1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/types.h>
10 #include <linux/units.h>
11
12 #include "i915_drv.h"
13 #include "i915_hwmon.h"
14 #include "i915_reg.h"
15 #include "intel_mchbar_regs.h"
16 #include "intel_pcode.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_regs.h"
19
20 /*
21 * SF_* - scale factors for particular quantities according to hwmon spec.
22 * - voltage - millivolts
23 * - power - microwatts
24 * - curr - milliamperes
25 * - energy - microjoules
26 * - time - milliseconds
27 */
28 #define SF_VOLTAGE 1000
29 #define SF_POWER 1000000
30 #define SF_CURR 1000
31 #define SF_ENERGY 1000000
32 #define SF_TIME 1000
33
34 struct hwm_reg {
35 i915_reg_t gt_perf_status;
36 i915_reg_t pkg_temp;
37 i915_reg_t pkg_power_sku_unit;
38 i915_reg_t pkg_power_sku;
39 i915_reg_t pkg_rapl_limit;
40 i915_reg_t energy_status_all;
41 i915_reg_t energy_status_tile;
42 i915_reg_t fan_speed;
43 };
44
45 struct hwm_energy_info {
46 u32 reg_val_prev;
47 long accum_energy; /* Accumulated energy for energy1_input */
48 };
49
50 struct hwm_fan_info {
51 u32 reg_val_prev;
52 u64 time_prev;
53 };
54
55 struct hwm_drvdata {
56 struct i915_hwmon *hwmon;
57 struct intel_uncore *uncore;
58 struct device *hwmon_dev;
59 struct hwm_energy_info ei; /* Energy info for energy1_input */
60 struct hwm_fan_info fi; /* Fan info for fan1_input */
61 char name[12];
62 int gt_n;
63 bool reset_in_progress;
64 wait_queue_head_t waitq;
65 };
66
67 struct i915_hwmon {
68 struct hwm_drvdata ddat;
69 struct hwm_drvdata ddat_gt[I915_MAX_GT];
70 struct mutex hwmon_lock; /* counter overflow logic and rmw */
71 struct hwm_reg rg;
72 int scl_shift_power;
73 int scl_shift_energy;
74 int scl_shift_time;
75 };
76
77 static void
hwm_locked_with_pm_intel_uncore_rmw(struct hwm_drvdata * ddat,i915_reg_t reg,u32 clear,u32 set)78 hwm_locked_with_pm_intel_uncore_rmw(struct hwm_drvdata *ddat,
79 i915_reg_t reg, u32 clear, u32 set)
80 {
81 struct i915_hwmon *hwmon = ddat->hwmon;
82 struct intel_uncore *uncore = ddat->uncore;
83 intel_wakeref_t wakeref;
84
85 with_intel_runtime_pm(uncore->rpm, wakeref) {
86 mutex_lock(&hwmon->hwmon_lock);
87
88 intel_uncore_rmw(uncore, reg, clear, set);
89
90 mutex_unlock(&hwmon->hwmon_lock);
91 }
92 }
93
94 /*
95 * This function's return type of u64 allows for the case where the scaling
96 * of the field taken from the 32-bit register value might cause a result to
97 * exceed 32 bits.
98 */
99 static u64
hwm_field_read_and_scale(struct hwm_drvdata * ddat,i915_reg_t rgadr,u32 field_msk,int nshift,u32 scale_factor)100 hwm_field_read_and_scale(struct hwm_drvdata *ddat, i915_reg_t rgadr,
101 u32 field_msk, int nshift, u32 scale_factor)
102 {
103 struct intel_uncore *uncore = ddat->uncore;
104 intel_wakeref_t wakeref;
105 u32 reg_value;
106
107 with_intel_runtime_pm(uncore->rpm, wakeref)
108 reg_value = intel_uncore_read(uncore, rgadr);
109
110 reg_value = REG_FIELD_GET(field_msk, reg_value);
111
112 return mul_u64_u32_shr(reg_value, scale_factor, nshift);
113 }
114
115 /*
116 * hwm_energy - Obtain energy value
117 *
118 * The underlying energy hardware register is 32-bits and is subject to
119 * overflow. How long before overflow? For example, with an example
120 * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
121 * a power draw of 1000 watts, the 32-bit counter will overflow in
122 * approximately 4.36 minutes.
123 *
124 * Examples:
125 * 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days
126 * 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes
127 *
128 * The function significantly increases overflow duration (from 4.36
129 * minutes) by accumulating the energy register into a 'long' as allowed by
130 * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
131 * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
132 * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
133 * energy1_input overflows. This at 1000 W is an overflow duration of 278 years.
134 */
135 static void
hwm_energy(struct hwm_drvdata * ddat,long * energy)136 hwm_energy(struct hwm_drvdata *ddat, long *energy)
137 {
138 struct intel_uncore *uncore = ddat->uncore;
139 struct i915_hwmon *hwmon = ddat->hwmon;
140 struct hwm_energy_info *ei = &ddat->ei;
141 intel_wakeref_t wakeref;
142 i915_reg_t rgaddr;
143 u32 reg_val;
144
145 if (ddat->gt_n >= 0)
146 rgaddr = hwmon->rg.energy_status_tile;
147 else
148 rgaddr = hwmon->rg.energy_status_all;
149
150 with_intel_runtime_pm(uncore->rpm, wakeref) {
151 mutex_lock(&hwmon->hwmon_lock);
152
153 reg_val = intel_uncore_read(uncore, rgaddr);
154
155 if (reg_val >= ei->reg_val_prev)
156 ei->accum_energy += reg_val - ei->reg_val_prev;
157 else
158 ei->accum_energy += UINT_MAX - ei->reg_val_prev + reg_val;
159 ei->reg_val_prev = reg_val;
160
161 *energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
162 hwmon->scl_shift_energy);
163 mutex_unlock(&hwmon->hwmon_lock);
164 }
165 }
166
167 static ssize_t
hwm_power1_max_interval_show(struct device * dev,struct device_attribute * attr,char * buf)168 hwm_power1_max_interval_show(struct device *dev, struct device_attribute *attr,
169 char *buf)
170 {
171 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
172 struct i915_hwmon *hwmon = ddat->hwmon;
173 intel_wakeref_t wakeref;
174 u32 r, x, y, x_w = 2; /* 2 bits */
175 u64 tau4, out;
176
177 with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
178 r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
179
180 x = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_X, r);
181 y = REG_FIELD_GET(PKG_PWR_LIM_1_TIME_Y, r);
182 /*
183 * tau = 1.x * power(2,y), x = bits(23:22), y = bits(21:17)
184 * = (4 | x) << (y - 2)
185 * where (y - 2) ensures a 1.x fixed point representation of 1.x
186 * However because y can be < 2, we compute
187 * tau4 = (4 | x) << y
188 * but add 2 when doing the final right shift to account for units
189 */
190 tau4 = (u64)((1 << x_w) | x) << y;
191 /* val in hwmon interface units (millisec) */
192 out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
193
194 return sysfs_emit(buf, "%llu\n", out);
195 }
196
197 static ssize_t
hwm_power1_max_interval_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)198 hwm_power1_max_interval_store(struct device *dev,
199 struct device_attribute *attr,
200 const char *buf, size_t count)
201 {
202 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
203 struct i915_hwmon *hwmon = ddat->hwmon;
204 u32 x, y, rxy, x_w = 2; /* 2 bits */
205 u64 tau4, r, max_win;
206 unsigned long val;
207 int ret;
208
209 ret = kstrtoul(buf, 0, &val);
210 if (ret)
211 return ret;
212
213 /*
214 * Max HW supported tau in '1.x * power(2,y)' format, x = 0, y = 0x12
215 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds
216 */
217 #define PKG_MAX_WIN_DEFAULT 0x12ull
218
219 /*
220 * val must be < max in hwmon interface units. The steps below are
221 * explained in i915_power1_max_interval_show()
222 */
223 r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
224 x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
225 y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
226 tau4 = (u64)((1 << x_w) | x) << y;
227 max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
228
229 if (val > max_win)
230 return -EINVAL;
231
232 /* val in hw units */
233 val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME);
234 /* Convert to 1.x * power(2,y) */
235 if (!val) {
236 /* Avoid ilog2(0) */
237 y = 0;
238 x = 0;
239 } else {
240 y = ilog2(val);
241 /* x = (val - (1 << y)) >> (y - 2); */
242 x = (val - (1ul << y)) << x_w >> y;
243 }
244
245 rxy = REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_X, x) | REG_FIELD_PREP(PKG_PWR_LIM_1_TIME_Y, y);
246
247 hwm_locked_with_pm_intel_uncore_rmw(ddat, hwmon->rg.pkg_rapl_limit,
248 PKG_PWR_LIM_1_TIME, rxy);
249 return count;
250 }
251
252 static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
253 hwm_power1_max_interval_show,
254 hwm_power1_max_interval_store, 0);
255
256 static struct attribute *hwm_attributes[] = {
257 &sensor_dev_attr_power1_max_interval.dev_attr.attr,
258 NULL
259 };
260
hwm_attributes_visible(struct kobject * kobj,struct attribute * attr,int index)261 static umode_t hwm_attributes_visible(struct kobject *kobj,
262 struct attribute *attr, int index)
263 {
264 struct device *dev = kobj_to_dev(kobj);
265 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
266 struct i915_hwmon *hwmon = ddat->hwmon;
267
268 if (attr == &sensor_dev_attr_power1_max_interval.dev_attr.attr)
269 return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? attr->mode : 0;
270
271 return 0;
272 }
273
274 static const struct attribute_group hwm_attrgroup = {
275 .attrs = hwm_attributes,
276 .is_visible = hwm_attributes_visible,
277 };
278
279 static const struct attribute_group *hwm_groups[] = {
280 &hwm_attrgroup,
281 NULL
282 };
283
284 static const struct hwmon_channel_info * const hwm_info[] = {
285 HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT),
286 HWMON_CHANNEL_INFO(in, HWMON_I_INPUT),
287 HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_CRIT),
288 HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
289 HWMON_CHANNEL_INFO(curr, HWMON_C_CRIT),
290 HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT),
291 NULL
292 };
293
294 static const struct hwmon_channel_info * const hwm_gt_info[] = {
295 HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT),
296 NULL
297 };
298
299 /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
hwm_pcode_read_i1(struct drm_i915_private * i915,u32 * uval)300 static int hwm_pcode_read_i1(struct drm_i915_private *i915, u32 *uval)
301 {
302 /* Avoid ILLEGAL_SUBCOMMAND "mailbox access failed" warning in snb_pcode_read */
303 if (IS_DG1(i915) || IS_DG2(i915))
304 return -ENXIO;
305
306 return snb_pcode_read_p(&i915->uncore, PCODE_POWER_SETUP,
307 POWER_SETUP_SUBCOMMAND_READ_I1, 0, uval);
308 }
309
hwm_pcode_write_i1(struct drm_i915_private * i915,u32 uval)310 static int hwm_pcode_write_i1(struct drm_i915_private *i915, u32 uval)
311 {
312 return snb_pcode_write_p(&i915->uncore, PCODE_POWER_SETUP,
313 POWER_SETUP_SUBCOMMAND_WRITE_I1, 0, uval);
314 }
315
316 static umode_t
hwm_temp_is_visible(const struct hwm_drvdata * ddat,u32 attr)317 hwm_temp_is_visible(const struct hwm_drvdata *ddat, u32 attr)
318 {
319 struct i915_hwmon *hwmon = ddat->hwmon;
320
321 if (attr == hwmon_temp_input && i915_mmio_reg_valid(hwmon->rg.pkg_temp))
322 return 0444;
323
324 return 0;
325 }
326
327 static int
hwm_temp_read(struct hwm_drvdata * ddat,u32 attr,long * val)328 hwm_temp_read(struct hwm_drvdata *ddat, u32 attr, long *val)
329 {
330 struct i915_hwmon *hwmon = ddat->hwmon;
331 intel_wakeref_t wakeref;
332 u32 reg_val;
333
334 switch (attr) {
335 case hwmon_temp_input:
336 with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
337 reg_val = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_temp);
338
339 /* HW register value is in degrees Celsius, convert to millidegrees. */
340 *val = REG_FIELD_GET(TEMP_MASK, reg_val) * MILLIDEGREE_PER_DEGREE;
341 return 0;
342 default:
343 return -EOPNOTSUPP;
344 }
345 }
346
347 static umode_t
hwm_in_is_visible(const struct hwm_drvdata * ddat,u32 attr)348 hwm_in_is_visible(const struct hwm_drvdata *ddat, u32 attr)
349 {
350 struct drm_i915_private *i915 = ddat->uncore->i915;
351
352 switch (attr) {
353 case hwmon_in_input:
354 return IS_DG1(i915) || IS_DG2(i915) ? 0444 : 0;
355 default:
356 return 0;
357 }
358 }
359
360 static int
hwm_in_read(struct hwm_drvdata * ddat,u32 attr,long * val)361 hwm_in_read(struct hwm_drvdata *ddat, u32 attr, long *val)
362 {
363 struct i915_hwmon *hwmon = ddat->hwmon;
364 intel_wakeref_t wakeref;
365 u32 reg_value;
366
367 switch (attr) {
368 case hwmon_in_input:
369 with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
370 reg_value = intel_uncore_read(ddat->uncore, hwmon->rg.gt_perf_status);
371 /* HW register value in units of 2.5 millivolt */
372 *val = DIV_ROUND_CLOSEST(REG_FIELD_GET(GEN12_VOLTAGE_MASK, reg_value) * 25, 10);
373 return 0;
374 default:
375 return -EOPNOTSUPP;
376 }
377 }
378
379 static umode_t
hwm_power_is_visible(const struct hwm_drvdata * ddat,u32 attr,int chan)380 hwm_power_is_visible(const struct hwm_drvdata *ddat, u32 attr, int chan)
381 {
382 struct drm_i915_private *i915 = ddat->uncore->i915;
383 struct i915_hwmon *hwmon = ddat->hwmon;
384 u32 uval;
385
386 switch (attr) {
387 case hwmon_power_max:
388 return i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit) ? 0664 : 0;
389 case hwmon_power_rated_max:
390 return i915_mmio_reg_valid(hwmon->rg.pkg_power_sku) ? 0444 : 0;
391 case hwmon_power_crit:
392 return (hwm_pcode_read_i1(i915, &uval) ||
393 !(uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
394 default:
395 return 0;
396 }
397 }
398
399 #define PL1_DISABLE 0
400
401 /*
402 * HW allows arbitrary PL1 limits to be set but silently clamps these values to
403 * "typical but not guaranteed" min/max values in rg.pkg_power_sku. Follow the
404 * same pattern for sysfs, allow arbitrary PL1 limits to be set but display
405 * clamped values when read. Write/read I1 also follows the same pattern.
406 */
407 static int
hwm_power_max_read(struct hwm_drvdata * ddat,long * val)408 hwm_power_max_read(struct hwm_drvdata *ddat, long *val)
409 {
410 struct i915_hwmon *hwmon = ddat->hwmon;
411 intel_wakeref_t wakeref;
412 u64 r, min, max;
413
414 /* Check if PL1 limit is disabled */
415 with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
416 r = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
417 if (!(r & PKG_PWR_LIM_1_EN)) {
418 *val = PL1_DISABLE;
419 return 0;
420 }
421
422 *val = hwm_field_read_and_scale(ddat,
423 hwmon->rg.pkg_rapl_limit,
424 PKG_PWR_LIM_1,
425 hwmon->scl_shift_power,
426 SF_POWER);
427
428 with_intel_runtime_pm(ddat->uncore->rpm, wakeref)
429 r = intel_uncore_read64(ddat->uncore, hwmon->rg.pkg_power_sku);
430 min = REG_FIELD_GET(PKG_MIN_PWR, r);
431 min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
432 max = REG_FIELD_GET(PKG_MAX_PWR, r);
433 max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
434
435 if (min && max)
436 *val = clamp_t(u64, *val, min, max);
437
438 return 0;
439 }
440
441 static int
hwm_power_max_write(struct hwm_drvdata * ddat,long val)442 hwm_power_max_write(struct hwm_drvdata *ddat, long val)
443 {
444 struct i915_hwmon *hwmon = ddat->hwmon;
445 intel_wakeref_t wakeref;
446 DEFINE_WAIT(wait);
447 int ret = 0;
448 u32 nval;
449
450 /* Block waiting for GuC reset to complete when needed */
451 for (;;) {
452 wakeref = intel_runtime_pm_get(ddat->uncore->rpm);
453 mutex_lock(&hwmon->hwmon_lock);
454
455 prepare_to_wait(&ddat->waitq, &wait, TASK_INTERRUPTIBLE);
456
457 if (!hwmon->ddat.reset_in_progress)
458 break;
459
460 if (signal_pending(current)) {
461 ret = -EINTR;
462 break;
463 }
464
465 mutex_unlock(&hwmon->hwmon_lock);
466 intel_runtime_pm_put(ddat->uncore->rpm, wakeref);
467
468 schedule();
469 }
470 finish_wait(&ddat->waitq, &wait);
471 if (ret)
472 goto exit;
473
474 /* Disable PL1 limit and verify, because the limit cannot be disabled on all platforms */
475 if (val == PL1_DISABLE) {
476 intel_uncore_rmw(ddat->uncore, hwmon->rg.pkg_rapl_limit,
477 PKG_PWR_LIM_1_EN, 0);
478 nval = intel_uncore_read(ddat->uncore, hwmon->rg.pkg_rapl_limit);
479
480 if (nval & PKG_PWR_LIM_1_EN)
481 ret = -ENODEV;
482 goto exit;
483 }
484
485 /* Computation in 64-bits to avoid overflow. Round to nearest. */
486 nval = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_power, SF_POWER);
487 nval = PKG_PWR_LIM_1_EN | REG_FIELD_PREP(PKG_PWR_LIM_1, nval);
488
489 intel_uncore_rmw(ddat->uncore, hwmon->rg.pkg_rapl_limit,
490 PKG_PWR_LIM_1_EN | PKG_PWR_LIM_1, nval);
491 exit:
492 mutex_unlock(&hwmon->hwmon_lock);
493 intel_runtime_pm_put(ddat->uncore->rpm, wakeref);
494 return ret;
495 }
496
497 static int
hwm_power_read(struct hwm_drvdata * ddat,u32 attr,int chan,long * val)498 hwm_power_read(struct hwm_drvdata *ddat, u32 attr, int chan, long *val)
499 {
500 struct i915_hwmon *hwmon = ddat->hwmon;
501 int ret;
502 u32 uval;
503
504 switch (attr) {
505 case hwmon_power_max:
506 return hwm_power_max_read(ddat, val);
507 case hwmon_power_rated_max:
508 *val = hwm_field_read_and_scale(ddat,
509 hwmon->rg.pkg_power_sku,
510 PKG_PKG_TDP,
511 hwmon->scl_shift_power,
512 SF_POWER);
513 return 0;
514 case hwmon_power_crit:
515 ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval);
516 if (ret)
517 return ret;
518 if (!(uval & POWER_SETUP_I1_WATTS))
519 return -ENODEV;
520 *val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
521 SF_POWER, POWER_SETUP_I1_SHIFT);
522 return 0;
523 default:
524 return -EOPNOTSUPP;
525 }
526 }
527
528 static int
hwm_power_write(struct hwm_drvdata * ddat,u32 attr,int chan,long val)529 hwm_power_write(struct hwm_drvdata *ddat, u32 attr, int chan, long val)
530 {
531 u32 uval;
532
533 switch (attr) {
534 case hwmon_power_max:
535 return hwm_power_max_write(ddat, val);
536 case hwmon_power_crit:
537 uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_POWER);
538 return hwm_pcode_write_i1(ddat->uncore->i915, uval);
539 default:
540 return -EOPNOTSUPP;
541 }
542 }
543
i915_hwmon_power_max_disable(struct drm_i915_private * i915,bool * old)544 void i915_hwmon_power_max_disable(struct drm_i915_private *i915, bool *old)
545 {
546 struct i915_hwmon *hwmon = i915->hwmon;
547 u32 r;
548
549 if (!hwmon || !i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit))
550 return;
551
552 mutex_lock(&hwmon->hwmon_lock);
553
554 hwmon->ddat.reset_in_progress = true;
555 r = intel_uncore_rmw(hwmon->ddat.uncore, hwmon->rg.pkg_rapl_limit,
556 PKG_PWR_LIM_1_EN, 0);
557 *old = !!(r & PKG_PWR_LIM_1_EN);
558
559 mutex_unlock(&hwmon->hwmon_lock);
560 }
561
i915_hwmon_power_max_restore(struct drm_i915_private * i915,bool old)562 void i915_hwmon_power_max_restore(struct drm_i915_private *i915, bool old)
563 {
564 struct i915_hwmon *hwmon = i915->hwmon;
565
566 if (!hwmon || !i915_mmio_reg_valid(hwmon->rg.pkg_rapl_limit))
567 return;
568
569 mutex_lock(&hwmon->hwmon_lock);
570
571 intel_uncore_rmw(hwmon->ddat.uncore, hwmon->rg.pkg_rapl_limit,
572 PKG_PWR_LIM_1_EN, old ? PKG_PWR_LIM_1_EN : 0);
573 hwmon->ddat.reset_in_progress = false;
574 wake_up_all(&hwmon->ddat.waitq);
575
576 mutex_unlock(&hwmon->hwmon_lock);
577 }
578
579 static umode_t
hwm_energy_is_visible(const struct hwm_drvdata * ddat,u32 attr)580 hwm_energy_is_visible(const struct hwm_drvdata *ddat, u32 attr)
581 {
582 struct i915_hwmon *hwmon = ddat->hwmon;
583 i915_reg_t rgaddr;
584
585 switch (attr) {
586 case hwmon_energy_input:
587 if (ddat->gt_n >= 0)
588 rgaddr = hwmon->rg.energy_status_tile;
589 else
590 rgaddr = hwmon->rg.energy_status_all;
591 return i915_mmio_reg_valid(rgaddr) ? 0444 : 0;
592 default:
593 return 0;
594 }
595 }
596
597 static int
hwm_energy_read(struct hwm_drvdata * ddat,u32 attr,long * val)598 hwm_energy_read(struct hwm_drvdata *ddat, u32 attr, long *val)
599 {
600 switch (attr) {
601 case hwmon_energy_input:
602 hwm_energy(ddat, val);
603 return 0;
604 default:
605 return -EOPNOTSUPP;
606 }
607 }
608
609 static umode_t
hwm_curr_is_visible(const struct hwm_drvdata * ddat,u32 attr)610 hwm_curr_is_visible(const struct hwm_drvdata *ddat, u32 attr)
611 {
612 struct drm_i915_private *i915 = ddat->uncore->i915;
613 u32 uval;
614
615 switch (attr) {
616 case hwmon_curr_crit:
617 return (hwm_pcode_read_i1(i915, &uval) ||
618 (uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
619 default:
620 return 0;
621 }
622 }
623
624 static int
hwm_curr_read(struct hwm_drvdata * ddat,u32 attr,long * val)625 hwm_curr_read(struct hwm_drvdata *ddat, u32 attr, long *val)
626 {
627 int ret;
628 u32 uval;
629
630 switch (attr) {
631 case hwmon_curr_crit:
632 ret = hwm_pcode_read_i1(ddat->uncore->i915, &uval);
633 if (ret)
634 return ret;
635 if (uval & POWER_SETUP_I1_WATTS)
636 return -ENODEV;
637 *val = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
638 SF_CURR, POWER_SETUP_I1_SHIFT);
639 return 0;
640 default:
641 return -EOPNOTSUPP;
642 }
643 }
644
645 static int
hwm_curr_write(struct hwm_drvdata * ddat,u32 attr,long val)646 hwm_curr_write(struct hwm_drvdata *ddat, u32 attr, long val)
647 {
648 u32 uval;
649
650 switch (attr) {
651 case hwmon_curr_crit:
652 uval = DIV_ROUND_CLOSEST_ULL(val << POWER_SETUP_I1_SHIFT, SF_CURR);
653 return hwm_pcode_write_i1(ddat->uncore->i915, uval);
654 default:
655 return -EOPNOTSUPP;
656 }
657 }
658
659 static umode_t
hwm_fan_is_visible(const struct hwm_drvdata * ddat,u32 attr)660 hwm_fan_is_visible(const struct hwm_drvdata *ddat, u32 attr)
661 {
662 struct i915_hwmon *hwmon = ddat->hwmon;
663
664 if (attr == hwmon_fan_input && i915_mmio_reg_valid(hwmon->rg.fan_speed))
665 return 0444;
666
667 return 0;
668 }
669
670 static int
hwm_fan_input_read(struct hwm_drvdata * ddat,long * val)671 hwm_fan_input_read(struct hwm_drvdata *ddat, long *val)
672 {
673 struct i915_hwmon *hwmon = ddat->hwmon;
674 struct hwm_fan_info *fi = &ddat->fi;
675 u64 rotations, time_now, time;
676 intel_wakeref_t wakeref;
677 u32 reg_val;
678 int ret = 0;
679
680 wakeref = intel_runtime_pm_get(ddat->uncore->rpm);
681 mutex_lock(&hwmon->hwmon_lock);
682
683 reg_val = intel_uncore_read(ddat->uncore, hwmon->rg.fan_speed);
684 time_now = get_jiffies_64();
685
686 /*
687 * HW register value is accumulated count of pulses from
688 * PWM fan with the scale of 2 pulses per rotation.
689 */
690 rotations = (reg_val - fi->reg_val_prev) / 2;
691
692 time = jiffies_delta_to_msecs(time_now - fi->time_prev);
693 if (unlikely(!time)) {
694 ret = -EAGAIN;
695 goto exit;
696 }
697
698 /*
699 * Calculate fan speed in RPM by time averaging two subsequent
700 * readings in minutes.
701 * RPM = number of rotations * msecs per minute / time in msecs
702 */
703 *val = DIV_ROUND_UP_ULL(rotations * (MSEC_PER_SEC * 60), time);
704
705 fi->reg_val_prev = reg_val;
706 fi->time_prev = time_now;
707 exit:
708 mutex_unlock(&hwmon->hwmon_lock);
709 intel_runtime_pm_put(ddat->uncore->rpm, wakeref);
710 return ret;
711 }
712
713 static int
hwm_fan_read(struct hwm_drvdata * ddat,u32 attr,long * val)714 hwm_fan_read(struct hwm_drvdata *ddat, u32 attr, long *val)
715 {
716 if (attr == hwmon_fan_input)
717 return hwm_fan_input_read(ddat, val);
718
719 return -EOPNOTSUPP;
720 }
721
722 static umode_t
hwm_is_visible(const void * drvdata,enum hwmon_sensor_types type,u32 attr,int channel)723 hwm_is_visible(const void *drvdata, enum hwmon_sensor_types type,
724 u32 attr, int channel)
725 {
726 struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata;
727
728 switch (type) {
729 case hwmon_temp:
730 return hwm_temp_is_visible(ddat, attr);
731 case hwmon_in:
732 return hwm_in_is_visible(ddat, attr);
733 case hwmon_power:
734 return hwm_power_is_visible(ddat, attr, channel);
735 case hwmon_energy:
736 return hwm_energy_is_visible(ddat, attr);
737 case hwmon_curr:
738 return hwm_curr_is_visible(ddat, attr);
739 case hwmon_fan:
740 return hwm_fan_is_visible(ddat, attr);
741 default:
742 return 0;
743 }
744 }
745
746 static int
hwm_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)747 hwm_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
748 int channel, long *val)
749 {
750 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
751
752 switch (type) {
753 case hwmon_temp:
754 return hwm_temp_read(ddat, attr, val);
755 case hwmon_in:
756 return hwm_in_read(ddat, attr, val);
757 case hwmon_power:
758 return hwm_power_read(ddat, attr, channel, val);
759 case hwmon_energy:
760 return hwm_energy_read(ddat, attr, val);
761 case hwmon_curr:
762 return hwm_curr_read(ddat, attr, val);
763 case hwmon_fan:
764 return hwm_fan_read(ddat, attr, val);
765 default:
766 return -EOPNOTSUPP;
767 }
768 }
769
770 static int
hwm_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)771 hwm_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
772 int channel, long val)
773 {
774 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
775
776 switch (type) {
777 case hwmon_power:
778 return hwm_power_write(ddat, attr, channel, val);
779 case hwmon_curr:
780 return hwm_curr_write(ddat, attr, val);
781 default:
782 return -EOPNOTSUPP;
783 }
784 }
785
786 static const struct hwmon_ops hwm_ops = {
787 .is_visible = hwm_is_visible,
788 .read = hwm_read,
789 .write = hwm_write,
790 };
791
792 static const struct hwmon_chip_info hwm_chip_info = {
793 .ops = &hwm_ops,
794 .info = hwm_info,
795 };
796
797 static umode_t
hwm_gt_is_visible(const void * drvdata,enum hwmon_sensor_types type,u32 attr,int channel)798 hwm_gt_is_visible(const void *drvdata, enum hwmon_sensor_types type,
799 u32 attr, int channel)
800 {
801 struct hwm_drvdata *ddat = (struct hwm_drvdata *)drvdata;
802
803 switch (type) {
804 case hwmon_energy:
805 return hwm_energy_is_visible(ddat, attr);
806 default:
807 return 0;
808 }
809 }
810
811 static int
hwm_gt_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)812 hwm_gt_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
813 int channel, long *val)
814 {
815 struct hwm_drvdata *ddat = dev_get_drvdata(dev);
816
817 switch (type) {
818 case hwmon_energy:
819 return hwm_energy_read(ddat, attr, val);
820 default:
821 return -EOPNOTSUPP;
822 }
823 }
824
825 static const struct hwmon_ops hwm_gt_ops = {
826 .is_visible = hwm_gt_is_visible,
827 .read = hwm_gt_read,
828 };
829
830 static const struct hwmon_chip_info hwm_gt_chip_info = {
831 .ops = &hwm_gt_ops,
832 .info = hwm_gt_info,
833 };
834
835 static void
hwm_get_preregistration_info(struct drm_i915_private * i915)836 hwm_get_preregistration_info(struct drm_i915_private *i915)
837 {
838 struct i915_hwmon *hwmon = i915->hwmon;
839 struct intel_uncore *uncore = &i915->uncore;
840 struct hwm_drvdata *ddat = &hwmon->ddat;
841 intel_wakeref_t wakeref;
842 u32 val_sku_unit = 0;
843 struct intel_gt *gt;
844 long energy;
845 int i;
846
847 /* Available for all Gen12+/dGfx */
848 hwmon->rg.gt_perf_status = GEN12_RPSTAT1;
849
850 if (IS_DG1(i915) || IS_DG2(i915)) {
851 hwmon->rg.pkg_temp = PCU_PACKAGE_TEMPERATURE;
852 hwmon->rg.pkg_power_sku_unit = PCU_PACKAGE_POWER_SKU_UNIT;
853 hwmon->rg.pkg_power_sku = PCU_PACKAGE_POWER_SKU;
854 hwmon->rg.pkg_rapl_limit = PCU_PACKAGE_RAPL_LIMIT;
855 hwmon->rg.energy_status_all = PCU_PACKAGE_ENERGY_STATUS;
856 hwmon->rg.energy_status_tile = INVALID_MMIO_REG;
857 hwmon->rg.fan_speed = PCU_PWM_FAN_SPEED;
858 } else {
859 hwmon->rg.pkg_temp = INVALID_MMIO_REG;
860 hwmon->rg.pkg_power_sku_unit = INVALID_MMIO_REG;
861 hwmon->rg.pkg_power_sku = INVALID_MMIO_REG;
862 hwmon->rg.pkg_rapl_limit = INVALID_MMIO_REG;
863 hwmon->rg.energy_status_all = INVALID_MMIO_REG;
864 hwmon->rg.energy_status_tile = INVALID_MMIO_REG;
865 hwmon->rg.fan_speed = INVALID_MMIO_REG;
866 }
867
868 with_intel_runtime_pm(uncore->rpm, wakeref) {
869 /*
870 * The contents of register hwmon->rg.pkg_power_sku_unit do not change,
871 * so read it once and store the shift values.
872 */
873 if (i915_mmio_reg_valid(hwmon->rg.pkg_power_sku_unit))
874 val_sku_unit = intel_uncore_read(uncore,
875 hwmon->rg.pkg_power_sku_unit);
876
877 /*
878 * Store the initial fan register value, so that we can use it for
879 * initial fan speed calculation.
880 */
881 if (i915_mmio_reg_valid(hwmon->rg.fan_speed)) {
882 ddat->fi.reg_val_prev = intel_uncore_read(uncore,
883 hwmon->rg.fan_speed);
884 ddat->fi.time_prev = get_jiffies_64();
885 }
886 }
887
888 hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
889 hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
890 hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
891
892 /*
893 * Initialize 'struct hwm_energy_info', i.e. set fields to the
894 * first value of the energy register read
895 */
896 if (i915_mmio_reg_valid(hwmon->rg.energy_status_all))
897 hwm_energy(ddat, &energy);
898 if (i915_mmio_reg_valid(hwmon->rg.energy_status_tile)) {
899 for_each_gt(gt, i915, i)
900 hwm_energy(&hwmon->ddat_gt[i], &energy);
901 }
902 }
903
i915_hwmon_register(struct drm_i915_private * i915)904 void i915_hwmon_register(struct drm_i915_private *i915)
905 {
906 struct device *dev = i915->drm.dev;
907 struct i915_hwmon *hwmon;
908 struct device *hwmon_dev;
909 struct hwm_drvdata *ddat;
910 struct hwm_drvdata *ddat_gt;
911 struct intel_gt *gt;
912 int i;
913
914 /* hwmon is available only for dGfx */
915 if (!IS_DGFX(i915))
916 return;
917
918 hwmon = kzalloc(sizeof(*hwmon), GFP_KERNEL);
919 if (!hwmon)
920 return;
921
922 i915->hwmon = hwmon;
923 mutex_init(&hwmon->hwmon_lock);
924 ddat = &hwmon->ddat;
925
926 ddat->hwmon = hwmon;
927 ddat->uncore = &i915->uncore;
928 snprintf(ddat->name, sizeof(ddat->name), "i915");
929 ddat->gt_n = -1;
930 init_waitqueue_head(&ddat->waitq);
931
932 for_each_gt(gt, i915, i) {
933 ddat_gt = hwmon->ddat_gt + i;
934
935 ddat_gt->hwmon = hwmon;
936 ddat_gt->uncore = gt->uncore;
937 snprintf(ddat_gt->name, sizeof(ddat_gt->name), "i915_gt%u", i);
938 ddat_gt->gt_n = i;
939 }
940
941 hwm_get_preregistration_info(i915);
942
943 /* hwmon_dev points to device hwmon<i> */
944 hwmon_dev = hwmon_device_register_with_info(dev, ddat->name,
945 ddat,
946 &hwm_chip_info,
947 hwm_groups);
948 if (IS_ERR(hwmon_dev))
949 goto err;
950
951 ddat->hwmon_dev = hwmon_dev;
952
953 for_each_gt(gt, i915, i) {
954 ddat_gt = hwmon->ddat_gt + i;
955 /*
956 * Create per-gt directories only if a per-gt attribute is
957 * visible. Currently this is only energy
958 */
959 if (!hwm_gt_is_visible(ddat_gt, hwmon_energy, hwmon_energy_input, 0))
960 continue;
961
962 hwmon_dev = hwmon_device_register_with_info(dev, ddat_gt->name,
963 ddat_gt,
964 &hwm_gt_chip_info,
965 NULL);
966 if (!IS_ERR(hwmon_dev))
967 ddat_gt->hwmon_dev = hwmon_dev;
968 }
969 return;
970 err:
971 i915_hwmon_unregister(i915);
972 }
973
i915_hwmon_unregister(struct drm_i915_private * i915)974 void i915_hwmon_unregister(struct drm_i915_private *i915)
975 {
976 struct i915_hwmon *hwmon = i915->hwmon;
977 struct intel_gt *gt;
978 int i;
979
980 if (!hwmon)
981 return;
982
983 for_each_gt(gt, i915, i)
984 if (hwmon->ddat_gt[i].hwmon_dev)
985 hwmon_device_unregister(hwmon->ddat_gt[i].hwmon_dev);
986
987 if (hwmon->ddat.hwmon_dev)
988 hwmon_device_unregister(hwmon->ddat.hwmon_dev);
989
990 mutex_destroy(&hwmon->hwmon_lock);
991
992 kfree(i915->hwmon);
993 i915->hwmon = NULL;
994 }
995