieee802154_hw * hw,struct ieee802154_hw_addr_filt * filt,unsigned long changed)2088 static int ca8210_set_hw_addr_filt(
2089 struct ieee802154_hw *hw,
2090 struct ieee802154_hw_addr_filt *filt,
2091 unsigned long changed
2092 )
2093 {
2094 u8 status = 0;
2095 struct ca8210_priv *priv = hw->priv;
2096
2097 if (changed & IEEE802154_AFILT_PANID_CHANGED) {
2098 status = mlme_set_request_sync(
2099 MAC_PAN_ID,
2100 0,
2101 2,
2102 &filt->pan_id, priv->spi
2103 );
2104 if (status) {
2105 dev_err(
2106 &priv->spi->dev,
2107 "error setting pan id, MLME-SET.confirm status = %d",
2108 status
2109 );
2110 return link_to_linux_err(status);
2111 }
2112 }
2113 if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
2114 status = mlme_set_request_sync(
2115 MAC_SHORT_ADDRESS,
2116 0,
2117 2,
2118 &filt->short_addr, priv->spi
2119 );
2120 if (status) {
2121 dev_err(
2122 &priv->spi->dev,
2123 "error setting short address, MLME-SET.confirm status = %d",
2124 status
2125 );
2126 return link_to_linux_err(status);
2127 }
2128 }
2129 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
2130 status = mlme_set_request_sync(
2131 NS_IEEE_ADDRESS,
2132 0,
2133 8,
2134 &filt->ieee_addr,
2135 priv->spi
2136 );
2137 if (status) {
2138 dev_err(
2139 &priv->spi->dev,
2140 "error setting ieee address, MLME-SET.confirm status = %d",
2141 status
2142 );
2143 return link_to_linux_err(status);
2144 }
2145 }
2146 /* TODO: Should use MLME_START to set coord bit? */
2147 return 0;
2148 }
2149
2150 /**
2151 * ca8210_set_tx_power() - Sets the transmit power of the ca8210
2152 * @hw: ieee802154_hw of target ca8210
2153 * @mbm: Transmit power in mBm (dBm*100)
2154 *
2155 * Return: 0 or linux error code
2156 */
ca8210_set_tx_power(struct ieee802154_hw * hw,s32 mbm)2157 static int ca8210_set_tx_power(struct ieee802154_hw *hw, s32 mbm)
2158 {
2159 struct ca8210_priv *priv = hw->priv;
2160
2161 mbm /= 100;
2162 return link_to_linux_err(
2163 mlme_set_request_sync(PHY_TRANSMIT_POWER, 0, 1, &mbm, priv->spi)
2164 );
2165 }
2166
2167 /**
2168 * ca8210_set_cca_mode() - Sets the clear channel assessment mode of the ca8210
2169 * @hw: ieee802154_hw of target ca8210
2170 * @cca: CCA mode to set
2171 *
2172 * Return: 0 or linux error code
2173 */
ca8210_set_cca_mode(struct ieee802154_hw * hw,const struct wpan_phy_cca * cca)2174 static int ca8210_set_cca_mode(
2175 struct ieee802154_hw *hw,
2176 const struct wpan_phy_cca *cca
2177 )
2178 {
2179 u8 status;
2180 u8 cca_mode;
2181 struct ca8210_priv *priv = hw->priv;
2182
2183 cca_mode = cca->mode & 3;
2184 if (cca_mode == 3 && cca->opt == NL802154_CCA_OPT_ENERGY_CARRIER_OR) {
2185 /* cca_mode 0 == CS OR ED, 3 == CS AND ED */
2186 cca_mode = 0;
2187 }
2188 status = mlme_set_request_sync(
2189 PHY_CCA_MODE,
2190 0,
2191 1,
2192 &cca_mode,
2193 priv->spi
2194 );
2195 if (status) {
2196 dev_err(
2197 &priv->spi->dev,
2198 "error setting cca mode, MLME-SET.confirm status = %d",
2199 status
2200 );
2201 }
2202 return link_to_linux_err(status);
2203 }
2204
2205 /**
2206 * ca8210_set_cca_ed_level() - Sets the CCA ED level of the ca8210
2207 * @hw: ieee802154_hw of target ca8210
2208 * @level: ED level to set (in mbm)
2209 *
2210 * Sets the minimum threshold of measured energy above which the ca8210 will
2211 * back off and retry a transmission.
2212 *
2213 * Return: 0 or linux error code
2214 */
ca8210_set_cca_ed_level(struct ieee802154_hw * hw,s32 level)2215 static int ca8210_set_cca_ed_level(struct ieee802154_hw *hw, s32 level)
2216 {
2217 u8 status;
2218 u8 ed_threshold = (level / 100) * 2 + 256;
2219 struct ca8210_priv *priv = hw->priv;
2220
2221 status = hwme_set_request_sync(
2222 HWME_EDTHRESHOLD,
2223 1,
2224 &ed_threshold,
2225 priv->spi
2226 );
2227 if (status) {
2228 dev_err(
2229 &priv->spi->dev,
2230 "error setting ed threshold, HWME-SET.confirm status = %d",
2231 status
2232 );
2233 }
2234 return link_to_linux_err(status);
2235 }
2236
2237 /**
2238 * ca8210_set_csma_params() - Sets the CSMA parameters of the ca8210
2239 * @hw: ieee802154_hw of target ca8210
2240 * @min_be: Minimum backoff exponent when backing off a transmission
2241 * @max_be: Maximum backoff exponent when backing off a transmission
2242 * @retries: Number of times to retry after backing off
2243 *
2244 * Return: 0 or linux error code
2245 */
ca8210_set_csma_params(struct ieee802154_hw * hw,u8 min_be,u8 max_be,u8 retries)2246 static int ca8210_set_csma_params(
2247 struct ieee802154_hw *hw,
2248 u8 min_be,
2249 u8 max_be,
2250 u8 retries
2251 )
2252 {
2253 u8 status;
2254 struct ca8210_priv *priv = hw->priv;
2255
2256 status = mlme_set_request_sync(MAC_MIN_BE, 0, 1, &min_be, priv->spi);
2257 if (status) {
2258 dev_err(
2259 &priv->spi->dev,
2260 "error setting min be, MLME-SET.confirm status = %d",
2261 status
2262 );
2263 return link_to_linux_err(status);
2264 }
2265 status = mlme_set_request_sync(MAC_MAX_BE, 0, 1, &max_be, priv->spi);
2266 if (status) {
2267 dev_err(
2268 &priv->spi->dev,
2269 "error setting max be, MLME-SET.confirm status = %d",
2270 status
2271 );
2272 return link_to_linux_err(status);
2273 }
2274 status = mlme_set_request_sync(
2275 MAC_MAX_CSMA_BACKOFFS,
2276 0,
2277 1,
2278 &retries,
2279 priv->spi
2280 );
2281 if (status) {
2282 dev_err(
2283 &priv->spi->dev,
2284 "error setting max csma backoffs, MLME-SET.confirm status = %d",
2285 status
2286 );
2287 }
2288 return link_to_linux_err(status);
2289 }
2290
2291 /**
2292 * ca8210_set_frame_retries() - Sets the maximum frame retries of the ca8210
2293 * @hw: ieee802154_hw of target ca8210
2294 * @retries: Number of retries
2295 *
2296 * Sets the number of times to retry a transmission if no acknowledgment was
2297 * received from the other end when one was requested.
2298 *
2299 * Return: 0 or linux error code
2300 */
ca8210_set_frame_retries(struct ieee802154_hw * hw,s8 retries)2301 static int ca8210_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
2302 {
2303 u8 status;
2304 struct ca8210_priv *priv = hw->priv;
2305
2306 status = mlme_set_request_sync(
2307 MAC_MAX_FRAME_RETRIES,
2308 0,
2309 1,
2310 &retries,
2311 priv->spi
2312 );
2313 if (status) {
2314 dev_err(
2315 &priv->spi->dev,
2316 "error setting frame retries, MLME-SET.confirm status = %d",
2317 status
2318 );
2319 }
2320 return link_to_linux_err(status);
2321 }
2322
ca8210_set_promiscuous_mode(struct ieee802154_hw * hw,const bool on)2323 static int ca8210_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
2324 {
2325 u8 status;
2326 struct ca8210_priv *priv = hw->priv;
2327
2328 status = mlme_set_request_sync(
2329 MAC_PROMISCUOUS_MODE,
2330 0,
2331 1,
2332 (const void *)&on,
2333 priv->spi
2334 );
2335 if (status) {
2336 dev_err(
2337 &priv->spi->dev,
2338 "error setting promiscuous mode, MLME-SET.confirm status = %d",
2339 status
2340 );
2341 } else {
2342 priv->promiscuous = on;
2343 }
2344 return link_to_linux_err(status);
2345 }
2346
2347 static const struct ieee802154_ops ca8210_phy_ops = {
2348 .start = ca8210_start,
2349 .stop = ca8210_stop,
2350 .xmit_async = ca8210_xmit_async,
2351 .ed = ca8210_get_ed,
2352 .set_channel = ca8210_set_channel,
2353 .set_hw_addr_filt = ca8210_set_hw_addr_filt,
2354 .set_txpower = ca8210_set_tx_power,
2355 .set_cca_mode = ca8210_set_cca_mode,
2356 .set_cca_ed_level = ca8210_set_cca_ed_level,
2357 .set_csma_params = ca8210_set_csma_params,
2358 .set_frame_retries = ca8210_set_frame_retries,
2359 .set_promiscuous_mode = ca8210_set_promiscuous_mode
2360 };
2361
2362 /* Test/EVBME Interface */
2363
2364 /**
2365 * ca8210_test_int_open() - Opens the test interface to the userspace
2366 * @inodp: inode representation of file interface
2367 * @filp: file interface
2368 *
2369 * Return: 0 or linux error code
2370 */
ca8210_test_int_open(struct inode * inodp,struct file * filp)2371 static int ca8210_test_int_open(struct inode *inodp, struct file *filp)
2372 {
2373 struct ca8210_priv *priv = inodp->i_private;
2374
2375 filp->private_data = priv;
2376 return 0;
2377 }
2378
2379 /**
2380 * ca8210_test_check_upstream() - Checks a command received from the upstream
2381 * testing interface for required action
2382 * @buf: Buffer containing command to check
2383 * @device_ref: Nondescript pointer to target device
2384 *
2385 * Return: 0 or linux error code
2386 */
ca8210_test_check_upstream(u8 * buf,void * device_ref)2387 static int ca8210_test_check_upstream(u8 *buf, void *device_ref)
2388 {
2389 int ret;
2390 u8 response[CA8210_SPI_BUF_SIZE];
2391
2392 if (buf[0] == SPI_MLME_SET_REQUEST) {
2393 ret = tdme_checkpibattribute(buf[2], buf[4], buf + 5);
2394 if (ret) {
2395 response[0] = SPI_MLME_SET_CONFIRM;
2396 response[1] = 3;
2397 response[2] = IEEE802154_INVALID_PARAMETER;
2398 response[3] = buf[2];
2399 response[4] = buf[3];
2400 if (cascoda_api_upstream)
2401 cascoda_api_upstream(response, 5, device_ref);
2402 return ret;
2403 }
2404 }
2405 if (buf[0] == SPI_MLME_ASSOCIATE_REQUEST) {
2406 return tdme_channelinit(buf[2], device_ref);
2407 } else if (buf[0] == SPI_MLME_START_REQUEST) {
2408 return tdme_channelinit(buf[4], device_ref);
2409 } else if (
2410 (buf[0] == SPI_MLME_SET_REQUEST) &&
2411 (buf[2] == PHY_CURRENT_CHANNEL)
2412 ) {
2413 return tdme_channelinit(buf[5], device_ref);
2414 } else if (
2415 (buf[0] == SPI_TDME_SET_REQUEST) &&
2416 (buf[2] == TDME_CHANNEL)
2417 ) {
2418 return tdme_channelinit(buf[4], device_ref);
2419 } else if (
2420 (CA8210_MAC_WORKAROUNDS) &&
2421 (buf[0] == SPI_MLME_RESET_REQUEST) &&
2422 (buf[2] == 1)
2423 ) {
2424 /* reset COORD Bit for Channel Filtering as Coordinator */
2425 return tdme_setsfr_request_sync(
2426 0,
2427 CA8210_SFR_MACCON,
2428 0,
2429 device_ref
2430 );
2431 }
2432 return 0;
2433 } /* End of EVBMECheckSerialCommand() */
2434
2435 /**
2436 * ca8210_test_int_user_write() - Called by a process in userspace to send a
2437 * message to the ca8210 drivers
2438 * @filp: file interface
2439 * @in_buf: Buffer containing message to write
2440 * @len: length of message
2441 * @off: file offset
2442 *
2443 * Return: 0 or linux error code
2444 */
ca8210_test_int_user_write(struct file * filp,const char __user * in_buf,size_t len,loff_t * off)2445 static ssize_t ca8210_test_int_user_write(
2446 struct file *filp,
2447 const char __user *in_buf,
2448 size_t len,
2449 loff_t *off
2450 )
2451 {
2452 int ret;
2453 struct ca8210_priv *priv = filp->private_data;
2454 u8 command[CA8210_SPI_BUF_SIZE];
2455
2456 memset(command, SPI_IDLE, 6);
2457 if (len > CA8210_SPI_BUF_SIZE || len < 2) {
2458 dev_warn(
2459 &priv->spi->dev,
2460 "userspace requested erroneous write length (%zu)\n",
2461 len
2462 );
2463 return -EBADE;
2464 }
2465
2466 ret = copy_from_user(command, in_buf, len);
2467 if (ret) {
2468 dev_err(
2469 &priv->spi->dev,
2470 "%d bytes could not be copied from userspace\n",
2471 ret
2472 );
2473 return -EIO;
2474 }
2475 if (len != command[1] + 2) {
2476 dev_err(
2477 &priv->spi->dev,
2478 "write len does not match packet length field\n"
2479 );
2480 return -EBADE;
2481 }
2482
2483 ret = ca8210_test_check_upstream(command, priv->spi);
2484 if (ret == 0) {
2485 ret = ca8210_spi_exchange(
2486 command,
2487 command[1] + 2,
2488 NULL,
2489 priv->spi
2490 );
2491 if (ret < 0) {
2492 /* effectively 0 bytes were written successfully */
2493 dev_err(
2494 &priv->spi->dev,
2495 "spi exchange failed\n"
2496 );
2497 return ret;
2498 }
2499 if (command[0] & SPI_SYN)
2500 priv->sync_down++;
2501 }
2502
2503 return len;
2504 }
2505
2506 /**
2507 * ca8210_test_int_user_read() - Called by a process in userspace to read a
2508 * message from the ca8210 drivers
2509 * @filp: file interface
2510 * @buf: Buffer to write message to
2511 * @len: length of message to read (ignored)
2512 * @offp: file offset
2513 *
2514 * If the O_NONBLOCK flag was set when opening the file then this function will
2515 * not block, i.e. it will return if the fifo is empty. Otherwise the function
2516 * will block, i.e. wait until new data arrives.
2517 *
2518 * Return: number of bytes read
2519 */
ca8210_test_int_user_read(struct file * filp,char __user * buf,size_t len,loff_t * offp)2520 static ssize_t ca8210_test_int_user_read(
2521 struct file *filp,
2522 char __user *buf,
2523 size_t len,
2524 loff_t *offp
2525 )
2526 {
2527 int i, cmdlen;
2528 struct ca8210_priv *priv = filp->private_data;
2529 unsigned char *fifo_buffer;
2530 unsigned long bytes_not_copied;
2531
2532 if (filp->f_flags & O_NONBLOCK) {
2533 /* Non-blocking mode */
2534 if (kfifo_is_empty(&priv->test.up_fifo))
2535 return 0;
2536 } else {
2537 /* Blocking mode */
2538 wait_event_interruptible(
2539 priv->test.readq,
2540 !kfifo_is_empty(&priv->test.up_fifo)
2541 );
2542 }
2543
2544 if (kfifo_out(&priv->test.up_fifo, &fifo_buffer, 4) != 4) {
2545 dev_err(
2546 &priv->spi->dev,
2547 "test_interface: Wrong number of elements popped from upstream fifo\n"
2548 );
2549 return 0;
2550 }
2551 cmdlen = fifo_buffer[1];
2552 bytes_not_copied = cmdlen + 2;
2553
2554 bytes_not_copied = copy_to_user(buf, fifo_buffer, bytes_not_copied);
2555 if (bytes_not_copied > 0) {
2556 dev_err(
2557 &priv->spi->dev,
2558 "%lu bytes could not be copied to user space!\n",
2559 bytes_not_copied
2560 );
2561 }
2562
2563 dev_dbg(&priv->spi->dev, "test_interface: Cmd len = %d\n", cmdlen);
2564
2565 dev_dbg(&priv->spi->dev, "test_interface: Read\n");
2566 for (i = 0; i < cmdlen + 2; i++)
2567 dev_dbg(&priv->spi->dev, "%#03x\n", fifo_buffer[i]);
2568
2569 kfree(fifo_buffer);
2570
2571 return cmdlen + 2;
2572 }
2573
2574 /**
2575 * ca8210_test_int_ioctl() - Called by a process in userspace to enact an
2576 * arbitrary action
2577 * @filp: file interface
2578 * @ioctl_num: which action to enact
2579 * @ioctl_param: arbitrary parameter for the action
2580 *
2581 * Return: status
2582 */
ca8210_test_int_ioctl(struct file * filp,unsigned int ioctl_num,unsigned long ioctl_param)2583 static long ca8210_test_int_ioctl(
2584 struct file *filp,
2585 unsigned int ioctl_num,
2586 unsigned long ioctl_param
2587 )
2588 {
2589 struct ca8210_priv *priv = filp->private_data;
2590
2591 switch (ioctl_num) {
2592 case CA8210_IOCTL_HARD_RESET:
2593 ca8210_reset_send(priv->spi, ioctl_param);
2594 break;
2595 default:
2596 break;
2597 }
2598 return 0;
2599 }
2600
2601 /**
2602 * ca8210_test_int_poll() - Called by a process in userspace to determine which
2603 * actions are currently possible for the file
2604 * @filp: file interface
2605 * @ptable: poll table
2606 *
2607 * Return: set of poll return flags
2608 */
ca8210_test_int_poll(struct file * filp,struct poll_table_struct * ptable)2609 static __poll_t ca8210_test_int_poll(
2610 struct file *filp,
2611 struct poll_table_struct *ptable
2612 )
2613 {
2614 __poll_t return_flags = 0;
2615 struct ca8210_priv *priv = filp->private_data;
2616
2617 poll_wait(filp, &priv->test.readq, ptable);
2618 if (!kfifo_is_empty(&priv->test.up_fifo))
2619 return_flags |= (EPOLLIN | EPOLLRDNORM);
2620 if (wait_event_interruptible(
2621 priv->test.readq,
2622 !kfifo_is_empty(&priv->test.up_fifo))) {
2623 return EPOLLERR;
2624 }
2625 return return_flags;
2626 }
2627
2628 static const struct file_operations test_int_fops = {
2629 .read = ca8210_test_int_user_read,
2630 .write = ca8210_test_int_user_write,
2631 .open = ca8210_test_int_open,
2632 .release = NULL,
2633 .unlocked_ioctl = ca8210_test_int_ioctl,
2634 .poll = ca8210_test_int_poll
2635 };
2636
2637 /* Init/Deinit */
2638
2639 /**
2640 * ca8210_get_platform_data() - Populate a ca8210_platform_data object
2641 * @spi_device: Pointer to ca8210 spi device object to get data for
2642 * @pdata: Pointer to ca8210_platform_data object to populate
2643 *
2644 * Return: 0 or linux error code
2645 */
ca8210_get_platform_data(struct spi_device * spi_device,struct ca8210_platform_data * pdata)2646 static int ca8210_get_platform_data(
2647 struct spi_device *spi_device,
2648 struct ca8210_platform_data *pdata
2649 )
2650 {
2651 int ret = 0;
2652
2653 if (!spi_device->dev.of_node)
2654 return -EINVAL;
2655
2656 pdata->extclockenable = of_property_read_bool(
2657 spi_device->dev.of_node,
2658 "extclock-enable"
2659 );
2660 if (pdata->extclockenable) {
2661 ret = of_property_read_u32(
2662 spi_device->dev.of_node,
2663 "extclock-freq",
2664 &pdata->extclockfreq
2665 );
2666 if (ret < 0)
2667 return ret;
2668
2669 ret = of_property_read_u32(
2670 spi_device->dev.of_node,
2671 "extclock-gpio",
2672 &pdata->extclockgpio
2673 );
2674 }
2675
2676 return ret;
2677 }
2678
2679 /**
2680 * ca8210_config_extern_clk() - Configure the external clock provided by the
2681 * ca8210
2682 * @pdata: Pointer to ca8210_platform_data containing clock parameters
2683 * @spi: Pointer to target ca8210 spi device
2684 * @on: True to turn the clock on, false to turn off
2685 *
2686 * The external clock is configured with a frequency and output pin taken from
2687 * the platform data.
2688 *
2689 * Return: 0 or linux error code
2690 */
ca8210_config_extern_clk(struct ca8210_platform_data * pdata,struct spi_device * spi,bool on)2691 static int ca8210_config_extern_clk(
2692 struct ca8210_platform_data *pdata,
2693 struct spi_device *spi,
2694 bool on
2695 )
2696 {
2697 u8 clkparam[2];
2698
2699 if (on) {
2700 dev_info(&spi->dev, "Switching external clock on\n");
2701 switch (pdata->extclockfreq) {
2702 case SIXTEEN_MHZ:
2703 clkparam[0] = 1;
2704 break;
2705 case EIGHT_MHZ:
2706 clkparam[0] = 2;
2707 break;
2708 case FOUR_MHZ:
2709 clkparam[0] = 3;
2710 break;
2711 case TWO_MHZ:
2712 clkparam[0] = 4;
2713 break;
2714 case ONE_MHZ:
2715 clkparam[0] = 5;
2716 break;
2717 default:
2718 dev_crit(&spi->dev, "Invalid extclock-freq\n");
2719 return -EINVAL;
2720 }
2721 clkparam[1] = pdata->extclockgpio;
2722 } else {
2723 dev_info(&spi->dev, "Switching external clock off\n");
2724 clkparam[0] = 0; /* off */
2725 clkparam[1] = 0;
2726 }
2727 return link_to_linux_err(
2728 hwme_set_request_sync(HWME_SYSCLKOUT, 2, clkparam, spi)
2729 );
2730 }
2731
2732 /**
2733 * ca8210_register_ext_clock() - Register ca8210's external clock with kernel
2734 * @spi: Pointer to target ca8210 spi device
2735 *
2736 * Return: 0 or linux error code
2737 */
ca8210_register_ext_clock(struct spi_device * spi)2738 static int ca8210_register_ext_clock(struct spi_device *spi)
2739 {
2740 struct device_node *np = spi->dev.of_node;
2741 struct ca8210_priv *priv = spi_get_drvdata(spi);
2742 struct ca8210_platform_data *pdata = spi->dev.platform_data;
2743
2744 if (!np)
2745 return -EFAULT;
2746
2747 priv->clk = clk_register_fixed_rate(
2748 &spi->dev,
2749 np->name,
2750 NULL,
2751 0,
2752 pdata->extclockfreq
2753 );
2754
2755 if (IS_ERR(priv->clk)) {
2756 dev_crit(&spi->dev, "Failed to register external clk\n");
2757 return PTR_ERR(priv->clk);
2758 }
2759
2760 return of_clk_add_provider(np, of_clk_src_simple_get, priv->clk);
2761 }
2762
2763 /**
2764 * ca8210_unregister_ext_clock() - Unregister ca8210's external clock with
2765 * kernel
2766 * @spi: Pointer to target ca8210 spi device
2767 */
ca8210_unregister_ext_clock(struct spi_device * spi)2768 static void ca8210_unregister_ext_clock(struct spi_device *spi)
2769 {
2770 struct ca8210_priv *priv = spi_get_drvdata(spi);
2771
2772 if (IS_ERR_OR_NULL(priv->clk))
2773 return;
2774
2775 of_clk_del_provider(spi->dev.of_node);
2776 clk_unregister(priv->clk);
2777 dev_info(&spi->dev, "External clock unregistered\n");
2778 }
2779
2780 /**
2781 * ca8210_reset_init() - Initialise the reset input to the ca8210
2782 * @spi: Pointer to target ca8210 spi device
2783 *
2784 * Return: 0 or linux error code
2785 */
ca8210_reset_init(struct spi_device * spi)2786 static int ca8210_reset_init(struct spi_device *spi)
2787 {
2788 int ret;
2789 struct ca8210_platform_data *pdata = spi->dev.platform_data;
2790
2791 pdata->gpio_reset = of_get_named_gpio(
2792 spi->dev.of_node,
2793 "reset-gpio",
2794 0
2795 );
2796
2797 ret = gpio_direction_output(pdata->gpio_reset, 1);
2798 if (ret < 0) {
2799 dev_crit(
2800 &spi->dev,
2801 "Reset GPIO %d did not set to output mode\n",
2802 pdata->gpio_reset
2803 );
2804 }
2805
2806 return ret;
2807 }
2808
2809 /**
2810 * ca8210_interrupt_init() - Initialise the irq output from the ca8210
2811 * @spi: Pointer to target ca8210 spi device
2812 *
2813 * Return: 0 or linux error code
2814 */
ca8210_interrupt_init(struct spi_device * spi)2815 static int ca8210_interrupt_init(struct spi_device *spi)
2816 {
2817 int ret;
2818 struct ca8210_platform_data *pdata = spi->dev.platform_data;
2819
2820 pdata->gpio_irq = of_get_named_gpio(
2821 spi->dev.of_node,
2822 "irq-gpio",
2823 0
2824 );
2825
2826 pdata->irq_id = gpio_to_irq(pdata->gpio_irq);
2827 if (pdata->irq_id < 0) {
2828 dev_crit(
2829 &spi->dev,
2830 "Could not get irq for gpio pin %d\n",
2831 pdata->gpio_irq
2832 );
2833 gpio_free(pdata->gpio_irq);
2834 return pdata->irq_id;
2835 }
2836
2837 ret = request_irq(
2838 pdata->irq_id,
2839 ca8210_interrupt_handler,
2840 IRQF_TRIGGER_FALLING,
2841 "ca8210-irq",
2842 spi_get_drvdata(spi)
2843 );
2844 if (ret) {
2845 dev_crit(&spi->dev, "request_irq %d failed\n", pdata->irq_id);
2846 gpio_free(pdata->gpio_irq);
2847 }
2848
2849 return ret;
2850 }
2851
2852 /**
2853 * ca8210_dev_com_init() - Initialise the spi communication component
2854 * @priv: Pointer to private data structure
2855 *
2856 * Return: 0 or linux error code
2857 */
ca8210_dev_com_init(struct ca8210_priv * priv)2858 static int ca8210_dev_com_init(struct ca8210_priv *priv)
2859 {
2860 priv->mlme_workqueue = alloc_ordered_workqueue("MLME work queue", 0);
2861 if (!priv->mlme_workqueue) {
2862 dev_crit(&priv->spi->dev, "alloc of mlme_workqueue failed!\n");
2863 return -ENOMEM;
2864 }
2865
2866 priv->irq_workqueue = alloc_ordered_workqueue("ca8210 irq worker", 0);
2867 if (!priv->irq_workqueue) {
2868 dev_crit(&priv->spi->dev, "alloc of irq_workqueue failed!\n");
2869 destroy_workqueue(priv->mlme_workqueue);
2870 return -ENOMEM;
2871 }
2872
2873 return 0;
2874 }
2875
2876 /**
2877 * ca8210_dev_com_clear() - Deinitialise the spi communication component
2878 * @priv: Pointer to private data structure
2879 */
ca8210_dev_com_clear(struct ca8210_priv * priv)2880 static void ca8210_dev_com_clear(struct ca8210_priv *priv)
2881 {
2882 destroy_workqueue(priv->mlme_workqueue);
2883 destroy_workqueue(priv->irq_workqueue);
2884 }
2885
2886 #define CA8210_MAX_TX_POWERS (9)
2887 static const s32 ca8210_tx_powers[CA8210_MAX_TX_POWERS] = {
2888 800, 700, 600, 500, 400, 300, 200, 100, 0
2889 };
2890
2891 #define CA8210_MAX_ED_LEVELS (21)
2892 static const s32 ca8210_ed_levels[CA8210_MAX_ED_LEVELS] = {
2893 -10300, -10250, -10200, -10150, -10100, -10050, -10000, -9950, -9900,
2894 -9850, -9800, -9750, -9700, -9650, -9600, -9550, -9500, -9450, -9400,
2895 -9350, -9300
2896 };
2897
2898 /**
2899 * ca8210_hw_setup() - Populate the ieee802154_hw phy attributes with the
2900 * ca8210's defaults
2901 * @ca8210_hw: Pointer to ieee802154_hw to populate
2902 */
ca8210_hw_setup(struct ieee802154_hw * ca8210_hw)2903 static void ca8210_hw_setup(struct ieee802154_hw *ca8210_hw)
2904 {
2905 /* Support channels 11-26 */
2906 ca8210_hw->phy->supported.channels[0] = CA8210_VALID_CHANNELS;
2907 ca8210_hw->phy->supported.tx_powers_size = CA8210_MAX_TX_POWERS;
2908 ca8210_hw->phy->supported.tx_powers = ca8210_tx_powers;
2909 ca8210_hw->phy->supported.cca_ed_levels_size = CA8210_MAX_ED_LEVELS;
2910 ca8210_hw->phy->supported.cca_ed_levels = ca8210_ed_levels;
2911 ca8210_hw->phy->current_channel = 18;
2912 ca8210_hw->phy->current_page = 0;
2913 ca8210_hw->phy->transmit_power = 800;
2914 ca8210_hw->phy->cca.mode = NL802154_CCA_ENERGY_CARRIER;
2915 ca8210_hw->phy->cca.opt = NL802154_CCA_OPT_ENERGY_CARRIER_AND;
2916 ca8210_hw->phy->cca_ed_level = -9800;
2917 ca8210_hw->phy->symbol_duration = 16;
2918 ca8210_hw->phy->lifs_period = 40 * ca8210_hw->phy->symbol_duration;
2919 ca8210_hw->phy->sifs_period = 12 * ca8210_hw->phy->symbol_duration;
2920 ca8210_hw->flags =
2921 IEEE802154_HW_AFILT |
2922 IEEE802154_HW_OMIT_CKSUM |
2923 IEEE802154_HW_FRAME_RETRIES |
2924 IEEE802154_HW_PROMISCUOUS |
2925 IEEE802154_HW_CSMA_PARAMS;
2926 ca8210_hw->phy->flags =
2927 WPAN_PHY_FLAG_TXPOWER |
2928 WPAN_PHY_FLAG_CCA_ED_LEVEL |
2929 WPAN_PHY_FLAG_CCA_MODE |
2930 WPAN_PHY_FLAG_DATAGRAMS_ONLY;
2931 }
2932
2933 /**
2934 * ca8210_test_interface_init() - Initialise the test file interface
2935 * @priv: Pointer to private data structure
2936 *
2937 * Provided as an alternative to the standard linux network interface, the test
2938 * interface exposes a file in the filesystem (ca8210_test) that allows
2939 * 802.15.4 SAP Commands and Cascoda EVBME commands to be sent directly to
2940 * the stack.
2941 *
2942 * Return: 0 or linux error code
2943 */
ca8210_test_interface_init(struct ca8210_priv * priv)2944 static int ca8210_test_interface_init(struct ca8210_priv *priv)
2945 {
2946 struct ca8210_test *test = &priv->test;
2947 char node_name[32];
2948
2949 snprintf(
2950 node_name,
2951 sizeof(node_name),
2952 "ca8210@%d_%d",
2953 priv->spi->controller->bus_num,
2954 spi_get_chipselect(priv->spi, 0)
2955 );
2956
2957 test->ca8210_dfs_spi_int = debugfs_create_file(
2958 node_name,
2959 0600, /* S_IRUSR | S_IWUSR */
2960 NULL,
2961 priv,
2962 &test_int_fops
2963 );
2964
2965 debugfs_create_symlink("ca8210", NULL, node_name);
2966 init_waitqueue_head(&test->readq);
2967 return kfifo_alloc(
2968 &test->up_fifo,
2969 CA8210_TEST_INT_FIFO_SIZE,
2970 GFP_KERNEL
2971 );
2972 }
2973
2974 /**
2975 * ca8210_test_interface_clear() - Deinitialise the test file interface
2976 * @priv: Pointer to private data structure
2977 */
ca8210_test_interface_clear(struct ca8210_priv * priv)2978 static void ca8210_test_interface_clear(struct ca8210_priv *priv)
2979 {
2980 struct ca8210_test *test = &priv->test;
2981
2982 debugfs_remove(test->ca8210_dfs_spi_int);
2983 kfifo_free(&test->up_fifo);
2984 dev_info(&priv->spi->dev, "Test interface removed\n");
2985 }
2986
2987 /**
2988 * ca8210_remove() - Shut down a ca8210 upon being disconnected
2989 * @spi_device: Pointer to spi device data structure
2990 *
2991 * Return: 0 or linux error code
2992 */
ca8210_remove(struct spi_device * spi_device)2993 static void ca8210_remove(struct spi_device *spi_device)
2994 {
2995 struct ca8210_priv *priv;
2996 struct ca8210_platform_data *pdata;
2997
2998 dev_info(&spi_device->dev, "Removing ca8210\n");
2999
3000 pdata = spi_device->dev.platform_data;
3001 if (pdata) {
3002 if (pdata->extclockenable) {
3003 ca8210_unregister_ext_clock(spi_device);
3004 ca8210_config_extern_clk(pdata, spi_device, 0);
3005 }
3006 free_irq(pdata->irq_id, spi_device->dev.driver_data);
3007 kfree(pdata);
3008 spi_device->dev.platform_data = NULL;
3009 }
3010 /* get spi_device private data */
3011 priv = spi_get_drvdata(spi_device);
3012 if (priv) {
3013 dev_info(
3014 &spi_device->dev,
3015 "sync_down = %d, sync_up = %d\n",
3016 priv->sync_down,
3017 priv->sync_up
3018 );
3019 ca8210_dev_com_clear(spi_device->dev.driver_data);
3020 if (priv->hw) {
3021 if (priv->hw_registered)
3022 ieee802154_unregister_hw(priv->hw);
3023 ieee802154_free_hw(priv->hw);
3024 priv->hw = NULL;
3025 dev_info(
3026 &spi_device->dev,
3027 "Unregistered & freed ieee802154_hw.\n"
3028 );
3029 }
3030 if (IS_ENABLED(CONFIG_IEEE802154_CA8210_DEBUGFS))
3031 ca8210_test_interface_clear(priv);
3032 }
3033 }
3034
3035 /**
3036 * ca8210_probe() - Set up a connected ca8210 upon being detected by the system
3037 * @spi_device: Pointer to spi device data structure
3038 *
3039 * Return: 0 or linux error code
3040 */
ca8210_probe(struct spi_device * spi_device)3041 static int ca8210_probe(struct spi_device *spi_device)
3042 {
3043 struct ca8210_priv *priv;
3044 struct ieee802154_hw *hw;
3045 struct ca8210_platform_data *pdata;
3046 int ret;
3047
3048 dev_info(&spi_device->dev, "Inserting ca8210\n");
3049
3050 /* allocate ieee802154_hw and private data */
3051 hw = ieee802154_alloc_hw(sizeof(struct ca8210_priv), &ca8210_phy_ops);
3052 if (!hw) {
3053 dev_crit(&spi_device->dev, "ieee802154_alloc_hw failed\n");
3054 ret = -ENOMEM;
3055 goto error;
3056 }
3057
3058 priv = hw->priv;
3059 priv->hw = hw;
3060 priv->spi = spi_device;
3061 hw->parent = &spi_device->dev;
3062 spin_lock_init(&priv->lock);
3063 priv->async_tx_pending = false;
3064 priv->hw_registered = false;
3065 priv->sync_up = 0;
3066 priv->sync_down = 0;
3067 priv->promiscuous = false;
3068 priv->retries = 0;
3069 init_completion(&priv->ca8210_is_awake);
3070 init_completion(&priv->spi_transfer_complete);
3071 init_completion(&priv->sync_exchange_complete);
3072 spi_set_drvdata(priv->spi, priv);
3073 if (IS_ENABLED(CONFIG_IEEE802154_CA8210_DEBUGFS)) {
3074 cascoda_api_upstream = ca8210_test_int_driver_write;
3075 ca8210_test_interface_init(priv);
3076 } else {
3077 cascoda_api_upstream = NULL;
3078 }
3079 ca8210_hw_setup(hw);
3080 ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
3081
3082 pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3083 if (!pdata) {
3084 ret = -ENOMEM;
3085 goto error;
3086 }
3087
3088 priv->spi->dev.platform_data = pdata;
3089 ret = ca8210_get_platform_data(priv->spi, pdata);
3090 if (ret) {
3091 dev_crit(&spi_device->dev, "ca8210_get_platform_data failed\n");
3092 goto error;
3093 }
3094
3095 ret = ca8210_dev_com_init(priv);
3096 if (ret) {
3097 dev_crit(&spi_device->dev, "ca8210_dev_com_init failed\n");
3098 goto error;
3099 }
3100 ret = ca8210_reset_init(priv->spi);
3101 if (ret) {
3102 dev_crit(&spi_device->dev, "ca8210_reset_init failed\n");
3103 goto error;
3104 }
3105
3106 ret = ca8210_interrupt_init(priv->spi);
3107 if (ret) {
3108 dev_crit(&spi_device->dev, "ca8210_interrupt_init failed\n");
3109 goto error;
3110 }
3111
3112 msleep(100);
3113
3114 ca8210_reset_send(priv->spi, 1);
3115
3116 ret = tdme_chipinit(priv->spi);
3117 if (ret) {
3118 dev_crit(&spi_device->dev, "tdme_chipinit failed\n");
3119 goto error;
3120 }
3121
3122 if (pdata->extclockenable) {
3123 ret = ca8210_config_extern_clk(pdata, priv->spi, 1);
3124 if (ret) {
3125 dev_crit(
3126 &spi_device->dev,
3127 "ca8210_config_extern_clk failed\n"
3128 );
3129 goto error;
3130 }
3131 ret = ca8210_register_ext_clock(priv->spi);
3132 if (ret) {
3133 dev_crit(
3134 &spi_device->dev,
3135 "ca8210_register_ext_clock failed\n"
3136 );
3137 goto error;
3138 }
3139 }
3140
3141 ret = ieee802154_register_hw(hw);
3142 if (ret) {
3143 dev_crit(&spi_device->dev, "ieee802154_register_hw failed\n");
3144 goto error;
3145 }
3146 priv->hw_registered = true;
3147
3148 return 0;
3149 error:
3150 msleep(100); /* wait for pending spi transfers to complete */
3151 ca8210_remove(spi_device);
3152 return link_to_linux_err(ret);
3153 }
3154
3155 static const struct of_device_id ca8210_of_ids[] = {
3156 {.compatible = "cascoda,ca8210", },
3157 {},
3158 };
3159 MODULE_DEVICE_TABLE(of, ca8210_of_ids);
3160
3161 static struct spi_driver ca8210_spi_driver = {
3162 .driver = {
3163 .name = DRIVER_NAME,
3164 .of_match_table = ca8210_of_ids,
3165 },
3166 .probe = ca8210_probe,
3167 .remove = ca8210_remove
3168 };
3169
3170 module_spi_driver(ca8210_spi_driver);
3171
3172 MODULE_AUTHOR("Harry Morris <h.morris@cascoda.com>");
3173 MODULE_DESCRIPTION("CA-8210 SoftMAC driver");
3174 MODULE_LICENSE("Dual BSD/GPL");
3175 MODULE_VERSION("1.0");
3176