xref: /linux/drivers/gpu/drm/i915/i915_hwmon.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/types.h>
10 
11 #include "i915_drv.h"
12 #include "i915_hwmon.h"
13 #include "i915_reg.h"
14 #include "intel_mchbar_regs.h"
15 #include "intel_pcode.h"
16 #include "gt/intel_gt.h"
17 #include "gt/intel_gt_regs.h"
18 
19 /*
20  * SF_* - scale factors for particular quantities according to hwmon spec.
21  * - voltage  - millivolts
22  * - power  - microwatts
23  * - curr   - milliamperes
24  * - energy - microjoules
25  * - time   - milliseconds
26  */
27 #define SF_VOLTAGE	1000
28 #define SF_POWER	1000000
29 #define SF_CURR		1000
30 #define SF_ENERGY	1000000
31 #define SF_TIME		1000
32 
33 struct hwm_reg {
34 	i915_reg_t gt_perf_status;
35 	i915_reg_t pkg_power_sku_unit;
36 	i915_reg_t pkg_power_sku;
37 	i915_reg_t pkg_rapl_limit;
38 	i915_reg_t energy_status_all;
39 	i915_reg_t energy_status_tile;
40 	i915_reg_t fan_speed;
41 };
42 
43 struct hwm_energy_info {
44 	u32 reg_val_prev;
45 	long accum_energy;			/* Accumulated energy for energy1_input */
46 };
47 
48 struct hwm_fan_info {
49 	u32 reg_val_prev;
50 	u64 time_prev;
51 };
52 
53 struct hwm_drvdata {
54 	struct i915_hwmon *hwmon;
55 	struct intel_uncore *uncore;
56 	struct device *hwmon_dev;
57 	struct hwm_energy_info ei;		/*  Energy info for energy1_input */
58 	struct hwm_fan_info fi;			/*  Fan info for fan1_input */
59 	char name[12];
60 	int gt_n;
61 	bool reset_in_progress;
62 	wait_queue_head_t waitq;
63 };
64 
65 struct i915_hwmon {
66 	struct hwm_drvdata ddat;
67 	struct hwm_drvdata ddat_gt[I915_MAX_GT];
68 	struct mutex hwmon_lock;		/* counter overflow logic and rmw */
69 	struct hwm_reg rg;
70 	int scl_shift_power;
71 	int scl_shift_energy;
72 	int scl_shift_time;
73 };
74 
75 static void
hwm_locked_with_pm_intel_uncore_rmw(struct hwm_drvdata * ddat,i915_reg_t reg,u32 clear,u32 set)76 hwm_locked_with_pm_intel_uncore_rmw(struct hwm_drvdata *ddat,
77 				    i915_reg_t reg, u32 clear, u32 set)
78 {
79 	struct i915_hwmon *hwmon = ddat->hwmon;
80 	struct intel_uncore *uncore = ddat->uncore;
81 	intel_wakeref_t wakeref;
82 
83 	with_intel_runtime_pm(uncore->rpm, wakeref) {
84 		mutex_lock(&hwmon->hwmon_lock);
85 
86 		intel_uncore_rmw(uncore, reg, clear, set);
87 
88 		mutex_unlock(&hwmon->hwmon_lock);
89 	}
90 }
91 
92 /*
93  * This function's return type of u64 allows for the case where the scaling
94  * of the field taken from the 32-bit register value might cause a result to
95  * exceed 32 bits.
96  */
97 static u64
hwm_field_read_and_scale(struct hwm_drvdata * ddat,i915_reg_t rgadr,u32 field_msk,int nshift,u32 scale_factor)98 hwm_field_read_and_scale(struct hwm_drvdata *ddat, i915_reg_t rgadr,
99 			 u32 field_msk, int nshift, u32 scale_factor)
100 {
101 	struct intel_uncore *uncore = ddat->uncore;
102 	intel_wakeref_t wakeref;
103 	u32 reg_value;
104 
105 	with_intel_runtime_pm(uncore->rpm, wakeref)
106 		reg_value = intel_uncore_read(uncore, rgadr);
107 
108 	reg_value = REG_FIELD_GET(field_msk, reg_value);
109 
110 	return mul_u64_u32_shr(reg_value, scale_factor, nshift);
111 }
112 
113 /*
114  * hwm_energy - Obtain energy value
115  *
116  * The underlying energy hardware register is 32-bits and is subject to
117  * overflow. How long before overflow? For example, with an example
118  * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
119  * a power draw of 1000 watts, the 32-bit counter will overflow in
120  * approximately 4.36 minutes.
121  *
122  * Examples:
123  *    1 watt:  (2^32 >> 14) /    1 W / (60 * 60 * 24) secs/day -> 3 days
124  * 1000 watts: (2^32 >> 14) / 1000 W / 60             secs/min -> 4.36 minutes
125  *
126  * The function significantly increases overflow duration (from 4.36
127  * minutes) by accumulating the energy register into a 'long' as allowed by
128  * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
129  * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
130  * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
131  * energy1_input overflows. This at 1000 W is an overflow duration of 278 years.
132  */
133 static void
hwm_energy(struct hwm_drvdata * ddat,long * energy)134 hwm_energy(struct hwm_drvdata *ddat, long *energy)
135 {
136 	struct intel_uncore *uncore = ddat->uncore;
137 	struct i915_hwmon *hwmon = ddat->hwmon;
138 	struct hwm_energy_info *ei = &ddat->ei;
139 	intel_wakeref_t wakeref;
140 	i915_reg_t rgaddr;
141 	u32 reg_val;
142 
143 	if (ddat->gt_n >= 0)
144 		rgaddr = hwmon->rg.energy_status_tile;
145 	else
146 		rgaddr = hwmon->rg.energy_status_all;
147 
148 	with_intel_runtime_pm(uncore->rpm, wakeref) {
149 		mutex_lock(&hwmon->hwmon_lock);
150 
151 		reg_val = intel_uncore_read(uncore, rgaddr);
152 
153 		if (reg_val >= ei->reg_val_prev)
154 			ei->accum_energy += reg_val - ei->reg_val_prev;
155 		else
156 			ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val;
157 		ei->reg_val_prev = reg_val;
158 
159 		*energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
160 					  hwmon->scl_shift_energy);
161 		mutex_unlock(&hwmon->hwmon_lock);
162 	}
163 }
164 
165 static ssize_t
hwm_power1_max_interval_show(struct device * dev,struct device_attribute * attr,char * buf)166 hwm_power1_max_interval_show(struct device *dev, struct device_attribute *attr,
167 			     char *buf)
168 {
169 	struct hwm_drvdata *ddat = dev_get_drvdata(dev);
170 	struct i915_hwmon *hwmon = ddat->hwmon;
171 	intel_wakeref_t wakeref;
172 	u32 r, x, y, x_w = 2; /* 2 bits */
173 	u64 tau4, out;
174 
175 	with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
176 		r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
177 
178 	x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r);
179 	y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r);
180 	/*
181 	 * tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17)
182 	 *     = (4 | x) << (y - 2)
183 	 * where (y - 2) ensures a 1.x fixed point representation of 1.x
184 	 * However because y can be < 2, we compute
185 	 *     tau4 = (4 | x) << y
186 	 * but add 2 when doing the final right shift to account for units
187 	 */
188 	tau4 = (u64)((1 << x_w) | x) << y;
189 	/* val in hwmon interface units (millisec) */
190 	out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
191 
192 	return sysfs_emit(buf, "%llu\n", out);
193 }
194 
195 static ssize_t
hwm_power1_max_interval_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)196 hwm_power1_max_interval_store(struct device *dev,
197 			      struct device_attribute *attr,
198 			      const char *buf, size_t count)
199 {
200 	struct hwm_drvdata *ddat = dev_get_drvdata(dev);
201 	struct i915_hwmon *hwmon = ddat->hwmon;
202 	u32 x, y, rxy, x_w = 2; /* 2 bits */
203 	u64 tau4, r, max_win;
204 	unsigned long val;
205 	int ret;
206 
207 	ret = kstrtoul(buf, 0, &val);
208 	if (ret)
209 		return ret;
210 
211 	/*
212 	 * Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12
213 	 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds
214 	 */
215 #define PKG_MAX_WIN_DEFAULT 0x12ull
216 
217 	/*
218 	 * val must be < max in hwmon interface units. The steps below are
219 	 * explained in i915_power1_max_interval_show()
220 	 */
221 	r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
222 	x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
223 	y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
224 	tau4 = (u64)((1 << x_w) | x) << y;
225 	max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
226 
227 	if (val > max_win)
228 		return -EINVAL;
229 
230 	/* val in hw units */
231 	val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME);
232 	/* Convert to 1.x * power(2,y) */
233 	if (!val) {
234 		/* Avoid ilog2(0) */
235 		y = 0;
236 		x = 0;
237 	} else {
238 		y = ilog2(val);
239 		/* x = (val - (1 << y)) >> (y - 2); */
240 		x = (val - (1ul << y)) << x_w >> y;
241 	}
242 
243 	rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y);
244 
245 	hwm_locked_with_pm_intel_uncore_rmw(ddat, hwmon->rg.pkg_rapl_limit,
246 					    PKG_PWR_LIM_1_TIME, rxy);
247 	return count;
248 }
249 
250 static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
251 			  hwm_power1_max_interval_show,
252 			  hwm_power1_max_interval_store, 0);
253 
254 static struct attribute *hwm_attributes[] = {
255 	&sensor_dev_attr_power1_max_interval.dev_attr.attr,
256 	NULL
257 };
258 
hwm_attributes_visible(struct kobject * kobj,struct attribute * attr,int index)259 static umode_t hwm_attributes_visible(struct kobject *kobj,
260 				      struct attribute *attr, int index)
261 {
262 	struct device *dev = kobj_to_dev(kobj);
263 	struct hwm_drvdata *ddat = dev_get_drvdata(dev);
264 	struct i915_hwmon *hwmon = ddat->hwmon;
265 
266 	if (attr == &sensor_dev_attr_power1_max_interval.dev_attr.attr)
267 		return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? attr->mode : 0;
268 
269 	return 0;
270 }
271 
272 static const struct attribute_group hwm_attrgroup = {
273 	.attrs = hwm_attributes,
274 	.is_visible = hwm_attributes_visible,
275 };
276 
277 static const struct attribute_group *hwm_groups[] = {
278 	&hwm_attrgroup,
279 	NULL
280 };
281 
282 static const struct hwmon_channel_info * const hwm_info[] = {
283 	HWMON_CHANNEL_INFO(in, HWMON_I_INPUT),
284 	HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT),
285 	HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
286 	HWMON_CHANNEL_INFO(curr, HWMON_C_CRIT),
287 	HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT),
288 	NULL
289 };
290 
291 static const struct hwmon_channel_info * const hwm_gt_info[] = {
292 	HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
293 	NULL
294 };
295 
296 /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
hwm_pcode_read_i1(struct drm_i915_private * i915,u32 * uval)297 static int hwm_pcode_read_i1(struct drm_i915_private *i915, u32 *uval)
298 {
299 	/* Avoid ILLEGAL_SUBCOMMAND "mailbox access failed" warning in snb_pcode_read */
300 	if (IS_DG1(i915) || IS_DG2(i915))
301 		return -ENXIO;
302 
303 	return snb_pcode_read_p(&i915->uncore, PCODE_POWER_SETUP,
304 				POWER_SETUP_SUBCOMMAND_READ_I1, 0, uval);
305 }
306 
hwm_pcode_write_i1(struct drm_i915_private * i915,u32 uval)307 static int hwm_pcode_write_i1(struct drm_i915_private *i915, u32 uval)
308 {
309 	return  snb_pcode_write_p(&i915->uncore, PCODE_POWER_SETUP,
310 				  POWER_SETUP_SUBCOMMAND_WRITE_I1, 0, uval);
311 }
312 
313 static umode_t
hwm_in_is_visible(const struct hwm_drvdata * ddat,u32 attr)314 hwm_in_is_visible(const struct hwm_drvdata *ddat, u32 attr)
315 {
316 	struct drm_i915_private *i915 = ddat->uncore->i915;
317 
318 	switch (attr) {
319 	case hwmon_in_input:
320 		return IS_DG1(i915) || IS_DG2(i915) ? 0444 : 0;
321 	default:
322 		return 0;
323 	}
324 }
325 
326 static int
hwm_in_read(struct hwm_drvdata * ddat,u32 attr,long * val)327 hwm_in_read(struct hwm_drvdata *ddat, u32 attr, long *val)
328 {
329 	struct i915_hwmon *hwmon = ddat->hwmon;
330 	intel_wakeref_t wakeref;
331 	u32 reg_value;
332 
333 	switch (attr) {
334 	case hwmon_in_input:
335 		with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
336 			reg_value = intel_uncore_read(ddat->uncore, hwmon->rg.gt_perf_status);
337 		/* HW register value in units of 2.5 millivolt */
338 		*val = DIV_ROUND_CLOSEST(REG_FIELD_GET(GEN12_VOLTAGE_MASK, reg_value) * 25, 10);
339 		return 0;
340 	default:
341 		return -EOPNOTSUPP;
342 	}
343 }
344 
345 static umode_t
hwm_power_is_visible(const struct hwm_drvdata * ddat,u32 attr,int chan)346 hwm_power_is_visible(const struct hwm_drvdata *ddat, u32 attr, int chan)
347 {
348 	struct drm_i915_private *i915 = ddat->uncore->i915;
349 	struct i915_hwmon *hwmon = ddat->hwmon;
350 	u32 uval;
351 
352 	switch (attr) {
353 	case hwmon_power_max:
354 		return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? 0664 : 0;
355 	case hwmon_power_rated_max:
356 		return i915_mmio_reg_valid(hwmon->rg.pkg_power_sku) ? 0444 : 0;
357 	case hwmon_power_crit:
358 		return (hwm_pcode_read_i1(i915, &uval) ||
359 			!(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
360 	default:
361 		return 0;
362 	}
363 }
364 
365 #define PL1_DISABLE 0
366 
367 /*
368  * HW allows arbitrary PL1 limits to be set but silently clamps these values to
369  * "typical but not guaranteed" min/max values in rg.pkg_power_sku. Follow the
370  * same pattern for sysfs, allow arbitrary PL1 limits to be set but display
371  * clamped values when read. Write/read I1 also follows the same pattern.
372  */
373 static int
hwm_power_max_read(struct hwm_drvdata * ddat,long * val)374 hwm_power_max_read(struct hwm_drvdata *ddat, long *val)
375 {
376 	struct i915_hwmon *hwmon = ddat->hwmon;
377 	intel_wakeref_t wakeref;
378 	u64 r, min, max;
379 
380 	/* Check if PL1 limit is disabled */
381 	with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
382 		r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
383 	if (!(r & PKG_PWR_LIM_1_EN)) {
384 		*val = PL1_DISABLE;
385 		return 0;
386 	}
387 
388 	*val = hwm_field_read_and_scale(ddat,
389 					hwmon->rg.pkg_rapl_limit,
390 					PKG_PWR_LIM_1,
391 					hwmon->scl_shift_power,
392 					SF_POWER);
393 
394 	with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
395 		r = intel_uncore_read64(ddat->uncore, hwmon->rg.pkg_power_sku);
396 	min = REG_FIELD_GET(PKG_MIN_PWR, r);
397 	min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
398 	max = REG_FIELD_GET(PKG_MAX_PWR, r);
399 	max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
400 
401 	if (min && max)
402 		*val = clamp_t(u64, *val, min, max);
403 
404 	return 0;
405 }
406 
407 static int
hwm_power_max_write(struct hwm_drvdata * ddat,long val)408 hwm_power_max_write(struct hwm_drvdata *ddat, long val)
409 {
410 	struct i915_hwmon *hwmon = ddat->hwmon;
411 	intel_wakeref_t wakeref;
412 	DEFINE_WAIT(wait);
413 	int ret = 0;
414 	u32 nval;
415 
416 	/* Block waiting for GuC reset to complete when needed */
417 	for (;;) {
418 		wakeref = intel_runtime_pm_get(ddat->uncore->rpm);
419 		mutex_lock(&hwmon->hwmon_lock);
420 
421 		prepare_to_wait(&ddat->waitq, &wait, TASK_INTERRUPTIBLE);
422 
423 		if (!hwmon->ddat.reset_in_progress)
424 			break;
425 
426 		if (signal_pending(current)) {
427 			ret = -EINTR;
428 			break;
429 		}
430 
431 		mutex_unlock(&hwmon->hwmon_lock);
432 		intel_runtime_pm_put(ddat->uncore->rpm, wakeref);
433 
434 		schedule();
435 	}
436 	finish_wait(&ddat->waitq, &wait);
437 	if (ret)
438 		goto exit;
439 
440 	/* Disable PL1 limit and verify, because the limit cannot be disabled on all platforms */
441 	if (val == PL1_DISABLE) {
442 		intel_uncore_rmw(ddat->uncore, hwmon->rg.pkg_rapl_limit,
443 				 PKG_PWR_LIM_1_EN, 0);
444 		nval = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
445 
446 		if (nval & PKG_PWR_LIM_1_EN)
447 			ret = -ENODEV;
448 		goto exit;
449 	}
450 
451 	/* Computation in 64-bits to avoid overflow. Round to nearest. */
452 	nval = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_power, SF_POWER);
453 	nval = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, nval);
454 
455 	intel_uncore_rmw(ddat->uncore, hwmon->rg.pkg_rapl_limit,
456 			 PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, nval);
457 exit:
458 	mutex_unlock(&hwmon->hwmon_lock);
459 	intel_runtime_pm_put(ddat->uncore->rpm, wakeref);
460 	return ret;
461 }
462 
463 static int
hwm_power_read(struct hwm_drvdata * ddat,u32 attr,int chan,long * val)464 hwm_power_read(struct hwm_drvdata *ddat, u32 attr, int chan, long *val)
465 {
466 	struct i915_hwmon *hwmon = ddat->hwmon;
467 	int ret;
468 	u32 uval;
469 
470 	switch (attr) {
471 	case hwmon_power_max:
472 		return hwm_power_max_read(ddat, val);
473 	case hwmon_power_rated_max:
474 		*val = hwm_field_read_and_scale(ddat,
475 						hwmon->rg.pkg_power_sku,
476 						PKG_PKG_TDP,
477 						hwmon->scl_shift_power,
478 						SF_POWER);
479 		return 0;
480 	case hwmon_power_crit:
481 		ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval);
482 		if (ret)
483 			return ret;
484 		if (!(uval & POWER_SETUP_I1_WATTS))
485 			return -ENODEV;
486 		*val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
487 				       SF_POWER, POWER_SETUP_I1_SHIFT);
488 		return 0;
489 	default:
490 		return -EOPNOTSUPP;
491 	}
492 }
493 
494 static int
hwm_power_write(struct hwm_drvdata * ddat,u32 attr,int chan,long val)495 hwm_power_write(struct hwm_drvdata *ddat, u32 attr, int chan, long val)
496 {
497 	u32 uval;
498 
499 	switch (attr) {
500 	case hwmon_power_max:
501 		return hwm_power_max_write(ddat, val);
502 	case hwmon_power_crit:
503 		uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_POWER);
504 		return hwm_pcode_write_i1(ddat->uncore->i915, uval);
505 	default:
506 		return -EOPNOTSUPP;
507 	}
508 }
509 
i915_hwmon_power_max_disable(struct drm_i915_private * i915,bool * old)510 void i915_hwmon_power_max_disable(struct drm_i915_private *i915, bool *old)
511 {
512 	struct i915_hwmon *hwmon = i915->hwmon;
513 	u32 r;
514 
515 	if (!hwmon || !i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit))
516 		return;
517 
518 	mutex_lock(&hwmon->hwmon_lock);
519 
520 	hwmon->ddat.reset_in_progress = true;
521 	r = intel_uncore_rmw(hwmon->ddat.uncore, hwmon->rg.pkg_rapl_limit,
522 			     PKG_PWR_LIM_1_EN, 0);
523 	*old = !!(r & PKG_PWR_LIM_1_EN);
524 
525 	mutex_unlock(&hwmon->hwmon_lock);
526 }
527 
i915_hwmon_power_max_restore(struct drm_i915_private * i915,bool old)528 void i915_hwmon_power_max_restore(struct drm_i915_private *i915, bool old)
529 {
530 	struct i915_hwmon *hwmon = i915->hwmon;
531 
532 	if (!hwmon || !i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit))
533 		return;
534 
535 	mutex_lock(&hwmon->hwmon_lock);
536 
537 	intel_uncore_rmw(hwmon->ddat.uncore, hwmon->rg.pkg_rapl_limit,
538 			 PKG_PWR_LIM_1_EN, old ? PKG_PWR_LIM_1_EN : 0);
539 	hwmon->ddat.reset_in_progress = false;
540 	wake_up_all(&hwmon->ddat.waitq);
541 
542 	mutex_unlock(&hwmon->hwmon_lock);
543 }
544 
545 static umode_t
hwm_energy_is_visible(const struct hwm_drvdata * ddat,u32 attr)546 hwm_energy_is_visible(const struct hwm_drvdata *ddat, u32 attr)
547 {
548 	struct i915_hwmon *hwmon = ddat->hwmon;
549 	i915_reg_t rgaddr;
550 
551 	switch (attr) {
552 	case hwmon_energy_input:
553 		if (ddat->gt_n >= 0)
554 			rgaddr = hwmon->rg.energy_status_tile;
555 		else
556 			rgaddr = hwmon->rg.energy_status_all;
557 		return i915_mmio_reg_valid(rgaddr) ? 0444 : 0;
558 	default:
559 		return 0;
560 	}
561 }
562 
563 static int
hwm_energy_read(struct hwm_drvdata * ddat,u32 attr,long * val)564 hwm_energy_read(struct hwm_drvdata *ddat, u32 attr, long *val)
565 {
566 	switch (attr) {
567 	case hwmon_energy_input:
568 		hwm_energy(ddat, val);
569 		return 0;
570 	default:
571 		return -EOPNOTSUPP;
572 	}
573 }
574 
575 static umode_t
hwm_curr_is_visible(const struct hwm_drvdata * ddat,u32 attr)576 hwm_curr_is_visible(const struct hwm_drvdata *ddat, u32 attr)
577 {
578 	struct drm_i915_private *i915 = ddat->uncore->i915;
579 	u32 uval;
580 
581 	switch (attr) {
582 	case hwmon_curr_crit:
583 		return (hwm_pcode_read_i1(i915, &uval) ||
584 			(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
585 	default:
586 		return 0;
587 	}
588 }
589 
590 static int
hwm_curr_read(struct hwm_drvdata * ddat,u32 attr,long * val)591 hwm_curr_read(struct hwm_drvdata *ddat, u32 attr, long *val)
592 {
593 	int ret;
594 	u32 uval;
595 
596 	switch (attr) {
597 	case hwmon_curr_crit:
598 		ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval);
599 		if (ret)
600 			return ret;
601 		if (uval & POWER_SETUP_I1_WATTS)
602 			return -ENODEV;
603 		*val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
604 				       SF_CURR, POWER_SETUP_I1_SHIFT);
605 		return 0;
606 	default:
607 		return -EOPNOTSUPP;
608 	}
609 }
610 
611 static int
hwm_curr_write(struct hwm_drvdata * ddat,u32 attr,long val)612 hwm_curr_write(struct hwm_drvdata *ddat, u32 attr, long val)
613 {
614 	u32 uval;
615 
616 	switch (attr) {
617 	case hwmon_curr_crit:
618 		uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_CURR);
619 		return hwm_pcode_write_i1(ddat->uncore->i915, uval);
620 	default:
621 		return -EOPNOTSUPP;
622 	}
623 }
624 
625 static umode_t
hwm_fan_is_visible(const struct hwm_drvdata * ddat,u32 attr)626 hwm_fan_is_visible(const struct hwm_drvdata *ddat, u32 attr)
627 {
628 	struct i915_hwmon *hwmon = ddat->hwmon;
629 
630 	if (attr == hwmon_fan_input && i915_mmio_reg_valid(hwmon->rg.fan_speed))
631 		return 0444;
632 
633 	return 0;
634 }
635 
636 static int
hwm_fan_input_read(struct hwm_drvdata * ddat,long * val)637 hwm_fan_input_read(struct hwm_drvdata *ddat, long *val)
638 {
639 	struct i915_hwmon *hwmon = ddat->hwmon;
640 	struct hwm_fan_info *fi = &ddat->fi;
641 	u64 rotations, time_now, time;
642 	intel_wakeref_t wakeref;
643 	u32 reg_val;
644 	int ret = 0;
645 
646 	wakeref = intel_runtime_pm_get(ddat->uncore->rpm);
647 	mutex_lock(&hwmon->hwmon_lock);
648 
649 	reg_val = intel_uncore_read(ddat->uncore, hwmon->rg.fan_speed);
650 	time_now = get_jiffies_64();
651 
652 	/*
653 	 * HW register value is accumulated count of pulses from
654 	 * PWM fan with the scale of 2 pulses per rotation.
655 	 */
656 	rotations = (reg_val - fi->reg_val_prev) / 2;
657 
658 	time = jiffies_delta_to_msecs(time_now - fi->time_prev);
659 	if (unlikely(!time)) {
660 		ret = -EAGAIN;
661 		goto exit;
662 	}
663 
664 	/*
665 	 * Calculate fan speed in RPM by time averaging two subsequent
666 	 * readings in minutes.
667 	 * RPM = number of rotations * msecs per minute / time in msecs
668 	 */
669 	*val = DIV_ROUND_UP_ULL(rotations * (MSEC_PER_SEC * 60), time);
670 
671 	fi->reg_val_prev = reg_val;
672 	fi->time_prev = time_now;
673 exit:
674 	mutex_unlock(&hwmon->hwmon_lock);
675 	intel_runtime_pm_put(ddat->uncore->rpm, wakeref);
676 	return ret;
677 }
678 
679 static int
hwm_fan_read(struct hwm_drvdata * ddat,u32 attr,long * val)680 hwm_fan_read(struct hwm_drvdata *ddat, u32 attr, long *val)
681 {
682 	if (attr == hwmon_fan_input)
683 		return hwm_fan_input_read(ddat, val);
684 
685 	return -EOPNOTSUPP;
686 }
687 
688 static umode_t
hwm_is_visible(const void * drvdata,enum hwmon_sensor_types type,u32 attr,int channel)689 hwm_is_visible(const void *drvdata, enum hwmon_sensor_types type,
690 	       u32 attr, int channel)
691 {
692 	struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata;
693 
694 	switch (type) {
695 	case hwmon_in:
696 		return hwm_in_is_visible(ddat, attr);
697 	case hwmon_power:
698 		return hwm_power_is_visible(ddat, attr, channel);
699 	case hwmon_energy:
700 		return hwm_energy_is_visible(ddat, attr);
701 	case hwmon_curr:
702 		return hwm_curr_is_visible(ddat, attr);
703 	case hwmon_fan:
704 		return hwm_fan_is_visible(ddat, attr);
705 	default:
706 		return 0;
707 	}
708 }
709 
710 static int
hwm_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)711 hwm_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
712 	 int channel, long *val)
713 {
714 	struct hwm_drvdata *ddat = dev_get_drvdata(dev);
715 
716 	switch (type) {
717 	case hwmon_in:
718 		return hwm_in_read(ddat, attr, val);
719 	case hwmon_power:
720 		return hwm_power_read(ddat, attr, channel, val);
721 	case hwmon_energy:
722 		return hwm_energy_read(ddat, attr, val);
723 	case hwmon_curr:
724 		return hwm_curr_read(ddat, attr, val);
725 	case hwmon_fan:
726 		return hwm_fan_read(ddat, attr, val);
727 	default:
728 		return -EOPNOTSUPP;
729 	}
730 }
731 
732 static int
hwm_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)733 hwm_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
734 	  int channel, long val)
735 {
736 	struct hwm_drvdata *ddat = dev_get_drvdata(dev);
737 
738 	switch (type) {
739 	case hwmon_power:
740 		return hwm_power_write(ddat, attr, channel, val);
741 	case hwmon_curr:
742 		return hwm_curr_write(ddat, attr, val);
743 	default:
744 		return -EOPNOTSUPP;
745 	}
746 }
747 
748 static const struct hwmon_ops hwm_ops = {
749 	.is_visible = hwm_is_visible,
750 	.read = hwm_read,
751 	.write = hwm_write,
752 };
753 
754 static const struct hwmon_chip_info hwm_chip_info = {
755 	.ops = &hwm_ops,
756 	.info = hwm_info,
757 };
758 
759 static umode_t
hwm_gt_is_visible(const void * drvdata,enum hwmon_sensor_types type,u32 attr,int channel)760 hwm_gt_is_visible(const void *drvdata, enum hwmon_sensor_types type,
761 		  u32 attr, int channel)
762 {
763 	struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata;
764 
765 	switch (type) {
766 	case hwmon_energy:
767 		return hwm_energy_is_visible(ddat, attr);
768 	default:
769 		return 0;
770 	}
771 }
772 
773 static int
hwm_gt_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)774 hwm_gt_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
775 	    int channel, long *val)
776 {
777 	struct hwm_drvdata *ddat = dev_get_drvdata(dev);
778 
779 	switch (type) {
780 	case hwmon_energy:
781 		return hwm_energy_read(ddat, attr, val);
782 	default:
783 		return -EOPNOTSUPP;
784 	}
785 }
786 
787 static const struct hwmon_ops hwm_gt_ops = {
788 	.is_visible = hwm_gt_is_visible,
789 	.read = hwm_gt_read,
790 };
791 
792 static const struct hwmon_chip_info hwm_gt_chip_info = {
793 	.ops = &hwm_gt_ops,
794 	.info = hwm_gt_info,
795 };
796 
797 static void
hwm_get_preregistration_info(struct drm_i915_private * i915)798 hwm_get_preregistration_info(struct drm_i915_private *i915)
799 {
800 	struct i915_hwmon *hwmon = i915->hwmon;
801 	struct intel_uncore *uncore = &i915->uncore;
802 	struct hwm_drvdata *ddat = &hwmon->ddat;
803 	intel_wakeref_t wakeref;
804 	u32 val_sku_unit = 0;
805 	struct intel_gt *gt;
806 	long energy;
807 	int i;
808 
809 	/* Available for all Gen12+/dGfx */
810 	hwmon->rg.gt_perf_status = GEN12_RPSTAT1;
811 
812 	if (IS_DG1(i915) || IS_DG2(i915)) {
813 		hwmon->rg.pkg_power_sku_unit = PCU_PACKAGE_POWER_SKU_UNIT;
814 		hwmon->rg.pkg_power_sku = PCU_PACKAGE_POWER_SKU;
815 		hwmon->rg.pkg_rapl_limit = PCU_PACKAGE_RAPL_LIMIT;
816 		hwmon->rg.energy_status_all = PCU_PACKAGE_ENERGY_STATUS;
817 		hwmon->rg.energy_status_tile = INVALID_MMIO_REG;
818 		hwmon->rg.fan_speed = PCU_PWM_FAN_SPEED;
819 	} else {
820 		hwmon->rg.pkg_power_sku_unit = INVALID_MMIO_REG;
821 		hwmon->rg.pkg_power_sku = INVALID_MMIO_REG;
822 		hwmon->rg.pkg_rapl_limit = INVALID_MMIO_REG;
823 		hwmon->rg.energy_status_all = INVALID_MMIO_REG;
824 		hwmon->rg.energy_status_tile = INVALID_MMIO_REG;
825 		hwmon->rg.fan_speed = INVALID_MMIO_REG;
826 	}
827 
828 	with_intel_runtime_pm(uncore->rpm, wakeref) {
829 		/*
830 		 * The contents of register hwmon->rg.pkg_power_sku_unit do not change,
831 		 * so read it once and store the shift values.
832 		 */
833 		if (i915_mmio_reg_valid(hwmon->rg.pkg_power_sku_unit))
834 			val_sku_unit = intel_uncore_read(uncore,
835 							 hwmon->rg.pkg_power_sku_unit);
836 
837 		/*
838 		 * Store the initial fan register value, so that we can use it for
839 		 * initial fan speed calculation.
840 		 */
841 		if (i915_mmio_reg_valid(hwmon->rg.fan_speed)) {
842 			ddat->fi.reg_val_prev = intel_uncore_read(uncore,
843 								  hwmon->rg.fan_speed);
844 			ddat->fi.time_prev = get_jiffies_64();
845 		}
846 	}
847 
848 	hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
849 	hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
850 	hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
851 
852 	/*
853 	 * Initialize 'struct hwm_energy_info', i.e. set fields to the
854 	 * first value of the energy register read
855 	 */
856 	if (i915_mmio_reg_valid(hwmon->rg.energy_status_all))
857 		hwm_energy(ddat, &energy);
858 	if (i915_mmio_reg_valid(hwmon->rg.energy_status_tile)) {
859 		for_each_gt(gt, i915, i)
860 			hwm_energy(&hwmon->ddat_gt[i], &energy);
861 	}
862 }
863 
i915_hwmon_register(struct drm_i915_private * i915)864 void i915_hwmon_register(struct drm_i915_private *i915)
865 {
866 	struct device *dev = i915->drm.dev;
867 	struct i915_hwmon *hwmon;
868 	struct device *hwmon_dev;
869 	struct hwm_drvdata *ddat;
870 	struct hwm_drvdata *ddat_gt;
871 	struct intel_gt *gt;
872 	int i;
873 
874 	/* hwmon is available only for dGfx */
875 	if (!IS_DGFX(i915))
876 		return;
877 
878 	hwmon = kzalloc(sizeof(*hwmon), GFP_KERNEL);
879 	if (!hwmon)
880 		return;
881 
882 	i915->hwmon = hwmon;
883 	mutex_init(&hwmon->hwmon_lock);
884 	ddat = &hwmon->ddat;
885 
886 	ddat->hwmon = hwmon;
887 	ddat->uncore = &i915->uncore;
888 	snprintf(ddat->name, sizeof(ddat->name), "i915");
889 	ddat->gt_n = -1;
890 	init_waitqueue_head(&ddat->waitq);
891 
892 	for_each_gt(gt, i915, i) {
893 		ddat_gt = hwmon->ddat_gt + i;
894 
895 		ddat_gt->hwmon = hwmon;
896 		ddat_gt->uncore = gt->uncore;
897 		snprintf(ddat_gt->name, sizeof(ddat_gt->name), "i915_gt%u", i);
898 		ddat_gt->gt_n = i;
899 	}
900 
901 	hwm_get_preregistration_info(i915);
902 
903 	/*  hwmon_dev points to device hwmon<i> */
904 	hwmon_dev = hwmon_device_register_with_info(dev, ddat->name,
905 						    ddat,
906 						    &hwm_chip_info,
907 						    hwm_groups);
908 	if (IS_ERR(hwmon_dev))
909 		goto err;
910 
911 	ddat->hwmon_dev = hwmon_dev;
912 
913 	for_each_gt(gt, i915, i) {
914 		ddat_gt = hwmon->ddat_gt + i;
915 		/*
916 		 * Create per-gt directories only if a per-gt attribute is
917 		 * visible. Currently this is only energy
918 		 */
919 		if (!hwm_gt_is_visible(ddat_gt, hwmon_energy, hwmon_energy_input, 0))
920 			continue;
921 
922 		hwmon_dev = hwmon_device_register_with_info(dev, ddat_gt->name,
923 							    ddat_gt,
924 							    &hwm_gt_chip_info,
925 							    NULL);
926 		if (!IS_ERR(hwmon_dev))
927 			ddat_gt->hwmon_dev = hwmon_dev;
928 	}
929 	return;
930 err:
931 	i915_hwmon_unregister(i915);
932 }
933 
i915_hwmon_unregister(struct drm_i915_private * i915)934 void i915_hwmon_unregister(struct drm_i915_private *i915)
935 {
936 	struct i915_hwmon *hwmon = i915->hwmon;
937 	struct intel_gt *gt;
938 	int i;
939 
940 	if (!hwmon)
941 		return;
942 
943 	for_each_gt(gt, i915, i)
944 		if (hwmon->ddat_gt[i].hwmon_dev)
945 			hwmon_device_unregister(hwmon->ddat_gt[i].hwmon_dev);
946 
947 	if (hwmon->ddat.hwmon_dev)
948 		hwmon_device_unregister(hwmon->ddat.hwmon_dev);
949 
950 	mutex_destroy(&hwmon->hwmon_lock);
951 
952 	kfree(i915->hwmon);
953 	i915->hwmon = NULL;
954 }
955